
REVIEW
published: 16 April 2020

doi: 10.3389/fncom.2020.00029

Frontiers in Computational Neuroscience | www.frontiersin.org 1 April 2020 | Volume 14 | Article 29

Edited by:

Adam Henry Marblestone,

Harvard University, United States

Reviewed by:

Mattia Rigotti,

IBM Research, United States

Mariya Toneva,

Carnegie Mellon University,

United States

H. Steven Scholte,

University of Amsterdam, Netherlands

*Correspondence:

Grace W. Lindsay

gracewlindsay@gmail.com

Received: 02 December 2019

Accepted: 23 April 2020

Published: 16 April 2020

Citation:

Lindsay GW (2020) Attention in

Psychology, Neuroscience, and

Machine Learning.

Front. Comput. Neurosci. 14:29.

doi: 10.3389/fncom.2020.00029

Attention in Psychology,
Neuroscience, and Machine Learning
Grace W. Lindsay*

Gatsby Computational Neuroscience Unit, Sainsbury Wellcome Centre, University College London, London, United Kingdom

Attention is the important ability to flexibly control limited computational resources. It has

been studied in conjunction with many other topics in neuroscience and psychology

including awareness, vigilance, saliency, executive control, and learning. It has also

recently been applied in several domains in machine learning. The relationship between

the study of biological attention and its use as a tool to enhance artificial neural networks

is not always clear. This review starts by providing an overview of how attention is

conceptualized in the neuroscience and psychology literature. It then covers several use

cases of attention in machine learning, indicating their biological counterparts where they

exist. Finally, the ways in which artificial attention can be further inspired by biology for

the production of complex and integrative systems is explored.

Keywords: attention, artificial neural networks, machine learning, vision, memory, awareness

1. INTRODUCTION

Attention is a topic widely discussed publicly and widely studied scientifically. It has many
definitions within and across multiple fields including psychology, neuroscience, and, most
recently, machine learning (Chun et al., 2011; Cho et al., 2015). AsWilliam James wrote at the dawn
of experimental psychology, “Everyone knows what attention is. It is the taking possession by the
mind, in clear, and vivid form, of one out of what seems several simultaneously possible objects or
trains of thought.” Since James wrote this, many attempts have been made to more precisely define
and quantify this process while also identifying the underlying mental and neural architectures that
give rise to it. The glut of different experimental approaches and conceptualizations to study what
is spoken of as a single concept, however, has led to something of a backlash amongst researchers.
As was claimed in the title of a recent article arguing for a more evolution-informed approach to
the concept, “No one knows what attention is” (Hommel et al., 2019).

Attention is certainly far from a clear or unified concept. Yet despite its many, vague, and
sometimes conflicting definitions, there is a core quality of attention that is demonstrably of high
importance to information processing in the brain and, increasingly, artificial systems. Attention is
the flexible control of limited computational resources. Why those resources are limited and how
they can best be controlled will vary across use cases, but the ability to dynamically alter and route
the flow of information has clear benefits for the adaptiveness of any system.

The realization that attention plays many roles in the brain makes its addition to artificial
neural networks unsurprising. Artificial neural networks are parallel processing systems comprised
of individual units designed to mimic the basic input-output function of neurons. These
models are currently dominating the machine learning and artificial intelligence (AI) literature.
Initially constructed without attention, various mechanisms for dynamically re-configuring the
representations or structures of these networks have now been added.
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The following section, section 2, will cover broadly the
different uses of the word attention in neuroscience and
psychology, along with its connection to other common
neuroscientific topics. Throughout, the conceptualization of
attention as a way to control limited resources will be highlighted.
Behavioral studies will be used to demonstrate the abilities and
limits of attention while neural mechanisms point to the physical
means through which these behavioral effects are manifested. In
section 3, the state of attention research in machine learning will
be summarized and relationships between artificial and biological
attention will be indicated where they exist. And in section 4
additional ways in which findings from biological attention can
influence its artificial counterpart will be presented.

The primary aim of this review is to give researchers in
the field of AI or machine learning an understanding of how
attention is conceptualized and studied in neuroscience and
psychology in order to facilitate further inspirationwhere fruitful.
A secondary aim is to inform those who study biological attention
how these processes are being operationalized in artificial systems
as it may influence thinking about the functional implications of
biological findings.

2. ATTENTION IN NEUROSCIENCE AND
PSYCHOLOGY

The scientific study of attention began in psychology, where
careful behavioral experimentation can give rise to precise
demonstrations of the tendencies and abilities of attention
in different circumstances. Cognitive science and cognitive
psychology aim to turn these observations into models of how
mental processes could create such behavioral patterns. Many
word models and computational models have been created that
posit different underlying mechanisms (Driver, 2001; Borji and
Itti, 2012).

The influence of single-cell neurophysiology in non-human
primates along with non-invasive means of monitoring human
brain activity such as EEG, fMRI, and MEG have made direct
observation of the underlying neural processes possible. From
this, computational models of neural circuits have been built that
can replicate certain features of the neural responses that relate to
attention (Shipp, 2004).

In the following sub-sections, the behavioral and neural
findings of several different broad classes of attention will
be discussed.

2.1. Attention as Arousal, Alertness, or
Vigilance
In its most generic form, attention could be described as
merely an overall level of alertness or ability to engage with
surroundings. In this way it interacts with arousal and the sleep-
wake spectrum. Vigilance in psychology refers to the ability to
sustain attention and is therefore related as well. Note, while
the use of these words clusters around the same meaning,
they are sometimes used more specifically in different niche
literature (Oken et al., 2006).

Studying subjects in different phases of the sleep-wake cycle,
under sleep deprivation, or while on sedatives offers a view of
how this form of attention can vary and what the behavioral
consequences are. By giving subjects repetitive tasks that require
a level of sustained attention—such as keeping a ball within a
certain region on a screen—researchers have observed extended
periods of poor performance in drowsy patients that correlate
with changes in EEG signals (Makeig et al., 2000). Yet, there are
ways in which tasks can be made more engaging that can lead
to higher performance even in drowsy or sedated states. This
includes increasing the promise of reward for performing the
task, adding novelty or irregularity, or introducing stress (Oken
et al., 2006). Therefore, general attention appears to have limited
reserves that won’t be deployed in the case of a mundane or
insufficiently rewarding task but can be called upon for more
promising or interesting work.

Interestingly, more arousal is not always beneficial. The
Yerkes-Dodson curve (Figure 1B) is an inverted-U that
represents performance as a function of alertness on sufficiently
challenging tasks: at low levels of alertness performance is poor,
at medium levels it is good, and at high levels it becomes poor
again. The original study used electric shocks in mice to vary the
level of alertness, but the finding has been repeated with other
measures (Diamond, 2005). It may explain why psychostimulants
such as Adderall or caffeine can work to increase focus in some
people at some doses but become detrimental for others (Wood
et al., 2014).

The neural circuits underlying the sleep-wake cycle are
primarily in the brain stem (Coenen, 1998). These circuits
control the flow of information into the thalamus and then
onto cortex. Additionally, neuromodulatory systems play a large
role in the control of generalized attention. Norepinephrine,
acetylcholine, and dopamine are believed to influence alertnesss,
orienting to important information, and executive control
of attention, respectively (Posner, 2008). The anatomy of
neuromodulators matches their function as well. Neurons that
release norepinephrine, for example, have their cell bodies in the
brain stem but project very broadly across the brain, allowing
them to control information processing broadly (Figure 1A).

2.2. Sensory Attention
In addition to overall levels of arousal and alertness, attention
can also be selectively deployed by an awake subject to specific
sensory inputs. Studying attention within the context of a specific
sensory system allows for tight control over both stimuli and the
locus of attention. Generally, to look for this type of attention the
task used needs to be quite challenging. For example, in a change
detection task, the to-be-detected difference between two stimuli
may be very slight. More generally, task difficulty can be achieved
by presenting the stimulus for only a very short period of time or
only very weakly.

A large portion of the study of attention in systems
neuroscience and psychology centers on visual attention in
particular (Kanwisher and Wojciulik, 2000). This may reflect
the general trend in these fields to emphasis the study of
visual processing over other sensory systems (Hutmacher, 2019),
along with the dominant role vision plays in the primate brain.
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FIGURE 1 | General attention and alertness (A) Cells in the locus coeruleus release norepinephrine (also known as noradrenaline) onto many parts of the brain with

different functions, including onto other neuromodulatory systems. This contributes to overall arousal (Samuels and Szabadi, 2008). Colors here represent different

divisions of the brain: forebrain (green), diencephalon (yellow), and brainstem (blue). (B) The Yerkes-Dodson curve describes the nonlinear relationship between

arousal and performance on challenging tasks.

Furthermore, visual stimuli are frequently used in studies meant
to address more general, cognitive aspects of attention as well.

Visual attention can be broken down broadly into spatial and
feature-based attention.

2.2.1. Visual Spatial Attention
Saccades are small and rapid eye movements made several times
each second. As the fovea offers the highest visual resolution on
the retina, choosing where to place it is essentially a choice about
where to deploy limited computational resources. In this way,
eye movements indicate the locus of attention. As this shift of
attention is outwardly visible it is known as overt visual attention.

By tracking eye movements as subjects are presented with
different images, researchers have identified image patterns that
automatically attract attention. Such patterns are defined by
oriented edges, spatial frequency, color contrast, intensity, or
motion (Itti and Koch, 2001). Image regions that attract attention
are considered “salient” and are computed in a “bottom-
up” fashion. That is, they don’t require conscious or effortful
processing to identify and are likely the result of built-in feature
detectors in the visual system. As such, saliency can be computed
very quickly. Furthermore, different subjects tend to agree on
which regions are salient, especially those identified in the first
few saccades (Tatler et al., 2005).

Salient regions can be studied in “free-viewing” situations, that
is, when the subject is not given any specific instructions about

how to view the image. When a particular task is assigned, the
interplay between bottom-up and “top-down” attention becomes
clear. For example, when instructed to saccade to a specific
visual target out of an array, subjects may incorrectly saccade
to a particularly salient distractor instead (van Zoest and Donk,
2005). More generally, task instructions can have a significant
effect on the pattern of saccades generated when subjects are
viewing a complex natural image and given high-level tasks (e.g.,
asked to assess the age of a person or guess their socio-economic
status). Furthermore, the natural pattern of eye movements when
subjects perform real world tasks, like sandwich making, can
provide insights to underlying cognitive processes (Hayhoe and
Ballard, 2005).

When subjects need to make multiple saccades in a row they
tend not to return to locations they have recently attended and
may be slow to respond if something relevant occurs there.
This phenomenon is known as inhibition of return (Itti and
Koch, 2001). Such behavior pushes the visual system to not
just exploit image regions originally deemed most salient but to
explore other areas as well. It also means the saccade generating

system needs to have a form of memory; this is believed to be
implemented by short-term inhibition of the representation of
recently-attended locations.

While eye movements are an effective means of controlling

visual attention, they are not the only option. “Covert” spatial

attention is a way of emphasizing processing of different spatial
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locations without an overt shift in fovea location. Generally, in
the study of covert spatial attention, subjects must fixate on a
central point throughout the task. They are cued to covertly
attend to a location in their peripheral vision where stimuli
relevant for their visual task will likely appear. For example,
in an orientation discrimination task, after the spatial cue is
provided an oriented grating will flash in the cued location and
the subject will need to indicate its orientation. On invalidly-cued
trials (when the stimulus appears in an uncued location), subjects
perform worse than on validly-cued (or uncued) trials (Anton-
Erxleben and Carrasco, 2013). This indicates that covert spatial
attention is a limited resource that can be flexibly deployed and
aids in the processing of visual information.

Covert spatial attention is selective in the sense that certain
regions are selected for further processing at the expense of
others. This has been referred to as the “spotlight” of attention.
Importantly, for covert—as opposed to overt—attention the
input to the visual system can be identical while the processing
of that input is flexibly selective.

Covert spatial attention can be impacted by bottom-up
saliency as well. If an irrelevant but salient object is flashed at
a location that then goes on to have a task relevant stimulus,
the exogenous spatial attention drawn by the irrelevant stimulus
can get applied to the task relevant stimulus, possibly providing
a performance benefit. If it is flashed at an irrelevant location,
however, it will not help, and can harm performance (Berger
et al., 2005). Bottom-up/exogenous attention has a quick time
course, impacting covert attention for 80–130 ms after the
distractor appears (Anton-Erxleben and Carrasco, 2013).

In some theories of attention, covert spatial attention exists
to help guide overt attention. Particularly, the pre-motor theory
of attention posits that the same neural circuits plan saccades
and control covert spatial attention (Rizzolatti et al., 1987). The
frontal eye field (FEF) is known to be involved in the control
of eye movements. Stimulating the neurons in FEF at levels too
low to evoke eye movements has been shown to create effects
similar to covert attention (Moore et al., 2003). In this way, covert
attention may be a means of deciding where to overtly look. The
ability to covertly attend may additionally be helpful in social
species, as eye movements convey information about knowledge
and intent that may best be kept secret (Klein et al., 2009).

To study the neural correlates of covert spatial attention,
researchers identify which aspects of neural activity differ based
only on differences in the attentional cue (and not on differences
in bottom-up features of the stimuli). On trials where attention
is cued toward the receptive field of a recorded neuron, many
changes in the neural activity have been observed (Noudoost
et al., 2010; Maunsell, 2015). A commonly reported finding is
an increase in firing rates, typically of 20–30% (Mitchell et al.,
2007). However, the exact magnitude of the change depends
on the cortical area studied, with later areas showing stronger
changes (Luck et al., 1997; Noudoost et al., 2010). Attention is
also known to impact the variability of neural firing. In particular,
it decreases trial-to-trial variability as measured via the Fano
Factor and decreases noise correlations between pairs of neurons.
Attention has even been found to impact the electrophysiological
properties of neurons in a way that reduces their likelihood of

firing in bursts and also decreases the height of individual action
potentials (Anderson et al., 2013).

In general, the changes associated with attention are believed
to increase the signal-to-noise ratio of the neurons that
represent the attended stimulus, however they can also impact
communication between brain areas. To this end, attention’s
effect on neural synchrony is important. Within a visual
area, attention has been shown to increase spiking coherence
in the gamma band—that is at frequencies between 30 and
70 Hz (Fries et al., 2008). When a group of neurons fires
synchronously, their ability to influence shared downstream
areas is enhanced. Furthermore, attention may also be working
to directly coordinate communication across areas. Synchronous
activity between two visual areas can be a sign of increased
communication and attention has been shown to increase
synchrony between the neurons that represent the attended
stimulus in areas V1 and V4, for example (Bosman et al., 2012).
Control of this cross-area synchronization appears to be carried
out by the pulvinar (Saalmann et al., 2012).

In addition to investigating how attention impacts neurons
in the visual pathways, studies have also searched for the
source of top-down attention (Noudoost et al., 2010; Miller
and Buschman, 2014). The processing of bottom-up attention
appears to culminate with a saliency map produced in the lateral
intraparietal area (LIP). The cells here respond when salient
stimuli are in their receptive field, including task-irrelevant but
salient distractors. Prefrontal areas such as FEF, on the other
hand, appear to house the signals needed for top-down control
of spatial attention and are less responsive to distractors.

While much of the work on the neural correlates of sensory
attention focuses on the cortex, subcortical areas appear to play a
strong role in the control and performance benefits of attention
as well. In particular, the superior colliculus assists in both covert
and overt spatial attention and inactivation of this region can
impair attention (Krauzlis et al., 2013). And, as mentioned above,
the pulvinar plays a role in attention, particularly with respect to
gating effects on cortex (Zhou et al., 2016).

2.2.2. Visual Feature Attention
Feature attention is another form of covert selective attention. In
the study of feature attention, instead of being cued to attend to a
particular location, subjects are cued on each trial to attend to
a particular visual feature such as a specific color, a particular
shape, or a certain orientation. The goal of the task may be to
detect if the cued feature is present on the screen or readout
another one of its qualities (e.g., to answer “what color is the
square?” should result in attention first deployed to squares).
Valid cueing about the attended feature enhances performance.
For example, when attention was directed toward a particular
orientation, subjects were better able to detect faint gratings
of that orientation than of any other orientation (Rossi and
Paradiso, 1995). While the overall task (e.g., detection of an
oriented grating) remains the same, the specific instructions
(detection of 90◦ grating vs. 60◦ vs. 30◦) will be cued on
each individual trial, or possibly blockwise. Successful trial-
wise cueing indicates that this form of attention can be flexibly
deployed on fast timescales.
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FIGURE 2 | Visual search tasks engage many forms of visual attention. Across the top row the progression of a visual search task is shown. First, a cue indicates the

target of the visual search, in this case a blue X. Then a search array appears with many non-targets. Top-down feature attention to cells that represent the color blue

and the shape X will increase their firing throughout the visual field but firing will be strongest where blue or Xs actually occur. These neural response will play a role in

generating a map of covert spatial attention which can be used to explore visual space before saccading. After the shift in overt attention with the first saccade, the

covert attention map is remade. Finally, the target is located and successfully saccaded to. If the visual array contained a pop-out stimulus (for example a green O) it

may have captured covert spatial attention in a bottom-up way and led to an additional incorrect saccade.

Visual search tasks are also believed to activate feature-based
attention (Figure 2). In these tasks, an array of stimuli appears
on a screen and subjects need to indicate—frequently with an
eye movement—the location of the cued stimulus. As subjects
are usually allowed to make saccades throughout the task as they
search for the cued stimulus, this task combines covert feature-
based attention with overt attention. In fact, signals of top-
down feature-based attention have been found in FEF, the area
involved in saccade choice (Zhou and Desimone, 2011). Because
certain features can create a pop-out effect—for example, a single
red shape amongst several black ones will immediately draw
attention—visual search tasks also engage bottom-up attention
which, depending on the task, may need to be suppressed (Wolfe
and Horowitz, 2004).

Neural effects of feature-based attention in the visual system
are generally similar to those of spatial attention. Neurons
that represent the attended feature, for example, have increased
firing rates, and those that represent very different features have

suppressed rates (Treue and Trujillo, 1999). As opposed to
spatial attention, however, feature-based attention is spatially-
global. This means that when deploying attention to a particular
feature the activity of the neurons that represent that feature
anywhere in visual space are modulated (Saenz et al., 2002).
Another difference between spatial and feature attention is the
question of how sources of top-down attention target the correct
neurons in the visual system. The retinotopic map, wherein
nearby cells represent nearby spatial locations, makes spatial
targeting straightforward, but cells are not as neatly organized
according to preferred visual features.

The effects of spatial and feature attention appear to be
additive (Hayden and Gallant, 2009). Furthermore, both feature
and spatial attention are believed to create their effects by
acting on the local neural circuits that implement divisive
normalization in visual cortex (Reynolds and Heeger, 2009).
Modeling work has shown that many of the neural effects of
selective attention can be captured by assuming that top-down
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connections provide targeted synaptic inputs to cells in these
circuits (Lindsay et al., 2019). However, models that rely on effects
of the neuromodulator acetylcholine can also replicate neural
correlates of attention (Sajedin et al., 2019).

Potential sources of top-down feature-based attention have
been found in prefrontal cortex where sustained activity
encodes the attended feature (Bichot et al., 2015; Paneri
and Gregoriou, 2017). Inactivating the ventral prearcuate area
impairs performance on search tasks. From prefrontal areas,
attention signals are believed to travel in a reverse hierarchical
way wherein higher visual areas send inputs to those below
them (Ahissar and Hochstein, 2000).

A closely related topic to feature attention is object attention.
Here, attention is not deployed to an abstract feature in advance
of a visual stimulus, but rather it is applied to a particular
object in the visual scene (Chen, 2012). The initial feedforward
pass of activity through the visual hierarchy is able to pre-
attentively segregate objects from their backgrounds in parallel
across the visual field, provided these objects have stark and
salient differences from the background. In more crowded or
complex visual scenes, recurrent and serial processing is needed
in order to identify different objects (Lamme and Roelfsema,
2000). Serial processing involves moving limited attentional
resources from one location in the image to another; it can
take the form of shifts in either covert or overt spatial attention
(Buschman and Miller, 2009). Recurrent connections in the
visual system—that is, both horizontal connections from nearby
neurons in the same visual area and feedback connections from
those in higher visual areas—aid in figure-ground segregation
and object identification. The question of how the brain performs
perceptual grouping of low-level features into a coherent object
identity has been studied for nearly a century. It is believed
that attention may be required for grouping, particularly for
novel or complex objects (Roelfsema and Houtkamp, 2011).
This may be especially important in visual search tasks that
require locating an object that is defined by a conjunction of
several features.

Neurally, the effects of object-based attention can spread
slowly through space as parts of an object are mentally traced
(Roelfsema et al., 1998). Switching attention to a location outside
an object appears to incur a greater cost than switching to
the same distance away but within the object (Brown and
Denney, 2007). In addition, once attention is applied to a
visual object, it is believed to activate feature-based attention
for the different features of that object across the visual field
(O’Craven et al., 1999).

Another form of attention sometimes referred to as feature
attention involves attending to an entire feature dimension.
An example of this is the Stroop test, wherein the names
of colors are written in different colored ink and subjects
either need to read the word itself or say the color of the
ink. Here attention cannot be deployed to a specific feature
in advance, only to the dimensions word or color. Neurally,
the switch between dimensions appears to impact sensory
coding in the visual stream and is controlled by frontal areas
(Liu et al., 2003).

2.2.3. Computational Models of Visual Attention
Visual attention, being one of the most heavily-studied topics in
the neuroscience of attention, has inspired many computational
models of how attention works. In general, these models
synthesize various neurophysiological findings in order to help
explain how the behavioral impacts of attention arise (Heinke and
Humphreys, 2005).

Several computational models meant to calculate saliency
have been devised (Itti and Koch, 2001). These models use low-
level visual feature detectors—usually designed to match those in
the visual system—to create an image-specific saliency map that
can predict the saccade patterns of humans in response to the
same image. Another approach to calculating saliency based on
information theoretic first principles has also been explored and
was able to account for certain visual search behaviors (Bruce and
Tsotsos, 2009).

Some of the behavioral and neural correlates of attention are
similar whether the attention is bottom-up or top-down. In the
Biased Competition Model of attention, stimuli compete against
each other to dominate the neural response (Desimone, 1998).
Attention (bottom-up or top-down) can thus work by biasing this
competition toward the stimulus that is the target of attention.
While the Biased Competition Model is sometimes used simply
as a “word model” to guide intuition, explicit computational
instantiations of it have also been built. A hierarchical model of
the visual pathway that included top-down biasing as well as local
competition mediated through horizontal connections was able
to replicate multiple neural effects of attention (Deco and Rolls,
2004). A model embodying similar principles but using spiking
neurons was also implemented (Deco and Rolls, 2005).

Similar models have been constructed explicitly to deal with
attribute naming tasks such as the Stroop test described above.
The Selective Attention Model (SLAM), for example, has local
competition in both the sensory encoding and motor output
modules and can mimic known properties of response times in
easier and more challenging Stroop-like tests (Phaf et al., 1990).

Visual perception has been framed and modeled as a problem
of Bayesian inference (Lee and Mumford, 2003). Within this
context, attention can help resolve uncertainty under settings
where inference is more challenging, typically by modulating
priors (Rao, 2005). For example, in Chikkerur et al. (2010)
spatial attention functions to reduce uncertainty about object
identity and feature attention reduces spatial uncertainty. These
principles can capture both behavioral and neural features of
attention and can be implemented in a biologically-inspired
neural model.

The feature similarity gain model of attention (FSGM) is
a description of the neural effects of top-down attention that
can be applied in both the feature and spatial domain (Treue
and Trujillo, 1999). It says that the way in which a neuron’s
response is modulated by attention depends on that neuron’s
tuning. Tuning is a description of how a neuron responds
to different stimuli, so according to the FSGM a neuron that
prefers (that is, responds strongly to), e.g., the color blue,
will have its activity enhanced by top-down attention to blue.
The FSGM also says attention to non-preferred stimuli will
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cause a decrease in firing and that, whether increased or
decreased, activity is scaled multiplicatively by attention. Though
not initially defined as a computational model, this form of
neural modulation has since been shown through modeling to
be effective at enhancing performance on challenging visual
tasks (Lindsay and Miller, 2018).

Other models conceptualize attention as a dynamic routing
of information through a network. An implementation of this
form of attention can be found in the Selective Attention
for Identification Model (SAIM) (Heinke and Humphreys,
2003). Here, attention routes information from the retina to a
representation deemed the “focus of attention”; depending on the
current task, different parts of the retinal representation will be
mapped to the focus of attention.

2.2.4. Attention in Other Sensory Modalities
A famous example of the need for selective attention in audition
is the “cocktail party problem”: the difficulty of focusing on
the speech from one speaker in a crowded room of multiple
speakers and other noises (Bronkhorst, 2015). Solving the
problem is believed to involve “early” selection wherein low
level features of a voice such as pitch are used to determine
which auditory information is passed on for further linguistic
processing. Interestingly, selective auditory attention has the
ability to control neural activity at even the earliest level of
auditory processing, the cochlea (Fritz et al., 2007).

Spatial and feature attention have also been explored in the
somatosensory system. Subjects cued to expect a tap at different
parts on their body are better able to detect the sensation when
that cue is valid. However, these effects seemweaker than they are
in the visual system (Johansen-Berg and Lloyd, 2000). Reaction
times are faster in a detection task when subjects are cued about
the orientation of a stimulus on their finger (Schweisfurth et al.,
2014).

In a study that tested subjects’ ability to detect a taste
they had been cued for it was shown that validly-cued
tastes can be detected at lower concentrations than invalidly-
cued ones (Marks and Wheeler, 1998). This mimics the
behavioral effects found with feature-based visual attention.
Attention to olfactory features has not been thoroughly explored,
though visually-induced expectations about a scent can aid its
detection (Gottfried and Dolan, 2003; Keller, 2011).

Attention can also be spread across modalities to perform
tasks that require integration of multiple sensory signals. In
general, the use of multiple congruent sensory signals aids
detection of objects when compared to relying only on a single
modality. Interestingly, some studies suggest that humans may
have a bias for the visual domain, even when the signal from
another domain is equally valid (Spence, 2009). Specifically,
the visual domain appears to dominate most in tasks that
require identifying the spatial location of a cue (Bertelson
and Aschersleben, 1998). This can be seen most readily in
ventriloquism, where the visual cue of the dummy’s mouth
moving overrides auditory evidence about the true location of the
vocal source. Visual evidence can also override tactile evidence,
for example, in the context of the rubber arm illusion (Botvinick
and Cohen, 1998).

Another effect of the cross-modal nature of sensory processing
is that an attentional cue in one modality can cause an orienting
of attention in another modality (Spence and Driver, 2004).
Generally, the attention effects in the non-cued modality are
weaker. This cross-modal interaction can occur in the context
of both endogenous (“top-down”) and exogenous (“bottom-
up”) attention.

2.3. Attention and Executive Control
With multiple simultaneous competing tasks, a central controller
is needed to decide which to engage in and when. What’s
more, how to best execute tasks can depend on history and
context. Combining sensory inputs with past knowledge in
order to coordinate multiple systems for the job of efficient
task selection and execution is the role of executive control,
and this control is usually associated with the prefrontal cortex
(Miller and Buschman, 2014). As mentioned above, sources of
top-down visual attention have also been located in prefrontal
regions. Attention can reasonably be thought of as the output
of executive control. The executive control system must thus
select the targets of attention and communicate that to the
systems responsible for implementing it. According to the reverse
hierarchy theory described above, higher areas signal to those
from which they get input which send the signal on to those
below them and so on (Ahissar and Hochstein, 2000). This
means that, at each point, the instructions for attention must
be transformed into a representation that makes sense for the
targeted region. Through this process, the high level goals of the
executive control region can lead to very specific changes, for
example, in early sensory processing.

Executive control and working memory are also intertwined,
as the ability to make use of past information as well as to keep
a current goal in mind requires working memory. Furthermore,
working memory is frequently identified as sustained activity in
prefrontal areas. A consequence of the three-way relationship
between executive control, working memory, and attention is
that the contents of working memory can impact attention, even
when not desirable for the task (Soto et al., 2008). For example,
if a subject has to keep an object in working memory while
simultaneously performing a visual search for a separate object,
the presence of the stored object in the search array can negatively
interfere with the search (Soto et al., 2005). This suggests that
working memory can interfere with the executive control of
attention. However, there still appears to be additional elements
of that control that working memory alone does not disrupt.
This can be seen in studies wherein visual search performance
is even worse when subjects believe they will need to report the
memorized item but are shown a search array for the attended
item instead (Olivers and Eimer, 2011). This suggests that, while
all objects in working memory may have some influence over
attention, the executive controller can choose which will have
the most.

Beyond the flexible control of attention within a sensory
modality, attention can also be shifted between modalities.
Behavioral experiments indicate that switching attention either
between two different tasks within a sensory modality (for
example, going from locating a visual object to identifying it) or
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between sensory modalities (switching from an auditory task to a
visual one) incurs a computational cost (Pashler, 2000). This cost
is usually measured as the extent to which performance is worse
on trials just after the task has been switched vs. those where the
same task is being repeated. Interestingly, task switching within
a modality seems to incur a larger cost than switching between
modalities (Murray et al., 2009). A similar result is found when
switching between or across modes of response (for example,
pressing a bottom vs. verbal report), suggesting this is not specific
to sensory processing (Arrington et al., 2003). Such findings are
believed to stem from the fact that switching within a modality
requires a reconfiguration of the same neural circuits, which is
more difficult than merely engaging the circuitry of a different
sensory system. An efficient executive controller would need to be
aware of these costs when deciding to shift attention and ideally
try to minimize them; it has been shown that switch costs can be
reduced with training (Gopher, 1996).

The final question regarding the executive control of attention
is how it evolves with learning. Eye movement studies indicate
that searched-for items can be detected more rapidly in familiar
settings rather than novel ones, suggesting that previously-
learned associations guide overt attention (Chun and Jiang,
1998). Such benefits are believed to rely on the hippocampus
(Aly and Turk-Browne, 2017). In general, however, learning
how to direct attention is not as studied as other aspects of
the attention process. Some studies have shown that subjects
can enhance their ability to suppress irrelevant task information,
and the generality of that suppression depends on the training
procedure (Kelley and Yantis, 2009). Looking at the neural
correlates of attention learning, imaging results suggest that the
neural changes associated with learning do not occur in the
sensory pathways themselves but rather in areas more associated
with attentional control (Kelley and Yantis, 2010). Though not
always easy to study, the development of attentional systems
in infancy and childhood may provide further clues as to how
attention can be learned (Reynolds and Romano, 2016).

2.4. Attention and Memory
Attention and memory have many possible forms of interaction.
If memory has a limited capacity, for example, it makes sense for
the brain to be selective about what is allowed to enter it. In this
way, the ability of attention to dynamically select a subset of total
information is well-matched to the needs of the memory system.
In the other direction, deciding to recall a specific memory is a
choice about how to deploy limited resources. Therefore, both
memory encoding and retrieval can rely on attention.

The role of attention in memory encoding appears quite
strong (Aly and Turk-Browne, 2017). For information to
be properly encoded into memory, it is best for it be the
target of attention. When subjects are asked to memorize a
list of words while simultaneously engaging in a secondary
task that divides their attention, their ability to consciously
recall those words later is impaired (though their ability to
recognize the words as familiar is not so affected) (Gardiner
and Parkin, 1990). Imaging studies have shown that increasing
the difficulty of the secondary task weakens the pattern of
activity related to memory encoding in the left ventral inferior

frontal gyrus and anterior hippocampus and increases the
representation of secondary task information in dorsolateral
prefrontal and superior parietal regions (Uncapher and Rugg,
2005). Therefore, without the limited neural processing power
placed on the task of encoding, memory suffers. Attention
has also been implicated in the encoding of spatially-defined
memories and appears to stabilize the representations of place
cells (Muzzio et al., 2009).

Implicit statistical learning can also be biased by attention. For
example, in Turk-Browne et al. (2005) subjects watched a stream
of stimuli comprised of red and green shapes. The task was to
detect when a shape of the attended color appeared twice in a
row. Unbeknownst to the subjects, certain statistical regularities
existed in the stream such that there were triplets of shapes likely
to occur close together. When shown two sets of three shapes—
one an actual co-occurring triplet and another a random selection
of shapes of the same color—subjects recognized the real triplet
as more familiar, but only if the triplets were from the attended
color. The statistical regularities of the unattended shapes were
not learned.

Yet some learning can occur evenwithout conscious attention.
For example, in Watanabe (2003) patients engaged in a letter
detection task located centrally in their visual field while random
dot motion was shown in the background at sub-threshold
contrast. The motion had 10% coherence in a direction that
was correlated with the currently-presented letter. Before and
after learning this task, subjects performed an above-threshold
direction classification task. After learning the task, direction
classification improved only for the direction associated with the
targeted letters. This suggests a reward-related signal activated
by the target led to learning about a non-attended component of
the stimulus.

Many behavioral studies have explored the extent to which
attention is needed for memory retrieval. For example, by
asking subjects to simultaneously recall a list of previously-
memorized words and engage in a secondary task like card
sorting, researchers can determine if memory retrieval pulls
from the same limited pool of attentional resources as the task.
Some such studies have found that retrieval is impaired by the
co-occurrence of an attention-demanding task, suggesting it is
an attention-dependent process. The exact findings, however,
depend on the details of the memory and non-memory tasks
used (Lozito and Mulligan, 2006).

Even if memory retrieval does not pull from shared attentional
resources, it is still clear that somememories are selected formore
vivid retrieval at any given moment than others. Therefore, a
selection process must occur. An examination of neuroimaging
results suggests that the same parietal brain regions responsible
for the top-down allocation and bottom-up capture of attention
may play analogous roles duringmemory retrieval (Wagner et al.,
2005; Ciaramelli et al., 2008).

Studies of memory retrieval usually look at medium to long-
term memory but a mechanism for attention to items in working
memory has also been proposed (Manohar et al., 2019). It
relies on two different mechanisms of working memory: synaptic
traces for non-attended items and sustained activity for the
attended one.
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Some forms of memory occur automatically and within
the sensory processing stream itself. Priming is a well-known
phenomenon in psychology wherein the presence of a stimulus
at one point in time impacts how later stimuli are processed or
interpreted. For example, the word “doctor” may be recognized
more quickly following the word “hospital” than the word
“school.” In this way, priming requires a form of implicit memory
to allow previous stimuli to impact current ones. Several studies
on conceptual or semantic priming indicate that attention to the
first stimulus is required for priming effects to occur (Ballesteros
and Mayas, 2015); this mirrors findings that attention is required
for memory encoding more generally.

Most priming is positive, meaning that the presence of a
stimulus at one time makes the detection and processing of it or
a related stimulus more likely at a later time. In this way, priming
can be thought of as biasing bottom-up attention. However, top-
down attention can also create negative priming. In negative
priming, when stimuli that functioned as a distractor on the
previous trial serve as the target of attention on the current
trial, performance suffers (Frings et al., 2015). This may stem
from a holdover effect wherein the mechanisms of distractor
suppression are still activated for the now-target stimulus.

Adaptation can also be considered a form of implicit memory.
Here, neural responses decrease after repeated exposure to the
same stimulus. By reducing the response to repetition, changes
in the stimulus become more salient. Attention—by increasing
the neural response to attended stimuli—counters the effects of
adaptation (Pestilli et al., 2007; Anton-Erxleben et al., 2013).
Thus, both with priming and adaptation, top-down attention can
overcome automatic processes that occur at lower levels which
may be guiding bottom-up attention.

3. ATTENTION IN MACHINE LEARNING

While the concept of artificial attention has come up prior to
the current resurgence of artificial neural networks, many of its
popular uses today center on ANNs (Mancas et al., 2016). The
use of attention mechanisms in artificial neural networks came
about—much like the apparent need for attention in the brain—
as a means of making neural systems more flexible. Attention
mechanisms in machine learning allow a single trained artificial
neural network to perform well on multiple tasks or tasks with
inputs of variable length, size, or structure. While the spirit of
attention in machine learning is certainly inspired by psychology,
its implementations do not always track with what is known
about biological attention, as will be noted below.

In the form of attention originally developed for ANNs,
attention mechanisms worked within an encoder-decoder
framework and in the context of sequence models (Cho et al.,
2015; Chaudhari et al., 2019). Specifically, an input sequence will
be passed through an encoder (likely a recurrent neural network)
and the job of the decoder (also likely a recurrent neural network)
will be to output another sequence. Connecting the encoder and
decoder is an attention mechanism.

Commonly, the output of the encoder is a set of a vectors,
one for each element in the input sequence. Attention helps

determine which of these vectors should be used to generate the
output. Because the output sequence is dynamically generated
one element at a time, attention can dynamically highlight
different encoded vectors at each time point. This allows
the decoder to flexibly utilize the most relevant parts of the
input sequence.

The specific job of the attention mechanism is to produce a
set of scalar weightings, αi

t , one for each of the encoded vectors
(vi). At each step t, the attention mechanism (φ) will take in
information about the decoder’s previous hidden state (ht−1) and
the encoded vectors to produce unnormalized weightings:

α̃t = φ(ht−1, v) (1)

Because attention is a limited resource, these weightings need to
represent relative importance. To ensure that the α values sum to
one, the unnormalized weightings are passed through a softmax:

αi
t =

exp(α̃i
t)∑

j exp(α̃
j
t)

(2)

These attention values scale the encoded vectors to create a single
context vector on which the decoder can be conditioned:

ct =
∑

j

α
j
tv

j (3)

This form of attention can be made entirely differentiable and
so the whole network can be trained end-to-end with simple
gradient descent.

This type of artificial attention is thus a form of iterative
re-weighting. Specifically, it dynamically highlights different
components of a pre-processed input as they are needed for
output generation. This makes it flexible and context dependent,
like biological attention. As such it is also inherently dynamic.
While sequence modeling already has an implied temporal
component, this form of attention can also be applied to static
inputs and outputs (as will be discussed below in the context
of image processing) and will thus introduce dynamics into
the model.

In the traditional encoder-decoder framework without
attention, the encoder produced a fixed-length vector that was
independent of the length or features of the input and static
during the course of decoding. This forced long sequences or
sequences with complex structure to be represented with the
same dimensionality as shorter or simpler ones and didn’t allow
the decoder to interrogate different parts of the input during the
decoding process. But encoding the input as a set of vectors equal
in length to the input sequence makes it possible for the decoder
to selectively attend to the portion of the input sequence relevant
at each time point of the decoding. Again, as in interpretations
of attention in the brain, attention in artificial systems is helpful
as a way to flexibly wield limited resources. The decoder can’t
reasonably be conditioned on the entirety of the input so at some
point a bottleneck must be introduced. In the system without
attention, the fixed-length encoding vector was a bottleneck.
When an attention mechanism is added, the encoding can be
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FIGURE 3 | Attention for neural machine translation. The to-be-translated sentence is encoded to a series of vectors (v) via a recurrent neural network. The attention

mechanism (φ) uses the hidden state of the decoder (h) and these vectors to determine how the encoded vectors should be combined to produce a context vector

(c), which influences the next hidden state of the decoder and thus the next word in the translated sentence.

larger because the bottleneck (in the form of the context vector)
will be produced dynamically as the decoder determines which
part of the input to attend to.

The motivation for adding such attention mechanisms to
artificial systems is of course to improve their performance.
But another claimed benefit of attention is interpretability. By
identifying on which portions of the input attention is placed
(that is, which αi values are high) during the decoding process,
it may be possible to gain an understanding of why the decoder
produced the output that it did. However, caution should be
applied when interpreting the outputs of attention as they may
not always explain the behavior of the model as expected (Jain
and Wallace, 2019; Wiegreffe and Pinter, 2019).

In the following subsections, specific applications of this
general attention concept will be discussed, along with some that
don’t fit neatly into this framework. Further analogies to the
biology will also be highlighted.

3.1. Attention for Natural Language
Processing
As described above, attention mechanisms have frequently been
added to models charged with processing sequences. Natural
language processing (NLP) is one of the most common areas of
application for sequence modeling. And, though it was not the
original domain of attention in machine learning—nor does it
have the most in common with biology—NLP is also one of the
most common areas of application for attention (Galassi et al.,
2019).

An early application of the this form of attention in artificial
neural networks was to the task of translation (Bahdanau et al.,
2014) (Figure 3). In this work, a recurrent neural network

encodes the input sentence as a set of “annotation” vectors, one
for each word in the sentence. The output, a sentence in the
target language, is generated one word at a time by a recurrent
neural network. The probability of each generated word is a
function of the previously generated word, the hidden state of the
recurrent neural network and a context vector generated by the
attention mechanism. Here, the attention mechanism is a small
feedforward neural network that takes in the hidden state of the
output network as well as the current annotation vector to create
the weighting over all annotation vectors.

Blending information from all the words in the sentence
this way allows the network to pull from earlier or later parts
when generating an output word. This can be especially useful
for translating between languages with different standard word
orders. By visualizing the locations in the input sentence to which
attentionwas applied the authors observed attention helping with
this problem.

Since this initial application, many variants of attention

networks for language translation have been developed. In Firat
et al. (2016), the attention mechanism was adapted so it could

be used to translate between multiple pairs of languages rather
than just one. In Luong et al. (2015), the authors explore
different structures of attention to determine if the ability to
access all input words at once is necessary. And in Cheng et al.
(2016), attention mechanisms were added to the recurrent neural
networks that perform the sentence encoding and decoding in
order to more flexibly create sentence representations.

In 2017, the influential “Attention is All You Need” paper
utilized a very different style of architecture for machine
translation (Vaswani et al., 2017). This model doesn’t have any
recurrence, making it simpler to train. Instead, words in the
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sentence are encoded in parallel and these encodings generate
key and query representations that are combined to create
attention weightings. These weightings scale the word encodings
themselves to create the next layer in the model, a process
known as “self-attention.” This process repeats, and eventually
interacts with the autoregressive decoder which also has attention
mechanisms that allow it to flexibly focus on the encoded input
(as in the standard form of attention) and on the previously
generated output. The Transformer—the name given to this new
attention architecture—outperformed many previous models
and quickly became the standard for machine translation as well
as other tasks (Devlin et al., 2018).

Interestingly, self-attention has less in common with
biological attention than the recurrent attention models
originally used for machine translation. First, it reduces the role
of recurrence and dynamics, whereas the brain necessarily relies
on recurrence in sequential processing tasks, including language
processing and attentional selection. Second, self-attention
provides a form of horizontal interaction between words—which
allows for words in the encoded sentence to be processed in the
context of those around them—but this mechanism does not
include an obvious top-down component driven by the needs
of the decoder. In fact, self-attention has been shown under
certain circumstances to simply implement a convolution, a
standard feedforward computation frequently used in image
processing (Andreoli, 2019; Cordonnier et al., 2019). In this
way, self-attention is more about creating a good encoding than
performing a task-specific attention-like selection based on
limited resources. In the context of a temporal task, its closest
analogue in psychology may be priming because priming alters
the encoding of subsequent stimuli based on those that came
before. It is of course not the direct goal of machine learning
engineers to replicate the brain, but rather to create networks that
can be easily trained to perform well on tasks. These different
constraints mean that even large advances in machine learning
do not necessarily create more brain-like models.

While the study of attention in human language processing
is not as large as other areas of neuroscience research, some work
has been done to track eyemovements while reading (Myachykov
and Posner, 2005). They find that people will look back at
previous sections of text in order to clarify what they are currently
reading, particularly in the context of finding the antecedent of
a pronoun. Such shifts in overt attention indicate what previous
information is most relevant for the current processing demands.

3.2. Attention for Visual Tasks
As in neuroscience and psychology, a large portion of studies in
machine learning are done on visual tasks. One of the original
attention-inspired tools of computer vision is the saliency map,
which identifies which regions in an image are most salient
based on a set of low-level visual features such as edges,
color, or depth and how they differ from their surround (Itti
and Koch, 2001). In this way, saliency maps indicate which
regions would be captured by “bottom-up” attention in humans
and animals. Computer scientists have used saliency maps as
part of their image processing pipeline to identify regions for
further processing.

In more recent years, computer vision models have been
dominated by deep learning. And since their success in the 2012
ImageNet Challenge (Russakovsky et al., 2015), convolutional
neural networks have become the default architecture for visual
tasks in machine learning.

The architecture of convolutional neural networks is loosely
based on the mammalian visual system (Lindsay, 2020). At each
layer, a bank of filters is applied to the activity of the layer below
(in the first layer this is the image). This creates a H × W × C
tensor of neural activity with the number of channels, C equal
to the number of filters applied and H and W representing the
height and width of the 2-D feature maps that result from the
application of a filter.

Attention in convolutional neural networks has been
used to enhance performance on a variety of tasks including
classification, segmentation, and image-inspired natural
language processing. Also, as in the neuroscience literature,
these attentional processes can be divided into spatial and
feature-based attention.

3.2.1. Spatial Attention
Building off of the structures used for attention in NLP tasks,
visual attention has been applied to image captioning. In Xu
et al. (2015), the encoding model is a convolutional neural
network. The attention mechanism works over the activity at
the fourth convolutional layer. As each word of the caption is
generated, a different pattern of weighting across spatial locations
of the image representation is created. In this way, attention for
caption generation replaces the set of encoded word vectors in a
translation task with a set of encoded image locations. Visualizing
the locations with high weights, the model appears to attend to
the object most relevant to the current word being generated for
the caption.

This style of attention is referred to as “soft” because it
produces a weighted combination of the visual features over
spatial locations (Figure 4B). “Hard” attention is an alternative
form that chooses a single spatial location to be passed into
the decoder at the expense of all others (Figure 4A). In Xu
et al. (2015), to decide which location should receive this
hard attention, the attention weights generated for each spatial
location were treated as probabilities. One location is chosen
according to these probabilities. Adding this stochastic element
to the network makes training more difficult, yet it was found to
perform somewhat better than soft attention.

A 2014 study used reinforcement learning to train a hard
attention network to perform object recognition in challenging
conditions (Mnih et al., 2014). The core of this model is a
recurrent neural network that both keeps track of information
taken in over multiple “glimpses” made by the network and
outputs the location of the next glimpse. For each glimpse, the
network receives a fovea-like input (central areas are represented
with high resolution and peripheral with lower) from a small
patch of the image. The network has to integrate the information
gained from these glimpses to find and classify the object
in the image. This is similar to the hard attention described
above, except the selection of a location here determines which
part of the image is sampled next (whereas in the case above
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FIGURE 4 | Hard vs. soft visual attention in artificial neural networks. (A) In hard attention, the network only gets input from a small portion of the whole image. This

portion is iteratively chosen by the network through an attention selection mechanism. If the input is foveated, the network can use the lower resolution periphery to

guide this selection. (B) Feature maps in convolutional neural networks are 2-D grids of activation created by the application of a filter to the layer below. In soft spatial

attention, different locations on these grids are weighted differently. In soft feature attention, different feature maps are weighted differently.

it determined which of the already-processed image locations
would be passed to the decoder). With the use of these glimpses,
the network is not required to process all of the image, saving
computational resources. It can also help when multiple objects
are present in the image and the network must classify each
(Ba et al., 2014). Recent work has shown that adding a pre-
training step enhances the performance of hard attention applied
to complex images (Elsayed et al., 2019).

In many ways, the correspondence between biological and
artificial attention is strongest when it comes to visual spatial
attention. For example, this form of hard attention—where
different locations of the image are sequentially-sampled for
further processing—replicates the process of saccading and is
therefore akin to overt visual attention in the neuroscience and
psychology literature. Insofar as soft attention dynamically re-
weights different regions of the network’s representation of the
image without any change in the input to the network, it is akin to
covert spatial attention. Also, as the mode of application for soft
attention involves multiplicative scaling of the activity of all units
at a specific location, it replicates neural findings about covert
spatial attention.

Soft spatial attention has been used for other tasks, including
visual question and answering (Chen et al., 2015; Xu and
Saenko, 2016; Yang et al., 2016) and action recognition in videos
(Sharma et al., 2015). Hard attention has also been used for
instance segmentation (Ren and Zemel, 2017) and for fine-
grained classification when applied using different levels of image
resolution (Fu et al., 2017).

3.2.2. Feature Attention
In the case of soft spatial attention, weights are different in
different spatial locations of the image representation yet they
are the same across all feature channels at that location. That is,
the activity of units in the network representing different visual
features will all be modified the same way if they represent the
same location in image space. Feature attention makes it possible
to dynamically re-weight individual feature maps, creating a
spatially global change in feature processing.

In Stollenga et al. (2014), a convolutional neural network is
equipped with a feature-based attention mechanism. After an
image is passed through the standard feedforward architecture,
the activity of the network is passed into a policy that determines
how the different feature maps at different layers should be
weighted. This re-weighting leads to different network activity
which leads to different re-weightings. After the network has
run for several timesteps the activity at the final layer is used to
classify the object in the image. The policy that determines the
weighting values is learned through reinforcement learning, and
can be added to any pre-trained convolutional neural network.

The model in Chen et al. (2017) combines feature and
spatial attention to aid in image captioning. The activity of the
feedforward pass of the convolutional network is passed into the
attention mechanism along with the previously generated word
to create attention weightings for different channels at each layer
in the CNN. These weights are used to scale activity and then
a separate attention mechanism does the same procedure for
generating spatial weightings. Both spatial and feature attention

Frontiers in Computational Neuroscience | www.frontiersin.org 12 April 2020 | Volume 14 | Article 29

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lindsay Attention ML and Neuro

weights are generated and applied to the network at each
time point.

In themodel in De Vries et al. (2017), the content of a question
is used to control how a CNN processes an image for the task
of visual question and answering. Specifically, the activity of a
language embedding network is passed through a multi-layer
perceptron to produce the additive andmultiplicative parameters
for batch normalization of each channel in the CNN. This
procedure, termed conditional batch normalization, functions as
a form of question-dependent feature attention.

A different form of dynamic feature re-weighting appears
in “squeeze-and-excitation” networks (Hu et al., 2018). In this
architecture, the weightings applied to different channels are a
nonlinear function of the activity of the other channels at the
same layer. As with “self-attention” described above, this differs
in spirit frommore “top-down” approaches where weightings are
a function of activity later in the network and/or biased by the
needs of the output generator. Biologically speaking, this form
of interaction is most similar to horizontal connections within a
visual area, which are known to carry out computations such as
divisive normalization (Carandini and Heeger, 2012).

In the study of the biology of feature-based attention, subjects
are usually cued to attend to or search for specific visual features.
In this way, the to-be-attended features are known in advance
and relate to the specific sub-task at hand (e.g., detection of
a specific shape on a given trial of a general shape detection
task). This differs from the above instances of artificial feature
attention, wherein no external cue biases the network processing
before knowledge about the specific image is available. Rather,
the feature re-weighting is a function of the image itself and
meant to enhance the performance of the network on a constant
task (note this was also the case for the forms of artificial spatial
attention described).

The reason for using a cueing paradigm in studies of biological
attention is that it allows the experimenter to control (and thus
know) where attention is placed. Yet, it is clear that even without
explicit cueing, our brains make decisions about where to place
attention constantly; these are likely mediated by local and long-
range feedback connections to the visual system (Wyatte et al.,
2014). Therefore, while the task structure differs between the
study of biological feature attention and its use in artificial
systems, this difference may only be superficial. Essentially,
the artificial systems are using feedforward image information
to internally generate top-down attentional signals rather than
being given the top-down information in the form of a cue.

That being said, some artificial systems do allow for externally-
cued feature attention. For example setting a prior over categories
in the network in Cao et al. (2015) makes it better at localizing
the specific category. The network in Wang et al. (2014), though
not convolutional, has a means of biasing the detection of specific
object categories as well. And in Lindsay and Miller (2018),
several performance and neural aspects of biological feature
attention during a cued object detection task were replicated
using a CNN. In Luo et al. (2020), the costs and benefits of using
a form of cued attention in CNNs were explored.

As mentioned above, the use of multiplicative scaling of
activity is in line with certain findings from biological visual

attention. Furthermore, modulating entire feature maps by the
same scalar value is aligned with the finding mentioned above
that feature attention acts in a spatially global way in the
visual system.

3.3. Multi-Task Attention
Multi-task learning is a challenging topic in machine learning.
When one network is asked to perform several different tasks—
for example, a CNN that must classify objects, detect edges, and
identify salient regions—training can be difficult as the weights
needed to do each individual task may contradict each other. One
option is have a set of task-specific parameters that modulate
the activity of the shared network differently for each task.
While not always called it, this can reasonably be considered
a form of attention, as it flexibly alters the functioning of
the network.

In Maninis et al. (2019), a shared feedforward network
is trained on all of multiple tasks, while task specific skip
connections and squeeze-and-excitation blocks are trained to
modulate this activity only on their specific task. This lets the
network benefit from sharing processing that is common to all
tasks while still specializing somewhat to each.

A similar procedure was used in Rebuffi et al. (2017) to
create a network that performs classification onmultiple different
image domains. There, the domain could be identified from the
input image making it possible to select the set of task-specific
parameters automatically at run-time.

In Zhao et al. (2018), the same image can be passed into
the network and be classified along different dimensions (e.g.
whether the person in the picture is smiling or not, young or old).
Task-specific re-weighting of feature channels is used to execute
these different classifications.

The model in Strezoski et al. (2019) uses what could
be interpreted as a form of hard feature attention to route
information differently in different tasks. Binary masks over
feature channels are chosen randomly for each task. These masks
are applied in a task-specific way during training on all tasks
and at run-time. Note that in this network no task-specific
attentional parameters are learned, as these masks are pre-
determined and fixed during training. Instead, the network learns
to use the different resulting information pathways to perform
different tasks.

In a recent work, the notion of task-specific parameters was
done away with entirely (Levi and Ullman, 2020). Instead, the
activations of a feedforward CNN are combined with a task
input and passed through a second CNN to generate a full set
of modulatory weights. These weights then scale the activity of
the original network in a unit-specific way (thus implementing
both spatial and feature attention). The result is a single set
of feedforward weights capable of flexibly engaging in multiple
visual tasks.

When the same input is processed differently according to
many different tasks, these networks are essentially implementing
a form of within-modality task switching that relies on feature
attention. In this way, it is perhaps most similar to the Stroop test
described previously.
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3.4. Attention to Memory
Deep neural networks tend not to have explicit memory, and
therefore attention to memory is not studied. Neural Turing
Machines, however, are a hybrid neural architecture that includes
external memory stores (Graves et al., 2014). The network,
through training, learns how to effectively interact with these
stores to perform tasks such as sorting and repetition of stored
sequences. Facilitating this interaction is a form of attention.
Memories are stored as a set of vectors. To retrieve information
from this store, the network generates a weight for each vector
and calculates a weighted sum of the memories. To determine
these weights, a recurrent neural network (which receives
external and task-relevant input) outputs a vector and memories
are weighted in accordance to their similarity to this vector. Thus,
at each point in time, the network is able to access context-
relevant memories.

As described previously, how the brain chooses what
memories to attend to and then attends to them is not entirely
clear. The use of a similarity metric in this model means
that memories are retrieved based on their overlap with a
produced activity vector, similar to associative memory models
in the neuroscience literature. This offers a mechanism for
the latter question—that is, how attention to memory could
be implemented in the brain. The activity vector that the
model produces controls what memories get attended and the
relationship with biology is less clear here.

4. IDEAS FOR FUTURE INTERACTION
BETWEEN ARTIFICIAL AND BIOLOGICAL
ATTENTION

As has been shown, some amount of inspiration from biology
has already led to several instances of attention in artificial
neural networks (summarized in Figure 5). While the addition
of such attention mechanisms has led to appreciable increases in
performance in these systems, there are clearly still many ways
in which they fall short and additional opportunities for further
inspiration exist. In the near term, this inspiration will likely be
in the form of incremental improvements to specialized artificial
systems as exist now. However, the true promise of brain-inspired
AI should deliver a more integrated, multiple-purpose agent that
can engage flexibly in many tasks.

4.1. How to Enhance Performance
There are two components to the study of how attention works in
the brain that can be considered flip sides of the same coin. The
first is the question of how attention enhances performance in the
way that it does—that is, how do the neural changes associated
with attention make the brain better at performing tasks. The
second is how and why attention is deployed in the way that it
is—what factors lead to the selection of certain items or tasks for
attention and not others.

Neuroscientists have spent a lot of time investigating the
former question. In large part, the applicability of these findings
to artificial neural systems, however, may not be straightforward.
Multiplicative scaling of activity appears in both biological and

artificial systems and is an effective means of implementing
attention. However, many of the observed effects of attention
in the brain make sense mainly as a means of increasing the
signal carried by noisy, spiking neurons. This includes increased
synchronization across neurons and decreased firing variability.
Without analogs for these changes in deep neural networks, it
is hard to take inspiration from them. What’s more, the training
procedures for neural networks can automatically determine the
changes in activity needed to enhance performance on a well-
defined task and so lessons from biological changes may not be
as relevant.

On the other hand, the observation that attention can
impact spiking-specific features such as action potential height,
burstiness, and precise spike times may indicate the usefulness of
spiking networks. Specifically, spiking models offer more degrees
of freedom for attention to control and thus allow attention to
possibly have larger and/or more nuanced impacts.

Looking at the anatomy of attention may provide usable
insights to people designing architectures for artificial systems.
For example, visual attention appears to modulate activity more
strongly in later visual areas like V4 (Noudoost et al., 2010),
whereas auditory attention can modulate activity much earlier
in the processing stream. The level at which attention should
act could thus be a relevant architectural variable. In this vein,
recent work has shown that removing self-attention from the
early layers of a Transformer model enhances its performance
on certain natural language processing tasks and also makes the
model a better predictor of human fMRI signals during language
processing (Toneva and Wehbe, 2019).

The existence of cross-modal cueing—wherein attention
cued in one sensory modality can cause attention to be
deployed to the same object or location in another modality—
indicates some amount of direct interaction between different
sensory systems. Whereas many multi-modal models in
machine learning use entirely separate processing streams
that are only combined at the end, allowing some horizontal
connections between different input streamsmay help coordinate
their processing.

Attention also interacts with the kind of adaptation that
normally occurs in sensory processing. Generally, neural network
models do not have mechanisms for adaptation—that is, neurons
have no means of reducing their activity if given the same
input for multiple time steps. Given that adaptation helps
make changes and anomalies stand out, it may be useful to
include. In a model with adaption, attention mechanisms should
work to reactivate adapted neurons if the repeated stimulus is
deemed important.

Finally, some forms of attention appear to act in multiple ways
on the same system. For example, visual attention is believed to
both: (1) enhance the sensitivity of visual neurons in the cortex
by modulating their activity and (2) change subcortical activity
such that sensory information is readout differently (Birman and
Gardner, 2019; Sreenivasan and Sridharan, 2019). In this way,
attention uses two different mechanisms, in different parts of the
brain, to create its effect. Allowing attention tomodulate multiple
components of a model architecture in complementary ways may
allow it to have more robust and effective impacts.
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FIGURE 5 | An incomplete summary of the different types of attention studied in neuroscience/psychology and machine learning and how they relate. On the left are

divisions of attention studied biologically, on the right are those developed for artificial intelligence and machine learning. Topics at the same horizontal location are to

some extent analogous, with the distance between them indicating how close the analogy is. Forms of visual attention, for example, have the most overlap and are

the most directly comparable across biology and machine learning. Some forms of attention, such as overall arousal, don’t have an obvious artificial analogue.

4.2. How to Deploy Attention
The question of how to deploy attention is likely the more
relevant challenge for producing complex and integrated artificial
intelligence. Choosing the relevant information in a stream of
incoming stimuli, picking the best task to engage in, or deciding
whether to engage in anything at all requires that an agent have
an integrative understanding of its state, environment, and needs.

The most direct way to take influence from biological
attention is to mimic it directly. Scanpath models, for example,
have existed in the study of saliency for many years. They attempt
to predict the series of fixations that humans make while viewing
images (Borji and Itti, 2019). A more direct approach to training
attention was used in Linsley et al. (2018). Here, a large dataset
of human top-down attention was collected by having subjects
label the regions of images most relevant for object classification.
The task-specific saliency maps created through this method
were used to train attention in a deep convolutional neural
network whosemain task was object recognition. They found that
influencing the activity of intermediate layers with this method
could increase performance. Another way of learning a teacher’s
saliency map was given in Zagoruyko and Komodakis (2016).

Combined training on tasks and neural data collected from
human visual areas has also helped the performance of CNNs
(Fong et al., 2018). Using neural data collected during attention
tasks in particular could help train attention models. Such
transfer could also be done for other tasks. For example, tracking
eye movements during reading could inform NLP models; thus
far, eye movements have been used to help train a part-of-speech

tagging model (Barrett et al., 2016). Interestingly, infants may
learn from attending to what adults around them attend to and
the coordination of attention more broadly across agents may be
very helpful in a social species. Therefore, the attention of others
should influence how attention is guided. Attempts to coordinate
joint attention will need to be integrated into attention systems
(Kaplan and Hafner, 2006; Klein et al., 2009).

Interestingly, infants may learn from attending to what adults
around them attend to and the coordination of attention more
broadly across agents may be very helpful in a social species.
Therefore, the attention of others should influence how attention
is guided. Attempts to coordinate joint attention will need to
be integrated into attention systems (Kaplan and Hafner, 2006;
Klein et al., 2009). Activities would likely need to flexibly decide
which of several possible goals should be achieved at any time and
therefore where attention should be placed. This problem clearly
interacts closely with issues around reinforcement learning—
particularly hierarchical reinforcement learning which involves
the choosing of subtasks—as such decisions must be based
on expected positive or negative outcomes. Indeed, there is a
close relationship between attention and reward as previously-
rewarded stimuli attract attention even in contexts where they
no longer provide reward (Camara et al., 2013). A better
understanding of how humans choose which tasks to engage in
and when should allow human behavior to inform the design of
a multi-task AI.

To this end, the theory put forth in Shenhav et al. (2013),
which says that allocation of the brain’s limited ability to control
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different processes is based on the expected value of that control,
may be of use. In this framework, the dorsal anterior cingulate
cortex is responsible for integrating diverse information—
including the cognitive costs of control—in order to calculate the
expected value of control and thus direct processes like attention.
Another approach for understanding human executive control
in complex tasks is inverse reinforcement learning. This method
was recently applied to a dataset of eye movements during visual
search in order to determine the reward functions and policies
used by humans (Zelinsky et al., 2020).

An additional factor that drives biological attention but
is perhaps underrepresented in artificial attention systems is
curiosity (Gottlieb et al., 2013). In biology, novel, confusing, and
surprising stimuli can grab attention, and inferotemporal and
perirhinal cortex are believed to signal novel visual situations
via an adaptation mechanism that reduces responses to familiar
inputs. Reinforcement learning algorithms that include novelty
as part of the estimate of the value of a state can encourage this
kind of exploration (Jaegle et al., 2019). How exactly to calculate
surprise or novelty in different circumstances is not always clear,
however. Previous work on biological attention has understood
attention selection in Bayesian terms of surprise or information
gathering and these framings may be useful for artificial systems
(Itti and Baldi, 2006 ; Mirza et al., 2019).

A final issue in the selection of attention is how conflicts
are resolved. Given the brain’s multiple forms of attention—
arousal, bottom-up, top-down, etc.—how do conflicts regarding
the appropriate locus of attention get settled? Looking at the
visual system, it seems that the local circuits that these multiple
systems target are burdened with this task. These circuits receive
neuromodulatory input along with top-down signals which they
must integrate with the bottom-up input driving their activity.
Horizontal connections mediate this competition, potentially
using winner-take-all mechanisms. This can be mimicked in the
architecture of artificial systems.

4.3. Attention and Learning
Attention, through its role in determining what enters memory,
guides learning. Most artificial systems with attention include
the attention mechanism throughout training. In this way, the
attention mechanism is trained along with the base architecture;
however, with the exception of the Neural Turing Machine,
the model does not continue learning once the functioning
attention system is in place. Therefore, the ability of attention to
control learning and memory is still not explicitly considered in
these systems.

Attention could help make efficient use of data by directing
learning to the relevant components and relationships in the
input. For example, saliency maps have been used as part of the
pre-processing for various computer vision tasks (Lee et al., 2004;
Wolf et al., 2007; Bai and Wang, 2014). Focusing subsequent
processing only on regions that are intrinsically salient can
prevent wasteful processing on irrelevant regions and, in the
context of network training, could also prevent overfitting to
these regions. Using saliency maps in this way, however, requires
a definition of saliency that works for the problem at hand.
Using the features of images that capture bottom-up attention in

humans has worked for some computer vision problems; looking
at human data in other modalities may be useful as well.

In a related vein, studies on infants suggest that they have
priors that guide their attention to relevant stimuli such as faces.
Using such priors could bootstrap learning both of how to process
important stimuli and how to better attend to their relevant
features (Johnson, 2001).

In addition to deciding which portions of the data to
process, top-down attention can also be thought of as selecting
which elements of the network should be most engaged during
processing. Insofar as learning will occur most strongly in the
parts of the network that are most engaged, this is another
means by which attention guides learning. Constraining the
number of parameters that will be updated in response to any
given input is an effective form of regularization, as can be
seen in the use of dropout and batch normalization. Attention—
rather than randomly choosing which units to engage and
disengage—is constrained to choose units that will also help
performance on this task. It is therefore a more task-specific form
of regularization.

In this way, attention may be particularly helpful for continual
learning where the aim is to update a network to perform better
on a specific task while not disrupting performance on the
other tasks the network has already learned to do. A related
concept, conditional computation, has recently been applied to
the problem of continual learning (Lin et al., 2019). In conditional
computation, the parameters of a network are a function of the
current input (it can thus be thought of as an extreme form of the
type of modulation done by attention); optimizing the network
for efficient continual learning involves controlling the amount
of interference between different inputs. More generically, it may
be helpful to think of attention, in part, as a means of guarding
against undesirable synaptic changes.

Attention and learning also work in a loop. Specifically,
attention guides what is learned about the world and internal
world models are used to guide attention. This inter-dependency
has recently been formalized in terms of a reinforcement learning
framework that also incorporates cognitive Bayesian inference
models that have succeeded in explaining human learning
and decision making (Radulescu et al., 2019). Interconnections
between basal ganglia and prefrontal cortex are believed to
support the interplay between reinforcement learning and
attention selection.

At a more abstract level, the mere presence of attention in
the brain’s architecture can influence representation learning.
The global workspace theory of consciousness says that at any
moment a limited amount of information selected from the
brain’s activity can enter working memory and be available
for further joint processing (Baars, 2005). Inspired by this, the
‘consciousness prior’ in machine learning emphasizes a neural
network architecture with a low-dimensional representation that
arises from attention applied to an underlying high-dimensional
state representation (Bengio, 2017). This low-D representation
should efficiently represent the world at an abstract level such that
it can be used to summarize and make predictions about future
states. The presence of this attention-mediated bottleneck has a
trickle-down effect that encourages disentangled representations
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at all levels such that they can be flexibly combined to guide
actions and make predictions.

Conscious attention is required for the learning of many
complex skills such as playing a musical instrument. However
once fully learned, these processes can become automatic,
possibly freeing attention up to focus on other things (Treisman
et al., 1992). The mechanisms of this transformation are not
entirely clear but insofar as they seem to rely on moving the
burden of the task to different, possibly lower/more reflexive
brain areas, it may benefit artificial systems to have multiple
redundant pathways that can be engaged differently by attention
(Poldrack et al., 2005).

4.4. Limitations of Attention: Bugs or
Features?
Biological attention does not work perfectly. As mentioned
above, performance can suffer when switching between different
kinds of attention, arousal levels need be just right in order
to reach peak performance, and top-down attention can be
interrupted by irrelevant but salient stimuli. A question when
transferring attention to artificial systems is are these limitations
bugs to be avoided or features to be incorporated?

Distractability, in general, seems like a feature of attention
rather than a bug. Even when attempting to focus on a task it
is beneficial to still be aware of—and distractable by—potentially
life-threatening changes in the environment. The problem comes
only when an agent is overly distractable to inputs that do not
pose a threat or provide relevant information. Thus, artificial
systems should balance the strength of top down attention
such that it still allows for the processing of unexpected but
informative stimuli. For example, attentional blink refers to the
phenomenon wherein a subject misses a second target in a stream
of targets and distractors if it occurs quickly after a first target
(Shapiro et al., 1997). While this makes performance worse, it
may be necessary to give the brain time to process and act on
the first target. In this way, it prevents distractability to ensure
follow through.

Any agent, artificial or biological, will have some limitations
on its energy resources. Therefore, prudent decisions about

when to engage in the world versus enter an energy-saving

state such as sleep will always be of relevance. For many
animals sleep occurs according to a schedule but, as was
discussed, it can also be delayed or interrupted by attention-
demanding situations. The decision about when to enter a
sleep state must thus be made based on a cost-benefit analysis
of what can be gained by staying awake. Because sleep is
also known to consolidate memories and perform other vital
tasks beyond just energy conservation, this decision may be a
complex one. Artificial systems will need to have an integrative
understanding of their current state and future demands to make
this decision.

5. CONCLUSIONS

Attention is a large and complex topic that sprawls across
psychology, neuroscience, and artificial intelligence. While many
of the topics studied under this name are non-overlapping
in their mechanisms, they do share a core theme of the
flexible control of limited resources. General findings about
flexibility and wise uses of resources can help guide the
development of AI, as can specific findings about the best
means of deploying attention to specific sensory modalities
or tasks.
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