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Abstract
If a Spin(7)-manifold N8 admits a free S1 action preserving the fundamental 4-form, then 
the quotient space M7 is naturally endowed with a G

2
-structure. We derive equations relat-

ing the intrinsic torsion of the Spin(7)-structure to that of the G
2
-structure together with the 

additional data of a Higgs field and the curvature of the S1-bundle; this can be interpreted 
as a Gibbons–Hawking-type ansatz for Spin(7)-structures. In particular, we show that if 
N is a Spin(7)-manifold, then M cannot have holonomy contained in G

2
 unless the N is in 

fact a Calabi–Yau fourfold and M is the product of a Calabi–Yau threefold and an inter-
val. By inverting this construction, we give examples of SU(4) holonomy metrics starting 
from torsion-free SU(3)-structures. We also derive a new formula for the Ricci curvature 
of Spin(7)-structures in terms of the torsion forms. We then describe this S1-quotient con-
struction in detail on the Bryant–Salamon Spin(7) metric on the spinor bundle of S4 and on 
flat ℝ8.

Keywords Differential geometry · Exceptional holonomy · S1-quotient · G2-structures · 
Spin(7)-structures

Mathematics Subject Classification 53C10 · 53C29

1 Introduction

In 1955, Berger classified the possible holonomy groups of irreducible, nonsymmetric, simply 
connected Riemannian manifolds [6]. The classification included the two exceptional cases of 
holonomy groups: G2 and Spin(7), of which no examples were known at the time. It is only 
in 1987 that Bryant proved the existence of local examples in [9], and subsequently, explicit 
complete non-compact examples were constructed by Bryant and Salamon in [11]. There are 
by now many known examples of holonomy G2 and Spin(7) metrics cf. [3, 8, 19, 20, 30], yet 
very few explicitly known ones. In [2], Apostolov and Salamon studied the S1-reduction of G2

-manifolds and investigated the situation when the quotient is a Kähler manifold. By invert-
ing their construction, they were able to give several local examples of holonomy G2 metrics 
starting from a Kähler threefold with additional data. Motivated by their work, in this article 
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we shall carry out the analogous construction in the Spin(7) setting, but more generally, we 
shall look at S1-invariant Spin(7)-structures which are not necessarily torsion free. The situa-
tion when N is a Spin(7)-manifold has also been studied by Foscolo in [19]. One motivation 
for studying the non-torsion-free cases lies in the fact that they also have interesting geometric 
properties; for instance, balanced Spin(7)-structures admit harmonic spinors [28] and compact 
locally conformally parallel are fibred by nearly parallel G2 manifolds [29]. A further motiva-
tion is that Spin(7)-structures have only two torsion classes and thus have only four types, 
whereas G2-structures have four classes, thus allowing for a more refined decomposition of the 
Spin(7) torsion classes. The outline for the rest of this article is as follows.

In Sect. 2, we give a brief introduction to G2 and Spin(7)-structures and set up some nota-
tion. The reader will find proofs of the mentioned facts in the standard references [9, 30, 34].

In Sect. 3, we describe the quotient of Spin(7)-structures which are invariant under a free 
circle action. The foundational result is Proposition 3.2, which gives explicit expressions relat-
ing the torsion of the Spin(7)-structure on the 8-manifold N to the torsion of the quotient G2

-structure on M together with a positive function s and the curvature of the S1 bundle. The key 
observation is that this construction is reversible. In the subsequent subsections, we special-
ise to the three cases when the Spin(7)-structure is torsion free, locally conformally parallel 
and balanced. In the torsion-free situation, we show that quotient manifold cannot have holo-
nomy equal to G2 unless N is a Calabi–Yau fourfold and M is the Riemannian product of a 
Calabi–Yau threefold and a circle. We also give explicit expressions for the SU(4)-structure in 
terms of the data on the quotient manifold, see Theorem 3.6. In the locally conformally paral-
lel situation, we show that M has vanishing Λ3

27
 torsion component, and furthermore, if the Λ3

1
 

torsion component is nonzero, then N = M × S1 , see Theorem 3.7. In the balanced situation, 
we show that the existence of an invariant Spin(7)-structure is equivalent to the existence of a 
suitable section of Λ2

14
 of the quotient space, see Theorem 3.9. We provide several examples to 

illustrate each case.
In Sect. 4, we derive formulae for the Ricci and scalar curvatures of Spin(7)-structures in 

terms of the torsion forms à la Bryant cf. [10], see Proposition 4.1. As a corollary, under our 
free S1 action hypothesis, we show that the Λ2

7
 component of the curvature form corresponds 

to the mean curvature vector of the circle fibres.
In the last two sections, we demonstrate how our construction can be applied to the Bry-

ant–Salamon Spin(7)-structure on the (negative) spinor bundle of S4 and on the flat Spin(7)-
structure on ℝ8. In the former case, the quotient space is the anti-self-dual bundle of S4, and in 
the latter, it is the cone on ℂℙ3. We interpret the quotient of the spinor bundle as a fibrewise 
reverse Gibbons–Hawking ansatz. In both cases, we also study the SU(3)-structure on the link 
ℂℙ

3.

2  Preliminaries

A G2-structure on a 7-manifold M7 is given by a 3-form � that can be identified at each point 
p ∈ M7 with the standard one on ℝ7:

where dxijk denotes dxi ∧ dxj ∧ dxk . More abstractly, it can equivalently be defined as a 
reduction of the structure group of the frame bundle of M from GL(7,ℝ) to G2 , but we shall 
use the former more concrete definition. The reason for this nomenclature is the fact that 
the subgroup of GL(7,ℝ) which stabilises �0 is isomorphic to the Lie group G2 . Since G2 is 

(2.1)�0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356
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a subgroup of SO(7) [9], it follows that � defines a Riemannian metric g� and volume form 
vol� on M7 . Explicitly, these are given by

Thus, � also defines a Hodge star operator ∗� . It is known that a 7-manifold admits a G2

-structure if and only if its first and second Stiefel–Whitney classes vanish [33], so there is 
a plethora of examples. One of the main motivations for studying this structure is that if � 
is parallel with respect to the Levi-Civita connection ∇g� (which is a first-order condition), 
then it has holonomy contained in G2 and the metric is Ricci-flat. Such a manifold is called 
a G2-manifold. Note that in contrast, the Ricci-flat system of equations is second order. The 
fact that � is parallel implies the reduction of the holonomy group from SO(7) to (a sub-
group of) G2, and conversely, a holonomy G2 metric implies the existence of such a 3-form. 
A useful alternative way to verify the parallel condition is given by the following theorem:

Theorem 2.1 ([17]) ∇g�� = 0 if and only if d� = 0 and d ∗� � = 0.

The failure of the reduction of the holonomy group to G2 is measured by the intrinsic 
torsion. Abstractly, given a general H-structure for a subgroup H ⊂ O(n) the intrinsic 
torsion is defined as a section of the associated bundle to ℝn ⊗ 𝔥⟂ where 𝔰𝔬(n) = 𝔥⊕ 𝔥⟂ 
and ⟂ denotes the orthogonal complement with respect to the Killing form. We shall 
only give a brief description here, but more details can be found in [10, 34]. The space 
of differential forms on M7 can be decomposed as G2-modules as follows:

where the subscript denotes the dimension of the irreducible module. Using the Hodge star 
operator, we get the corresponding splitting for Λ4 , Λ5 and Λ6. The intrinsic torsion is given 
by dim(ℝ7 ⊗ 𝔤⟂

2
) = 49 equations and can be described using the equations

where �0 ∈ Ω0 , �1 ∈ Ω1

7
 , �2 ∈ Ω2

14
 and �3 ∈ Ω4

27
. Here, we are denoting by Ωi

j
 the space 

of smooth sections of Λi
j
. The fact that �1 arises in both equations can be proved using the 

following:

Lemma 2.2 ([10]) Given � ∈ Λ1

7
(M) and � ∈ Λ2

7
(M), we have

(1) 2 ∗� (�∧ ∗� �)∧ ∗� � = 3� ∧ �

(2) ∗� � = −
1

4
∗� (� ∧ �) ∧ � =

1

3
∗� (�∧ ∗� �)∧ ∗� �.

1

6
�X� ∧ �Y� ∧ � = g�(X, Y) vol�.

Λ1 = Λ1

7

Λ2 = Λ2

7
⊕ Λ2

14

Λ3 = Λ3

1
⊕ Λ3

7
⊕ Λ3

27

(2.2)d� = �0 ∗� � + 3 �1 ∧ �+ ∗� �3

(2.3)d ∗� � = 4 �1∧ ∗� � + �2 ∧ �
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In contrast to the non-torsion-free case, manifolds with holonomy equal to G2 are much 
harder to find. G2-structures for which � is (co-)closed are usually called (co-)calibrated. 
Another notion we shall need is that of a G2-instanton.

Definition 2.3 A G2-instanton on a G2 manifold (M7,�) is a connection 1-form A on a 
principal G-bundle whose curvature form FA satisfies

Equivalently, FA belongs to Ω2

14
 , as an ad(P)-valued 2-form on M7.

Instantons are solutions of the Yang–Mills equations and as such play an important role 
in studying topological properties of M7 . There is a similar geometric structure to G2-struc-
tures in dimension eight, again related to exceptional holonomy.

A Spin(7)-structure on an 8-manifold N8 is given by a 4-form Φ that can be identified at 
each point q ∈ N8 with the standard one on ℝ8:

where we have augmented the G2 module ℝ7 by ℝ with coordinate x0. The subgroup of 
GL(8,ℝ) which stabilises Φ0 is isomorphic to Spin(7) cf. [11, 34]. From this definition, 
it is clear that G2 arises as a subgroup of Spin(7). Since Spin(7) is a subgroup of SO(8), it 
follows that Φ defines a metric gΦ , volume form volΦ and Hodge star ∗Φ . Explicitly, the 
volume form is given by

but the expression for gΦ is much more complicated than in the G2 case cf. [31, section 4.3]. 
An 8-manifold admits a Spin(7)-structure if and only if, in addition to having zero first and 
second Stiefel–Whitney classes, either of the following holds

cf. [25, 33], noting that the ‘8’ factor is accidentally omitted in the former. If Φ is parallel 
with respect to the Levi-Civita connection ∇gΦ , then the metric gΦ has holonomy contained 
in Spin(7) and the metric is Ricci-flat. Such a manifold is called a Spin(7)-manifold. Just 
as in the G2 situation, we have the following alternative formulation of the torsion-free 
condition:

Theorem 2.4 [16] ∇gΦΦ = 0 if and only if dΦ = 0.

The space of differential forms on N8 can be decomposed as Spin(7)-modules as follows:

FA∧ ∗� � = 0,

(2.4)Φ0 = dx0 ∧ �0+ ∗�0
�0

volΦ =
1

14
Φ ∧ Φ,

p1(N)
2 − 4p2(N) ± 8�(N) = 0

Λ1 = Λ1

8

Λ2 = Λ2

7
⊕ Λ2

21

Λ3 = Λ3

8
⊕ Λ3

48

Λ4 = Λ4

1
⊕ Λ4

7
⊕ Λ4

27
⊕ Λ4

35
.
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We shall write Λi
j
(M7) or Λi

j
(N8) if there is any possible ambiguity. There is also an injec-

tion map i ∶ S2 ↪ Λ4 which restricts to an isomorphism of Spin(7)-modules

where S2
0
 denotes the space of traceless symmetric (0, 2)-tensors. Note that �(gΦ) = 8Φ . We 

denote by � the inverse map extended to Λ4 as the zero map on Λ4

7
⊕ Λ4

27
 . Similarly, the 

intrinsic torsion is given by dim(ℝ8 ⊗ 𝔰𝔭𝔦𝔫(7)⟂) = 56 equations and is completely deter-
mined by the exterior derivative of Φ in view of Theorem 2.4. This can be written as

where T5

48
 is defined by the condition ∗Φ T5

48
∧ Φ = 0. If T1

8
 vanishes, the Spin(7)-structure 

is called balanced, if T5

48
 vanishes, it is locally conformally parallel, and if both are zero, 

then it is torsion free.
In this article, we shall often use the suggestive notation � l

m
 for an l-form to mean that 

� l
m
∈ Ωl

m
 or write (�)l

m
 for the Ωl

m
-component of an l-form �. Having set up our convention, we 

now proceed to describe the S1-reduction of Spin(7)-structures.

3  The quotient construction

Given an 8-manifold N8 endowed with a Spin(7)-structure Φ which is invariant under a free 
circle action generated by a vector field X, the quotient manifold M7 inherits a natural G2

-structure � ∶= �XΦ. We can write the Spin(7) form as

where s = ‖X‖−1
Φ

 , �(⋅) = s2gΦ(X, ⋅) and ∗� is the Hodge star induced by � on M. The proof 
for this expression is analogous to that of Lemma 3.1. The assumption that the action is 
free, i.e. X is nowhere vanishing, implies that s is a well-defined strictly positive function. 
The metrics and volume forms of M and N are related by

In this setup, � can be viewed as a connection 1-form on the S1-bundle N over M and d� is 
its curvature, which by Chern–Weil theory defines a section in Ω2(M,ℤ) . We denote by 
(d�)2

7
 and (d�)2

14
 its two components. Under the inclusion G2 ↪ Spin(7), we may decom-

pose the torsion forms of (2.5) further as

where f is (the pullback of) a function on M7 and all the differential forms on the right-hand 
side, aside from � , are basic. Note that 56 = 8 + 48 = (1 + 7) + (7 + 14 + 7 + 27) = 49 + 7 
where 56 and 49 are the dimensions of the space of intrinsic torsions of Spin(7)- and G2- 
structures. This simple dimension count confirms the absence of any T4

1
 term. Moreover, 

𝗂 ∶ ⟨gΦ⟩⊕ S2
0
→ Λ4

1
⊕ Λ4

35

a◦b ↦ a∧ ∗Φ (b ∧ Φ) + b∧ ∗Φ (a ∧ Φ)

(2.5)dΦ = T1

8
∧ Φ + T5

48

(3.1)Φ = � ∧ � + s4∕3 ∗� �

(3.2)gΦ = s−2�2 + s2∕3g�

(3.3)volΦ = s4∕3� ∧ vol�.

T1

8
= f ⋅ � + T1

7

T5

48
=T5

7
+ T5

14
+ � ∧ (T4

7
+ T4

27
)
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this says that the intrinsic torsion of Φ is determined by that of � together with a section of 
a rank 7 vector bundle. In order to relate the intrinsic torsion of the Spin(7)-structure to that 
of the G2-structure, we first need to relate their Hodge star operators.

Lemma 3.1 Given � ∈ Λ2

7
(Y) , � ∈ Λ2

14
(Y) , � ∈ Λ1

7
(Y) and using the same notation for their 

pullbacks to N8, we have

(1) ∗Φ (� ∧ �) = −2s−2� ∧ �

(2) ∗Φ (� ∧ �) = s−2� ∧ �

(3) ∗Φ � = −s2∕3�∧ ∗� �

(4) ∗Φ � = s10∕3 vol �
(5) ∗Φ (� ∧ �) =

1

2
s2� ∧ �

(6) ∗Φ (� ∧ �) = −s2� ∧ �

(7) ∗Φ (� ∧ �) = s8∕3 ∗� �

Proof This is a straightforward computation using 3.2, 3.3 and the characterisation of Λ2

7
 

and Λ2

14
 as having eigenvalues +2 and −1 under wedging with � and taking the Hodge star 

[9]. We prove (1) as an example. Since we only need to prove the above formula holds at 
each point, we may pick coordinates at a point q ∈ N such that � = dx0 and � = �0 . For 
any given � ∈ Ω2(Y), we then have

If � = � from [9], we have ∗� (� ∧ �) = 2� , which completes the proof of (1).   ◻

Proposition 3.2 The intrinsic torsion of the Spin(7)-structure and G2-structure is related by

(1) f = −s−4∕3�0
(2) 7T1

7
= 24�1 + 3s−4∕3d(s4∕3) + 2s−4∕3 ∗� ((d�)2

7
∧ ∗� �)

(3) 7T5

7
= 4(d�)2

7
∧ � + 4d(s4∕3)∧ ∗� � + 4s4∕3�1∧ ∗� �

(4) T5

14
= (d�)2

14
∧ � + s4∕3�2 ∧ �

(5) T4

27
= − ∗� �3

(6) T4

7
 and T5

7
 are G2-equivalent up to a factor of s−4∕3 ; explicitly, the composition

is a bundle isomorphism and L(7T5

7
) = 4s−4∕3T4

7
.

Moreover, the occurrence of �1 in both (2) and (3) shows that

and

in other words, any one of the three 7-dimensional Spin(7) torsion components determines 
the other two.

∗Φ (� ∧ �) = −s−2�∧ ∗� (� ∧ �).

L ∶ Λ5

7

∗
�����→ Λ2

7

∧∗�
���������������→ Λ6

7

∗
�����→ Λ1

7

∧�
�����������→ Λ4

7

(3.4)T5

7
−

1

6
s4∕3T1

7
∧ ∗� � =

1

2
(d(s4∕3)∧ ∗� � + (d�)2

7
∧ �)

(3.5)3�1∧ ∗� � = T1

7
∧ ∗� � −

3

4
s−4∕3T5

7
;
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Proof Using Lemmas 2.2 and 3.1, we compute

It now suffices to use the identity 7 ∗Φ T1

8
=∗Φ (dΦ) ∧ Φ cf. [32] and compare terms.  

 ◻

Remark 3.3 Note that the above construction can also be extended to non-free S1 actions 
by working on the complement of the fixed point locus. The fixed point locus then corre-
sponds to the region where s blows up. We shall in fact see an example of this below when 
we look at the Bryant–Salamon Spin(7) metric.

Equipped with the above proposition, we can now proceed to study the quotient of dif-
ferent types of Spin(7)-structures.

3.1  The torsion‑free quotient

Theorem 3.4 Assuming (N8,Φ) is a Spin(7)-manifold, the quotient G2-structure � is cali-
brated and the curvature is determined by

and

Proof This follows directly from Proposition 3.2. From (1), (3.5) and (5), we see that �0 , �1 
and �3 must vanish. The curvature equations follow from (3.4) and (4).   ◻

The above equations have also been described as a Gibbons–Hawking-type ansatz for 
Spin(7)-manifolds in [19], where the author studies ‘adiabatic limits’ of the equations to 
produce new complete non-compact Spin(7)-manifolds. The pair (3.6) and (3.7) generally 
constitutes a complicated system of PDEs. A strategy for solving this system and hence 
constructing Spin(7) metrics on the total space involves taking a formal limit of the equa-
tions as the size of the circle fibres tends to zero and thus allowing for the system to degen-
erate to the torsion-free G2 equations. One then employs analytical techniques to perturb 
the latter equations to construct solutions to the original system. This limiting procedure of 
shrinking the fibres is referred to as the ‘adiabatic limit’ following a related strategy out-
lined in [15] in the context of K3-fibred G2 manifolds.

Remark 3.5 

(1) First, we note that in our setting if (N,Φ) has holonomy equal to Spin(7), then it is 
necessarily non-compact. This follows essentially from the Cheeger–Gromoll splitting 
theorem which asserts that if (N,Φ) is compact and Ricci-flat, then its universal cover 
is isometric to ℝk × P8−k where P is a simply connected Riemannian manifold and ℝk 

∗Φ dΦ = s−2� ∧ (d�)2
14
− 2s−2� ∧ (d�)2

7
− 3s2∕3 ∗� (�1 ∧ �) − �0 s

2∕3� − s2∕3�3

− s−2 ∗� (d(s4∕3)∧ ∗� �) ∧ � + s−2∕3�2 ∧ � − 4s−2∕3�∧ ∗� (�1∧ ∗� �).

(3.6)(d�)2
7
∧ ∗� � = −

3

2
∗� d(s4∕3)

(3.7)(d�)2
14

= −s4∕3�2.
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carries the flat metric. Under the hypothesis that it admits a free isometric S1 action, 
it follows that k ≥ 1 which together with Berger’s classification of holonomy groups 
implies that (the identity component of) the holonomy group of N must be a subgroup 
of G2.

(2) If the size of the circle orbits is constant, i.e. s is constant, then �2 is proportional to d�, 
so in particular �2 is closed. But from equation (4.35) of [10], 

 and hence �2 = 0, i.e. N8 = S1 ×M7 is a Riemannian product.

If we now further demand that (M7,�) is also torsion free, then this forces the con-
nection to be a G2-anti-instanton, i.e. d� ∈ Λ2

7
 , compared with Definition 2.3. Since ds is 

closed, ∇ds ∈ S2(T∗Y) ≅ Λ3

1
⊕ Λ3

27
 cf. [11, 34], but we also have

i.e. d� and d(s4∕3) are G2-equivalent; therefore, the two components of ∇ds are completely 
determined by the Λ3

1
 and Λ3

27
 components of dd� = 0 ∈ Λ3 . Hence, ds is a covariantly con-

stant 1-form as such Hol ⊊ G2 [11, Theorem 4]. Thus, we have proven the following:

Theorem 3.6 If (N8,Φ) is a torsion-free Spin(7)-structure which is invariant under a free S1 
action such that the quotient structure has holonomy contained in G2, then M7 = Z6 ×ℝ

+ 
where (Z6, h,�,Ω ∶= Ω+ + iΩ−) is a Calabi–Yau threefold. Furthermore, (N8,Φ) is a Cal-
abi–Yau threefold and is given by Φ =

1

2
�̂�2 + Re(Ω̂) where

defines the SU(4)-structure and s is the coordinate on the ℝ+ factor. The curvature form is 
d� = −� , corresponding to a G2-anti-instanton, and the product G2-structure is given by

Moreover, this construction is reversible, i.e. starting from a CY threefold (Z6, h,�,Ω), 
we can choose a connection form � satisfying d� = −� on the bundle defined by 
[−�] ∈ H2(Z6,ℤ) together with a positive function s and thus define an irreducible CY 
fourfold (N8, ĥ, �̂�, Ω̂) by (3.8) ,(3.9) and (3.10).

The above theorem in fact recovers the so-called Calabi model space. More precisely, 
given a compact CY manifold together with an ample line bundle L, the Calabi ansatz gives a 

d�2 =
1

7
‖�2‖2� + (d�2)

3

27

d�∧ ∗� � = −
3

2
∗� d(s4∕3),

(3.8)�̂� = s2∕3𝜔 + 𝜂 ∧ d(s2∕3)

(3.9)Ω̂ =Ω ∧
(
−𝜂 − i

2

3
s5∕3ds

)

(3.10)ĥ = s2∕3h + s−2𝜂2 +
(
2

3
s2∕3ds

)2

� =
2

3
s1∕3ds ∧ � + Ω+

∗� � =
1

2
�2 −

2

3
s1∕3ds ∧ Ω−.
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way of defining a new CY metric on an open set of L. Although incomplete, the Calabi model 
space provides a good approximation for the asymptotic behaviour of the complete Tian–Yau 
metrics and has recently been employed in [26] to study new degenerations of hyperKähler 
metrics on K3 surfaces. Observe that taking (Z6, h) to be the Riemannian product of a hyper-
Kähler metric obtained by the Gibbons–Hawking ansatz and a flat torus � 2, we get infinitely 
many holonomy SU(4) metrics. We now give a simple example to illustrate this construction. 
The metric below has also been described in [21] as a solution to the Hitchin flow starting 
from a 7-nilmanifold endowed with a cocalibrated G2-structure.

Example Consider � 6 , with coordinates �i ∈ [0, 2�) , endowed with the flat CY-structure

where ei = d�i . [−�] ∈ H2(𝕋 6,ℤ) defines a non-trivial S1-bundle diffeomorphic to the nil-
manifold P with nilpotent Lie algebra (0, 0, 0, 0, 0, 0, 12 + 34 + 56) where we are using 
Salamon’s notation cf. [35]. The connection form is given by

where �7 denotes the coordinate of the S1 fibre. Writing s = r3, the CY metric on P ×ℝ
+ 

can be written as

Using Maple, we have been able to verify that indeed the matrix of curvature 2-form has 
rank 15 everywhere, confirming that the holonomy is equal to SU(4). If we set � =

2

5
r5, 

then the metric can be written as

and in this form, we can easily show that the volume growth ∼ �8∕5 and the curvature ten-
sor |Rm| ∼ �−2 as � → ∞. This metric is in fact incomplete at the end � → 0 and complete 
at the end � → ∞. By way of comparing with the approach in [21], the SU(4) holonomy 
metric can also be obtained by evolving the cocalibrated G2-structure on P given by

in the notation of Theorem 3.6. Our approach however avoids the problem of having to 
solve the Hitchin flow evolution equations, and moreover, it explains why one only obtains 
SU(4) holonomy metrics rather than Spin(7) ones.

As we have just seen, one cannot obtain a holonomy G2 metric from a Spin(7)-manifold 
via this construction. This suggests to study instead the geometric structure of the quotient 
calibrated G2-structure. We shall do so in detail for the Bryant–Salamon Spin(7) metric in 
Sect. 5.3.

� = e12 + e34 + e56,

Ω = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6),

� = d�7 + �2e
1 + �4e

3 + �6e
5,

ĥ = r2g
� 6 + r−6(d𝜃7 + 𝜃2e

1 + 𝜃4e
3 + 𝜃6e

5)2 + 4r8dr2.

ĥ =
(5
2
𝜌
)2∕5

g
� 6 +

(5
2
𝜌
)−6∕5

(d𝜃7 + 𝜃2e
1 + 𝜃4e

3 + 𝜃6e
5)2 + d𝜌2,

� = � ∧ � + Re(Ω),
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3.2  The locally conformally parallel quotient

Theorem  3.7 If (N8,Φ) is a locally conformally parallel Spin(7)-structure which is S1
-invariant, then at least one of the following holds:

(1) N8 ≃ M7 × S1 and the G2-structure on M has �3 = 0 in the notation of 2.2, or
(2) (M7,�) is locally conformally calibrated, i.e. �0 and �3 are both zero, and hence, �1 is 

closed.

Proof Since T5

48
= 0, we know that T5

7
 , T5

14
,T4

7
 and T4

27
 all vanish. From Proposition 3.2, it 

follows that �0 = −s4∕3f  , �1 = −s−4∕3(d(s4∕3) +
2

3
∗� ((d�)2

7
∧ ∗� �)) , �2 = −s−4∕3(d�)2

14
 and 

�4
27

= 0 . From Proposition 3.2, we also get

Furthermore, differentiating ddΦ = T1

8
∧ Φ we have

As wedging with Φ defines an isomorphism of Λ2 and Λ6, it follows that T1

8
 is closed. Since 

LXΦ = 0, we have

and this shows that

Thus, f = T1

8
(X) is constant and if nonzero, then

Since the latter is exact, the Chern class is zero and the bundle is topologically trivial, i.e. 
N8 ≃ M7 × S1. Otherwise if f = 0, then �0 = 0.   ◻

In [29, Theorem B], Ivanov et al. prove that any compact locally conformally parallel Spin(7)-
structure fibres over an S1 and each fibre is endowed with a nearly parallel G2-structure, i.e. the 
only nonzero torsion form is �0. Thus, it follows from Proposition 3.2 that one can construct 
many such examples by taking N8 = M7 × S1 where M7 is a nearly parallel G2-manifold and 
endows N8 with the product Spin(7)-structure. In particular, these examples cover case (1) 
above where the S1 is only acting on the second factor. We also point out that aside from the 
fact that the cone metric on a nearly parallel G2 manifold has holonomy contained in Spin(7), 
there exists another Einstein metric, with instead positive scalar curvature, on (0,�) ×M7 
given by the sine-cone construction:

The latter metric however does not seem to have been studied in detail in the literature. The 
fact that gsc is Einstein is easily deduced since its Riemannian cone is Ricci-flat. Let us now 

T1

7
= −3s−4∕3d(s4∕3) − 2s−4∕3 ∗� ((d�)2

7
∧ ∗� �)

dT1

8
∧ Φ = 0.

d(�XdΦ) = 0

LXT
1

8
∧ Φ = d(�XdΦ) = 0.

d� = −
1

f
dT1

7
.

gsc ∶= dt2 + sin(t)2gM7 .
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show how situation (2) can arise. The reader might find it helpful to compare the following 
example with Sect. 6.

Example As above, let N8 = S7 × S1 , where S7 is given the nearly parallel G2-structure 
induced by restricting Φ0 to S7 ↪ ℝ

8. The induced G2-structure �S7 satisfies

and defines the standard round metric on S7. Consider any free S1 action, generated by a 
unit vector field X, on S7 preserving �S7 . We can then write

cf. [2]. The intrinsic torsion of the quotient G2-structure on M7 = ℂP3 × S1 , with coordi-
nate � on the circle, is then given by

confirming that indeed �0 and �3 vanish, but �1 and �2 do not, cf. (2.2) and (2.3).

3.3  The balanced quotient

Since T1

8
= 0 , from Proposition 3.2 (1) we have �0 = 0 and (2) gives

Remark 3.8 Differentiating the balanced condition ∗Φ (dΦ) ∧ Φ = 0, we get

In particular, this shows that dΦ = 0, i.e. Φ is torsion free iff

which is a single scalar PDE.

It is well known that a Spin(7)-structure can be equivalently characterised by the exist-
ence of a non-vanishing spinor � , instead of the 4-form Φ . Following Theorem 2.4, the 
induced metric has holonomy contained in Spin(7) if and only if the spinor is parallel. 
From this perspective, the action of the Dirac operator D on the spinor was shown to be 
completely determined by the torsion form T1

8
 cf. [28, (7.21)]. As a consequence, it follows 

that balanced Spin(7)-structures are characterised by the fact that they admit harmonic 
spinors, i.e. D� = 0.

In [4], the authors construct many such examples on nilmanifolds by adopting a spino-
rial point of view. We instead here describe, via a few simple examples, a construction 

d�S7 = 4 ∗S7 �S7

�S7 = � ∧ � + Ω+ and ∗S7 �S7 =
1

2
� ∧ � − � ∧ Ω−

d� = 3

(
−
4

3
d�

)
∧ �,

d ∗� � = 4

(
−
4

3
d�

)
∧ ∗� � −

(
2

3
� + d�

)
∧ �,

(3.11)�1 = −
1

24
(3s−4∕3d(s4∕3) + 2s−4∕3 ∗� ((d�)2

7
∧ ∗� �)).

‖dΦ‖2
Φ
volΦ = −(d ∗Φ dΦ) ∧ Φ = (ΔΦΦ) ∧ Φ.

ΔΦΦ ∧ Φ = 0
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of balanced Spin(7)-structures starting from suitable G2-structures. Henceforth, we shall 
restrict to the case when s = 1 so that (3.11) can be equivalently written as

Theorem 3.9 (N8,Φ) is a free S1-invariant balanced Spin(7)-structure if and only if the G2

-structure (M7,�) has �0 = 0 and admits a section � ∈ Ω2

14
 such that

or equivalently,

Moreover, the Spin(7)-structure on the total space can be written as

where the connection form � satisfies d� = � − 4 ∗� (�1∧ ∗� �), i.e.

Proof The if statement is clear since given � we can always choose a connection � with 
d� = � − 4 ∗� (�1∧ ∗� �) . Then, define Φ by (3.14). The only if statement follows by set-
ting � = (d�)2

14
.   ◻

The reader might find such a theorem of little practical use in general. However, as we 
shall illustrate below via concrete examples, when M7 is a nilmanifold, Theorem 3.9 pro-
vides a systematic way of constructing balanced Spin(7)-structures.

Example Let M7 = B5 × �
2 , where B is a nilmanifold with an orthonormal coframing 

given by ei for i = 0,… , 4 and satisfying

and for the flat � 2 by e6 and e7. The G2-structure defined by

has �0 = 0 . Hence from (3.12), to construct a balanced Spin(7)-structure we need to find a 
connection � whose Λ2

7
-curvature component satisfies

Choosing (d�)2
14

 to be either of the following 2-forms in Ω2

14
:

(3.12)(d�)2
7
= −4 ∗� (�1∧ ∗� �).

∈ H2(M,ℤ),

(3.13){� + 4 ∗� (�1∧ ∗� �) | [�] ∈ H2(M,ℤ)} ∩ Ω2

14
≠ �.

(3.14)Φ = � ∧ �+ ∗� �

(d�)2
7
= −4 ∗� (�1∧ ∗� �) and (d�)2

14
= �.

dei = 0, for i ≠ 4

de4 = e02 + e31,

� = e137 + e104 + e162 + e306 + e324 − e702 − e746

(d�)2
7
= −4 ∗� (�1∧ ∗� �)

=
2

3
(e03 + e12 − e47).
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gives connections with curvature forms e03 + e12 and 2e12, respectively, and thus, we obtain 
two distinct balanced Spin(7)-structures. Denoting � by e5, the Spin(7) form can once 
again be written in the standard form (2.4). This construction shows that given a balanced 
Spin(7)-structure on an S1-bundle, we can modify the Λ2

14
-component of the curvature form 

while keeping its Λ2

7
-component, already determined by �1 , unchanged to construct a new 

balanced structure.

Suppose that we have fixed d� = de5 = 2e12. We can now take the S1-quotient with 
respect to the Killing vector field e4. In other words, the total space can be viewed as a 
different circle bundle with the new connection form �̃� ∶= e4. We can repeat the above 
procedure with the new G2-structure �̃� ∶= e4

⌟Φ , explicitly given by

which of course has 𝜏0 = 0 . Once again to construct a balanced Spin(7)-structure, we need 
a connection 1-form � satisfying

If we choose

then d� = e02 + e31 + e51 + 2e26 + e37 indeed defines an element in H2(M̃,ℤ) . Thus, this 
gives yet another balanced Spin(7)-structure. These three examples were found in [4] 
denoted by N6,22 , N6,23 and N6,24 , by instead using the spinorial approach described above 
and computing the Dirac operator.

The above examples in fact illustrate a new procedure for constructing balanced 
Spin(7)-structures on nilmanifolds: starting from an S1-invariant balanced Spin(7)-
structure on a nilmanifold, we know that the quotient G2-structure � has �0 = 0 . Given 
that the de Rham complex of the quotient nilmanifold P7 is completely determined by 
the Chevalley–Eilenberg complex of the associated nilpotent Lie algebra, it is relatively 
straightforward to compute the set (3.13), via say Maple. Thus, by choosing distinct � s 
we can classify all invariant balanced Spin(7)-structures on different nilmanifolds which 
arise as circle bundles over (P7,�) . A general classification however appears to be quite 
hard. Closed G2-structures on nilpotent Lie algebras, hence with �0 = 0 , were classified 
in [13]. Although a classification of 7-dimensional nilpotent Lie algebras is known cf. 
[24], those admitting G2-structures with only vanishing �0 are still unknown.

Having encountered several examples of Spin(7)-structures, it seems worth mak-
ing a brief digression from our main example and derives some curvature formulae of 
Spin(7)-structures in terms of the torsion forms, rather than the metric, that the reader 
might find quite practical in specific examples.

1

3
(e03 + e12 + 2e47),

2

3
(2e12 − e03 + e47)

�̃� = e501 + e523 + e567 + e026 + e073 − e127 − e136,

(d𝜉)2
7
= (d�̃�)2

7

=
2

3
(e02 + e31 − e57).

(d𝜉)2
14

= (d�̃�)2
14
+ e51 + 2e26 + e37,
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4  Ricci and Scalar curvatures

In this section, we derive formulae for the Ricci and scalar curvatures of Spin(7)-structures 
in terms of the torsion forms. As a corollary, we show that under the free S1 action hypoth-
esis and that the circle orbits have constant size, (d�)2

7
 can be interpreted as the mean curva-

ture vector of the circle orbits.
Formulae for the Ricci and scalar curvatures of G2-structures in terms of the torsion 

forms seem to have first appeared in [10, (4.28),  (4.30)] and for the Spin(7) case in [28, 
(1.5),  (7.20)]. The approach taken in each paper to derive the curvature formulae differs 
greatly. While Ivanov uses the equivalent description of Spin(7)-structures as correspond-
ing to the existence of certain parallel spinors, Bryant uses a more representational theo-
retic argument. In [28], however, it is not obvious from the Ricci formula that it is a sym-
metric tensor and moreover the presence of a term involving the covariant derivative of 
the torsion form makes explicit computations quite hard. We instead adapt the technique 
outlined in [10, Remark 10] to the Spin(7) setting and derive an alternative formula.

Proposition 4.1 The Ricci and scalar curvatures of a Spin(7)-structure (N,Φ) are given by

where � ∶= − ∗Φ d ∗Φ is the codifferential of Φ.

Proof Following Bryant’s argument in [10] for the G2 case, we first define the two Spin(7)-
modules V1 and V2 by

where Sk(ℝ8) denotes the k th symmetric power. We shall refer to these modules to also 
mean the corresponding associated vector bundles on N. Representing irreducible Spin(7)-
modules by the highest weight vector, we have the following decomposition:

It is known that the second-order term of the scalar curvature values in the trivial compo-
nent of V2 of which there is only one. This is spanned by �T1

8
 . The first-order terms are at 

most quadratic in sections of V1 of which there are only two components. These are just 
the norm squared of the torsion forms: ‖T1

8
‖2
Φ

 and ‖T5

48
‖2
Φ

 . So the scalar curvature can be 
expressed in terms of these three terms and to determine the coefficients it suffices to test 
it on a few examples. A similar argument applies for the traceless part of the Ricci tensor. 
The second-order terms correspond to sections of the module V0,0,2 ≅ S2

0
(ℝ8) in V2, and 

Ric(gΦ) =

�
5

8
�T1

8
+

3

8
‖T1

8
‖2
Φ
−

2

7
‖T5

48
‖2
Φ

�
gΦ

+ �

�
− 3 �(T1

8
∧ Φ) + 4 �T5

48
− 2 (T1

8
∧ ∗Φ T5

48
) −

9

4
∗Φ (T1

8
∧ Φ) ∧ T1

8
)

�

+
1

2
gΦ(⋅ ⌟ ∗Φ T5

48
, ⋅ ⌟ ∗Φ T5

48
)

Scal(gΦ) =
7

2
�T1

8
+

21

8
‖T1

8
‖2
Φ
−

1

2
‖T5

48
‖2
Φ

(��(8,ℝ)∕��(7))⊗ Sk(ℝ8) = Vk ⊕ (ℝ8 ⊗ Sk+1(ℝ8)),

V1 =V0,0,1 ⊕ V1,0,1,

V2 =V0,0,0 ⊕ V1,0,0 ⊕ V0,1,0 ⊕ V1,1,0 ⊕ V2,0,0 ⊕ V0,2,0 ⊕ 2V0,0,2 ⊕ V1,0,2,

S2(V1) = 2V0,0,0 ⊕ V1,0,0 ⊕ V0,1,0 ⊕ 2V1,1,0 ⊕ 2V2,0,0 ⊕ V0,2,0 ⊕ 4V0,0,2 ⊕ 2V1,0,2 ⊕ V2,0,2.
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there are exactly two of those. These are spanned by the projections of �(T1

8
∧ Φ) and �T5

48
 . 

For the first-order terms, they are given by sections of the module V0,0,2 in S2(V1). There 
are in fact four of those: one quadratic in T1

8
 , two quadratic in T5

48
 and one mixed term. All 

but one quadratic term in T5

48
 appear in the Ricci formula. Again to determine the coeffi-

cients, it suffices to test the formula on a few examples. This can be done quite easily using 
Maple.   ◻

From the results of Sect. 3, we have the following lemma:

Lemma 4.2 In the S1-invariant setting, �T1

8
 , ‖T1

8
‖2
Φ

 and ‖T5

48
‖2
Φ

 are given in terms of the 
data (M7,�, �, s) by

where �� is the codifferential of � acting on k-forms by �� = (−1)k ∗� d ∗� .

Proof This is a straightforward albeit long computation using the expressions for the tor-
sion forms of the Spin(7)-structure from Proposition 3.2.   ◻

Of course, these formulae are far from practical to compute the scalar curvature, but 
nonetheless in the case of Riemannian submersions, they do simplify considerably.

Corollary 4.3 In the case of a Riemannian submersion, i.e. s = 1,

Proof This follows by combining the above lemma with our formula for scalar curvature 
and the one in the G2 case from [10, (4.28)].   ◻

Remark 4.4 Comparing the above formula with the general formula for scalar curvatures in 
Riemannian submersions cf. [7, (9.37)], we can geometrically interpret the anti-instanton 
part of the curvature form:

as the dual with respect to g� of the ‘mean’ curvature vector of the S1 fibres. For an 
immersed submanifold of codimension greater than one, the mean curvature is defined by 

(4.1)�T1

8
=
1

7
s−4∕3��(24s

2∕3�1 + 4s−1∕3ds + 2s−2∕3 ∗� ((d�)2
7
∧ ∗� �)))

(4.2)‖T1

8
‖2
Φ
= s−2∕3�2

0
+

1

49
s−2∕3‖24�1 + 4s−1ds + 2s−4∕3 ∗� ((d�)2

7
∧ ∗� �)‖2

�

(4.3)

‖T5

48
‖2
Φ
= s−2∕3‖�3‖2� + s−4∕3‖s−1(d�)2

14
+ s1∕3�2‖2�

+ s−10∕3‖8
7
(d�)2

7
+

4

7
∗� (d(s4∕3)∧ ∗� �) +

4

7
s4∕3 ∗� (�1∧ ∗� �)‖2

�

+ 4‖3
7
s2∕3�1 +

2

7
s−2∕3 ∗� ((d�)2

7
∧ ∗� �) +

3

7
s−2∕3d(s4∕3)‖2

�

Scal(gΦ) = Scal(g�) −
1

2
‖d�‖2

�
− g�((d�)

2

14
, �2) + ��(∗� ((d�)2

7
∧ ∗� �))

+ 4g�(∗� �1, (d�)
2

7
∧ ∗� �).

∗� ((d�)2
7
∧ ∗� �)
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a normal vector, rather than a scalar, cf. [7, (1.73)]. In our present situation, the ‘mean’ 
curvature of the circle fibres is determined by a vector in the rank 7 normal bundle, which 
we can identify with (d�)2

7
 . Therefore, it vanishes if and only if the circles are geodesics. Of 

course, the word ‘mean’ here is redundant as our submanifolds are only one dimensional.

We now turn to our main example, namely the S1 quotient, of the Bryant–Salamon 
metric.

5  S1‑quotient of the Spinor bundle of S4

Let us first outline our general strategy to performing the quotient construction. Recall that 
the fibres of the spinor bundle of S4 are diffeomorphic to ℝ4 ≃ ℂ

2 . We shall consider the 
action of the diagonal U(1) in SU(2) on the fibres. This fibrewise quotient can be inter-
preted as a reverse Gibbons–Hawking (GH) ansatz. We begin by giving a brief overview 
of the GH construction in Sect. 5.1 and describe it in detail for the Hopf map by viewing 
our quotient construction as a fibrewise Hopf fibration in Sect. 5.2. Extending this to the 
total space, we construct the quotient G2-structure on the anti-self-dual bundle of S4 , see 
Sect. 5.3. From the results of Sect. 3.1 we know that the quotient G2-structure cannot be 
torsion free, but on the other hand, it is well known that the anti-self-dual bundle of S4 
also admits a holonomy G2 metric cf. [11]. Motivated by the fact that both of these G2

-structures are asymptotic to a cone metric on ℂℙ3, we study the induced SU(3)-structures. 
In Sect. 5.4, we give explicit formulae for the SU(3)-structures on the link and show that 
in both cases the induced almost complex structure corresponds to the nearly Kähler one.

5.1  The Gibbons–Hawking ansatz

Since we shall use the Gibbons–Hawking ansatz in the next section, we quickly describe 
the general construction. In essence, it provides a local construction of hyperKähler met-
rics starting from a 3-manifold together with a connection form on an S1-bundle and a har-
monic function. We begin by recalling the definition of a hyperKähler manifold.

Definition 5.1 An oriented Riemannian manifold (M4n, g) is called hyperKähler (HK) if it 
admits a triple of closed non-degenerate 2-forms �1 , �2 and �3 satisfying the compatibility 
conditions

Let U be an open subset of ℝ3 with the standard Euclidean metric g0 and M4 a principal 
S1 bundle on U generated by a vector field X normalised to have period 2�. Suppose we are 
also given a connection 1-form � on M4 such that �(X) = 1 (using the natural identification 
�(1) ≅ ℝ ). For a positive harmonic function f on U satisfying ∗g0 df = d� , the metric

and the anti-self-dual (ASD) 2-forms

1

2
�i ∧ �j = �ij dvolg.

gM4 = f𝜋∗g0 + f −1𝜂 ⊗ 𝜂,
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define a HK structure on M4. By construction, the triple of symplectic forms are closed:

and likewise for �2 and �3 . The compatible almost complex structures are defined by 
g(Jiv,w) = �i(v,w). The closedness of �i is equivalent to ∇g

M4 Ji = 0, i.e. Ji are indeed com-
plex structures and thus Hol(g) ⊆ Sp(1).

Note that setting U = ℝ
3 , � = dx0 and f constant gives a flat HK cylinder. More interest-

ingly, the projection map � ∶ ℝ
4 − {0} → ℝ

3 − {0} given in quaternionic coordinates by 
𝜋(p) =

1

2
p̄ip is the moment map of the Hopf bundle, where the S1 action is generated by left 

multiplication by −i . It turns out that this map can be smoothly extended to the origin when-
ever f is a suitable harmonic function. Moreover, one can recover the flat HK metric on ℝ4 , 
which we shall describe explicitly in the next subsection.

5.2  S1‑quotient of a fixed fibre of the spinor bundle

We begin by reminding the reader of the construction of the Bryant–Salamon Spin(7)-man-
ifold. Given S4 with the standard round metric and orientation, we denote by P ≃ SO(5) the 
total space of the SO(4)-structure. Since H2(S4,ℝ) = 0 , in particular the second Stiefel–Whit-
ney class vanishes; hence, it is a spin manifold, so we can lift P to its double cover P̃ . The spin 
group can be described explicitly via the well-known isomorphism

where the ± subscripts distinguish the two copies of SU(2). Taking the standard represen-
tation of SU(2)− on ℂ2

−
 , we construct the (negative) spinor bundle V− ∶= P̃ ×SU(2)−

ℂ
2
−
 as an 

associated bundle.
There is also an action of SU(2) on the fibres of V− which can be described as follows. If 

we ignore the complex structure, the fibres of V− are simply ℝ4 and its complexification is iso-
morphic to ℂ2

−
⊗ ℂ

2. The desired SU(2) action is the standard action on ℂ2 and is well defined 
on the realification of V− ⊗ ℂ . In the description of the Bryant–Salamon construction in [11], 
this action on the fibre can also be viewed as a global Sp(1) action (acting on the right) on ℍ in

thus commuting with the left action of Sp(1)− and hence passes to the quotient. Having 
now justified the existence of this SU(2) action, we fix a point, p ∈ S4 and describe the 
action of an S1 ↪ SU(2) on the fibre of V−. This will enable us to describe a fibrewise HK 
quotient and then reconstruct the ℝ4 fibre using the Gibbons–Hawking ansatz with har-
monic function f = 1∕2R where R denotes the radius in ℝ3 − {0} as described in the previ-
ous section. Note that topologically, the base manifold is just the anti-self-dual bundle of S4 
which we denote by Λ2

−
S4 . This is due to the fact that the quotient construction reduces the 

�1 = � ∧ dx1 − fdx2 ∧ dx3

�2 = � ∧ dx2 − fdx3 ∧ dx1

�3 = � ∧ dx3 − fdx1 ∧ dx2

d�1 = (∗ df ) ∧ dx1 − df ∧ dx2 ∧ dx3

= �1fdx2 ∧ dx3 ∧ dx1 − �1fdx1 ∧ dx2 ∧ dx3

= 0

Spin(4) ≅ Sp(1)+ × Sp(1)− ≅ SU(2)+ × SU(2)−

P̃ × ℍ
∕Sp(1)−
��������������������������→ V−,
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Sp(1)− action on the ℝ4
−
 fibre to an action of SO(3)− on ℝ3 = ℝ

4∕S1 , as we shall see below, 
and the associated bundle construction for this representation is Λ2

−
S4 cf. [34].

Let (x1, x2, x3, x4) denote the coordinates on the fibre, so that we may write the fibre 
metric as

i.e. g denotes the restriction of the Bryant–Salamon metric gΦ to the vertical space. Denot-
ing by r the radius function in the fibre, i.e. r2 =

∑4

i=1
x2
i
 , we have rdr =

∑4

i=1
xidxi . We 

make the identifications ℝ4 ≅ ℂ
2 ≅ ℍ by

Consider now the U(1) action on ℝ4 ≅ ℂ
2 given by

or equivalently by left multiplication by −i on ℍ . Note that this S1 is just the diagonal torus 
of SU(2). The Killing vector field X generating this action is given by

and thus ‖X‖g = r . We also endow the fibre with a HK structure given by the triple

They can be extended to a local orthonormal basis of the bundle Λ2
−
S4, but the resulting 

forms will not be closed. The spin bundle does have a global HK structure, but arising 
from SU(2)+ and since we have already fixed one of its complex structures, this HK struc-
ture is not relevant. In view of our quotient construction, we define

i.e � is a connection 1-form on V− . The map

where

is the HK moment map for the U(1) action. By identifying ℝ3 with Im(ℍ) , � can also be 
expressed using quaternions as:

g =

4∑
i=1

dxi ⊗ dxi,

(x1, x2, x3, x4) = (x1 + ix2, x3 + ix4) = x1 + ix2 + jx3 − kx4

ei�(z1, z2) = (e−i�z1, e
+i�z2)

X = x2
�

�x1
− x1

�

�x2
− x4

�

�x3
+ x3

�

�x4
.

�1 = dx1 ∧ dx2 − dx3 ∧ (−dx4)

�2 = dx1 ∧ dx3 − (−dx4) ∧ dx2

�3 = dx1 ∧ (−dx4) − dx2 ∧ dx3

� ∶= r−2gΦ(X, ⋅) = r−2(x2dx1 − x1dx2 − x4dx3 + x3dx4),

� ∶ ℝ
4 → ℝ

3

(x1, x2, x3, x4) ↦ (�1,�2,�3)

�1 =
1

2
(x2

1
+ x2

2
− x2

3
− x2

4
)

�2 = x1x4 + x2x3

�3 = x1x3 − x2x4
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making the S1-invariance clear. Thus, � induces a diffeomorphism

Note that strictly speaking this action is not free, but nonetheless the construction can be 
carried out on ℝ4 − {0} and can be extended smoothly to the origin. A direct computation 
gives

where f = 1

2R
 and R =

√
�2

1
+ �2

3
+ �2

3
 is the radius on ℝ3 . Similarly, we obtain

This confirms that � is the connection form that features in the Gibbons–Hawking ansatz 
with

where gU = d�2

1
+ d�2

2
+ d�2

3
 is the Euclidean metric on ℝ

3 with volume form 
vol

ℝ3 = d�123 . Using R2 =
∑3

i=1
�2

i
=

1

4
r4, we can directly verify that

Having described the GH ansatz for the Euclidean space, we proceed to our main example.

5.3  S1‑quotient of the Bryant–Salamon cone metric

We shall now take the quotient of Bryant–Salamon metric by applying the above construc-
tion to each ℝ4 fibre. The conical Bryant–Salamon Spin(7) 4-form is given (pointwise) in 
our notation by

where {�i} is a local basis of ASD forms on S4 and dvolS4 is the (pullback of) the volume 
form. The Spin (7) metric is then given by

and so the 1-forms d�i (or rather, �∗d�i = d(�i◦�) ) have norm

�(q) =
1

2
q i q, q = x1 + x2i + x3j − x4k,

ℝ
4∕U(1) ≃ ℝ

3.

�3 = dx32 + dx41

= r−2
(
(x2dx1 − x1dx2 − x4dx3 + x3dx4) ∧ (x1dx3 + x3dx1 − x2dx4 − x4dx2)

− (x1dx1 + x2dx2 + x3dx3 + x4dx4) ∧ (x1dx4 + x4dx1 + x2dx3 + x3dx2)
)

= � ∧ d�3 − f d�1 ∧ d�2.

�1 = � ∧ d�1 − f d�2 ∧ d�3

�2 = � ∧ d�2 − f d�3 ∧ d�1

g
ℝ4 = f −1𝜂 ⊗ 𝜂 + f 𝜋∗gU ,

∗
ℝ3 df = d�.

Φ = 16r−8∕5dx1234 + 20r2∕5
∑

�i ∧ �i + 25r12∕5dvolS4 ,

gΦ = 4r−4∕5
4∑
i=1

dxi
2 + 5r6∕5gs4 ,
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On the other hand, from (3.1) we compute

so s = r−3∕5 . We know that the G2 metric g� satisfies

Considering the volume form of the fibre of the quotient, we have

Defining d�i = �X�i, we have that d�123 = −d�123. Putting all together, we have

We can now extend this pointwise construction to the whole of V−. From our construction, 
the induced G2-structure on the quotient is given (after rescaling) by

We are here using the globally well-defined forms defined in [34, pg 94] (see also ’Appen-
dix’) where � is tautological 2-form on the ASD bundle and 1

6
� is the volume form of the 

fibre which was pointwise denoted by dx1234 . By contrast, the holonomy G2 form is given 
by

Since the Bryant–Salamon metric on ℝ+ × ℂℙ
3 is just the cone metric on ℂℙ3 endowed 

with its nearly Kähler (NK) structure, we may also write it as

where t denotes the coordinate of ℝ+ and gNK ∶=
1

2
gS4 +

1

4
ĝS2 is the NK metric (up to 

homothety). Here, we are interpreting gNK as a metric on the twistor space of S4 where gS4 
denotes the pullback of the round metric and ĝS2 the metric on the S2 fibres (see ’Appendix’ 
for more details). Comparing �BS with �GH and using our expression for gBS, we can per-
form a pointwise computation as above and show that

‖d�i‖2Φ =
1

4
r14∕5.

s−2 = gΦ(X,X) = 4r6∕5,

g� = s−2∕3(gΦ − s−2�2) = r2∕5(gΦ − 4r6∕5�2).

−r−2d�123 = − x3dx123 − x4dx124 + x1dx134 + x2dx234

=X⌟dx1234.

X⌟Φ =X⌟ 16r−8∕5dx1234 + 20r2∕5
∑

(X⌟�i) ∧ �i

= 211∕5(R−9∕5d�123 + 5R1∕5

3∑
i=1

d�i ∧ �i).

�GH =
1

6
R−9∕5 � + 5R1∕5 d�

�BS =
1

6
R−3∕2 � + 2R1∕2 d�.

gBS = dt2 + t2
(
1

2
gS4 +

1

4
ĝS2

)

gGH = dt2 +
8

5
t2
(
1

2
gS4 +

1

10
ĝS2

)
.
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The quotient metric is thus the cone metric on the twistor space of S4 but with ’smaller’ S2 
fibres. In order to gain better understanding of the geometric structure on the ℂℙ3, we look 
at the induced SU(3)-structure.

5.4  Remarks on the induced SU(3)‑structure on ℂℙ3

We remind the reader that an SU(3)-structure on a 6-manifold consists of a non-degenerate 
2-form � and a pair of 3-forms Ω± satisfying the compatibility conditions

The relevance of this here comes the fact that oriented hypersurfaces in G2-structures natu-
rally inherit such a structure. If � denotes the unit normal to a hypersurface Q6, then the 
forms are given by:

It is known that the NK structure on ℂP3 satisfies

In contrast, the SU(3)-structure (�GH ,Ω
+
GH

,Ω−
GH

) on the link (for t = 1 ) of the quotient G2

-structure satisfies

The proof is a straightforward computation using the formulae in ’Appendix’. Two things 
worth noting are that Ω+

GH
=

32

25
Ω+

NK
=

8

25
d�, so in particular both define the same almost 

complex structure and the extra-torsion component 1
5
� − � lives in [Λ1,1

0
]. Using the formu-

lae from [5, Thm 3.4–3.6], we can confirm directly that this metric is not Einstein which 
is consistent with the canonical variation approach [7, pg. 258] which asserts that there are 
only two Einstein metrics in this family: the Fubini–Study metric and the NK one. Moreo-
ver, it was also shown in [20] that in fact there is no other cohomogeneity one NK structure 
on ℂP3 . Nonetheless, the scalar curvature of gGH is still constant and positive:

It is also worth pointing out that this SU(3)-structure is half-flat cf. [12, 18] and as such can 
be evolved by the Hitchin flow to construct a torsion-free G2-structure. The resulting metric 
belongs to the general class of metrics of the form

� ∧ Ω± = 0 and
2

3
�3 = Ω+ ∧ Ω−.

� = �⌟�

Ω+ = �||Q6

Ω− = −�⌟ ∗� �.

d�NK = 3 Ω+
NK

and dΩ−
NK

= −2 �2

NK
.

d�GH =3 Ω+
GH

dΩ−
GH

= − 2 �2

GH
−

1

5

(
1

5
� − �

)
∧ �GH

Scal(gGH) = 30 −
1

2
⋅ ‖1

5

�
1

5
𝜎 − 𝜏

�
‖2
gGH

= 30 −
1

2
⋅
3

8

=
477

16
> 0.
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which were considered in [14, Sect. 5B]. It was also shown, after suitable normalisations, 
that the Bryant–Salamon metrics are the only solutions to this system.

Remark 5.2 Observe that, as in the GH ansatz for the Hopf map, this construction extends 
to the smooth Bryant–Salamon Spin(7) metric with the same circle action but which now 
has as fixed point locus an S4 corresponding to the zero section of the spinor bundle. 
Extending the above construction to the smooth metric simply amounts to replacing R by 
R + 1 in the expressions �BS and �GH . Thus, we obtain a closed G2-structure on all of Λ2

−
S4.

6  S1‑quotient of flat Spin(7) metric

We now consider a simpler situation that of the S1-reduction of the flat Spin(7)-structure 
Φ0 =

1

8
(−d�2

1
+ d�2

2
+ d�2

3
) on ℝ8 where

This explicit construction was motivated by the work of Acharya, Bryant and Salamon [1] 
where they investigate the S1-reduction of the conical G2 metric on ℝ+ × ℂP3. We can iden-
tify ℝ8 with coordinates (x0, x1,… , x7) with ℍ2 by (x0 + ix1 + jx2 + kx3, x4 + ix5 + jx6 + kx7). 
There are natural actions given by Sp(2) acting by left multiplication and Sp(1) acting by 
multiplication on the right. The 1-forms �i are simply the dual of the S1 actions given by 
right multiplication by the imaginary quaternions. We consider the S1 action generated by 
the vector field

given by a diagonal U(1) ⊂ Sp(2). A simple computation shows that

from which it follows that LXΦ0 = 0 . Thus, we get a closed G2-structure on the quotient 
space ℝ+ × ℂP3 given by � = �XΦ from 3.1. Noting that Φ0 is also invariant by the right S1 
action generated by the vector field

i.e LYΦ0 = 0, and that both S1 actions commute, we can take the (topological) � 2 reduc-
tion to the 6-manifold ℝ3 ⊕ℝ

3 − {0} . More concretely, we can split ℝ8 = ℝ
4 ⊕ℝ

4 with 
coordinates x0, x1, x4, x5 on the first factor and x2, x3, x6, x7 on the second and we consider 
the equivalent � 2 action given by the vector fields 1

2
(X + Y) and 1

2
(X − Y) , each acting non-

trivially on only one ℝ4 factor. Using the HK moment maps as in the previous section, we 
get coordinates ui and vi on ℝ3 ⊕ℝ

3 − {0} given by

g = dt2 + a(t)2ĝS2 + b(t)2gS4 ,

�1 = −x1dx0 + x0dx1 + x3dx2 − x2dx3 − x5dx4 + x5dx4 + x7dx6 − x6dx7,

�2 = −x2dx0 + x0dx2 + x1dx3 − x3dx1 − x6dx4 + x4dx6 + x5dx7 − x7dx5,

�3 = −x3dx0 + x0dx3 + x2dx1 − x1dx2 − x7dx4 + x4dx7 + x6dx5 − x5dx6.

X = −x1�0 + x0�1 − x3�2 + x2�3 − x5�4 + x4�5 − x7�6 + x6�7

d(X⌟d�i ∧ d�i) = 0 for i = 1, 2, 3

Y = −x1�0 + x0�1 + x3�2 − x2�3 − x5�4 + x4�5 + x7�6 − x6�7,
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These coordinates can now be pulled back to ℝ+ × ℂP3 and will allow us to give an explicit 
expression for � . From this point of view, we have the S1-bundle:

Following the Apostolov–Salamon construction [2], we can write

where H ∶= ‖Y‖−1
�

 , � is the connection 1-form defined by

and (�,Ω+,Ω−) is the SU(3)-structure induced on ℝ3 ⊕ℝ
3 − {0} . We now give coordinate 

expressions for the aforementioned differential forms.

Proposition 6.1 In the above notation, the closed G2-structure on ℝ+ × ℂP3 given by 
� = �XΦ0 can be expressed as

where {dv, dv, du} denotes

similarly for {dv, du, du} . Moreover, we have

where R2 ∶= x2
0
+⋯ + x2

7
 , u2 ∶= u2

1
+ u2

2
+ u2

3
= (x2

0
+ x2

1
+ x2

4
+ x2

5
)2 and likewise for v. 

The curvature of the S1-bundle over ℝ3 ⊕ℝ
3 − {0} is given by

where {v, dv, dv} denotes

and likewise for {u, du, du}.

u1 = x2
0
+ x2

1
− x2

4
− x2

5
v1 = x2

2
+ x2

3
− x2

6
− x2

7

u2 = 2 (x0x4 + x1x5) v2 = 2 (x2x6 + x3x7)

u3 = 2 (x0x5 − x1x4) v3 = 2 (x2x7 − x3x6).

ℝ
+ × ℂP3

∕S1

������������→ ℝ
3 ⊕ℝ

3 − {0}.

(6.1)� = � ∧ � + H3∕2 Ω+

(6.2)∗� � =
1

2
H2�2 − � ∧ H1∕2 Ω−

�(⋅) ∶= H2 g�(Y , ⋅)

� = � ∧
1

2

3∑
i=1

dvi ∧ dui +
1

8

(
1

u

(
du123 − {dv, du, du}

)
+

1

v

(
dv123 − {dv, dv, du}

))
,

dv1 ∧ dv2 ∧ du3 + dv2 ∧ dv3 ∧ du1 + dv3 ∧ dv1 ∧ du2,

H
1

2Ω− =
1

4R
2

3

(
{dv, dv, du} − {du, du, dv} +

u

v
dv123 −

v

u
du123

)
,

H =
R2∕3

2 u1∕2 v1∕2
,

d� = −
{v, dv, dv}

4(v2
1
+ v2

2
+ v2

3
)3∕2

+
{u, du, du}

4(u2
1
+ u2

2
+ u2

3
)3∕2

,

v1dv2 ∧ dv3 + v2dv3 ∧ dv1 + v3dv1 ∧ dv2,
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The proof is a long computation which was carried out with the help of Maple. One can 
directly verify the above formulae hold using the definitions of ui , vi and expressing them 
in terms of xi. The reader might find it interesting to compare our expressions to those in 
[1] for the torsion-free G2 quotient.

In [27], Hitchin shows that an SU(3)-structure is completely determined by the pair 
(�,Ω+) . Note that here Ω+ can easily be read off from the expressions for � and H in Prop-
osition 6.1 and formula (6.1). Thus, we can explicitly compute the induced complex struc-
ture and metric on ℝ3 ⊕ℝ

3 − {0}.

Proposition 6.2 The metric induced by (�,Ω+) on ℝ3 ⊕ℝ
3 − {0} is given by

and the almost complex structure J by

Note that since � is closed from (2.3), we have that

We shall now derive an explicit expression for the torsion of the G2-structure �. Under the 
inclusion SU(3) ↪ G2, we can write the torsion form as

where �v and �h are basic 1-form and 2-form, respectively, i.e. they are (pullback of) forms 
on ℝ3 ⊕ℝ

3 − {0} . It is not hard to show that 𝜏h ∈ [Λ2,0]⊕ [[Λ1,1

0
]] and that the [Λ2,0]-com-

ponent of �h is SU(3)-equivalent to �v. We compute �h and �v as

and

where u ⋅ dv denotes 
∑3

i=1
uidvi and likewise for v ⋅ du . From these expressions, one can 

show that the [Λ1,1

0
]-component of �h is nonzero, i.e. J is non-integrable.

Remark 6.3 

g� =
1

2

(
v1∕2

u1∕2
(du2

1
+ du2

2
+ du2

3
) +

u1∕2

v1∕2
(dv2

1
+ dv2

2
+ dv2

3
)

)

J(u1∕2�ui ) = v1∕2�vi , for i = 1, 2, 3.

d ∗� � = �2 ∧ �.

�2 = � ∧ �v + �h

�h ⋅
(
3uv ⋅ R8∕3

)
= −u ⋅

(
1

2
({u, dv, dv} + {v, dv, dv}) +

3u

2v
{v, dv, dv}

)

− v ⋅
(
1

2
({v, du, du} + {u, ddu, du}) +

3v

2u
{u, du, du}

)

−
1

2
(u{v, dv, du} + v{u, dv, du})

−
1

2
(v{u, du, dv} + u{v, du, dv})

�v ⋅ (
3

2
⋅ R8∕3) =

3∑
i=1

(
1

v
(vui − 3uvi) dvi −

1

u
(uvi − 3vui) dui

)

=

(
u ⋅ dv − v ⋅ du − 3(udv − vdu)

)
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• If we restrict the Spin(7) 4-form Φ0 on ℝ8 to S7, we get a G2 4-form ∗S7 �S7 and 
the flat metric restricts to give the standard round metric. Since the cone metric is 
just the flat metric again, this means that this cocalibrated G2- structure is inducing 
the round metric. This statement is in agreement with the fact that with the round 
metric S7 is a 3-Sasakian manifold. Note that in contrast, the squashed Einstein 
metric on S7 has exactly one Killing spinor, so the cone metric has holonomy equal 
to Spin(7) [22, 23]. We can now take the S1-quotient with respect to any free S1 
action preserving the round nearly parallel G2-structure. Since this quotient is also 
a Riemannian submersion (as the size of the circle orbits is constant), the quotient 
metric is just the Fubini–Study metric. However by contracting the 4-form with 
the vector field generated by the S1, we get the (negative) imaginary part of a (3, 0) 
form on the ℂP3 . The latter induces an almost complex structure compatible with 
the Fubini–Study metric but which definitely cannot be the integrable one; other-
wise, this contradicts the fact that the canonical bundle of ℂP3 with the Fubini–
Study complex structure is non-trivial. The above closed G2-structure is then just 
the Riemannian cone on this ℂP3 . More explicitly, we can write the flat metric on 
ℝ

8 as 

 where � is just the connection form of the S1 action for the Fubini–Study quotient as 
above and s = ‖X‖−1

Φ
= R−1. Thus, the metrics of Proposition 6.1 can also be expressed 

as 

 Note that by construction, the latter metric is invariant under the vector field Y and thus 
passes to the quotient (ℝ+ × ℂP3)∕S1.

• Observe that one can also view this construction as a � 2-quotient of a Spin(7)-
structure to a 6-manifold endowed with an SU(3)-structure (�,Ω+,Ω−) given by 

 and the metrics are related by 

 This quotient construction under the assumption that the 6-manifold is Kähler is the 
current work in progress by the author.
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16

9
r2gFS
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4 u ⋅ v

R2
�2).

Φ = � ∧ � ∧ � + H3∕2� ∧ Ω+ +
1

2
s4∕3H2� ∧ � − s4∕3H1∕2� ∧ Ω−

gΦ = s−2�2 + s2∕3H−2�2 + s2∕3Hg�.
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Appendix

For the convenience of the reader and to make this article self-contained, we describe the con-
struction of the Bryant–Salamon metrics on the anti-self-dual bundle of S4 . We shall follow 
the approach described in [34]. The reader will find proofs of the assertions made therein.

Considering S4 embedded in ℝ5 with coordinates x1,… , x5, we may choose the following 
local orthonormal frame

where R2 = x2
1
+ x2

2
+ x2

3
+ x2

4
 . Denoting by ei the corresponding coframe, we compute the 

following:

In the Cartan moving frame setting, the structure equations are given by d� = −� ∧ � and 
F = d𝜔 + 𝜔 ∧ 𝜔 ∈ Λ2 ⊗ ��(4) where � is the Levi-Civita connection form and F the cur-
vature. We compute them as

Here, we are only writing the upper triangular entries since the matrices are skew-symmet-
ric. The second equation confirms that the round metric has constant curvature and that 
the scalar curvature is 12. We can define a local orthonormal basis of the anti-self-dual 
bundle by c1 ∶= e12 − e34 , c2 ∶= e13 − e42 and c3 ∶= e14 − e23 . � induces a connection on 
this bundle given by

v1 =
1

R

⎛⎜⎜⎜⎜⎝

x2
−x1
x4
−x3
0

⎞⎟⎟⎟⎟⎠
, v2 =

1

R

⎛⎜⎜⎜⎜⎝

−x3
x4
x1
−x2
0

⎞⎟⎟⎟⎟⎠
, v3 =

1

R

⎛⎜⎜⎜⎜⎝

x4
x3
x2
−x1
0

⎞⎟⎟⎟⎟⎠
, v4 =

1�
−1 +

1

x2
5

⎛
⎜⎜⎜⎜⎜⎝

−x1
−x2
−x3
−x4

−x5 +
1

x5

⎞
⎟⎟⎟⎟⎟⎠

,

de1 =
2

R
e23 +

√
1 − R2

R
e14

de2 =
2

R
e31 +

√
1 − R2

R
e24

de3 =
2

R
e12 +

√
1 − R2

R
e34

de4 = 0

� = −

⎛
⎜⎜⎜⎜⎜⎝

0 −
1

R
e3

1

R
e2

√
1−R2

R
e1

⋅ 0 −
1

R
e1

√
1−R2

R
e2

⋅ ⋅ 0

√
1−R2

R
e3

⋅ ⋅ ⋅ 0

⎞
⎟⎟⎟⎟⎟⎠

and F =

⎛⎜⎜⎜⎝

0 e12 e13 e14

⋅ 0 e23 e24

⋅ ⋅ 0 e34

⋅ ⋅ ⋅ 0

⎞⎟⎟⎟⎠

http://creativecommons.org/licenses/by/4.0/


515Annals of Global Analysis and Geometry (2020) 57:489–517 

1 3

Since the connection is torsion free, we can compute � i
j
 by

where �2

1
=

√
1−R2+1

R
e1 , �1

3
=

√
1−R2+1

R
e2 , �2

3
=

√
1−R2+1

R
e3 and � i

j
= −�

j

i
. These forms can 

all be pulled back to the total space of the ASD bundle which we denote by the same letter. 
We introduce fibre coordinates (a1, a2, a3) with respect to the coordinate system defined by 
ci. We can define vertical 1-forms by

i.e. they vanish on horizontal vectors. Together with the pull back of the ei, they give an 
absolute parallelism of the ASD bundle. The following forms are all SO(4)-invariant and 
are hence globally well defined on the total space:

The unit (� = 1) sphere bundle is diffeomorphic to ℂP3, and restricting the above forms, we 
have

The subscript FS refers to the Fubini–Study metric and NK to the nearly Kähler one. Our 
choice of scaling was made to fit the conventions of Sect. 5.1. The Bryant–Salamon form 
is then given by

where u = (2� + 1)1∕4 and v = (2� + 1)−1∕4.

∇ci = 𝜓 i
j
⊗ ci

dc1 =�1

2
∧ c2 + �1

3
∧ c3

dc2 =�2

1
∧ c1 + �2

3
∧ c3

dc3 =�3

1
∧ c1 + �3

2
∧ c2

bi = dai + aj�
j

i
,

� = a1a1 + a2a2 + a3a3

� = 2 (a1b
2b3 + a2b

3b1 + a3b
1b2)

� = a1b
2c3 + a2b

3c1 + a3b
1c2 − a1b

3c2 − a2b
1c3 − a3b

2c1

� = a1c
1 + a2c

2 + a3c
3

� = 6 b123.

gFS =
1

2
((e1)2 + (e2)2 + (e3)2 + (e4)2) +

1

2
((b1)2 + (b2)2 + (b3)2)

|||S2
�FS =

1

2
� −

1

4
�

gNK =
1

2
((e1)2 + (e2)2 + (e3)2 + (e4)2) +

1

4
((b1)2 + (b2)2 + (b3)2)

|||S2
�NK =

1

2
� +

1

8
�

ΩNK =
1

4
(d� − i�)

�BS = u2vd� +
1

6
v3�
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