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Alzheimer’s disease (AD) continuum is defined as a cascade of several neuropathological

processes that can be measured using biomarkers, such as cerebrospinal fluid (CSF)

levels of Aβ, p-tau, and t-tau. In parallel, brain anatomy can be characterized through

imaging techniques, such as magnetic resonance imaging (MRI). In this work we relate

both sets of measurements and seek associations between biomarkers and the brain

structure that can be indicative of AD progression. The goal is to uncover underlying

multivariate effects of AD pathology on regional brain morphological information. For this

purpose, we used the projection to latent structures (PLS) method. Using PLS, we found

a low dimensional latent space that best describes the covariance between both sets

of measurements on the same subjects. Possible confounder effects (age and sex) on

brain morphology are included in the model and regressed out using an orthogonal PLS

model. We looked for statistically significant correlations between brain morphology and

CSF biomarkers that explain part of the volumetric variance at each region-of-interest

(ROI). Furthermore, we used a clustering technique to discover a small set of CSF-related

patterns describing the AD continuum. We applied this technique to the study of subjects

in the whole AD continuum, from the pre-clinical asymptomatic stages all the way through

to the symptomatic groups. Subsequent analyses involved splitting the course of the

disease into diagnostic categories: cognitively unimpaired subjects (CU), mild cognitively

impaired subjects (MCI), and subjects with dementia (AD-dementia), where all symptoms

were due to AD.

Keywords: Alzheimer’s disease, PLS, pre-clinical AD, latent model, CSF biomarkers, brain morphology

1. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a progressive cognitive
and memory decline and specific neuropathological processes, namely extracellular beta-amyloid
plaque deposition and intracellular neurofibrillary tangles accumulation (1). Initial diagnostic
criteria defined AD as a syndrome without neuropathological confirmation for a “probable AD
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diagnosis” and with confirmation for a “definite” one (2).
However, during the last decade, a biological definition of AD
describing specific neuropathological changes that could cause
dementia has been introduced (3, 4), leading to the definition
of the pre-clinical stage of AD (5). A recent paper (6) suggests a
new research framework considering AD purely as a biological
continuum, excluding clinical symptoms from its definition.
According to this framework the term “Alzheimer’s disease” is
applied, regardless of the clinical manifestations, whenever there
is evidence of pathologic deposits of both Aβ and tau in the
brain, as manifested, for example, through AD cerebrospinal
(CSF) core biomarkers: Abeta42, phosphorylated Tau (p-
tau), and total Tau (t-tau) which reflect amyloid pathology,
tau pathology, and neurofibrillary tangle neurodegeneration,
respectively. When there is evidence of Aβ pathology but not
tau, the term “Alzheimer’s pathologic change” should be used.
Together, individuals with either Alzheimer pathologic change
or Alzheimer’s disease belong to the so-called “Alzheimer’s
continuum”, and these individuals may be in different clinical
stages, from the cognitively unimpaired stage to the stage
of dementia. Similar to this criteria, the Food and Drug
Administration (FDA) of the United States government proposed
a 4-stage model (7) where stage 1 (no clinical impact) and stage 2
(subtle detectable abnormalities on sensitive neuropsychological
measures) fall into the pre-AD category and stages 3 and 4 fall
into the MCI and AD-dementia categories, respectively.

Quantitative MRI has broadly been used in AD (8) to
show structural brain differences among groups of subjects
in cross sectional studies [e.g., hippocampal neuronal loss
between normal aging and subjects with dementia (9)] or to
assess structural brain evolution in longitudinal studies [e.g.,
hippocampal brain atrophy rates in (10)]. As a measure of
neurodegeneration, MRI is considered a valid marker of AD
progression (11) and it is used in the clinical assessment
of suspected AD patients (12) and is proposed for clinical
screening applications (13, 14). Overall, brain morphometry is
concerned with the study of physiological processes occurring
in the brain that can be related to factors like aging and/or
neurodegenerative diseases.

Projection to Latent structures (PLS), also known as Partial
Least Squares, is a multivariate method that relates information
from two different sets of measurements describing a single set of
observations, by means of unobservable latent variables. These
latent variables are derived from the input measurements that
best explain the joint variation of both domains and are seen
as associated morphological patterns. As a multivariate model, it
simultaneously models the relationship between variables from
the same set of measurements. It allows finding the relative
contribution of each variable to the cross-domain effects andmay
uncover hidden effects from the respective univariate analysis.
Out of several PLS methods, we used partial least squares
correlations (PLSC) as a descriptive technique that maximizes the
cross-covariance between latent spaces.

In this work, we studied the relationship between brain
morphology and the two underlying processes of aging and AD
pathology. The main aim is to discover morphological patterns
associated to each process by disentangling their respective

effects. CSF biomarkers (CSF Aβ , CSF p-tau, and CSF t-tau)
are used as an in-vivo measure of AD pathology; age and sex
are used as a proxy of brain aging, and volumetric MRI as
a proxy of brain neurodegeneration. We used PLS analysis
to relate the information obtained from CSF biomarkers and
MRI, and to uncover common patterns that may be attributed
to neurodegenerative processes due to AD. We utilized a
preliminary model based on normal aging subjects that were
perpendicular to the disease model.

1.1. PLS in Neuroimaging
PLS modeling, either in its regression (PLSR) or correlation
(PLSC) variants, has been widely used in neuroimaging. It was
first introduced in functional neuroimaging by McIntosh et al.
in (15) and Krishnan et al. (16) provide a complete review of
several subsequent applications in the field. In Ziegler et al. (17),
PLSC was used to study the relationship between the cognitive
profile and voxelwise MRI volumetric features in children and
adolescents. In the same line, PLSC was used to model the
interactions between genetic profile and MRI phenotypes in
Lorenzi et al. (18). More recently, alterations in white matter
due to Alzheimer’s disease were studied in Konukoglu et al. (19)
by examining the relationship of several diffusion maps with
different AD stages. Finally, PLS has also been used as a feature
extractor in a larger machine learning analysis pipeline (20).

Most studies integrating both CSF and MRI information,
found in the literature, employ other modeling techniques. CSF
biomarkers andMRI information have been used to discriminate
between diagnostic AD stages (21) and to examine the ability of
predicting the time to conversion to other stages in Vemuri et al.
(22). Both works found similar results and conclude that CSF
and MRI provide complimentary information in discriminative
and predictive tasks, even though MRI outperforms CSF in both.
The work in Fjell et al. (23) studied the relationship between
CSF biomarkers and brain morphometry for assessing changes
in brain structure between cognitively unimpaired (CU) subjects
and subjects in symptomatic stages of AD (MCI, AD-dementia).
They use the general linear model (GLM) to independently
model each brain ROI with a single CSF biomarker and perform
hypothesis testing to assess their relevance. They also studied
the effect of CSF biomarkers in brain differences between
groups (CU/MCI, CU/AD-dementia) using cortical thickness
and volumetric information. Finally, the work in Casamitjana
et al. (24) used PLSR to study the relationship between
MRI and CSF along the disease continuum, finding common
multivariate anatomical patterns along the AD that are predictive
of CSF biomarkers.

2. MATERIALS AND METHODS

2.1. Data
In our experiments we used the publicly available dataset
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI1)
with imaging data preprocessed using FreeSurfer. According to
Sperling et al. (5), we split the AD continuum (N = 801) into

1http://adni.loni.usc.edu
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TABLE 1 | Multivariate CSF effects on brain morphology along the AD continuum.

CU MCI AD

Age 73.17 (± 6.20) 73.15 (±6.97) 74.83 (±7.84)

Education 16.84 (±2.45) 16.25 (±2.76) 15.85 (±2.65)

Sex (F/M) 170/151 142/190 64/84

# apoE4 (0/1/2) 227/85/9 116/162/54 39/74/35

MMSE 29.04 (±1.22) 27.64 (±1.96) 22.79 (±2.62)

FAQ 0.34 (±1.18) 3.21 (±4.12) 13.97 (±6.84)

Statistical significant ROIs are grouped in 4 clusters characterized by their centroid. We

refer to all centroids as the latent pathological patterns driving morphological changes and

they are shown in the header of the table.

three clinical stages: a total ofNCU = 321 cognitively unimpaired
(CU) subjects, NMCI = 332 subjects with mild cognitive
impairment (MCI), and NAD-dementia = 148 subjects diagnosed
with dementia due to AD (AD-dementia). For symptomatic
stages (MCI and AD-dementia), only amyloid positive subjects
[CSF Aβ < 192 pg/mL, (25)] were considered. A summary of the
demographic information can be found in Table 1.

All subjects have cortical and subcortical gray matter
volumetric information (K = 88) available for each brain
ROI (26, 27) as imaging measurements; age and sex as
confounder variables and CSF biomarkers [Aβ , phosphorylated
tau (p-tau), and total tau protein (t-tau)] as pathophysiological
measurements. Typically, AD subjects show decreasing CSF Aβ

values, increasing CSF t-tau/p-tau burden, and brain atrophy.
Hence, we will refer to typical AD-related pathophysiological
patterns as those underlying patterns characterized by a
positive correlation between volumetric features and CSF Aβ

and a negative correlation between volumetric features and
CSF t-tau/p-tau.

2.2. Partial Least Squares Correlation
Framework
Partial Least Squares Correlation (PLSC) is a statistical method
that describes the relationship between two sets ofmeasurements,
X and Y, on the same observations. This relationship is modeled
as the covariance between both input spaces (X, Y) and the goal is
to examine their shared information. The underlying assumption
of PLSC modeling is that most of the joint variability between X
and Y lies in a lower dimensional space, i.e., it can be described
by means of a few latent patterns.

Let us assume we have N subjects with two sets of different
measurements: K descriptive variables X ∈ R

NxK (e.g., brain
structure using MRI) and P condition-related variables Y ∈
R

NxP (e.g., CSF biomarkers). Without loss of generality, we
assume both variables to be mean-centered. Formally, PLSC is
applied to identify two new sets of variables T ∈ R

NxL, U ∈
R

NxL, called latent variables, which are linear combinations of
the original measurements X and Y, respectively. These new
variables lie in lower and unobserved L-dimensional spaces
derived by simultaneous decomposition of input variables trying
to maximize their cross-covariance (28). This idea is translated
into finding the directions of maximum covariance between the

original input spaces under the orthogonal constraint on the L
projection vectors:

maximize cov(Xwl,Ycl) = cov(tl, ul) (1)

s.t w⊤
l 1wl′ = δ(l− l′), c⊤l 1cl′ = δ(l− l′)

where wl ∈ R
Kx1, cl ∈ R

Px1 are the projection weight matrices
from input to latent spaces. It follows from the properties of
singular value decomposition (SVD) that wl, cl are the left and
right singular vectors of the covariance matrix R = X⊤Y (29),
respectively. Moreover, the covariance of the latent space at
each dimension, i.e., cov(tl, ul), is equal to the corresponding
singular value. The final L-dimensional latent space is built by
concatenating the corresponding latent variables:

T = [t0, t1, . . . , tL−1] , T = XW (2)

U = [u0, u1, . . . , uL−1] , U = YC

where W = [w0,w1, . . . ,wL−1] , C = [c0, c1, . . . , cL−1]

2.3. Model Definition
A common assumption in neuroimaging studies is that the object
of study (e.g., brain morphology) is affected at the same time
by the condition of interest (e.g., dementia) and confounding
variables (e.g., age, genetics). Hence, we need to control for
confounding variables in any neuroimaging analysis in order
to find meaningful results. The standard solution is to regress-
out the unwanted factors on the condition of interest. In a
PLS framework, it can be done by estimating two separate
models for confounders (McAD) and the variable of interest
(MAD) and imposing orthogonality between both models. Each
model is characterized using two different Y-space variables
(YcAD,YAD) and the same X-space. Similar to the work in
Konukoglu et al. (19), we introduce the orthogonality constraint
in the optimization process, forcing the associated latent subspace
(TcAD,TAD) to be orthogonal.

First, the confounder model, McAD, is estimated using MRI
(X ∈ R

NxK) and age and sex YcAD ∈ R
Nx2) as predictor

and response variables, respectively. The associated subspaces
(TcAD,UcAD) are found by solving the regular expression in
Equation (1) for an LcAD = 1-dimensional subspace with weights
w0

cAD and c0
cAD.

Second, themodel of interest,MAD, is estimated using deflated
MRI (X ∈ R

NxK) and CSF biomarkers (YAD ∈ R
Nx3) as

predictor and response variables, respectively. To account for the
variance explained by the confounder model, we define the new
predictor variable

X = X−
LcAD−1
∑

l=0

X ·

(

t1l · t⊤1l
t⊤
1l
· t1l

)

(3)

where we subtract the measurement variance explained byMcAD

and ensure orthogonality between subspaces. To study the effect
at each ROI, we estimate K submodels (MAD

k
, ∀k = 0, . . . ,K−

1) each one using the deflated version of regional volumetric
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features for the k-th ROI (Xk) as predictor variables. For each
submodel we set LAD

k
= 1 yielding univariate structural model

that describes regional effects of multivariate pathological effects.
Each model is estimated by solving Equation (1) with weights
wk

AD and ck
AD.

2.4. Statistical Inference
The outcome measures of the estimated models are the effect size
(ρ) and the effect type (νX , νY ). The effect size is a quantitative
measure of the magnitude of a certain phenomenon, while the
effect type is defined over multivariate phenomena as the vector
of proportions indicating relative effect sizes of each parameter.
Inherently, PLSC models have estimated two different latent
subspaces, each one related to X and Y input spaces, respectively.
Hence, a good definition for the effect size is the covariance
between both estimated subspaces at each dimension, while
the effect types are defined as the vectors of projection to the
associated subspace

ρl =
1

N − 1
t⊤l ul, νXl = wl, νYl = cl ∀l = 0, . . . , L− 1

(4)

We report outcomemeasures for both PLS models (McAD,MAD).
For the confounder model, the effect size and effect type read
as follows:

ρcAD =
1

N − 1
tcAD0

⊤ · ucAD0 , νcAD =
1

ρ
· wcAD (5)

In the model of interest, we define an effect size and effect type
for each submodel:

ρAD
k =

1

N − 1
tADk

⊤ · uADk , νADk = cADk , where

k = 0, . . . ,K − 1 (6)

All effect types are normalized to unit norm (‖νAD
k

‖2 = 1) and
each value corresponds to the relative contribution of each CSF
biomarker on explaining the variance of ROI volumes.

2.4.1. Non-parametric Permutation Testing

To assess the significance of the estimated effect size, non-
parametric permutation testing is used (30). The null hypothesis
states that there is no relationship between descriptive (X) and
condition-related (Y) variables, hence, the effect size of the
analysis is small/non-significant. Then, the null distribution of
the effect size is estimated by randomly permuting subject indices
in one measurement (i.e., Xπ ) to break the initial relationship
and generating a new sample of unrelated variables. This process
is repeated Nperm times, and for each permutation (π(i), i=0,
. . . , Nperm − 1) a new PLSC model is computed along with

the associated effect size ρ
π(i)
l

at each dimension. For any ρ ∈
(ρcAD, ρAD

k
), t ∈ (tcAD0 , tADk ) and u ∈ (ucAD0 , uADk ), the effect size

at each permutation is calculated:

ρ
π(i)
l

=
1

N − 1
t⊤π(i) · u (7)

where π(i) is the i-th permutation without replacement of
subject indices. The null distribution is empirically built using
ρπ(i), ∀i = 0, . . . , Nperm. Statistical significance level (p-value)
of the observed effect size at each dimension (ρ) is determined by
the ratio of permutations that result in a higher effect size.

p-value(ρ) =
1

Nperm
‖ρπ(i) > ρ‖0 (8)

where ‖ · ‖0 is the 0-norm operator, that counts the number of
non-zero elements of a vector. In this work, we used a significance
level of p-value < 0.05, corrected using a false discovery rate of
5% (FDR=0.05).

An important parameter for inference, using permutation
testing, is the number of permutations (Nperm) to estimate the
null distribution. Larger Nperm provides better estimations but
increases the computational cost. Hence, there is a trade-off
between computational complexity and the precision (P) of
the p-value(ρ) estimation. It is known that the Monte Carlo

approximation of the p-value has a standard deviation of
√

p(1−p)
Nperm

involving the true real value of p. Since p is unknown, Ojala and
Garriga (31) suggest using the upper bound 1√

Nperm
and model

p-value(ρ) as approximately Gaussian with standard deviation P,
referred to as the precision of the estimate. Then, for a desired
precision P, the minimum number of permutations is.

Nperm ≥
1

4 · P2
(9)

2.5. Clustering
Unsupervised clustering techniques allow uncovering common
characteristics between sets of data without the need of a specific
labeling process (32). In this work, the features of interest are
the CSF biomarker characteristic patterns on brain morphology
mathbf νAD

k
. Using the k-means algorithm (32) and the MAD

model, we aimed to group together different brain ROIs with
similar effect types (νAD

k
). Hence, a total of C clusters, driven by

their centroid (latent pattern) were found, uncovering underlying
patterns of CSF biomarkers related to brain structure.

2.6. Ethics Committee Approval
All procedures performed in the ADNI studies involving
human participants were in accordance with the ethical
standards of the institutional research committees and with the
1964 Helsinki declaration and its later amendments. Written
informed consent was obtained from all participants or their
authorized representatives.

The study procedures were approved by
the institutional review boards of all participating
centers (https://adni.loni.usc.edu/wp-content/uploads/how__
to__apply/ADNI__Acknowledgement__List.pdf): Oregon
Health and Science University; University of Southern California;
University of California—San Diego; University of Michigan;
Mayo Clinic, Rochester; Baylor College of Medicine; Columbia
University Medical Center; Washington University, St. Louis;
University of Alabama at Birmingham; Mount Sinai School of
Medicine; Rush University Medical Center; Wien Center; Johns
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Hopkins University; New York University; Duke University
Medical Center; University of Pennsylvania; University of
Kentucky; University of Pittsburgh; University of Rochester
Medical Center; University of California, Irvine; University
of Texas Southwestern Medical School; Emory University;
University of Kansas, Medical Center; University of California,
Los Angeles; Mayo Clinic, Jacksonville; Indiana University;
Yale University School of Medicine; McGill University,
Montreal-Jewish General Hospital; Sunnybrook Health
Sciences, Ontario; U.B.C. Clinic for AD & Related Disorders;
Cognitive Neurology—St. Joseph’s, Ontario; Cleveland Clinic
Lou Ruvo Center for Brain Health; Northwestern University;
Premiere Research Inst (Palm Beach Neurology); Georgetown
University Medical Center; Brigham and Women’s Hospital;
Stanford University; Banner Sun Health Research Institute;
Boston University; Howard University; Case Western Reserve
University; University of California, Davis—Sacramento;
Neurological Care of CNY; Parkwood Hospital; University
of Wisconsin; University of California, Irvine—BIC; Banner
Alzheimer’s Institute; Dent Neurologic Institute; Ohio State
University; Albany Medical College; Hartford Hospital, Olin
Neuropsychiatry Research Center; Dartmouth-Hitchcock
Medical Center; Wake Forest University Health Sciences; Rhode
Island Hospital; Butler Hospital; UC San Francisco; Medical
University South Carolina; St. Joseph’s Health Care Nathan
Kline Institute; University of Iowa College of Medicine; Cornell
University and University of South Florida: USF Health Byrd
Alzheimer’s Institute.

3. RESULTS

In this article we analyzed the relationship between brain
morphology and markers of normal aging and AD, along
the AD continuum. Using the PLSC framework presented in
section 2.2, we disentangled morphological patterns describing
AD pathology measured using CSF biomarkers. Concretely we
aimed to:

• Find multivariate patterns relating confounder variables and
brain volumetry, and used them to regress-out the effect of
confounders on brain morphology

• Describe the effect of CSF biomarkers in different volumetric
brain ROIs.

• Look for specific patterns across the AD continuum, in
different cognitive profiles (CU, MCI, AD-dementia).

3.1. Study of Age Association With Brain
Morphometric Features in Normal Aging
We first estimated the aging model (McAD) to regress-out the
effect size of confounders (age and sex) on brain morphology
in a posterior analysis. In Figure 1 we show the confounders’
effect type, representing the multivariate pattern of volumetric
variation related to age and sex. McAD model, as a proxy to the
normal aging process, involves reduced cortical thickness in the
whole brain with increasing age, with exceptions on the choroid
plexus and the anterior cingulate. Regions that show a higher

FIGURE 1 | Different views of the multivariate brain morphometric effect of

age (type vcAD). For visualization purposes, we have scaled the effect-type in

the range [−1, 1] and masked all regions below a certain threshold (20% of the

maximum value). The color-code represents negative (blue) and positive (red)

relative contributions of each brain ROI to explaining the variability of

confounders (age and sex).

decrease in volume with age are found in the temporal lobe,
especially the hippocampus. The sex effect size is rather low in
the whole brain.

3.2. Study of CSF Biomarkers Association
With Brain Morphometric Features Along
AD Continuum
AD pathological effects are thought to be spread non-uniformly
across the brain (33) and may only be described by a
small set of patterns along the disease. Moreover, the non-
linear aspect of a pairwise relationship between CSF Aβ and
phosphorylated and total tau protein (Figure 2) may indicate that
different patterns of brain volumetric variability coexist along
the AD continuum. In this set of experiments, we aimed to
capture these specific patterns using the AD model (MAD) and
a clustering algorithm.

In Figure 3, we show the condition-related effect type (νAD
k

) in
statistically significant regions (p < 0.05, corrected for multiple
comparisons). Each effect type value is split into different
subfigures. A complete list of regional AD effect sizes and their
related p-values can be found in Supplementary Table 1.1.

We then fit a clustering algorithm to find a small set of
representative CSF-patterns that group all effect types (νAD

k
)

across the brain and along disease stages. It effectively results
in four different clusters with the corresponding centroid
representing patterns of AD pathology on brain morphology.
In Table 2, we provide a list of the relevant ROIs associated
to each cluster. Hence, we can define four different underlying
processes governing brain morphology. CSF t-tau appears to
explain most of the variability in many brain ROIs (clusters
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FIGURE 2 | Pairwise CSF biomarker relationship along the AD continuum: (A) CSF Aβ vs. p-tau, (B) CSF Aβ vs. t-tau and (C) CSF p-tau vs. t-tau. Each point

represents a subject and different colors refer to different clinical categories: CU (blue), MCI (red), and AD-dementia (black).

FIGURE 3 | Different views of the effect of AD (νADk ) in subjects along the AD continuum. The color-code represents negative (blue) and positive (red) relative

contributions of each CSF biomarker explaining the volumetric variability on brain each ROIs. Each figure represents a different CSF biomarkers: (A) CSF Aβ, (B) CSF

p-tau, (C) CSF t-tau. Only brain ROIs with statistically significant effect size (p < 0.05, corrected for multiple comparisons) are shown.

0 and 1). A typical AD-related pathophysiological pattern is
found in cluster 1, where amyloid plaque deposition appears to
favor the presence of tau protein in several temporal regions
(hippocampus, inferior temporal, superior temporal, middle
temporal, amygdala, fusiform and entorhinal cortex) and other
typical AD regions (precuneus). In contrast, in cluster 0,
several regions, such as pallidum, precental, lateral orbitofrontal,
or precentral appear to develop compensation effects once
discounting the aging effect with tau accumulation. On the
other hand, CSF Aβ levels appear to highly affect regions of
the caudate and other medial regions, such as the paracentral
and the post-central, showing a compensatory mechanism with
amyloid deposition once corrected by the aging process (clusters
3). Finally, the choroid plexus appears to be highly correlated
with variation in CSF Aβ and t-tau values.

3.3. Study of CSF Biomarkers Association
With Brain Morphometric Features in
Different AD Stages
As suggested by Tosun et al. (33), in this second stage of analysis
we considered that AD effects might be different along the
disease continuum. Hence, we fit the corrected MAD model

independently to each diagnostic groups (CU, MCI and AD-
dementia) and provided a post-hoc comparison.

The effect type for CU, MCI is shown in Figures 4, 5,
respectively, in statistically significant regions while (p < 0.05,
corrected for multiple comparisons) no significant regions were
found for the AD-dementia stage once corrected for multiple
comparisons. The p-values for each brain ROI are listed in
Supplementary Table 2.1. Several subcortical and temporal pole
regions appear to be highly correlated to AD pathophysiological
markers at CU and especially MCI stages.

The resulting three-dimensional effect types can be effectively
clustered into four different characteristic CSF patterns. In
Table 3, we provide a list of relevant ROIs associated to the four
centroids describing each cluster. Among the four clusters, we
found that clusters 0 and 1, group regions whose variance is
related to CSF t-tau/p-tau proteins variation, while clusters 2 and
3 appeared to be described by CSF Aβ load.

A typical AD-related pathophysiological pattern is found in
cluster 0 describing the variability of typical AD regions (inferior
parietal and hippocampus) at intermediate stages (MCI). In
contrast, cluster 1 shows a compensatory effect in medial regions
(e.g., pre-central) at MCI stage. The caudate appears to be almost
perfectly correlated with CSF Aβ values at early stages (CU),
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TABLE 2 | Multivariate CSF effects on brain morphology for different diagnostic categories.

Centroid 0 Centroid 1 Centroid 2 Centroid 3

ADc

Pallidum R Precuneus R Cuneus L Choroid Plexus R

Pallidum L Precuneus L Pericalcarine R Choroid Plexus L

Precentral L Amygdala R Caudate R

Precentral R Amygdala L Caudate L

Lateral Orbitofrontal L Bankssts R Paracentral R

Lateral Orbitofrontal R Bankssts L Post-central R

Frontal Pole L Entorhinal R Medial Orbitofront. L

Frontal Pole R Entorhinal L

Superior Temporal R Fusiform R

Supramarginal R Fusiform L

Caudal Ant. Cingulate R Hippocampus R

Medial Orbitofrontal R Hippocampus L

ParsOrbitalis L Inferior Temporal R

Pericalcarine L Inferior Temporal L

Temporal Pole L Middle Temporal R

Transverse Temporal L Middle Temporal L

Insula L Inferior Parietal R

ParsOpercularis R Inferior Parietal L

Statistical significant ROIs are grouped in 4 clusters characterized by their centroid. We refer to all centroids as the latent pathological patterns driving morphological changes and are

shown in the header of the table.

FIGURE 4 | Different views of the effect of AD (νADk ) in subjects in the CU stage. The color-code represents negative (blue) and positive (red) relative contributions of

each CSF biomarker explaining the volumetric variability on brain each ROIs. Each figure represents a different CSF biomarkers: (A) CSF Aβ, (B) CSF p-tau, (C) CSF

t-tau. Only brain ROIs with statistically significant effect size (p < 0.05, corrected for multiple comparisons) are shown.

increasing its volume for decreasing CSF Aβ values. Finally,
the pattern related to choroid plexus, shown in the previous
sections, is found relevant only on cognitively unimpaired

subjects. None of the regions below the significance threshold
survive the multiple comparisons correction at late stages of the
disease (AD-dementia).
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FIGURE 5 | Different views of the effect of AD (νADk ) in subjects in the MCI stage. The color-code represents negative (blue) and positive (red) relative contributions of

each CSF biomarker explaining the volumetric variability on brain each ROIs. Each figure represents a different CSF biomarkers: (A) CSF Aβ, (B) CSF p-tau, (C) CSF

t-tau. Only brain ROIs with statistically significant effect size (p < 0.05, corrected for multiple comparisons) are shown.

TABLE 3 | Diagnostic categories.

Centroid 0 Centroid 1 Centroid 2 Centroid 3

CU

LeftAccumbensArea L RightPericalcarine LeftCaudate LeftChoroidPlexus

RightInferiorTemporal RightCaudate RightChoroidPlexus

MCI

Banksts L Precentral R MidTemporal R

MidTemporal L ParsOrbitalis L

InferiorParietal R Precentral L

InferiorParietal L

Hippocampus L

Hippocampus R

AD

4. DISCUSSION

In this work we report the effect of normal aging and AD
pathological processes on brain morphology. Age and sex were
used as covariates in the normal aging model based on a
cognitively unimpaired, amyloid-beta negative population that

shows the standard pattern of global volume reduction (34)
except for the choroid plexus. Its associated latent space was

used as a confounding factor model to correct the disease

model. AD pathology was measured using CSF biomarkers and
shows high effect sizes on brain morphology along the disease
spectrum. Brain structure can be effectively described by a small
set of underlying patterns correlated with CSF biomarkers. Once

corrected by the confounder model, they can be split into atrophy
and volume compensation mechanisms.

A typical AD-related pathophysiological process is defined
by cerebral atrophy in subjects with higher CSF t-tau and p-
tau and lower CSF Aβ values. This pattern is most prominently
found in the temporal lobe (hippocampus, superior, middle and
inferior temporal, amygdala, fusiform and entorhinal cortex) as
well as other regions, such as the pre-cuneus and the inferior
parietal, all of them being establishedAD-vulnerable structures in
the literature and used as diagnostic markers. Tau accumulation
drives most of the volumetric variability on those regions. On
the other hand, increased mean ROI volume, with increasing
tau or decreasing amyloid-beta levels, is also present across
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the brain. This compensation mechanism is found in many
regions, especially in the frontal lobe and in central regions,
such as the precentral, the pallidum, or the caudate nucleus.
Even though it does not belong to the central nervous system
(CNS), a well-deserved remark should be made for the choroid
plexus, understood to be the region thatmediates CSF production
and that seems independent of CSF p-tau levels, indicating its
non-specific character for AD.

A subsequent analysis using clinical diagnosis to find group-
specific effects shows different patterns along AD stages.
Statistically significant regions at each stage drastically diminish
compared to effects along the whole AD continuum. At pre-
symptomatic stages of AD (i.e., cognitively unimpaired (CU)
subjects), there exists a strong negative correlation between the
caudate nucleus volume and CSF Aβ levels and between the
choroid plexus and CSF t-tau values. This pattern appears to be
specific for the asymptomatic stage while other regions present
only mild effects. The number of regions that present relevant
correlation between CSF biomarkers and brain morphology
increases at MCI stage. A typical AD-related pathophysiological
pattern is found in temporal lobe regions as well in other
AD-vulnerable regions, such as the precentral and the inferior
parietal, confirming previous findings in the literature [e.g., (35)].
This process is found in similar but fewer regions compared
to the analysis on the whole AD continuum, indicating the
spatial and temporal heterogeneity of the AD-signature. The joint
variability between disease biomarkers and brain morphology is
maximized atMCI stage, while at dementia stages this association
is completely lost. This result shows that MCI stage is particularly
interesting to study brain tissue deterioration due to Alzheimer’s
disease, while no clear pattern is found at early and late stages of
the AD continuum.

There are some limitations to this work. First, we report
preliminary results on the ADNI cohort and validation on
an independent cohort would be required to assess the
generalization of the results to other datasets as well as
to the general population. Second, the oversimplification on
the number of brain processes occurring in healthy adults’
brain, was grossly split into AD and non-AD processes. Age
and sex are used as the main confounders for non-AD
effects while we acknowledge that many other factors (e.g.,
environmental, genetic) might be added to the model (36).
CSF biomarkers are used as a proxy for AD effects considering
that amyloidosis, tauopathy, and neurodegeneration drive AD
pathology. However, many other comorbidities might be found
in AD subjects, especially at later stages (37). Nonetheless, the
work provides a methodology for the analysis of joint variation of
imaging and non-imaging features, and results, consistent with
the literature were found. New insights on brain morphology
along the AD continuum are also reported.

5. CONCLUSION

In this work studied the relationship between CSF biomarkers
and brain morphology that can be interpreted as the effect of
abnormal amyloid and tau levels in the brain. Unlike standard

hypothesis testing, PLS methods allow us to study normal aging
and AD effects on brain morphology using continuous markers
for both processes, instead of using a single categorical variable.
To describe AD stages, we used age and sex as confounders
for the normal aging model and CSF biomarkers to describe
the AD continuum. In order to specifically analyze the effect
regarding Alzheimer’s disease, we superimposed a condition by
which brain morphometry changes due to AD are properly
orthogonalized to those due to normal brain aging. Concretely,
we used Partial Least Squares Correlation (PLSC) to jointly
describe patterns of change in CSF and MRI by projecting
both spaces into correlated latent spaces. We found that CSF
values are relevant to describe brain morphology along the
AD continuum, both positively and negatively related to ROI
volumetric features. This relationship appears to be maximal at
MCI stage, while insignificant at late stages of dementia. CSF p-
tau and t-tau appear to drive most of the variability associated to
pathological processes being lined up with CSF Aβ . Overall, we
proposed a statistically robust framework that can unravel hidden
correlations between different measures of disease progression,
to characterize neurodegenerative processes that govern brain
morphology along the AD continuum.
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