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Abstract. Classification and differentiation of small pathological ob-
jects may greatly vary among human raters due to differences in train-
ing, expertise and their consistency over time. In a radiological setting,
objects commonly have high within-class appearance variability whilst
sharing certain characteristics across different classes, making their dis-
tinction even more difficult. As an example, markers of cerebral small
vessel disease, such as enlarged perivascular spaces (EPVS) and lacunes,
can be very varied in their appearance while exhibiting high inter-class
similarity, making this task highly challenging for human raters. In this
work, we investigate joint models of individual rater behaviour and multi-
rater consensus in a deep learning setting, and apply it to a brain lesion
object-detection task. Results show that jointly modelling both individ-
ual and consensus estimates leads to significant improvements in perfor-
mance when compared to directly predicting consensus labels, while also
allowing the characterization of human-rater consistency.
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1 Introduction

Detection and differentiation between types of pathological objects is a core
problem of medical image analysis, generally requiring costly expert labelling.
Disagreement between raters can be a result of differences in radiological training
schools, rater competence, and sample appearance, among others. This problem
is often exacerbated by changes in rater performance caused by retraining or
observational bias.

Due to the variability in shape and intensity signatures observed across the
full spectrum of lesions, even the most trained raters can present a high inter-
rater variability. In such cases, finding a majority voting consensus classification
is the most common strategy.
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When classifying objects into multiple classes, it is often more complex to
separate all object types directly, than it is to first detect all pathological objects
followed by their classification, as some class decision boundaries are easier than
others. This sequential detection/classification problem is, for instance, present
in the context of age-related vascular changes in which macroscopic alterations
can be observed on structural MR images. Among these observed changes, small
elements such as enlarged perivascular spaces (EPVS) and lacunes are observed
on similar image sequences [9]. EPVS, often associated with concomitant neu-
ropathology and deleterious clinical outcome [5], appear as fluid filled structures
with a linear shape. However, because of their limited size (<10mm3) and highly
variable appearance, EPVS instances are often confused with other concomitant
lesions, such as lacunes. Because of this intrinsic uncertainty, the labelling of
these small vascular lesions can be seen as a four-class problem, with classes
‘EPVS’, ‘Lacune’, ‘Undetermined’, and ‘Nothing’. This classification problem
suffers from two concomitant issues: a) class imbalance with a 100:1 ratio be-
tween EPVS and lacunes, and b) noisy labelling as a result of rater disagreement.
Consensus labels are also problematic in this setting, as rater behaviour is non-
random and samples are not truly independent.

In this work, we build on a previously described 3-dimensional multirater Re-
gional Convolutional Neural Network (RCNN) model, used here as a lacune and
EPVS object detection system. However, rather than only learning the consensus
value or a single rater, we propose to jointly learn the consensus majority voting,
the associated probability for each class, and each individual rater decision, so
as to appropriately model highly debatable label predictions.

2 Related work and problem specificities

Many of the recent publications on classification with noisy labels assume inde-
pendence between samples and noise, and a constant mislabelling probability [4],
which does not hold in the case of difficulty induced variability and rater shift.
Strategies for classification in the presence of noise include sample re-weighting
(importance reweighting) or curriculum-based sample selection [1, 3]. Other ap-
proaches, normally classed as label/classifier fusion, disentangle rater and label
uncertainty either by iteratively favouring raters that agree with the consen-
sus [10], or by reducing sample correlation to construct a balanced classifier [2].
Lastly, the relationships between rater behaviour can also be learned through
their confusion matrices [7]. Notably, most of these works focus on the problem
of classification, where balanced sampling strategies can be employed, something
that is not possible in a joint detection/classification model. In this work, we ar-
gue that combining majority voting predictions while learning individual rater
behaviour allows for a better model of rater consistency and sample uncertainty.
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Fig. 1. Detection and multirater classification architecture framework. In this work
focus is put on the classification branch (red dashed) further detailed on the second
row along with the description of the different training regimes.

3 Methods

3.1 Network architecture

The multirater 3D RCNN framework presented in [6] is composed of four stages:
1) a backbone network learning the features using as target a distance map to the
objects of interest; 2) a region proposal network (RPN) regressing the location
of candidate centres of mass of target objects together with their spatial scale; 3)
patches from the RPN representation are fed into a two layer network in order
to regress the average object classification and object shape; 4) a multibranch
fully connected layer is used to model the behaviour of each rater. (see Fig. 1.)

Shape encoding Instead of modelling each object by its encompassing cuboid [6],
the shape of each candidate object is encoded as a four-parameter simplified
encompassing ellipsoid, namely using the largest eigenvalue, the two first com-
ponents of the associated eigenvector and the value of fractional anisotropy of
the associated tensor.

3.2 Multi-rater classification

The classification of the candidate objects is defined as a four-class problem,
i.e. EPVS, Lacune, Undetermined, Nothing. From a human-rater point of view,
the classification can be seen in two different ways: a multi-rater consensus, here
modeled as the probability of a class to be chosen among the six raters computed
as the average rating, and a rater-specific categorical label.

Consensus average classification When modelling the consensus/average rater,
the training can be performed using either a hard or a probabilistic classification,
or a combination of both. Note, here, the hard classification corresponds simply
to the majority voting categorical consensus, while the continuous probability
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encodes the uncertainty over the final classification. As a consequence, a cross-
entropy loss is used to learn the consensus, while a root mean square error loss
is used over the resulting class probabilities.

Independent rater modelling In the last stage of classification, a cross-entropy
loss is used to learn each rater label independently. Inter-rater behaviour can be
enforced through a variability loss (Lvar) penalizing the difference between the

effective and predicted probabilistic confusion matrices. Noting C (resp. Ĉ) the

observed (resp. predicted) confusion matrix, Lvar =
∑

(i,j) |Ci,j − Ĉi,j |
Ideally, we would also like to have consistency between the predicted group

consensus and the consensus of individual prediction. In order to achieve this,
the following consistency loss Lcons is introduced:

Lcons =

√√√√ K∑
k=1

p̂k −
1

R

R∑
r=1

p̂kr

with p̂k denoting the predicted consensus probability, and p̂kr denoting the pre-
dicted probability given by rater r for class k.

Compensating for inter-rater variability and enhancing individual rater char-
acteristics The EPVS labelling problem is highly variable in terms of rater
agreement; sometimes all raters agree with each other, while other times raters
converge to completely different decisions. As a consequence, when predicting
the group consensus, we have enforced consensus learning from samples of high
agreement. To this effect, sample importances were downweighted according to
their observed variability, here expressed as var = 1−

∑K
k=1 p

2
k, where pk is the

observed classification probability for class k. The sample is then weighted by
exp (−var). Conversely, when modelling individual raters, and in order to learn
rater-specific behaviours, we promote samples for which the individual rater
disagrees with the consensus. This is achieved by weighting each rater-sample
combination by the inverse of its contribution to the consensus (1/pkr ), where
pkr is the observed probability for the sample to be classified as k if rater r labels
it as k.

4 Data and experiments

4.1 Data

16 subjects that were part of a large tri-ethnic cohort investigating the rela-
tionship between cardiovascular risk factors and brain health [8] were chosen
due to their elevated vascular burden. 4147 EPVS and lacunes were manually
segmented using jointly 1mm3 structural MR sequences (T1, T2, FLAIR) using
ITKSnap 9. Individual segmented lesions, defined using connected components,

9 http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage

http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage
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Fig. 2. Comparison of EPVS probability distributions quantitatively evaluated in
terms of KLD and absolute error (mean sd).

were then classified by six trained raters using an in house dedicated viewer. Only
objects bigger than 5 voxels were used in this study, resulting in a database of
2202 elements. 14 subjects were used for training and two subjects for testing.
The test set contained 184 objects that were all classified at least by one rater
as EPVS. Inter-rater accuracy ranged from 0.47 to 0.92 with a mean of 0.72.

4.2 Training modes

In order to investigate the model’s ability to handle label noise, different training
regimes were adopted (see Fig. 1): 1) Training only the shape + consensus clas-
sification (Consensus only); 2) Staged training of the shape encoding followed by
the independent rater multihead (Multi Only); 3) Staged training of shape and
classification, followed by training the independent rater multihead (Disjoint);
4) Staged training of ‘shape and consensus only’, followed by ‘multihead only‘
finishing by ‘shape, consensus and multihead‘ with consistency loss (Consensus
+ Multi); 5) Training as in 4, with an extra loss over the confusion matrix Lvar.
All models were trained for 10000 iterations with a learning rate of 10−4 and
using the Adam optimiser.

5 Experiments and Results

5.1 Consensus probability

As a first experiment, we investigate the ability of each training mode to ap-
propriately predict the distribution of EPVS classification probabilities. Fig-
ure 2 presents the joint histograms of the target and predicted distributions.
The resulting Kullback-Leibler Divergence (KLD) over the distributions are dis-
played below along with the mean absolute error in prediction. Results show
that all methods explicitly learning the average consensus are able to repro-
duce it well. The ability of the different models to reproduce individual rater
behaviour was evaluated by comparing predicted inter-rater agreement with ob-
served inter-rater agreement. Figure 3 presents the pairwise agreement results
between observations and between predictions, and measures of correlation and
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Fig. 3. Pairwise agreement scores between observed rater labels compared to the agree-
ment scores between categorized individual rater predictions for each training mode.
The left most element is the target inter-rater behaviour. Pearson correlation coefficient
and mean absolute difference against the target inter-rater behaviour are presented be-
low.

absolute difference between agreement matrices. One can note that, as expected,
no inter-rater behaviour is learnt when adopting the ‘Consensus only’ frame-
work. Furthermore, we observe that the inter-rater agreement learnt with both
the ‘Multi only’ and the ‘Disjoint’ model is exacerbated compared to the truth.
This rater behaviour exacerbation fades away when enforcing consistency be-
tween multi-rater consensus predictions and the consensus of individual rater
predictions (i.e. ‘Consensus+Multi’ model).

5.2 Consistency between consensus and multirater average

This experiment aims to test the efficacy of the loss function introduced in
Section 3.2 with the aim of promoting the agreement between the multi-rater
consensus labelling and the consensus of individual predictions. Figure 4 left
presents the boxplots of the difference between the average of the predicted

Consensus 
 only

Multi 
only

Disjoint Consensus
 + Multi

Consensus 
+ Multi Var

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

C
on

si
st

en
cy

 e
rr

or

Median
IQR

0.024
[0.019;0.034]

0.062
[0.047;0.101]

0.036
[0.030;0.043]

0.000
[0.000;0.000]

0.005
[0.002;0.008] r0 r1 r2 r3 r4 r5 probE

Consensus
 only

Multi
 only

Disjoint

Consensus
 + Multi

Consensus 
+Multi Var

Spearman correlation between predicted probability
 and measured precision

0.15

0.20

0.25

0.30

0.35
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for the consensus of raters.
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individual raters and the consensus prediction. Numerical results of median and
interquartile range are presented below the graph. Training regimes that promote
consistency between the consensus prediction and the average of independent
predictions both reach, as expected, a very high level of consistency. Conversely,
simpler models only optimising for independent rater predictions do not achieve
a good consensus estimation.

5.3 Variability, disagreements and individual rater quality

In this experiment, we would like to assess if the probabilistic predictions of
each individual rater provide a good proxy for sample uncertainty (defined as
the variability of individual ratings). To this end, we estimate the Spearman
correlation coefficient between each individual prediction and the measured pre-
cision defined as 1/var, displayed on Figure 4 (right). As already noted from
Figure 3, no rater-specific information can be modeled using only the consensus.
Individualized rater predictions were found to be strongly associated with overall
variability, primarily when consistency losses were applied.

5.4 Labelling introspection

We used the best overall model (‘Consensus+Multi Var’) to study the distri-
bution of probabilistic predictions for objects whose rater classification was in
agreement with the consensus versus objects where there was rater disagree-
ment, plotted in Figure 5. High prediction probabilities for individual raters
were found to be a good surrogate marker rater agreement and rater consistency
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over training samples. Results suggest that rater 3, and to a lesser degree rater
2, displayed inconsistent labelling behaviour. Interestingly, when asked about
their rating practice, both raters 2 and 3 indicated having undergone clinical
retraining, possibly explaining the observed shift in their labelling. Retraining
the model without these two raters resulted in an improvement in the consen-
sus prediction, with a KLD reduced to 0.202 and a mean absolute error over
the predicted probability of 0.15. This experiment suggests that one can use
the proposed framework to identify not only inter-rater disagreement but also
intra-rater inconsistency, and potentially correct for it.

6 Discussion and conclusion

In this work, we investigated different training regimes in presence of noisy la-
belling with the aim of predicting both rater consensus and individualized pre-
dictions. We found that promoting agreement between predicted multi-rater con-
sensus and the consensus of individualized predictions can provide good model
accuracy together with the ability to introspect rater behaviour, thus not only
allowing the identification of noisy labels/subjects but also assessing rater skills
so as to prevent bias in large scale studies and enforce appropriate radiologi-
cal training. Future work will explore the use of this information in an active
learning setting and develop the accuracy of the multi-rater model estimates.
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