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The current tuberculosis (TB) vaccine, Bacille Calmette-Guerin (BCG), is effective in

preventing TB in young children but was developed without a basic understanding of

human immunology. Most modern TB vaccine candidates have targeted CD4+ T cell

responses, thought to be important for protection against TB disease, but not known

to be sufficient or critical for protection. Advances in knowledge of host responses to

TB afford opportunities for developing TB vaccines that target immune components not

conventionally considered. Here, we describe the potential of targeting NK cells, innate

immune training, B cells and antibodies, and Th17 cells in novel TB vaccine development.

We also discuss attempts to target vaccine immunity specifically to the lung, the primary

disease site in humans.
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INTRODUCTION

Only one vaccine is currently licensed to prevent tuberculosis (TB), i.e., Bacillus Calmette-Guerin
(BCG). This vaccine is safe and effective in protecting young children primarily against
disseminated forms of the disease and, to a lesser extent, against pulmonary TB (1). BCG’s
protection against TB disease at older ages has been variable and mostly poor (1); however, it was
recently shown that BCG may have protective efficacy against Mycobacterium tuberculosis (Mtb)
infection, as defined by sustained interferon-γ release assay (IGRA) conversion, in adolescents who
had been IGRA negative at the time of vaccination (2). BCG was developed nearly a century ago,
with very limited understanding of human immunology. The experience with BCG demonstrates
that empiric vaccine discovery and development may prove successful, sometimes without a grasp
of underlying protective host determinants.

As our knowledge of human immunology has expanded, modern vaccine development has
relied on induction of specific immune responses that have been shown or are thought to be
essential for protection against a specific disease. Although there has been remarkable recent
progress in our understanding of the host responses against TB (3), the critical determinants for
vaccine-induced protection against infection and disease in humans remain unknown.

The modern, post-BCG era of TB vaccine discovery and development is about 20 years old.
As recently reviewed (3), virtually all subunit or viral vectored candidate TB vaccines tested
clinically rest on a hypothesis that CD4+ T cell (and in some cases CD8+ T cell) induction of
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interferon-gamma (IFN-γ) is a host determinant of protection.
Therefore, most Mtb antigens included in these novel vaccines
were selected based on their capacity to induce IFN-γ in
peripheral blood mononuclear cell cultures from persons latently
infected with Mtb and then evaluated in preclinical models.
This approach may have been suboptimal, for two reasons. First,
not all antigens recognized in latently infected persons may be
associated with protective immune responses, although most
people never progress to active TB disease. Second, so-called
immunodominant antigens identified in these screens have been
shown to demonstrate the least variation among global Mtb
strains, compared with other Mtb antigens, suggesting a lack
of evolutionary immune pressure and that a host response to
these antigens may even hold advantage for the pathogen (4).
Regardless, the recent demonstration that a candidate subunit
vaccine, M72/AS01E, which contains two immunodominant
antigens that induce IFN-γ, may protect latently infected young
adults against progression to disease (5) is evidence that this
approach may hold promise. Of course, it is not clear whether
M72/AS01E’s potential protection involves CD4+ T cell IFN-γ
production or whether an alternate mechanism is at play.

In contrast to subunit or viral vectored vaccines, it is
hypothesized that whole-cell TB vaccine candidates would
include the full complement of antigens that are important
for protection, through both known and unidentified immune
mechanisms. The approaches have included modifying BCG
to potentially enhance immunity induced by the BCG—to
create VPM1002 (6), e.g.,—and attenuating Mtb—to generate
MTBVAC (7), e.g., The approach, therefore, returns to some
degree of empiricism by hypothesizing that the primary
pathogen is likely to induce more immune components critical
for protection.

Both the adolescent BCG and adult M72/AS01E trials
mentioned involved prospective collection and storage of
blood, which would, for the first time, allow studies to identify
human correlates and mechanisms of vaccination-induced
protection. These ongoing efforts, led by the Bill & Melinda
Gates Foundation Medical Research Institute (N. Frahm;
personal communication), will be informed by breakthroughs
from non-human primate studies, in which TB most closely
resembles human disease, where intravenous administration
of BCG has been shown to result in sterilizing protection
against Mtb challenge (8), for example. The vaccine dose
can now be downtitrated to allow breakthrough disease
for subsequent elucidation of correlates or mechanisms
of protection by comparing protected and unprotected
animals. Similarly, excellent protection induced by a CMV-
based vaccine in non-human primates will allow a similar
analysis (9).

Reviews covering conventional Th1 and innate responses
targeted by novel vaccination strategies against TB have been
recently published (3, 10). Here, we highlight selected host
immune components (Figure 1), other than the conventional
T cell response mentioned above, that have received recent
prominence for potential targeting in TB vaccine discovery and
development.We also discuss the importance of optimal immune
compartmentalization of vaccination-induced responses.

NK CELLS

NK cells are involved in immune responses to a variety
of pathogens. While deficiency of NK cells alone is not
associated with higher risk of mycobacterial diseases in humans
(11), evidence suggests that NK cells actively participate to
responses against Mtb in cooperation with other arms of the
immune system.

Purified NK cells can directly interact with extracellular
mycobacteria by binding cell wall components through TLR-
2 and NKp44 (12) and become functionally activated in
the presence of an appropriate cytokine milieu (13). More
commonly, NKs recognize autologous cells infected by viruses
or intracellular pathogens and respond to cytokines produced by
myeloid cells and antigen-specific T cells, while their cytotoxic
activity can be directed by pathogen-specific antibodies (14).
IL-12 is a potent inducer of IFN-γ secretion by NK and
other cells, and genetic mutations of IL-12Rα are associated
with mendelian susceptibility of mycobacterial disease (15). NK
cells can also be activated by IL-18 produced by Mtb-infected
myeloid cells and contribute to early protection against Mtb
in a mouse model (16). The main NK effector functions that
have been implicated in antimycobacterial immunity include
lysis of Mtb-infected alveolar macrophages, cytokine production,
direct bacterial killing, production of antimicrobial mediators,
and immune regulation [recently reviewed (17)]. In mice, NK
cells seem dispensable in an immunocompetent host (18) but
represent the main source of IFN-γ in T cell–deficient animals,
contributing to the containment of Mtb early after infection (19).

In humans, NK cell abundance and functional profiles change
during different phases of Mtb infection and progression to
TB disease (20). In peripheral blood, NKs are more abundant
in healthy Mtb-infected individuals compared to uninfected
donors, decrease during progression to active TB disease, and
are restored upon successful treatment. In patients with active
TB disease, frequencies of NK in blood are inversely correlated
with pulmonary inflammation measured by PET-CT (20), while
NKs are recruited to lung lesions (13). NK cells expressing IFN-γ
and IL-22 in response to cytokines and mycobacterial antigens
were found in the pleural fluid of TB patients (21), and IL-22
production by NK cells has been associated with inhibition of
Mtb growth in macrophages in healthy individuals (22). The
various studies reporting impairment of NK effector functions,
particularly cytotoxicity, in TB patients were recently reviewed
(17, 23): taken together, NK cells migrate to the site of active Mtb
replication, where they contribute to host responses against TB,
although their specific role remains to be established.

Despite being traditionally considered innate cells, a growing
body of evidence suggests that NK cells exhibit “memory-like”
features, characterized by more rapid and robust responses upon
secondary exposure to the same pathogen (23). In a mouse
model, memory-like NK cells were induced by BCG vaccination,
and adoptive transfer of CD27+ NK cells isolated 6 months
post-vaccination was associated with lower Mtb burden upon
challenge of recipient mice; on the other hand, NK cells isolated
from unvaccinated donors were not associated with protection
(24). In humans, neonatal BCG vaccination of naïve infants
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FIGURE 1 | Unconventional host cell targets for protection against tuberculosis.

induced BCG-reactive IFN-γ-producing NK responses, as did
BCG revaccination of Mtb-infected adults, in whom responses
were sustained for at least 1 year post-vaccination (25). Such
NK responses were correlated with the frequencies of BCG-
specific, IL-2-producing CD4+ T cells, but were completely
abrogated by blocking IL-12 and IL-18. Indeed, another study
showed that BCG vaccination was associated with increased pro-
inflammatory NK responses to unrelated pathogens, suggesting
that BCG could “train” NK cells independently from bystander
activation from antigen-specific CD4+ T cells (26). Whether
BCG “training” of NKs is mediated via epigenetic modifications
of NK cells themselves or via enhanced IL-12 and IL-18
production by myeloid cells remains to be determined. Human
vaccination with M72/AS01E was also associated with increased
frequencies of IFN-γ-producing NK cells in responses to M72
peptide stimulation of PBMC, and was positively correlated
with frequencies of M72-specific, IL-2-producing CD4+ T cells
(27). In addition to direct Mtb binding and bystander activation
via antigen-specific CD4T cells, NK effector functions could
also be directed specifically to Mtb through binding of Mtb-
specific antibodies. Indeed, antibodies purified from healthy
Mtb-infected individuals showed enhanced capacity to induce
NK cell activation and ADCC compared to patients with active
TB disease (28). Additionally, while other innate lymphoid cells

such as Group 3 ILCs have also been recently implicated in
protective immunity to TB (29), their role in vaccine-induced
immunity is unknown and needs to be fully explored.

Taken together, these studies suggest that NK cells actively
contribute to immune responses against Mtb, can be modulated
by vaccination, and can be specifically directed to respond toMtb.
While the mechanisms underlying these observations remain
to be established, induction of NK responses by vaccination
and their role in supporting and amplifying adaptive immunity
during the early stages of Mtb infection and progression to
TB disease deserve to be considered in immune correlates of
protection studies built on recent efficacy trials of BCG (2) and
M72 vaccines (5).

TRAINED IMMUNITY

Recent studies have highlighted further roles for innate
immune cells in protection against reinfection. The term
“trained immunity” refers to innate immune cells undergoing
reprogramming that ultimately leads to an increase in
antimicrobial function such as phagocytosis, production of
proinflammatory cytokines, or killing (30, 31). Thus, cells of
the innate immune system that have been trained by prior
immunologic stimuli would be able to generate a more potent
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response and clear pathogens more efficiently upon secondary
encounter with non-related pathogens. Khader et al. (10)
review the complex interplay of immunological signals, which
ultimately leads to the functional reprogramming of these innate
immune cells.

Many cells that have been implicated in trained immunity,
including monocytes andmacrophages, are relatively short-lived,
so this cannot fully explain how trained immunity appears
to be relatively long-lived. One possible explanation is that
hematopoietic stem cells (HSCs) are also trained in the process.
Expanded HSC populations were found in models of acute and
chronic bacterial infections (32, 33) and were associated with
trained immunity (34, 35), although the mechanism through
which HSCs are activated and the duration of trained immunity
remain to be fully elucidated. In a mouse model of BCG
vaccination, the protective effects of trained immunity on HSCs
were through a type II IFN-dependent mechanism (34).

As the innate immune system is considered among the
first checkpoints through which a pathogen must pass, trained
immunity presents a new avenue to explore in vaccine design.
BCG may provide an example on how innate training could
impact vaccination. It has recently been reported that BCG-
vaccinated household contacts of patients with active TB disease
were less likely to convert their IGRA to positive, compared
with household contacts who had not been BCG vaccinated,
suggesting an early clearance of Mtb (36). Additionally, BCG
vaccination in West Africa was associated with increased
childhood survival attributable not solely to its effects against
TB (37). BCG-associated, non-specific protection against other
pathogens such as respiratory syncytial virus, yellow fever, and
malaria has also been reported (38–43). It is interesting to note
that BCG is also used in the treatment of bladder cancer (44, 45),
an effect far removed from protection against TB. Many of
these effects have been associated with increased production of
pro-inflammatory cytokines (2, 36, 46–50). It should be noted,
however, that several studies have published results refuting
the non-specific benefits of BCG, notably Haahr et al. (51),
who found no evidence that neonatal BCG vaccination reduced
childhood morbidity to other infectious diseases in a population
in Greenland, and Stensballe et al. (52) who found that BCG
vaccination did not reduce the risk for somatic acquired disease
in children in Denmark.

Trained immunity has untapped potential for improving
vaccines, allowing both innate and adaptive systems to be
engaged for early clearance and long-term protection. Regardless,
our current knowledge of how the innate system is trained,
durability of trained effects, and how we can train immune cells
within the context of vaccines remains suboptimal. The specific
application of this field to TB vaccine development has recently
been reviewed (10).

B CELLS AND ANTIBODIES

Virtually all vaccines that have been introduced successfully into
public health mediate protective effects by inducing antibodies,
which classically act through neutralization. Whether B cells

and/or antibodies contribute to protection against TB, and
to vaccination-induced protection mediated by BCG, remains
unclear. The humoral response to BCG vaccination was recently
reviewed (53); there is suggestive but inconclusive evidence for a
role in protection against TB disease; recently, the M72/AS01E
vaccine candidate has been shown to be a potent inducer
of antibodies (5). A systematic investigation into B cell and
antibody contribution to BCG-induced protection has not been
undertaken with modern immunological tools, although the
above-mentioned effort to identify the correlates of BCG-induced
prevention of Mtb infection in adolescents may shed some light.

It is abundantly clear that B cells and antibodies are
induced in the course of Mtb infection and disease. Antigen-
specific B cells that can proliferate are present in granulomas
induced by infection and disease in humans (54). In TB
granuloma B cell follicles, CXCR5-expressing CD4+ T cells
colocalization near Mtb-infected macrophages results in
better control of the pathogen in mice (54, 55). Protection
induced by a novel TB vaccine, Mtb1sigH, against Mtb
challenge in the macaque was associated with accumulation
of highly organized bronchus-associated lymphoid tissue
(iBALT), consisting of CD20+ B cells (and CCR5+ cells T
cells) in granulomas (55). Other ongoing non-human primate
studies that aim to characterize granulomas that control,
vs. permit, Mtb bacilli should enhance our understanding
of whether these cells contribute to the control of the
pathogen (56).

A recent review summarized evidence that antibodies play a
role in protection against TB (57). Four emerging themes were
described. First, antibodies from latently infected persons were
distinct from and functionally more protective than those from
patients with TB disease (28). Second, the antibodies also display
unique glycosylation patterns, which are associated with distinct
immune cell function, i.e., in latently infected persons, IgG
glycosylation profiles included lesser “inflammatory” (e.g., lesser
agalactosylated) and more “anti-inflammatory” (e.g., higher
di-galactosylated and higher sialic acid) patterns than those
isolated from TB patients (28). As mentioned above, latency
may not always reflect host control of Mtb infection; whether
antibody functional and phenotypic features are critical effector
mechanisms of mycobacterial control must still be shown. The
third theme was that antibody isotype appears to be important
in protection, with IgA apparently most protective, particularly
at the mucosal surface (57), while the fourth theme was that
antibodies generated during Mtb infection and disease target not
only cell wall components of the pathogen but also non-surface
antigens (57).

Finally, a recent clinical study compared antibody responses
between persons who had been highly exposed to Mtb but
remained tuberculin skin test or IGRA negative, suggesting
“resistance” to infection, and those who converted these tests
to positive. The former group was shown to possess IgM and
class-switched IgG antibody responses, indicating that exposure
did indeed occur (58, 59). It is tempting to speculate that this
antibody response could have contributed to “protection” against
infection, but this could be challenged by the observation that
the T cell response to Mtb antigens detected in the “resistant”
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individuals did involve IFN-γ-independent T cell responses,
therefore indicating that they could well have been infected.

No TB vaccine candidates have been developed to date to
specifically induce NK cells and innate immune training, B
cells, or antibodies. Since these immune responses are partially
induced by BCG and/or M72/AS01E, ongoing studies may shed
some light on the contribution of such responses to protection
against TB.

Th17 CELLS

IL-17A is the best characterized among the IL-17 cytokine family
members and signals through the heteromeric receptor IL-17R,
comprising of IL-17RA and IL-17RC. Upon exposure to Mtb,
innate myeloid cells induce cytokines such as IL-23 and IL-1β,
which initiate the differentiation and polarization of naïve CD4T
cells toward T helper cell type 17 (Th17) cells (60). Th17 cells
are the primary producers of IL-17 during TB (60), but can also
co-produce IL-22, IL-21, tumor necrosis factor-α (TNF-α), and
granulocyte macrophage colony stimulating factor (GM-CSF)
(61, 62). IL-17 can also be produced by γδ T cells (63) and group
3 innate lymphoid cells (ILC3s) (29) to mediate early innate
immune responses following Mtb infection, while invariant
natural killer T (iNKT) (64) cells, innate Th17 cells (iTh17) (65),
and NK (66) cells can also produce IL-17 following stimulation of
TGF-β, IL-1β, IL-6, IL-23, or α-galactoceramide (α-Galcer) (67).
In the context of vaccination and Mtb challenge, IL-23 and IL-
17 gene deficient mice are not protected upon vaccination with
BCG (68) nor are subunit vaccines delivered parenterally (69)
or mucosally (70, 71), suggesting an important role for the IL-
23/IL-17 axis in driving vaccine-induced protective immunity
against Mtb infection. This is in contrast to studies using IL-12
or IFN-γ-/- mice that are still protected when vaccinated with
either BCG or subunit vaccine candidates and challenged with
Mtb (68, 69, 71).

IL-17 produced by Th17 cells can induce T cell attracting
chemokines including CXCL-9-11 for rapid recruitment of
protective antigen-specific T cells to the lung (69). IL-17
produced by Th17 cells (71) and ILC3s (29) can induce the
expression of CXCL-13 to localize CXCR5 positive cytokine-
producing T cells within lymphoid follicle-containing lung
granulomas of Mtb infected mice. Furthermore, mucosal
BCG vaccination of macaques that conferred sterilizing
immunity upon Mtb challenge correlated with the presence
of polyfunctional Th17 cells (72). These studies suggest that
targeting Th17 cells may enhance vaccine-induced immunity
for TB.

As Th17 cells and IL-17 in animal models correlate with
protective TB vaccine responses, efforts have been made to
identify adjuvants and delivery routes that can effectively induce
Th17 responses (68–70, 72). Mucosal delivery of live BCG (70,
72) and subunit TB vaccines in enterotoxin-based adjuvants
(73, 74) or TLR-based (75) or nano-emulsion adjuvants (76)
preferentially induces Th17 responses in the lung and confers
protection in animal models of TB. Despite a decade of data that
Th17 cells have a protective role in vaccine-induced immunity

against TB in mouse models, the functional role of IL-17 in the
context of human TB and vaccination is still evolving. Studies
suggest that IL-17 production during TB may be protective by
inducing proinflammatory cytokines such as IL-12 and IFN-
γ to limit pathogenesis within the host (77). Additionally, a
single nucleotide polymorphism in the IL-17 promoter was
recently linked with decreased IL-17 production and an increased
association with TB (78, 79). Thus, future directions for targeting
Th17 responses should involve careful analysis in ongoing studies
to identify if Th17 cells, or IL-17 production in innate cells, are
a correlate of protection. Simultaneously, development of safe
Th17 adjuvants, preferably those that can be delivered mucosally
with Mtb antigens to induce lung-resident Th17 and ILC3s,
should also be pursued for TB vaccine design.

IMMUNE COMPARTMENTALIZATION

As the lung is the primary site of human disease, vaccination
should induce appropriate immune responses in this organ
for protection against TB. In mice, Mtb-specific CD4T cells
with the capacity to migrate from peripheral blood to the lung
parenchyma are more protective against TB, compared with cells
that recirculate in peripheral blood only (80). In non-human
primates, CD153+ Mtb-specific CD4+ T cells are enriched in
the airways, and their abundance in individual granulomas
correlates inversely with the mycobacterial load (81). Even more
granular features of CD4+ T cell responses may account for the
heterogeneity across individual granulomas within a host (82).
For example, only a minority of CD4+ T cells isolated from
granulomas produce cytokines in responses to Mtb antigens, and
only a handful appear positioned in proximity to Mtb-infected
myeloid cells (83). Higher frequencies of Mtb-specific CD4+ T
cells with balanced Th1/Th17 and IL-10 responses are associated
with lower bacterial burden in individual granulomas (84). IL-
22, an IL-17-related cytokine (85), has also been shown to be
important for mycobacterial containment in the lung (86) and
could play an underappreciated role in immunity against TB
(87, 88). In both primates and humans, Mtb-specific CD4+ T cell
responses measured in peripheral blood did not accurately reflect
those detected in the infected lung (83, 84, 89). For example, in
humans, lower frequencies of IL-22 expressing CD4+ T cells were
found in the blood of TB patients, whereas BAL IL-22 protein
levels were higher in TB cases, compared with healthy controls
(87). Notably, innate lymphoid cells (ILCs) were also depleted in
the blood of TB patients and were restored during treatment (29).

Since inducing appropriate immune responses in the lung
seems important to protect against TB (90), increasing efforts
have been made, and more are needed, to understand how
vaccine administration could influence tissue localization of
induced immunity. A recent study employing a repeated
limiting dose Mtb challenge model in rhesus macaques showed
that mucosal BCG vaccination induced protective immune
responses against both Mtb infection and TB disease, including
Th1/Th17 and IL-10 responses, which were only observed
in the lung and not in blood (72). Further, as mentioned
above, aerosol vaccination with attenuated Mtb showed superior
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protection compared to aerosol BCG against lethal challenge in
macaques, which was associated with the induction of iBALT
(55). Similarly, murine intranasal vaccination with BCG was
associated with superior protection against TB when compared
with subcutaneous BCG administration, and this protective
effect was reduced by blocking IL-17 (70). Mucosal delivery
of TB vaccines is being actively pursued, and clinical trials in
humans showed that aerosol vaccination with the viral vectored
MVA85A has the potential to induce more robust immune
responses in the lung compared to intradermal administration
(91, 92). Whether induction of more potent immune responses
in the lung is sufficient for protection against TB remains to
be established. For example, boosting intradermal BCG with
an aerosol administration of an Ad5 vector containing various
Mtb antigens did not enhance protection against TB in NHP
(93). Similarly, mucosal boosting of parenteral vaccination with
the subunit vaccine H56 did not enhance protection in mice,
despite inducing significant increase in long-lived lung-resident
T cells (94).

Identification of protective responses in animal models is
critically important to inform hypotheses to be tested in TB
vaccine trials in humans, but translation of such findings to
clinical settings remains challenging. Collection of lung samples
by bronchoalveolar lavage (BAL) could be critical to assess
vaccine-induced immune responses at the site of Mtb entry.
While it is not reasonable to obtain BAL samples on large
numbers of participants enrolled in vaccine efficacy trials,
collection of these samples from small immunogenicity cohorts is
feasible (91, 92) and should be encouraged. Alternative and less
invasive sampling methods, such as induced sputum, a routine
practice for TB investigations (95), could be feasible even in large
cohorts. Extensive profiling of the scarce immune cells present
in sputum with single cell technologies enabling RNA and T cell
receptor sequencing, as well as immunophenotyping by oligo-
barcoded antibodies, could provide critical information about
vaccine-induced immune responses in the human airways.

Although it seems clear that immune responses measured in
peripheral blood poorly reflect lung immunity, it is currently
unknown whether even immune responses detectable in BAL or

sputum samples are representative of tissue resident immunity.
Here, the non-human primate model could provide invaluable
insight by correlating the detection of protective responses
in granulomas, lymph nodes, and lung parenchyma to those
measurable in BAL (96). Furthermore, even if the essential
value of animal models resides in understanding mechanistic
correlates of protection at the site of infection, measurement
of peripheral blood biomarkers that correlate with protective
immune responses in the lung should also be prioritized to enable
translation to humans and facilitate clinical development of TB
vaccine candidates.

CONCLUSIONS

Recent clinical trials showing partial vaccine efficacy against
established Mtb infection and progression to TB disease
provide the first opportunity to discover immune correlates
of protection in humans. It is important that such studies
consider immune responses beyond conventional Th1, since
mechanisms of protection against TB are likely complex and
involve various components of the immune system, such as
those reviewed here. Further, it is likely that profoundly different
vaccines (i.e., live attenuated BCG and subunit M72/AS01E)
trigger distinct immune responses, and that immune processes
associated with the prevention of infection or disease would also
be diverse.
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