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Abstract  

 

Brain connectivity profiles seeding from deep brain stimulation (DBS) electrodes 

have emerged as informative tools to estimate outcome variability across DBS 

patients. Given the limitations of acquiring and processing patient-specific diffusion-

weighted imaging data, a number of studies have employed normative atlases of the 

human connectome. To date, it remains unclear whether patient-specific connectivity 

information would strengthen the accuracy of such analyses. Here, we compared 

similarities and differences between patient-specific, disease-matched and normative 

structural connectivity data and estimation of clinical improvement that they may 

generate. 

Data from 33 patients suffering from Parkinson’s Disease who underwent surgery at 

three different centers were retrospectively collected. Stimulation-dependent 

connectivity profiles seeding from active contacts were estimated using three 

modalities, namely either patient-specific diffusion-MRI data, disease-matched or 

normative group connectome data (acquired in healthy young subjects). Based on 

these profiles, models of optimal connectivity were constructed and used to estimate 

the clinical improvement in out of sample data.  

All three modalities resulted in highly similar optimal connectivity profiles that could 

largely reproduce findings from prior research based on a novel multi-center cohort. 

In a data-driven approach that estimated optimal whole-brain connectivity profiles, 

out-of-sample predictions of clinical improvements were calculated. Using either 

patient-specific connectivity (R = 0.43 at p = 0.001), an age- and disease-matched 

group connectome (R = 0.25, p = 0.048) and a normative connectome based on 

                  



healthy/young subjects (R = 0.31 at p = 0.028), significant predictions could be made 

and underlying optimal connectivity profiles were highly similar. 

Our results of patient-specific connectivity and normative connectomes lead to 

similar main conclusions about which brain areas are associated with clinical 

improvement. Still, although results were not significantly different, they hint at the 

fact that patient-specific connectivity may bear the potential of estimating slightly 

more variance when compared to group connectomes. Furthermore, use of 

normative connectomes involves datasets with high signal-to-noise acquired on 

specialized MRI hardware, while clinical datasets as the ones used here may not 

exactly match their quality. Our findings support the role of DBS electrode 

connectivity profiles as a promising method to investigate DBS effects and to 

potentially guide DBS programming. 

 

Keywords: deep brain stimulation; subthalamic nucleus; Parkinson’s disease; 

human connectome; tractography 

 

                  



 
Introduction  

 

Deep brain stimulation (DBS) is a well-established treatment for Parkinson’s disease 

(PD), alleviating motor symptoms and improving quality of life (Deuschl et al., 2006; 

Schuepbach et al., 2013). DBS does not only exert focal effects (i.e. at the 

subthalamic nucleus; STN) but also affects distributed basal-ganglia cortical 

cerebellar networks (Accolla et al., 2016; Helmich et al., 2012; Horn, 2019; Horn et 

al., 2017b; Kahan et al., 2019; Lozano and Lipsman, 2013; Muthuraman et al., 2018). 

While the notion that DBS modulates distributed brain networks is certainly not new, 

we can now apply advanced MRI methods to study this relationship more 

deliberately, as has been done in PD (Accolla et al., 2016; Horn, 2019; Kahan et al., 

2019; Treu et al., 2020),Essential Tremor (Al-Fatly et al., 2019), dystonia (Corp et al., 

2019) or obsessive-compulsive disorder (J. C. Baldermann et al., 2019; Li et al., 

2020). 

      

Using preoperative diffusion-weighted imaging (dMRI), Vanegas-Arroyave and 

colleagues assessed the connectivity patterns of clinically beneficial DBS electrodes 

in PD patients. Their results suggested that modulation of white matter tracts 

connecting electrodes to superior frontal gyrus and thalamus were associated with 

positive clinical improvement (Vanegas-Arroyave et al., 2016). Similarly, Akram and 

colleagues used preoperatively acquired dMRI to investigate the cortical connectivity 

patterns associated with treatment efficacy (Akram et al., 2017). Maximal 

improvement in cardinal motor symptoms was associated with connectivity of DBS 

electrodes to different cortical regions: tremor control with connectivity to primary 

motor cortex (M1), bradykinesia with the supplementary motor area (SMA) and 

rigidity to both prefrontal cortex (PFC) and SMA. These two studies acquired dMRI in 

each patient preoperatively. While this approach represents the gold-standard of 

practice, and variability in fibertracts has been shown in the DBS context (Makris et 

al., 2016), a practical limitation is that resulting cohort sizes will often be small, 

studies costly and pooling across centers non-straightforward due to data-

heterogeneity. Furthermore, preoperative dMRI data is not routinely acquired 

preoperatively in a large fraction of DBS patients and cannot be acquired 

postoperatively (without substantial constraints). This is especially relevant in novel 

                  



indications such as Alzheimer’s Disease (Baldermann et al., 2018; Ponce et al., 

2016) or psychiatric indications (Hamani et al., 2011; Huys et al., 2019) where limited 

numbers of patients undergo surgery, even on a world-wide scale. The same applies 

to “classical diseases” (such as dystonia) that are treated with unconventional 

targets (such as the STN), again resulting in a low number of available patients, 

world-wide (Ostrem et al., 2011; Yao et al., 2019).  

 

A potential approach to overcome this limitation is the use of normative connectomes 

– i.e. atlases of average brain connectivity calculated from large cohorts of subjects 

(Ewert et al., 2018; Horn et al., 2014a, 2019; Horn and Blankenburg, 2016; Marek et 

al., 2011; Yeo et al., 2011; Yeh et al., 2018; Yeh and Tseng, 2011). A first study that 

explored this concept investigated functional and structural connectivity profiles of 

the ventral intermediate nucleus of the thalamus (Horn et al., 2017a). A second study 

then investigated optimal connectivity profiles for STN-DBS (Horn et al., 2017b). In 

this study, the optimal connectivity profiles were estimated on one cohort from a first 

DBS center and – by using this model – predicted the motor outcome in patients 

operated at a different DBS center (Horn et al., 2017b). Specifically, structural and 

functional connectivity between DBS electrodes and other brain regions were 

correlated with UPDRS-III changes across patients. This resulted in a connectivity 

‘fingerprint’ of effective DBS electrodes. To validate these maps, similarity indices 

between each electrode’s connectivity profile from an independent cohort and the 

‘optimal’ fingerprint were calculated. These were then used to estimate variability in 

clinical improvement.  

 

This concept has since been applied to explore connectivity associated with clinical 

or behavioral changes in multiple diseases (Al-Fatly et al., 2019; Johnson et al., 

2019; J. Baldermann et al., 2019; de Almeida Marcelino et al., 2019; Li et al., 2020; 

Neumann et al., 2018; Irmen et al., 2020; Treu et al., 2020). With the increasing 

popularity of this approach, it is timely to compare results achieved by examining 

patient-specific connectivity with those obtained when using normative connectivity 

data. One main limitation of the approach is that connectivity data taken from 

connectome atlases can never represent individual differences in connectivity 

profiles from the actual DBS patients of study. Thus, the use of connectome atlases 

has clear similarities to the use of other atlases. For instance, histological atlas 

                  



information was applied to inform DBS for decades (Schaltenbrand G, 1977; 

Talairach and Tournoux, 1988). Similarly, subcortical atlases – for instance of the 

STN – have been widely applied to study DBS electrode placement (for an overview 

see (Ewert et al., 2018)). However, despite the conceptual similarities to other 

atlases, some aspects of connectome atlases are novel and require further study. 

 

Here, we have retrospectively analyzed individual connectivity estimates that were 

based on diffusion imaging data (dMRI) scanned from each individual patient 

undergoing STN-DBS. In a second step, we substituted these data with either a 

disease- and age-matched group connectome or a normative connectome acquired 

in young healthy subjects. It should be emphasized that the latter was of superior 

quality and acquired on specialized MRI hardware (Setsompop et al., 2013) while the 

age-/disease-matched connectome was of largely comparable quality as patient-

specific data. The analysis reproduced workflows that were previously published 

using normative datasets. Furthermore, we compared the amount of variance in 

clinical improvements that could be estimated by using individualized dMRI data 

versus either of the two group connectome atlases that were based on either healthy 

subjects or PD patients. By doing so, we explored the specific similarities and 

differences between these types of connectivity information when seeding from DBS 

electrodes to the rest of the brain.  

Table 1: Patient demographics of cohorts analyzed  

Coho
rt 

No. 
(femal
e) 
 

Age, 
[yrs] 

Diseas
e 
Duratio
n, [yrs] 

UPDRS-
III 
baseline, 
OFF 
medicati
on 

LEDD 
Reducti
on [%] 

Clinical 
Assessme
nt 

UPDRS-
III 
postop, 
OFF 
medicati
on 

Preop 
Imagin
g 

 
 
   dMRI  
resolution 
 
 

Posto
p 
Imagin
g 

Registrati
on 

Modalities 

Electrod
e 
type 

Cent
er 1 

17(4) 
59.9±2.
3 

11±1.1 50.5±4.3 60±4.1 

On vs 
OFF one 
year 
postop 

27±3 

T1, 
T2, 
PD*, 
R1,  
R2*, 
MT 

 
 
 
1.5×1.5×1.5 

MRI 
T1, T2, 

PD*, R1, 
R2*, MT,  

3389 
Medtron
ic 

Cent
er 2 

12(3) 
66.7±2.
4 

15.7±1.
1 

34.1±2.2 
64.7±6.
2 

On vs 
OFF 6 
months 
postop 

14.9±1.8 T1, T2 

 
 
 
2×2×2 

MRI T1, T2,  
3389 
Medtron
ic 

Cent
er 3 

4(0) 59±3.7 
12.3±1.
3 

31±1.9 58±18.2 

On vs 
OFF 2.5-7 
months 
postop 

13.8±3.2 T1, T2 

 
1.88×1.88×
2.5 

MRI, 
CT 

T1, T2,  

3387, 
6179, 
BostonS
ci 
Vercise 
8 
contact 
linear 

PD*, effective proton density; R1, 1 mm high-resolution maps of the longitudinal relaxation rate (R1 = 

1/T1)); R2*, effective transverse relaxation rate (R2* = 1/T2*)); MT, magnetization transfer saturation 

                  



 

Materials and methods 

 

Patient cohorts and imaging 

Thirty-three DBS patients from 3 different DBS centers (Center 1 (London): N = 17, 

Center 2 (Mainz): N = 12, Center 3 (New York): N = 4) were included in this 

retrospective study. Patient demographics are summarized in table 1.  

 

All patients underwent stereotactic DBS surgery for treatment of PD and received 

bilateral DBS electrodes (table 1). Patients had been enrolled following the standard 

procedure to screen for eligibility of DBS which excluded structural brain 

abnormalities or severe psychiatric contraindications. Surgical planning was 

performed based on MRI imaging and DBS lead localizations were verified by 

microelectrode recording during surgery and intraoperative macrostimulation for the 

New York and Mainz centers. Specifically, STN-cells were observed by a team of 

neurologists while slowly advancing the microelectrodes from 10 mm distance 

toward the target. Cell activity were manually classified into either no cell activity, cell 

activity of unknown origin or cell activity clearly attributable to either STN or SNr by 

one or two expert raters. This information was used to verify the lead or to move to a 

different trajectory. Postoperative imaging was carried out to verify accurate 

electrode placement in all cohorts (see below). Specifically, the postoperative 

imaging parameters were as following. Center 1: postoperative MRI 0.39 × 0.39 × 

2.00 mm; Center 2: postoperative MRI 0.83 × 0.83 × 0.80 mm; Center 3: patient #1 

postoperative MRI 0.51 × 0.51 × 1.40 mm, patient #2 postoperative CT 0.47 × 0.47 × 

1.25 mm, patient #3 postoperative CT 0.46 × 0.46 × 1.0 mm, patient #4 

postoperative CT 0.55 × 0.55 × 1.25 mm. Clinical variables including age, sex, 

disease duration before surgery, L-dopa equivalent dose (LEDD) at baseline were 

recorded. Clinical improvement was measured by comparing Unified Parkinson’s 

Disease Rating Scale Part III (UPDRS-III) scores OFF medication preoperatively 

(baseline) and postoperatively ON DBS OFF medication. Improvement was 

expressed as percentage improvement between the two scores. This study was 

approved by the local ethics committee of the  harit   University  edicine  erlin 

(master vote EA2/186/18). The study in London received ethical approval from the 

West London NHS Research Ethics Committee (10/H0706/68). At Columbia and 

                  



Mainz University, all procedures were also approved by the local Institutional Review 

Board. 

 

Preoperative diffusion MRI acquisition  

Center 1: For details on the London dataset, please see (Akram et al., 2017). Briefly, 

imaging data were acquired on a 3T Siemens Magnetom Trio TIM Syngo MR- B17 

using a padded 32-channel receive head coil to reduce discomfort and head motion. 

Siemens' 511E-Advanced Echo Planar Imaging Diffusion WIP was used. In-plane 

acceleration was used (GRAPPA factor of 2) with partial Fourier 6/8. In-plane 

resolution was 1.5 × 1.5 mm2 (Field of view 219 × 219 mm2, TR = 12200 ms, TE = 

99.6 ms) and 85 slices were acquired with a 1.5 mm thickness. Diffusion-weighting 

with b = 1500 s/mm2 was applied along 128-directions uniformly distributed on the 

sphere and seven b = 0 s/mm2 volumes were also acquired. To correct for distortions 

all acquisitions were repeated with a reversed phase encoding direction (left to right 

and right to left phase encode) giving a total of 270 volumes acquired ([128 + 7] × 2). 

The total acquisition time for the dMRI sequences was 62 minutes. 

 

Center 2: Diffusion-weighted imaging from Mainz were acquired with 32-directions at 

b = 1000 s/mm2 and one b = 0s volume images for each acquisition (TR=11855 ms, 

TE=59 ms, fat saturation “on”  60 contiguous slices). dMRI of the whole brain at 

2 mm isometric voxel resolution covering a field of view of 224×224 mm was 

obtained. The total acquisition time for the whole protocol was 35 min which included 

24 min (3×8 min) for dMRI sequences.  

 

Center 3: The diffusion weighted image sequences from New York cohort were 

acquired with 64-directions at b=1000 s/mm2 and 6 b = 0 s/mm2 volumes were also 

acquired. In-plane resolution was 1.88 × 1.88mm2 (TR=8500 ms, TE=108 ms, slice 

thickness=2.50 mm). To correct for distortions, three acquisitions (2 b = 0 s/mm2 and 

1 b = 1000 s/mm2 volumes) were repeated with a reversed phase encoding direction 

(left to right and right to left phase encode) giving a total of 73 components ([64 + 6] 

+ 3). The total acquisition time for the dMRI sequences was 10 minutes. 

 

Diffusion pre-processing and tractography  

                  



For all but the Mainz cohort (where only one b0 volume was acquired), the diffusion 

(dMRI) data were acquired with reversed phase-encode blips (left-to-right and right-

to-left), resulting in pairs of images with distortion going in opposite directions. From 

these pairs, the susceptibility induced off-resonance field was estimated using a 

method described by (Andersson et al., 2003) as implemented in FSL (Smith et al., 

2004) and the two images were combined into a single corrected one using Topup 

as implemented in FSL v5.0. The output from Topup was then fed into Eddy (FSL 

v5.0) for correction of eddy current distortions and subject movement (Andersson 

and Sotiropoulos, 2016). In the Mainz cohort, only Eddy was applied.                    

 

Tractography was performed using the generalized Q-sampling imaging method (F. 

C. Yeh et al., 2010) as implemented in DSI studio (http://dsi-studio.labsolver.org) 

using the default parameter sets implemented in Lead-Connectome (www.lead-

connectome.org; Horn et al., 2014b), which included whole-brain fiber tracking in 

patient space and transformation of the tractogram into ICBM 2009b Nonlinear 

Asymmetric (‘ NI’) space (Fonov et al., 2011). Whole-brain tractograms were 

estimated by random-sampling of seedpoints within a white-matter mask that was 

defined by i) segmenting structural (T1 & T2) imaging data using the New Segment 

approach as implemented in SPM12 (Ashburner and Friston, 2005) and ii) linearly 

co-registering the mask to b0-space. In total, 200,000 fiber streamlines were 

estimated in each patient. Tractograms were then nonlinearly warped into standard 

space using Advanced Normalization Tools (ANTs; stnava.github.io/ANTs/; Avants 

et al., 2008) ant the “Effective: Low Variance + subcortical refinement” preset 

implemented in Lead Connectome (Ewert et al., 2019a). Naturally, the same warp 

was used as in the process of transferring DBS electrodes into standard space (see 

below). To investigate the role of diffusion-artifacts (especially in the cohort from 

center 3, where diffusion-correction was not available), we repeated the analysis but 

instead nonlinearly co-registered between diffusion and anatomical space using 

ANTs using a linear stage and SyN stage with default parameters. 

 

Localization of DBS electrodes and VTA Estimation  

DBS electrodes were localized using the Lead-DBS toolbox (https://www.lead-

dbs.org/;  Horn and Kühn, 2015) in the current form (version 2.2.3; Horn et al., 2019) 

using PaCER (Husch et al., 2018) or the TRAC/CORE approach (Horn and Kühn, 

                  



2015) for either postoperative CT or MRI, respectively. Briefly, postoperative CT or 

MRI were linearly co-registered to preoperative MRI using ANTs. Subcortical 

refinement was applied as implemented in Lead-DBS to correct for brain shift that 

may have occurred during surgery. All preoperative volumes were then normalized 

into MNI space applying the same deformation fields calculated in previous steps 

mentioned above.  

Based on the long-term DBS settings, volumes of tissue activated (VTA) were 

estimated using a Finite Element Method (FEM)-based model as implemented in 

Lead-DBS (Horn et al., 2019). This model estimates the E-field (i.e. the gradient 

distribution of the electrical charge in space measured in Volts per millimeter) on a 

tetrahedral four-compartment mesh including grey & white matter, electrode contacts, 

and insulating parts. Grey matter was defined by components of the DISTAL atlas 

(Ewert et al., 2018) (STN, internal and external pallidum, red nucleus). The electric 

field (E-field) distribution was then simulated using an adaptation of the FieldTrip-

SimBio pipeline (Vorwerk et al., 2018) that was integrated into Lead-DBS 

(https://www.mrt.uni-jena.de/simbio/; http://www.fieldtriptoolbox.org/). The E-Field 

gradient was thresholded for magnitudes above a commonly used value of 0.2 V/mm 

to define the extent and shape of the VTA (Astrom et al., 2015). VTAs were warped 

into template space (2009b NLIN ASY  “ NI” Space (Fonov et al., 2011)) by 

applying the same warp of the ANTs registration to the VTA files. This is the space in 

which both group connectomes were available and hence, VTAs were used as 

seeds in this space. Figure 1 provides an overview of the methodology applied.   

 

Structural connectivity estimation 

Whole-brain structural connectivity profiles seeding from bilateral VTA for each 

patient were calculated using three different approaches: First, patient-specific dMRI 

data were processed for each patient, individually. Second, a disease- and age-

matched connectome was estimated based on a cohort of 85 Parkinson’s Disease 

patients acquired within the Parkinson’s Progression  arkers Initiative (PP I). Third, 

connectivity profiles were estimated based on a state-of-the-art multi-shell dMRI 

dataset based on 32 healthy young subjects that were scanned on specialized MRI 

hardware within the Human Connectome Project (HCP). The latter two group 

connectomes were created by performing whole-brain tractography in each 

individual patient/subject, normalization of tracts (using the same methods as in the 

                  



present study) and aggregation of all tracts across patients/subjects. This led to 

whole-brain tract-density images for each patient based on patient-specific, age-

/disease-matched and healthy-/young connectivity data. 

 

Patient-specific dMRI data: Each patient’s specific connectome was based on 

dMRI data acquired pre-operatively. Using the generalized q-sampling imaging 

approach (which was applied in all three modalities) as implemented in DSI Studio 

(http://dsi-studio.labsolver.org/, F.-C. Yeh et al., 2010), a whole-brain set of 200,000 

fiber tracts was estimated using the default processing stream of Lead Connectome. 

This led to one set of (whole-brain) tract-density volumes for each patient.  

 

Age- / Disease-Matched Connectome: dMRI data from 85 patients were obtained 

from the Parkinson’s Progression  arkers Initiative (PP I) database (Marek et al., 

2011) and processed using DSI Studio / Lead-Connectome in the same fashion as 

described above. This PPMI connectome of PD patients that is approximately age- 

and sex-matched to our full cohort was previously computed (Ewert et al., 2018) and 

has been used in DBS studies, before (Horn et al., 2017b; Irmen et al., 2019; 

Neumann et al., 2018). The underlying dMRI data had been acquired in 64 gradient-

directions at b = 1000 s/mm2. In-plane resolution was 1.98 × 1.98 mm and 72 slices 

with a 2 mm thickness were acquired. Detailed scanning parameters can be found 

on the project website (www.ppmi-info.org) while processing details are reported in 

(Ewert et al., 2018). 

 

Young / Healthy Connectome: dMRI data from 32 healthy young subjects of the 

Human Connectome Project at Massachusetts General Hospital 

(https://ida.loni.usc.edu/login.jsp, Setsompop et al., 2013) were obtained and 

processed using DSI Studio / Lead-Connectome in the same fashion as described 

above. This ‘ GH Adult Diffusion’ dataset of the H P was acquired using state-of-

the-art scanning sequences on specialized hardware and from a quality perspective 

may be considered as one of the best openly available, in-vivo dMRI datasets. 

Diffusion-weighting with b = 1000 s/mm2 and 3000 s/mm2 was applied along 64 

directions. Furthermore, additional shells at b-values of 5000 and 10,000 s/mm2 

were applied along 128-directions. In-plane resolution was 1.5 × 1.5 mm and 96 

slices with a 1.5 mm thickness were acquired. 

                  



 

Structural connectivity between each VTA and voxels in the rest of the brain was 

estimated using the above connectome datasets and led to whole-brain fiber-density 

maps as produced by the Lead Connectome Mapper software (Horn et al., 2019). To 

do so, fibers traversing through the VTA were selected from the group connectome 

and projected to volumetric space of the brain in template space of 2 mm isotropic 

resolution, denoting the number of fibers (connected to the VTA) that traversed 

through each voxel. To ensure this didn’t affect results  the step was repeated by 

exporting density-maps in 1 mm resolution. In addition, to explore the similarity and 

difference between patient-specific and young-/healthy, age-/disease-matched 

connectivity in specific cortical regions we added a region-of-interest (ROI) analysis. 

Here, structural connectivity to primary motor cortex (M1), supplementary motor area 

(SMA), pre-supplementary motor area (pre-SMA) and dorsomedial PFC as defined 

by the HMAT (Mayka et al., 2006) and Brainnetome atlases (Fan et al., 2016) were 

calculated. ROIs were chosen from prior literature-informed hypotheses (Akram et al., 

2017; Vanegas-Arroyave et al., 2016), indicating that effective DBS was associated 

with connectivity to these brain structures.  

 

Estimating a model of optimal connectivity profiles 

To estimate a model of optimal connectivity, structural connectivity (tract-density) 

maps (based on either patient-specific, age- and disease-matched or young/healthy 

data), seeding from bilateral VTA were Spearman rank-correlated with %-UPDRS-III 

change across patients in a voxel-wise fashion. This led to a map that showed 

positive or negative associations with UPDRS-III improvements (henceforth referred 

to as R-maps). Spearman’s correlation was used because structural connectivity 

results are generally non-Gaussian distributed (Horn et al., 2014b). R-maps denote 

to which areas connectivity is associated with beneficial or detrimental outcomes. By 

doing so, their spatial distribution is a direct estimate of the optimal connectivity 

profile of STN-DBS electrodes for PD. In case of patient-specific connectivity, for 

methodological considerations, two pathways were chosen to derive at group-level 

R-maps. The first (which is equivalent to the pathway used in case of normative 

connectomes) involved warping fibertracts to template space and aggregating tract-

density maps there (from which R-maps were calculated). The second created tract-

density maps in native space (from unnormalized fibertracts) and ported these maps 

                  



into template space to create R-maps. This was done to rule out effects introduced 

by the order of processing steps. 

 

Estimating improvement in out-of-sample patients 

To estimate DBS outcome in out-of-sample data, spatial correlations between the 

optimal structural connectivity model (defined by data-driven R-maps or a previously 

published optimal model from Horn et al. 2017) and the VTA-derived structural 

connectivity profile in each patient were calculated. For instance, in some analyses, 

this was done in a leave-one-out fashion (i.e. data from patients #1-32 were used to 

create an R-map, which was then compared to the connectivity map of patient #33 to 

estimate improvement in this patient. The same was iteratively done for all patients.). 

The resulting similarity indices – again expressed as a (spatial) Spearman’s rank 

correlation coefficients – estimate ‘how optimal’ each connectivity profile was and 

was used to explain the variability of clinical improvement (%UPDRS-III improvement) 

in a linear regression model. 

 

Throughout the paper, we used randomized permutation tests (5000 permutations) 

to test for significance (at a 5% significance level) and all analyses were carried out 

in MATLAB (The Mathworks, Natick, MA). 

 

                  



 
Figure 1: Applied methodological pipeline of data analysis: A) For each patient, DBS leads were 

localized in MNI space using Lead-DBS software, and volumes of tissue activated (VTA) were 

estimated based on the actual DBS stimulation parameters. Streamlines representing traversing 

through each patient’s VTA to the rest of the brain were selected from either patient-specific dMRI 

data, an age- and disease-matched group connectome or a young-/health group connectome, 

resulting in DBS stimulation-dependent connectivity “fingerprints”.  ) Connectivity “fingerprints” were 

obtained for each patient using each of the three sources of connectivity data. Across each group of 

patients, an optimal connectivity profile (R-Map) was generated by correlating connectivity fingerprints 

with UPDRS-III improvement. C) R-maps represent models for “optimal” connectivity fingerprints. 

Comparing similarities between each new (out-of-sample) patient's connectivity fingerprint with these 

                  



models (by means of spatial correlation), clinical improvements can be estimated (shown in D for a 

leave-one-out design). 

                  



 

Results  

 

Our DBS cohort included 33 patients enrolled at 3 independent centers (7 females, 

mean age 62.5 ±1.6 years). The average disease duration in the entire sample was 

12.9 ±0.8 years. Reduction in LEDD comparing baseline to post-DBS on average 

was 61.5 ±3.6%. Baseline UPDRS-III score was 42.0 ±2.8, postoperative score 28.1 

±2.1 points (leading to a 51.0 ±3.0% improvement). LEDD reduction and UPDRS-III 

improvements were not significantly different across the three datasets (p > 0.05 for 

both variables). Of all patients, 4 were tremor-dominant, 21 were akinetic rigid and 8 

were mixed following criteria defined in (Eggers et al., 2011).   

 

DBS electrode placement was comparable across the three cohorts (fig. 2, see also 

Fig. S1) and structural connectivity profiles from two typical patient cases are shown 

in Figure 3. Distances between active electrode centers and the closest voxel center 

in the STN were calculated and this was used to estimate how many electrode 

contacts were inside (< 1 mm), at the border (1-2 mm) or outside (>2 mm) of the 

STN (given a diameter of the electrodes of ~1.24 mm and a voxel-size of 0.22 mm in 

the STN atlas). 57 contacts were inside, 8 at the border region and 4 outside the 

STN (also see figs. S2 and S3). 

 

Average volumes of VTAs were 149 ±68 mm3 (left) and 175 ±118 mm3 (right). This 

led to connections of 2999 ±1363 of streamlines per VTA in patient-specific data, 

27548 ±8951 in the age-/disease-matched connectome data and 21875 ±17791 in 

the healthy/young connectome. On average, spatial correlations amounted to R = 

0.39 ±0.05 between patient-specific and age-/disease-matched connectivity (across 

the whole brain), to R = 0.38 ± 0.05 between patient-specific data and the 

young/healthy connectome and to R = 0.58 ±0.05 between the healthy/young and 

age-/disease-matched connectomes. This was the case for most patients, and fibers 

predominantly connected to the sensorimotor strip (M1, SMA or pre-SMA). Only in a 

few patients did patient-individual structural connectivity estimates differ largely (for 

an example see bottom row of Figure 3). 

                  



 
Figure 2: DBS electrode reconstructions in the three cohorts from the three centers. Subcortical 

structures are defined by the DISTAL Atlas (Ewert et al., 2018), with axial and coronal planes of the 

7T MRI ex vivo human brain template (Edlow et al., 2019).                                                            

 
 

                  



 
Figure 3: Two representative examples of structural connectivity between individual DBS sites (left 

hemisphere) and the rest of the brain based on patient-specific connectivity, disease- & age-matched 

connectome and young-/healthy connectome. A sagittal plane of the 7T MRI ex vivo human brain 

template (Edlow et al., 2019) is shown at x = 3 mm. The yellow sphere represents the VTA. While in 

most patients, connectivity profiles were largely similar using either method (as in case #1), few 

patients had differing results across methods (as in case #2). 

 
Correlations between patient-specific and young-/healthy connectivity estimates 

across the group of patients were high for apical cortical regions but lower for more 

frontal regions (see Fig. S5). Specifically, connectivity between the electrodes and 

primary motor cortex was R = 0.57, p = 0.004, supplementary motor area R = 0.40, p 

= 0.015, pre-supplementary motor area pre-SMA, R = 0.33, p = 0.044 and 

dorsomedial prefrontal cortex R = 0.21, p = 0.17. Spearman’s rank correlations were 

used given the non-normality of tractography-derived data. Furthermore, an outliner 

analysis using skipped correlations as implemented in the robust correlation toolbox 

(Pernet et al., 2013) was performed to further confirm these results (Table S1). 

Correlations between patient-specific and age-/ disease- matched connectivity, 

young-/healthy and age-/disease-matched connectivity are shown in Table 2. P-

values were corrected for multiple comparisons using the Bonferroni-Holm method. 

 

Table 2: Correlations between connectivity metrics. R-values show agreement between connectivity 

estimates connecting VTAs to M1, SMA, pre-SMA, and PFC across the group of patients. For 

                  



instance, the first entry denotes that connectivity strength between VTAs and M1 estimated using 

patient-specific connectivity (i) and an age-/disease-matched connectome (ii) correlated by a 

Spearman’s rho of 0.73. Note that similarities between patient-specific and group-level data become 

lower when advancing in frontal direction while it remains high between normative connectomes.  

 

 M1 SMA pre-SMA PFC 

i vs ii R=0.73, p=0.004 R=0.43, p=0.009 R=0.33, p=0.062 R=0.18, p=0.17 

i vs iii R=0.57, p=0.004 R=0.40, p=0.015 R=0.33, p=0.044 R=0.21, p=0.17 

ii vs iii R=0.85, p=0.001 R=0.85, p=0.001 R=0.70, p=0.002   R=0.96, p=0.001 

i) patient-specific connectivity, ii) age-/disease-matched connectivity and iii) young-/health connectivity.  
 

 

In Horn et al. 2017, an R-map that defined optimal connectivity values was estimated 

based on a two-center cohort of N = 95 patients. In a first step, this R-map was used 

to account for a certain percentage of outcome in this independent three-center 

cohort based on individualized diffusion data (Figure 4; R = 0.28, p = 0.045). When 

instead using the age- & disease-matched connectome (R = 0.30, p = 0.031) or the 

young-/healthy connectome (R = 0.33, p = 0.021), correlations remained significant. 

These estimates were not significantly different from each other in head-to-head 

comparisons based on a Fisher r-to-z transformation (p > 0.8 for all comparisons). 

 

                  



 
Figure 4: Validation of optimal connectivity profiles estimated in Horn et al. 2017 on the present 

three-center cohort (N = 33), in which individual dMRI data was available. Clinical improvements 

could be significantly estimated using patient-specific connectivity (A), a disease-/age-matched 

connectome (B) and a young-/healthy connectome (C). 

 
 

In a next step, we calculated data-driven optimal connectivity maps (R-maps) based 

on the current three-center cohort using patient-specific dMRI, the age-/disease-

matched connectome or the young-/healthy connectome, respectively. Using either 

metric, connectivity to primary motor cortex (M1) and primary somatosensory cortex 

(S1) was negatively correlated with DBS outcome. In contrast, connectivity to pre-

                  



SMA, anterior cingulate and medial frontal cortices was associated with beneficial 

DBS outcome (Fig. 5). 

 

All three metrics, i.e. patient-specific connectivity (R = 0.43; 95% CI = 0.1, 0.68; p = 

0.001), age-/disease-matched connectome (R = 0.25; 95% CI = -0.09, 0.55; p = 

0.048) and healthy-/young connectome (R = 0.31; 95% CI = -0.03, 0.59; p = 0.028) 

could account for a significant part of the variance in clinical outcome in a leave-one-

out design (Fig. 5). In case of patient-specific connectivity, a second analysis 

pathway (see methods) was tested, that led to inferior results (R = 0.35, p = 0.017, 

see figure S6). Based on these values, we conclude that ~6-18% of the variance in 

clinical outcomes could be explained in out-of-sample data. Furthermore, to 

investigate effects of distortion artifacts in diffusion imaging, the analysis (following 

the first pathway) was repeated but applying a non-linear registration strategy 

between diffusion and anatomical space. This reduced correlations from R = 0.43 to 

R = 0.37 at p = 0.011. To rule out effects introduced by downsampling of spatial 

similarity steps, the main analysis was repeated after exporting tract-density maps in 

1 mm resolution (as opposed to 2 mm as above). Results remained highly similar (R 

= 0.42 at p = 0.002 for patient-specific connectivity; R = 0.27, p = 0.041 for the age- 

and disease-matched group connectome; R = 0.31 at p = 0.032 for the healthy-

/young connectome). 

Frame-to-frame displacements within individual dMRI volumes were 0.31 ±1.64 mm 

on average, rotation 0.003 ±0.001 degrees, respectively. Specific head motion 

information (rotation/translation) of individual patients is reported in table S2. Head 

motion, including the displacement and rotation across each dataset did not explain 

prediction errors in our main analysis (R2 = 0.03 at p = 0.63). To further assess 

whether head motion played a significant role, we repeated the aforementioned 

analysis using patient-specific connectivity data after excluding dMRI volumes that 

were affected by the top 2% of head motion/rotation. Connectomes were then 

calculated again, and the analysis was repeated. Results remained identical (R = 

0.41 at p = 0.009; Fig. S7). 

Finally, this main analysis was repeated when thresholding R-maps to account for 

positive values, only. Again, this led to similar correlations while amounts predicted 

by the patient-specific analysis decreased most (R = 0.35 at p = 0.012 for patient-

                  



specific connectivity, R = 0.27, p = 0.046 for the age- and disease-matched group 

connectome and R = 0.43 at p = 0.002 for healthy-/young connectome). 

Correlations derived from either metric were not significantly different from each 

other in head-to-head comparisons based on a Fisher r-to-z transformation (p > 0.4 

for all comparisons). Furthermore, cross-estimates between metrics were poorer and 

not significant, i.e. when the R-map was based on a group connectome, but 

structural connectivity maps were based on patient-specific structural connectivity or 

vice versa (Fig. 6). This is not-surprising since normative and patient-specific 

connectivity estimates are not completely interchangeable. Still, it may underline the 

importance of consistency in the choice of metric when performing such dMRI based 

connectivity analyses. 

                  



 

                  



 

 
Figure 5: Structural connectivity (patient-specific connectome, age-/disease-matched and healthy-

/young) estimated change in UPDRS-III score using a leave-one-patient-out model (N = 33). Optimal 

structural connectivity model generated with patient-specific connectome (A), age-/disease-matched 

connectome (C) and young-/healthy connectome (E) effectively estimated patient’s improvement 

based on respective connectome (B, D, F). Slightly more variance was estimated from the patient-

specific connectivity model than the other two metrics. Please note that values shown on the R-maps 

are not necessarily significant since mass-univariate tests were applied. Rather, the spatial profile of 

these maps was used to make predictions in out-of-sample data which are then tested for significance. 

 

 
Figure 6: Structural connectivity (patient-specific, age-/disease-matched, healthy-/young connectome) 

cross-prediction change in UPDRS-III scores under STN-DBS. Patient-specific connectivity couldn’t 

explain patient’s change following D S based on healthy-/young connectome (A) and age-/disease-

matched connectome (B). Similarly, R-Map generated with young-/healthy connectome (C) and age-

/disease-matched connectome (D) couldn’t estimate patient’s improvement based on patient-specific 

connectome.

                  



 

Discussion 

 

Three main conclusions may be drawn from the present study. First, findings confirm 

a previously published model of optimal STN-DBS electrode connectivity based on a 

novel independent sample of patients operated in three different centers (Horn et al., 

2017b). Crucially, while the original model had been derived from normative 

connectivity estimates, patient-specific dMRI data was successfully used to account 

for DBS outcome in the present cohort. Second, we show that optimal connectivity 

maps defined using individualized data are highly similar to the ones defined using 

group connectomes. Irrespectively of using either patient-specific, age-/disease-

matched or healthy-/young connectome data, structural connectivity to pre-SMA, 

anterior cingulate and medial frontal cortices was associated with beneficial DBS 

outcome. However, third, the amount of variance in clinical improvement explained 

by either method was not exactly the same. While none of the metrics resulted in 

significantly higher predictions than the other two, the use of patient-specific 

connectome data resulted in the highest R-value between estimated and empirical 

improvements (R = 0.43 vs. 0.31 or 0.25). This was true although the quality of the 

patient specific diffusion datasets differed between the three centers resulting in an 

‘overall’ poorer data quality than found in normative connectomes. 

 

Normative group connectomes vs. Patient-specific connectivity  

Recently, normative structural connectomes were introduced to account for motor 

improvement (Horn et al., 2017b; Treu et al., 2020) and changes in depressive 

symptoms (Irmen et al., 2020) in Parkinson’s disease patients following STN-DBS. 

The concept was also applied to DBS in Essential Tremor syndrome (Al-Fatly et al., 

2019), Obsessive-Compulsive disorder (J. C. Baldermann et al., 2019; Li et al., 2020) 

and Epilepsy (Middlebrooks et al., 2018). Furthermore, normative connectomes were 

used to explain behavioral effects following STN-DBS such as movement speed 

(Neumann et al., 2018) and motor learning (de Almeida Marcelino et al., 2019). 

Finally, the concept was applied to investigate side-effects such as DBS induced 

seizures (Boutet et al., 2019), weight-changes  (J. Baldermann et al., 2019) or panic 

attacks (Elias et al., 2019). While this approach was useful to explore the variability 

in clinical improvement in out-of-sample data (i.e. models were learned on one 

                  



cohort to account for improvements in the other), it was so far not directly compared 

to the use of patient-specific connectivity.  

 

So far, the only study that combined both normative and patient-specific connectivity 

data in the context of DBS was carried out by Baldermann and colleagues (J. C. 

Baldermann et al., 2019) in 22 patients suffering from Obsessive Compulsive 

Disorder. Here, patient-specific data in 10 patients were available but lacked in the 

remaining 12. When optimal connectivity profiles associated with high clinical 

improvement were learned based on these 12 patients using a normative 

connectome, the outcome in the remaining 10 could be predicted by use of their 

patient-specific connectivity data (R = 0.7, p = 0.01). The same was true for the 

opposite case (R = 0.6, p = 0.02). Indirectly, this finding suggested that normative 

connectomes could be used to define models of optimal connectivity that could 

remain predictive when applying patient-specific connectivity dataset. 

 

Here, we directly compared patient-specific connectivity estimates to the ones 

derived from group connectomes (which were either age-/disease-matched or were 

even acquired in a young-/healthy cohort). We show that optimal connectivity profiles 

that were associated with good clinical improvement in our sample followed the 

same overall distribution irrespective of the applied connectivity metric. Namely, 

functional connectivity with M1 was negatively associated with optimal improvement 

while more frontal regions (such as SMA, pre-SMA and dorsomedial PFC) were 

positively associated. Using either method, connectivity profiles were able to account 

for the variability in clinical improvement in out-of-sample patients (leave-one-out 

design). Moreover, a previously published model of optimal connectivity was 

associated with clinical outcome using either method. This finding is crucial since it 

shows that optimal profiles could potentially be learned based on large cohorts (and 

even using normative connectomes) and still applied to patient-specific data. 

Especially when aggregating large cohorts of DBS patients, it is complicated if not 

impossible to obtain diffusion-weighted imaging data from them, as well. For 

instance, large clinical endeavors such as the Early-Stim study cohort (Schuepbach 

et al., 2013)  or the nonmotor study cohort of the International Parkinson and 

Movement Disorder Society (Dafsari et al., 2018) were acquired without diffusion-

weighted imaging data but could still be used to inform optimal symptom-specific 

                  



connectivity profiles. Similarly, some DBS cohorts are rare or unique world-wide and 

individualized connectivity data was not acquired for them. Examples include 

patients suffering from Alzheimer’s Disease stimulated with fornical D S within the 

ADvance trials (Laxton et al., 2010), DBS cohorts suffering from rare diseases such 

as Tourette’s Syndrome (Johnson et al., 2019)  or STN-DBS datasets for treatment 

of cervical dystonia (Ostrem et al., 2011).  

 

The case for using brain connectivity to investigate STN-DBS  

Several studies have found significant relationships between electrode placements 

and clinical outcome, without the need to add connectivity information. Specifically, 

the same optimal target coordinate within the dorsolateral STN was defined by four 

independent studies, and three of them showed significant correlations between 

proximity to this coordinate and resulting clinical improvements (Akram et al., 2017; 

Bot et al., 2018; Horn et al., 2019; Nguyen et al., 2019). If such a clear relationship 

between the local stimulation sites and clinical improvements exist, why should we 

investigate connectomic mapping at all? The variance in clinical outcomes explained 

by such coordinate-based approaches is in the same ballpark of the one explained 

by brain connectivity in the present study. So, what is the added value? 

First, brain connectivity may bring insights into the mechanism of action of DBS. The 

concept that strong connectivity to M1 is contra-productive for optimal outcomes but 

more frontal connections seem favorable qualitatively goes beyond knowledge of an 

optimal sweet-spot in the STN. From such knowledge, we may derive 

pathophysiological models and translate findings between systems neuroscience 

and animal models. 

Second, brain connectivity could at some point be applied to explore the variability of 

the clinical outcome of novel patients, potentially even before surgery. For instance, 

work by Muthuraman and colleagues showed that atrophy in the SMA before surgery 

was associated with poor clinical outcome following DBS, matching present 

connectivity findings (Muthuraman et al., 2017).  

Third, individual patient specific connectivity may differ from the norm and could one 

day help identify patient-specific DBS targets. In Essential Tremor, where clear 

associations between clinical outcome and a specific structural bundles (the 

dentatothalamic tract) have been established, this concept has already become 

clinical practice (Coenen et al., 2014). Similar concepts have been methodically 

                  



explored using functional MRI (Andersen and Buneo, 2002). So far, to the best of our 

knowledge, whole-brain connectivity profiles as the ones explored here have not 

been used in clinical practice, although the general concept has been introduced in 

2015 (Fernandes et al., 2015). 

Fourth, networks that lead to side-effects when stimulated could be identified. For 

instance, Irmen and colleagues recently reported a connectivity profile that was 

associated with depressive symptoms following STN-DBS in PD (Irmen et al., 2019). 

Crucially, this network, centered on the left dorsolateral prefrontal cortex, could be 

reproduced in three international cohorts and was successfully used to cross-predict 

depressive symptom changes across all cohorts. Such a robust map of a circuit that 

leads to depressive symptoms could be useful to inform stimulation sites that should 

be avoided. In Essential Tremor, Al-Fatly and colleagues similarly defined networks 

that were associated with the occurrence of side-effects such as ataxia and 

dysarthria (Al-Fatly et al., 2019). 

Finally, connectivity profiles could be used to bridge fields of invasive and 

noninvasive brain stimulation. In 2014, Fox and colleagues demonstrated that across 

14 diseases, the same networks seem to be modulated by both invasive and 

noninvasive neuromodulation (Fox et al., 2014). In PD, excitatory TMS to M1 and 

inhibitory TMS to SMA had beneficial effects (the opposite cases did not). If DBS is 

seen congruent to a functional lesion (i.e. to disrupt information flow within a specific 

network), this finding is in agreement with optimal connectivity profiles defined here. 

 

Thus, it seems sensible to investigate brain connectivity measures in the DBS field 

for reasons that go beyond finding an optimal target coordinate. The question is 

which connectivity metric should best be used. We review the advantages of 

normative vs. patient-specific connectivity data in the following. 

 

Pros and Cons of normative vs. patient-specific connectivity data 

In a number of studies, network targets were identified by using connectivity data 

that was not derived from each individual patient (Akram et al., 2017; Al-Fatly et al., 

2019; J. C. Baldermann et al., 2019; Calabrese et al., 2015; Cash et al., 2019; Horn 

et al., 2017b; Petersen et al., 2019; Weigand et al., 2018). One reason for this is 

data quality. For instance, Calabrese et al. applied a 200 μm isotropic postmortem 

scan of the brainstem acquired at 7T to be able to resolve the Wernekinck 

                  



decussation of the dentatothalamic tract. Weigand et al. applied functional imaging 

data which was averaged across 1000 subjects, leading to a high signal-to-noise 

ratio (Yeo et al., 2011). The structural connectome used in Horn et al. was acquired 

on a customized Siemens 3T Connectom scanner with multi-shell diffusion-encoding 

gradients and b-values reaching up to 10,000 s/mm2 (Setsompop et al., 2013). Given 

the strong limitations of diffusion-MRI in general, Petersen and colleagues 

abandoned MRI-based connectivity altogether and instead created a realistic tract-

atlas based on prior anatomical knowledge (Petersen et al., 2019). Hence, normative 

connectome datasets are of highest quality which may not be straightforward to 

match during routine preoperative clinical scans in every DBS center. Quality 

obtained from postmortem connectomes (where scanning times over >24 hours are 

typical) may never be achieved in the living brain of individual patients. Introduction 

of clinically approved 7T systems may offer novel opportunities for preoperative 

imaging in the near future. 

 

Along the same lines, investigating each patient’s individualized connectivity data is 

challenging due to poor signal-to-noise and test-retest reliability. This was 

demonstrated in a study by Petersen and colleagues in which the same subject was 

scanned ten times. In each, the peak of connectivity to motor-/premotor cortices was 

identified within the STN (Petersen et al., 2017). Distances across peaks were 0.5 – 

1 mm on average. While this subject was scanned using state-of-the-art methods, 

test-retest reliability will likely be poorer in clinical datasets acquired in movement 

disorder patients. A variability of ~1 mm may seem low at first glance but represents 

half the distance between two DBS contacts and is in the order of distances between 

responding and non-responding DBS patients (Horn et al., 2019). Moreover, the 

displacement between some runs was found to be of several millimeters, 

transposing the peak of M1-connectivity from the sensorimotor to the associative 

functional zone of the STN. In a similar study with even more pessimistic outcome, 

Jakab and colleagues repeated scans of the same subjects on different MRI 

scanners (Jakab et al., 2016). Authors used connectivity data to create thalamic 

subparcellations that are relevant for DBS surgery (such as the ventral intermediate 

nucleus). Variability of these targets introduced by the choice of MRI hardware was 

similar or higher to inter-subject variability. Moreover, the variability introduced by the 

MRI hardware made it obvious that single-subject tractography may not be an 

                  



optimal choice to define surgical targets (see figure 6 in the publication by Jakab and 

colleagues). 

 

Despite the practical and theoretical advantages of normative connectomes and the 

shortcomings of individual diffusion MRI data, the latter still is needed to reach an 

ultimate goal to derive at personalized deep brain stimulation. How could the gains of 

individualized connectivity be combined with the robustness of normative 

connectomes? One answer would be to scan patients repeatedly and to quantify 

test-retest reliability. For instance, the midnight scan club endeavor acquired MRI 

based (but functional) connectivity data of the same subjects in 12 imaging sessions 

(Gordon et al., 2017). Doing so in each patient that undergoes DBS surgery is 

impractical and would be very demanding for patients. However, the dataset was 

recently used to investigate individualized vs. group-level connectivity-based DBS 

targets (Greene et al., 2019). Similarly, 45 of the 1200 human connectome project 

participants were scanned twice to allow for quantification of retest error (Van Essen 

et al., 2013). Such openly available datasets may be used to investigate the test-

retest reliability of individualized subjects, while similar data would be needed in 

patients that will actually undergo DBS afterwards. 

 

An additional strategy could be to integrate patient-specific and normative 

connectomes and yield hybrid estimates. Patient-specific connectivity-profiles could 

be matched to variants that are robustly found within large normative cohorts and 

thus used to reshape normative connectomes. This concept could be used to reduce 

the amount of noise in individualized patient acquisitions, but such an approach 

would require further methodological work and validation studies. 

 

This being said, we should not ignore the fact that all group studies will require co-

registrations from the group connectome to the patient or vice-versa. This process 

will introduce registration bias. New methods for direct dMRI registrations are being 

developed and will hopefully become broadly available. Meanwhile, image 

acquisitions in single patients and MRI technology are also improving. Thus, while 

group connectomes are currently useful to investigate general relationships between 

clinical improvement and electrode connectivity, in the future, as the quality and 

                  



speed of patient specific dMRI sequences improve, the indication or need for group 

average templates may be challenged. 

 

Limitations 

There are several limitations that apply to the current study. First, heterogeneity, 

such as the differences in the MRI acquisition protocol and assessments of UPDRS-

III between the three cohorts should be considered. Slight differences between raters 

of symptom scores cannot be ruled out, although the UPDRS-III has a comparably 

high inter-rater reliability (e.g. intra-class correlation of 0.95 reported in (de Deus 

Fonticoba et al., 2019)). Aggregation of datasets was necessary to obtain a large 

enough sample size and should bias our out-of-sample prediction results toward 

non-significance. Also, it may match the heterogeneity of clinical DBS cohorts that 

are usually aggregated across centers in clinical studies (e.g. (Schuepbach et al., 

2013)). Second, inaccuracies in lead localization result from the approach of 

mapping electrodes into MNI space. To minimize the amount of error introduced by 

this step, we applied a modern neuroimaging pipeline that was specifically designed 

for the task at hand. Processing approaches that were designed to reduce error 

included brain shift correction, multispectral normalization with subcortical refinement 

steps (Horn et al., 2019) and a phantom-validated electrode localization approach 

(Husch et al., 2018). The normalization strategy applied here was recently evaluated 

by two international teams and led to automatic segmentations of the STN that were 

nearly as precise as manual expert segmentations (Ewert et al., 2019b; Vogel et al., 

2020). Each step of the pipeline was carefully assessed and corrected if needed. Still, 

the processing steps include errors that could be further reduced by acquiring data of 

higher resolution as well as test-retest datasets (see above). 

 

Movement artifacts are another limitation that are especially relevant in a cohort 

suffering from movement disorders. This favors shorter acquisition protocols and the 

one used in our sample – albeit representative for clinical datasets – may not have 

been optimal in this regard. Similar dataset quality could potentially have been 

acquired in less time by applying multiband sequences or similar methods (Harms et 

al., 2018). We report frame-to-frame movement parameters for the present sample 

and the average values did not correlate with prediction errors of our model. Still, 

movement errors do constitute a problem and are likely even more substantial when 

                  



studying patients suffering from hyperkinetic symptoms such as in tremor dominant 

PD  Tourette’s syndrome or dystonia. 

 

A large limitation that applies to both individualized and normative connectivity 

mapping can be seen in diffusion MRI in general. Tractography using typical 

methods on typical diffusion MRI datasets was recently found to include four times 

the amount of false-positive tracts as true-positive tracts (Maier-Hein et al., 2017). 

This fundamental problem has led other groups that investigate similar topics to 

abandon dMRI based tractography altogether and to instead use detailed literature- 

and expert-based anatomical knowledge (Gunalan et al., 2017; Petersen et al., 

2019). Together with poor test-retest reliability outlined above, these issues 

challenge the overall concept of connectomic DBS. It remains to be seen whether 

dMRI based tractography may indeed hold up to some of the promises outlined here, 

in the future (or not). While our results indicate that significant relationships between 

connectivity profiles and clinical improvements can be observed, this does not mean 

that these correlations are significant to clinical practice. Currently, these models are 

not suitable to predict outcomes in individual patients. Further improvements in 

diffusion imaging, with higher spatial and angular resolution and improved MRI 

gradients could add to the value of this modality (Jbabdi and Johansen-Berg, 2011; 

Sotiropoulos et al., 2013). The choice of whole-brain tractography as well as 

deterministic tractography on average likely lead to less streamlines to be connected 

to each VTA (Maier-Hein et al., 2017). 

Furthermore, the use of high-resolution postmortem connectome data that is 

available in submillimeter resolution could be advantageous to employ, as well 

((Calabrese et al., 2015) again with the same inherent problem of lacking patient-

specificity).  

 

Finally, the optimal connectivity model in the current study was based on full 

UPDRS-III scores which included multiple symptoms in PD patients, such as tremor, 

bradykinesia, and rigidity. While the current study was not powered to investigate 

symptom-specific network fingerprints and addressed a different question, future 

studies could investigate symptom-specific network effects. 

 

 

                  



Conclusions 

Our study analyzed optimal connectivity profiles seeding from STN-DBS electrodes 

based on patient-specific vs. group-level structural connectivity profiles. We 

demonstrate that on a group level, results from individualized, age- and disease-

matched connectomes and healthy-/young connectomes are comparable but not 

completely interchangeable. Although differences were not significant, results 

suggest that individualized structural connectivity has the potential to estimate 

clinical outcomes following STN-DBS slightly better. Still, the use of normative 

connectomes seems sensible in cases where individualized connectivity data is 

lacking. 
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