
Modeling Mutual Influence
in Multi-Agent Reinforcement Learning

Ying Wen

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

August 26, 2020

2

I, Ying Wen, confirm that the work presented in this thesis is my own. Where in-

formation has been derived from other sources, I confirm that this has been indicated

in the work.

Abstract

In multi-agent systems (MAS), agents rarely act in isolation but tend to achieve

their goals through interactions with other agents. To be able to achieve their

ultimate goals, individual agents should actively evaluate the impacts on themselves

of other agents’ behaviors before they decide which actions to take. The impacts

are reciprocal, and it is of great interest to model the mutual influence of agent’s

impacts with one another when they are observing the environment or taking actions

in the environment. In this thesis, assuming that the agents are aware of each other’s

existence and their potential impact on themselves, I develop novel multi-agent

reinforcement learning (MARL) methods that can measure the mutual influence

between agents to shape learning. The first part of this thesis outlines the framework

of recursive reasoning in deep multi-agent reinforcement learning. I hypothesize that

it is beneficial for each agent to consider how other agents react to their behavior.

I start from Probabilistic Recursive Reasoning (PR2) using level-1 reasoning and

adopt variational Bayes methods to approximate the opponents’ conditional policies.

Each agent shapes the individual Q-value by marginalizing the conditional policies in

the joint Q-value and finding the best response to improving their policies. I further

extend PR2 to Generalized Recursive Reasoning (GR2) with different hierarchical

levels of rationality. GR2 enables agents to possess various levels of thinking ability,

thereby allowing higher-level agents to best respond to less sophisticated learners.

The first part of the thesis shows that eliminating the joint Q-value to an individual

Q-value via explicitly recursive reasoning would benefit the learning. In the second

part of the thesis, in reverse, I measure the mutual influence by approximating the

joint Q-value based on the individual Q-values. I establish Q-DPP, an extension of

Abstract 4

the Determinantal Point Process (DPP) with partition constraints, and apply it to

multi-agent learning as a function approximator for the centralized value function.

An attractive property of using Q-DPP is that when it reaches the optimum value, it

can offer a natural factorization of the centralized value function, representing both

quality (maximizing reward) and diversity (different behaviors). In the third part of

the thesis, I depart from the action-level mutual influence and build a policy-space

meta-game to analyze agents’ relationship between adaptive policies. I present a

Multi-Agent Trust Region Learning (MATRL) algorithm that augments single-agent

trust region policy optimization with a weak stable fixed point approximated by the

policy-space meta-game. The algorithm aims to find a game-theoretic mechanism to

adjust the policy optimization steps that force the learning of all agents toward the

stable point.

Impact Statement

This thesis deepens the understanding of the mutual influence in multi-agent re-

inforcement learning and the proposed algorithms to model this influence to help

multi-agent learning, which has the potential to impact fields both inside and outside

academia. In the research community, this thesis draws attention to the potential ben-

efits of recursive reasoning in multi-agent learning, which may provide new insights

for modeling the bounded rationality in human-machine decision-making problems.

Furthermore, this thesis presents a new function approximator that stimulates agents’

behavior diversity in discrete tasks. This diversity is crucial in fields such as gaming

and self-driving cars, and there are potential extensions based on proposed methods

that make its application possible in more complicated scenarios. Furthermore, the

multi-agent trust region learning approach is proved to be helpful to stabilize and

boost independent learners’ training. In industry, this work also has many potential

applications. For example, robotics equipped with a recursive reasoning ability can

assist humans in more user-friendly ways. In addition, many real-world applications

require fidelity simulations to train agents. For example, generating realistic traffic

flow is an essential step in self-driving car simulation. The existing methods used

to generate traffic flow usually follow some rules that are not really “intelligent” or

realistic. Therefore, the Q-DPP model can be used to generate diverse behaviors

to build a more realistic simulation environment. Furthermore, multi-agent trust

region learning is a promising approach to stabilize and speed up many existing

multi-agent reinforcement learning algorithms. MATRL brings a stable and efficient

performance improvement without too much extra cost in multi-agent learning. MA-

TRL can significantly help to reduce (by at least 90%) the training cost of many

Impact Statement 6

successful multi-agent applications.

Acknowledgements

I would like to take this opportunity to express my deepest gratitudes to all the people

who have been tremendous supportive during my Ph.D. study.

First of all, I’m enormously thankful for the mentoring and guidance of my

primary supervisor, Prof. Jun Wang. It is not only his expertise and those constructive

suggestions, which I benefited extremely, but also his charming character of being

kind and patient, have made this experience so precious.

I’d also thank Dr. Jinghao Xue, Prof. Emine Yilmaz, and Dr. Shi Zhou for all

the help offered to my work. Besides, I thank Dr. Yuanchang Liu and Dr. Stefano V.

Albrecht for carefully examining this thesis and the valuable feedbacks. It could not

be in this better shape without their involvement.

I also enjoyed a great collaboration with Dr. Weinan Zhang, Dr. Wei Pan, and

Dr. Haitham Bou Ammar with their preciseness suggestions, which are essentially

valuable to this work.

My appreciation extends to all members of this team: Rui Luo, Yixin Wu, Hui

Chen, Dr. Haifeng Zhang, Dr. Shuang Zhao, Dr. Xu Chen, and Dr. Yali Du. In

particular, Yaodong Yang, Zheng Tian, and Minne Li helped me a lot in initiating the

manuscript to achieve a good shape of results. It’s a great honor to spend my Ph.D.

years in this fantastic teamn and I learned a lot from them.

Furthermore, my gratitude goes to Mr. Konrad Feldman and Mrs. Jennie Feld-

man for offering me with the Feldman Scholarship in Statistical Machine Learning

and colleagues Dr. Shuai Yuan and Rael Cline in MediaGamma Ltd. for jointly

sponsored me three years of my Ph.D. study.

Plus, my sincere thanks go to all the people who were so friendly and made

Acknowledgements 8

my stay in London a pleasant memory, especially to Qiyang Zhang, Guanyu Tao,

Dr. Chen Zhang, Tianrui Zhao, Dr. Wenyao Li, Bowen Zheng, Huanyu Ma, Xinyu

Weng, and Wenqing Wang.

More importantly, I would like to thank my family members with my deepest

sincerity, especially my mother Yueying Hu, my father Yousheng Wen and girlfriend

Yi Li. It is their unconditional support and love that give me confidence and courage

to fully devoted to this academic path. It goes without saying that family is always

my inner strength source.

To sum up, this thesis is a result of many people’s contributions, direct or

indirect. It is however difficult to name them all. I appreciate all those helps.

Contents

1 Introduction 21

1.1 Motivation . 22

1.2 Contributions and Outline . 24

2 Background 29

2.1 Single-Agent Reinforcement Learning 29

2.2 Multi-Agent Formulation . 30

2.2.1 Stochastic Game . 30

2.2.2 Dec-POMDP . 31

2.3 Deep (Multi-Agent) Reinforcement Learning 32

2.3.1 Joint Value Function Decomposition 34

2.4 Agent Modeling . 35

2.4.1 Recursive Reasoning . 37

2.4.2 Cognitive Hierarchy . 38

2.5 Empirical Game-Theoretic Analysis 39

Part I Explicit Mutual Influence Models 41

3 Probabilistic Recursive Reasoning 42

3.1 Preliminaries: Joint Policy Factorization 43

3.2 Probabilistic Recursive Reasoning 44

3.2.1 Probabilistic Recursive Reasoning Policy Gradient 46

3.2.2 Variational Inference on Opponent Conditional Policy 52

3.2.3 Sampling in Continuous Action Space 58

9

CONTENTS 10

3.2.4 Alternative Approach . 58

3.3 Experiments . 59

3.3.1 Iterated Matrix Game . 61

3.3.2 Differential Game . 63

3.3.3 Particle World Environments 66

3.4 Summary . 66

4 Generalized Recursive Reasoning 67

4.1 Preliminaries: Multi-Agent Soft Learning 69

4.2 Generalized Recursive Reasoning 72

4.2.1 Higher Level Recursive Reasoning 72

4.2.2 Mixture of Hierarchy Recursive Reasoning 73

4.2.3 Theoretical Convergence 74

4.3 Multi-Agent GR2 Reinforcement Learning 84

4.3.1 GR2 Soft Actor-Critic Algorithm 84

4.3.2 Inter-level Policy Improvement 86

4.3.3 Best Response as Deterministic Strategy 86

4.4 Experiments . 87

4.4.1 Keynes Beauty Contest . 88

4.4.2 Learning Matrix Games . 89

4.4.3 Particle World Environments 92

4.4.4 Ablation Study . 92

4.5 Summary . 94

Part II Behavioral Diversity in Mutual Influence 96

5 Multi-Agent Determinantal Q-Learning 97

5.1 Preliminaries: Determinantal Point Process 100

5.2 Multi-Agent Determinantal Q-Learning 101

5.2.1 Q-DPP: A Constrained DPP for MARL 102

5.2.2 Representation of Q-DPP Kernels 104

CONTENTS 11

5.2.3 Connections to Current Methods 106

5.2.4 Sampling from Q-DPP . 107

5.2.5 Determinantal Q-Learning 119

5.3 Solution for Continuous States: Deep Q-DPP 119

5.3.1 Neural Architectures for Deep Q-DPP. 120

5.4 Experiments . 121

5.4.1 Discrete State and Action Games 121

5.4.2 StarCraft II Micro-Management 125

5.5 Summary . 126

Part III Game-Theoretic Analysis of Policy-Space Influ-
ence 127

6 Multi-Agent Trust Region Learning 128

6.1 Related Work . 130

6.2 Multi-Agent Trust Region Policy Optimization 132

6.2.1 Independent Trust Payoff Region 133

6.2.2 Approximating Weak Stable Fixed Point via Restricted

Policy-Space Meta-Game 138

6.2.3 Improvement Against Weak Stable Fixed Point 142

6.2.4 Connections to Existing Methods 143

6.3 Experiments . 143

6.3.1 Experiment Environment Details 145

6.3.2 Matrix Game and Random Matrix Games 146

6.3.3 Grid World Checker and Switch 147

6.3.4 Multi-Agent MuJoCo Game 148

6.3.5 Effect and Cost of Trust Stable Region and Best Response to

Fixed Point . 149

6.4 Summary . 149

7 Conclusion and Future Work 150

CONTENTS 12

7.1 Contributions . 151

7.2 Future Work . 152

Bibliography 155

List of Figures

3.1 Diagram of our probabilistic recursive reasoning framework. PR2 de-

couples the connections between agents by Eq. 3.2. 1©: agent i takes

the best response after considering all the potential consequences of

opponents’ actions given its own action ai. 2©: how agent i behaves

in the environment serves as the prior for the opponents to learn how

their actions would affect ai. 3©: similar to 1©, opponents take the

best response to agent i. 4©: similar to 2©, opponents’ actions are

the prior knowledge to agent i on estimating how ai will affect the

opponents. Looping from step 1 to 4 forms recursive reasoning. . . 44

3.2 Diagram of multi-agent probabilistic recursive reasoning learning

algorithms. It conducts decentralized training with decentralized

execution. The light grey areas on two sides of middle indicate

decentralized execution for each agent. White areas give the de-

centrilized learning procedures. All agents share the interaction

experiences in the environment represented by dark area in the middle. 47

3.3 Learning paths on the iterated matrix game 1. 59

3.4 Learning paths on the iterated matrix game 2. 60

3.5 Learned policies on the iterated matrix game 1. 61

3.6 Max of Two Quadratic Game. 61

3.7 The learning path of Agent 1 (x-axis) vs. Agent 2 (y-axis). The

self-play baselines and the PR2-AC control groups can only learn

the pathologies to the suboptimal Nash equilibrium. 63

3.8 Performance of PR2-AC in the cooperative navigation game. 65

13

LIST OF FIGURES 14

4.1 Graphical model of the level-k recursive reasoning. Note that the

suffix a∗ here stands for the level of thinking not the time step.

The unobservable opponent policies are approximated by ρ−i. The

omitted level-0 model considers opponents fully randomized. Agent

i rolls out the recursive reasoning about opponents in its mind (grey

area). In the recursion, agents with higher-level beliefs take the best

response to the lower-level thinkers’ actions. Higher-level models

would conduct all the computations that the lower-level models have

done, e.g. level-2 contains level-1. 70

4.2 Reasoning paths of the level-k policy. 71

4.3 Inter-level policy improvement. Higher-order strategies should

weakly dominant lower-order strategies, e.g. with the opponent

behaviors ak−1
−i unchanged, aki should perform at least as good as

ak−2
i , ak−4

i , . . . , a1
i . 74

4.4 Learning curves with or without the auxiliary loss of Equation 4.12 . 88

4.5 Learning curves on the matrix games. 90

4.6 Performance comparison in the cooperative game. 90

4.7 Learning curves on the Keynes Beauty Contest game with GR2-L

policies from level-1 to level-4. 93

4.8 Effect of varying λ in GR2-M methods, the score is normalized to

0− 1. 94

4.9 Learning curves with two reward schemes: absolute difference (de-

fault) and squared absolute difference. 94

5.1 Spectrum of MARL methods on cooperative tasks. 98

LIST OF FIGURES 15

5.2 Example of Q-DPP with quality-diversity kernel decomposition in a

single-state three-player learning task, each agent has three actions

to choose. The size of the ground set is |Y| = 9, and the size of

valid subsets |C(o)| is 33 = 27. Different colors represent different

partitions of each agent’s observation-action pairs. Suppose all three

agents select the 2nd action, then the Q-value of the joint action

according to Equation 5.3 is Qπ
(
o,a

)
= log det

(
[L[i,j],i,j∈{2,5,8}]

)
. 102

5.3 Neural Architecture of Deep Q-DPP. The middle part of the diagram

shows the overall architecture of Q-DPP, which consists of each

agent’s individual Q-networks and a centralized mixing network.

Details of the mixing network are presented in the left. We compute

the quality term, di, by applying the exponential operator on the

individual Q-value, and compute the diversity feature term, bi, by

index the corresponding vector in B through the global state s and

each action ai. 120

5.4 Multi-agent cooperative tasks. The size of the ground set for each

task is a) 176, b) 420, c) 720, d) 3920. 121

5.5 (a)-(d):Performance over time on different tasks. (e): Ablation study

on Assumption 5.1 on Blocker game. (f): The ratio of diversity to

quality, i.e., log det(B>YBY)/
∑N

i=1 QI(oi,ai)(oi, ai), during training

on Blocker game. 122

5.6 (a)-(c): Each of the agent’s decentralized policy, i.e., arg maxaQi(oi, a),

during execution on Blocker game. 123

5.7 StarCraft II micro-management on the scenario of 2 Marines vs. 1

Zealot and its performance. 125

6.1 The relationship of discounted returns ηi for an agent i given the

different joint policy pairs, where πi is the current policy, π′i is the

simultaneously updated policy. 129

LIST OF FIGURES 16

6.2 Comparisons between independent trust region learner and multi-

agent trust region learner. πi, π−i are the current policies for two

agents. π̂i, π̂−i predicted policies within TPR, (π∗i , π
∗
−i) forms Nash

equilibrium, π′i and π′−i are the best responses to the fixed point

(π̄i, π̄−i) constrained by TSR. 130

6.3 Overview of the multi-agent trust region learning phases in two-agent

games. It can be easily extended to the n-agent case by solving the

n-agent two-action matrix form meta-game. 134

6.4 Multi-agent discrete and continuous action tasks: (a) two-agent

checker (discrete), (b) four-agent switch (discrete), (c) three-agent

MuJoCo hopper (continuous). 145

6.5 Learning dynamics in matching pennies. The blue arrow is trust

payoff direction and the pale blue area is trust stable region. 145

6.6 Learning curves in discrete and continuous tasks, each with 5 random

seeds. 148

List of Tables

4.1 The converged equilibrium on the Keynes Beauty Contest with dif-

ferent p and agent number n settings. 87

6.1 Convergence rate and average convergence step in random 2 × 2

matrix games, where WoLF-IGA assumes the knowledge about the

Nash equilibrium. 147

17

List of Abbreviations

AC Actor-Critic.

AI Artificial Intelligence.

BR Best Response.

CHM Cognitive Hierarchy Model.

CL Centralized Learning.

CMA-ES Covariance Matrix Adaptation Evolution Strategy.

COMA Counterfactual Multi-Agent Policy Gradients.

CTDE Centralized Training and Decentralized Execution.

DDPG Deep Deterministic Policy Gradient.

DPP Determinantal Point Process.

DRL Deep Reinforcement Learning.

EGTA Empirical Game-Theoretic Analysis.

GAN Generative Adversarial Network.

GR2 Generalized Recursive Reasoning.

IGA Infinitesimal Gradient Ascent.

IGA-PP Infinitesimal Gradient Ascent with Policy Prediction.

IL Independent Learner.

I-POMDP Interactive Partially Observable Markov Decision Process.

KL-Divergence Kullback–Leibler Divergence.

LOLA Learning with Opponent-Learning Awareness.

MADDPG Multi-Agent Deep Deterministic Policy Gradient.

MAL Multi-Agent Learning.

MARL Multi-Agent Reinforcement Learning.

19

MAS Multi-Agent Systems.

MASQL Multi-Agent Soft Q-Learning.

MATRL Multi-Agent Trust Region Learning.

MAVEN Multi-Agent Variational Exploration.

MCMC Markov Chain Monte Carlo.

MDP Markov Decision Process.

MF Mean Field.

ML Machine Learning.

MLP Multi-Layer Perceptron.

MP Matching Pennies.

NE Nash Equilibrium.

NN Neural Networks.

OM Opponent-Modelling.

PBE Perfect Bayesian Equilibrium.

POMDP Partially Observable Markov Decision Process.

PR2 Probabilisitic Recursive Reasoning.

PD Prisoner’s Dilemma.

P-DPP Partition DPP.

PG Policy Gradient.

PSRO Policy Space Response Oracles.

PSD Positive Semidefinite.

PPO Proximal Policy Optimization.

Q-DPP DPP for Joint Q-Value Decomposition.

QMIX Mixing Networks for Joint Q-Value.

QTRAN Transformation for Joint Q-Value.

RL Reinforcement Learning.

RNN Recurrent Neural Network.

SG Stochastic Game.

SH Stag Hunt.

SVGD Stein Variational Gradient Descent.

20

TBR Trust Stable Region.

TPR Trust Payoff Region.

TRPO Trust Region Policy Optimization.

ToM Theory of Mind.

VDN Value Decomposition Networks.

WoLF Win or Learn Fast.

Chapter 1

Introduction

In the long journey of building artificial intelligence (AI) that can learn and think like

humans, an AI agent’s hallmark is its capability to think, understand, and interact with

the world. Machine learning (ML) is one of the tools available to achieve this target,

which extracts knowledge from data (Shalev-Shwartz and Ben-David, 2014). The

most well-known ML branches are supervised learning and unsupervised learning,

in which the input is usually static training data (e.g., images) and the aim is to recog-

nize some patterns or knowledge (e.g., class). In the last decade, taking advantage of

the powerful representation learning ability of deep learning (DL) (Goodfellow et al.,

2016; LeCun et al., 2015), real-world AI applications have achieved many break-

throughs among domains such as image classification (Krizhevsky et al., 2012) and

natural language processing (Devlin et al., 2019). In addition to pattern recognition,

modern AI applications often need to interact with the dynamic world and make deci-

sions based on learned knowledge. Therefore, with the success of pattern recognition,

much research shifts from pattern recognition to decision-making/control, which is

known as reinforcement learning (RL) (Sutton and Barto, 2018). RL is also a branch

of ML, in which an agent can take actions, perceive states and receive rewards from

the environment. The agent’s target is learning how to behave optimally based on a

trial and error procedure during its interaction with the environment. Historically,

RL has many classic outcomes on dynamic programming (DP) (Bellman, 1952),

temporal difference (TD) (Klopf, 1972), and policy gradient (PG) (Sutton et al.,

2000; Williams, 1992). However, due to the curse of dimensionality, these methods

1.1. Motivation 22

hardly deal with real-world applications. Nevertheless, in recent years, Mnih et al.

(2013) made a significant breakthrough by introducing deep Q-learning (DQN),

which demonstrates human-level performance on 49 Atari games. Since then, many

practical algorithms (e.g., DQN (Mnih et al., 2013), DDPG (Lillicrap et al., 2015),

PPO (Schulman et al., 2017)), and successful applications (e.g., AlphaGo series)

have been developed and mark the maturity of single-agent decision-making’s mile-

stones. However, the real-world contains environmental variations, such as other

agents (Lake et al., 2017) or even humans. Therefore, agents should be aware

that other agents in a shared environment are different from the other parts of the

environment.

1.1 Motivation

At the cognitive level, real-world intelligent entities, such as rats or chimpanzees,

are born able to understand or infer the interests of the other agents during their

interactions (Pfeiffer and Foster, 2013; Tolman, 1948). Such interests are usually

referred to as a high-level unobservable mental state, including desires, beliefs, and

intentions (Gopnik and Wellman, 1992; Premack and Woodruff, 1978). Therefore,

in daily life, humans always rely on this understanding to predict strangers’ future

behaviors (Gordon, 1986), planning effective interactions (Gallese and Goldman,

1998) or match one’s own belief with the commonsense, which is called folk psychol-

ogy (Dennett, 1991). Correspondingly, it is expected that AI agents that also possess

this kind of ability will be developed by building predictive models to assess the

influence of interactions with others (Albrecht and Stone, 2018). Such a social ability

is a key factor that defines intelligence—the capability to interact with other agents

or humans and be aware or their actions or power to producing effects on them. Intu-

itively knowing and learning these effects will benefit the agent’s decision-making

process in complex multi-agent environments. For example, by knowing another

agent’s future actions and goals, an agent can plan and interact more effectively with

a well-prepared strategy (Gmytrasiewicz and Doshi, 2005).

To enable these higher-level reasoning abilities in real-world interactions, an

1.1. Motivation 23

extensive range of tools have emerged from human activities to make daily interac-

tions smooth and efficient (Coricelli and Nagel, 2009). These tools include concepts

such as beliefs (Albrecht and Stone, 2018), reciprocity (Eccles et al., 2019), and

empathy (Raileanu et al., 2018). Many real-world challenges require an agent to

possess such an ability to consider effects from the outside world (Foerster et al.,

2016; Ziebart, 2010), which involve environments that contain many learning agents

and are thus multi-agent in nature. Examples include self-driving cars (Cao et al.,

2012), multi-player games (Berner et al., 2019; Vinyals et al., 2019), robotics (Kitano

et al., 1997), supply chains (Pardoe and Stone, 2004) and so forth. In these scenarios,

some distributed agents need to make independent decisions based on observations

to contribute most effectively to an overall goal or to maximize individual rewards

considering the presence of other agents in the environments (Bowling and Veloso,

2004). To this end, the need for a decision-making framework in multi-agent scenar-

ios, together with the complexity of dealing with multiple interacting learners, leads

to the development of multi-agent reinforcement learning (MARL).

In MARL, unlike single-agent cases, due to the existence of agents’ interac-

tions, the result of these actions is not standalone but usually depends on others’

choices (Hernandez-Leal et al., 2017). More specifically, to illustrate the effects

of multi-agent interactions, let us consider a motivating example of controlling an

adaptive robot car to go through an intersection. At each time step, the robot car can

move around by steering, throttling and/or braking. The goal is to pass the intersec-

tion safely and reach the destination. In addition to detecting environments, such

as positions, traffic lights, and lane markings, the robot car also needs to be aware

of other cars, which can be human cars or other adaptive cars. I aim to develop a

policy that can control a robot car via a sequence of actions to achieve the goal. This

difference causes two additional challenges compared to single-agent reinforcement

learning. First, before making a decision, the robot car needs to consider the potential

plan of other cars. For example, human drivers usually project other cars’ movements

in advance and then take strategic action (e.g., either give way to a rushing car or

speed up to merge into another lane rapidly). Meanwhile, other drivers follow the

1.2. Contributions and Outline 24

same pattern, which implies the car must consider other cars’ behaviors and act

correspondingly to drive smoothly. Second, as there are multiple adaptive agents in

a shared environment, they improve their policies simultaneously. Therefore, from a

single agent’s perspective, the environment it perceives is non-stationary. Dealing

with non-stationary movement is one of the most critical issues in MARL research

and makes it problematic to apply single-agent RL directly in the multi-agent context.

Both challenges involve the influence from others in an environment, so I call it

mutual influence in multi-agent reinforcement learning. From the above example, it

can be seen that agents can benefit mutually by considering the influence of others.

In addition, in principle, it is possible for agents to observe other agents and to

take actions that directly or indirectly affect other agents (Tuyls and Stone, 2018) to

achieve the learning objectives. Therefore, multi-agent learners are able to figure out

a way to reach the goals that require mutual effects during learning.

1.2 Contributions and Outline
The goal of this thesis is to consider mutual influence in learning. I am especially

interested in modeling mutual influence to shape agents’ learning processes. With

this motivation in mind, this thesis answers three research questions regarding the

mutual influence problem from multiple perspectives, as follows:

• From an individual agent’s view, how can the influence from the other agents’

actions on its objective be estimated?

• From the collective point of view, how can each individual’s contributions be

managed to achieve the cooperative goals in tasks?

• Instead of focusing on action space influence, how can the policy space influ-

ence be controlled to stabilize multi-agent learning and improve convergence

performance at the same time?

To address the above questions, I develop novel MARL algorithms that allow

agents to manage the influence of other agents. In the following section, I present

the outline of this thesis to highlight the core of each part.

1.2. Contributions and Outline 25

Part I: Explicit Mutual Influence Models

The most straightforward approach to model mutual influence is to consider the

action effects on others. In this section, I explicitly approximate the opponent models,

precisely those involving conditional behavioral policies, which can help eliminate

the effects of the others on the joint Q-value to obtain an individual Q-value.

In Chapter 3, I seek to introduce a Probabilistic Recursive Reasoning (PR2)

framework for multi-agent RL tasks. I believe it is beneficial for each agent to

consider how opponents react to potential behaviors for their own decision making,

which is essentially recursive reasoning. Under the PR2 framework, I discover a

term of importance-sampling weight that can be used to quantify the difference

between the independent-learning and centralized-learning methods. By employing

variational Bayes methods (Kingma and Welling, 2014) to model the uncertainty

of opponents’ conditional policies, the results justify the unique value provided by

endowing the agents with learning skills to recursively consider their self-impact on

others.

In Chapter 4, I extend the PR2 to Generalized Recursive Reasoning (GR2),

which acknowledges the bounded rationality and requires no assumption that agents

must play the Nash strategy for all stage games encountered Following the cognitive

hierarchy theory (Camerer et al., 2004), GR2 develops a recursive model of reasoning

by steps. In GR2, agent types are drawn from a hierarchy of reasoning capability

with an arbitrary thinking depth. GR2 begins with level-0 (L0 for short) type agents

who do not assume anything about the other agents. Level-1 thinkers believe all

their opponents are in level-0, and level-2 thinkers believe all opponents are in either

level-0 or level-1; they consider these beliefs before making the best decision. GR2

agents are all self-interested in the sense of best responding to their beliefs of others,

i.e., level-k agents take the best response to either level-k − 1 thinkers or a mixture

of agents with the level ranging from 0 to k − 1. Due to the recognition of agents’

bounded rationality, the GR2 MARL algorithm is adept at capturing non-equilibrium

behaviors that inform others of the correct expectations, and ultimately, the algorithm

helps the convergence to reach equilibrium. I prove that when the level of reasoning

1.2. Contributions and Outline 26

is deep, GR2 methods can converge to at least one NE. Additionally, if the lower-level

agent plays the Nash strategy, then all the higher-level agents will follow.

Part II: Behavioral Diversity in Mutual Influence

Instead of eliminating the effects from other agents in the joint Q-value, in

Chapter 5, I try to manage the agents’ influence on the joint Q-value and propose

multi-agent determinantal Q-learning.the I establish Q-DPP, an extension of determi-

nantal point process (DPP) (Kulesza et al., 2012) with a partition-matroid constraint

to the multi-agent setting. Q-DPP promotes agents to acquire diverse behavioral

models, which allows for natural factorization of the joint Q-functions with no need

for a priori structural constraints on the value function or network architectures.

I demonstrate that Q-DPP generalizes major solutions, including VDN (Sunehag

et al., 2018) , QMIX (Rashid et al., 2018), and QTRAN (Son et al., 2019), on de-

centralizable cooperative tasks. To efficiently draw samples from Q-DPP, I adopt a

sample-by-projection sampler with a theoretical approximation guarantee. The sam-

pler also benefits exploration by coordinating agents to cover orthogonal directions

in the state space during multi-agent training.

Part III: Game-Theoretic Analysis of Policy-Space Influence

In Chapter 6, I focus on analyzing the policy-space level mutual influence

and try to find a trust region method to shape this influence for multi-agent policy

optimization. Trust region policy optimization is widely used in single-agent rein-

forcement learning, where a trust region at each iteration provides a lower bound of

the monotonic payoff improvement for policy optimization. However, in multi-agent

systems, as the agent’s payoff improvement depends on the other agents’ adaptive

behaviors, it is hard to measure the payoff improvement when all agents are learning

simultaneously. Although researchers have proposed other solution concepts, such

as fixed points (e.g., the Nash equilibrium), they are usually intractable. Therefore,

directly exploiting the trust region improvement from a single agent’s perspective

is impossible because the agents’ selfish improvement would rarely lead to a stable

multi-agent solution concept In this chapter, I present a Multi-Agent Trust Region

Learning (MATRL) algorithm that augments the single-agent trust region policy

1.2. Contributions and Outline 27

optimization with a policy-space meta-game analysis A weak stable fixed point ap-

proximated by the Nash equilibrium of a policy-space meta-game largely simplifies

the complex game solution concept computation. I also find the lower bound for

multi-agent trust region learning and prove the finding of the weak stable fixed point

via meta-game equilibrium.

These chapters are based on the following papers and pre-prints, where I also

clarify (indicated by author initials) the individual contributions:

• ‘Probabilistic Recursive Reasoning for Multi-Agent Reinforcement Learning’,

Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, Wei Pan, International Con-

ference on Learning Representations (ICLR), 2019. Authors’ contributions:

The correlated policy idea was initially from J.W, and I specified the idea into

a recursive reasoning framework. I developed all the methodology parts and

part of theoretical proofs. I wrote the initial draft and re-edited the paper. I

also conceived/performed all the experiments. Y.Y.; reviewed/re-edited the

paper and provided the proof for a theorem. R.L., W.P.; reviewed the paper.

J.W.; supervised the research.

• ‘Modeling Bounded Rationality in Multi-Agent Interactions by Generalized

Recursive Reasoning’, Ying Wen, Yaodong Yang, Jun Wang, International

Joint Conferences on Artificial Intelligence (IJCAI), 2020. Authors’ contribu-

tions: The paper idea was initially from me. I developed all the methodology

parts and part of theoretical proofs. I wrote the initial draft and re-edited the pa-

per. I also conceived/performed all the experiments. Y.Y.; reviewed/re-edited

the paper and provided the proof for a corollary. J.W. supervised the research.

• ‘Multi-Agent Determinantal Q-Learning’, Yaodong Yang*, Ying Wen*, Li-

heng Chen, Jun Wang, Kun Shao, David Mguni, Weinan Zhang, International

Conference on Machine Learning (ICML), 2020. Authors’ contributions:

The paper idea, applying the DPP in MAL, was initially from Y.Y. I devel-

oped all the methodology parts and wrote the initial draft. I also wrote the

experiment code and conceived/performed part of the experiments. Y.Y.;

1.2. Contributions and Outline 28

reviewed/re-edited the paper and provided all the proof. K.S; L.C.; performed

part of the experiments for discrete and continuous games, respectively. D.M.;

W.Z; reviewed the paper. J.W. supervised the research.

• ‘Multi-Agent Trust Region Learning’, Ying Wen, Hui Chen, Yaodong Yang,

Zheng Tian, Minne Li, Xu Chen, Jun Wang, 2020. Authors’ contributions:

The paper idea was initially from me. I developed all the methodology parts

and theoretical proofs. Besides, I wrote the initial draft and re-edited the paper.

I also conceived the experiments and performed part of the experiments. H.C.;

wrote the experiment code and performed the rest experiments. Y.Y., Z.T.,

M.L., X.C.; reviewed the paper. J.W. supervised the research.

To supplement this work, Chapter 2 presents the necessary fundamentals to

understand all of the notations and background of this thesis. Chapters 3 through 6

present the contributions as listed above, in which I use pronoun ‘we’ because they

are joint work. Lastly, Chapter 7 summarizes the thesis and discusses potential future

research directions.

Chapter 2

Background

This chapter includes the necessary background and formulation on single-agent

and multi-agent reinforcement learning. In particular I introduce single-agent rein-

forcement learning in Section 2.1, multi-agent formulations in Section 2.2, agent

modeling in Section 2.4, value function decomposition in Section 2.3.1, and em-

pirical game-theoretic analysis in Section 2.4. The concepts required for specific

chapters are introduced as additional preliminaries in those chapters.

2.1 Single-Agent Reinforcement Learning
Single-agent Reinforcement Learning (RL) is used to study a sequential decision-

making problem, in which an agent interacts with an environment This problem is

usually formulated as a Markov Decision Process (MDP) (Sutton and Barto, 2018),

denoted by a tuple < S,A,R, P, p0, γ >, where S is the state space, A is the action

space,R = R(s, a) : S ×A → R is the reward function, P : S ×A×S → [0, 1] is

the transition function, p0 is the initial state distribution and γ is the discount factor.

At time step t, given the state st ∈ S, an agent takes an action at according the

policy π(at|st) : S × A → [0, 1] and observe the reward rt from the environment.

The environment then transits to the next state st+1 ∼ P (st+1|st, at). Consider an

infinite-horizon case; the agent aims to find a policy that maximizes the long-term

discounted reward:

η(π) = Es0,a0,···

[
∞∑

t=0

γtR (st, at)

]
, (2.1)

2.2. Multi-Agent Formulation 30

where s0 ∼ p0(s0), at ∼ π(at|st) and st+1 ∼ P (st+1|st, at). Similarly, the state

value function and state-action value function can be defined accordingly:

V π(st) = Eat,st+1,···

[
∞∑

l=0

γlRt+l

]
, (2.2)

Qπ(st, at) = Est+1,at+1,···

[
∞∑

l=0

γlRt+l

]
. (2.3)

In the model-free setting, where the environment is unknown, value-based (e.g.,

DQN (Mnih et al., 2013)) and policy-based methods (e.g., PG (Sutton et al., 2000),

TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017)), are two main

approaches to solve this problem. These methods can be easily extended to the

multi-agent case known as Independent Learner (IL) (Tan, 1993), which ignores

other agents in an environment.

2.2 Multi-Agent Formulation

2.2.1 Stochastic Game

A stochastic game (Littman, 1994; Shapley, 1953) can be defined as: G =

〈N,S, {Ai}, {Ri}, P, p0, γ〉, where N is the agent number and S denotes the state

space. Ai is the action space for agent i. A = Ai × A−i is the joint action space,

where −i denotes the other agent except agent i. Ri = Ri(s, ai, a−i) is the reward

function for agent i. P : S×A×S → [0, 1] is the transition function. p0 is the initial

state distribution, and γ ∈ [0, 1] is a discount factor. Each agent has a stochastic

policy πi(ai|s) : S × Ai → [0, 1]. Each agent i ∈ 1, · · · , N aims to maximize its

long term discounted reward:

ηi(πi, π−i) = Es0,a0i ,a0−i···

[
∞∑

t=0

γtRi(s
t, ati, a

t
−i)

]
, (2.4)

2.2. Multi-Agent Formulation 31

where s0 ∼ p0, st+1 ∼ P (st+1|st, ati, at−i), ati ∼ πi(a
t
i|τ ti). Given the state and joint

action, the standard definition of the state-action value function is as follows

V
πi,π−i
i (st) = Est+1,at+1

i ,at+1
−i ···

[
∞∑

l=0

γlRi(s
t+l, at+li , at+l−i)], (2.5)

the value function:

Q
πi,π−i
i (st, ati, a

t
−i) = Est+1,at+1

i ,at+1
−i ···

[
∞∑

l=0

γlRi(a
t
i, a

t
−i), s

t+1], (2.6)

and the advantage function, with the lower variance compared to the state-action

value function by taking the state-value off as the baseline:

A
πi,π−i
i (st, ati, a

t
−i) = Q

πi,π−i
i (st, ati, a

t
−i)− V πi,π−i

i (st). (2.7)

However, the agents’ objectives are not always aligned, especially in non-cooperative

games As a result, Nash equilibrium (Chatterjee et al., 2004; Nash et al., 1950) has

been a popular solution for the multi-agent learning problem. In a Nash equilibrium,

no agent can increase its expected payoff by changing its equilibrium strategy

unilaterally (Nash et al., 1950). Nash equilibrium can be defined as follows:

Definition 2.1 (Nash Equilibrium and ε-Nash Equilibrium). For ε ≥ 0, a joint

policy (π∗i , π
∗
−i) is a ε-Nash equilibrium if: ∀i ∈ {1, 2}, ∀πi ∈ Πi:ηi(π∗i , π

∗
−i) ≥

ηi(πi, π
∗
−i)− ε. When ε = 0, the equilibrium is a Nash equilibrium.

Basically, equilibrium is reached when each agent provides its best response to

other agents’ policies. Hence, no agent can have more benefits by changing policies

given that all the other agents continue to follow the equilibrium policy.

2.2.2 Dec-POMDP

In Chapter 5, to investigate the mutual influence in the joint Q value, I adopt the

common decentralized POMDP (Oliehoek et al., 2016) setting in joint value decom-

position methods. Dec-POMDP models a multi-agent cooperation task in a partially-

observed environment and is denoted by a tuple G =< S,N ,A,O,Z, P,R, γ >.

2.3. Deep (Multi-Agent) Reinforcement Learning 32

Within G, s ∈ S denotes the global environmental state. At every time-step t ∈ Z+,

each agent i ∈ N = {1, . . . , N} selects an action ai ∈ A where a joint action stands

for a := (ai)i∈N ∈ AN . Since the environment is partially observed, each agent only

has access to its local observation o ∈ O, which is acquired through an observation

function Z(s, a) : S × A → O. The state transition dynamics are determined by

P (s′|s,a) := S×AN×S → [0, 1]. Agents optimize towards one shared goal whose

performance is measured by R(s,a) : S × AN → R, and γ ∈ [0, 1) discounts the

future rewards. Each agent recalls an observation-action history τi ∈ T := (O×A)∗,

and executes a stochastic policy πi(ai|τi) : T × A → [0, 1] which is conditioned

on τi. All of the agents’ histories are defined τ := (τi)i∈N ∈ T N . Given a

joint policy π := (πi)i∈N , the joint action-value function at time t stands as

Qπ(τ t,at) = Est+1:∞,at+1:∞ [Gt|τ t,at], where Gt =
∑∞

i=0 γ
iRt+i is the total ac-

cumulative rewards.

The goal is to find an optimal value function Q∗ = maxπ Q
π(τ t,at) and the

corresponding policy π∗. A direct centralized approach is to learn the joint value

function, parameterized by θ, by minimizing the squared temporal-difference error

L(θ) (Watkins and Dayan, 1992) from a sampled mini-batch of transition data

{〈τ ,a,R, τ ′〉}Ej=1, i.e.,

L(θ) =
E∑

j=1

∥∥∥R+ γmax
a′

Q(τ ′,a′; θ−)−Qπ(τ ,a; θ)
∥∥∥

2

, (2.8)

where θ− denotes the target parameters that can be periodically copied from θ during

training.

2.3 Deep (Multi-Agent) Reinforcement Learning

In recent years, taking advantage of neural networks as function approximations

for policies and values, there have emerged many studies on deep reinforcement

learning (DRL) (Lillicrap et al., 2015; Mnih et al., 2013). Trust region policy opti-

mization (Kakade and Langford, 2002; Schulman et al., 2015, 2017) is one of the

most successful DRL methods in the single-agent setting, which places constraints

2.3. Deep (Multi-Agent) Reinforcement Learning 33

on the step-size of policy updating to monotonically preserve improvements. Based

on the monotonic improvement from TRPO (Schulman et al., 2015) in single-agent

learning, MATRL extends the improvement guarantee to multi-agent levels towards

a weak stable fixed point. On one hand, some works directly apply fully decen-

tralized single-agent DRL methods (Tan, 1993), which are known as ILs; although,

theoretically, ILs are prone to be unstable during learning due to the non-stationary

issue. However, based on competitive returns in a range of environments, Papoudakis

et al. (2020b) found that ILs can achieve such returns despite its simplicity. This

conclusion agreed with the study results that are presented in Chapter 6, where the

simplicity advantages of ILs are discussed and a centralized mechanism is provided

to adjust the gradient step-size, which can largely speed up and stabilize ILs learning.

Interestingly, the maximum-entropy framework has also been explored in

the RL domain through inference on graphical models (Levine, 2018); soft Q-

learning (Haarnoja et al., 2017) and actor-critic (Haarnoja et al., 2018) methods

were developed. Recently, soft learning has been adapted into the context of MARL

Tian et al. (2019); Wei et al. (2018), which allows for suboptimal behavior and

measurement of the Bayesian bounded rationality of the agent (Ziebart, 2010). The

methods presented in Chapter 3 and 4 are based on soft RL, which embeds the

bounded rationality into multi-agent recursive reasoning.

Despite the recent success of applying deep RL algorithms on the discrete

(Mnih et al., 2015) and continuous (Lillicrap et al., 2015) control problems in the

single-agent case, it is still challenging to transfer these methods into the multi-

agent RL context. The reason is that independent learning will ignore others in

the environment, which breaks the theoretical guarantee of convergence (Tuyls and

Weiss, 2012). To address the non-stationary issue,Foerster et al. (2016); Peng et al.

(2017); Sukhbaatar et al. (2016) added an extra communication channel during

the training and execution in a centralized way to avoids non-stationarity. On the

other hand, a modern framework is centralized training with decentralized execution

(CTDE), such as MADDPG (Lowe et al., 2017) and COMA (Foerster et al., 2018b),

which use a centralized critic to address the non-stationary issue. However, these

2.3. Deep (Multi-Agent) Reinforcement Learning 34

frameworks require strong assumptions that the policy networks’ parameters are fully

observable (so does LOLA by Foerster et al. (2018a)), and centralized Q-network

would prohibit the algorithms from scaling up. Additionally, there is a critical

branch of CTDE methods and value decomposition for solving the Dec-POMDP

problem, which would be discussed in the next section. Chapter 5 is based on

value decomposition methods, and the detailed introduction is given in the next

section. By contrast, the other approaches presented in Chapter 3, 4, and 6 are

capable of employing decentralized training with no need to maintain a central critic;

furthermore, the proposed method needs to know the parameters of the opponents’

policies.

2.3.1 Joint Value Function Decomposition

In a multi-agent learning algorithm, apart from the joint value function, people

usually need to obtain a decentralized policy for each agent. CTDE is a paradigm

for solving Dec-POMDP (Oliehoek et al., 2008), which allows the algorithm access

to all of the agents’ local histories τ during training. During testing, however, the

algorithm uses the history of each of the agents τi for execution. CTDE methods

provide valid solutions to multi-agent cooperative tasks that are decentralizable,

which are formally defined as below.

Definition 2.2 (Decentralizable Cooperative Tasks, a.k.a. IGM Condition Son et al.

(2019)). A cooperative task is decentralizable if ∃{Qi}Ni=1 such that ∀τ ∈ τN ,a ∈
AN ,

arg max
a

Qπ(τ ,a) =




arg maxa1 Q1(τ1, a1)
...

arg maxaN QN(τN , aN)


 . (2.9)

Equation 2.9 suggests that the local maxima on the extracted value function per

agent needs to amount to the global maximum on the joint value function. A key

challenge for CTDE methods is how to correctly extract each of the agent’s individual

Q-function {Qi}Ni=1, and as such an executable policy, from a centralized Q-function

Qπ. In previous works, VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018),

and QTRAN (Son et al., 2019) have progressively enlarged the family of functions

2.4. Agent Modeling 35

that can be represented by the mixing network. MAVEN (Mahajan et al., 2019) is

built on top of the QMIX with additional exploration. More recently, Wang et al.

(2020) and Su et al. (2020) extended value-decomposition to actor-critics. However,

the structural constraints in the mixing network put forward by the above methods

inhibit the representational power of the centralized value function Therefore, I

propose a new joint value function approximator in Chapter 5, which can promote

diversity while removing these structural constraints.

2.4 Agent Modeling

My work is closely tied to the traditional study of opponent modeling (OM). I

refer to a comprehensive survey about OM from (Albrecht and Stone, 2018). OM

constructs models of other agents and can be used as extra information to guide

agents’ learning. The first application of OM in multi-agent learning is in fictitious

play (Brown, 1951), in which each agent models other agents’ strategies by counting

the frequency of their past play. Similarly, joint-action learners (Claus and Boutilier,

1998) consider their opponents by explicitly counting the joint-action of all the agents

in the Q-learning update. However, both of these methods assume that agents play

stationary strategies.

In the face of non-stationary opponents, discounting old experience and adap-

tively updating with the newest information has proved to be effective for solving

repeated games (Bouzy and Métivier, 2010). A similar idea can also be found in

a series of WoLF models (Bowling, 2005; Bowling and Veloso, 2001a, 2002)),

where the speed of the learning rate is tuned based on a winning or losing situation.

WoLF methods have been proved to converge in self-play with a two-person, two

action repeated matrix game. Another effective method for solving games with

non-stationary opponents is to make the model find the best response to a predefined

target of opponents. Nash-Q citephu2003nash learns the best-response model when

all agents play to try and reach Nash equilibrium. Correlated Q-learning targets

towards the correlated equilibrium (Greenwald et al., 2003). Minimax-Q tackles

cases in which the opponent is diametrically opposed (Littman, 1994). Friend-or-foe

2.4. Agent Modeling 36

Q (Littman, 2001) generalizes on both Minimax-Q and Nash-Q. One advantage of

fixing the opponent type is that it is easier to provide guarantees against specific

opponents than against general classes; however, when the opponent does not follow

the assumptions, the algorithms will simply fail to converge or achieve the goals.

Furthermore, knowing the opponent type, especially what equilibrium is will choose

at different stages, is a strong assumption. In Nash-Q learning, apart from a toy

example, such as the prison dilemma, it is computationally infeasible to know which

equilibrium each agent will choose in advance. In contrast, our proposed method

does not assume the type of the opponent, instead, for each agent, it models the pos-

terior action distribution of others based on the newest information, and subsequently

derives an acting policy based on it, By successfully modeling the opponents, the

agent can reason about its opponents’ behaviors and goals and adjust its policy to

achieve optimal outcomes.

More recently, some works have applied neural networks to learn various repre-

sentations in opponent models. He et al. (2016); Hong et al. (2018) presented a deep

neural network to predict opponents’ actions and intentions given the opponents’

observations as inputs. On the contrary, Raileanu et al. (2018) modeled others using

the policy of the agent itself. Grover et al. (2018) decoded the opponent’s policy

from encoded opponent trajectory representation. Based on the graph neural net-

works, Tacchetti et al. (2019) proposed relational forward models to model opponents.

In addition, Hernandez-Leal et al. (2019) converted agent modeling as an auxiliary

task in deep reinforcement learning. These methods usually assume some knowl-

edge of the opponents. To minimize the information requirement, Papoudakis and

Albrecht (2020); Papoudakis et al. (2020a) used a variational auto-encoders-based

method that only requires agent’s local information to approximate the opponent

models. The recursive reasoning framework is closer to opponent modeling with

correlated policies (Liu et al., 2020; Tian et al., 2019), which considers multi-agent

settings with correlated joint policy factorization (Albrecht and Stone, 2018), i.e.,

where agents’ actions influence each other. The proposed approaches presented in

Chapter 3 and 4 learn opponent models to consider possible opponent actions during

2.4. Agent Modeling 37

learning.

2.4.1 Recursive Reasoning

Recursive reasoning has been used to successfully profile human social behaviors,

such as the scenario of school violence (Pynadath and Marsella, 2005). Interestingly,

after studying a large corpus of human play data, researchers found that humans

tend to reason, on average, at one or two levels of recursion (Camerer et al., 2004),

and reasoning levels larger than two do not provide significant benefits over deeper

levels (De Weerd et al., 2013a,b; de Weerd et al., 2017), possibly because of the

biological effectiveness of the human brain (Kimbrough et al., 2014) or because co-

operation favors lower levels of nested beliefs (Devaine et al., 2014). Game theorists

take initiatives in modeling the infinite recursive reasoning procedures (Harsanyi,

1962, 1967). Since then, other quantitative alternatives have been developed to

represent the idea of nested beliefs, such as those based on logic (Bolander and

Andersen, 2011; Muise et al., 2015), or the graphical models (Doshi et al., 2009;

Gal and Pfeffer, 2003, 2008). Studies on Theory of Mind (ToM) (Goldman et al.,

2012; Rabinowitz et al., 2018) explicitly model agent’s belief on opponents’ mental

states in the RL setting. ToM is the concept that describes the hierarchical cognitive

mechanism of attributing unobservable mental beliefs to others. A representative

of the ToM method is the "Recursive Modeling Method" (RMM) (Gmytrasiewicz

and Durfee, 1995, 2000; Gmytrasiewicz et al., 1991), which incorporates the agent’s

uncertainty about its opponent’s exact model, payoff, and recursion depth. Von

Der Osten et al. (2017) developed the framework of Multi-agent ToM with more than

one opponent by segmenting the agent population into groups. Shum et al. (2019)

introduced a generative model of multi-agent action understanding based on a novel

representation of these latent relationships to understand behavior in a multi-agent

group. Doshi et al. (2020) reviewed various frameworks for recursive modeling that

have been studied in games and decision-making.

Particularly, I-POMDP (Gmytrasiewicz and Doshi, 2005) is one of the most well-

known frameworks, and it focuses on building the belief state space about opponents.

The resulting hierarchical belief structure represents an agent’s belief about the

2.4. Agent Modeling 38

physical state, other agents, and others’ beliefs and can be nested infinitely in this

recursive manner (Gmytrasiewicz and Doshi, 2005; Han and Gmytrasiewicz, 2019).

Based on the I-POMDP framework, Han and Gmytrasiewicz (2018) narrow the

problem to learn an intentional model of others via Bayesian inference and sequential

Monte Carlo sampling. Furthermore, IPOMDP-Net (Han and Gmytrasiewicz, 2019)

extends the intentional models with deep neural networks. The recursive reasoning

models presented in Chapter 3 and 4 have a strong connection with I-POMDP, aiming

to build a nested belief about the opponents. However, my method is different from

I-POMDP with regard to the original settings and targets. Although the partially

observable setting makes the setting more general, constructing I-POMDP models

manually or learning them from observations is difficult. Therefore, I simplify the

setting by assuming fully observable states. Similarly to IPOMDP-Net (Han and

Gmytrasiewicz, 2019), I focus on modeling the impact of the other agents’ actions,

which indirectly impacts the policies I present. I do not need to hold a full belief

state; therefore, I build a model of other agents that helps agents recursively reason

about their actions and consequently benefit decision-making. In addition, the model

presented in this thesis can consider opponents with different levels of bounded

rationality and whether an equilibrium exists in such a sophisticated hierarchical

framework.

2.4.2 Cognitive Hierarchy

Assigning agents with different levels of reasoning power, e.g., the level-k model,

was first introduced by (Stahl, 1993; Stahl II and Wilson, 1994) and (Nagel, 1995).

In the level-k model, agents anchor their beliefs through thought-experiments with

the iterated best response in a chain style, i.e., L1 best responds to L0, L2 best

responds to L1 and so on. It is expected that an agent will exhibit a behavior pattern

whose complexity grows as the cognitive levels increase (Gracia-Lázaro et al., 2017).

Interestingly, across different games in the real world (Benndorf et al., 2017; Camerer

et al., 2004), humans tend to reason between 1 and 2 levels of recursion, which

explains why people commonly guess between 13 to 25 in the Keynes Beauty

Contest. However, the level-k models are shown to exhibit an extreme stereotype

2.5. Empirical Game-Theoretic Analysis 39

bias due to concentrating on only one level below (Chong et al., 2016). (Camerer

et al., 2004)) extended the level-k model by making the Lk best respond not only

to the level-k − 1 but also to a mixture of lower types of agents; this model is

named the cognitive hierarchy model (CHM). The mixture of the lower hierarchy

is usually approximated by a discrete probability distribution, with its parameter

estimated from empirical, experimental data. CHM presents distinct advantages

over the level-k model on making robust predictions in a series of games (Crawford

et al., 2013). In Chapter 4, inspired by the idea of cognitive hierarchy, I embed the

mixture of level-k reasoning into MARL and derive the soft actor-critic algorithm

with generalized recursive reasoning (GR2). By recognizing bounded rationality in

the mixture of lower hierarchy, GR2 MARL methods are generalized across different

types of opponents, thereby showing robustness to their suboptimal behaviors, which

I believe is a critical property for modern AI applications.

2.5 Empirical Game-Theoretic Analysis

Empirical Game-Theoretic Analysis (EGTA) (Jordan and Wellman, 2009; Tuyls

et al., 2020, 2018) creates a policy-space meta-game for modeling multi-agent

interactions, in which strategies in meta-game correspond to policies rather than

primitive actions. The payoffs of the meta-game are then constructed by simulating

games using all the joint policy combinations. Due to the much smaller game

size, conducting a game-theoretic analysis on the meta-game becomes possible, and

the results are analogous to the under-layer game. Policy-Space Response Oracle

(PSRO) (Balduzzi et al., 2019; Lanctot et al., 2017; Omidshafiei et al., 2019) is one of

the well-known methods based on EGTA. Given an under-layer game, PSRO consists

of the following three iterated phases: complete, solve, and expand (Muller et al.,

2020). In the complete phase, the meta-game policy sets are usually initialized using

randomly-generated policies, and the missing entries in meta with are completed

through game simulations. Then, in the solve phase, a meta-solver computes a meta-

game solution (e.g., Nash or uniform distributions) over the agent policies and obtains

the mixture policies based on the solution. Finally, in the expand phase, with the help

2.5. Empirical Game-Theoretic Analysis 40

of independent learners, the new policies are appended to the meta-game policy sets

by approximating the best response to a mixture of other agents’ policies generated,

and the algorithm iterates. PSRO also generalizes Fictitious Play (FP) (Brown, 1951;

Heinrich and Silver, 2016; Leslie and Collins, 2006), which provides a training

framework in which multiple policies from agents play against each other. Although

these methods have a good generalization ability in various multi-agent tasks, they

require a large number of computing resources to estimate the empirical meta-game

and solve it with its increasing size (Omidshafiei et al., 2019; Yang et al., 2019) In

this Chapter 6, the proposed method adopts the idea of a policy-space meta-game to

approximate the fixed-point. Unlike previous EGTA works, the adopted idea only

maintains the current and predicted policies to construct the meta-game, which is

computationally achievable in most cases. The payoff entry in MATRL’s meta-game

is the expected advantage, which has a lower estimation variance than the commonly

used empirically estimated return in EGTAs. Additionally, I can reuse the trajectories

in the TPR step to estimate the payoffs without extra sampling costs.

Part I

Explicit Mutual Influence Models

41

Chapter 3

Probabilistic Recursive Reasoning

Constructing the models of other agents, also known as opponent modeling, has a

rich history in the multi-agent learning (Albrecht and Stone, 2018; Shoham et al.,

2007). Even though equipped with modern machine learning methods that could

enrich the representation of the opponent’s behaviors (Foerster et al., 2018a; He

et al., 2016; Yang et al., 2018a), those algorithms focus on either limited types

of scenarios (e.g. cooperative games, mean-field games), pre-defined opponent

strategies (e.g. Tit-fot-Tat in iterated Prisoner’s Dilemma), or the cases where

opponents are assumed to constantly return to the same strategy (Da Silva et al., 2006).

Besides, a promising methodology from game theory, recursive reasoning (Camerer

et al., 2004; De Weerd et al., 2013b; Gmytrasiewicz and Doshi, 2005; Gmytrasiewicz

and Durfee, 2000), is rarely be mentioned. Similar to the way of thinking of humans,

recursive reasoning refers to the belief reasoning process where each agent considers

the reasoning process of other agents, based on which it expects to make better

decisions. Importantly, recursive reasoning allows an opponent to reason about the

modeling agent rather than being a fixed type; the process can therefore be nested in

a form as "I believe that you believe that I believe ... ". Despite some initial trails

(Gmytrasiewicz and Doshi, 2005; Von Der Osten et al., 2017), there has been little

work that tries to adopt this idea into the mutli-agent deep reinforcement learning

(DRL) setting. One main reason is that computing the optimal policy is prohibitively

expensive (Doshi and Gmytrasiewicz, 2006; Seuken and Zilberstein, 2008).

In this chapter, we introduce a probabilistic recursive reasoning (PR2) frame-

3.1. Preliminaries: Joint Policy Factorization 43

work for multi-agent DRL tasks. Unlike previous opponent models, each agent is

to consider how the opponents would react to its potential behaviors before it tries

to find the best response for its own decision making, which doesn’t consider the

mutual influence between its policy and opponents’ policies. By employing varia-

tional Bayes methods to model the uncertainty of opponents’ conditional policies,

We develop decentralized-training-decentralized-execution algorithms, PR2-Q and

PR2-Actor-Critic, and prove their convergence in the self-play scenario. The pro-

posed methods are tested on the matrix game and the differential game. The games

come with a non-trivial equilibrium where conventional gradient-based methods

find challenging. We compare against multiple strong baselines. The results justify

better convergence ability by agent’s recursive reasoning throughout the learning.

We expect our work to offer a new angel on incorporating conditional opponent

modeling into the multi-agent DRL context.

3.1 Preliminaries: Joint Policy Factorization
In the multi-agent learning tasks, each agent can only control its own action; however,

the resulting reward value depends on other agents’ actions. In other words, the Q-

function of each agent, Qπθ

i , is subject to the joint policy πθ consisting of all agents’

policies. In the previous studies, one common approach is to decouple the joint

policy assuming conditional independence of actions from different agents (Albrecht

and Stone, 2018):

πθ(ai, a−i|s) = πθii (ai|s)πθ−i−i (a−i|s), (3.1)

where the joint policy πθ(ai, a−i|s) is factorized to the product of two independent

policies πθii (ai|s) and πθ−i−i (a−i|s). The study regarding the topic of “centralized

training with decentralized execution” in the deep RL domain, including MAD-

DPG (Lowe et al., 2017), COMA (Foerster et al., 2018b), MF-AC (Yang et al.,

2018a), Multi-Agent Soft-Q (Wei et al., 2018), and LOLA (Foerster et al., 2018a),

can be classified into this category. Although the non-correlated factorization of

the joint policy simplifies the algorithm, this simplification is typically invalid by

ignoring the agents’ connections, e.g. impacts of one agent’s action on other agents,

3.2. Probabilistic Recursive Reasoning 44

Considering
Impact on Opponent

Agent
Execution

Mutual
Effects

Perspective of Opponent:��

Perspective of Agent i<latexit sha1_base64="+Ltucwlah3u6tTozHWQ46Gp8Zz0=">AAAB6nicbZC7SgNBFIbPeo3xFrW0GUwEq7Bro50BLSwjmgskS5idnE2GzM4uM7NCWPIINhZKsLHwZWztfBsnl0ITfxj4+P9zmHNOkAiujet+Oyura+sbm7mt/PbO7t5+4eCwruNUMayxWMSqGVCNgkusGW4ENhOFNAoENoLB9SRvPKLSPJYPZpigH9Ge5CFn1FjrvsRLnULRLbtTkWXw5lC8+hyP3wGg2il8tbsxSyOUhgmqdctzE+NnVBnOBI7y7VRjQtmA9rBlUdIItZ9NRx2RU+t0SRgr+6QhU/d3R0YjrYdRYCsjavp6MZuY/2Wt1ISXfsZlkhqUbPZRmApiYjLZm3S5QmbE0AJlittZCetTRZmx18nbI3iLKy9D/bzsuWXvzitWbmCmHBzDCZyBBxdQgVuoQg0Y9OAJXuDVEc6zM3beZqUrzrznCP7I+fgBYR+QIg==</latexit><latexit sha1_base64="j39h6TpjA+3rmTGxWTs97UboLCU=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFhPBKtzZxDKghWVE8wHJEfY2e8mSvb1jd04IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3Mz9zhPXRsTqEacJ9yM6UiIUjKKVHqqiOihX3Jq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbSvap5b8+69SuM2j6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH4bRjUg=</latexit>

i
<latexit sha1_base64="+Ltucwlah3u6tTozHWQ46Gp8Zz0=">AAAB6nicbZC7SgNBFIbPeo3xFrW0GUwEq7Bro50BLSwjmgskS5idnE2GzM4uM7NCWPIINhZKsLHwZWztfBsnl0ITfxj4+P9zmHNOkAiujet+Oyura+sbm7mt/PbO7t5+4eCwruNUMayxWMSqGVCNgkusGW4ENhOFNAoENoLB9SRvPKLSPJYPZpigH9Ge5CFn1FjrvsRLnULRLbtTkWXw5lC8+hyP3wGg2il8tbsxSyOUhgmqdctzE+NnVBnOBI7y7VRjQtmA9rBlUdIItZ9NRx2RU+t0SRgr+6QhU/d3R0YjrYdRYCsjavp6MZuY/2Wt1ISXfsZlkhqUbPZRmApiYjLZm3S5QmbE0AJlittZCetTRZmx18nbI3iLKy9D/bzsuWXvzitWbmCmHBzDCZyBBxdQgVuoQg0Y9OAJXuDVEc6zM3beZqUrzrznCP7I+fgBYR+QIg==</latexit><latexit sha1_base64="j39h6TpjA+3rmTGxWTs97UboLCU=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFhPBKtzZxDKghWVE8wHJEfY2e8mSvb1jd04IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3Mz9zhPXRsTqEacJ9yM6UiIUjKKVHqqiOihX3Jq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbSvap5b8+69SuM2j6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH4bRjUg=</latexit> :

�� Opponent Effect

Best Response

1

2

3

4

⇡�i (a�i|s)

⇡i (ai|s) ⇢�i (a�i|s, ai)

⇢i (ai|s, a�i)

⇡ (ai, a�i|s) ⇡i (ai|s) ⇢�i (a�i | s, ai)

⇡ (ai, a�i|s) ⇡i (a�i|s) ⇢i (ai|s, a�i)

⇡i (ai|s)

⇡�i (a�i|s)

Figure 3.1: Diagram of our probabilistic recursive reasoning framework. PR2 decouples
the connections between agents by Eq. 3.2. 1©: agent i takes the best response
after considering all the potential consequences of opponents’ actions given
its own action ai. 2©: how agent i behaves in the environment serves as the
prior for the opponents to learn how their actions would affect ai. 3©: similar to
1©, opponents take the best response to agent i. 4©: similar to 2©, opponents’
actions are the prior knowledge to agent i on estimating how ai will affect the
opponents. Looping from step 1 to 4 forms recursive reasoning.

and the impacts from other agents. One might argue that during training, the joint

Q-function should potentially guide each agent to learn to consider and act for

the mutual interests of all the agents; nonetheless, a counter-example is that the

non-correlated policy could not even solve the simplest two-player zero-sum differ-

ential game where two agents act in x and y with the reward functions defined by

(xy,−xy): following by Equation 3.1, both agents are reinforced to trace a cyclic

trajectory that never converges to the equilibrium (Mescheder et al., 2017).

It is worth clarifying that the idea of non-correlated policy is still markedly

different from the independent learner (IL). IL is a naive method that completely

ignore other agents’ behaviors. The objective of agent i is simplified to ηi(πθi),

depending only on i’s own policy πθi compared to Equation 2.4. As Lowe et al.

(2017) has pointed out, in IL, the probability of taking a gradient step in the correct

direction decreases exponentially with the increasing number of agents, letting

alone the major issue of the non-stationary environment due to the independence

assumption (Tuyls and Weiss, 2012).

3.2 Probabilistic Recursive Reasoning
In the previous section, we have shown the weakness of the learning algorithms

that build on the non-correlated factorization on the joint policy. Here we introduce

the probabilistic recursive reasoning approach that aims to capture how the oppo-

3.2. Probabilistic Recursive Reasoning 45

nents believe about what the agent believes. Under such settings, we devise a new

multi-agent policy gradient theorem. We start from assuming the true opponent

conditional policy πθ−i−i is given, and then move onward to the practical case where it

is approximated through variational inference.

The issue on the non-correlated factorization is that it fails to help each agent to

consider the impact of its action on others, which could lead to the ill-posed behaviors

in the multi-agent learning tasks. On the contrary, people explicitly attribute contents

such as beliefs, desires, and intentions to others in daily life. It is known that human

beings are capable of using this ability recursively to make decisions. Inspired

by this, here we integrate the concept of recursive reasoning into the joint policy

modeling, and propose the new probabilistic recursive reasoning (PR2) framework.

Specifically, we employ the nested process of belief reasoning where each agent

simulates the reasoning process of other agents, thinking about how its action would

affect others, and then make actions based on such predictions. The process can

be nested in a form as "I believe [that you believe (that I believe)]". Here we start

from considering the level-1 recursion, as psychologist have found that humans tend

to reason on average at one or two level of recursion (Camerer et al., 2004), and

levels higher than two do not provide significant benefits (De Weerd et al., 2013a,b;

de Weerd et al., 2017). Based on this, we re-formulate the joint policy by

πθ(ai, a−i|s) = πθii (ai|s)πθ−i−i (a−i|s, ai)︸ ︷︷ ︸
Agent i’s perspective

= π
θ−i
−i (a−i|s)πθii (ai|s, a−i)︸ ︷︷ ︸

The opponents’ perspective

. (3.2)

Similar way of decomposition can also be found in dual learning (Xia et al., 2017)

on symmetrical tasks such as machine translation. From the perspective of agent

i, the first equality in Equation 3.2 indicates that the joint policy can be essentially

decomposed into two parts. The conditional part πθ−i−i (a−i|s, ai) represents what

actions would be taken by the opponents given the fact that the opponents know

the current state of environment and agent i’s action; this is based on what agent

i believes other opponents might think about itself. Note that the way of thinking

developed by agent i regarding how others would consider of itself is also shaped by

3.2. Probabilistic Recursive Reasoning 46

opponents’ original policy πθ−i−i (a−i|s), as this is also how the opponents actually act

in the environment. Taking into account different potential actions that agent i thinks

the opponents would take, agent i uses the marginal policy πθii (ai|s) to find the best

response. To this end, a level-1 recursive procedure is established: ai → a−i → ai.

The same inference logic can be applied to the opponents from their perspectives, as

shown in the second equality of Equation 3.2.

Albeit instructive, Equation 3.2 may not be practical due to the requirement

on the full knowledge regarding the actual conditional policy πθ−i−i (a−i|s, ai). A

natural solution is that one approximates the actual policy via a best-fit model from

a family of distributions. We denote this family as ρφ−i−i (a−i|s, ai) with learnable

parameter φ−i. PR2 is probabilistic as it considers the uncertainty of modeling

π
θ−i
−i (a−i|s, ai). The reasoning structure is now established as shown in Figure 3.1.

With the recursive joint policy defined in Equation 3.2, the n-agent learning task can

therefore be formulated as

arg max
θi,φ−i

ηi

(
πθii (ai|s)ρφ−i−i (a−i|s, ai)

)
, (3.3)

arg max
θ−i,φi

η−i

(
π
θ−i
−i (a−i|s)ρφii (ai|s, a−i)

)
. (3.4)

With the new learning protocol defined in Equation 3.3 and 3.4, each agent

now learns its own policy as well as the approximated conditional policy of other

agents given its own actions. In such a way, both the agent and the opponents

can keep track of the joint policy by πθii (ai|s)ρφ−i−i (a−i|s, ai) → πθ(ai, a−i|s) ←
π
θ−i
−i (a−i|s)ρφii (ai|s, a−i). Once agents’ policies and the approximated opponent

conditional policies converge to a stationary distribution, we can verify the resulting

approximates satisfies at each state: πθ(ai, a−i|s) = πθii (ai|s)ρφ−i−i (a−i|s, ai) =

π
θ−i
−i (a−i|s)ρφii (ai|s, a−i), according to Equation 3.2.

3.2.1 Probabilistic Recursive Reasoning Policy Gradient

In this section, given the true opponent policy π
θ−i
−i and that each agent tries to

maximize its objective defined in Equation 2.4, we establish the policy gradient

theorem by accounting for the PR2 joint policy decomposition in Equation 3.2. We

3.2. Probabilistic Recursive Reasoning 47

Decentralized
Execution

Decentralized
Training with
Probabilistic
Reasoning

ρ−i

Q−iQi

sai a−i

πi π−i

ρi

Figure 3.2: Diagram of multi-agent probabilistic recursive reasoning learning algorithms.
It conducts decentralized training with decentralized execution. The light grey
areas on two sides of middle indicate decentralized execution for each agent.
White areas give the decentrilized learning procedures. All agents share the
interaction experiences in the environment represented by dark area in the
middle.

also quantify the connection between decentralized training and centralized learning

via importance sampling weight in Proposition 3.2.

Proposition 3.1. In a stochastic game, under the recursive reasoning framework

defined by Equation 3.2, the update for the multi-agent recursive reasoning policy

gradient method can be derived as follows:

∇θiηi = Es∼p,ai∼πi
[
∇θi log πθ

i

i (ai|s)
∫

a−i

π
θ−i
−i (a−i|s, ai)Qi(s, ai, a−i) da−i

]
.

(3.5)

Proof. If we apply the chain rule to factorize the joint policy to: πθ(ai, a−i|s) =

πθii (ai|s)πθ−i−i (a−i|s, ai). Then, we can have multi-agent recursive reasoning objec-

tive function:

ηi =

∫

s

∫

ai

∫

a−i

π(ai, a−i|s)Qi(ai, a−i) da−i dai ds

=

∫

s

∫

ai

πi(ai|s)
∫

a−i

π−i(a−i|s, ai)Qi(s, ai, a−i) da−i dai ds.

(3.6)

3.2. Probabilistic Recursive Reasoning 48

Compare to non-correlated factorization, a−i in Equation 3.6 is additionally condi-

tional on ai where ai is the prior. That is we introduce agent i’a action ai into other

agents −i’s policy, obtaining π−i(a−i|s, ai). It adds the consideration that agent i

can have influence on other agents. We now compute the policy gradient analytically.

Following the single agent Policy Gradient Theorem with Leibniz integral rule and

Fubini’s theorem, we get the multi-Agent Recursive Reasoning Policy Gradient:

∇θiηi =Es∼p,ai∼πi [∇θi log πi(ai|s)
∫

a−i

π−i(a−i|s, ai)Qi(s, ai, a−i) da−i]. (3.7)

However, in common case, the agent cannot get access to other agents’ policies.

We need to keep an approximation of other agents. We let ρφ−i−i (a−i|s, ai) denotes the

parameterized opponent conditional policy of agent i to approximate other agents

policies, i.e, π−i(a−i|s, ai). In such way, without the centralized knowledge of exact

opponent policy, we have Decentralized Multi-Agent Recursive Reasoning Policy

Gradient comes as:

∇θiηi ≈ Es∼p,ai∼πi [∇θi log πθii (ai|s)
∫

a−i

ρ
φ−i
−i (a−i|s, ai)Qi(s, ai, a−i) da−i]

= Es∼p,ai∼πi [∇θi log πθii (ai|s)Q
ρ
φ−i
−i
i (s, ai)].

(3.8)

In Equation 3.8, the gradient for agent i is scaled by Q
ρ
φ−i
−i
i (s, ai) =

∫
a−i

ρ
φ−i
−i (a−i|s, ai)Qi(s, ai, a−i) da−i. Then, the trajectories generated by updated

policy would help to train ρφ−i−i (a−i|s, ai) and Qi(s, ai, a−i). These steps form a EM

style learning procedures: fix ρφ−i−i and Qi(s, ai, a−i), improve πθii (ai|s); then ρφ−i−i

and Qi(s, ai, a−i) would benefit from the trajectories brought by πθii (ai|s). Further-

more, because we do not need opponents’ actual private policies, Decentralized

Multi-Agent Recursive Reasoning Policy Gradient decouple from other agents’ on-

policies or target policies. This means the training can be done in an off-policy

fashion by sampling batches from memory buffer D with the help of the on-policy

learned ρφ−i−i (a−i|s, ai) from Qi(s, ai, a−i). �

Proposition 3.1 states that each agent should improve its policy toward

3.2. Probabilistic Recursive Reasoning 49

the direction of the best response after it takes into account all kinds of pos-

sibilities of how other agents would react if that action is taken. The term of

π
θ−i
−i (a−i|s, ai) can be regarded as the posterior estimation of agent i’s belief about

how the opponents would respond to his action ai, given opponents’ true policy

π
θ−i
−i (a−i|s) serving as the prior. Note that compared to the direction of policy up-

date in the conventional multi-agent policy gradient theorem (Wei et al., 2018),
∫
a−i

π
θ−i
−i (a−i|s)Qi(s, ai, a−i) da−i, the direction of the gradient update in PR2 is

guided by the term
∫
a−i

π
θ−i
−i (a−i|s, ai)Qi(s, ai, a−i) da−i.

In practice, agent i might not have access to the opponents’ actual policy

parameters θ−i, it is often needed to approximate πθ−i−i (a−i|s, ai) by ρφ−i−i (a−i|s, ai),
thereby we propose Proposition 3.2.

Proposition 3.2 raises an important point: the difference between decentralized

training (algorithms that do not require the opponents’ policies) with centralized

learning (algorithms that require the opponents’ policies) can in fact be quantified

by a term of importance weights, similar to the connection between on-policy and

off-policy methods. If we find a best-fit approximation such that ρφ−i−i (a−i|s, ai)→
π
θ−i
−i (a−i|s, ai), then Equation 3.9 collapses into Equation 3.5.

Proposition 3.2. In a stochastic game, under the recursive reasoning framework

defined by Equation 3.2, with the opponent policy approximated by ρφ−i−i (a−i|s, ai),
the update for the multi-agent recursive reasoning policy gradient method can be

formulated as follows:

∇θiηi =Es∼p,ai∼πi

[
∇θi log πθ

i

i (ai|s) · Ea−i∼ρφ−i−i

[
π
θ−i
−i (a−i|s, ai)
ρ
φ−i
−i (a−i|s, ai)

Qi(s, ai, a−i)

]]
.

(3.9)

Proof. Substituting the approximated model ρφ−i−i (a−i|s, ai) for the true policy πθ−i−i

in Equation 3.5. �

Based on Proposition 3.2, Algorithm 3.1 gives the step by step learning pro-

cedures for PR2-AC algorithm. As illustrated in Figure 3.2, it is a decentralized-

3.2. Probabilistic Recursive Reasoning 50

Algorithm 3.1 Multi-Agent Probabilistic Recursive Reasoning Actor Critic (PR2-
AC).

1: Policy:πi, Opponent Recursive Reasoning: ρ−i(a−i|s, ai).
2: Initialize parameters θi, φ−i, ωi arbitrarily for each agent i, random process N

for action exploration.
3: Assign target parameters of joint action Q-function: ωi′ ← ωi, and target policy

parameter: θi′ ← θi, Di ← empty replay buffer for each agent.
4: for each episode do
5: Initialize random process N for action exploration.
6: for each step t do
7: Given the current s, for each agent i, select action ai = µθii (s) +N t

8: Take the joint action (ai, a−i) and observe own reward ri and new state s′

9: Add the tuple (s, ai, a−i, ri, s
′) in corresponding replay buffer Di s← s′

10: for each agent i do
11: Sample a random mini batch {(s, aji , aj−i, rji , s′,j)}Nj=0 from Di

12: Get aji′ = µθii′ for each state s′,j

13: Sample {ak,j−i′}Mk=0 ∼ ρ
φ−i
−i (·|s′,j, aji′) for each aji′ and s′,j

14: Set yji = rji + γ 1
M

∑M
k=0Q

µi′
i (s′, ai′, a

k,j
−i′)

15: Update the critic by minimizing the loss L(ωi) = 1
N

∑N
j=0(yj −

Qµi
i (sj, a

j
i , a

j
−i))

2

16: Update the actor using the sampled policy gradient:

∇θiηi ≈
1

N

N∑

j=0

∇θiµi(sj)∇ai

1

M

M∑

k=0

Qµi
i (sj, a

j
i , a

k,j
−i);

17: Compute ∆ρ
φ−i
−i using empirical estimation

18: Compute empirical gradient ∇̂φ−iJρ−i
19: Update φ−i according to ∇̂φ−iJρ−i
20: end for
21: Update target network parameters for each agent i:

θi′ ← λθi + (1− λ)θi′;

ωi′ ← λωi + (1− λ)ωi′;

22: end for
23: end for

training-with-decentralized-execution algorithm. In this setting, agents share the

experiences in the environment including state and historical joint actions, while

each agent receive its rewards privately. Our method does not require the knowl-

edge of other agents’ policy parameters. We also list the pseudo codes of PR2-Q

3.2. Probabilistic Recursive Reasoning 51

Algorithm 3.2 Multi-Agent Probabilistic Recursive Reasoning Q-Learning (PR2-Q).

1: Policy: πi, Opponent Recursive Reasoning: ρ−i(a−i|s, ai).
2: Initialize Qi(s, ai, a−i) arbitrarily, set α as the learning rate, γ as discount factor

3: while not converge do
4: Given the current s, calculate the opponent best response ρ−i(a−i|s, ai) ac-

cording to:

ρ−i(a−i|s, ai) = exp(Qi(s, ai, a−i)−Qi(s, ai))

5: Select and sample action ai based on the Recursive Reasoning ρ−i(a−i|s, ai)

softmax(

∫

a−i

φ−i(a−i|s, ai)Qi(s, ai, a−i))

6: Observing joint-action (ai, a−i), reward ri, and next state s′

Qi(s, ai, a−i)← (1− α)Qi(s, ai, a−i) + α(ri + γVi(s
′))

Qi(s, ai)← (1− α)Qi(s, ai) + α(ri + γVi(s
′))

7: where,

Vi(s) = max
ai

∫

a−i

ρ−i(a−i|s, ai)Qi(s, ai, a−i)

8: end while

in Algorithm 3.2. Finally, one important piece missing is how to find a best-fit

approximation of ρφ−i−i (a−i|s, ai).

The Algorithm 3.2 shows the variant of Decentralized Multi-Agent Proba-

bilistic Recursive Reasoning. We can simply approximate the ρ−i(a−i|s, ai) by

counting:ρ−i(a−i|s, ai) = C(ai, a−i, s)/C(ai, s)

in tabular if the state and action spaces are small, where C is the counting func-

tion. It this case, an agent only needs to learn a joint action Q-function, and if the

game is also static game, it would be same as Conditional Joint Action Learning

(CJAL) (Banerjee and Sen, 2007).

3.2. Probabilistic Recursive Reasoning 52

3.2.2 Variational Inference on Opponent Conditional Policy

We adopt an optimization-based approximation to infer the unobservable

ρ
φ−i
−i (a−i|s, ai) via variational inference (Jordan et al., 1999). We first define

the trajectory τ up to time t including the experiences of t consecutive time stages,

i.e. τ = [(s1, a
1
i , a

1
−i), . . . , (s

t, ati, a
t
−i)]. In the probabilistic reinforcement learn-

ing (Levine, 2018), the probability of τ being generated can be derived as

p(τ) =

[
p(s1)

T∏

t=1

p(st+1|st, ati, at−i)
]

exp

(∫ T

t=1

ri(s
t, at, at−i) dt

)
. (3.10)

Assuming the dynamics is fixed (i.e. the agent can not influence the environ-

ment transition probability), our goal is then to find the best approximation of

πθii (ati|st)ρφ−i−i (at−i|st, ati) such that the induced trajectory distribution p̂(τ) can match

with the true trajectory probability p(τ):

p̂(τ) = p(s1)
T∏

t=1

p(st+1|st, ati, at−i)πθii (ati|st)πθ−i−i (at−i|st, ati). (3.11)

In other words, we can optimize the opponents’ policy ρφ−i−i via minimizing the

KL-divergence between p̂(τ) and p(τ), i.e.

DKL(p̂(τ)‖p(τ)) = − Eτ∼p̂(τ)[log p(τ)− log p̂(τ)]

= −
∫ t=T

t=1

Eτ∼p̂(τ)

[
ri
(
st, ati, a

t
−i
)

+H
(
πiθi
(
ati|st

)
ρ
φ−i
−i
(
a−i|st, ati

))]
. (3.12)

Minimizing the KL-divergence is equivalent to maximizing the reward; however,

besides the reward term, the objective introduces an additional term of the conditional

entropy on the joint policyH
(
πiθi (ati|st) ρφ−i−i (a−i|st, ati)

)
, that potentially promotes

the explorations for both the agent i’s best response and the opponents’ conditional

policy. Note that the entropy here is conditioning not only on the state of environment

but also on agent i’s action. Minimizing Equation 3.12 gives us:

Theorem 3.1. The optimal Q-function for agent i that satisfies minimizing Equa-

3.2. Probabilistic Recursive Reasoning 53

tion 3.12 is formulated as:

Qπθ

i (s, ai) = log

∫

a−i

exp(Qπθ

i (s, ai, a−i)) da−i. (3.13)

And the corresponding optimal opponent conditional policy reads:

ρ
φ−i
−i (a−i|s, ai) = exp(Qi

πθ(s, ai, a−i)−Qi
πθ(s, ai)). (3.14)

Proof. Follow the proof in (Haarnoja et al., 2017; Levine, 2018), we give the overall

distribution at first:

p(τ) = [p(s1)
T∏

t=1

p(st+1|st, ati, at−i)] exp(

∫ T

t=1

ri(s
t, at, at−i) dt). (3.15)

We can simplify in the case of deterministic dynamics, and we can adopt an

optimization-based approximate inference approach to this problem, in which case

the goal is to fit an approximation π(ati, a
t
−i|st) ≈ πi(a

t
i|st)ρ−i(at−i|st, ati) such that

the trajectory distribution:

p̂(τ) = p(s1)
T∏

t=1

p(st+1|st, ati, at−i)πθii (ati|st)πθ−i−i (at−i|st, ati). (3.16)

In the case of exact inference, as derived in the previous section, the match is exact,

which means that DKL(p̂(τ)‖p(τ)) = 0, we can therefore view the inference process

as minimizing the KL-divergence:

DKL(p̂(τ)‖p(τ)) = −Eτ∼p̂(τ)[log p(τ)− log p̂(τ)]. (3.17)

3.2. Probabilistic Recursive Reasoning 54

Negating both sides and substituting, we get:

−DKL(p̂(τ)‖p(τ))

= Eτ∼p̂(τ)

[
log p(s1) +

∫ T

t=1

(log p(st+1|st, at, at−i) + ri(s
t, ati, a

t
−i)) dt

− log p(s1)−
∫ T

t=1

(log p(st+1|st, ati, at−i) + log π(ati, a
t
−i|st)) dt

]

= Eτ∼p̂(τ)

[∫ T

t=1

ri(s
t, ati, a

t
−i)− log π(ati, a

t
−i|st) dt

]

=

∫ T

t=1

E(st,ati,a
t
−i)∼p̂(st,ati,at−i))

[
ri(s

t, ati, a
t
−i)
]

+ Est,ati∼p̂(st)
[
H(ρ−i(a

t
−i|st, ati))

]
+ Est∼p̂(st)

[
H(πi(a

t
i|st))

]
dt,

(3.18)

where H is entropy term. In the recursive case, we note that we can rewrite the

objective and have:

Qi(s, ai) = log

∫

a−i

exp(Qi(s, ai, a−i)) da−i. (3.19)

which corresponds to a standard bellman backup with a soft maximization for the

value function. choosing optimal opponent recursive reasoning policy:

ρ−i(a−i|s, ai) = exp(Qi(s, ai, a−i)−Qi(s, ai)). (3.20)

Then we can have the objective function:

Ji(φ−i) =

∫ T

t=1

E(st,ati,a
t
−i)∼p̂(st,ati,at−i)[ri(s

t, ati, a
t
−i)

+H(ρ
φ−i
−i (at−i|st, ati)) +H(πθii (ati|st))] dt.

(3.21)

3.2. Probabilistic Recursive Reasoning 55

Then the gradient is then given by:

∇φ−iJi(φ−i)

=

∫ T

t=1

E(st,ati,a
t
−i)∼p(st,ati,at−i)[∇φ−i log ρ

φ−i
−i (at−i|st, ati)(

∫ T

t′=t

ri(s
t′ , at

′

i , a
t′

−i) dt]

+∇φ−i

∫ T

t=1

E(st,ati,a
t
−i)∼p(st,ati,at−i)[H(ρ

φ−i
−i (at−i|st, ati)) +H(πθii (ati|st))] dt.

(3.22)

The gradient of the entropy terms is given by:

∇φ−iH(ρ
φ−i
−i)

= −∇φE(st,ati)∼p(st,ati,at−i)[Eat−i∼ρ
φ−i
−i (at−i|st,ati)

[log ρ
φ−i
−i (at−i|st, ati)]]

= −E(st,ati,a
t
−i)∼p(st,ati,at−i)[∇φ log ρ

φ−i
−i (at−i|st, ati)(1 + log ρ

φ−i
−i (at−i|st, ati)].

(3.23)

We can do the same for∇φ−iH(πθii), and substitute these back:

∇φ−iJi(φ−i) =

∫ T

t=1

E(st,ati,a
t
−i)∼p(st,ati,at−i)[∇φ−i log ρ

φ−i
−i (at−i|st, ati)

(

∫ T

t′=t

ri(s
t′ , at

′

i , a
t′

−i)− log ρ
φ−i
−i (at

′

−i|st, at
′

i)− log πθii (ati|st)− 1) dt] dt.

(3.24)

The −1 comes from the derivative of the entropy terms, and replacing −1 with a

state and self-action dependent baseline b(st′ , at
′
i) we can obtain the approximated

3.2. Probabilistic Recursive Reasoning 56

gradient for φ:

∇φ−iJi(φ−i) =

∫ T

t=1

E(st,ati,a
t
−i)∼p(st,ati,at−i)[∇φ log ρ

φ−i
−i (at−i|st, ati)

(

∫ T

t′=t

ri(s
t′ , at

′

i , a
t′

−i)− log ρ
φ−i
−i (at

′

−i|st
′
, at
′

i)− log πθii (at
′

i |st
′
)− 1) dt] dt

≈
∫ T

t=1

E(st,ati,a
t
−i)∼p(st,ati,at−i)[∇φ−i log ρ

φ−i
−i (at−i|st, ati)

(ri(s
t, ati, a

t
−i)− log πθii (ati|st)︸ ︷︷ ︸

Qti(s
t,ati)−V ti (st)

− log ρ
φ−i
−i (at−i|st, ati)︸ ︷︷ ︸

Qti(s
t,ati,a

t
−i)−Qti(st,ati)

+

∫ T

t′=t+1

ri(s
t′ , at

′

i , a
t′

−i)− log ρ
φ−i
−i (at

′

−i|st
′
, at
′

i)− log πθii (at
′

i |st
′
)

︸ ︷︷ ︸
≈Qti(st+1,at+1

i ,at+1
−i)

) dt′] dt

=

∫ T

t=1

E(st,ati,a
t
−i)∼p(st,ati,at−i)[∇φ log ρ

φ−i
−i (at−i|st, ati)

(ri(s
t′ , at

′

i , a
t′

−i) +Qt
i(s

t+1, at+1
i , at+1

−i)−Qt
i(s

t, ati, a
t
−i) + V t

i (st︸ ︷︷ ︸
ignore

))] dt

=

∫ T

t=1

E(st,ati,a
t
−i)∼p(st,ati,at−i)[(∇φ−iQ

t
i(s

t, ati, a
t
−i)−∇φ−iQ

t
i(s

t, ati))

(ri(s
t′ , at

′

i , a
t′

−i) +Qt
i(s

t+1, at+1
i , at+1

−i)−Qt
i(s

t, ati, a
t
−i) + V t

i (st︸ ︷︷ ︸
ignore

))] dt

=

∫ T

t=1

E(st,ati,a
t
−i)∼p(st,ati,at−i)[(∇φ−iQ

t
i(s

t, ati, a
t
−i)−∇φ−iQ

t
i(s

t, ati))

(Q̂t
i(s

t, ati, a
t
−i)−Qt

i(s
t, ati, a

t
−i))] dt,

(3.25)

where Q̂t
i(s

t, ati, a
t
−i) is is an empirical estimate of the Q-value of the policy. �

Theorem 3.1 states that the learning of ρφ−i−i (a−i|s, ai) can be further converted

to minimizing the KL-divergence between the estimated policy ρφ−i−i and the ad-

vantage function: DKL

(
ρ
φ−i
−i (a−i|s, ai)‖ exp(Qi(s, ai, a−i)−Qi(s, ai))

)
. We can

obtain a solution to Equation 3.14 by maintaining two Q-functions, and then iter-

atively update them. We prove the convergence in the symmetric with only one

equilibrium. This leads to a fixed-point iteration that resembles value iteration.

Theorem 3.2. In a symmetric game with only one equilibrium, and the equilibrium

meets one of the conditions: 1) the global optimum, i.e. Eπ∗ [Qt
i(s)] ≥ Eπ [Qt

i(s)]; 2)

3.2. Probabilistic Recursive Reasoning 57

a saddle point, i.e. Eπ∗ [Qt
i(s)] ≥ EπiEπ∗−i [Qt

i(s)] or Eπ∗ [Qt
i(s)] ≥ Eπ∗i Eπ−i [Qt

i(s)];

where Q∗ and π∗ are the equilibrium value function and policy, respectively. The

PR2 soft value iteration operator defined by:

T Qi(s, ai, a−i) , ri(s, ai, a−i)

+ γEs′,ai′∼ps,πi

[
log

∫

a−i′
exp(Qi(s

′, ai′, a−i′)) da−i′
]
,

(3.26)

is a contraction mapping.

Proof. Based on Equation 3.13 & 3.14 in Theorem 3.1, we can have the PR2 soft

value iteration rules shown as:

Qπ
i (s, ai, a−i) = ri(s, ai, a−i) + γEs′∼ps [H(πi(ai|s)π−i(a−i|s, ai))

+ Ea−i′∼π−i(·|s′,ai′)[Q
π
i (s′, ai′, a−i′)]]

= ri(s, ai, a−i) + γEs′∼ps [Qπ
i (s′, ai′)].

(3.27)

Correspondingly, we define the soft value iteration operator T :

T Qi(s, ai, a−i) , ri(s, ai, a−i) + γEs′,ai′∼ps,πi [log

∫

a−i′

exp(Qi(s
′, ai′, a−i′)) da−i′].

(3.28)

In a symmetric game with either one global equilibrium or saddle equilibrium, it

has been shown by (Yang et al., 2018a) (see condition 1&2 in Theorem 1) that the

payoff at the equilibrium point is unique. This validates applying the similar idea in

proving the contraction mapping of soft-value iteration operator in the single agent

case (see Lemma 1 in (Fox et al., 2016)). We include it here to stay self-contained.

We first define a norm on Q-values as ‖Q1
i − Q2

i ‖ , maxs,ai,a−i |Q1
i (s, ai, a−i) −

Q2
i (s, ai, a−i)|. Suppose ε = ‖Q1

i −Q2
i ‖, then

log

∫

a−i′

exp(Q1
i (s
′, ai′, a−i′)) da−i′ ≤ log

∫

a−i′

exp(Q2
i (s
′, ai′, a−i′) + ε) da−i′

= ε+ log

∫

a−i′

exp(Q2
i (s
′, ai′, a−i′)) da−i′.

(3.29)

3.3. Experiments 58

Similarly,

log

∫

a−i′

exp(Q1
i (s
′, ai′, a−i′)) da−i′ ≤ −ε+ log

∫

a−i′

exp(Q2
i (s
′, ai′, a−i′)) da−i′.

Therefore ‖T Q1
i − T Q2

i ‖ ≤ γε = γ‖Q1
i −Q2

i ‖. �

3.2.3 Sampling in Continuous Action Space

In dealing with the continuous action space, getting the actions from the oppo-

nent policy is challenging, as ρφ−i−i (a−i|s, ai) ∼ exp(Qi(s, ai, a−i) − Qi(s, ai)). In

this chapter, we follow (Haarnoja et al., 2017) to adopt the amortized Stein Vari-

ational Gradient Descent (SVGD) (Liu and Wang, 2016; Wang and Liu, 2016)

in sampling from the soft Q-function. Compared to MCMC, Amortized SVGD

is a computationally-efficient way to estimate ρφ−i−i (a−i|s, ai). Thanks to SVGD,

agent i is able to reason about potential consequences of opponent bavhaviors
∫
a−i

π
θ−i
−i (a−i|s, ai)Qi(s, ai, a−i) da−i, and finally find the corresponding best re-

sponse.

3.2.4 Alternative Approach

In learning the opponent conditional policy ρφ−i−i (a−i|s, ai), one could also conduct

variational inference directly on minimizing DKL(ρ
φ−i
−i (a−i|s, ai)||πθ−i−i (a−i|s, ai)).

In such a way, it is equivalent to maximizing the evidence of lower bound, that is

L(θi, φ−i, ai) = E
a−i∼ρ

φ−i
−i (a−i|s,ai)

[log πθii (ai|s, a−i)]

−DKL(ρ
φ−i
−i (a−i|s, ai)||πθ−i−i (a−i|s)).

However we believe this is not feasible. The main reason is that we have no

information on either πθ−i−i (a−i|s) or πθii (ai|s, a−i); therefore, we have to construct

two additional models to learn from experiences in an supervised way. Despite the

added complexity, this approach introduces another two origins of approximation

errors.

3.3. Experiments 59

0.0 0.2 0.4 0.6 0.8 1.0
Policy of Agent 1

0.0

0.2

0.4

0.6

0.8

1.0

P
ol

ic
y

of
 A

ge
nt

 2

0

100

200

300

400

Ite
ra

tio
ns

(a) IGA dynamics.

0.0 0.2 0.4 0.6 0.8 1.0
Policy of Agent 1

0.0

0.2

0.4

0.6

0.8

1.0

P
ol

ic
y

of
 A

ge
nt

 2

0

100

200

300

400

Ite
ra

tio
ns

(b) PR2-Q dynamics.

0.0 0.2 0.4 0.6 0.8 1.0
Policy of Agent 1

0.0

0.2

0.4

0.6

0.8

1.0

P
ol

ic
y

of
 A

ge
nt

 2

0

50

100

150

200

250

300

Ite
ra

tio
ns

(c) IGA-PP dynamics.

0.0 0.2 0.4 0.6 0.8 1.0
Policy of Agent 1

0.0

0.2

0.4

0.6

0.8

1.0

P
ol

ic
y

of
 A

ge
nt

 2

0

100

200

300

400

Ite
ra

tio
ns

(d) WoLF-PHC dynamics.

Figure 3.3: Learning paths on the iterated matrix game 1.

3.3 Experiments
We evaluate the performance of our algorithm on iterated matrix games, and dif-

ferential games. Those games have a non-trivial equilibrium that requires certain

levels of intelligent reasoning between agents. We compared our algorithm with

a series of baselines. In the matrix games, we compare against IGA (Infinitesimal

Gradient Ascent) (Singh et al., 2000), IGA-PP (Infinitesimal Gradient Ascent with

Policy Prediction) (Zhang and Lesser, 2010), and WoLF-PHC (Win or Learn Fast

Policy Hill-Climbing) (Bowling and Veloso, 2002). In IGA and IGA-PP, the policy

learning rate was 0.01 and the short-term prediction rate for IGA-PP was 0.008.

For WoLF-PHC, we used larger learning rates δl = 0.015, δw = 0.03 which makes

algorithm converges within the smallest number of time steps.

In the differential games, the baselines from multi-agent learning algorithms

are MASQL (Multi-Agent Soft-Q) (Wei et al., 2018) and MADDPG (Lowe et al.,

3.3. Experiments 60

0.0 0.2 0.4 0.6 0.8 1.0
Policy of Agent 1

0.0

0.2

0.4

0.6

0.8

1.0

P
ol

ic
y

of
 A

ge
nt

 2

0

100

200

300

400

Ite
ra

tio
ns

(a) IGA dynamics.

0.0 0.2 0.4 0.6 0.8 1.0
Policy of Agent 1

0.0

0.2

0.4

0.6

0.8

1.0

P
ol

ic
y

of
 A

ge
nt

 2

0

100

200

300

400

Ite
ra

tio
ns

(b) PR2-Q dynamics.

0.0 0.2 0.4 0.6 0.8 1.0
Policy of Agent 1

0.0

0.2

0.4

0.6

0.8

1.0

P
ol

ic
y

of
 A

ge
nt

 2

0

100

200

300

400

Ite
ra

tio
ns

(c) IGA-PP dynamics.

0.0 0.2 0.4 0.6 0.8 1.0
Policy of Agent 1

0.0

0.2

0.4

0.6

0.8

1.0

P
ol

ic
y

of
 A

ge
nt

 2

0

100

200

300

400

Ite
ra

tio
ns

(d) WoLF-PHC dynamics.

Figure 3.4: Learning paths on the iterated matrix game 2.

2017). We also including independent learning algorithms implemented through

DDPG (Lillicrap et al., 2015). To compare against traditional method of opponent

modeling, we include one baseline that is also based on DDPG but with one additional

opponent model that is trained in an online and supervised way to learn the most

recent opponent policy, which is then fed into the critic. Similar approach has been

implemented by (Rabinowitz et al., 2018) in realizing machine theory of mind.

For the experiment settings, all the policies, opponent models and Q-functions

are parameterized by the MLP with 2 hidden layers and 100 units each with the

ReLU activation. The sampling network ξ for the ρφ−i−i in SGVD follows the standard

normal distribution. In the iterated matrix game, we trained all the methods including

the baselines for 500 iterations. In the differential game, we trained the agents for

350 iterations with 25 steps per iteration. For the actor-critic methods, we set the

exploration noise to 0.1 in first 1000 steps, and the annealing parameters for PR2-AC

3.3. Experiments 61

0 100 200 300 400 500
Iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

P
ol

ic
y

Agent Policy
Policy of Agent 1
Policy of Agent 2

(a) PR2-Q Agent Policies.

0 100 200 300 400 500
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

P
ol

ic
y

Opponent Policy
Opponent Policy Estimated by Agent 1
Opponent Policy Estimated by Agent 2

(b) PR2-Q Opponent Policies

Figure 3.5: Learned policies on the iterated matrix game 1.

10 5 0 5
Action of Agent 1

10

5

0

5

A
ct

io
n

of
 A

ge
nt

 2

-30.0

-30.0

-2
6.

0

-26.0

-22.0

-22.0

-22.0

-1
8.

0

-18.0

-18.0

-14.0

-1
4.0

-10.0

-10.0

-6.0

-6.
0

-2.0

-2.02.0
6.0

(a) The learning path of PR2-
AC vs. PR2-AC.

(b) The learning curves.

Figure 3.6: Max of Two Quadratic Game.

and MASQL are set to 0.5 to balance between the exploration and acting as the best

response.

3.3.1 Iterated Matrix Game

Firstly, we conducted the experiment on two matrix games. The payoffs for the first

matrix game are defined by:

Agent 1

Agent 2

Action 1 Action 2

Action 1 0, 3 3, 2

Action 2 1, 0 2, 1

Matrix Game 1

.

Similarly, the payoffs for the second matrix game are defined by:

3.3. Experiments 62

Agent 1

Agent 2

Action 1 Action 2

Action 1 −1, 3 3, 1

Action 2 0,−1 1, 0

Matrix Game 2

.

Both games have only one mixed Nash Equilibrium, which respectively are (1
2
, 1

2
)

and (1
3
, 2

3
).

Above games have been extensively investigated in the studies on multi-agent

learning (Bowling and Veloso, 2001a,b). One reason is that in solving the Nash

Equilibrium for this game, simply taking simultaneous gradient steps on both agent’s

value functions will present the rotational behaviors on the gradient vector field;

this leads to an endlessly iterative change of behaviors. Without considering the

consequence of one agent’s action on the other agent beforehand, it is challenging

for both players to find the equilibrium. Interestingly, similar issue has also been

reported in training the GANs (Goodfellow et al., 2014). Mescheder et al. (2017)

has pointed out that the reason that game has a strong rotation gradient vector field is

due to the imaginary part in the eigenvalue of IGA learning matrix.

The results for two matrix games are shown in Figure 3.3 and 3.4. In both

games, as expected, IGA fails to converge to the equilibrium but rotate around the

equilibrium point. IGA-PP can reach the equilibrium, while IGA-PP assumes the

knowledge about the other’s value function. Similar to WoLF-PHC, our method can

find the central equilibrium with a fully distributed fashion (see Figure 3.3b). The

convergence of PR2-Q can also be confirmed by agents’ policies in Figure 3.5a, and

opponent’s policy that is maintained by each agent in Figure 3.5b.

Besides, we also tested the computation time for all the methods using 2.3 GHz

Quad-Core Intel Core i5, and recorded the average time in millisecond (ms) for taking

1000 steps. IGA and IGA-PP take about 5ms to process 1000 steps because they

do not need to approximate the value functions. On the contrary, WoLF-PHC and

PR2-Q need to approximate the value functions by themselves. Therefore, WoLF-

PHC and PR2-Q require 271ms and 400ms to process 1000 steps, respectively. This

3.3. Experiments 63

result shows that although PR2-Q can find the equilibrium with minimal knowledge

about the game, but it requires more complicated computation to achieve equivalent

performance compared to the WoLF-PHC.

10 5 0 5
10

5

0

5

-30.0

-30.0

-2
6.

0

-26.0

-22.0

-22.0

-22.0

-1
8.

0

-18.0

-18.0

-14.0

-1
4.0

-10.0

-10.0

-6.0

-6.
0

-2.0

-2.02.0

6.0

(a) DDPG / DDPG.

10 5 0 5
10

5

0

5

-30.0

-30.0

-2
6.

0

-26.0

-22.0

-22.0

-22.0

-1
8.

0

-18.0

-18.0

-14.0

-1
4.0

-10.0

-10.0

-6.0

-6.
0

-2.0

-2.02.0

6.0

(b) DDPG- / DDPG-OM.

10 5 0 5
10

5

0

5

-30.0

-30.0

-2
6.

0

-26.0

-22.0

-22.0

-22.0

-1
8.

0

-18.0

-18.0

-14.0

-1
4.0

-10.0

-10.0

-6.0

-6.
0

-2.0

-2.02.0

6.0

(c) MA- / MADDPG.

10 5 0 5
10

5

0

5

-30.0

-30.0

-2
6.

0

-26.0

-22.0

-22.0

-22.0

-1
8.

0

-18.0

-18.0

-14.0

-1
4.0

-10.0

-10.0

-6.0

-6.
0

-2.0

-2.02.0

6.0

(d) MASQL / MASQL.

10 5 0 5
10

5

0

5

-30.0

-30.0

-2
6.

0

-26.0

-22.0

-22.0

-22.0

-1
8.

0

-18.0

-18.0

-14.0

-1
4.0

-10.0

-10.0

-6.0

-6.
0

-2.0

-2.02.0

6.0

(e) PR2-AC / DDPG.

10 5 0 5
10

5

0

5

-30.0

-30.0

-2
6.

0

-26.0

-22.0

-22.0

-22.0

-1
8.

0

-18.0

-18.0

-14.0

-1
4.0

-10.0

-10.0

-6.0

-6.
0

-2.0

-2.02.0

6.0

(f) PR2-AC / DDPG-OM.

10 5 0 5
10

5

0

5

-30.0

-30.0

-2
6.

0

-26.0

-22.0

-22.0

-22.0

-1
8.

0

-18.0

-18.0

-14.0

-1
4.0

-10.0

-10.0

-6.0

-6.
0

-2.0

-2.02.0

6.0

(g) PR2-AC / MADDPG.

10 5 0 5
10

5

0

5

-30.0

-30.0

-2
6.

0

-26.0

-22.0

-22.0

-22.0

-1
8.

0

-18.0

-18.0

-14.0

-1
4.0

-10.0

-10.0

-6.0

-6.
0

-2.0

-2.02.0

6.0

(h) PR2-AC / MASQL.

Figure 3.7: The learning path of Agent 1 (x-axis) vs. Agent 2 (y-axis). The self-play
baselines and the PR2-AC control groups can only learn the pathologies to the
suboptimal Nash equilibrium.

3.3.2 Differential Game

We adopt the same differential game, the Max of Two Quadratic Game, as (Panait

et al., 2006; Wei et al., 2018). The agents have continuous action space of

[−10, 10]. Each agent’s reward depends on the joint action following the equa-

3.3. Experiments 64

tions: r1 (a1, a2) = r2 (a1, a2) = max (f1, f2) , where:

f1 = 0.8×
[
−
(
a1 + 5

3

)2

−
(
a2 + 5

3

)2
]
,

f2 = 1.0×
[
−
(
a1 − 5

1

)2

−
(
a2 − 5

1

)2
]

+ 10.

The task formulation is relatively simple, but it poses a great challenge to

general gradient-based algorithms because gradient tends to points to the sub-optimal

solution. The reward surface is shown in Figure 3.6a; there is a local maximum 0

at (−5,−5) and a global maximum 10 at (5, 5), with a deep valley staying in the

middle. If the agents’ policies are initialized to (0, 0) (the red starred point) that lies

within the basin of the left local maximum, the gradient based methods would tend

to fail to find the global maximum equilibrium point due to the valley blocking the

upper right area. The pathology of a suboptimal Nash Equilibrium in the joint space

of actions being preferred over an optimal Nash Equilibrium is also called relative

over-generalization (Wei and Luke, 2016).

We present the results in Figure 3.6b. PR2-AC shows superior performance

that manages to converge to the global equilibrium, while all the other baselines

fall into the local basin on the left, except that the MASQL has small chance to

find the optimal point. On top of the convergence result, it is worth noting that as

the temperature annealing is required for energy-based RL methods, the learning

outcomes of MASQL are extremely sensitive to the way of annealing, i.e. when

and how to anneal the temperature to a small value during training is non-trivial.

However, our method does not need to tune the the annealing parameter precisely,

because the each agent is acting the best response to the approximated conditional

policy, which has considered all potential consequences of the opponent’s response

if this action was taken.

Interestingly, by comparing the learning path in Figure 3.6a against Figure 3.7(a-

d) where the scattered dots are the exploration trails at the beginning, we can tell

that if the PR2-AC model finds the peak point in joint action space, the agents

can quickly go through the shortcut out of the local basin in a clever way, while

3.3. Experiments 65

0.0 0.3 0.6 0.9
Normalized agent score

DDPG

DDPG-OM

MADDPG

MASQL

PR2-AC

Cooperative navigation

Figure 3.8: Performance of PR2-AC in the cooperative navigation game.

other algorithms cannot. This further justifies the effectiveness and benefits of

conducting recursive reasoning with opponents. DDPG in Figure 3.7a and MASQL

in Figure 3.7d even miss the local equilibrium; we believe this is because of the

inborn defect from the independent learning methods, and the sensitivity to the

annealing process respectively.

Apart from testing in the self-play setting, we also test the scenario when the

opponent type is different. We pair PR2-AC with all four baseline algorithms in

Figures 3.7(e-h). Similar result can be found, that is, algorithm that has the function

of taking into account the opponents (i.e. DDPG-OM & MADDPG) can converge to

the local equilibrium even though not global, while DDPG and MASQL completely

fails due to the same reasons as in self-plays. Finally, we want to highlight the

difference between PR2 methods and traditional OM, that is, PR2-Q/PR2-AC agent

models how the opponents would believe about what it would behave, and then finds

the best response to that belief, whereas OM agent tends to only model how the

opponents behave based on the history. Such difference this seems to be a decisive

factor in overcoming the rotational dynamics or the relative over-generalization

issue.

3.4. Summary 66

3.3.3 Particle World Environments

We further test our method on the multi-state multi-player Particle World Environ-

ments (Lowe et al., 2017). We choose a cooperative game, Cooperative Navigation,

in which three agents are collectively rewarded based on the proximity of any agent

to three landmarks while avoiding collisions. The PR2 methods are compared to

a series of centralized and decentralized MARL methods in Fig. 3.8 and all the

methods are trained five random seeds. Even though PR2AC is a decentralized

algorithm that does not have access to the exact opponent policies, it presents similar

performance compared to the centralized method, including MADDPG and MASQL,

Furthermore, PR2AC can outperform the other independent learners, such as DDPG

and DDPG with opponent modeling.

3.4 Summary
Inspired by the recursive reasoning capability of human intelligent, in this chapter,

we introduce a probabilistic recursive reasoning framework for multi-agent RL that

follows "I believe that you believe that I believe". We adopt variational Bayes

approaches to approximating the opponents’ conditional policy, to which each agent

then finds the best response to improve their own policy. The training and execution

is full decentralized and the resulting algorithms, PR2-Q and PR2-AC, converge in

the symmetric games with only one Nash equilibrium. Our results on both the matrix

game and the differential game show the advantages of learning to reason about the

opponents in a recursive manner.

Chapter 4

Generalized Recursive Reasoning

In this chapter, we bring the idea of mixing the cognitive hierarchy into the deep

reinforcement learning (RL) framework, and develop algorithms that could both

incorporate opponents’ non-equilibrium behaviors in the games and converge to the

NE faster. This is different from the work (Hu and Wellman, 2003; Wen et al., 2019;

Yang et al., 2018a) that the convergence to NE requires agents to solve NE at each

stage of the game.

Our proposed recursive reasoning models, modeling the opponents in a recur-

sive manner, i.e. “I believe how you would believe about how I believe", can be

regarded as a special type of opponent modeling (Albrecht and Stone, 2018). It was

first introduced by game theorists (Harsanyi, 1962, 1967). The study on Theory

of Mind (ToM) (Goldman et al., 2012; Rabinowitz et al., 2018), which refers to

the ability of humans to infer and understand the beliefs, desires, and intentions

of others, introduced the uncertainty of the agent’s belief on opponents’ behaviors,

their payoffs, and the recursion depths. The Interactive POMDP (I-POMDP) (Gmy-

trasiewicz and Doshi, 2005) implements the idea of ToM to tackle the multi-agent

reinforcement learning problem. It extends the partially observed MDP (Sondik,

1971) by introducing an extra space of models of other agents into the environment

state, as such, an agent can build belief models about how it believes other agents

know and believe. Despite the additional flexibility in the framework, I-POMDP

has limitations in its solvability (Seuken and Zilberstein, 2008). Solving I-POMDP

with N models considered in each of recursive level with K maximum level equals

68

to solving O(NK) PODMPs. Such inherent complexity requires high precision on

the approximation solution methods, including particle filtering (Doshi and Gmy-

trasiewicz, 2009), value iteration (Doshi and Perez, 2008), or policy iteration (Sonu

and Doshi, 2015). (Ng et al., 2012) further extends the I-POMDP to incorporate the

uncertainty of the transition and observation models of the environment, and develop

the solution in an online way. In this work, we simplify the problems to a fully

observable setting. We focus on investigating if a recursive model of other agents

can consequently benefit our decision making. Therefore, this work’s complexity is

simpler than I-POMDP that we do not estimate the belief about both the physical

state and other agents; instead, we provide a probabilistic framework to implement

the recursive reason about opponents’ policies in the MDP. We approximate the

opponent’s conditional policy through variational Bayes methods. The induced

recursive reasoning algorithms are model-free and can practically be used as the

replacement to other multi-agent RL algorithms such as MADDPG (Lowe et al.,

2017).

Despite the recent success of applying deep reinforcement learning algorithms

on both single-agent discrete (Mnih et al., 2015) and continuous (Lillicrap et al.,

2015) control problems, independent learners ignores other agents in the multi-

agent context; the theoretical convergence guarantee therefore breaks (Tuyls and

Weiss, 2012). A modern framework is to maintain a centralised Q-network during

training, e.g. MADDPG (Lowe et al., 2017) and multi-agent soft Q-learning (Wei

et al., 2018); however, they require assumptions that both the actions of others

and the parameters of the policy networks are fully observable (so as LOLA by

(Foerster et al., 2018a)), let alone the centralized Q-network potentially prohibits the

algorithms from scaling up. Besides, Haarnoja et al. (2017) enables a hierarchical

structure for agent policy, but it is for single-agent case and needs layer-wise pre-

training. Our approach employs decentralized training and decentralized execution,

which requires less centralized information during the training and only needs to

observe agents’ historical actions.

In this chapter, we embed recursive reasoning into the RL framework via

4.1. Preliminaries: Multi-Agent Soft Learning 69

probabilistic inference. (Levine, 2018) built the connection between inferring the

optimal policy in RL and the probabilistic inference on graphical models. Within this

framework, (Haarnoja et al., 2017, 2018) designed the soft Q-learning and soft actor-

critic methods. (Grau-Moya et al., 2018) and (Wei et al., 2018) further generalized

the soft Q-learning to the multi-agent scenario; however, these methods optimize

towards the optimal Q-function of the joint actions; by doing this, it implies that the

opponents will always collaborate with the central agent to reach its best equilibrium.

However, forming the incorrect beliefs about the opponents is detrimental in many

scenarios (Albrecht and Stone, 2018) (e.g. the prisoner’s dilemma).

4.1 Preliminaries: Multi-Agent Soft Learning

Interestingly, the maximum-entropy framework which can model the sub-optimal

behaviors has also been explored in the RL domain through inference on graphi-

cal models Levine (2018); soft Q-learning Haarnoja et al. (2017) and actor-critic

Haarnoja et al. (2018) methods were developed. Recently, soft learning has been

further adapted into the context of MARL Tian et al. (2019); Wei et al. (2018).

Our GR2 method is built upon the framework of n-agent stochastic game (Shap-

ley, 1953) using soft learning. Agents are self-interested to learn only the optimal

policy in the game. The variable Oi represents how optimal agent i is at time t; it

is proportional to the reward P (Ot
i = 1|st, ati) ∝ exp(ri(s

t, ati, a
t
−i)) (Levine, 2018).

In other words, Oi can describe how likely the trajectory τi will be observed, e.g. if

agents were egocentric, altruism actions are less likely to be observed. The optimal

action for agent i is then stated as p(ati|st, at−i, Ot:T
i = 1).

The best response to the opponent policy π−i is the policy π∗i s.t.

Vi(s; π
∗
i , π−i) ≥ Vi(s; πi, π−i) for all valid πi. When all the agents act in their

best response, (π∗1, . . . , π
n
∗) forms a Nash Equilibrium (Nash et al., 1950). Soft

Q-learning, also called maximum entropy RL, is the outcome if one applies varia-

tional inference to solve the optimal policy on the graphical model of RL (Levine,

2018). Compared to the normal Q-learning, it has one additional entropy term in the

objective. When the soft Q-learning is adapted into the multi-agent case, the entropy

4.1. Preliminaries: Multi-Agent Soft Learning 70

s s

Level 1 Level 2

Lower-Level
Recursive Reasoning

s

Level k

ρ0
−i (a−i|s)

π1
i (ai|s, a−i)

a1
−i

a2
i

a−i a−i a−i

a0
i

a0

a0
−i

a1
i π2

i (ai|s, a−i)

ρ1
−i (a−i|s, ai)

π0
i (ai|s)

· · ·

...

πk−2
i (ai|s, a−i)

ρ0
−i (a−i|s)

π0
i (ai|s)

/

πk
i (ai|s, a−i)

ρk−1
−i

(
a−i|s, ai

)

ak−2
i

ak−1
−i

ak
i

Oi Oi Oi

Figure 4.1: Graphical model of the level-k recursive reasoning. Note that the suffix a∗
here stands for the level of thinking not the time step. The unobservable oppo-
nent policies are approximated by ρ−i. The omitted level-0 model considers
opponents fully randomized. Agent i rolls out the recursive reasoning about
opponents in its mind (grey area). In the recursion, agents with higher-level
beliefs take the best response to the lower-level thinkers’ actions. Higher-level
models would conduct all the computations that the lower-level models have
done, e.g. level-2 contains level-1.

termH is instead applied on the joint policy π(ati, a
t
−i|st) (Grau-Moya et al., 2018).

The soft value function therefore reads as follows:

Vi(s) = E[
∞∑

t=0

ri(s
t, ati, a

t
−i) +H(π(ati, a

t
−i|st))]. (4.1)

For policy evaluation, a modified Bellman operator T π can be applied,

T πQi(s
t, ati, a

t
−i) , ri(s

t, ati, a
t
−i) + γEst+1,p[Vi(st+1)],

where

Vi(s
t) = Eai,a−i∼π[Qi(s, ai, a−i)− log π(ai, a−i|s)].

Compared to the max operator in the Bellman equation for Vi(s) in the case

4.1. Preliminaries: Multi-Agent Soft Learning 71

...
...

...

· · ·

Possible Reasoning Paths Optimal Reasoning Path

ρk−1
−i (a−i|s, ai) πk

i (ai|s, a−i) πk
i (ai|s)

ak−2
i,1

ak−2
i,2

ak−2
i,m

ak−2
i,3 ak−2

−i,3

ak−2
−i,2

ak−2
−i,1

ak−2
−i,m ak

i,m

ak
i,3

ak
i,2

ak
i,1

Figure 4.2: Reasoning paths of the level-k policy.

without the entropy term, it is soft because Vi(st) = log
∫

exp(Qi(s
t, at)) dat ≈

maxat Q(st, at). Correspondingly, the independent policy πi(ai|s) can be learned by

minimizing DKL(πi(ai|s)|| exp(Qi(s, ai))), which leads to the Soft RL (Haarnoja

et al., 2017, 2018).

However, policy improvement becomes tricky in the multi-agent soft Q-learning

because the Q-function guides the improvement direction for the joint policy rather

than for each individual agent. One naive approach is to discard the opponents actions

sampled from the joint policy π(ati, a
t
−i|st) and take the marginalized output (Wei

et al., 2018).

Probabilistic Recursive Reasoning PR2 (Wen et al., 2019) adopted the

so-called correlated factorization on the joint policy, i.e. π(ai, a−i|s) =

πi(ai|s)π−i(a−i|s, ai), where π−i(a−i|s, ai) represents the level-1 reasoning pro-

cess of the opponent’s consideration of the action from agent i. PR2 approximates

the actual opponent conditional policy π−i via a best-fit model ρφ−i−i from a family

of distributions parameterized by φ−i. Through variational inference, the optimal

opponent conditional policy in PR2 Q-learning is described to be

ρ
φ−i
−i (a−i|s, ai) ∝ exp(Qπθ

i (s, ai, a−i)−Qπθ

i (s, ai)). (4.2)

Based on the optimal opponent model given by Equation 4.2, agent i can learn

4.2. Generalized Recursive Reasoning 72

the best response policy πi(ai|s) according to the optimal Q-function: Qi(s, ai) =
∫
a−i

ρ
φ−i
−i (a−i|s, ai)Qi(s, ai, a−i) da−i.

Together with the Bellman equation for policy evaluation on Equation 4.1, PR2

is proved to converge to the Nash equilibrium for the symmetric games with only

one Nash equilibrium.

4.2 Generalized Recursive Reasoning
Our goal is to develop more generalized and flexible recursive reasoning into MARL.

In this section, we first introduce the protocol of level-k recursive reasoning (GR2-L),

and then propose a mixture model that takes into account agents with different

hierarchical levels of policies (GR2-M).

4.2.1 Higher Level Recursive Reasoning

We start by constructing a level-k recursive reasoning process, naming it GR2-L.

A level-k policy for agent i is the best response to the opponents’ policy at level

k − 1 (see Figure 4.1). We assume π−i is not directly observable, and agents have to

approximate it by ρ−i. The models on ai and a−i can be regarded as latent variable

model, with the marginal policies πi(ai|s), ρ−i(a−i|s) serving as the prior, and the

conditional policies πi(ai|s, a−i), ρ−i(a−i|s, ai) as the posterior. Actions can be

sampled in a sequential manner. The level-k policy is therefore constructed by

integrating over best responses from all lower-level policies,

πki (aki |s) ∝∫

ak−1
−i

dak−1
−i

{
πki (aki |s, ak−1

−i)

∫

ak−2
i

dak−2
i

[
ρk−1
−i (ak−1

−i |s, ak−2
i)πk−2

i (ak−2
i |s)

] }
.

(4.3)

From agent i’s perspective, it believes that the opponents will take the best re-

sponse to its own (fictitious) action ak−2
i that are two levels below: ρk−1

−i (ak−1
−i |s) =

∫
ρk−1
−i (ak−1

−i |s, ak−2
i)πk−2

i (ak−2
i |s) dak−2

i , even though the beliefs, ρ−i, that agent

i holds for its opponents might be inaccurate yet. πk−2
i can be further expanded

recursively until meeting π0 that is assumed uniformly distributed. For brevity, we

mostly omit the subscript level k in actions a from now on while acknowledging

4.2. Generalized Recursive Reasoning 73

that the actions in the lower level are imagined (fictitiously taken). As shown in

Figure 4.1 and Figure 4.2, considering the computational feasibility, we assume that

each of the agents adopts the same functional form for its policy across the reasoning

process in different depths. It means we can reuse the policy parameters to produce

a higher level πki via best response to the lower level ρk−1
−i , and same procedure also

works for ρki .

4.2.2 Mixture of Hierarchy Recursive Reasoning

While the level-k policy assumes agents best respond to the level k − 1 opponents ,

we can further generalize the model to let agent best respond to a mixture of agents

that are distributed over the lower hierarchies. We name it GR2-M.

We assume that the level-k agents have an accurate guess about the relative

proportion of agents who are doing less thinking than them. This specification implies

that even though the agent could maintain an inaccurate belief on the probability

distribution of the agents’ recursive depths, as k increases, the deviation between

agent’s belief and the actual distribution profile of k will shrink. This further suggests

that when k is very large, there is no benefit for level-k thinkers to reason even harder,

as they will have the same beliefs, subsequently make the same decisions as agents at

k + 1. Since more steps of computations are required as the k grows, it is reasonable

to make such assumption so that with the increasing k, fewer agents are willing to

do the reasoning beyond k. Such assumption can also be justified by the limited

amount of working memory in the strategic thinking on human beings (Devetag and

Warglien, 2003).

In order to meet this assumption, we model the distribution of recursive depth

k by the Poisson distribution f(k) = e−λλk

k!
, where the mean, also the variance, of

the distribution is λ. A nice property of Poisson is that f(k)/f(k − 1) is inversely

proportional to k, which satisfies our previous assumption. Interestingly, a study on

humans suggests that on average people tend to act with λ ≈ 1.5 (Camerer et al.,

2004).

With the mixture of hierarchy modeled by Poisson, we can now mix all k levels’

4.2. Generalized Recursive Reasoning 74

ρ−i
(k−1)(a

−i|s, ai)

≤ ≤

· · · πk
i (ai|s, a−i)

ak−2
i ak−1

−i

ρk−1
−i (a−i|s, ai)πk−2

i (ai|s, a−i)πk−4
i (ai|s, a−i) ρk−3

−i (a−i|s, ai)
ak−4

i ak−3
−i ak

i

Qi

(
s, ak−4

i , ak−3
−i

)
Qi

(
s, ak−2

i , ak−3
−i

)
Qi

(
s, ak−2

i , ak−1
−i

)
Qi

(
s, ak

i , ak−1
−i

)

Figure 4.3: Inter-level policy improvement. Higher-order strategies should weakly dominant
lower-order strategies, e.g. with the opponent behaviors ak−1

−i unchanged, aki
should perform at least as good as ak−2

i , ak−4
i , . . . , a1

i .

thinkings into one perception, and build each agent’s belief on its opponents by

πki,λ :=
e−λ

Z
(
λ0

0!
π0
i +

λ1

1!
π1
i · · ·

λk

k!
πki), (4.4)

where Z is a normalization term. In the reinforcement learning framework to be

shown later, λ can be set as a hyper-parameter, similar to the TD-λ (Tesauro, 1995).

Note that GR2-L is in fact a special case of GR2-M. When the depth k follows

Poisson distribution, we have f(k − 1)/f(k − 2) = λ/(k − 1); the model will put

heavy weights on the k − 1 level if λ� k; that is to say, a level-k agent will act as

if all the opponents are reasoning at level k − 1.

4.2.3 Theoretical Convergence

Recursive reasoning is essentially to let each agent take the best response to its

opponents with the opponents’ actions being the best response to the agent’s best-

responded action. A natural question to ask is then under the GR2 setting, does the

equilibrium ever exist? If so, will GR2 ever converge?

We show that on two-player games, the learning dynamics of GR2 is asymptot-

ically stable in the sense of Lyapunov. In addition, the dynamic game induced by

GR2 has Perfect Bayesian Equilibrium.

Theorem 4.1. In two-player two-action games with one mixed strategy equilibrium,

when the opponent model’s step size is sufficiently small, the learning dynamics of

GR2 methods to the equilibrium is asymptotic stable in the sense of Lyapunov (see

Definition 4.2).

Proof. We start by defining the matrix game that a mixed-strategy equilibrium exists,

and they we show that on such game level-0 independent learner through iterated

4.2. Generalized Recursive Reasoning 75

gradient ascent will not converge, and finally derive why the level-k methods would

converge in this case. Our tool is Lyapunov function and its stability analysis.

Lyapunov function (Lyapunov, 1992) is used to verify the stability of a dy-

namical system in control theory, here we apply it in convergence proof for level-k

methods. It is defined as following:

Definition 4.1 (Lyapunov Function). Give a function F (x, y) be continuously dif-

ferentiable in a neighborhood σ of the origin. The function F (x, y) is called the

Lyapunov function for an autonomous system if that satisfies the following properties:

1. (nonnegative) F (x, y) > 0 for all (x, y) ∈ σ\(0, 0);

2. (zero at fixed-point) F (0, 0) = 0;

3. (decreasing) dF
dt
≤ 0 for all (x, y) ∈ σ.

Definition 4.2 (Lyapunov Asymptotic Stability). For an autonomous system, if there

is a Lyapunov function F (x, y) with a negative definite derivative dF
dt
< 0 (strictly

negative, negative definite LaSalle’s invariance principle (Haddad and Chellaboina,

2011)) for all (x, y) ∈ σ\(0, 0), then the equilibrium point (x, y) = (0, 0) of the

system is asymptotically stable (Haddad and Chellaboina, 2011; Marquez, 2003).

Single State Game

Given a two-player, two-action matrix game, which is a single-state stage game,

we have the payoff matrices for row player and column player as follows:

Rr = [
r11 r12

r21 r22

] and Rc = [
c11 c12

c21 c22

].

Each player selects an action from the action space {1, 2} which determines the

payoffs to the players. If the row player chooses action i and the player 2 chooses

action j, then the row player and column player receive the rewards rij and cij

respectively. We use α ∈ [0, 1] to represent the strategy for row player, where α

corresponds to the probability of player 1 selecting the first action (action 1), and

1− α is the probability of choosing the second action (action 2). Similarly, we use

4.2. Generalized Recursive Reasoning 76

β to be the strategy for column player. With a joint strategy (α, β), the expected

payoffs of players are:

Vr(α, β) = αβr11 + α(1− β)r12 + (1− α)βr21 + (1− α)(1− β)r22,

Vc(α, β) = αβc11 + α(1− β)c12 + (1− α)βc21 + (1− α)(1− β)c22.

One crucial aspect to the learning dynamics analysis are the points of zero-gradient

in the constrained dynamics, which they show to correspond to the equilibria which

is called the center and denoted (α∗, β∗). This point can be found mathematically

(α∗, β∗) = (
−bc
uc

,
−br
ur

).

Here we are more interested in the case that there exists a mixed strategy

equilibrium, i.e., the location of the equilibrium point (α∗, β∗) is in the interior of the

unit square, equivalently, it means uruc < 0. In other cases where the Nash strategy

on the boundary of the unit square (Bowling and Veloso, 2001a; Marquez, 2003),

we are not going to discuss in this proof.

Learning in Level-0 Gradient Ascent

One common level-0 policy is Infinitesimal Gradient Ascent (IGA), which

assumes independent learners and is a level-0 method, a player increases its expected

payoff by moving its strategy in the direction of the current gradient with fixed

step size. The gradient is then computed as the partial derivative of the agent’s

expected payoff with respect to its strategy, we then have the policies dynamic partial

differential equations:

∂Vr(α, β)/∂α = urβ + br, ∂Vc(α, β)/∂β = ucα + bc,

where ur = r11 − r12 − r21 + r22, br = r12 − r22, uc = c11 − c12 − c21 + c22,

and bc = c21 − c22. In the gradient ascent algorithm, a player will adjust its strategy

after each iteration so as to increase its expected payoffs. This means the player will

move their strategy in the direction of the current gradient with some step size. Then

we can have dynamics are defined by the differential equation at time t:

4.2. Generalized Recursive Reasoning 77

[
∂α/∂t

∂β/∂t
] = [

0 ur

uc 0
]

︸ ︷︷ ︸
U

[
α

β
] + [

br

bc
].

By defining multiplicative matrix term U above with off-diagonal values ur

and uc, we can classify the dynamics of the system based on properties of U . As

we mentioned, we are interested in the case that the game has just one mixed

center strategy equilibrium point (not saddle point) that in the interior of the unit

square, which means U has purely imaginary eigenvalues and uruc < 0 (Zhang

and Lesser, 2010). Consider the quadratic Lyapunov function which is continuously

differentiable and F (0, 0) = 0 :

F (x, y) = 1/2(ucx
2 − ury2),

where we suppose uc > 0, ur < 0 (we can have identity case when uc < 0, ur > 0

by switching the sign of the function). Its derivatives along the trajectories by setting

x = α − α∗ and y = β − β∗ to move the the equilibrium point to origin can be

calculated as:

dF

dt
=
∂F

∂x

dx

dt
+
∂F

∂y

dy

dt
= xy(uruc − uruc) = 0,

where the derivative of the Lyapunov function is identically zero. Hence, the

condition of asymptotic stability is not satisfied (Marquez, 2003; Taylor et al., 2018)

and the IGA level-0 dynamics is unstable. There are some IGA based methods

(WoLF-IGA, WPL etc. (Abdallah and Lesser, 2008; Bowling and Veloso, 2002))

with varying learning step, which change the U to [
0 lr(t)ur

lc(t)uc 0
]. The time

dependent learning steps lr(t) and lc(t) are chose to force the dynamics would

converge. Note that diagonal elements in U are still zero, which means a player’s

personal influences to the system dynamics are not reflected on its policy adjustment.

Learning in Level-k Gradient Ascent

Consider a level-1 gradient ascent, where agent learns in term of πr(α)π1
c (β|α),

4.2. Generalized Recursive Reasoning 78

the gradient is computed as the partial derivative of the agent’s expected payoff after

considering the opponent will have level-1 prediction to its current strategy. We then

have the level-1 policies dynamic partial differential equations:

∂Vr(α, β1)/∂α = ur(β + ζ∂αVr(α, β))) + br

∂Vc(α1, β)/∂β, = uc(α + ζ∂βVc(α, β)) + bc,

where ζ is short-term prediction of the opponent’s strategy. Its corresponding level-1

dynamic partial differential equations:

[
∂α/∂t

∂β/∂t
] = [

ζuruc ur

u2 ζuruc
]

︸ ︷︷ ︸
U

[
α

β
] + [

ζurbc + br

ζucbr + bc
].

Apply the same quadratic Lyapunov function: F (x, y) = 1/2(ucx
2 − ury2),

where uc > 0, ur < 0, and its derivatives along the trajectories by setting x = α−α∗

and y = β − β∗ to move the coordinates of equilibrium point to origin:

dF

dt
= ζuruc(ucx

2 − ury2) + xy(uruc − uruc) = ζuruc(ucx
2 − ury2),

where the conditions of asymptotic stability is satisfied due to uruc < 0, uc > 0 and

ur < 0, and it indicates the derivative dF
dt
< 0. In addition, unlike the level-0’s case,

we can find that the diagonal of U in this case is non-zero, it measures the mutual

influences between players after level-1 looks ahead and helps the player to update

it’s policy to a better position.

This conclusion can be easily extended and proved in level-k gradient ascent

policy (k > 1) . In level-k gradient ascent policy, we can have the derivatives of

same quadratic Lyapunov function in level-2 dynamics:

dF

dt
= ζuruc(ucx

2 − ury2) + xy(1 + ζ2uruc)(uruc − uruc)

= ζuruc(ucx
2 − ury2),

4.2. Generalized Recursive Reasoning 79

and level-3 dynamics:

dF

dt
= ζuruc(2 + ζ2uruc)(ucx

2 − ury2).

Repeat the above procedures, we can easily write the general derivatives of quadratic

Lyapunov function in level-k dynamics:

dF

dt
= ζuruc(k − 1 + · · ·+ ζk−1(uruc)

k−2)(ucx
2 − ury2),

where k ≥ 3. These level-k policies still owns the asymptotic stability property

when ζ2 is sufficiently small (which is trivial to meet in practice) to satisfy k − 1 +

· · ·+ ζk−1(uruc)
k−2 > 0, which meets the asymptotic stability conditions, therefore

coverges. �

Theorem 4.2. GR2 strategies extend a norm-form game into extensive-form game,

and there exists a Perfect Bayesian Equilibrium in that game.

Proof. Consider an extensive game, which is extended from a normal form game

by level-k strategies, with perfect information and recall played by two players

(i,−i): (πi, π−i, ui, u−i,Λ), where πi/−i and ui/−i are strategy pairs and payoff

functions for player i,−i correspondingly. Λ denotes a level-k reasoning path/tree.

An intermediate reasoning action/node in the level-k reasoning procedure is denoted

by ht. The set of the intermediate reasoning actions at which player i chooses to

move is denoted Hi (a.k.a information set). Let πk̃i/−i denote the strategies of a

level-k̃ player and k̃ ∈ {0, 1, 2 · · · k}. A level-k player holds a prior belief that the

opponent is a level-k̃ player with probability λk̃, where λk̃ ∈ [0, 1] and
∑k

k̃=0 λk̃ = 1.

We denote the belief that the opponent is a level-k̃ player as pk̃i (h
t). In equilibrium,

a level-k player chooses an optimal strategy according to her belief at every decision

node, which implies choice is sequentially rational as following defined:

Definition 4.3. (Sequential Rationality). A strategy pair {π∗i , π∗−i} is sequentially

rational with respect to the belief pair {pi, p−i} if for both i,−i, all strategy pairs

4.2. Generalized Recursive Reasoning 80

{πi, π−i} and all nodes hti ∈ Hi:

k∑

k̃=0

λk̃p
k̃
i (h

t
i)ui(π

∗
i , π

∗
−i|hti) ≥

k∑

k̃=0

λk̃p
k̃
i (h

t
i)ui(πi, π

∗
−i|hti),

Based on Definition 4.3, we have the strategy πi is sequentially rational given

pi. It means strategy of player i is optimal in the part of the game that follows given

the strategy profile and her belief about the history in the information set that has

occurred.

In addition, we also require the beliefs of an level-k player are consistent. Let

pi(h
t|πi, π−i) denote the probability that reasoning action ht is reached according to

the strategy pair, {πi, π−i}. Then we have the consistency definition:

Definition 4.4. (Consistency). The belief pair {ρ∗−i, ρ∗i } is consistent with the sub-

jective prior λk̃, and the strategy pair {πi, π−i} if and only if for i,−i and all nodes

hti ∈ Hi:

pk̃,∗i (hti) =
λk̃p

k̃
i (h

t
i|πi, π0

−i)∑k
k̂=0 λ

k̂pk̂i (h
t
i|πi, π−i)

,

where there is at least one k̂ ∈ {0, 1, 2 · · · , k} and pk̂i (h
t
i|πi, π−i) > 0.

The belief pi is consistent given πi, π−i indicates that for every intermediate

reasoning actions reached with positive probability given the strategy profile πi, π−i

, the probability assigned to each history in the reasoning path by the belief sys-

tem pi is given by Bayes’ rule. In summary, sequential rationality implies each

player’s strategy optimal at the beginning of the game given others’ strategies and

beliefs (Levin and Zhang, 2019). Consistency ensures correctness of the beliefs.

Although the game itself has perfect information, the belief structure in our

level-k thinking makes our solution concept an analogy of a Perfect Bayesian Equi-

librium. Based on above two definitions, we have the existence of Perfect Bayesian

Equilibrium in level-k thinking game.

Proposition. For any λk̃, where λk̃ ∈ [0, 1] and
∑k

k̃=0 λk̃ = 1, there is a Perfect

Bayesian Equilibrium exists.

4.2. Generalized Recursive Reasoning 81

Now, consider an extensive game of incomplete information,

(πi, π−i, ui, u−i, pi, p−i, λ
k,Λ),

where λk denotes the possible levels/types for agents, which can be arbitrary level-k

player. Then, according to Kreps and Wilson (1982), for every finite extensive form

game, there exists at least one sequential equilibrium should satisfy Definition. 4.3

and 4.4 for sequential rationality and consistency, and the details proof as following:

We use Ei(π, p, λk, hi) =
∑k

k̃=0 λk̃p
k̃
i (h

t
i)ui(πi, π−i|hti) as expected payoff for

player i, for every player i and each reasoning path hti. Choose a large integer

m(m > 0) and consider the sequence of strategy pairs and consistent belief pairs

{πm, pm}m, there exists a (πm, pm):

Ei(π
m, pm, λk, htii) ≥ Ei((π

m
−i, πi), pn(πm−i, πi), λ

k, htii),

for any strategy πi with induced probability distributions in ΠT
ti=1 = ∆

1
m (p(htii))

(Chakrabarti and Topolyan, 2011). Then, consider the strategy and belief pair π̂, p̂

given by:

(π̂, p̂) = lim
m←∞

(πm, pm).

Such a limit exists because Πm
j=1Π

Tj
tj=1∆

1
m (p(hjtj)) forms a compact subset of a

Euclidean space, and every sequence {πm, pm}m has a limit point. We claim that for

each player i and each reasoning path htii :

Ei(π̂
m, p̂m, λk, htii) ≥ Ei((π̂

m
−i, πi), p(π̂

m
−i, πi), λ

k, htii), (4.5)

for any strategy πi of player i.

If not, then for some player i and some strategy πi of player i, we have:

Ei(π̂
m, p̂m, λk, htii) < Ei((π̂

m
−i, λ

k, πi), p(π̂
m
−i, πi), λ

k, λk, htii).

4.2. Generalized Recursive Reasoning 82

Then, we let

Ei((π̂
m
−i, πi), p(π̂

m
−i, πi), λ

k, htii)− Ei(π̂m, p̂m, λk, htii) = b > 0.

Now as the expected payoffs are continuous in the probability distributions at the

reasoning paths and the beliefs, it follows that there is an m0 sufficiently large such

that for all m ≥ m0 (Chakrabarti and Topolyan, 2011),

|Ei(πm, pm, λk, htii)− Ei(π̂m, p̂m, λk, htii)| ≤ b

4
,

and

Ei((π̂
m
−i, πi), pn(π̂m−i, πi), λ

k, htii)− Ei(π̂m, p̂m, λk, htii) ≤ b

4
.

From above equations and for all m ≥ m0, we have

Ei((π
m
−i, πi), p(π

m
−i, πi), λ

k, htii) ≥ Ei((π̂
m
−i, πi), p(π̂

m
−i, πi), λ

k, htii)− b

4

= Ei(π̂, p̂, λ
k, htii) +

3b

4

≥ Ei((π
m
−i, πi), p(π

m
−i, πi), λ

k, htii) +
b

2
.

for a given sequential game, there is a T > 0 such that

|Ei((πξ−i, πi), pn(πξ−i, πi), λ
k, htii)− Ei(π̂ξ, p̂ξ, λk, htii)| < T

ξ
,

where πi = limξ←∞ π
ξ
i of a sequence {πξi }ξ of 1

ξ
bounded strategies of player i. For

the sequence {πm, pm} we now choose an m1 sufficiently large such that T
m
< b

4
.

Therefore, for any strategy πi of player i, we have

Ei((π
m
−i, πi), pn(πm−i, πi), λ

k, htii) ≥ Ei((π
m
−i, πi), p(π

m
−i, πi), λ

k, htii)− T

m

= Ei(πm, pm, λ
k, htii) +

b

4
.

But this result contradicts the previous claim in Equation 4.5, which indicates the

claim must hold. In other words, Perfect Bayesian Equilibrium must exist.

4.2. Generalized Recursive Reasoning 83

Remark 4.1. When λk = 1, it is the special case where the policy is level-k strategy,

and it coincides with Perfect Bayesian Equilibrium.

�

Apart from the main theorems, we could also have two interesting propositions.

Proposition 4.1. In both the GR2-L & GR2-M model, if the agents play pure strate-

gies, once level-k agent reaches a Nash Equilibrium, all higher-level agents will

follow it too.

Proof. Consider the following two cases GR2-L and GR2-M.

GR2-L. Since agents are assumed to play pure strategies, if a level-k agent

reaches the equilibrium, πk,∗i , in the GR2-L model, then all the higher-level agents

will play that equilibrium strategy too, i.e. πk+1,∗
−i = πk,∗i . The reason is because

high-order thinkers will conduct at least the same amount of computations as the

lower-order thinkers, and level-k model only needs to best respond to level-(k − 1).

On the other hand, as it is showed by the Equation 4.3, higher-level recursive

model contains the lower-level models by incorporating it into the inner loop of the

integration.

GR2-M. In the GR2-M model, if the level-k step agent play the equilibrium

strategy πk,∗i , it means the agent finds the best response to a mixture type of agents

that are among level-0 to level-(k−1). Such strategy πk,∗i is at least weakly dominant

over other pure strategies. For level-(k + 1) agent, it will face a mixture type of

level-0 to level-(k − 1), plus level-k.

For mixture of level-0 to level-(k − 1), the strategy πk,∗i is already the best

response by definition. For level-k, πki,∗ is still the best response due to the conclusion

in the above GR2-L. Considering the linearity of the expected reward for GR2-M:

E[λ0Vi(s; π
0,∗
i , π−i) + · · ·+ λkVi(s; π

k,∗
i , π−i)]

= λ0E[Vi(s; π
0,∗
i , π−i)] + · · ·+ λkE[Vi(s; π

k,∗
i , π−i)],

where λk is level-k policy’s proportion. Therefore, πki,∗ is the best response to

the mixture of level-0 to level-k agent, i.e. the best response for level-k + 1 agent.

4.3. Multi-Agent GR2 Reinforcement Learning 84

Given that πki,∗ is the best response to both level-k and level 0- (k− 1), it is therefore

the best response of the level-(k + 1) thinker.

Combining the above two results, therefore, in GR2, once a level-k agent

reaches a pure Nash strategy, all higher-level agents will play it too.

�

Corollary 4.1. In the GR2 setting, higher-level strategies weakly dominant lower-

level strategies.

Proof. By considering all possible actions from lower-level agents, higher-level

thinkers will always conduct at least the same amount of computations as the lower-

level thinkers as shown in Figure 4.1. �

4.3 Multi-Agent GR2 Reinforcement Learning
In this section, we incorporate the GR2 models into the MARL, in particular

the framework of soft learning, and propose the GR2 Soft Actor-Critic algorithm.

4.3.1 GR2 Soft Actor-Critic Algorithm

To evaluate the level-k policy, since agent i cannot access the joint soft Qi(s, ai, a−i)

as it depends on the exact opponent policies π−i that are unknown, we instead

compute the independent soft Qi(s, ai) by marginalizing the joint Q-function via the

estimated opponent model ρφ−i−i :

Qi(s, ai) = log

∫
ρ
φ−i
−i (a−i|s, ai) exp(Qi(s, ai, a−i)) da−i. (4.6)

With the marginalized Qi(s, ai), combining with the soft value function defined

in Equation 4.1, we can obtain the value function of the level-k policy πki (ai|s) by

Vi(s) = Eai∼πki [Qi(s, ai)− log πki (ai|s)]. (4.7)

Each agent rolls out the recursive reasoning to level k, either through GR2-L or

through GR2-M, and then sample the best response. With the value function in Equa-

tion 4.7, we can train the parameter ωi of the joint soft Q-function via minimizing

4.3. Multi-Agent GR2 Reinforcement Learning 85

Algorithm 4.3 GR2-L/M Soft Actor-Critic Algorithm
1: Set hyper-parameter λ, k and ψ (learning rates).
2: Initialize θi, φ−i, ωi for each agent i.

Assign target parameters: ω̄i ← ωi; Di ← empty replay buffer for each agent i.
3: for each episode do
4: for each step t do
5: For each agent i, sample action ai according to πθi,ki (s) in Equation 4.3 or

πθi,ki,λ (s) in Equation 4.4.
6: Sample next state: s′ ∼ p(s′|s, ai, a−i).
7: Add the tuple (s, ai, a−i, ri, s

′) to Di.
8: for each agent i do
9: Sample {(s′,j, aji , aj−i, rji , s′,j)}Mj=0 ∼ Di. Roll out policy from level

0← k to get aji′, with each level take the best response.
10: Record inter-level results (aj,ki′ , a

j,k−1
−i′ , · · ·) for auxiliary objective in

Equation 4.12.
11: Sample aj−i′ ∼ ρ

φ−i
−i (·|s′,j, aji′) for each aji′, s

′,j .
12: ωi ← ωi − ψQi∇̂ωiJQi(ωi).

13: θi ← θi − ψπi∇̂θi(Jπ
k
i (θi) + Jπ

k̃
i (θi)).

14: φ−i ← φ−i − ψρ−i∇̂φ−iJρ−i(φ−i).
15: end for
16: Update target network for each agent i:

ω̄i ← ψtargetωi + (1− ψtarget)ω̄i.

17: end for
18: end for

the soft Bellman residual,

JQi(ωi) = E(s,ai,a−i)∼Di [
1

2
(Qωi

i (s, ai, a−i)− Q̂i(s, ai, a−i))
2], (4.8)

where s′ is next state, and

Q̂i(s, ai, a−i) = ri(s, ai, a−i) + γEs′∼p[Vi(s′)]. (4.9)

The level-k policy parameter θi can be learned by the following objective,

which is in fact equivalent to minimizing the KL divergence between πθi,ki and

4.3. Multi-Agent GR2 Reinforcement Learning 86

Qωi
i (s, ai) (Haarnoja et al., 2017):

Jπ
k
i (θi) = E s∼Di,

aki∼π
θi,k
i

[log πθi,ki (ai|s)−Qωi
i (s, ai)], (4.10)

In the multi-agent soft learning setting, the optimal opponent model still ρ−i

follows Equation 4.2. We can therefore update φ−i by minimizing the KL-divergence

between the current estimated policy ρφ−i−i and the advantage function:

Jρ−i(φi) = DKL

[
ρ
φ−i
−i (a−i|s, ai)

∥∥∥ exp(Qωi
i (s, ai, a−i)−Qωi

i (s, ai))

]
. (4.11)

In practice, we can maintain two approximated Q-functions of Qωi
i (s, ai, a−i) and

Qωi
i (s, ai) separately, and then iteratively update the ρφ−ii via SVGD (Haarnoja et al.,

2017; Liu and Wang, 2016).

We summarize the whole algorithm in Algorithm 4.3.

4.3.2 Inter-level Policy Improvement

As pointed out by Corollary. 4.1, higher-level policy should respond at least as good

as lower-level policy to the opponent actions. In fact, the highest-level policy πki

directly receives the feedback reward from the environment and then back propagates

it to lower level policies. The intermediate level policy then receives the reward

signal through the chain. As shown in Figure 4.3 , we shall have Qi(s, a
k̃
i , a

k̃−1
−i) ≥

Qi(s, a
k̃−2
i , ak̃−1

−i) for k̃ ≤ k. In order to maintain this property, we introduce an

auxiliary objective during training, that is, for k̃ ≥ 2,

Jπ
k̃
i (θi) = E

s,(ak̃i ,a
k̃
−i)∼Di,π

θi,k
i

[
Qi(s, a

k̃−2
i , ak̃−1

−i)−Qi(s, a
k̃−2
i , ak̃−1

−i)

]
(4.12)

As it is showed in the later section, such auxiliary objective plays a critical role in

helping the convergence.

4.3.3 Best Response as Deterministic Strategy

Considering the computational feasibility, we formulate the best response in the form

of deterministic strategy. Figure 4.2 shows an example of the possible combination

4.4. Experiments 87

Table 4.1: The converged equilibrium on the Keynes Beauty Contest with different p and
agent number n settings.

DEPTH NASH LEVEL 3 LEVEL 2 LEVEL 1 LEVEL 0
GR2-L3 GR2-L2 GR2-L1 PR2 MADDPG DDPG-OM MASQL DDPG

p = 0.7, n = 2 0.0 0.0 0.0 0.0 4.4 10.6 8.7 8.3 18.6
p = 0.7, n = 10 0.0 0.0 0.1 0.3 9.8 18.1 12.0 8.7 30.2
p = 1.1, n = 10 100.0 97.6 94.2 92.2 64.0 68.2 61.7 87.5 52.2

of paths at the k-th level reasoning. As the reasoning process involves iterated usages

of πi(ai|s, a−i) and ρ−i(a−i|s, ai), should they be stochastic policies, the cost of

integrating over actions from all possible lower level actions would be unsustainable

when k increases. Besides, the reasoning process is affected by the stochasticity of

the environment, the variance will be further amplified on the stochastic policies.

Our approach to model the deterministic strategy is based on the bijective

transformation. (Dinh et al., 2016) first applied it on the deep generative models. Let

a−i be the random variable, by employing the change of variable rule, we have

πki (ai|s, a−i) = ρk−1
−i (a−i|s)| det(

dπki (ai|s, a−i)
da−i

)|−1. (4.13)

The computation of the determinant can be further simplified by choosing a special

bijective transformations that have friendly Jacobian matrix. For example, in the

GR2-L model, level-0 is usually assumed as uniformly distributed, we have:

Eai [π1
i (ai|s)] = Eai [Ea−i [ρ0

−i(a−i|s)π1
i (ai|s, a−i)]]

= Ea−i [ρ0
−i(a−i|s)π1

i (ai|s, a−i)].

4.4 Experiments
We compare the proposed GR2-L/GR2-M Soft Actor-Critic algorithm with a series

of baselines including PR2 (Wen et al., 2019), MASQL (Grau-Moya et al., 2018; Wei

et al., 2018), MADDPG (Lowe et al., 2017) and independent learner via DDPG (Lil-

licrap et al., 2015). To compare against traditional opponent modeling methods,

similar to (He et al., 2016; Rabinowitz et al., 2018), we implement an additional

baseline of DDPG with an opponent module that is trained online with supervision

in order to capture the latest opponent behaviors, called DDPG-OM.

4.4. Experiments 88

Figure 4.4: Learning curves with or without the auxiliary loss of Equation 4.12

The Recursive Level. We regard DDPG, DDPG-OM, MASQL, MADDPG

as level-0 reasoning models because from the policy level, they do not explicitly

model the impact of one agent’s action on the other agents or consider the reactions

from the other agents. Even though the value function of the joint policy is learned

in MASQL and MADDPG, but they conduct a non-correlated factorization (Wen

et al., 2019) when it comes to each individual agent’s policy. PR2 is in fact a level-1

reasoning model, but note that the level-1 model in GR2 stands for π1
i (ai|s) =

∫
a−i

π1
i (ai|s, a−i)ρ0

−i(a−i|s) da−i, while the level-1 model in PR2 starts from the

opponent’s angel, that is ρ1
−i(a−i|s) =

∫
ai
ρ1
i (a−i|s, ai)π0

i (ai|s) dai.

Experimental Settings. We describe k as the highest order of reasoning in

GR2-Lk and GR2-Mk. All the policies and Q-functions are parameterized by the

MLP with 2 hidden layers, where each has 100 units with the ReLU activation. In

the Keynes Beauty Contest, we train all the methods including the baselines for 400

iterations with 10 steps per iteration. In the matrix game, we train the agents for

200 iterations with 25 steps per iteration. And for the particle games, all the models

are trained up to 300k steps with maximum 25 episode length. In the actor-critic

algorithms, we set the exploration noise to 0.1 in the first 1000 steps. The annealing

parameters in soft algorithms are set to 0.5 to balance the exploration/exploitation.

We adopt k = 1, 2, 3 and set λ = 1.5.

4.4.1 Keynes Beauty Contest

In the Keynes Beauty Contest game, all n agents pick a number between 0 and 100.

The winner is the agent whose “guess" is closest to p times of the average number.

4.4. Experiments 89

The reward is set as the absolute difference to the winner guess. We evaluate the

effect of reward shaping in Section 4.4.4.

We first conduct the experiments by setting different p and n values. Table. 4.1

presents the results. We notice that the GR2-L algorithms can effectively approach

the equilibrium, while the other baselines struggle to reach. We believe it is because

the level-0 methods are unable to model the explicit dependency between agents’

actions, so that the synergy of guessing smaller/larger together will not happen. In

addition, with the maximum level of recursive reasoning grows, the equilibrium

that GR2-Lk finds gets increasingly closer to the true NE, which is expected. In

the case of p = 0.7, n = 2, the equilibrium is first reached by GR2-L1, the other

higher-order models follow the same equilibrium afterwards; this is in line with the

Proposition 4.1. The equilibrium found by GR2-L3 is 97.6 when p = 1.1, the error

is due to the saturated reward design that stops the momentum of agents’ changing

the actions anywhere further.

Furthermore, we analyze the effectiveness of the auxiliary loss in Equation 4.12

that aims to guarantee the inter-level policy improvement. In Figure 4.4, we can find

that although the GR2-L model without auxiliary loss learns fast in the beginning,

it however fails to reach a better equilibrium. We believe adding the auxiliary loss

in the objective can help the joint Q-function to guide a better direction for agents’

reasoning.

4.4.2 Learning Matrix Games

We then evaluate on two matrix games: Prisoner’s Dilemma (PD) and Stag Hunt

(SH). The reward matrix of PD is:

Agent 1

Agent 2

Cooperate Defect

Cooperate 3, 3 1, 4

Defect 4, 1 2, 2

Prisoner’s Dilemma (PD)

Agents can choose to cooperate (C) or defect (D). Defect is the dominant strategy

for both agents, while there exists a Pareto optima (C, C).

4.4. Experiments 90

(a) Stag Hunt Game

(b) Prisoner’s Dilemma

Figure 4.5: Learning curves on the matrix games.

Figure 4.6: Performance comparison in the cooperative game.

4.4. Experiments 91

In SH, the reward matrix is:

Agent 1

Agent 2

Stag Rabbit

Stag 3, 3 1, 4

Rabbit 4, 1 2, 2

Stag Hunt (SH)

Agents can either cooperate to hunt the large stag (S) or to chase a small rabbit

(P) alone. In this game, there is no dominant strategy, and it comes with two Nash

equilibria, i.e. (S, S) that is also Pareto-optimal, and the deficient equilibrium (P, P).

To turn the matrix games compatible with the actor-critic setting, we make the actor

output the probability of choosing one action and define the reward based on the

payoff matrix. We define the state at time t to be st = (a1
t−1, a

2
t−1).

In SH, we expect the agents to reach the Pareto optima, so that both agents

receive the maximum reward. Figure 4.5a compares the average training reward

for a list of algorithms. GR2-L/GR2-M models, together with PR2, can easily

reach the Pareto optima with maximum average return 4, whereas other models

are trapped into deficient equilibrium with average return 2. On the convergence

speed, higher-order thinkers are faster than lower-order thinkers, and mixture models

are faster than level-k models. SH is a coordination game that motivates players

to cooperate, but the challenging part is the conflict between individual safety and

social welfare. Without knowing the choice of the other, GR2 has to anchor the

belief that opponents would like to choose the social welfare, and then reinforce this

belief into the high-order reasoning to finally build the trust among agents. Since

there is no dominant strategy in SH, agents will in the end choose to stay fixed in

that strategy. The level-0 methods cannot build such synergy because they cannot

discriminate the individual safety from the social welfare; both NEs can saturate the

value function of the joint action.

PD is different from SH in that there is a dominant strategy of defection which

leads the Pareto optima to be unstable. In Figure 4.5b, although GR2-L3 could

reach the Pareto optima within the first 50 steps, but soon it chooses to defect. Since

4.4. Experiments 92

defection is dominant, as a level-2 thinker, it will surely defect; such reasoning will

be passed into the level-3 thinker, and GR2-L3 soon realizes and best respond with

defection immediately. GR2-M3 under-performs GR2-L3 because it is a mixture

strategy, which still considers the level-1 thinker who still chases for cooperation.

As for the rest of the baselines, they do not present such behavioral changes at all;

meanwhile, they converge to a worse equilibrium.

4.4.3 Particle World Environments

We further adopt the Particle World Environments (Lowe et al., 2017) to test our

method on high-dimensional state/action space scenarios. More specifically, it is a

fully-cooperative Cooperative Navigation task with 3 agents and 3 landmarks. In this

task, 3 agents must cooperate through physical actions to reach 3 different landmarks.

Agents can observe the relative positions of other agents and landmarks. Agents are

collectively rewarded based on the proximity of any agent to each landmark while

avoiding collisions;

We measure the performance of agents trained by different algorithms in each of

the environment. The results are demonstrated in Figure 4.6; we report the rewards

of the agents and normalize them to 0-1. We notice that in this the scenario, the

GR2-M methods can achieve the highest score. The level-3 models can out-perform

the lower-level models. In the cooperative game, the GR2-L/M methods have critical

advantages over traditional baselines, this is inline with the finding in SH that GR2

methods are good at finding the Pareto optimality.

4.4.4 Ablation Study

The results in the experiment section suggest that GR2 algorithms can outperform

other multi-agent RL methods various tasks. In this section, we examine how

sensitive GR2 methods is to some of the most important hyper-parameters, including

the level-k and the choice of the Poisson mean λ in GR2-M methods.

4.4.4.1 Choice of Level-k

First, we investigate the choice of level-k by testing the GR2-L models with various

k on the Keynes Beauty Contest. According to the Figure 4.7, in both setting, the

4.4. Experiments 93

0 100 200 300 400 500 600 700 800
Iteration

0

20

40

60

Ac
tio

n

GR2-L1 GR2-L2 GR2-L3 GR2-L4

(a) p = 0.7, n = 10

0 100 200 300 400 500 600 700 800
Iteration

40

60

80

100

Ac
tio

n

GR2-L1 GR2-L2 GR2-L3 GR2-L4

(b) p = 1.1, n = 10

Figure 4.7: Learning curves on the Keynes Beauty Contest game with GR2-L policies from
level-1 to level-4.

GR3-L with level form 1−3 can converge to the equilibrium, but the GR3-L4 cannot.

The learning processes show that the GR3-L4 models have high variance during

the learning. This phenomenon has two reasons: with k increases, the reasoning

path would have higher variance; and in GR2-L4 policy, it uses the approximated

opponent conditional policy ρ−i(a−i|s, ai) twice (only once in GR2-L2/3), which

would further amplify the variance.

4.4.4.2 Poisson λ for the GR2-M methods.

We investigate the effect of hyper-parameter λ in the GR2-M models. We test the

GR2-M model on the cooperative navigation game; empirically, the test selection

of λ = 1.5 on both GR2-M3 and GR2-M2 would lead to best performance. We

therefore use λ = 1.5 in the experiment section of this chapter.

4.5. Summary 94

GR2-M3
=1.5

GR2-M3
=2.0

GR2-M2
=1.5

GR2-M2
=3.0

GR2-M2
=2.0

GR2-M2
=1.0

GR2-M3
=3.0

GR2-M3
=1.0

0.0

0.3

0.6

0.9

No
rm

al
ize

d
ag

en
t s

co
re

Cooperative navigation

Figure 4.8: Effect of varying λ in GR2-M methods, the score is normalized to 0− 1.

0 50 100 150 200 250 300
Iteration

0

20

40

60

Ac
tio

n

GR2-L1 abs
GR2-L1 square

GR2-L2 abs
GR2-L2 square

GR2-L3 abs
GR2-L3 square

Figure 4.9: Learning curves with two reward schemes: absolute difference (default) and
squared absolute difference.

4.4.4.3 Incentive Intensity in Keynes Beauty Contest

One sensible finding from human players suggests that when prize of winning gets

higher, people tend to use more steps of reasoning and they may think others will

think harder too. We simulate a similar scenario by reward shaping. We consider two

reward schemes of absolute difference and squared absolute difference. Interestingly,

we find similar phenomenon in Figure 4.9 that the amplified reward can significantly

speed up the convergence for GR2-L methods.

4.5 Summary
In this chapter, following the study of bounded rationality (Simon, 1972) and behavior

game theory (Camerer, 2003), we introduce the protocol of generalized recursive

reasoning (GR2) that allows agents to have different levels of recursive reasoning

capability when dealing with other agents. In GR2, each agent takes the best response

to a mixed type of agents that think and behave at lower levels. We integrate GR2

4.5. Summary 95

into the MARL framework. The induced GR2 Soft Actor-Critic Algorithm shows

superior performance on building the correct beliefs about the opponents behaviors

even when they are non-equilibrium. We prove in theory that GR2 can reach NE

when the level approximates infinity. Empirically, when compared to conventional

opponent models (level 0), learning with higher level recursive reasoning capability

would lead to faster convergence.

Part II

Behavioral Diversity in Mutual

Influence

96

Chapter 5

Multi-Agent Determinantal

Q-Learning

Multi-agent reinforcement learning (MARL) methods hold great potential to solve a

variety of real-world problems, such as mastering multi-player video games (Peng

et al., 2017), dispatching taxi orders (Li et al., 2019), and studying population dy-

namics (Yang et al., 2018b). In this chapter, we consider the multi-agent cooperative

setting (Panait and Luke, 2005) where a team of agents collaborate to achieve one

common goal in a partially observed environment.

A full spectrum of MARL algorithms has been developed to solve cooperative

tasks (Panait and Luke, 2005); the two endpoints of the spectrum are independent

and centralized learning (see Figure 5.1). Independent Learner (IL) (Tan, 1993)

merely treats other agents’ influence to the system as part of the environment. The

learning agent not only faces a non-stationary environment, but also suffers from

spurious rewards (Sunehag et al., 2018). Centralized Learner (CL), in the other

extreme, treats a multi-agent problem as a single-agent problem despite the fact

that many real-world applications require local autonomy. Importantly, the CL

approaches exhibit combinatorial complexity and can hardly scale to more than tens

of agents (Yang et al., 2019).

Another paradigm typically considered is a hybrid of centralized training and

decentralized execution (CTDE) (Oliehoek et al., 2008). For value-based approaches

in the framework of CTDE, a fundamental challenge is how to correctly decompose

98

Centralized
Learning

Independent
Learning

Centralized Training
Decentralized Execution

Independent
Exploration

Coordinated
Exploration

COMA
(Foerster et al., 2018)

QMIX
(Rashid et al, 2018)

VDN
(Sunehag et al, 2017)

QTRAN
(Son et al, 2019)

Factor. Q
(Zhou et al, 2019)

MADDPG
(Lowe et al., 2017)

Ind. Q
(Tan 1993)

Det. SARSA
(Osogami et al, 2019)

BiCNet
(Peng et al., 2017)

MAVEN
(Mahajan et al, 2019)

Q-DPP

Value-based
methods

Actor-Critic
methods

Figure 5.1: Spectrum of MARL methods on cooperative tasks.

the centralized value function among agents for decentralized execution. For a

cooperative task to be deemed decentralizable, it is required that local maxima on the

value function per every agent should amount to the global maximum on the joint

value function. In enforcing such a condition, current state-of-the-art methods rely

on restrictive structural constraints and/or network architectures. For instance, Value

Decomposition Network (VDN) (Sunehag et al., 2018) and Factorized-Q (Zhou

et al., 2019) propose to directly factorize the joint value function into a summation

of individual value functions. QMIX (Rashid et al., 2018) augments the summation

to be non-linear aggregations, while maintaining a monotonic relationship between

centralized and individual value functions. QTRAN (Son et al., 2019) introduces a

refined learning objective on top of QMIX along with specific network designs.

Unsurprisingly, the structural constraints put forward by VDN / QMIX /

QTRAN inhibit the representational power of the centralized value function (Son

et al., 2019); as a result, the class of decentralizable cooperative tasks these methods

can tackle is limited. For example, poor empirical results of QTRAN have been

reported on multiple multi-agent cooperative benchmarks (Mahajan et al., 2019).

Apart from the aforementioned problems, structural constraints also hinder

99

efficient explorations when applied to value function decomposition. In fact, since

agents behave independently during the execution stage, CTDE methods usually lack

a coordinated exploration strategy (Matignon et al., 2007). Clearly, an increasing

per-agent exploration rate of ε-greedy in the single-agent setting can help explo-

ration; however, it has been proved (Mahajan et al., 2019) that due to the structural

constraints (e.g. the monotonicity assumption in QMIX), in the multi-agent setting,

increasing ε will only lower the probability of obtaining the optimal value function.

As a treatment, MAVEN (Mahajan et al., 2019) introduces a hierarchical model to

coordinate diverse explorations among agents. Yet, a principled exploration strategy

with minor structural constraints on the value function is still missing for value-based

CTDE methods.

In many tasks that require the division of labor, one reasonable solution is to

make agents acquire a diverse set of skills, targets or behavioral models (Albrecht

and Ramamoorthy, 2012) during training so that the joint goal can be achieved by

individual targets. In such scenarios, the equivalence between the local maxima on

the per-agent value function and the global maximum on the joint value function can

be automatically achieved. As a result, the centralized value function can enjoy a

natural factorization with no need for any structural constraints beforehand.

In this chapter, we present a new value-based solution in the CTDE paradigm

to multi-agent cooperative tasks. We establish Q-DPP, an extension of determinantal

point process (DPP) (Macchi, 1977) with partition constraint, and apply it to multi-

agent learning. DPPs are elegant probabilistic models on sets that can capture both

quality and diversity when a subset is sampled from a ground set; this makes them

ideal for modeling the set that contains different agents’ observation-action pairs in

the multi-agent learning context. We adopt Q-DPP as a function approximator for

the centralized value function. An attractive property of using Q-DPP is that, when

reaching the optimum, it can offer a natural factorization on the centralized value

function, assuming agents have acquired a diverse set of behaviors. Our method

eliminates the need for a priori structural constraints or bespoke neural architectures.

In fact, we demonstrate that Q-DPP generalizes current solvers including VDN,

5.1. Preliminaries: Determinantal Point Process 100

QMIX, and QTRAN, where all these methods can be derived as special cases from

Q-DPP. As an additional contribution, we adopt a tractable sampler, based on the idea

of sample-by-projection in P -DPP (Celis et al., 2018), for Q-DPP with theoretical

approximation guarantee. Our sampler makes agents explore in a sequential manner;

agents who act later are coordinated to visit only the orthogonal areas in the state

space that previous agents haven’t explored. Such coordinated way of explorations

effectively boosts the sampling efficiency in the CTDE setting. Building upon these

advantages, finally, we demonstrate that our proposed Q-DPP algorithm is superior

to the existing state-of-the-art solutions on a variety of multi-agent cooperation

benchmarks.

5.1 Preliminaries: Determinantal Point Process
DPP is a probabilistic framework that characterizes how likely a subset is going to be

sampled from a ground set. Originated from quantum physics for modeling repulsive

Fermion particles (Macchi, 1977), DPP has recently been introduced to the machine

learning community due to its probabilistic nature (Kulesza et al., 2012).

Definition 5.1 (DPP). For a ground set of items Y = {1, 2, . . . ,M}, a DPP, denoted

by P, is a probability measure on the set of all subsets of Y , i.e., 2Y . Given anM×M
positive semi-definite (PSD) kernel L that measures similarity for any pairs of items

in Y , let Y be a random subset drawn according to P, then we have, ∀Y ⊆ Y ,

PL
(
Y = Y

)
∝ det

(
LY
)

= Vol2
(
{wi}i∈Y

)
, (5.1)

where LY := [Li,j]i,j∈Y denotes the sub-matrix of L whose entries are indexed

by the items included in Y . If we write L :=WW> withW ∈ RM×P , P ≤ M ,

and rows ofW being {wi}, then the determinant value is essentially the squared

|Y |-dimensional volume of parallelepiped spanned by the rows ofW corresponding

to elements in Y .

A PSD matrix ensures all principal minors of L are non-negative det(LY) ≥ 0;

it thus suffices to be a proper probability distribution. The normalizer can be

5.2. Multi-Agent Determinantal Q-Learning 101

computed as:
∑

Y⊆Y det(LY) = det(L + I), where I is an M × M identity

matrix. Intuitively, one can think of a diagonal entry Li,i as capturing the quality of

item i, while an off-diagonal entry Li,j measures the similarity between items i and

j. DPP models the repulsive connections among multiple items in a sampled subset.

In the example of two items, PL({i, j}) ∝

∣∣∣∣∣∣
Li,i Li,j
Lj,i Lj,j

∣∣∣∣∣∣
= Li,iLj,j − Li,jLj,i,

which suggests, if item i and item j are perfectly similar, such thatLi,j =
√
Li,iLj,j ,

then we know these two items will almost surely not co-occur, hence such two-item

subset of {i, j} from the ground set will never be sampled.

DPPs are attractive in that they only require training the kernel matrix L, which

can be learned via maximum likelihood (Affandi et al., 2014). A trainable DPP

favors many supervised learning tasks where diversified outcomes are desired, such

as image generation (Elfeki et al., 2019), video summarization (Sharghi et al., 2018),

model ensemble (Pang et al., 2019), and recommender system (Chen et al., 2018).

It is, however, non-trivial to adapt DPPs to a multi-agent setting since additional

restrictions are required to put on the ground set so that valid samples can be drawn

for the purpose of multi-agent training. This leads to our Q-DPPs.

5.2 Multi-Agent Determinantal Q-Learning
We offer a new value-based solution to multi-agent cooperative tasks. In particular,

we introduce Q-DPPs as general function approximators for the centralized value

functions, similar to neural networks in deep Q-learning (Mnih et al., 2015). We

start from the problem formulation.

To satisfy Equation 2.9, current solutions rely on restrictive assumptions that

enforce structural constraints on the factorization of the joint Q-function. For ex-

ample, VDN (Sunehag et al., 2018) adopts the additivity assumption by assuming

Qπ(τ ,a) :=
∑N

i=1 Qi(τi, ai). QMIX (Rashid et al., 2018) applies the monotonicity

assumption to ensure ∂Qπ(τ ,a)
∂Qi(τi,ai)

≥ 0,∀i ∈ N . QTRAN (Son et al., 2019) introduces a

refined factorizable learning objective in addition to QMIX. Nonetheless, structural

constraints harm the representational power of the centralized value function, and

also hinder efficient explorations (Son et al., 2019). To mitigate these problems, we

5.2. Multi-Agent Determinantal Q-Learning 102
7/28/2020 dpp_v3.svg

file:///Users/yingwen/Downloads/dpp_v3.svg 1/1

Figure 5.2: Example of Q-DPP with quality-diversity kernel decomposition in a single-state
three-player learning task, each agent has three actions to choose. The size
of the ground set is |Y| = 9, and the size of valid subsets |C(o)| is 33 = 27.
Different colors represent different partitions of each agent’s observation-action
pairs. Suppose all three agents select the 2nd action, then the Q-value of the joint
action according to Equation 5.3 is Qπ

(
o,a

)
= log det

(
[L[i,j],i,j∈{2,5,8}]

)
.

propose Q-DPP as an alternative that naturally factorizes the joint Q-function by

learning a diverse set of behavioral models among agents.

5.2.1 Q-DPP: A Constrained DPP for MARL

Our method is established on Q-DPP which is an extension of DPP that suits MARL.

We assume that local observation oi encodes all history information τi at each

time-step. We model the ground set of all agents’ observation-action pairs by a

DPP, i.e., Y =
{

(o1
1, a

1
1), . . . , (o

|O|
N , a

|A|
N)
}

with the size of the ground set being

|Y| = N |O||A|.

In the context of multi-agent learning, each agent takes one valid action de-

pending on its local observation. A valid sample from DPP, therefore, is expected to

include one valid observation-action pair for each agent, and the observations from

the sampled pairs must match the true observations that agents receive at every time

step. To meet such requirements, we propose a new type of DPP, named Q-DPP.

Definition 5.2 (Q-DPP). Given a ground set Y of size M that includes N agents’ all

possible observation-action pairs Y =
{

(o1
1, a

1
1), . . . , (o

|O|
N , a

|A|
N)
}

, we partition Y
intoN disjoint parts, i.e., Y =

⋃N
i=1 Yi and

∑N
i=1 |Yi| = M = N |O||A|, where each

partition represents each individual agent’s all possible observation-action pairs. At

every time-step, given agents’ observations, o = (oi)i∈N , we define C(o) ⊆ Y to be

a set of valid subsets including only observation-action pairs that agents are allowed

5.2. Multi-Agent Determinantal Q-Learning 103

to take,

C(o) :=
{
Y ⊆ Y : |Y ∩ Yi(oi)| = 1,∀i ∈ {1, . . . , N}

}
,

with |C(o)| = |A|N , and Yi(oi) of size |A| denotes the set of pairs in partition Yi
with only oi as the observation,

Yi(oi) =
{

(oi, a
1
i), . . . , (oi, a

|A|
i)
}
.

Q-DPP, denoted by P̃, defines a probability measure over the valid subsets Y ∈
C(o) ⊆ Y . Let Y be a random subset drawn according to P̃, its probability

distribution is defined:

P̃L
(
Y = Y |Y ∈ C(o)

)
:=

det
(
LY
)

∑
Y ′∈C(o)

det
(
LY ′

) . (5.2)

In addition, given a valid sample Y ∈ C(o), we define an identifying function

I : Y → N that specifies the agent number for each valid pair in Y , and an index

function J : Y → {1, . . . ,M} that specifies the cardinality of each item in Y in the

ground set Y .

The construction of Q-DPP is inspired by P -DPP (Celis et al., 2018). However,

the partitioned sets in P -DPP stay fixed, while in Q-DPP, C(ot) changes at every

time-step with the new observation, and the kernel L is learned through the process

of reinforcement learning rather than being given.

Difference between Q-DPP and P -DPP: The design of Q-DPP and its samply-

by-projection sampling process is inspired by and based on P -DPP (Celis et al.,

2018). However, we would like to highlight the multiple differences in that 1)

P -DPP is designed for modeling the fairness for data summarization whereas Q-

DPP serves as a function approximator for the joint Q-function in the context of

multi-agent learning; 2) though we analyze Equation 5.19 based onW , the actual

orthorgonalziation step of our sampler only needs performing on the vectors of bj

rather than the entire matrixW due to our unique quality-diversity decomposition on

the joint Q-function in Equation 5.4; 3) the set of elements in each partition Yi(oi) of

5.2. Multi-Agent Determinantal Q-Learning 104

Q-DPP change with the observation at each time-step, while the partitions stay fixed

in the case of P -DPP; 4) the parameters ofW are learned through a trail-and-error

multi-agent reinforcement learning process compared to the cases in P -DPP where

the kernel is given by hand-crafted features (e.g. SIFT features on images); 5) we

implement the constraint in Assumption 5.1 via a penalty term during the CTDE

learning process, while P -DPP does not consider meeting such assumption through

optimization.

Given Q-DPPs, we can represent the centralized value function by adopting

Q-DPPs as general function approximators:

Qπ
(
o,a

)
:= log det

(
L
Y=
{

(o1,a1),...,(oN ,aN)
}
∈C(o)

)
, (5.3)

where LY denotes the sub-matrix of L whose entries are indexed by the pairs in-

cluded in Y . Q-DPP embeds the connection between the joint action and each agent’s

individual actions into a subset-sampling process, and the Q-value is quantified by

the determinant of a kernel matrix whose elements are indexed by the associated

observation-action pairs. The goal of multi-agent learning is to learn an optimal

joint Q-function. Equation 5.3 states det(LY) = exp(Qπ(o,a)), meaning Q-DPP

actually assigns large probability to the subsets that have large Q-values. Given

det(LY) is always positive, the log operator ensures Q-DPPs, as general function

approximators, can recover any real Q-functions.

DPPs can capture both the quality and diversity of a sampled subset; the joint

Q-function represented by Q-DPP in theory should not only acknowledge the quality

of each agent’s individual action towards a large reward, but the diversification

of agents’ actions as well. The remaining question is, then, how to obtain such

quality-diversity representation.

5.2.2 Representation of Q-DPP Kernels

For any PSD matrix L, such a W can always be found so that L = WW>

whereW ∈ RM×P , P ≤ M . Since the diagonal and off-diagonal entries of L

represent quality and diversity respectively, we adopt an interpretable decomposition

5.2. Multi-Agent Determinantal Q-Learning 105

by expressing each row ofW as a product of a quality term di ∈ R+ and a diversity

feature term bi ∈ RP×1 with ‖bi‖ ≤ 1, i.e., wi = dib
>
i . An example of such

decomposition is visualized in Figure 5.2 where we define B = [b1, . . . , bM] and

D = diag(d1, . . . , dM). Note that both D and B are free parameters that can be

learned from the environment during the Q-learning process in Equation 2.8.

If we denote the quality term as each agent’s individual Q-value for a

given observation-action pair, i.e., ∀(oi, ai) ∈ Y , i = {1, . . . ,M}, di :=

exp
(

1
2
QI(oi,ai)(oi, ai)

)
, then Equation 5.3 can be further written into

Qπ
(
o,a

)
= log det

(
WYW>

Y

)

= log
(>(
D>YDY

)
det
(
B>YBY

))

=
N∑

i=1

QI(oi,ai)

(
oi, ai

)
+ log det

(
B>YBY

)
. (5.4)

Since a determinant value only reaches the maximum when the associated vectors in

BY are mutually orthogonal (Noble et al., 1988), Equation 5.4 essentially stipulates

that Q-DPP represents the joint value function by taking into account not only the

quality of each agent’s contribution towards reward maximization, more importantly,

from a holistic perspective, the orthogonalization of agents’ actions.

In fact, the inclusion of diversifying agents’ behaviors is an important factor

in satisfying the condition in Equation 2.9. Intuitively, in a decentralizable task

with a shared goal, promoting orthogonality between agent’s actions can help clarify

the functionality and responsibility of each agent, which in return leads to a better

instantiation of Equation 2.9. On the other hand, diversity does not means that agents

have to take different actions all the time. Since the goal is still to achieve large

reward via optimizing Equation 2.8, certain scenarios, such as agents need to take

identical actions to accomplish a task, will not be excluded as a result of promoting

diversity.

5.2. Multi-Agent Determinantal Q-Learning 106

5.2.3 Connections to Current Methods

Based on the quality-diversity representation, one can draw a key connection between

Q-DPP and the existing methods. It turns out that, under the sufficient condition that

if the learned diversity features that correspond to the optimal actions are mutually

orthogonal, then Q-DPP degenerates to VDN (Sunehag et al., 2018), QMIX (Rashid

et al., 2018), and QTRAN (Son et al., 2019) respectively.

To elaborate such condition, let us denote a∗i = arg maxQi(oi, ai), a∗ =

(a∗i)i∈N , Y ∗ = {(oi, a∗i)}Ni=1, with ‖bi‖ = 1 and b>i bj = 0,∀i 6= j, then we have

det
(
B>Y ∗BY ∗

)
= 1. (5.5)

Connection to VDN. When {bj}Mj=1 are pairwise orthognal, by plugging Equa-

tion 5.5 into Equation 5.4, we can obtain

Qπ
(
o,a∗

)
=

N∑

i=1

QI(oi,a∗i)

(
oi, a

∗
i

)
. (5.6)

Equation 5.6 recovers the exact additivity constraint that VDN applies to factorize

the joint value function in meeting Equation 2.9.

Connection to QMIX. Q-DPP also generalizes QMIX, which adopts a mono-

tonic constraint on the centralized value function to meet Equation 2.9. Under the

special condition when {bj}Mj=1 are mutually orthogonal, we can easily show that

Q-DPP meets the monotonicity condition because

∂Qπ
(
o,a∗

)

∂QI(oi,a∗i)

(
oi, a∗i

) = 1 ≥ 0, ∀I(oi, a
∗
i) ∈ N . (5.7)

Connection to QTRAN. Q-DPP also meets the sufficient conditions that QTRAN

proposes for meeting Equation 2.9, that is,

N∑

i=1

Qi

(
oi, ai

)
−Qπ(o,a) + V (o) =

{ 0 a = a∗

≥ 0 a 6= a∗
, (5.8)

where V (o) = maxaQ
π(o,a)−∑N

i=1Qi

(
oi, a

∗
i

)
. Through Equation 5.4, we know

5.2. Multi-Agent Determinantal Q-Learning 107

Q-DPP can have Equation 5.8 written as

− log det
(
B>YBY

)
+ max

a
Qπ(o,a)−

N∑

i=1

Qi

(
oi, a

∗
i

)
. (5.9)

When a = a∗, for pairwise orthogonal {bj}Mj=1, Q-DPP satisfies the first condition

since Equation 5.9 equals to zero due to log det(B>Y ∗BY ∗) = 0. When a 6= a∗,

Equation 5.9 equals to − log det
(
B>YBY

)
+ log det

(
B>Y ∗B∗Y

)
, which is always pos-

itive since det(B>YBY) < 1,∀Y 6= Y ∗; Q-DPP thereby meets the second condition

of Equation 5.8 and recovers QTRAN.

Other Related Work. Determinantal SARSA (Osogami and Raymond, 2019)

applies a normal DPP to model the ground set of the joint state-action pairs
{

(s0, a0
1, . . . , a

0
N), . . . , (s|S|, a

|A|
1 , . . . , a

|A|
N)
}

. It fails to consider at all a proper

ground set that suits multi-agent problems, which leads to the size of subsets being

2|S||A|
N that is double-exponential to the number of agents. Furthermore, unlike

Q-DPP that learns decentralized policies, Det. SARSA learns the centralized joint-

action policy, which strongly limits its applicability for scalable real-world tasks.

5.2.4 Sampling from Q-DPP

Agents need to explore the environment effectively during training; however, how

to sample from Q-DPPs defined in Equation 5.2 is still unknown. In fact, sampling

from the DPPs with partition-matroid constraint is a non-trivial task. So far, the best

known exact sampler for partitioned DPPs hasO(mp) time complexity with m being

the ground-set size and p being the number of partitions (Celis et al., 2016; Li et al.,

2016). Nonetheless, these samplers still pose great computational challenges for

multi-agent learning tasks and cannot scale to large number of agents because we

have m = |C(o)| = |A|N for multi-agent learning tasks.

In this chapter, we instead adopt a biased yet tractable sampler for Q-DPP. Our

sampler is an application of the sampling-by-projection idea in Celis et al. (2018)

which leverages the property that Gram-Schmidt process preserves the determinant.

One benefit of our sampler is that it promotes efficient explorations among agents

during training. Most importantly, it enjoys linear-time complexity w.r.t. the number

5.2. Multi-Agent Determinantal Q-Learning 108

Algorithm 5.4 Multi-Agent Determinantal Q-Learning
1: DEF Orthogonalizing-Sampler (Y ,D,B,o):

2: Init: bj ← B[:,j], Y ← ∅, B ← ∅, J ← ∅.
3: for each partition Yi do
4: Define ∀(o, a) ∈ Yi(oi)q(o, a) :=

∥∥bJ (o,a)

∥∥2
exp

(
DJ (o,a),J (o,a)

)
.

5: Sample (õi, ãi) ∈ Yi(oi) from the distribution:
{

q(o, a)∑
(ô,â)∈Yi(oi) q(ô, â)

}

(o,a)∈Yi(oi)
.

6: Let Y ← Y ∪ (õi, ãi), B ← B ∪ bJ (õi,ãi), J ← J ∪ J (õi, ãi).
7: // Gram-Schmidt orthogonalization
8: Set bj = qspan{B} (bj) ,∀j ∈ {1, ...,M} − J
9: end for

10: Return: Y .
11:
12: DEF Determinantal-Q-Learning (θ = [θD, θB],Y):

13: Init: θ− ← θ, D ← ∅.
14: for each time-step do
15: Collect observations o = [o1, . . . , oN] for all agents.
16: a = Orthogonalizing-Sampler(Y , θD, θB,o).
17: Execute a, store the transition 〈o,a,R,o′〉 in D.
18: Sample a mini-batch of {〈o,a,R,o′〉}Ej=1 from D.
19: Compute for each transition in the mini-batch

maxa′ Q
(
o′,a′; θ−

)
= log det

(
LY={(o′1,a∗1),...,(o′N ,a

∗
N)}
)

20: // centralized training
21: Update θ by minimizing L(θ) defined in Equation 2.8.
22: Update target θ− = θ periodically.
23: end for
24: Return: θD, θB.

of agents. We now start from showing its intuition.

Additional Notations. In a Euclidean space Rn equipped with an inner product

〈·, ·〉, let U ⊆ Rn be any linear subspace, and U⊥ be its orthogonal complement

U⊥ := {x ∈ Rn|〈x, y〉 = 0,∀y ∈ U}. We define an orthogonal projection operator,

qU : Rn → Rn, such that ∀u ∈ Rn, if u = u1 + u2 with u1 ∈ U and u2 ∈
U⊥, then qU (u) = u2.

Gram-Schmidt (Noble et al., 1988) is a process for orthogonalizing a set

of vectors; given a set of linearly independent vectors {wi}, it outputs a mutu-

5.2. Multi-Agent Determinantal Q-Learning 109

ally orthogonal set of vectors {ŵi} by computing ŵi := qUi(wi) where Ui =

span{w1, . . . ,wi−1}. Note that we neglect the normalizing step of Gram-Schmidt

in this chapter. Finally, if the rows {wi} of a matrixW are mutually orthogonal, we

can compute the determinant by det(WW>) =
∏ ‖wi‖2. The Q-DPP sampler is

built upon the following property.

Proposition 5.1 (Volume preservation of Gram-Schmidt, see Chapter 7 in Sha-

farevich and Remizov (2012), also Lemma 3.1 in Celis et al. (2018).). Let

Ui = span{w1, . . . ,wi−1} and wi ∈ RP be the i-th row ofW ∈ RM×P , then
∏M

i=1 ‖ qUi (wi)‖2 = det(WW>).

Proof. Such property has been mentioned in linear algebra textbook, e.g., Chapter

7 in Shafarevich and Remizov (2012). Celis et al. (2018) also gave out a proof

by induction1 in Lemma 3.1. Here we provide our own intuition of such property

through the classical Gaussian elimination method.

We first define an orthogonalization operator uwi(wj) that takes an input of

a vector wj ∈ RP and outputs another vector that is orthogonal to a given vector

wi ∈ RP by

uwi (wj) := wj −wi〈wi,wj〉/‖wi‖2 . (5.10)

Based on the Equation 5.10, we know that ∀wi,wj,wk ∈ RP ,

uwi(wj +wk) = uwi(wj) + uwi(wk).

Besides, we have two properties for the orthogonalization operator that will be used

later; we present as lemmas.

Lemma 5.1 (Change of Projection Base). Let wi, wj , wk ∈ RP , we have wj ·
uwi(wk)

> = uwi(wj) · uwi(wk)
>.

Proof. Based the definition of Equation 5.10, one can easily write that the left hand

side equals to the right hand side. �
1We believe their proof is a special case, as interchanging the order of rows can actually change the

determinant value, i.e., det(WW>) 6=
[
wk

W ′
][

w>k W ′>
]

where the row vectors are denoted

as W = {w1, . . . , wk} and W ′ = {w1, . . . , wk−1}.

5.2. Multi-Agent Determinantal Q-Learning 110

Lemma 5.2 (Subspace Orthogonalization). Let wi, wj , wk ∈ RP , we have

uuwi (wj)(wk) · uwi(wk)
> =

∥∥qUk(wk)
∥∥2 where Uk = span{wi,wj}.

Proof. The left-hand side of equation can be written by

uuwi (wj)(wk) · uwi(wk)
>

=
(
wk − uwi(wj)

〈uwi(wj),wk〉
‖uwi(wj)‖2)

)
·
(
wk −wi

〈wi,wk〉
‖wi‖2

)>

= wkw
>
k −
uwi(wj) ·w>k
‖uwi(wj)‖

〈 uwi(wj)

‖uwi(wj)‖
,wk〉

− wk ·w>i
‖wi‖

〈 w
>
i

‖wi‖
,wk〉 . (5.11)

On the other hand, qUk(wk) represents the orthogonal projection of wk to the

subspace that is spanned by wi and wj . Since
{

wi
‖wi‖ ,

uwi (wj)
‖uwi (wj)‖

}
form a set of

orthornormal basis for the subspace Uk = span{wi,wj}, according to the definition

of qUk(wk) in Section 5.2.4, we can write qUk(wk) aswk minus the projection of

wk on the subspace that is spanned by
{

wi
‖wi‖ ,

uwi (wj)
‖uwi (wj)‖

}
, i.e.,

qUk(wk) = wk − 〈wk,
wi

‖wi‖
〉 wi

‖wi‖

− 〈wk,
uwi(wj)

‖uwi(wj)‖
〉 uwi(wj)

‖uwi(wj)‖
. (5.12)

Under the orthonormal property of wi
‖wi‖ ·

uwi (wj)
‖uwi (wj)‖

>
= 0 and

∥∥∥ wi
‖wi‖

∥∥∥
2

=
∥∥∥ uwi (wj)‖uwi (wj)‖

∥∥∥
2

= 1, finally, squaring the Equation 5.12 from both sides leads us

to the Equation 5.11, i.e.,
∥∥qUk(wk)

∥∥2
= uuwi (wj)(wk) · uwi(wk)

>. �

Assuming {w1, . . . ,wM} being the rows of W , then applying the Gram-

Schmidt orthogonalization process gives

Gram-Schmidt
({
wi

}M
i=1

)
=
{
qUi(wi)

}M
i=1

where Ui = span{w1, . . . ,wi−1}. Note that we don’t consider normalizing each

qUi(wi) in this chapter.

In fact, the effect on the Gram matrix determinant det(WW>) of applying

5.2. Multi-Agent Determinantal Q-Learning 111

the Gram-Schmidt process on the rows ofW is equivalent to applying Gaussian

elimination (Noble et al., 1988) to transform the Gram matrix to be upper triangular.

Since adding a row/column of a matrix multiplied by a scalar to another row/column

of that matrix will not change the determinant value of the original matrix (Noble

et al., 1988), Gaussian elimination, so as the Gram-Schmidt process, preserves the

determinant.

To illustrate the above equivalence, we demonstrate the Gaussian elimination

process step-by-step on the case of M = 3, the determinant of such a Gram matrix is

det
(
WW>) = det




w1w
>
1 w1w

>
2 w1w

>
3

w2w
>
1 w2w

>
2 w2w

>
3

w3w
>
1 w3w

>
2 w3w

>
3


 . (5.13)

To apply Gaussian elimination to turn the Gram matrix to be upper triangular,

first, we multiply the 1-st row by −w2w>1
w1w>1

and then add the result to the 2-nd row;

without affecting the determinant, we have the 2-nd row transformed into

[
0,w2w

>
2 −

w2w
>
1

w1w>1
w1w

>
2 ,w2w

>
3 −

w2w
>
1

w1w>1
w1w

>
3

]

=
[
0,w2 · uw1(w2)>,w3 · uw1(w2)>

]

=
[
0,uw1(w2) · uw1(w2)>,uw1(w3) · uw1(w2)>

]
. (Lemma 5.1) (5.14)

Similarly, we can apply the same process on the 3-rd row, which can be written as

[
0,w3w

>
2 −

w2w
>
1

w1w>1
w1w

>
2 ,w3w

>
3 −

w2w
>
1

w1w>1
w1w

>
3

]

=
[
0,uw1(w2) · uw1(w3)>,uw1(w3) · uw1(w3)>

]
.

(5.15)

To makeWW> upper triangular, we need to make the 2-nd element in the 3-rd row

be zero. To achieve that, we multiply −uw1 (w2)·uw1 (w3)>

uw1 (w2)·uw1 (w2)>
to Equation 5.14 and add

5.2. Multi-Agent Determinantal Q-Learning 112

the multiplication to Equation 5.15, and the 3-rd row can be further transformed into

[
0, 0,uw1(w3) · uw1(w3)>−

uw1(w2) · uw1(w3)>

uw1(w2) · uw1(w2)>
uw1(w3) · uw1(w2)>

]

=
[
0, 0,uw1(w3) · uuw1 (w2)

(
uw1 (w3)

)>]

=
[
0, 0,uw1(w3) · uuw1 (w2)

(
w3 −w1

〈w1,w3〉
‖w1‖2

)>]

=
[
0, 0,uw1(w3) ·

(
uuw1 (w2) (w3)

− uuw1 (w2)

(
w1
〈w1,w3〉
‖w1‖2

))>]

=
[
0, 0,uw1(w3) · uuw1 (w2)

(
w3

)>]

=
[
0, 0,

∥∥qU3 (w3)
∥∥2
]
. (Lemma 5.2)

(5.16)

In the fourth equation of Eq.5.16, we use the property that uw1(·) ·uuw1 (·)(w1)> = 0,

i.e., the inner product between a vector and its own orthogonalization equals to zero.

Given the Gran matrix is now upper triangular, by putting Equation 5.14 and

Equation 5.16 into Equation 5.13, and define U1 = ∅,U2 = {w1},U3 = {w1,w2},
we can write the determinant to be

det
(
WW>)

= det




w1w
>
1 w1w

>
2 w1w

>
3

0
∥∥uw1(w2)

∥∥2 uw1(w3) · uw1(w2)>

0 0
∥∥qU3 (w3)

∥∥2




=
3∏

i=1

∥∥∥qUi (wi)
∥∥∥

2

.

When M ≥ 3, the consequence of eliminating all j-th elements (j < i) in

the i-th row of the Gram matrixWW>
(i,j) by Gaussian elimination is equivalent

to the i-th step of the Gran-Schmidt process applied on the vector set {wi}Mi=1, in

other words, the (i, i)-th element of the Gram matrix after Gaussian elimination

is essentially the squared norm of qUi(wi). Finally, since the determinant of an

5.2. Multi-Agent Determinantal Q-Learning 113

upper-triangular matrix is simply the multiplication of its diagonal elements, we

have
∏M

i=1

∥∥qUi (wi)
∥∥2
. �

Proposition 5.1 suggests that the determinant of a Gram matrix is invariant to

applying the Gram-Schmidt orthogonalization on the rows of that Gram matrix. In

Q-DPP’s case, a kernel matrix with mutually orthogonal rows can largely simplify

the sampling process. In such scenarios, an effective sampler can be that, from each

partition Yi, sample an item i ∈ Yi with P(i) ∝ ‖dib>i ‖2, then add i to the output

sample Y and move to the next partition; the above steps iterate until all partitions

are covered. It is effortless to see that the probability of obtaining sample Y in such

a way is

P(Y) ∝
∏

i∈Y

‖dib>i ‖2 =
∏

i∈Y

‖wi‖2 = det(WYW>
Y)

∝ det(LY). (5.17)

We formally describe the orthogonalizing sampling procedures in Algorithm 5.4. As

it is suggested in Celis et al. (2018), the time complexity of the sampling function is

O(NMP), given the input size being O(MP), our sampler thus enjoys linear-time

complexity w.r.t the agent number. The following is the details complexity analysis:

Time Complexity of Algorithm: Let’s analyze the time complexity of the

proposed Q-DPP sampler in steps 1− 10 of Algorithm 5.4. Given the observation o,

and the input matricesD,B (whose sizes are M ×M , P ×M , with M = |A| ×N
being the size of all N agents’ allowed actions under o and P being the diversity

feature dimension), the sampler samples one action for each agent sequentially,

so the outer loop of step 3 is O(N). Within the partition of each agent, step 4 is

O(P), step 5 is O(P |A|), step 6 is O(1), so the complexity so far is O(NP |A|).
Computing step 8 for ALL partitions is of O(N2P |A|)†. The overall complexity is

O(N2P |A|) = O(NMP), since the input is O(MP) and the agent number N is

a constant, our sampler has linear-time complexity with respect to the input, also

linear-time with respect to the number of agents. Such argument is in line with the

project-and-sample sampler in Celis et al. (2018). †: In the Gram-Schmidt process,

5.2. Multi-Agent Determinantal Q-Learning 114

orthogonalizing a vector to another takes O(P). Considering all valid actions for

each agent takes O(P |A|). Note that while looping over different partitions, the

remaining unsampled partitions do not need repeatedly orthogonalizing to all the

previous samples, in fact, they only need orthogonalizing to the LATEST sample.

In the example of Fig 2, after agent 2 selects action 5, agent 3’s three actions only

need orthogonalizing to action 5 but not action 2 because it has been performed

when the partition of agent 1 was visited. So the total number of orthogonalization is

(N − 1)N/2 across all partitions, leading to O(N2P |A|) time for step 8.

Though the Gram-Schmidt process can preserve the determinant and simply

the sampling process, it comes at a prize of introducing bias on the normalization

term. Specifically, the normalization in our proposed sampler is conducted at each

agent/partition level Yi(oi) (see the red in line 5) which does not match Equation 5.2

that suggests normalizing by listing all valid samples considering all partitions C(o);

this directly leads to a sampled subset from our sampler having larger probability

than what Q-DPP defines. Interestingly, it turns out that such violation can be

controlled through bounding the singular values of each partition in the kernel matrix

(see Assumption 5.1), a technique also known as the β-balance condition in P -DPP

(Celis et al., 2018).

Assumption 5.1 (Singular-Value Constraint on Partitions). For a Q-DPP defined in

Definition 5.1, which is parameterized byD ∈ RM×M ,B ∈ RP×M andW := DB>,

let σ1 ≥ . . . ≥ σP represent the singular values ofW , and σ̂i,1 ≥ . . . ≥ σ̂i,P

denote the singular values ofWYi that is the submatrix ofW with the rows and

columns corresponding to the i-th partition Yi , we assume ∀j ∈ {1, . . . , P}, ∃ δ ∈
(0, 1] , s.t., mini∈{1,...,N} σ̂

2
i,j/δ ≥ σ2

j holds.

Theorem 5.1 (Approximation Guarantee of Orthogonalizing Sampler). For a Q-

DPP defined in Definition 5.1, under Assumption 5.1, the Orthogonalizing Sampler

described in Algorithm 5.4 returns a sampled subset Y ∈ C(o) with probability

P(Y) ≤ 1/δN · P̃(Y = Y) where N is the number of agents, P̃ is defined in

Equation 5.2, δ is defined in Assumption 5.1.

Proof. This result can be regarded as a special case of Theorem 3.2 in Celis et al.

5.2. Multi-Agent Determinantal Q-Learning 115

(2018) when the number of sample from each partition in P -DPP is set to one.

Difference between Q-DPP and P -DPP: The design of Q-DPP and its samply-

by-projection sampling process is inspired by and based on P -DPP (Celis et al.,

2018). However, we would like to highlight the multiple differences in that 1)

P -DPP is designed for modeling the fairness for data summarization whereas Q-

DPP serves as a function approximator for the joint Q-function in the context of

multi-agent learning; 2) though we analyze Equation 5.19 based onW , the actual

orthorgonalziation step of our sampler only needs performing on the vectors of bj

rather than the entire matrixW due to our unique quality-diversity decomposition on

the joint Q-function in Equation 5.4; 3) the set of elements in each partition Yi(oi) of

Q-DPP change with the observation at each time-step, while the partitions stay fixed

in the case of P -DPP; 4) the parameters ofW are learned through a trail-and-error

multi-agent reinforcement learning process compared to the cases in P -DPP where

the kernel is given by hand-crafted features (e.g. SIFT features on images); 5) we

implement the constraint in Assumption 5.1 via a penalty term during the CTDE

learning process, while P -DPP does not consider meeting such assumption through

optimization.

Sine our sampling algorithm generates samples with the probability in propor-

tional to the determinant value det(LY), which is also the nominator in Equation 5.2,

it is then necessary to bound the denominator of the probability of samples from our

proposed sampler so that the error to the exact denominator defined in Equation 5.2

can be controlled. We start from the Lemma that is going to be used.

Lemma 5.3 (Eckart-Young-Mirsky Theorem). For a real matrixW ∈ RM×P with

M ≥ P , suppose thatW = UΣV > is the singular value decomposition (SVD)

ofW , then the best rank k approximation toW under the Frobenius norm ‖ · ‖F
described as

min
W ′:rank(W ′)=k

∥∥W −W ′∥∥2

F

is given byW ′ =Wk =
∑k

i=1 σiuiv
>
i where ui and vi denote the i-th column of

5.2. Multi-Agent Determinantal Q-Learning 116

U and V respectively, and,

∥∥W −Wk
∥∥2

F
=
∥∥∥

P∑

i=k+1

σiuiv
>
i

∥∥∥
2

F
=

P∑

i=k+1

σ2
i .

Note that the singular values σi in Σ is ranked by size by the SVD procedures such

that σ1 ≥ . . . ≥ σP .

Lemma 5.4 (Lemma 3.1 in (Deshpande et al., 2006)). For a matrixW ∈ RM×P

with M ≥ P ≥ N , assume {σi}Pi=1 are the singular values ofW andWY is the

submatrix ofW with rows indexed by the elements in Y , then we have

∑

|Y |=N

det
(
WYW>

Y

)
=

∑

k1<···<kN

σ2
k1
· · ·σ2

kN
.

To stay consistency on notations, we use N for number of agents, M for the

size of ground set of Q-DPP, P is the dimension of diverse feature vectors, we

assume M ≥ P ≥ N . Let Y be the random variable representing the output of

our proposed sampler in Algorithm 5.4. Since the algorithm visit each partition

in Q-DPP sequentially, a sample Ỹ =
{

(o1
1, a

1
1), . . . , (o

|O|
N , a

|A|
N)
}

is therefore an

ordered set. Note that the algorithm is agnostic to the partition number (i.e. the

agent identity), without losing generality, we denote the first partition chosen as Y1.

We further denote Ỹi, i ∈ {1, . . . , N} as the i-th observation-state pair in Ỹ , and

I(Ỹi) ∈ {1, . . . , N} denotes the partition number where i-th pair is sampled.

According to the Algorithm 5.4, at first step, we choose Y1, and based on the

corresponding observation o1, we then locate the valid subsets ∀(o, a) ∈ Yi(oi), and

finally sample one observation-action pair from the valid set Yi(oi) with probability

proportional to the norm of the vector defined in the Line 4 − 5 in Algorithm 5.4,

that is,

P(Ỹi) ∝
∥∥wJ (o,a)

∥∥2
=
∥∥bJ (o,a)

∥∥2
exp

(
DJ (o,a),J (o,a)

)
. (5.18)

After Ỹi is sampled, the algorithm then moves to the next partition and repeat the

same process until all N partitions are covered.

The specialty of this sampler is that before sampling at each partition i ∈

5.2. Multi-Agent Determinantal Q-Learning 117

{1, . . . , N}, the Gram-Schmidt process will be applied to ensure all the rows in the

i-th partition ofW to be orthogonal to all previous sampled pairs

bij = qspan{Bi}
(
bi−1
j

)
, ∀j ∈ {1, ...,M} − J.

where Bi = {btJ (ot,at)}i−1
t=1, J = {J (ot, at)}i−1

t=1. Note that sinceD only contributes

a scalar to wj , and bj is a P -dimensional vector same as wj , in practice, the Gram-

Schmidt orthorgonalization needs only conducting on bj in order to make rows of

W mutually orthogonal.

Based on the above sampling process and each time-step i, we can write the

probability of getting a sample Ỹ by

P(Y = Ỹ)

= P
(
Ỹ1

) N∏

i=2

P
(
Ỹi
∣∣Ỹ1, . . . , Ỹi−1

)

=
N∏

i=1

∥∥∥qspan{Bi}

(
wI(Ỹi)

)∥∥∥
2

∑
(o,a)∈YI(Ỹi)

∥∥∥qspan{Bi}
(
wI(o,a)

) ∥∥∥
2

=

∏N
i=1

(∥∥∥qspan{Bi}

(
wI(Ỹi)

)∥∥∥
2)

∏N
i=1

(∑
(o,a)∈YI(Ỹi)

∥∥∥qspan{Bi}
(
wI(o,a)

) ∥∥∥
2)

=
det
(
W ỸW

>
Ỹ

)

∏N
i=1

(∑
(o,a)∈YI(Ỹi)

∥∥∥qspan{Bi}
(
wI(o,a)

) ∥∥∥
2) , (5.19)

where the 4-th equation in Equation 5.19 is valid because of Proposition 5.1.

For each term in the denominator, according to the definition of the operator

qspan{Bi}, we can rewrite into

∑

(o,a)∈YI(Ỹi)

∥∥∥qspan{Bi}
(
wI(o,a)

) ∥∥∥
2

=
∥∥∥WI(Ỹi)

−W ′
I(Ỹi)

∥∥∥
2

F

where the rows ofWI(Ỹi)
are {wI(o,a)}(o,a)∈YI(Ỹi)

which are essentially the submatrix

ofW that corresponds to partition I(Ỹi), and the rows ofW ′

I(Ỹi)
are the orthogonal

5.2. Multi-Agent Determinantal Q-Learning 118

projections of {wI(o,a)}(o,a)∈YI onto span{Bi}, and we know rank
(
W ′

I(Ỹi)

)
=

|Bi| = i− 1. According to Lemma 5.3, with σ̂I(Ỹi),k
being the k-th singular value of

WI(Ỹi)
, we know that

∥∥∥WI(Ỹi)
−W ′

I(Ỹi)

∥∥∥
2

F
≥

P∑

k=i

σ̂2
I(Ỹi),k

. (5.20)

Therefore, we have the denominator of Equation 5.19 as:

N∏

i=1

(∑

(o,a)∈YI(Ỹi)

∥∥∥qspan{Bi}
(
wI(o,a)

) ∥∥∥
2)

≥
N∏

i=1

P∑

k=i

σ̂2
I(Ỹi),k

≥
N∏

i=1

P∑

k=i

δ · σ2
k (Assumption 5.1)

≥ δN ·
∑

k1<···<kN

σ2
k1
· · ·σ2

kN

= δN ·
∑

Y⊆Y:|Y |=N

det
(
WYW>

Y

)
(Lemma 5.4)

≥ δN ·
∑

Y ∈C(o)

det
(
WYW>

Y

)
(5.21)

Taking Equation 5.21 into Equation 5.19, we can obtain that

P(Y = Ỹ) ≤ δN · det
(
W ỸW

>
Ỹ

)
∑

Y ∈C(o) det
(
WYW>

Y

) = 1/δN · P̃(Y = Ỹ)

where P(Y = Ỹ) is the probability of obtaining the sample Ỹ from our proposed

sampler and P̃(Y = Ỹ) is the probability of getting that sample Ỹ under Equation 5.2.

�

Theorem 5.1 effectively suggests a way to bound the error between our sampler

and the true distribution of Q-DPP through minimizing the difference between σ2
j

and σ̂2
i,j .

5.3. Solution for Continuous States: Deep Q-DPP 119

5.2.5 Determinantal Q-Learning

We present the full learning procedures in Algorithm 5.4. Determinantal Q-Learning

is a CTDE method. During training, agents’ explorations are conducted through

the orthogonalizing-sampler. The parameters of B and D are updated through Q-

learning in a centralized way by following Equation 2.8. To meet Assumption 5.1,

one can implement an auxiliary loss function of max(0, σ2
j − σ̂2

i,j/δ) in addition to

where δ is a hyper-parameter. Given Theorem 5.1, for large N , we know δ should

be set close to 1 to make the bound tight. In fact, it is worth mentioning that the

Gram-Schmidt process adopted in the sampler can boost the sampling efficiency

for multi-agent training. Since agents’ diversity features of observation-action pairs

are orthogonalized every time after a partition is visited, agents who act later are

essentially coordinated to explore the observation-action space that is distinctive to

all previous agents. This speeds up training in early stages.

During execution, agents only need to access the parameters in their own

partitions to compute the greedy action (see line 19). Note that neural networks

can be seamlessly applied to represent both B and D to tackle continuous states.

Though a full treatment of deep Q-DPP needs substantial future work, we show a

proof of concept in Section 5.3. Hereafter, we use Q-DPP to represent our proposed

algorithm.

5.3 Solution for Continuous States: Deep Q-DPP

Although our proposed Q-DPP serves as a new type of function approximator for

the value function in multi-agent reinforcement learning, deep neural networks can

also be seamlessly applied on Q-DPP. Specifically, one can adopt deep networks

to respectively represent the quality and diversity terms in the kernels of Q-DPP to

tackle continuous state-action space, and we name such approach Deep Q-DPP. In

Figure 5.2, one can think of Deep Q-DPP as modelingD and B by neural networks

rather than look-up tables. An analogy of Deep Q-DPP to Q-DPP would be Deep

Q-learning (Mnih et al., 2015) to Q-learning (Watkins and Dayan, 1992). As the main

motivation of introducing Q-DPP is to eliminate structural constraints and bespoke

5.3. Solution for Continuous States: Deep Q-DPP 120

Mixing Network

MLP

GRU

MLP

Agent 1 Agent Nexpexp

log det

indexindex

state encoderstate encoder

Figure 5.3: Neural Architecture of Deep Q-DPP. The middle part of the diagram shows
the overall architecture of Q-DPP, which consists of each agent’s individual
Q-networks and a centralized mixing network. Details of the mixing network
are presented in the left. We compute the quality term, di, by applying the
exponential operator on the individual Q-value, and compute the diversity feature
term, bi, by index the corresponding vector in B through the global state s and
each action ai.

neural architecture designs in solving multi-agent cooperative tasks, we omit the

study of Deep Q-DPP in the main body of this chapter. Here we demonstrate a proof

of concept for Deep Q-DPP and its effectiveness on StarCraft II micro-management

tasks (Samvelyan et al., 2019) as an initiative. However, we do believe a full

treatment needs substantial future work.

5.3.1 Neural Architectures for Deep Q-DPP.

A critical advantage of Deep Q-DPP is that it can deal with continuous

states/observations. When the input state s is continuous, we first index the

raw diversity feature b′i based on the embedding of discrete action ai. To integrate

the information of the continuous state, we use two multi-layer feed-forward neural

networks fd and fn, which encodes the direction and norm of the diversity feature

separately. fd outputs a feature vector with same shape as b′i indicating the direc-

tion, and fn outputs a real value for computing the norm. In practice, we find

modeling the direction and norm of the diversity features separately by two neural

networks helps stabilize training, and the diversity feature vector is computed as

bi = fd(b
′
i, s)× σ(fn(b′i, s)). Finally, the centralized Q-value can then be computed

from di and bi following Equation 5.4.

5.4. Experiments 121

1 0

0 1
0 0

0 1

1 1

1 1

1 0

0 0

1 1

1 4
Initial State

8
Times

Terminal Terminal

8
Times

Blocker 1 Blocker 2

Agents can move in four directions or stay fixed,
the target is trying to reach the bottom row.

Blockers can move left/right to block the agents.
Available Target

Top Row

Bottom Row

Observation Area

Reward -0.5
1 Predator catches 1 Prey

Reward +1
2 Predators catch 1 Prey

(a) Pathological Stochastic Game

1 0

0 1
0 0

0 1

1 1

1 1

1 0

0 0

1 1

1 4
Initial State

8
Times

Terminal Terminal

8
Times

Blocker 1 Blocker 2

Agents can move in four directions or stay fixed,
the target is trying to reach the bottom row.

Blockers can move left/right to block the agents.
Available Target

Top Row

Bottom Row

Observation Area

Reward -0.5
1 Predator meets 1 Prey

Reward +5
2 Predators catch 1 Prey

Agent 1 Agent 2 Agent 3

(b) Blocker Game

1 0

0 1
0 0

0 1

1 1

1 1

1 0

0 0

1 1

1 4
Initial State

8
Times

Terminal Terminal

8
Times

Blocker 1 Blocker 2

Agents can move in four directions or stay fixed,
the target is trying to reach the bottom row.

Blockers can move left/right to block the agents.
Available Target

Top Row

Bottom Row

Observation Area

Reward -0.5
1 Predator catches 1 Prey

Reward +1
2 Predators catch 1 Prey

(c) Coordinated Navigation

1 0

0 1
0 0

0 1

1 1

1 1

1 0

0 0

1 1

1 4
Initial State

8
Times

Terminal Terminal

8
Times

Blocker 1 Blocker 2

Agents can move in four directions or stay fixed,
the target is trying to reach the bottom row.

Blockers can move left/right to block the agents.
Available Target

Top Row

Bottom Row

Observation Area

Reward -0.5
1 Predator meets 1 Prey

Reward +5
2 Predators catch 1 Prey

(d) Predator-Prey World

Figure 5.4: Multi-agent cooperative tasks. The size of the ground set for each task is a) 176,
b) 420, c) 720, d) 3920.

5.4 Experiments
We compare Q-DPP with state-of-the-art CTDE solvers for multi-agent coopera-

tive tasks, including COMA (Foerster et al., 2018b), VDN (Sunehag et al., 2018),

QMIX (Rashid et al., 2018), QTRAN (Son et al., 2019), and MAVEN (Mahajan

et al., 2019). All baselines are imported from PyMARL (Samvelyan et al., 2019).

We consider four cooperative tasks based on grid worlds in Figure 5.4, all of which

require different behaviors to achieve cooperative goals. Therefore, the above models

need a non-trivial value function decomposition to achieve the largest reward.

5.4.1 Discrete State and Action Games

Pathological Stochastic Game. The optimal policy of this game is to let both agents

keep acting top left until the 10-th step to change to bottom right, which results in the

5.4. Experiments 122

0 10K 20K 25K 30K
Step

0

2

4

6

8

10

12
R

et
ur

n

Q-DPP (Ours)
QMIX

COMA
MAVEN

VDN
QTRAN

(a) Multi-Step Matrix Game

0 50K 100K 150K 200K
Step

40

30

20

10

0

R
et

ur
n

Q-DPP (Ours)
QMIX

COMA
MAVEN

VDN
QTRAN

(b) Blocker Game

0 25K 50K 75K 100K
Step

50

40

30

20

10

0

R
et

ur
n

Q-DPP (Ours)
QMIX

COMA
MAVEN

VDN
QTRAN

(c) Coordinated Navigation

0 1M 2M 3M 4M
Step

20

10

0

8

R
et

ur
n

Q-DPP (Ours)
QMIX

COMA
MAVEN

VDN
QTRAN

(d) Predator-Prey World

25K 50K 75K 100K
Step

30

20

10

0

R
et

ur
n

Blocker w/ Assumption 1
Blocker w/o Assumption 1

Navigation w/ Assumption 1
Navigation w/o Assumption 1

(e) Ablation study on Assumption 5.1

0 50K 100K 150K 200K

Step

−300

−200

−100

0

50

R
at

io

Q-DPP (Ours)

(f) Diversity / Quality Ratio

Figure 5.5: (a)-(d):Performance over time on different tasks. (e): Ablation study on As-
sumption 5.1 on Blocker game. (f): The ratio of diversity to quality, i.e.,
log det(B>YBY)/

∑N
i=1QI(oi,ai)(oi, ai), during training on Blocker game.

optimal reward of 13. The design of such stochastic game intends to be pathological.

First, it is non-monotonic (thus QMIX surely fails), second, it demonstrates relative

overgeneralization (Wei et al., 2018) because both agents playing the 1st action on

average offer a higher reward 10 when matched with arbitrary actions from the other

5.4. Experiments 123

1 2 3 4 5 6 7

1

2

3

4

v v v < < - ^

v v v ^ < v >

v < < v - > -

v - - < - - < 0.05

0.10

0.15

0.20

0.25

0.30

Q
uality

(a) Agent 1.

1 2 3 4 5 6 7

1

2

3

4

v < > v < > v

v < > v < > -

< < > v < > v

< - - v - - < 0.1

0.2

0.3

0.4

0.5

0.6

0.7
Q

uality

(b) Agent 2.
1 2 3 4 5 6 7

1

2

3

4

v ^ - - > v v

v < < ^ > v v

v ^ > > > > v

> - - < - - -
0.05

0.10

0.15

0.20

0.25

0.30

0.35

Q
uality

(c) Agent 3.

Figure 5.6: (a)-(c): Each of the agent’s decentralized policy, i.e., arg maxaQi(oi, a), during
execution on Blocker game.

agent. We allow agent to observe the current step number and the joint action in

the last time-step. Zero reward leads to immediate termination. Figure 5.5a shows

Q-DPP can converge to the global optimal in only 20K steps while other baselines

struggle.

Blocker Game & Coordinated Navigation. Blocker game (Heess et al., 2012)

requires agents to reach the bottom row by coordinating with its teammates to deceive

the blockers that can move left/right to block them. The coordinated navigation

requires four agents to reach four different landmarks. For both tasks, it costs all

agents −1 reward per time-step before they all reach the destination. Depending on

the starting points, the largest reward of the game are −3 and −6 respectively. Both

tasks are challenging in the sense that coordination is rather challenging for agents

that only have decentralized policies and local observations. Figure 5.5b & 5.5c

suggest Q-DPP still achieves the best performance.

Predator-Prey World. In this task, four predators attempt to capture two

randomly-moving preys. Each predator can move in four directions but they only

have local views. The predators get a team reward of 1 if two or more predators are

5.4. Experiments 124

capturing the same prey at the same time, and they are penalized for−0.5 if only one

of them captures a prey. The game terminates when all preys are caught. Figure 5.5d

shows Q-DPP’s superior performance than all other baselines.

Apart from the best performance in terms of rewards, here we offer more

insights of why and how Q-DPP works well.

The Importance of Assumption 5.1. Assumption 5.1 is the premise for the

correctness of Q-DPP sampler to hold. To investigate its impact in practice, we

conduct the ablation study on Blocker and Navigation games. We implement such

assumption via an auxiliary loss function of max(0, σ2
j − σ̂2

i,j/δ) that penalizes the

violation of the assumption, we set δ = 0.5. Figure 5.5e presents the performance

comparisons of the Q-DPPs with and without such additional loss function. We can

tell that maintaining such a condition, though not helping improve the performance,

stablizes the training process by significantly reducing the variance of the rewards.

We believe this is because violating Assumption 5.4 leads to over-estimating the

probability of certain observation-action pairs in the partition where the violation

happens, such over-estimation can make the agent stick to a poor local observation-

action pair for some time.

The Satisfaction of Equation 2.9. We show empirical evidence on Blocker

game that the natural factorization that Q-DPP offers indeed satisfy Equation 2.9.

Intuitively, Q-DPPs encourage agents to acquire diverse behavorial models during

training so that the optimal action of one agent does not depend on the actions of the

other agents during the decentralized execution stage, as a result, Equation 2.9 can be

satisfied. Figures 5.6 (a-c) justify such intuition by showing Q-DPP learns mutually

orthogonal behavioral models. Given the distinction among agents’ individual

policies, one can tell that the joint optimum is reached through individual optima.

Quality versus Diversity. We investigate the change of the relative importance

of quality versus diversity during training. On Blocker game, we show the ratio of

log det
(
B>YBY

)
/
∑N

i=1QI(oi,ai)

(
oi, ai

)
, which reflects how the learning algorithm

balances maximizing reward against encouraging diverse behaviors. In Figure 5.5f,

we can see that the ratio gradually converges to 0. The diversity term plays a

5.4. Experiments 125

less important role with the development of training; this is also expected since

explorations tend to be rewarded more at the early stage of a task.

5.4.2 StarCraft II Micro-Management

(a) Scenario Screenshot

(b) 2m_vs_1z

Figure 5.7: StarCraft II micro-management on the scenario of 2 Marines vs. 1 Zealot and
its performance.

We study one of the simplest continuous state-action micro-management games

in StarCraft II in SMAC (Samvelyan et al., 2019), i.e., 2m_vs_1z, the screenshots

of scenarios are given in Figure 5.7a. In the 2m_vs_1z map, we control a team of

5.5. Summary 126

2 Marines to fight with 1 enemy Zergling. In this task, it requires the Marine units

to take advantage of their larger firing range to defeat over Zergling which can only

attack local enemies. The agents can observe a continuous feature vector including

the information of health, positions and weapon cooldown of other agents. In terms

of reward design, we keep the default setting. All agents receive a large final reward

for winning a battle, at the meantime, they also receive immediate rewards that

are proportional to the difference of total damages between the two teams in every

time-step. We compare Q-DPP with aforementioned baseline models, i.e., COMA,

VDN, QMIX, MAVEN, and QTRAN, and plot the results in Figure 5.7b. The results

show that Q-DPP can perform as good as the state-of-the-art model, QMIX, even

when the state feature is continuous. However, the performance is not stable and

presents high variance. We believe full treatments need substantial future work to

reduce the sampling bias in neural DPP kernel.

5.5 Summary
We proposed Q-DPP, a new type of value-function approximator for cooperative

multi-agent reinforcement learning. Q-DPP, as a probabilistic way of modeling sets,

considers not only the quality of agents’ actions towards reward maximization, but

the diversity of agents’ behaviors. We have demonstrated that Q-DPP addresses the

joint exploration limitation of current major solutions including VDN, QMIX, and

QTRAN by learning the value function decomposition without structural constraints.

Part III

Game-Theoretic Analysis of

Policy-Space Influence

127

Chapter 6

Multi-Agent Trust Region Learning

Due to the complexity of multi-agent problems (Chatterjee et al., 2004), investigating

if agents can learn to behave effectively during interactions with environments and

other agents is essential (Fudenberg et al., 1998). This can be achieved naively

through the independent learner (IL) (Tan, 1993), which ignores the other agents and

optimizes the policy assuming a stable environment (Buşoniu et al., 2010; Hernandez-

Leal et al., 2017). Due to their theoretical guarantee and good empirical performance

in real-world applications, trust region methods (e.g., PPO (Schulman et al., 2015,

2017)) based ILs are popular (Berner et al., 2019; Vinyals et al., 2019). In single-

agent learning, trust region methods can produce a monotonic payoff improvement

guarantee (Kakade and Langford, 2002) via line search (Schulman et al., 2015).

However, in multi-agent scenarios, an agent’s improvement is affected by the other

agent’s behaviors (i.e., the multi-agent environment is non-stationary (Hernandez-

Leal et al., 2017)), which means that trust region based ILs act less well in single-

agent tasks. As shown in Figure 6.1, trust region learners can measure the policy

improvements of the agents’ current policies, but the improvements of the updated

opponents’ policies are unknown. Therefore, using trust region ILs to play optimally

against stationary agents is insufficient as a multi-agent learning method. Moreover,

the convergence to a fixed point, such as a Nash equilibrium (Bowling and Veloso,

2004; Mazumdar et al., 2020), is a common and widely accepted solution concept

for multi-agent learning. Thus, although independent learners can best respond to

other agents’ current policies, they lose their convergence guarantee (Laurent et al.,

129

≤

?

≥

?

����������� �
	����
����� �������� ����
�

������� ����������� �
	����
���������� ������	����� ��	����

η−i(πi, π
′
−i)

η−i(π
′
i, π

′
−i)ηi(π

′
i, π

′
−i)

ηi(π
′
i, π−i)ηi(πi, π−i) η−i(πi, π−i)

Figure 6.1: The relationship of discounted returns ηi for an agent i given the different joint
policy pairs, where πi is the current policy, π′i is the simultaneously updated
policy.

2011).

One solution to address the convergence problem for independent learners is

Empirical Game-Theoretic Analysis (EGTA) (Wellman, 2006), which approximates

the best response to the policies generated by the independent learners (Lanctot et al.,

2017; Muller et al., 2020). Although EGTA based methods (Balduzzi et al., 2019;

Lanctot et al., 2017; Omidshafiei et al., 2019) establish convergence guarantees

in several games classes, the computational cost is also large when empirically

approximating and solving the increasing meta-game (Yang et al., 2019). Other

multi-agent learning approaches collect or approximate additional information such

as communication (Foerster et al., 2016) and centralized joint critics (Foerster et al.,

2018b; Lowe et al., 2017; Rashid et al., 2018; Sunehag et al., 2018). Nevertheless,

these methods usually require centralized parameters or centralized communication

assumptions. Thus, there is considerable interest in multi-agent learning to find

an algorithm that, while having minimal requirements and computational cost as

independent learners, also improves convergence performance at the same time.

This chapter presents the Multi-Agent Trust Region Learning (MATRL) algo-

rithm that augments the trust-region ILs with a restricted meta-game to improve

the stability and efficiency of learning. In MATRL, a trust region trial step on

agents’ payoff improvement is implemented by independent learners, which gives

a predicted policy based on the current policy. Then, an empirical policy-space

meta-game is constructed comparing the expected advantage of predicted policies

with the current policies. By solving the meta-game, MATRL finds a restricted step

by aggregating the current and predicted policies using meta-game Nash Equilibrium

Finally, MATRL takes the best responses based on the aggregated policies from

last step for each agent to explore and avoid the potential saddle point. MATRL

6.1. Related Work 130

��
���
�� ������ �	�
���	�
�

�
��� ������
���
��

�
��� ������
���
��

�
��� ���	 ���
��

πi

π−i

π̂iπ̂−i

π∗
i
π∗

−i

(a) Independent trust region learning.

������
�
�� ��	���� ���	� ��	
�
����
�������

����� ���
��
��	

�

����� ���
��
��	

�

πi

π−i

π̂iπ̂−i

π∗
i
π∗

−i

����� ������ ��	

�

π′
i

π′
−i

π̄−iπ̄i

(b) Multi-agent trust region learning.

Figure 6.2: Comparisons between independent trust region learner and multi-agent trust
region learner. πi, π−i are the current policies for two agents. π̂i, π̂−i predicted
policies within TPR, (π∗i , π

∗
−i) forms Nash equilibrium, π′i and π′−i are the best

responses to the fixed point (π̄i, π̄−i) constrained by TSR.

is, therefore, able to provide a more stable point compared with the naive indepen-

dent learners. Based on trust region independent learners, MATRL does not need

extra parameters, simulations, or modifications to the independent learner itself.

We provide insights into the empirical meta-game in Section 6.2.2, showing that

an approximated Nash equilibrium of the meta-game is a weak stable fixed point

of the underlying game. We also prove that MATRL has a tighter lower bound

and better convergence performance than independent learners in various games.

The experiments demonstrate that MATRL significantly outperforms deep indepen-

dent learners (Schulman et al., 2017) with the same hyper-parameters, centralized

VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018) methods in discrete action

grid-worlds and centralized MADDPG (Lowe et al., 2017) in a continuous action

multi-agent MuJoCo task (de Witt et al., 2020).

6.1 Related Work
The study of gradient-based methods in multi-agent learning is quite extensive (Buşo-

niu et al., 2010; Mazumdar et al., 2020). Some works on learning in games have

mostly focused on adjusting the step size, which attempts to use a multiple-timescales

learning scheme (Bowling and Veloso, 2002; Leslie et al., 2003; Leslie and Collins,

2005) to achieve convergence. Balduzzi et al. (2018); Letcher et al. (2019); Mazum-

dar et al. (2019) tried to utilize the second-order methods to shape the step size.

However, the computational cost for second-order methods is very limiting in many

6.1. Related Work 131

cases. Alternatively, MATRL approximates the second-order fixed-point informa-

tion via a small meta-game with less cost comparing to real Hessian computation.

An alternative augments the gradient-based algorithms with the best response to

predicted polices (Antipin, 2003; Foerster et al., 2018a; Lin et al., 2020; Lockhart

et al., 2019; Tang et al., 2018; Zhang and Lesser, 2010), which target the challenge

of instability caused by agents’ change policies. Instead of taking the best response

to the approximated opponent’s policy, MATRL exploits the ideas from both streams

and and introduces the improvement over the weak stable fixed point.

The research also focuses on the EGTA (Jordan and Wellman, 2009; Tuyls

et al., 2020, 2018), which creates a policy-space meta-game for modeling the multi-

agent interactions. Using various evaluation metrics, it then updates and extends the

policies based on the analysis of the meta policies (Balduzzi et al., 2019; Lanctot

et al., 2017; Muller et al., 2020; Omidshafiei et al., 2019; Yang et al., 2019). Although

these methods are broad with respect to multi-agent tasks, they require extensive

computing resources to estimate the empirical meta-game and solve it with its

increasing size (Omidshafiei et al., 2019; Yang et al., 2019). In our method, we adopt

the idea of a policy-space meta-game to approximate the fixed point. Unlike previous

works, we only maintain the current policies and predicted policies to construct the

meta-game, which is computationally achievable in most cases. The payoff entry

in MATRL’s meta-game is the expected advantage, which has a lower estimation

variance compared to the commonly used empirically-estimated return in EGTAs.

Regardless, we can reuse the trajectories in the TPR step to estimate the payoffs

without incurring additional sampling costs.

Recently, due to the use of neural networks as a function approximation for

policies and values, there have emerged many works on deep reinforcement learn-

ing (DRL) (Lillicrap et al., 2015; Mnih et al., 2013). Trust region policy opti-

mization (Kakade and Langford, 2002; Schulman et al., 2015, 2017) is one of the

most successful DRL methods in the single-agent setting, which puts constraints

on the step size of policy updates, preserving any improvements monotonically.

Based the monotonic improvement in single-agent trust region policy optimization

6.2. Multi-Agent Trust Region Policy Optimization 132

(TRPO) (Schulman et al., 2015), MATRL extends the improvement guarantee to

the multi-agent level, towards a weak stable fixed point Some works directly apply

fully decentralized single-agent DRL methods (Tan, 1993), which can be unstable

during when learning due to the non-stationary issue. Whereas Foerster et al. (2016);

Peng et al. (2017); Sukhbaatar et al. (2016) added an extra communication channel

during the training and execution in a centralized way to avoid this non-stationarity

issue. Foerster et al. (2018b); Lowe et al. (2017); Rashid et al. (2018); Sunehag et al.

(2018) further exploit the setting of centralized learning through a decentralized exe-

cution. These methods provide solutions for training agents in complex multi-agent

environments, and the experimental results show the effectiveness compared with

independent learners. MATRL also provides fully decentralized execution and only

requires a centralized mechanism to adjust the step size rather than the centralized

critic or communication.

6.2 Multi-Agent Trust Region Policy Optimization

A trust region algorithm aims to determine how to compute the trust region trial step

and whether a trial step should be accepted. In multi-agent learning, the trust region

trial step towards agents’ payoff improvement can be implemented with indepen-

dent learners, and the independent payoff improvement is called the Trust Payoff

Region(TPR). Then, the issue revolves around finding a restricted step leading to

a stable point in the joint policy space, denoted as Trust Stable Region(TSR). In

other words, multi-agent trust region learning (MATRL) decomposes the trust region

learning into two parts: firstly, find a trust payoff region between the current policy

πi and the predicted policy π̂i; then, with the help of the predicted policy, a precise

method can, to some extent, approximate a weak stable fixed point. Instead of

line searching in a single-agent payoff improvement, MATRL searches for the joint

policy space to achieve a weak stable fixed point

Essentially, MATRL is a simple extension of the single-agent TRPO where

independent learners with an approximated restricted stable point. For conciseness,

this section presents two agents (played by agent i ∈ {1, 2}) interacting with each

6.2. Multi-Agent Trust Region Policy Optimization 133

other simultaneously. Our method can be easily extended to a larger number of agents

because our algorithm is entirely based on independent learners. Firstly, behaving

like the independent learners, an agent i collects a set of trajectories using current

policies πi. A predicted policy π̂i can be estimated using the single-agent trust region

methods, which has a trust payoff improvement against the other agents’ current

policy π−i. However, the trust payoff improvements would not benefit convergence

requirements for the multi-agent system. Therefore, by reusing the trajectories we

approximate a two-agent two-action meta-game in policy-space. In the meta-game,

the higher-level policies become ‘actions’, and the expected advantages of the joint

policy pairs are the payoffs. Here, each agent i has two actions: current policy πi

and predicted policy π̂i, making the complex multi-agent interactions applicable

to game-theoretic analysis concerning the restricted under-layer game between πi

and π̂i. By solving the meta-game, we can obtain a weak stable fixed point as TSR

within the TPR. However, if the fixed point is a saddle point we then conduct the

best response to the weak stable fixed point to get the next iterate’s policies. This can

encourage exploration and avoid stagnation at an unexpected saddle point. Figure 6.3

shows the overview of MATRL. We also give the pseudocode of MATRL in Algo. 6.5

at the end of this section, which is compatible with any policy-based independent

learner.

In summary, in MTARL, the independent trust region learners will be con-

strained by a weak stable fixed point. Providing additional rollouts or simulations

are not required, we can build a policy-space meta-game and easily approximate a

weak stable fixed point due to the small meta-game and conservative policy change.

Although MATRL’s training is centralized, its execution is fully decentralized. It

also does not require any extra centralized parameters or higher-order gradient

computation. We give the precise steps of MATRL in the following sections.

6.2.1 Independent Trust Payoff Region

Single-agent reinforcement learning algorithms can be straightforwardly applied to

multi-agent learning, where we assume that all agents behave independently (Tan,

1993). In this chapter, we have chosen the policy-based reinforcement learning

6.2. Multi-Agent Trust Region Policy Optimization 134

��
���������"
����&
�� �$����"��		���
�������

�� ��!" ��!���!� "� ���� �"���� ��%��
���"

���� ����	�����

�� ���$� "�����!� ��#���� �#�������"��	���
����
��������	����

�������
���
�����	��	��

()πi

πi
π−i

π−i

ρi, ρ−i = NASH

π̂i

π̂−i

gi,−i
i , gi,−i

−i gi,−î
i , gi,−î

−i

gî,−î
i , gî,−î

−igî,−i
i , gi,−î

−i

π̄i = PA(πi, π̂i, ρi)
π̄−i = PA(π−i, π̂−i, ρ−i)π̄′

−i = argmaxπ̃−i
η−i(π̄i, π̃−i)

π̄′
i = argmaxπ̃i

ηi(π̄−i, π̃i)

ηi(π̂i, π−i) ≥ ηi(πi, π−i)

η−i(πi, π̂−i) ≥ η−i(πi, π−i)

Figure 6.3: Overview of the multi-agent trust region learning phases in two-agent games. It
can be easily extended to the n-agent case by solving the n-agent two-action
matrix form meta-game.

method as independent learners. For agent i ∈ {1, 2}, it searches for the optimal

policy within the policy-space Πi. In multi-agent environments, the environment

becomes a Markov decision process for one agent when the other agents play

according to a fixed policy, and the goal is to make a monotonic improvement.

Thus, at iterate k, the policy is updated by maximizing the utility function ηi over a

local neighborhood of the current joint policy πki , π
k
−i: π̂i = arg maxπi∈Πi ηi(πi, π

k
−i)

based on the trajectories τ ki , τ
k
−i sampled by πki , π

k
−i. We can adopt trust region policy

optimization (e.g., TRPO (Schulman et al., 2015) , PPO (Schulman et al., 2017)),

which constrains step size in the policy update:

π̂ki = arg max
πi∈Πθi

ηi(πi, π
k
−i) s.t. D

(
πi, π

k
−i
)
≤ δi, (6.1)

where D is a distance measurement and δ is a constraint. Independent trust re-

gion learners produce the monotonically improved policy π̂i which guarantees

ηi
(
π̂i, π

k
−i
)
≥ ηi

(
πki , π

k
−i
)

and gives a trust payoff bound by π̂i. Due to the si-

multaneous trust payoff region improvement, the lower bound of the trust region for

single-agent improvement in Schulman et al. (2015) no longer holds. Following the

similar proof procedures, we can obtain the precise lower bound for a multi-agent

simultaneous trust payoff region in Theorem 6.1:

Theorem 6.1 (Independent Trust Payoff Region). Let (πi, π̂i) and (π−i, π̂−i) be

α-coupled policy pairs (Schulman et al., 2015), which are coupled by αi and α−i

6.2. Multi-Agent Trust Region Policy Optimization 135

respectively. Denote the expected advantage gain when πi, π−i → π̂i, π̂−i as:

G
πi,π−i
i (π̂i, π̂−i) :=

∑

s

pπi,π−i(s)
∑

ai

π̂i(ai|s)
∑

a−i

π̂−i(a−i|s)Aπi,π−ii (s, ai, a−i).

(6.2)

Then, the following lower bound can be derived for independent trust region opti-

mization:

ηi(π̂i, π̂−i)− ηi(πi, π−i) ≥ G
πi,π−i
i (π̂i, π̂−i)−

4γεi
(1− γ)2

(αi +α−i−αiα−i)2, (6.3)

where εi = maxs,a−i,a−i
∣∣Aπi,π−ii (s, ai, a−i)

∣∣.

Proof. We use the total variation divergence, which is defined by DTV (p‖q) =

1
2

∑
j |pj − qj| for discrete probability distributions p, q (Schulman et al., 2015).

Dmax
TV (π, π̃) is defined as:

Dmax
TV (π, π̃) = max

s
DTV (π(·|s)‖π̃(·|s)). (6.4)

Based on this, we can define α-coupled policy as:

Definition 6.1 (α-Coupled Policy (Schulman et al., 2015)). (π, π′) is an α-coupled

policy pair if it defines a joint distribution (a, a′)|s, such that P (a 6= a′|s) ≤ α for

all s. π and π′ will denote the marginal distributions of a and a′, respectively.

When the joint policy pair πi, π−i changes to π′i, π
′
−i and coupled with αi and

α−i correspondingly:

ηi(π
′
i, π
′
−i)− ηi(πi, π−i) ≥ A

πi,π−i
i (π′i, π

′
−i)−

4γε

(1− γ)2
(αi +α−i−αiα−i)2, (6.5)

where

ε = max
s,ai,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣.

The proofs are as following:

Lemma 6.1. Given that (πi, π
′
i) and (π−i, π

′
−i) are both α-coupled policies bounded

6.2. Multi-Agent Trust Region Policy Optimization 136

by αi and α−i respectively, for all s,

|Aπi,π−ii (s)| ≤ 2(αi + α−i − αiα−i) max
s,a−i,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣ (6.6)

Proof.

A
πi,π−i
i (s) = Ea′i,a′−i∼π′i,π′−i

[
A
πi,π−i
i (s, a′i, a

′
−i)
]

= E(ai,a′i)∼(πi,π′i),(a−i,a
′
−i)∼(π−i,π′−i)

[
A
πi,π−i
i (s, a′i, a

′
−i)− Aπi,π−ii (s, ai, a−i)

]

= P (ai 6= a′i ∨ a−i 6= a′−i|s)E(ai,a′i)∼(πi,π′i),(a−i,a
′
−i)∼(π−i,π′−i)

[

A
πi,π−i
i (s, a′i, a

′
−i)− Aπi,π−ii (s, ai, a−i)

]

≤ (αi + α−i − αiα−i) · 2 max
s,a−i,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣,

(6.7)

where P (ai 6= a′i ∨ a−i 6= a′−i|s) = 1− (1− αi)(1− α−i) = αi + α−i − αiα−i.

�

Lemma 6.2. Let (πi, π
′
i) and (π−i, π

′
−i) are α-coupled policy pairs. Then,

∣∣∣Est∼π′i,π′−i
[
A
πi,π−i
i (s)

]
− Est∼πi,π−i

[
A
πi,π−i
i (s)

]∣∣∣

≤ 4(αi + α−i − αiα−i)(1− (1− αi)t(1− α−i)t) max
s,a−i,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣.

(6.8)

Proof. The preceding Lemma bounds the difference in expected advantage at each

time step t. When t′ = 0 indicates that πi, π−i and π′i, π
′
−i both agreed on all

time steps less than t. By the definition of αi, α−i, P (πi, π−i := π′i, π
′
−i|t = i) ≥

(1− αi)(1− α−i), so P (t′ = 0) ≥ (1− αi)t(1− α−i)t and P (t′ > 0) ≤ 1− (1−
αi)

t(1− α−i)t. We can sum over time to bind the difference between ηi(π′i, π
′
−i) and

6.2. Multi-Agent Trust Region Policy Optimization 137

ηi(πi, π−i).

∣∣∣ηi(π′i, π′−i)− Lπi,π−ii (π′i, π
′
−i)
∣∣∣

=
∞∑

t=0

γt
∣∣∣Est∼π′i,π′−i

[
A
πi,π−i
i (s)

]
− Est∼πi,π−i

[
A
πi,π−i
i (s)

]∣∣∣

≤
∞∑

t=0

γt · 4ε(αi + α−i − αiα−i)(1− (1− αi)t(1− α−i)t)

= 4ε(αi + α−i − αiα−i)
(1

1− γ −
1

1− γ(1− αi)(1− α−i)
)

=
4ε(αi + α−i − αiα−i)2

(1− γ)(1− γ(1− αi)(1− α−i))

≤ 4ε(αi + α−i − αiα−i)2

(1− γ)2
,

(6.9)

where ε = maxs,ai,a−i
∣∣Aπi,π−ii (s, ai, a−i)

∣∣. �

Note that

L
πi,π−i
i (π′i, π

′
−i) = ηi(πi, π−i)

+
∑

s

ρπi,π−i(s)
∑

ai

π′i(ai|s)
∑

a−i

π′−i(a−i|s)Aπi,π−ii (s, ai, a−i).
(6.10)

Then, we can have

ηi(π
′
i, π
′
−i)−ηi(πi, π−i) ≥ A

πi,π−i
i (π′i, π

′
−i)−

4γε

(1− γ)2
(αi+α−i−αiα−i)2. (6.11)

�

Based on the independent trust region learning, although the predicted policy

π̂i will guide us in determining the size of the TPR, the stability of (π̂i, π̂−i) is

still unknown. As shown in Theorem 6.1, in a two-agent case, an agent’s lower

bound is roughly O(4α2), which is four times larger than the single-agent lower

bound trust region of O(α2) (Kakade and Langford, 2002). Furthermore, εi =

maxs,a−i,a−i
∣∣Aπi,π−ii (s, ai, a−i)

∣∣ depends on the other agents that would be too large

in worst-case scenarios like zero-sum games. Therefore, the most critical issue

underlying the multi-agent trust region learning is to find a TSR after the TPR. The

6.2. Multi-Agent Trust Region Policy Optimization 138

next section will illustrate how to search for a weak stable fixed point within the

TPR, based on the policy-space meta-game.

6.2.2 Approximating Weak Stable Fixed Point via Restricted

Policy-Space Meta-Game

In multi-agent trust region learning, TSR is one of the essential parts. Since each

iteration of MATRL requires solving (exactly or inexactly) the TPR and TSR sub-

problems, finding the efficient solver for stable trust region sub-problems is very

important. Given that we already have the TPR, which produces a predicted policy

π̂ki , it is natural to conduct an empirical game game-theoretic analysis (Tuyls et al.,

2018) to search for a weak stable fixed point in the predicted joint policy π̂ki , π̂
k
−i. We

define a restricted meta-game that has only two strategies π̂ki , π̂
k
−i; for each agent i:

M(πki , π̂
k
i , π

k
−i, π̂

k
−i) =


 gi,−ii , gi,−i−i gi,−îi , gi,−î−i

gî,−ii , gî,−i−i gî,−îi , gî,−î−i


 , (6.12)

where gî,−îi = G
πki ,π

k
−i

i (π̂ki , π̂
k
−i) for i ∈ {1, 2} is an empirical payoff entry of the

meta-game, and note gi,−ii = 0 as it has an expected advantage over itself. Compared

with using the ηi(π̂i, π̂−i) = ηi(πi, π−i) + gî,−îi as the meta-game payoff, gî,−îi has

lower variance and is easier to approximate because ηi(πi, π−i) is a constant baseline.

However, due to the complex dependency of πki (s) on π̂ki (s), it is still difficult to

estimate gî,−îi directly. Instead, we reuse the trajectories τ ki , τ
k
−i in the TPR step to

approximate the gî,−îi by ignoring small changes in state visitation density caused by

the π̂ki → π̂ki (Schulman et al., 2015).

As we can see in Equation 6.12, in a two-player case, the meta-game is a 2× 2

matrix-form game, which is much smaller in size than the under-layer game. To this

end, we can use the existing Nash solvers (e.g. CMA-ES (Hansen et al., 2003)) for

matrix-form games to compute a Nash equilibrium ρki , ρ
k
−i = NashSolver(M) for

the meta-gameM. Then, the trust stable region policies π̄ki , π̄
k
−i can be aggregated

based on the current policy πi and monotonic improved policy π̂i in TPR for each

agent i. In the TPR step, the change from πi to π̂i is usually constrained by a small

6.2. Multi-Agent Trust Region Policy Optimization 139

step size, and it is reasonable to assume there is a continuous and monotonic change

in the restricted policy space between πi and π̂i. In this case, with the mixture weight

ρki of meta-game Nash, π̄ki can be derived via linear mixture: π̄ki = ρki π
k
i +(1−ρki)π̂ki ,

which determines the trust stable region. Here we can prove that (π̄ki , π̄
k
−i) is a weak

stable fixed point for the restricted under-layer game:

Theorem 6.2 (Multi-Agent Trust Stable Region). At iterate k, consider the restricted

under-layer game G bounded by πi ∈ [πki , π̂
k
i] for i ∈ {1, 2}, where π̂ki is learned

from πki within TPR. (ρki , ρ
k
−i) is a Nash equilibrium of the meta-gameM. Then, the

linear mixture joint policy (π̄ki , π̄
k
−i) is a weak stable fixed point for the restricted

under-layer game G in a linear continuous policy-space [πki , π̂
k
i].

Proof Sketch. Denote the simultaneous gradient of the restricted game G as ξ =

(∇πiGi,∇π−iG−i) and Hessian H = ∇ξ. A point (π̄ki , π̄
k
−i), π̄ki ∈ [πki , π̂

k
i], is a fixed

point of the restricted under-layer game G due to ξ(π̄ki , π̄
k
−i) = 0, and it is weak stable

because H(π̄ki , π̄
k
−i) ⊀ 0, which avoids unstable fixed points. More specifically, it is

stable if H(π̄i, π̄−i) � 0; it is a saddle point if the H(π̄ki , π̄
k
−i) has both positive and

negative eigenvalues. Here is the proof: At iteration k, denote∇iGi = ∇πiG
πki ,π

k
−i

i

and ∇i,−iGi = ∇πi∇π−iG
πki ,π

k
−i

i for i ∈ i, 2. Consider the simultaneous gradient ξ

of the expected advantage gains and the corresponding Hessian H:

ξ(πi, π−i) = (∇iGi,∇−iG−i) , (6.13)

H = ∇ξ =


 ∇i,iGi ∇i,−iGi

∇−i,iG−i ∇−i,−iG−i


 . (6.14)

For a restricted game G, where policy space is bounded: πi ∈ [πki , π̂
k
i]. Assume

πi is the linear mixture of πki , π̂
k
i , and πi = ρiπ

k
i + (1 − ρi)π̂ki , where ρi ∈ [0, 1].

Therefore, we can re-write the G
πki ,π

k
−i

i (πi, π−i) in the form of:

G
πki ,π

k
−i

i (πi, π−i) = G
πki ,π

k
−i

i (ρi, ρ−i)

= ρi(1− ρ−i)gi,−îi + (1− ρi)ρ−igî,−ii + (1− ρi)(1− ρ−i)gî,−îi .

(6.15)

6.2. Multi-Agent Trust Region Policy Optimization 140

Then we have

∇iGi(ρ−i) = (1− ρ−i)gi,−îi − ρ−igî,−ii − (1− ρ−i)gî,−̂ii , (6.16)

and ξ(πi, π−i) = ξ(ρi, ρ−i). Given a meta Nash policy pair (π̄i, π̄−i), where π̄i =

ρ̄iπki + (1− ρ̄i)π̂ki , according to the Nash definition, we have:


 ρ̄i

1− ρ̄i



T 
g

i,−i
i gi,−îi

gî,−ii gî,−îi




 ρ̄−i

1− ρ̄−i


 ≥


 ρi

1− ρi



T 
g

i,−i
i gi,−îi

gî,−ii gî,−îi




 ρ̄−i

1− ρ̄−i


 .

This implies:

(ρ̄i − ρi)∇iGi(ρ̄−i) ≥ 0, ρ̄i,∀ρ−i ∈ [0, 1],

(ρ̄−i − ρ−i)∇−iG−i(ρ̄i) ≥ 0, ρ̄i, ∀ρ−i ∈ [0, 1].
(6.17)

When ρ̄i, ρ̄−i ∈ (0, 1) in accordance with the Nash condition in Equation 6.17,

∇iGi(ρ̄−i) = ∇−iG−i(ρ̄i) = 0. It shows that (π̄i, π̄−i) is a fixed point due to

ξ(π̄i, π̄−i) = ξ(ρ̄i, ρ̄−i) = 0. For the boundary case, where ρ̄i or ρ̄−i ∈ {0, 1},
because they are constrained to the unit square [0, 1] × [0, 1], the gradients on the

boundaries of the unit square are projected onto the unit square, which means

additional points of zero gradient exist. In other words,∇iGi and∇−iG−i are still

equal to zero in boundary case, and the (π̄i, π̄−i) is a fixed point in both cases.

Next, we determine what types of the fixed point that (π̄i, π̄−i) belongs to.

Definition 6.2. A point (ρ̄i, ρ̄−i) is a fixed point if ξ(ρ̄i, ρ̄−i) = 0. It is stable if

H(ρ̄i, ρ̄−i) � 0, weak stable if H(ρ̄i, ρ̄−i) ⊀ 0, unstable if H(ρ̄i, ρ̄−i) ≺ 0, positive

stable if all of its eigenvalues have a positive real part, and a strict saddle if H(θ̄)

has an eigenvalue with a negative real part.

According to the Equation 6.14, we have the exact Hessian Matrix for the

restricted game:

H = ∇ξ =


 0 gî,−îi − gi,−îi − gî,−ii

gî,−î−i − gi,−î−i − gî,−i−i 0


 . (6.18)

6.2. Multi-Agent Trust Region Policy Optimization 141

The eigenvalue λ of H can be computed:

λ2 − Tr(H)λ+ det(H) = λ2 − (gî,−îi − gi,−îi − gî,−ii)(gî,−î−i − gi,−î−i − gî,−i−i) = 0.

Denotes ḡi := gî,−îi − gi,−îi − gî,−ii , we have λ = ±√ḡi, ḡ−i.

1. ḡi ≥ 0, ḡ−i ≥ 0, (ρ̄i, ρ̄−i) is a stable point.

2. ḡi > 0, ḡ−i < 0 or ḡi < 0, ḡ−i > 0, all λ have a real imaginary and an

imaginary negative eigenvalue, where (ρ̄i, ρ̄−i) is a saddle point.

3. ḡi < 0, ḡ−i < 0, λ have one positive and one negative real part eigenvalue,

where (ρ̄i, ρ̄−i) is a saddle point.

Therefore, in all the situations, (ρ̄i, ρ̄−i) is not unstable, and could be a stable

point or saddle point. This is called a weak stable point. �

According to Theorem 6.2, (π̄ki , π̄
k
−i) is a weak stable fixed point of the under-

layer game. When the game has multiple Nash equilibria, all the equilibria can derive

the fixed-points for under-layer. Therefore, here an equilibrium is randomly selected.

However, some equilibria can produce a more stable fixed point; in these cases, we

leave it for future work. It also has a tighter lower bound than the independent trust

region improvement seen in Remark 6.1:

Remark 6.1. Let (ρi, ρ−i) be a Nash equilibrium of the policy-space meta-game

M(πi, π̂i, π−i, π̂−i), which is used for computing the linear mixture policies π̄i, π̄−i.

For simplicity, define ρ̄i = 1− ρi, then we have the payoff improvement lower bound

for π̄i, π̄−i:

ηi(π̄i, π̄−i)−ηi(πi, π−i) ≥ G
πi,π−i
i (π̄i, π̄−i)−

4γεi
(1− γ)2

(αiρ̄i+α−iρ̄−i−αiα−iρ̄iρ̄−i)2,

(6.19)

that is a tighter lower bound compared with Theorem 6.1.

Extra Cost for Approximating and Solving Meta-Game. There are two

major-cost sources in common meta-game analysis: approximating and solving the

6.2. Multi-Agent Trust Region Policy Optimization 142

meta-game (Muller et al., 2020).). In our case, the meta-game is restricted to a local

two-action game, where two actions πi and π̂i are close to each other. This locality

property reduces the meta-game approximation cost (without extra sampling) by

reusing the collected trajectories in the TPR step (Tuyls et al., 2020). The next crucial

problem is how to solve the n-agent two-action meta-game, which consists of the 2n

entries of each of the n payoff matrices. This is much simpler than solving the under-

layer game, which increases exponentially with state size, action size, agent number,

and time horizons. As the general-sum matrix-form game has no fully polynomial-

time approximation for computing Nash equilibria (Chen et al., 2006), it usually costs

a lot to solve the game (Daskalakis et al., 2009). If we only require an approximated

Nash equilibrium, when n is small, for example, n ≤ 10, it is affordable to find a

meta-game Nash equilibrium in a sub-exponential complexity (Lipton et al., 2003).

However, this problem still exists when n is large. In this case, we could try utilizing

special payoff structure assumptions (e.g., mean-field approximation (Yang et al.,

2018a)) in the meta-game to reduce the matrix-form meta-game into the graphical

game, which is polynomial-time computable (Daskalakis et al., 2009; Littman et al.,

2002). It is then left for future work.

6.2.3 Improvement Against Weak Stable Fixed Point

Although the weak stable fixed point, (π̄ki , π̄
k
−i), binds the policy update to another

fixed point, there are still undesired saddle points according to Theorem 6.1. It is

difficult to generalize for the other parts of the policy-space not reached by these

saddle points, especially in the anti-coordination games (Lanctot et al., 2017). Similar

to the extra-gradient method (Mertikopoulos et al., 2019), to escape the saddle points

we apply the best response against the weak stable fixed point:

πk+1
i = arg max

πi
ηi
(
πi, π̄

k
−i
)
, (6.20)

To perform the best response, we need another round to collect the experiences and

do a gradient step in Equation 6.20. However, in practice, since we already have the

trajectories in the TPR step and so the best response to the weak stable fixed point

6.3. Experiments 143

Algorithm 6.5 Multi-Agent Trust Region Learning
1: Input: The initial policies: π0

1 , π0
2 .

2: for k ∈ {0, 1, 2, · · · } do
3: Using πk1 , πk2 to collect trajectories τ k.
4: for i ∈ {1, 2} do
5: Compute a trust payoff region policy π̂i using Equation 6.1. {Trust Payoff

Region.}
6: end for
7: Solve meta-gameM(πk1 , π̂

k
1 , π

k
2 , π̂

k
2) and obtain a meta-game Nash ρk1, ρ

k
2.

8: Compute weak stable fixed point π̄k1 , π̄k2 . {Trust Stable Region.}
9: for i ∈ {1, 2} do

10: Compute best response πk+1
i using Equation 6.20.{Best Response to a

Weak Stable Fixed Point.}
11: end for
12: end for
13: Output: π1, π2.

can be easily estimated through importance sampling. Alternatively, through defining

ci
def
= min

(
1+c̄,max(1−c̄, πi(ai|s)

π̄i(ai|s))
)

as truncated importance sampling weights, we

can re-write the best response update to Equation 6.20 into an equivalent form to the

following one in terms of expectations: πk+1
i = arg maxπi Ea−i∼π̄−i [c−iηi

(
πi, π

k
−i
)
].

6.2.4 Connections to Existing Methods

MATRL generalizes many existing methods with the best response. In extreme cases

where the meta-game Nash is (1, 1), which means always keeping the current policy,

MATRL degenerates to independent learners. Here, the always best response to

the other agents’ current policies (πki , π
k
−i) and πk+1

i = arg maxπi ηi(πi, π
k
−i). The

policy prediction (Foerster et al., 2018a; Letcher et al., 2019; Zhang and Lesser,

2010), extra-gradient (Antipin, 2003) and exploitability descent (Lockhart et al.,

2019; Tang et al., 2018) methods are also the instances of MATRL when meta-game

Nash is (0, 0). This is the best response to the most aggressive predicted policies

(π̂ki , π̂
k
−i) and πk+1

i = arg maxπi ηi(πi, π̂
k
−i).

6.3 Experiments
We design the experiments to answer the following questions: 1). Can the MATRL

method empirically contribute to the convergence? 2). How is the performance

6.3. Experiments 144

Algorithm 6.6 Multi-Agent Trust Region Learning Algorithm (PPO Based).
1: Input: The initial policy parameters θ0

1, theta
0
2, initial value function parameters

φ0
1, φ

0
2 and ε.

2: for k ∈ 0, 1, 2, · · · do
3: Using πk1(θk1), πk2(θk2) to collect trajectories τ k1 , τ

k
2 .

4: Compute GAE reward R̂i for i ∈ {1, 2}.
5: Compute estimated advantages Âk1, Â

k
2 based on the current value functions

Vφk1 , Vφk2 .
6: for i ∈ 1, 2 do
7: Compute a trust payoff region policy π̂ki using Equation 6.1.
8: Update the policy by maximizing the PPO-Clip objective:

θ̂ki = arg maxθi
1

|τki |T
∑

τ∈τk1

∑T
t=0 min

(
πi(at|st;θ)

πki (a1,t|st;θki)
Aπ1,π2i (st, a1,t, a2,t) , g (ε, Aπ1,π2i (st, a1,t, a2,t))

)
,

where g is a clipping function.
9: Fit value function by regression on mean-squared error:

φk+1
i = arg min

φi

1∣∣τ ki
∣∣T

∑

τ∈τki

T∑

t=0

(
Vφ (st)− R̂i,t

)2

10: end for
11: Construct the meta-gameM(πk1(θk1), π̂k1(θ̂k1), πk2(θk2), π̂k2(θ̂k2)).
12: SolveM and obtain meta Nash ρk1, ρ

k
2.

13: Compute aggregated weak stable fixed point (π̄k1 , π̄k2).
14: for i ∈ 1, 2 do
15: Compute π(k+1)

i which best responses to π̄k−i using Equation 6.20.
16: Estimate the best response by importance sampling:

θk+1
i =

θ̂ki∣∣τ ki
∣∣T

∑

τ∈τki

T∑

t=0

g
(
ε, πki /π̄

k
−i
)

17: end for
18: end for
19: Output: π1, π2.

of MATRL compared to the ILs with the same hyper-parameters and other strong

MARL baselines in the discrete and continuous games with various agent number?

3). Do the meta-game and best response to the weak stable fixed point bring benefits?

We first evaluate the convergence performance of MATRL in matrix form games to

answer the first question and validate the effectiveness of convergence. For Question

2, we show that MATRL largely outperforms ILs (PPO (Schulman et al., 2017))

and other centralized baselines (QMIX (Rashid et al., 2018), and VDN (Sunehag

6.3. Experiments 145

(a) (b)

1

2

3

(c)

Figure 6.4: Multi-agent discrete and continuous action tasks: (a) two-agent checker (dis-
crete), (b) four-agent switch (discrete), (c) three-agent MuJoCo hopper (continu-
ous).

0.0 0.2 0.4 0.6 0.8 1.0
Policy of Player 1

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

y
of

 P
la

ye
r 2

0

200

400

600

800

Iterations

Figure 6.5: Learning dynamics in matching pennies. The blue arrow is trust payoff direction
and the pale blue area is trust stable region.

et al., 2018) for discrete grid world games that have coordination problems. It also

outperforms MADDPG (Lowe et al., 2017) for continuous multi-agent MuJoCo

games. In these tasks, MATRL uses the same PPO configurations as ILs to examine

the effectiveness of the trust region gradient-update mechanism, and we used official

implementations for the other baselines. The step-by-step PPO based MATRL

algorithm is given in Algorithm 6.6. Finally, the ablation study is conducted by

removing the best response, called the MATRL w/o BR, and skipping the trust-stable

region estimation, named IL-PP, which produces the best response to the predicted

policy. These configurations provide insights about if the trust stable region and the

best response can affect the MATRL’s performance.

6.3.1 Experiment Environment Details

Random Matrix Games. We created a generator of 2 × 2 matrix games based

on the category provided by (Pangallo et al., 2017). Coordination games have

characteristics enabling one agent to improve the payoff without decreasing the

6.3. Experiments 146

payoff of the other agent. Anti-coordination games are ones where one agent

improves the payoff while the other agent’s payoff decreases. Both coordination and

anti-coordination games can have two pure Nash equilibria and one mixed strategy

Nash equilibrium. In cyclic games, the action selections of agents that is based on

their actions will form a cycle, ensuring that there is no pure NE in the game. Instead

only mixed strategy NE will be found.

Grid World Games. In two-player checker, as shown in Figure 6.4a, there is

one sensitive player who gets reward 5 when they collect an apple and 5 when they

collect a lemon; a less sensitive player gets 1 for apple and 1 for lemon. The learning

goal is to let the sensitive player get apples and the other one get lemons to have

a higher total reward. In four-player switch, as shown in Figure 6.4b, to reach the

targets, agents need to figure out a way to go through a narrow corridor. The agent

gets −1 for taking each step and 5 when arriving at a target. Four-player switch uses

the same map as two-player switch, where two agents start from the left side and

the others from the right side to go through the corridor to reach the targets. With

more agents in four-player switch, learning becomes more challenging. MATRL

agents achieved higher total rewards compared to baseline algorithms within the

same number of steps.

Multi-Agent MuJoCo Tasks. We used the three-agent Hopper environment

described in (de Witt et al., 2020), and Figure 6.4c, where three agents control three

joints of the robot and learn to cooperate to move forward as far as possible. The

agent is rewarded by the number of time steps that they move without falling. Each

agent has 3 continuous output values as the action, and all the agents have a full

observation of the states of size 17. We use the same hyper-parameters for MATRL,

MATRL w/o BR, and IL-PP. For MADDPG agent, we use the hyper-parameters

described in the paper (de Witt et al., 2020).

6.3.2 Matrix Game and Random Matrix Games

To illustrate the effectiveness of MATRL, we conducted an experiment on well

known zero-sum matching pennies (MP) (Bruns, 2015) game and devise the 2× 2

random matrix games. Using IGA (Singh et al., 2000) as ILs of MATRL, the learning

6.3. Experiments 147

Table 6.1: Convergence rate and average convergence step in random 2× 2 matrix games,
where WoLF-IGA assumes the knowledge about the Nash equilibrium.

CONVERGENCE RATE / AVERAGE CONVERGENCE STEP

ALGORITHM COORDINATION ANTI-COORD. CYCLIC

IGA 0.99 / 140.67 0.975 / 88.95 0.78 / 452.92
IGA-PP 0.99 / 138.56 0.975 / 83.11 0.809 / 432.98
WOLF-IGA 1.0 / 71.62 1.0 / 41.79 1.0 / 175.945
MATRL 0.99 / 86.54 0.9825 / 75.52 0.846 / 369.40

dynamics of MATRL on MP are shown in Figure 4.5. The MATRL reaches the Nash

Equilibrium (central red star point) by updating the policies with the constraints from

the trust stable region (the pale blue area). It would be trapped to a cyclic loop if

following the original trust pay off direction (the dark blue arrow). To adequately

examine the MATRL on border matrix games, we randomly generate three thousand

2× 2 games for three types: coordination, anti-coordination, and cyclic (Pangallo

et al., 2017). More details are provided about the game generation in Section 6.3.1.

We choose the IGA and IGA-PP (Zhang and Lesser, 2010) as baselines, and the

results in Table 6.1 show that MATRL has a higher convergence rate and needs fewer

steps for convergence in all types of games.

6.3.3 Grid World Checker and Switch

We evaluated MATRL in two grid world games from MA-Gym (Koul, 2019), two-

agent checker, and four-agent switch, which are similar to games in Sunehag et al.

(2018), but with more agents to examine if the MATRL can handle the games that

have more than two agents. In the checker game, two agents cooperate in collecting

fruits on the map; the sensitive agent gets 5 for apple and −5 for lemon, while the

other one gets 1 and −1 respectively. So the optimal solution is to let the sensitive

agent get the apple and the less sensitive one get the lemon. In the four-agent switch

game, each side of the corridor has a room, each room has two agents, and the four

agents try to go through one corridor to the target in the opposite room. Only one

agent can pass the corridor at one time, and agents get −0.1 for each step and 5 for

reaching targets, so they need to cooperate to get optimal scores. In both games,

The agents can move in four directions and only partially observe their position.

6.3. Experiments 148

0 100K 200K 300K 400K
Steps

5

0

5

10

15

20

E
pi

so
de

 R
ew

ar
d

MATRL
MATRL w/o BR

IL-PP
IL

VDN
QMIX

(a) Two-agent checker.

0 100K 200K 300K 400K 500k
Steps

10

8

6

4

2

0

2

E
pi

so
de

 R
ew

ar
d

MATRL
MATRL w/o BR

IL-PP
IL

VDN
QMIX

(b) Four-agent switch.

0 200K 400K 600K 800K
Steps

0

250

500

750

1000

1250

1500

E
pi

so
de

 R
ew

ar
d

MATRL
MATRL w/o BR

IL-PP
IL

MADDPG

(c) Three-agent hopper.

Figure 6.6: Learning curves in discrete and continuous tasks, each with 5 random seeds.

We compare the MATRL with the PPO based IL and two off-policy centralized

training and decentralized execution baselines: VDN (Sunehag et al., 2018) and

QMIX (Rashid et al., 2018). Results are given in Figure 6.6a and 6.6b, where

MATRL has a stable improvement and outperforms other baselines. In two-player

checker, using the best response, our method can achieve a total reward of 18, while

the independent learners’ rewards stay at −2. Besides, although PPO-based MATRL

uses on-policy learning, it achieved better final results in fewer time steps compared

to the off-policy baselines. As for the four-player switch, as shown in Figure 6.6b,

MATRL can continuously improve the total rewards to 6.5, which is closest to the

optimal score for this game when compared with other baselines. The result in the

four-agent switch also demonstrates the effectiveness of MATRL in guaranteeing the

stable policy improvement for the games that have more than two agents.

6.3.4 Multi-Agent MuJoCo Game

We also examined MATRL in a multi-agent continuous control task with a three-

agent hopper from (de Witt et al., 2020). Here, three agents cooperatively control

each part of a hopper to move forward. The agents are rewarded with distance

and the number of steps they make before falling. Figure 6.6c shows that MATRL

significantly outperforms IL, MADDPG, and also the benchmarks in de Witt et al.

(2020) within the same amount of time.

6.4. Summary 149

6.3.5 Effect and Cost of Trust Stable Region and Best Response

to Fixed Point

This section analyzes the effect of the TSR from meta-game Nash and the best

response against the weak stable fixed point. In Figure 6.6 the ablation settings are

obtained by removing the trust stable region (IL-PP) and the best response (MATRL

w/o BR). In Figure 6.6, we can observe that in all the tasks, without the best response

to the fixed point, the learning curves of MATRL o/w BR have higher variance

and the lowest final scores. This establishes the importance of the best response to

stabilize and improve performance. On the other hand, without the TSR to select a

fixed point, the MATRL recovers independent learner with the policy prediction (IL-

PP) (Foerster et al., 2018a; Zhang and Lesser, 2010). Similarly, the curves of IL-PP

have lower final scores, and the convergence speed is not as good as the MATRL,

which suggests that the TSR provides benefits. The MATRL w/o BR has lower

variance compared to the IL-PP, which reveals the trust stable region can stabilize

the learning via weak stable fixed point constraints. Finally, when comparing to IL

and IL-PP, the time for each training step in MATRL is empirically about 1.1 times

slower. We think this extra computational cost from the TSR and the best response

is acceptable given the performance improvement brought by these operations.

6.4 Summary
We proposed and analyzed the trust region method for multi-agent learning problems,

which considers the trust payoff region and the trust stable region to meed the

multi-agent learning objectives. In practice, using independent trust payoff learners,

we provide a convenient way to approximate the trust stable region via policy-

space meta-game. This ensures that the MATRL is generalized, flexible, and easily

implemented to deal with any kind of multi-agent scenarios. Our experiment’s

results show that the MATRL significantly outperforms the independent learners

with the same configurations and even other MATRL baselines on both continuous

and discrete games with various agent numbers.

Chapter 7

Conclusion and Future Work

One long-term goal of AI is to create autonomous agents that can be deployed in

the dynamics of the real-world that are capable of interacting with others. Two

crucial capabilities in service of this goal are learning and interacting with others.

Learning is necessary because complex tasks cannot be solved manually and many

elements in an environment are unknown, such as the transition, reward, and policies

of others. Thus, agents need to learn to adapt to the environment and other agents.

In the study of multi-agent systems in which one or more of the autonomous entities

improves automatically through experience (Tuyls and Stone, 2018), reinforcement

learning is one of the most popular solutions for agent learning. On one hand,

reinforcement learning in single-agent learning has been widely studied, but there

are additional interactions with others when shifting from single to multi-agent

reinforcement learning. The interactions indicate that agents’ behaviors impact other

agents and need to take others agents’ impacts into account during learning. On

the other hand, in many cases, other agents are learning and updating their policies

simultaneously. Therefore, for a single naive agent, the perceived environment is

non-stationary, and I set out to address these questions. Further, the modeling of

mutual influence is examined to benefit multi-agent learning. In this chapter, I

summarize the contributions of this thesis to address these problems. I also present

an outlook for future mutual influence modeling.

7.1. Contributions 151

7.1 Contributions

This thesis aimed to investigate taking mutual influence (during interactions) into ac-

count to shape multi-agent learning. Further, this work explored several multi-agent

learning algorithms that focus on different aspects of modeling mutual influence,

including learning recursive reasoning, learning diverse behaviors, and learning

to improve in a trust region. I also proposed and assessed methods for different

challenges, clearly demonstrating progress on different fronts.

In Chapter 3 and Chapter 4, inspired by the recursive reasoning capability

of human intelligence, I immerse the recursive reasoning framework into MARL

and formulate the multi-agent policy search problem into a hierarchy of nested

single agent policy search problems. I propose a novel framework, Probabilistic

Recursive Reasoning (PR2), and its extension, Generalized Recursive Reasoning

(GR2), that recognize agents’ bounded rationality and can model their corresponding

suboptimal behaviors. The recursive reasoning idea is inspired by the cognitive

hierarchy theory proposed by Camerer et al. (2004), assuming that agents can

possess different reasoning levels during interactions. The idea begins with level-0

(L0 for short) non-strategic thinkers who do not model their opponents. L1 thinkers

are more sophisticated than L0 thinkers; they believe the opponents are all at L0 and

then act accordingly. With the growth of k, Lk agents think in increasing order of

sophistication then provide the best response to all possible lower-level opponents. I

immerse the PR2/GR2 framework into MARL through graphical models and derive

the practical GR2 soft actor-critic algorithm. Theoretically, I prove the existence

of the Perfect Bayesian Equilibrium in the GR2 framework and the convergence of

GR2 policy gradient methods on two-player normal-form games The results justify

main theoretical findings and the effectiveness of bounded-rationality modeling.

Work on behavioral diversity is included in Chapter 5, which demonstrates

one of the first value decomposition approaches to enforce the emergence of diverse

behaviors during learning. I try to measure the mutual influence by approximating

the joint Q-value based on the individual values as inputs via quality and diversity

value factorization methods with centralized training and a decentralized execution

7.2. Future Work 152

paradigm. The tool I use to measure mutual influence promotes diverse behaviors

by a probabilistic framework DPP, which can measure how likely a diverse joint

action will be sampled from a valid action space. To improve the sampling efficiency,

I instead perform sequential sampling across different partitions that enjoy linear

time complexity in Q-DPP. The proposed decomposition also recovers many existing

value factorization methods, such as VDN (Sunehag et al., 2018), QMIX (Rashid

et al., 2018), and QTRAN (Son et al., 2019), when achieving the maximum diversity.

Chapter 6 presents the first instance of a multi-agent trust region method that

allows agents to consider the policy-space mutual influence and shape learning

behavior that gives both trust payoff region and trust stable region guarantees This

work provides theoretical and experimental results, demonstrating MATRL to be a

promising approach that is able to boost many existing multi-agent reinforcement

learning algorithms. MATRL is essentially a step-size control mechanism for ILs

to plug into any policy-based independent learner. On one hand, MATRL keeps

the scalable and convenient advantages of independent learners. On the other hand,

MATRL brings a stable and efficient performance improvement without too much

extra cost in multi-agent learning. MATRL can help to significantly reduce the

multi-agent training cost in many successful multi-agent applications.

7.2 Future Work
While this thesis explored some of the questions mentioned above in modeling

mutual influence, the following important open challenges remain:

• Extensions to Recursive Reasoning Methods. The recursive reasoning

frameworks proposed in this thesis are limited, typically to a small number

of agents and simple scenarios. One hand, when the agent number increases,

there is a scalability issue in which it is difficult to approximate the interac-

tions within a large population of agents. Therefore, performing recursive

reasoning with massive agents in complex environments is difficult for now

due to the curse of dimensionality and the exponential growth of agent inter-

actions. It is worth investigating how to embed solutions such as mean-field

7.2. Future Work 153

theory (Yang et al., 2018a)) into mutual influence models. On the other hand,

learning an accurate value function to guide recursive reasoning in complex

scenarios is challenging, so problems should be simplified further. Instead of

learning value functions from scratch, the focus can be on using the proposed

recursive reasoning methods on modeling interactions. More specifically, soft

RL and cognitive hierarchy can be used to model the bounded rationality in

human-machine interactions.

• Exploring Advanced Methods and Emergence of Behavior Diversity. Q-

DPP has expanded DPP to enforce the action level diversity in various discrete

grid-world games. Making the Q-DPP work well in continuous spaces and

policy-space diversity problems is still a challenge. Furthermore, although

DPP is a good measurement of the diversity of given input feature vectors, it is

still difficult to represent many things (e.g., neural network-based policies) via

vectors. Therefore, it worth developing models or mechanisms for complex

and diverse behaviors that can emerge automatically. Such emergence of

behavior diversity is an essential step toward many real-world applications,

such as self-driving cars and online games.

• Modeling Temporal Influence. In most existing multi-agent RL settings,

the feedback of agent actions is supposed to be instant. However, actions in

the real-world sometimes have durations and can be performed consecutively

or successively. For example, a player passes the ball in a football game;

however, the action at one time step might have negligible reciprocal effects

on other agents. Therefore, arguably, modeling the action duration or temporal

abstraction may be of particular importance to consider the influence of others.

Based on this argument, the following questions can be investigated: can

agents learn an action duration or temporal abstraction from its experiences

in a multi-agent game? Does learning fine-grained temporal abstractions in

games give a better understanding of other agents?

• Improving the Multi-Agent Trust Region Method. The multi-agent trust

7.2. Future Work 154

region method proposed in this thesis is still problematic for estimating meta-

game Nash equilibrium when a large number of agents exists. It is meaningful

to find a lower-cost way to approximate the meta-game equilibrium. Alterna-

tively, a better solution should be found to approximate the fixed-stable points

of under-layer games than Nash equilibrium to guide multi-agent learning.

Furthermore, games commonly have multiple equilibria; therefore, it is worth

investigating a better way to select the best meta-agent Nash equilibrium rather

than it being randomly chosen.

Although many challenges remain to be addressed in MARL problems, I be-

lieve this thesis takes a significant step forward in MARL research as it introduces

novel algorithms that consider mutual influence and provides new insights to the

community.

Bibliography

Abdallah, S. and Lesser, V. (2008). A multiagent reinforcement learning algorithm

with non-linear dynamics. JAIR, 33:521–549.

Affandi, R. H., Fox, E., Adams, R., and Taskar, B. (2014). Learning the parameters

of determinantal point process kernels. In International Conference on Machine

Learning, pages 1224–1232.

Albrecht, S. V. and Ramamoorthy, S. (2012). Comparative evaluation of mal al-

gorithms in a diverse set of ad hoc team problems. In Proceedings of the 11th

International Conference on Autonomous Agents and Multiagent Systems - Vol-

ume 1, AAMAS ’12, page 349–356, Richland, SC. International Foundation for

Autonomous Agents and Multiagent Systems.

Albrecht, S. V. and Stone, P. (2018). Autonomous agents modelling other agents: A

comprehensive survey and open problems. Artificial Intelligence, 258:66–95.

Antipin, A. (2003). Extragradient approach to the solution of two person non-zero

sum games. In Optimization and Optimal Control, pages 1–28. World Scientific.

Balduzzi, D., Garnelo, M., Bachrach, Y., Czarnecki, W., Perolat, J., Jaderberg, M.,

and Graepel, T. (2019). Open-ended learning in symmetric zero-sum games. In

Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th Interna-

tional Conference on Machine Learning, volume 97 of Proceedings of Machine

Learning Research, pages 434–443, Long Beach, California, USA. PMLR.

Balduzzi, D., Racaniere, S., Martens, J., Foerster, J., Tuyls, K., and Graepel, T.

(2018). The mechanics of n-player differentiable games. In Dy, J. and Krause,

BIBLIOGRAPHY 156

A., editors, Proceedings of the 35th International Conference on Machine Learn-

ing, volume 80 of Proceedings of Machine Learning Research, pages 354–363,

Stockholmsmässan, Stockholm Sweden. PMLR.

Banerjee, D. and Sen, S. (2007). Reaching pareto-optimality in prisoner’s dilemma

using conditional joint action learning. Autonomous Agents and Multi-Agent

Systems, 15(1):91–108.

Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the

National Academy of Sciences of the United States of America, 38(8):716.

Benndorf, V., Kübler, D., and Normann, H.-T. (2017). Depth of reasoning and

information revelation: An experiment on the distribution of k-levels. International

Game Theory Review, 19(04):1750021.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi,

D., Fischer, Q., Hashme, S., Hesse, C., et al. (2019). Dota 2 with large scale deep

reinforcement learning. arXiv preprint arXiv:1912.06680.

Bolander, T. and Andersen, M. B. (2011). Epistemic planning for single-and multi-

agent systems. Journal of Applied Non-Classical Logics, 21(1):9–34.

Bouzy, B. and Métivier, M. (2010). Multi-agent learning experiments on repeated

matrix games. In Proceedings of the 27th International Conference on Machine

Learning (ICML-10), pages 119–126.

Bowling, M. (2005). Convergence and no-regret in multiagent learning. In NIPS,

pages 209–216.

Bowling, M. and Veloso, M. (2001a). Convergence of gradient dynamics with a

variable learning rate. In ICML, pages 27–34.

Bowling, M. and Veloso, M. (2001b). Rational and convergent learning in stochastic

games. In International joint conference on artificial intelligence, volume 17,

pages 1021–1026. Lawrence Erlbaum Associates Ltd.

BIBLIOGRAPHY 157

Bowling, M. and Veloso, M. (2002). Multiagent learning using a variable learning

rate. Artificial Intelligence, 136(2):215–250.

Bowling, M. and Veloso, M. (2004). Existence of multiagent equilibria with limited

agents. Journal of Artificial Intelligence Research, 22:353–384.

Brown, G. W. (1951). Iterative solution of games by fictitious play. Activity analysis

of production and allocation, 13(1):374–376.

Bruns, B. R. (2015). Names for games: Locating 2× 2 games. Games, 6(4):495–520.

Buşoniu, L., Babuška, R., and De Schutter, B. (2010). Multi-agent reinforcement

learning: An overview. In Innovations in multi-agent systems and applications-1,

pages 183–221. Springer.

Camerer, C. F. (2003). Behavioural studies of strategic thinking in games. Trends in

cognitive sciences, 7(5):225–231.

Camerer, C. F., Ho, T.-H., and Chong, J.-K. (2004). A cognitive hierarchy model of

games. The Quarterly Journal of Economics, 119(3):861–898.

Cao, Y., Yu, W., Ren, W., and Chen, G. (2012). An overview of recent progress in

the study of distributed multi-agent coordination. IEEE Transactions on Industrial

informatics, 9(1):427–438.

Celis, L. E., Deshpande, A., Kathuria, T., Straszak, D., and Vishnoi, N. K. (2016).

On the complexity of constrained determinantal point processes. arXiv preprint

arXiv:1608.00554.

Celis, L. E., Keswani, V., Straszak, D., Deshpande, A., Kathuria, T., and Vishnoi,

N. K. (2018). Fair and diverse dpp-based data summarization. ICML.

Chakrabarti, S. and Topolyan, I. (2011). A direct proof of the existence of sequential

equilibrium and a backward induction characterization.

BIBLIOGRAPHY 158

Chatterjee, K., Majumdar, R., and Jurdziński, M. (2004). On nash equilibria in

stochastic games. In International Workshop on Computer Science Logic, pages

26–40. Springer.

Chen, L., Zhang, G., and Zhou, E. (2018). Fast greedy map inference for determi-

nantal point process to improve recommendation diversity. In Advances in Neural

Information Processing Systems, pages 5622–5633.

Chen, X., Deng, X., and Teng, S.-H. (2006). Computing nash equilibria: Approx-

imation and smoothed complexity. In 2006 47th Annual IEEE Symposium on

Foundations of Computer Science (FOCS’06), pages 603–612. IEEE.

Chong, J.-K., Ho, T.-H., and Camerer, C. (2016). A generalized cognitive hierarchy

model of games. Games and Economic Behavior, 99:257–274.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in

cooperative multiagent systems. AAAI, 1998:746–752.

Coricelli, G. and Nagel, R. (2009). Neural correlates of depth of strategic reasoning

in medial prefrontal cortex. Proceedings of the National Academy of Sciences,

106(23):9163–9168.

Crawford, V. P., Costa-Gomes, M. A., and Iriberri, N. (2013). Structural models of

nonequilibrium strategic thinking: Theory, evidence, and applications. Journal of

Economic Literature, 51(1):5–62.

Da Silva, B. C., Basso, E. W., Bazzan, A. L., and Engel, P. M. (2006). Dealing with

non-stationary environments using context detection. In Proceedings of the 23rd

international conference on Machine learning, pages 217–224. ACM.

Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. (2009). The complexity

of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–259.

De Weerd, H., Verbrugge, R., and Verheij, B. (2013a). Higher-order theory of mind

in negotiations under incomplete information. In International Conference on

Principles and Practice of Multi-Agent Systems, pages 101–116. Springer.

BIBLIOGRAPHY 159

De Weerd, H., Verbrugge, R., and Verheij, B. (2013b). How much does it help to

know what she knows you know? an agent-based simulation study. Artificial

Intelligence, 199:67–92.

de Weerd, H., Verbrugge, R., and Verheij, B. (2017). Negotiating with other minds:

the role of recursive theory of mind in negotiation with incomplete information.

Autonomous Agents and Multi-Agent Systems, 31(2):250–287.

de Witt, C. S., Peng, B., Kamienny, P.-A., Torr, P., Böhmer, W., and Whiteson, S.

(2020). Deep multi-agent reinforcement learning for decentralized continuous

cooperative control.

Dennett, D. C. (1991). Two contrasts: folk craft versus folk science, and belief

versus opinion. The future of folk psychology: Intentionality and cognitive science,

pages 135–148.

Deshpande, A., Rademacher, L., Vempala, S., and Wang, G. (2006). Matrix approx-

imation and projective clustering via volume sampling. Theory of Computing,

2(1):225–247.

Devaine, M., Hollard, G., and Daunizeau, J. (2014). Theory of mind: did evolution

fool us? PloS One, 9(2):e87619.

Devetag, G. and Warglien, M. (2003). Games and phone numbers: Do short-term

memory bounds affect strategic behavior? Journal of Economic Psychology,

24(2):189–202.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training

of deep bidirectional transformers for language understanding. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for

Computational Linguistics.

BIBLIOGRAPHY 160

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016). Density estimation using real

nvp. ICLR.

Doshi, P., Gmytrasiewicz, P., and Durfee, E. (2020). Recursively modeling other

agents for decision making: A research perspective. Artificial Intelligence,

279:103202.

Doshi, P. and Gmytrasiewicz, P. J. (2006). On the difficulty of achieving equilibrium

in interactive pomdps. In Proceedings of the National Conference on Artificial

Intelligence, volume 21, page 1131. Menlo Park, CA; Cambridge, MA; London;

AAAI Press; MIT Press; 1999.

Doshi, P. and Gmytrasiewicz, P. J. (2009). Monte carlo sampling methods for

approximating interactive pomdps. Journal of Artificial Intelligence Research,

34:297–337.

Doshi, P. and Perez, D. (2008). Generalized point based value iteration for interactive

pomdps. In AAAI, pages 63–68.

Doshi, P., Zeng, Y., and Chen, Q. (2009). Graphical models for interactive pomdps:

representations and solutions. Autonomous Agents and Multi-Agent Systems,

18(3):376.

Eccles, T., Hughes, E., Kramár, J., Wheelwright, S., and Leibo, J. Z. (2019).

Learning reciprocity in complex sequential social dilemmas. arXiv preprint

arXiv:1903.08082.

Elfeki, M., Couprie, C., Riviere, M., and Elhoseiny, M. (2019). Gdpp: Learn-

ing diverse generations using determinantal point processes. In International

Conference on Machine Learning, pages 1774–1783.

Foerster, J., Chen, R. Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., and Mordatch,

I. (2018a). Learning with opponent-learning awareness. In Proceedings of the

17th International Conference on Autonomous Agents and MultiAgent Systems,

BIBLIOGRAPHY 161

pages 122–130. International Foundation for Autonomous Agents and Multiagent

Systems.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. (2018b).

Counterfactual multi-agent policy gradients. AAAI.

Foerster, J. N., Assael, Y. M., de Freitas, N., and Whiteson, S. (2016). Learning

to communicate with deep multi-agent reinforcement learning. In Proceedings

of the 30th International Conference on Neural Information Processing Systems,

NIPS’16, page 2145–2153, Red Hook, NY, USA. Curran Associates Inc.

Fox, R., Pakman, A., and Tishby, N. (2016). Taming the noise in reinforcement

learning via soft updates. In Proceedings of the Thirty-Second Conference on

Uncertainty in Artificial Intelligence, pages 202–211. AUAI Press.

Fudenberg, D., Drew, F., Levine, D. K., and Levine, D. K. (1998). The theory of

learning in games, volume 2. MIT press.

Gal, Y. and Pfeffer, A. (2003). A language for modeling agents’ decision making

processes in games. In Proceedings of the second international joint conference

on Autonomous agents and multiagent systems, pages 265–272. ACM.

Gal, Y. and Pfeffer, A. (2008). Networks of influence diagrams: a formalism for

representing agents’ beliefs and decision-making processes. Journal of Artificial

Intelligence Research, 33:109–147.

Gallese, V. and Goldman, A. (1998). Mirror neurons and the simulation theory of

mind-reading. Trends in cognitive sciences, 2(12):493–501.

Gmytrasiewicz, P. J. and Doshi, P. (2005). A framework for sequential planning in

multi-agent settings. JAIR, 24:49–79.

Gmytrasiewicz, P. J. and Durfee, E. H. (1995). A rigorous, operational formalization

of recursive modeling. In ICMAS, pages 125–132.

BIBLIOGRAPHY 162

Gmytrasiewicz, P. J. and Durfee, E. H. (2000). Rational coordination in multi-agent

environments. Autonomous Agents and Multi-Agent Systems, 3(4):319–350.

Gmytrasiewicz, P. J., Durfee, E. H., and Wehe, D. K. (1991). A decision-theoretic

approach to coordinating multi-agent interactions. In IJCAI, volume 91, pages

63–68.

Goldman, A. I. et al. (2012). Theory of mind. The Oxford handbook of philosophy

of cognitive science, pages 402–424.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In NIPS, pages

2672–2680.

Gopnik, A. and Wellman, H. M. (1992). Why the child’s theory of mind really is a

theory. Mind & Language, 7(1-2):145–171.

Gordon, R. M. (1986). Folk psychology as simulation. Mind & Language, 1(2):158–

171.

Gracia-Lázaro, C., Floría, L. M., and Moreno, Y. (2017). Cognitive hierarchy theory

and two-person games. Games, 8(1):1.

Grau-Moya, J., Leibfried, F., and Bou-Ammar, H. (2018). Balancing two-player

stochastic games with soft q-learning. IJCAI.

Greenwald, A., Hall, K., and Serrano, R. (2003). Correlated q-learning. In ICML,

volume 3, pages 242–249.

Grover, A., Al-Shedivat, M., Gupta, J. K., Burda, Y., and Edwards, H. (2018).

Learning policy representations in multiagent systems. ICML.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). Reinforcement learning

with deep energy-based policies. NIPS.

BIBLIOGRAPHY 163

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic actor. In

Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference

on Machine Learning, volume 80 of Proceedings of Machine Learning Research,

pages 1861–1870, Stockholmsmässan, Stockholm Sweden. PMLR.

Haddad, W. M. and Chellaboina, V. (2011). Nonlinear dynamical systems and

control: a Lyapunov-based approach. Princeton University Press.

Han, Y. and Gmytrasiewicz, P. (2018). Learning others’ intentional models in

multi-agent settings using interactive pomdps. In Advances in Neural Information

Processing Systems, pages 5634–5642.

Han, Y. and Gmytrasiewicz, P. (2019). Ipomdp-net: A deep neural network for par-

tially observable multi-agent planning using interactive pomdps. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 33, pages 6062–6069.

Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003). Reducing the time com-

plexity of the derandomized evolution strategy with covariance matrix adaptation

(cma-es). Evolutionary computation, 11(1):1–18.

Harsanyi, J. C. (1962). Bargaining in ignorance of the opponent’s utility function.

Journal of Conflict Resolution, 6(1):29–38.

Harsanyi, J. C. (1967). Games with incomplete information played by bayesian

players, i–iii part i. the basic model. Management science, 14(3):159–182.

He, H., Boyd-Graber, J., Kwok, K., and Daumé III, H. (2016). Opponent modeling

in deep reinforcement learning. In ICML, pages 1804–1813.

Heess, N., Silver, D., and Teh, Y. W. (2012). Actor-critic reinforcement learning

with energy-based policies. In EWRL, pages 43–58.

Heinrich, J. and Silver, D. (2016). Deep reinforcement learning from self-play in

imperfect-information games. arXiv preprint arXiv:1603.01121.

BIBLIOGRAPHY 164

Hernandez-Leal, P., Kaisers, M., Baarslag, T., and de Cote, E. M. (2017). A survey

of learning in multiagent environments: Dealing with non-stationarity. arXiv

preprint arXiv:1707.09183.

Hernandez-Leal, P., Kartal, B., and Taylor, M. E. (2019). Agent modeling as auxiliary

task for deep reinforcement learning. In Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment, volume 15, pages

31–37.

Hong, Z.-W., Su, S.-Y., Shann, T.-Y., Chang, Y.-H., and Lee, C.-Y. (2018). A deep

policy inference q-network for multi-agent systems. In Proceedings of the 17th In-

ternational Conference on Autonomous Agents and MultiAgent Systems, AAMAS

’18, page 1388–1396, Richland, SC. International Foundation for Autonomous

Agents and Multiagent Systems.

Hu, J. and Wellman, M. P. (2003). Nash q-learning for general-sum stochastic games.

Journal of machine learning research, 4(Nov):1039–1069.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduc-

tion to variational methods for graphical models. Machine learning, 37(2):183–

233.

Jordan, P. R. and Wellman, M. P. (2009). Generalization risk minimization in

empirical game models. In Proceedings of The 8th International Conference on

Autonomous Agents and Multiagent Systems-Volume 1, pages 553–560.

Kakade, S. M. and Langford, J. (2002). Approximately optimal approximate rein-

forcement learning. In ICML.

Kimbrough, E. O., Robalino, N., and Robson, A. J. (2014). The evolution of’theory

of mind’: Theory and experiments. Cowles Foundation Discussion Paper.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. ICLR.

BIBLIOGRAPHY 165

Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi, S., Osawa, E., Matsubara,

H., Noda, I., and Asada, M. (1997). The robocup synthetic agent challenge 97. In

Robot Soccer World Cup, pages 62–73. Springer.

Klopf, A. H. (1972). Brain function and adaptive systems: a heterostatic theory.

Number 133. Air Force Cambridge Research Laboratories, Air Force Systems

Command, United

Koul, A. (2019). A collection of multi agent environments based on OpenAI gym.

Kreps, D. M. and Wilson, R. (1982). Sequential equilibria. Econometrica: Journal

of the Econometric Society, pages 863–894.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105.

Kulesza, A., Taskar, B., et al. (2012). Determinantal point processes for machine

learning. Foundations and Trends® in Machine Learning, 5(2–3):123–286.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017). Building

machines that learn and think like people. Behavioral and Brain Sciences, 40.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Perolat, J., Silver, D., Graepel,

T., et al. (2017). A unified game-theoretic approach to multiagent reinforcement

learning. In Advances in Neural Information Processing Systems, pages 4190–

4203.

Laurent, G. J., Matignon, L., Fort-Piat, L., et al. (2011). The world of indepen-

dent learners is not markovian. International Journal of Knowledge-based and

Intelligent Engineering Systems, 15(1):55–64.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–

444.

BIBLIOGRAPHY 166

Leslie, D. S., Collins, E., et al. (2003). Convergent multiple-timescales reinforcement

learning algorithms in normal form games. The Annals of Applied Probability,

13(4):1231–1251.

Leslie, D. S. and Collins, E. J. (2005). Individual q-learning in normal form games.

SIAM Journal on Control and Optimization, 44(2):495–514.

Leslie, D. S. and Collins, E. J. (2006). Generalised weakened fictitious play. Games

and Economic Behavior, 56(2):285–298.

Letcher, A., Foerster, J., Balduzzi, D., Rocktäschel, T., and Whiteson, S. (2019).

Stable opponent shaping in differentiable games. In International Conference on

Learning Representations.

Levin, D. and Zhang, L. (2019). Bridging level-k to nash equilibrium. Available at

SSRN 2934696.

Levine, S. (2018). Reinforcement learning and control as probabilistic inference:

Tutorial and review. arXiv preprint arXiv:1805.00909.

Li, C., Sra, S., and Jegelka, S. (2016). Fast mixing markov chains for strongly

rayleigh measures, dpps, and constrained sampling. In Advances in Neural

Information Processing Systems, pages 4188–4196.

Li, M., Qin, Z., Jiao, Y., Yang, Y., Wang, J., Wang, C., Wu, G., and Ye, J. (2019).

Efficient ridesharing order dispatching with mean field multi-agent reinforcement

learning. In The World Wide Web Conference, pages 983–994. ACM.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and

Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv

preprint arXiv:1509.02971.

Lin, T., Zhou, Z., Mertikopoulos, P., and Jordan, M. I. (2020). Finite-time last-iterate

convergence for multi-agent learning in games. arXiv preprint arXiv:2002.09806.

BIBLIOGRAPHY 167

Lipton, R. J., Markakis, E., and Mehta, A. (2003). Playing large games using simple

strategies. In Proceedings of the 4th ACM conference on Electronic commerce,

pages 36–41.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement

learning. In Machine Learning Proceedings 1994, pages 157–163. Elsevier.

Littman, M. L. (2001). Friend-or-foe q-learning in general-sum games. In ICML,

volume 1, pages 322–328.

Littman, M. L., Kearns, M. J., and Singh, S. P. (2002). An efficient, exact algorithm

for solving tree-structured graphical games. In Advances in Neural Information

Processing Systems, pages 817–823.

Liu, M., Zhou, M., Zhang, W., Zhuang, Y., Wang, J., Liu, W., and Yu, Y. (2020).

Multi-agent interactions modeling with correlated policies. In International

Conference on Learning Representations.

Liu, Q. and Wang, D. (2016). Stein variational gradient descent: A general purpose

bayesian inference algorithm. In NIPS, pages 2378–2386.

Lockhart, E., Lanctot, M., Julien, P., Lespiau, J.-B., Morrill, D., TImbers, F., and

Tuyls, K. (2019). Computing approximate equilibria in sequential adversarial

games by exploitability descent. In IJCAI 2019, pages 464–470.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P., and Mordatch, I. (2017).

Multi-agent actor-critic for mixed cooperative-competitive environments. In NIPS,

pages 6379–6390.

Lyapunov, A. (1992). General Problem of the Stability Of Motion. Control Theory

and Applications Series. Taylor & Francis.

Macchi, O. (1977). The fermion process—a model of stochastic point process

with repulsive points. In Transactions of the Seventh Prague Conference on

Information Theory, Statistical Decision Functions, Random Processes and of the

1974 European Meeting of Statisticians, pages 391–398. Springer.

BIBLIOGRAPHY 168

Mahajan, A., Rashid, T., Samvelyan, M., and Whiteson, S. (2019). Maven: Multi-

agent variational exploration. In Advances in Neural Information Processing

Systems, pages 7611–7622.

Marquez, H. J. (2003). Nonlinear control systems: analysis and design, volume 1.

Wiley.

Matignon, L., Laurent, G. J., and Le Fort-Piat, N. (2007). Hysteretic q-learning:

an algorithm for decentralized reinforcement learning in cooperative multi-agent

teams. In 2007 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 64–69. IEEE.

Mazumdar, E., Ratliff, L. J., and Sastry, S. S. (2020). On gradient-based learning in

continuous games. SIAM Journal on Mathematics of Data Science, 2(1):103–131.

Mazumdar, E. V., Jordan, M. I., and Sastry, S. S. (2019). On finding local nash

equilibria (and only local nash equilibria) in zero-sum games. arXiv preprint

arXiv:1901.00838.

Mertikopoulos, P., Lecouat, B., Zenati, H., Foo, C.-S., Chandrasekhar, V., and Pil-

iouras, G. (2019). Optimistic mirror descent in saddle-point problems: Going the

extra(-gradient) mile. In International Conference on Learning Representations.

Mescheder, L., Nowozin, S., and Geiger, A. (2017). The numerics of gans. In NIPS,

pages 1825–1835.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. NIPS

Deep Learning Workshop.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-

level control through deep reinforcement learning. Nature, 518(7540):529.

BIBLIOGRAPHY 169

Muise, C. J., Belle, V., Felli, P., McIlraith, S. A., Miller, T., Pearce, A. R., and

Sonenberg, L. (2015). Planning over multi-agent epistemic states: A classical

planning approach. In AAAI, pages 3327–3334.

Muller, P., Omidshafiei, S., Rowland, M., Tuyls, K., Perolat, J., Liu, S., Hennes, D.,

Marris, L., Lanctot, M., Hughes, E., Wang, Z., Lever, G., Heess, N., Graepel, T.,

and Munos, R. (2020). A generalized training approach for multiagent learning.

In International Conference on Learning Representations.

Nagel, R. (1995). Unraveling in guessing games: An experimental study. The

American Economic Review, 85(5):1313–1326.

Nash, J. F. et al. (1950). Equilibrium points in n-person games. Proceedings of the

national academy of sciences, 36(1):48–49.

Ng, B., Boakye, K., Meyers, C., and Wang, A. (2012). Bayes-adaptive interactive

pomdps. In AAAI.

Noble, B., Daniel, J. W., et al. (1988). Applied linear algebra, volume 3. Prentice-

Hall New Jersey.

Oliehoek, F. A., Amato, C., et al. (2016). A concise introduction to decentralized

POMDPs, volume 1. Springer.

Oliehoek, F. A., Spaan, M. T., and Vlassis, N. (2008). Optimal and approximate

q-value functions for decentralized pomdps. Journal of Artificial Intelligence

Research, 32:289–353.

Omidshafiei, S., Papadimitriou, C., Piliouras, G., Tuyls, K., Rowland, M., Lespiau,

J.-B., Czarnecki, W. M., Lanctot, M., Perolat, J., and Munos, R. (2019). α-rank:

Multi-agent evaluation by evolution. Scientific reports, 9(1):1–29.

Osogami, T. and Raymond, R. (2019). Determinantal reinforcement learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages

4659–4666.

BIBLIOGRAPHY 170

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the

art. Autonomous agents and multi-agent systems, 11(3):387–434.

Panait, L., Luke, S., and Wiegand, R. P. (2006). Biasing coevolutionary search for

optimal multiagent behaviors. IEEE Transactions on Evolutionary Computation,

10(6):629–645.

Pang, T., Xu, K., Du, C., Chen, N., and Zhu, J. (2019). Improving adversarial

robustness via promoting ensemble diversity. In International Conference on

Machine Learning, pages 4970–4979.

Pangallo, M., Sanders, J., Galla, T., and Farmer, D. (2017). A taxonomy of learning

dynamics in 2 x 2 games.

Papoudakis, G. and Albrecht, S. V. (2020). Variational autoencoders for opponent

modeling in multi-agent systems.

Papoudakis, G., Christianos, F., and Albrecht, S. V. (2020a). Opponent modelling

with local information variational autoencoders.

Papoudakis, G., Christianos, F., Schäfer, L., and Albrecht, S. V. (2020b). Comparative

evaluation of multi-agent deep reinforcement learning algorithms.

Pardoe, D. and Stone, P. (2004). Tactex-03: A supply chain management agent.

ACM SIGecom Exchanges, 4(3):19–28.

Peng, P., Wen, Y., Yang, Y., Yuan, Q., Tang, Z., Long, H., and Wang, J. (2017). Mul-

tiagent bidirectionally-coordinated nets: Emergence of human-level coordination

in learning to play starcraft combat games. arXiv preprint arXiv:1703.10069.

Pfeiffer, B. E. and Foster, D. J. (2013). Hippocampal place-cell sequences depict

future paths to remembered goals. Nature, 497(7447):74.

Premack, D. and Woodruff, G. (1978). Does the chimpanzee have a theory of mind?

Behavioral and brain sciences, 1(4):515–526.

BIBLIOGRAPHY 171

Pynadath, D. V. and Marsella, S. C. (2005). Psychsim: Modeling theory of mind

with decision-theoretic agents. In IJCAI, volume 5, pages 1181–1186.

Rabinowitz, N. C., Perbet, F., Song, H. F., Zhang, C., Eslami, S., and Botvinick, M.

(2018). Machine theory of mind. ICML.

Raileanu, R., Denton, E., Szlam, A., and Fergus, R. (2018). Modeling others

using oneself in multi-agent reinforcement learning. In Dy, J. and Krause, A.,

editors, Proceedings of the 35th International Conference on Machine Learning,

volume 80 of Proceedings of Machine Learning Research, pages 4257–4266,

Stockholmsmässan, Stockholm Sweden. PMLR.

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., and Whiteson,

S. (2018). QMIX: Monotonic value function factorisation for deep multi-agent

reinforcement learning. In Dy, J. and Krause, A., editors, Proceedings of the 35th

International Conference on Machine Learning, volume 80 of Proceedings of

Machine Learning Research, pages 4295–4304, Stockholmsmässan, Stockholm

Sweden. PMLR.

Samvelyan, M., Rashid, T., Schroeder de Witt, C., Farquhar, G., Nardelli, N., Rudner,

T. G., Hung, C.-M., Torr, P. H., Foerster, J., and Whiteson, S. (2019). The starcraft

multi-agent challenge. In Proceedings of the 18th International Conference on

Autonomous Agents and MultiAgent Systems, pages 2186–2188. International

Foundation for Autonomous Agents and Multiagent Systems.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region

policy optimization. In Bach, F. and Blei, D., editors, Proceedings of the 32nd

International Conference on Machine Learning, volume 37 of Proceedings of

Machine Learning Research, pages 1889–1897, Lille, France. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal

policy optimization algorithms. CoRR, abs/1707.06347.

Seuken, S. and Zilberstein, S. (2008). Formal models and algorithms for decentral-

BIBLIOGRAPHY 172

ized decision making under uncertainty. Autonomous Agents and Multi-Agent

Systems, 17(2):190–250.

Shafarevich, I. R. and Remizov, A. O. (2012). Linear algebra and geometry. Springer

Science & Business Media.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning:

From theory to algorithms. Cambridge university press.

Shapley, L. S. (1953). Stochastic games. Proceedings of the national academy of

sciences, 39(10):1095–1100.

Sharghi, A., Borji, A., Li, C., Yang, T., and Gong, B. (2018). Improving sequential

determinantal point processes for supervised video summarization. In Proceedings

of the European Conference on Computer Vision (ECCV), pages 517–533.

Shoham, Y., Powers, R., Grenager, T., et al. (2007). If multi-agent learning is the

answer, what is the question? Artificial Intelligence, 171(7):365–377.

Shum, M., Kleiman-Weiner, M., Littman, M. L., and Tenenbaum, J. B. (2019).

Theory of minds: Understanding behavior in groups through inverse planning.

AAAI.

Simon, H. A. (1972). Theories of bounded rationality. Decision and organization,

1(1):161–176.

Singh, S., Kearns, M., and Mansour, Y. (2000). Nash convergence of gradient

dynamics in general-sum games. In Proceedings of the Sixteenth conference on

Uncertainty in artificial intelligence, pages 541–548. Morgan Kaufmann Publish-

ers Inc.

Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi, Y. (2019). QTRAN: Learn-

ing to factorize with transformation for cooperative multi-agent reinforcement

learning. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the

36th International Conference on Machine Learning, volume 97 of Proceedings

BIBLIOGRAPHY 173

of Machine Learning Research, pages 5887–5896, Long Beach, California, USA.

PMLR.

Sondik, E. J. (1971). The optimal control of partially observable markov pro-

cesses. Technical report, STANFORD UNIV CALIF STANFORD ELECTRON-

ICS LABS.

Sonu, E. and Doshi, P. (2015). Scalable solutions of interactive pomdps using

generalized and bounded policy iteration. Autonomous Agents and Multi-Agent

Systems, 29(3):455–494.

Stahl, D. O. (1993). Evolution of smartn players. Games and Economic Behavior,

5(4):604–617.

Stahl II, D. O. and Wilson, P. W. (1994). Experimental evidence on players’ models

of other players. Journal of economic behavior & organization, 25(3):309–327.

Su, J., Adams, S., and Beling, P. A. (2020). Value-decomposition multi-agent

actor-critics. arXiv preprint arXiv:2007.12306.

Sukhbaatar, S., Fergus, R., et al. (2016). Learning multiagent communication with

backpropagation. In Advances in Neural Information Processing Systems, pages

2244–2252.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg,

M., Lanctot, M., Sonnerat, N., Leibo, J. Z., Tuyls, K., and Graepel, T. (2018).

Value-decomposition networks for cooperative multi-agent learning based on team

reward. In Proceedings of the 17th International Conference on Autonomous

Agents and MultiAgent Systems, AAMAS ’18, page 2085–2087, Richland, SC.

International Foundation for Autonomous Agents and Multiagent Systems.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.

MIT press.

BIBLIOGRAPHY 174

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy

gradient methods for reinforcement learning with function approximation. In

Advances in neural information processing systems, pages 1057–1063.

Tacchetti, A., Song, H. F., Mediano, P. A. M., Zambaldi, V., Kramár, J., Rabinowitz,

N. C., Graepel, T., Botvinick, M., and Battaglia, P. W. (2019). Relational for-

ward models for multi-agent learning. In International Conference on Learning

Representations.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative

agents. In Proceedings of the tenth international conference on machine learning,

pages 330–337.

Tang, J., Paster, K., , and Abbeel, P. (2018). Equilibrium finding via asymmetric self-

play reinforcement learning. Deep Reinforcement Learning Workshop NeurIPS

2018.

Taylor, A., Van Scoy, B., and Lessard, L. (2018). Lyapunov functions for

first-order methods: Tight automated convergence guarantees. arXiv preprint

arXiv:1803.06073.

Tesauro, G. (1995). Temporal difference learning and td-gammon. Communications

of the ACM, 38(3):58–68.

Tian, Z., Wen, Y., Gong, Z., Punakkath, F., Zou, S., and Wang, J. (2019). A

regularized opponent model with maximum entropy objective. IJCAI.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological review,

55(4):189.

Tuyls, K., Perolat, J., Lanctot, M., Hughes, E., Everett, R., Leibo, J. Z., Szepesvári,

C., and Graepel, T. (2020). Bounds and dynamics for empirical game theoretic

analysis. Autonomous Agents and Multi-Agent Systems, 34(1):7.

Tuyls, K., Perolat, J., Lanctot, M., Leibo, J. Z., and Graepel, T. (2018). A gener-

alised method for empirical game theoretic analysis. In Proceedings of the 17th

BIBLIOGRAPHY 175

International Conference on Autonomous Agents and MultiAgent Systems, pages

77–85. International Foundation for Autonomous Agents and Multiagent Systems.

Tuyls, K. and Stone, P. (2018). Multiagent learning paradigms. In Belardinelli,

F. and Argente, E., editors, Multi-Agent Systems and Agreement Technologies,

volume 10767 of Lecture Notes in Artificial Intelligence, pages 3–21. Springer.

Tuyls, K. and Weiss, G. (2012). Multiagent learning: Basics, challenges, and

prospects. Ai Magazine, 33(3):41.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J.,

Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., et al. (2019). Grandmaster level

in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–

354.

Von Der Osten, F. B., Kirley, M., and Miller, T. (2017). The minds of many: opponent

modelling in a stochastic game. In IJCAI, pages 3845–3851.

Wang, D. and Liu, Q. (2016). Learning to draw samples: With application to amor-

tized mle for generative adversarial learning. arXiv preprint arXiv:1611.01722.

Wang, Y., Han, B., Wang, T., Dong, H., and Zhang, C. (2020). Off-policy multi-agent

decomposed policy gradients. arXiv preprint arXiv:2007.12322.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

Wei, E. and Luke, S. (2016). Lenient learning in independent-learner stochastic

cooperative games. The Journal of Machine Learning Research, 17(1):2914–2955.

Wei, E., Wicke, D., Freelan, D., and Luke, S. (2018). Multiagent soft q-learning. In

2018 AAAI Spring Symposium Series.

Wellman, M. P. (2006). Methods for empirical game-theoretic analysis. In AAAI,

pages 1552–1556.

Wen, Y., Yang, Y., Luo, R., Wang, J., and Pan, W. (2019). Probabilistic recursive

reasoning for multi-agent reinforcement learning. ICLR.

BIBLIOGRAPHY 176

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. In Reinforcement Learning, pages 5–32. Springer.

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., and Liu, T.-Y. (2017). Dual super-

vised learning. In Proceedings of the 34th International Conference on Machine

Learning - Volume 70, ICML’17, page 3789–3798. JMLR.org.

Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., and Wang, J. (2018a). Mean field

multi-agent reinforcement learning. In Dy, J. and Krause, A., editors, Proceedings

of the 35th International Conference on Machine Learning, volume 80 of Pro-

ceedings of Machine Learning Research, pages 5571–5580, Stockholmsmassan,

Stockholm Sweden. PMLR.

Yang, Y., Tutunov, R., Sakulwongtana, P., Ammar, H. B., and Wang, J. (2019).

Alpha-alpha-rank: Scalable multi-agent evaluation through evolution. AAMAS

2020.

Yang, Y., Yu, L., Bai, Y., Wen, Y., Zhang, W., and Wang, J. (2018b). A study

of ai population dynamics with million-agent reinforcement learning. In 17th

AAMAS, pages 2133–2135. International Foundation for Autonomous Agents and

Multiagent Systems.

Zhang, C. and Lesser, V. (2010). Multi-agent learning with policy prediction. In

AAAI.

Zhou, M., Chen, Y., Wen, Y., Yang, Y., Su, Y., Zhang, W., Zhang, D., and Wang, J.

(2019). Factorized q-learning for large-scale multi-agent systems. In Proceedings

of the First International Conference on Distributed Artificial Intelligence, pages

1–7.

Ziebart, B. D. (2010). Modeling Purposeful Adaptive Behavior with the Principle of

Maximum Causal Entropy. PhD thesis, Carnegie Mellon University, Pittsburgh,

PA, USA. AAI3438449.

	Introduction
	Motivation
	Contributions and Outline

	Background
	Single-Agent Reinforcement Learning
	Multi-Agent Formulation
	Stochastic Game
	Dec-POMDP

	Deep (Multi-Agent) Reinforcement Learning
	Joint Value Function Decomposition

	Agent Modeling
	Recursive Reasoning
	Cognitive Hierarchy

	Empirical Game-Theoretic Analysis

	I Explicit Mutual Influence Models
	Probabilistic Recursive Reasoning
	Preliminaries: Joint Policy Factorization
	Probabilistic Recursive Reasoning
	Probabilistic Recursive Reasoning Policy Gradient
	Variational Inference on Opponent Conditional Policy
	Sampling in Continuous Action Space
	Alternative Approach

	Experiments
	Iterated Matrix Game
	Differential Game
	Particle World Environments

	Summary

	Generalized Recursive Reasoning
	Preliminaries: Multi-Agent Soft Learning
	Generalized Recursive Reasoning
	Higher Level Recursive Reasoning
	Mixture of Hierarchy Recursive Reasoning
	Theoretical Convergence

	Multi-Agent GR2 Reinforcement Learning
	GR2 Soft Actor-Critic Algorithm
	Inter-level Policy Improvement
	Best Response as Deterministic Strategy

	Experiments
	Keynes Beauty Contest
	Learning Matrix Games
	Particle World Environments
	Ablation Study

	Summary

	II Behavioral Diversity in Mutual Influence
	Multi-Agent Determinantal Q-Learning
	Preliminaries: Determinantal Point Process
	Multi-Agent Determinantal Q-Learning
	Q-DPP: A Constrained DPP for MARL
	Representation of Q-DPP Kernels
	Connections to Current Methods
	Sampling from Q-DPP
	Determinantal Q-Learning

	Solution for Continuous States: Deep Q-DPP
	Neural Architectures for Deep Q-DPP.

	Experiments
	Discrete State and Action Games
	StarCraft II Micro-Management

	Summary

	III Game-Theoretic Analysis of Policy-Space Influence
	Multi-Agent Trust Region Learning
	Related Work
	Multi-Agent Trust Region Policy Optimization
	Independent Trust Payoff Region
	Approximating Weak Stable Fixed Point via Restricted Policy-Space Meta-Game
	Improvement Against Weak Stable Fixed Point
	Connections to Existing Methods

	Experiments
	Experiment Environment Details
	Matrix Game and Random Matrix Games
	Grid World Checker and Switch
	Multi-Agent MuJoCo Game
	Effect and Cost of Trust Stable Region and Best Response to Fixed Point

	Summary

	Conclusion and Future Work
	Contributions
	Future Work

	Bibliography

