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Taylor-Couette instability in disk suspensions:
Experimental observation and theory
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Using the well-known hydrodynamic theory for dilute suspensions of spheroids, we
have previously predicted the destabilization of Taylor-Couette flow due to anisotropic
viscous stresses induced by suspended disk-shaped particles [Gillissen and Wilson,
Phys. Rev. Fluids 3, 113903 (2018)]. Here we provide experimental evidence for the
destabilization mechanism using suspensions of mica flakes. There is good qualitative
agreement between the experiment and theory in the mica concentration dependence of the
critical speed for instability onset and of the axial wavelength of the corresponding Taylor
vortices. Quantitative differences are attributed to hydrodynamic interactions between the
disks, which we account for in the theory in an ad hoc fashion using rotary diffusion.

DOI: 10.1103/PhysRevFluids.5.083302

I. INTRODUCTION

Taylor-Couette flow (TCF) is the flow in the gap between two counter-rotating cylinders. When
the outer cylinder is held fixed and the rotation speed of the inner cylinder exceeds a threshold
value, the circular Taylor-Couette base flow destabilizes, which is accompanied by the emergence
of so-called Taylor vortices [1]. For Newtonian fluids, the onset of instability corresponds to the
Taylor number:

Ta = ρ�
√

�R3R1

ηs
, (1)

exceeding a critical value Tac that depends on the cylinder radius ratio R1/R2. Here ηs is the fluid
viscosity, � is the angular velocity of the inner cylinder, �R = R2 − R1 is the gap width between
the cylinders, and R1 and R2 are the radii of the inner and of the outer cylinder, respectively.

In non-Newtonian fluids the behavior is different, and two types of non-Newtonian TCF
instabilities have been observed. The first type is driven by centrifugal forces, similar to the
Newtonian instability, described above. In this case the non-Newtonian rheology only alters the
details of the instability, i.e., the onset speed, the shape, and the dynamics of the Taylor vortices,
while the driving mechanism (centrifugal force) remains the same. Examples of this type of
instability include fluids with a shear thinning rheology [2,3], such as dilute solutions of rodlike
polymers, e.g., carboxymethyl cellulose, polyacrylic acid, and xanthan [4–6]. Other examples
include suspensions of non-Brownian ellipsoids [7,8] and dense suspensions of spheres [9–11],
where in the latter case, the non-Newtonian effects arise from an anisotropic microstructure [12–15]
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FIG. 1. (a) A rod with its major axis n in the azimuthal direction φ does not rotate when subjected to an
azimuthal vorticity perturbation. (b) A disk, on the other hand, tilts its normal n away from the radial direction
r towards the axial direction z. The mean flow field Uφ (r) is drawn relative to the motion of the particles.

as well as from a heterogeneous solid concentration [9,16]. Dilute suspensions of spherical particles
(with volume fraction c � 0.05) roughly behave as Newtonian fluids with an elevated viscosity,
which may induce a very small destabilizing effect due to particle inertia [16].

The second type of non-Newtonian TCF instability is driven by viscoelastic stresses and persists
even in the absence of centrifugal forces. This so-called “elastic instability” has been observed in
polymer solutions [17–19] and in micelle solutions [20]. The elastic instability is well understood
and reproduced by numerical simulation using constitutive equations of viscoelastic fluids [18,21].
Other instabilities, related to non-Newtonian rheology, include shear banding and vorticity banding
[22], but these are not specific for the TCF geometry.

In this work we report on the modification of the centrifugal TCF instability due to anisotropic
viscous stresses generated by suspended disk-shaped particles. In a previous work we theoretically
predicted that, for suspensions of perfectly aligned disks, i.e., disks with an infinite aspect ratio
and zero rotary diffusivity Dr , the instability persists even when the centrifugal force becomes
vanishingly small [8]. Zero rotary diffusion corresponds to an infinite rotary Péclet number:

Pe = γ̇

Dr
, (2)

where γ̇ is the shear rate, Dr ∼ kBT/(ηsl3), and l is the major axis of the disks. Under these idealized
conditions, the critical Taylor number [Eq. (1)] required for instability onset was equal to zero. As
Ta → 0, the instability growth rate λ decreases as λ ∼ ν�R−2Ta2 (Fig. 4(b) in Ref. [8]), i.e., a
nonzero growth rate requires a nonzero centrifugal force. In Ref. [8], it was furthermore predicted
that nonidealized conditions, i.e., a finite rotary diffusivity and a finite aspect ratio, have an adverse
effect on the instability, resulting in a nonzero critical Taylor number.

A related but not entirely similar destabilization mechanism has been observed in suspensions
of disk-shaped clay particles [23]. These clay suspensions also generate elastic stresses and are
strongly shear thinning due to rotary Brownian diffusion and electrostatic interparticle forces [24].
Shear thinning destabilizes TCF, even in the absence of anisotropic viscous stresses [2].

In Fig. 1 we explain the destabilizing effect of suspended disks by contrasting it to the negligible
effect of suspended rods. Figure 1(a) illustrates a rod in the Taylor-Couette base flow which has a
strain rate sφr . The flow, gradient, and vorticity directions are φ, r, and z, respectively. In the limit
of an infinite aspect ratio and an infinite Péclet number [Eq. (2)], the rod major axis n points in the
φ direction, where it generates no hydrodynamics stress. A Taylor vortex perturbation corresponds
to azimuthal fluid vorticity ω′

φ , i.e., to fluid rotation around n. Consequently, n remains fixed and
the rod generates no additional stress.

For a disk, the situation is sketched in Fig. 1(b). In the base flow, the disk normal n points
in the r direction. A Taylor vortex perturbation ω′

φ rotates n away from the r axis and towards
the z axis. The perturbation of the disk normal in the z direction n′

z generates a stress perturbation
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FIG. 2. (a) Mica size distribution, obtained from micrographs, as shown in the inset, which has a 200-μm
scale bar. (b) The theoretical, scaled disk viscosity [η] as a function of the rotary Péclet number Pe in dilute
suspensions of disks with an aspect ratio of r−1

a = 102. The dotted lines indicate Pe ≈ 22, which corresponds to
the experimentally measured [η] ≈ 10. The inset shows the experimentally measured [η] in mica suspensions
as a function of the shear rate γ̇ for mica volume fractions of c = 5 × 10−3 (downward triangle), c = 10−2

(upward triangle), c = 2 × 10−2 (rightward triangle), and c = 5 × 10−2 (leftward triangle).

σ ′
φz ∼ sφrnrn′

z [see Eq. (9) below]. This stress perturbation has an amplifying feedback on the Taylor
vortex perturbation ω′

φ via ∂t u′
φ ∼ ∂zσ

′
φz and ∂t u′

r ∼ (U/R)u′
φ [see Eq. (8) below] and ω′

φ ∼ ∂zu′
r .

II. EXPERIMENTS

In this work we provide experimental evidence for the destabilizing effect of TCF due to
suspended, non-Brownian, and (nearly) nonadhesive disks. To this end, we use suspensions of mica
flakes (Cornelius Ltd.) with a thickness of d ≈ 1 μm and a mass density of 2.93 g cm−3. Figure 2(a)
shows the distribution of the major particle axis l which is obtained from 20 micrographs, as shown
in the inset of Fig. 2(a). In addition to inducing hydrodynamic instability, the mica flakes also serve
to visualize the flow structures. The reflectivity of the suspension depends on the relative orientation
of the incoming and the outgoing light w.r.t to the orientation of the flakes, which in turn is governed
by the various components of the fluid velocity gradient tensor [see Eq. (10) below].

We examine one Newtonian fluid, i.e., with a very low flake volume fraction c = 10−4, and
five suspensions with flake volume fractions ranging between c = 10−3 and c = 5 × 10−2. The
suspending medium is a mixture of glycerol (volume fraction G), distilled water (volume fraction
W), and aqueous food dye to aid flow visualization (volume fraction 0.02). For c � 10−2 and c �
2 × 10−2 we used (G,W) = (0.71, 0.27) and (0.9, 0.08), respectively, which correspond to a density
and a viscosity of (ρ [g cm−3], ηs [Pa s]) of (1.18, 0.036) and (1.24, 0.3), respectively. The more
viscous liquid was used to suppress sedimentation effects at the higher mica concentrations.

The steady shear viscosity ηeff of the suspensions is measured using a rotational rheometer (TA
Instruments) equipped with a cone-and-plate geometry. The inset of Fig. 2(b) shows the measured
viscosity induced by the disks divided by the disk volume fraction, which we refer to as the scaled
disk viscosity:

[η] = ηeff − ηs

cηs
, (3)

as a function of the shear rate γ̇ for the various suspensions. The shear rate range 5 � γ̇ � 103 s−1

would correspond to a Taylor number [Eq. (1)] range in the TCF setup of approximately 3 � Ta �
6 × 102. For c � 2 × 10−2, the measured [η] collapse, i.e., [η], is independent of c and γ̇ , causing
overlapping (and therefore invisible) markers in the inset of Fig. 2(b). For c = 5 × 10−2, there is
slight shear thinning, i.e., the exponent δ in [η] ∼ γ̇ −δ is around δ ≈ 0.02. This exponent is much
smaller than in suspensions of more adhesive platelets, such as graphene [25] and clay [24], whose
exponents have been observed in the range 0.5 < δ < 1. The (near) rate independence of our mica
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FIG. 3. Light intensity maps I (z, Ta) using [c, d�∗/dt∗] equal to [10−4, 0.7] (a), [10−2, 0.7] (b), [2 ×
10−2, 0.9] (c), and [5 × 10−2, 0.6] (d). The maps show the onset of instability as the appearance of the banded
structures above a critical speed, indicated by the dashed white lines. The inset of (b) shows a closeup of a
vortex merger event.

suspensions, i.e., small δ, confirms the (near) absence of adhesion forces and corresponding elastic
behavior.

The cylinders in the TCF setup have length L = 155 mm and radii R1 = 21.66 mm and R2 =
27.92 mm, which correspond to a radius ratio of R1/R2 = 0.77 and an aspect ratio of L/�R =
21.56. The flow cell is enclosed within a rectangular chamber in which water is recirculated to keep
the fluid temperature in the flow cell at 20 ◦C ± 0.1 ◦C [6]. The inner cylinder is accelerated from
rest with a constant acceleration rate d�/dt . The flow cell is illuminated using a white light-emitting
diode (SugarCUBE, Edmund Optics). We use a CMOS camera (Phantom Miro 340) to image a strip
of the flow cell with 2224 × 16 pixels in the z and φ directions and a frame rate of 60 s−1. Each
image is averaged over the 16 pixels in the φ direction into a z profile with 2224 pixels. The resulting
profiles are combined into a matrix which is referred to as the light intensity map I (z, Ta). This map
is a function of the height z and of the effective Taylor number Ta:

Ta = ρ�
√

�R3R1

ηeff
. (4)

Here ηeff is the measured, effective viscosity; see inset of Fig. 2(b).
In Fig. 3 we show I (z, Ta) for mica concentrations ranging from c = 10−4 to c = 5 × 10−2.

The figure shows that, above a critical Taylor number Tac, the circular base flow transitions into a
vortical flow, indicated by the appearance of bright and dark bands in I (z, Ta). For the Newtonian
suspension, with negligible mica concentration c = 10−4 [Fig. 3(a)], the instability starts at both
ends in the form of Ekman vortices. Since these end effects are not associated with the Taylor
vortices, we disregard the end regions in the subsequent analysis. For c = 2 × 10−2 [Fig. 3(c)] the
visualization near the top was complicated (reflected by the undulations) due to a leak in the external
cooling circuit with the cooling water level dropping off and being readjusted as the experiment was
running. For c = 5 × 10−2 [Fig. 3(d)], sedimentation effects are manifested by the dark region in
the lower half. These regions are disregarded from the subsequent analysis. Nevertheless, axial
concentration variations are expected to be weak, since the gravity force �ρgdl2 is four orders of
magnitude smaller than the hydrodynamic force γ̇ ηeff l2, where g = 9.81 m s−2 is the gravitational
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acceleration and �ρ = 2.34 g cm−3 is the density difference between the mica and the suspending
medium.

In Figs. 3(b)–3(d), faint ridges appear for Ta > Tac which gradually become more distinct as
Ta is increased further. This indicates that at Ta = Tac the Taylor vortex strength is relatively weak
and it grows for Ta > Tac. This gradual development of the Taylor vortex strength is not observed
in the Newtonian system [Fig. 3(a)] nor in similar measurements of solutions of flexible or rodlike
polymers; see, e.g., Ref. [6].

In Ref. [8] we predicted that Tac = 0 under the hypothetical conditions of noninteracting
disks with an infinite aspect ratio. The observation of a nonzero Tac in Figs. 3(b)–3(d) reflects
non-negligible hydrodynamic interactions in these mica suspensions as well as a finite aspect ratio.

The light intensity map for c = 10−2 in Fig. 3(b) shows another interesting feature; as Ta is
increased, the number of vortices (indicated by the number of bright and dark bands) abruptly
decreases at several points. These events correspond to the merger of two adjacent vortices. A
closeup of such a vortex merger event is provided in the inset of Fig. 3(b). This phenomenon has
also been observed in solutions of polymers [6,26]. It is noted that these sudden changes are likely
due to the finite L/�R of the TCF setup, while for L/�R → ∞ these changes are expected to be
continuous.

The onset of instability corresponds to critical values, kc and Tac, of the axial vortical wave
number k and of the effective Taylor number [Eq. (4)]. To determine kc and Tac, the I (z, Ta) (Fig. 3)
are first filtered over Ta with a filter width of �Ta ≈ 1. This is to improve the statistical significance
of the variations of I (z, Ta) with Ta. Then for each value of Ta we compute the Fourier transformed
light intensity map:

Î (k, Ta) =
∫

exp(izk)I (z, Ta)dz. (5)

For each Ta we determine the maximum Îm of Î (k, Ta) as a function of k, excluding the k = 0 mode.
The maximum Îm occurs at wave number km.

Figure 4(a) shows Îm and km as functions of Ta for the Newtonian system [Fig. 3(a)] using c =
10−4 and a nondimensional ramp-up speed of d�∗/dt∗ ≈ 0.7 [27]:

d�∗

dt∗ = ρ2R1�R3

η2
eff

d�

dt
. (6)

As Ta passes the critical value Tac, indicated by the vertical dotted line, Îm starts growing, which
corresponds to the onset of Taylor vortices. For this Newtonian case, we find a critical Taylor number
of Tac ≈ 46, which is close to the theoretical value of Tac ≈ 48 [28]. The critical wave number kc

is determined as km at Ta = Tac, giving kc�R/π ≈ 0.92, which is close to the theoretical value of
kc�R/π ≈ 1.0. The agreement between these experimental results and the literature values confirms
that the nondimensional ramp-up speed of d�∗/dt∗ ≈ 0.7 is sufficiently slow to ensure that these
Newtonian results are not affected by the finite acceleration rate.

Figures 4(b)–4(d) show Îm and km as functions of Ta for c = 10−2 and for three values for
d�∗/dt∗. It can be seen that for d�∗/dt∗ ≈ 0.1 and 0.7 the critical values Tac and kc are close
to one another, i.e., Tac ≈ 19.7 and 21.6 and kc ≈ 1.55 and 1.51. For the larger d�∗/dt∗ ≈ 7, on
the other hand, the critical values deviate somewhat, i.e., Tac ≈ 26.0 and kc ≈ 1.38. These results
show that for c = 10−2, d�∗/dt∗ ≈ 0.7 is sufficiently slow to obtain critical values that are (nearly)
independent of d�∗/dt∗. We use a similar acceleration rate of d�∗/dt∗ ≈ 0.9 for c = 2 × 10−2

[Fig. 4(e)] and d�∗/dt∗ ≈ 0.6 for c = 5 × 10−2 [Fig. 4(f)]. It is finally noted that the vortical
wavelength km in Figs. 4(b)–4(f) shows sudden variations which are associated with the vortex
merger events, as shown in Fig. 3(b).
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FIG. 4. The maximum Îm (arbitrary units) of the Fourier transformed light intensity map [Eq. (5)] and the
corresponding wave number km as functions of Ta for [c, d�∗/dt∗] equal to [10−4, 0.7] (a), [10−2, 0.1] (b),
[10−2, 0.7] (c), [10−2, 7] (d), [2 × 10−2, 0.9] (e), and [5 × 10−2, 0.6] (f). The critical Taylor number Tac is
indicated with the vertical dotted lines which correspond to the growth onset of Îm.

III. THEORY

We now compare the experimental results to the theoretical model of Ref. [8]. The model is based
on the well-known constitutive equations for dilute suspensions of spheroids which are given by the
continuity equation

∇ · u = 0 (7)

and the momentum equation

ρ∂t u = ∇ · [−ρuu − pδ + ηs(∇u + ∇uT ) + σ]. (8)

In Eq. (8), the spheroid stress σ is given by [29]

σ

ηs
= 2α1s + 2α2s : aa + α3(s · a + a · s) + α4Dr

(
a − 1

3δ
)
, (9)

which depends on the microstructure a = 〈nn〉. Here n is the unit vector along the spheroid
polar axis (Fig. 1) and 〈· · · 〉 denotes the average over a statistical ensemble of spheroids. The
microstructure tensor a evolves as

∂t a = −u · ∇a + ∇uT · a + a · ∇u + (B − 1)(s · a + a · s) − 2Bs : aa − Dr
(
a − 1

3δ
)
. (10)

Here u is the velocity, ρ is the suspension mass density, p is the pressure, s = 1
2 (∇u + ∇uT ) is the

rate of strain tensor, Dr is the rotary diffusivity, which is added to mimic the effects of hydrodynamic
interactions between the non-Brownian disks, c is the spheroid volume fraction, ra = a/b is the
aspect ratio, a is the polar radius, b is the equatorial radius, αi are material constants that depend
on c and ra, and B = (r2

a − 1)/(r2
a + 1). The cases ra < 1, ra = 1, and ra > 1 correspond to oblate

spheroids (disks), spheres, and prolate spheroids (rods), respectively.
In order to estimate the effective aspect ratio that corresponds to the size distribution in Fig. 2(a),

we use that the disk stress σ scales with the disk major axis cubed [29]. Therefore the relevant
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FIG. 5. The critical Taylor number Tac (black lines and squares) and the critical vortical wave number
kc (gray lines and triangles), normalized by their Newtonian values, plotted vs the disk concentration c.
Comparison between experimental data (markers) and theory (lines). The theory uses an aspect ratio of
r−1

a = 102 and a rotary Péclet number of Pe = 1 × 102 (solid lines), Pe = 1 × 103 (dashed lines), Pe = 1 × 104

(dotted lines), and Pe = 1 × 105 (dash-dotted lines).

particle dimension is the cube root of the third moment of this distribution leff = 〈l3〉1/3 ∼ 102 μm,
giving an aspect ratio of r−1

a = leff/d ∼ 102.
In the theory [Eqs. (7)–(10)] hydrodynamic interactions are not taken into account rigorously.

The number of these interactions per particle is proportional to the volume fraction of the
disk-circumscribing spheres ∼cr−1

a . In the present work we consider mica suspensions with
concentrations up to cr−1

a ∼ 5, for which hydrodynamic interactions are expected to be important.
We model these interactions as rotary diffusion (Dr terms) in Eqs. (9) and (10). Theoretical and
experimental studies have shown that rotary diffusion is an adequate model for hydrodynamic
interactions between rods [30–34]. For disks, on the other hand, there are no equivalent studies, and
at present it is not clear if interactions between disks can adequately be modeled by rotary diffusion.
We shed some light on this issue below by comparing the theoretical model [Eqs. (7)–(10)] to
experimental data, for both steady shear flow and for the TCF instability.

First we show in Fig. 2(b) the theoretical [Eqs. (7)–(10)] scaled disk viscosity [η] [Eq. (3)] in
the steady shear flow of a suspension of oblate spheroids with an aspect ratio of r−1

a = 102 as a
function of the rotary Péclet number [Eq. (2)]. The theoretical viscosity in Fig. 2(b) decreases as a
function of Pe. For Pe ≈ 22 the model matches the experimental data [η] ≈ 10 [inset of Fig. 2(b)].
We reemphasize that the mica flakes are non-Brownian and that rotary diffusion is used as a model
for the effects of hydrodynamic interactions between the disks. We further note that the (near) shear
rate γ̇ invariance of the measured [η] [inset in Fig. 2(b)] indicates a constant rotary Péclet number
[Eq. (2)], i.e., Dr ∼ γ̇ .

We present linear stability analysis of the cylindrical coordinate version of Eqs. (7)–(10) with
respect to axisymmetric perturbations u′(r) exp(ikz) exp(λt ) where k is the axial wave number and
λ is the growth rate. The axisymmetry of the instability modes is experimentally observed in Fig. 3.
Details of the stability analysis are given in Ref. [8]. Briefly, we discretize Eqs. (7)–(10) using 30
Chebyshev collocation points. After computing the base state, we compute λ by numerically solving
the corresponding generalized eigenvalue problem. For all cases shown, λ is found to be real-valued,
i.e., nonoscillatory, in agreement with the experimental observations in Fig. 3.

To match the experimental system, we use a radius ratio of R1/R2 = 0.77, a disk aspect ratio
of r−1

a = 102, and we vary the disk concentration between c = 10−4 and c = 10−1 and the rotary
Péclet number between Pe = 102 and Pe = 105. For each c and Pe we vary the wave number k of
the perturbation, and for each k we vary the rotation speed �. We thereby find the critical wave
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FIG. 6. Real part (black) and imaginary part (gray) of the theoretically computed Taylor vortex in a
Newtonian system (a) and in a disk suspension (b) using an aspect ratio of r−1

a = 102, a rotary Péclet number
of Pe = 3 × 103, and a concentration of c = 10−2.

number kc and the critical Taylor number Tac that mark the transition between positive and negative
λ, i.e., the onset of instability.

Figure 5 shows good qualitative agreement between the computed and measured Tac and kc as
functions of c. The experimentally measured kc suggest a slight discontinuity between c = 10−2

and c = 2 × 10−2 which is likely due to the change in the suspending medium (see Sec. II)
and the corresponding changes in sedimentation and interparticle adhesion. These effects are
expected to be weak, however, since the measured Tac (Fig. 5) does not suggest a discontinuity.
The experimental data for Tac agree well with the numerical results for 103 � Pe � 104. This
range is beyond the value of Pe ≈ 22, which was required to match the constitutive model to the
experimental data for steady shear flow [Fig. 2(b)]. This discrepancy highlights that rotary diffusion
is not an accurate model for hydrodynamic interactions between disks. Indeed, hydrodynamic
interactions between disks are more complicated than a mere randomizing effect. In contrast to
rotary diffusion, hydrodynamic repulsion may suppress rotational freedom [35]. Nevertheless, there
is good qualitative agreement between the theory and the experimental data in both Tac and kc as
functions of c. This agreement supports our theoretical finding [8] that Taylor-Couette flow can be
destabilized by anisotropic viscous stresses due to suspended disk-shaped particles. The agreement
also indicates that sedimentation, although visible in Fig. 3(d), does not have a dramatic effect, i.e.,
the mica concentration in the upper half of Fig. 3(d) is expected to be close to the volume-averaged
value c.

Figure 6 shows the theoretically computed velocity profiles of the Taylor vortices with c = 0
and Ta = Tac ≈ 48 and with c = 10−2 and Ta = Tac ≈ 24. Compared to the Newtonian Taylor
vortex [Fig. 6(a)], the Taylor vortex in the disk suspension [Fig. 6(b)] has a suppressed cross-stream
velocity. These results agree qualitatively with the light intensity maps in Fig. 3, showing that
the Newtonian Taylor vortex has a relatively large intensity immediately at Ta = Tac which stays
roughly constant for Ta > Tac, whereas the non-Newtonian Taylor vortices have a relatively small
intensity at Ta = Tac which increases for Ta > Tac.

IV. CONCLUSIONS

We have previously theoretically predicted that Taylor-Couette flow can be destabilized by
anisotropic viscous stresses induced by suspended disk-shaped particles [8]. These particles redirect
the transfer of azimuthal momentum from the radial to the axial direction. The theory was based on
the well-known constitutive equations of suspensions of noninteracting spheroids.

In this work we have provided experimental evidence for this destabilization mechanism using
suspensions of mica flakes. In order to match the theory to the experimental data, we have added
a rotary diffusion term to the constitutive equations which models the hydrodynamic interactions
between the disks. With this modification, there is good qualitative agreement between theory and
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experiment in the concentration dependence of the critical speed for instability onset and of the
Taylor vortex size. We believe that quantitative differences between the theory and the experiments
are mainly due to inaccurate modeling of hydrodynamic interactions as rotary diffusion, and to a
lesser extent due to (weak) adhesion forces and sedimentation effects.

This destabilization mechanism has a range of potential industrial applications, e.g., to enhance
mixing in chemical reactors, to enhance heat transfer in drilling equipment, or to better control the
exfoliation of graphite into graphene [36].
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