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a b s t r a c t 

Early identification of individuals at risk of developing Alzheimer’s disease (AD) dementia is important for developing disease-modifying therapies. In this study, 

given multimodal AD markers and clinical diagnosis of an individual from one or more timepoints, we seek to predict the clinical diagnosis, cognition and ventricular 

volume of the individual for every month (indefinitely) into the future. We proposed and applied a minimal recurrent neural network (minimalRNN) model to data 

from The Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) challenge, comprising longitudinal data of 1677 participants ( Marinescu et al., 2018 ) 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We compared the performance of the minimalRNN model and four baseline algorithms up to 6 years 

into the future. Most previous work on predicting AD progression ignore the issue of missing data, which is a prevalent issue in longitudinal data. Here, we explored 

three different strategies to handle missing data. Two of the strategies treated the missing data as a “preprocessing ” issue, by imputing the missing data using the 

previous timepoint ( “forward filling ”) or linear interpolation ( “linear filling). The third strategy utilized the minimalRNN model itself to fill in the missing data both 

during training and testing ( “model filling ”). Our analyses suggest that the minimalRNN with “model filling ” compared favorably with baseline algorithms, including 

support vector machine/regression, linear state space (LSS) model, and long short-term memory (LSTM) model. Importantly, although the training procedure utilized 

longitudinal data, we found that the trained minimalRNN model exhibited similar performance, when using only 1 input timepoint or 4 input timepoints, suggesting 

that our approach might work well with just cross-sectional data. An earlier version of our approach was ranked 5th (out of 53 entries) in the TADPOLE challenge 

in 2019. The current approach is ranked 2nd out of 63 entries as of June 3rd, 2020. 
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. Introduction 

Alzheimer’s disease (AD) dementia is a devastating neurodegener-

tive disease with a long prodromal phase and no available cure. It is

idely believed that an effective treatment strategy should target indi-

iduals at risk for AD early in the disease process ( Scheltens et al., 2016 ).

onsequently, there is significant interest in predicting the longitudinal

isease progression of individuals. A major difficulty is that although

D commonly presents as an amnestic syndrome, there is significant

eterogeneity across individuals ( Murray et al., 2011 ; Noh et al., 2014 ;

hang et al., 2016 ; Risacher et al., 2017 ; Young et al., 2018 ; Sun et al.,

019 ). Since AD dementia is marked by beta-amyloid- and tau-mediated

njuries, followed by brain atrophy and cognitive decline ( Jack et al.,

010 , 2013 ), a multimodal approach might be more effective than a
✩ Data used in preparation of this article were obtained from the Alzheimer’s Dise

nvestigators within the ADNI contributed to the design and implementation of AD

eport. A complete listing of ADNI investigators can be found at: http://adni.loni.usc
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ingle modality approach to disentangle this heterogeneity and predict

ongitudinal disease progression ( Marinescu et al., 2018 , 2020 ). 

In this study, we proposed a machine learning algorithm to predict

ultimodal AD markers (e.g., ventricular volume, cognitive scores, etc.)

nd clinical diagnosis of individual participants for every month up to

ix years into the future. Most previous work has focused on a “static ”

ariant of the problem, where the goal is to predict a single timepoint

 Duchesne et al., 2009 ; Stonnington et al., 2010 ; Zhang and Shen, 2012 ;

oradi et al., 2015 ; Albert et al., 2018 ; Ding et al., 2018 ) or a set of pre-

pecified timepoints in the future (regularized regression; ( Wang et al.,

012 ; Johnson et al., 2012 ; McArdle et al., 2016 ; Wang et al., 2016 )). By

ontrast, our goal is the longitudinal prediction of clinical diagnosis and

ultimodal AD markers at a potentially unlimited number of timepoints
ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the 

NI and/or provided data but did not participate in analysis or writing of this 
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Fig. 1. (A) Distribution of the number of timepoints for all subjects in the 

dataset. (B) Distribution of the number of years between the first and last time- 

points for all subjects in the dataset. 
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nto the future, 1 as defined by The Alzheimer’s Disease Prediction Of

ongitudinal Evolution (TADPOLE) challenge ( Marinescu et al., 2018 ,

020 ), which arguably a more relevant and complete goal for tasks,

uch as prognosis and cohort selection. 

One popular approach to this longitudinal prediction problem

s mixed-effect regression modeling, where longitudinal trajectories

f AD biomarkers are parameterized by linear or sigmoidal curves

 Vemuri et al., 2009 ; Ito et al., 2010 ; Sabuncu et al., 2014 ; Samtani et al.,

012 ; Zhu and Sabuncu, 2018 ). However, such a modeling approach

equires knowing the shapes of the biomarker trajectories a priori. Fur-

hermore, even though the biomarker trajectories might be linear or

igmoidal when averaged across participants ( Caroli and Frisoni, 2010 ;

ack et al., 2010 ; Sabuncu et al., 2011 ), individual subjects might devi-

te significantly from the assumed parametric forms. 

Consequently, it might be advantageous to not assume that the

iomarker trajectories follow a specific functional form. For example,

ie and colleagues proposed an incremental regression modeling ap-

roach to predict the next timepoint based on a fixed number of input

ime points ( Xie et al., 2016 ). The prediction can then be used as in-

ut to predict the next timepoint and so on indefinitely. However, the

raining procedure requires participants to have two timepoints, thus

wasting ” data from participants with less or more than two timepoints.

herefore, state-based models (e.g., discrete or continuous state Markov

odel) that do not constrain the shapes of the biomarker trajectories or

ssume a fixed number of timepoints might be more suitable for this lon-

itudinal prediction problem ( Sukkar et al., 2012 ; Goyal et al., 2018 ).

ere, we considered recurrent neural networks (RNNs), which allow an

ndividual’s latent state to be represented by a vector of numbers, thus

roviding a richer encoding of an individual’s “disease state ” beyond

 single integer (as in the case of discrete state hidden Markov mod-

ls). In the context of medical applications, RNNs have been used to

odel electronic health records ( Lipton et al., 2016a ; Choi et al., 2016 ;

steban et al., 2016 ; Pham et al., 2017 ; Rajkomar et al., 2018 ; Suo et al.,

018 ) and AD disease progression ( Nguyen et al., 2018 ; Ghazi et al.,

019 ). 

Most previous work on predicting AD progression ignore the issue

f missing data ( Stonnington et al., 2010 ; Sukkar et al., 2012 ; Lei et al.,

017 ; Liu et al., 2019 ). However, missing data is prevalent in real-world

pplications and arises due to study design, delay in data collection,

ubject attrition or mistakes in data collection. Missing data poses a ma-

or difficulty for modeling longitudinal data since most statistical mod-

ls assume feature-complete data ( García-Laencina et al., 2010 ). Many

tudies sidestep this issue by removing subjects or timepoints with miss-

ng data, thus potentially losing a large quantity of data. There are two

ain approaches for handling missing data ( Schafer and Graham, 2002 ).

irst, the “preprocessing ” approach handles the missing data issue in

 separate preprocessing step, by imputing the missing data (e.g., us-

ng the missing variable’s mean or more sophisticated machine learn-

ng strategies; Azur et al., 2011 ; Rehfeld et al., 2011 ; Stekhoven and

ühlmann, 2011 ; White et al., 2011 ; Zhou et al., 2013 ), and then using

he imputed data for subsequent modeling. Second, the “integrative ” ap-

roach is to integrate the missing data issue directly into the models or

raining strategies, e.g., marginalizing the missing data in Bayesian ap-

roaches ( Marquand et al., 2014 ; Wang et al., 2014 ; Goyal et al., 2018 ;

ksman et al., 2019 ). 

In this work, we proposed to adapt the minimalRNN model

 Chen, 2017 ) to predict AD progression. The minimalRNN has fewer pa-

ameters than other RNN models, such as the long short-term memory

LSTM) model, so it might be less prone to overfitting. Although RNNs

re usually trained using feature-complete data, we explored two “pre-

rocessing ” and one “integrative ” approaches to deal with missing data.
1 Although the goal is to (in principle) predict an unlimited number of time 

oints into the future, the evaluation can only be performed using the finite 

umber of timepoints available in the dataset. 

a  

p  

i  

o  

s  
e used data from the TADPOLE competition, comprising longitudinal

ata from 1677 participants ( Marinescu et al., 2018 ; 2019). An earlier

ersion of this work was published at the International Workshop on Pat-

ern Recognition in Neuroimaging and utilized the more complex LSTM

odel ( Nguyen et al., 2018 ). Here, we extended our previous work by

sing a simpler RNN model, expanding our comparisons with baseline

pproaches and exploring how the number of input timepoints affected

rediction performance. We also compared the original LSTM and cur-

ent minimalRNN models using the live leaderboard on TADPOLE. 

. Methods 

.1. Problem setup 

The problem setup follows that of the TADPOLE challenge

 Marinescu et al., 2018 ). Given the multimodal AD markers and diag-

ostic status of a participant from one or more timepoints, we seek to

redict the cognition (as measured by ADAS-Cog13; Mohs et al., 1997 ),

entricular volume (as measured by structural MRI) and clinical diag-

osis of the participant for every month indefinitely into the future. 

.2. Data 

We utilized the data provided by the TADPOLE challenge

 Marinescu et al., 2018 ). The data consisted of 1677 subjects from the

DNI database ( Jack et al., 2008 ). Each participant was scanned at

ultiple timepoints. The average number of timepoints was 7.3 ± 4.0

 Fig. 1 A), while the average number of years from the first timepoint to

he last timepoint was 3.6 ± 2.5 ( Fig. 1 B). 

For consistency, we used the same set of 23 variables recommended

y the TADPOLE challenge, which included diagnosis, neuropsychologi-

al test scores, anatomical features derived from T1 magnetic resonance

maging (MRI), positron emission tomography (PET) measures and CSF

arkers ( Table 1 ). The diagnostic categories corresponded to normal

ontrol (NC), mild cognitive impairment (MCI) and Alzheimer’s disease

AD). 

.3. Proposed model 

We adapted the minimalRNN ( Chen, 2017 ) for predicting dis-

ase progression. Here, we utilized minimalRNN instead of LSTM be-

ause it has less parameters and is therefore less likely to overfit (see

ppendix A for details). The model architecture and update equations

re shown in Fig. 2 . Let x t denote all variables observed at time t , com-

rising the diagnosis s t and remaining continuous variables g t (Eq. (1)

n Fig. 2 B). Here, diagnosis was represented using one-hot encoding. In

ther words, diagnosis was represented as a vector of length three. More

pecifically, if the first entry was one, then the participant was a normal
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Table 1 

Set of variables together with their means, standard deviations and percentage of timepoints 

where the variables were actually observed. SB: Sum of boxes, ADAS: Alzheimer’s Disease 

Assessment Scale, RAVLT: Rey Auditory Verbal Learning Test. 

Mean ( ± std) % timepoints with measures 

Clinical Dementia Rating Scale (SB) 2.17 ± 2.81 × 10° 70.36% 

ADAS-Cog11 1.13 ± 0.86 × 10 1 69.95% 

ADAS-Cog13 1.75 ± 1.16 × 10 1 69.27% 

Mini-Mental State Examination (MMSE) 2.65 ± 0.39 × 10 1 70.12% 

RAVLT immediate 3.44 ± 1.36 × 10 1 69.33% 

RAVLT learning 4.02 ± 2.81 × 10° 69.33% 

RAVLT forgetting 4.23 ± 2.52 × 10° 69.12% 

RAVLT forgetting percent 5.97 ± 3.83 × 10 1 68.57% 

Functional Activities Questionnaire (FAQ) 5.59 ± 7.92 × 10° 70.60% 

Montreal Cognitive Assessment (MOCA) 2.30 ± 0.47 × 10 1 38.99% 

Ventricles 4.21 ± 2.32 × 10 4 58.44% 

Hippocampus 6.68 ± 1.24 × 10 3 53.39% 

Whole brain volume 1.01 ± 0.11 × 10 6 60.35% 

Entorhinal cortical volume 3.44 ± 0.81 × 10 3 50.78% 

Fusiform cortical volume 1.71 ± 0.28 × 10 4 50.78% 

Middle temporal cortical volume 1.92 ± 0.31 × 10 4 50.78% 

Intracranial volume 1.53 ± 0.16 × 10 6 62.43% 

Florbetapir (18F-AV-45) - PET 1.19 ± 0.22 × 10° 16.62% 

Fluorodeoxyglucose (FDG) - PET 1.20 ± 0.16 × 10° 26.31% 

Beta-amyloid (CSF) 1.02 ± 0.59 × 10 3 18.60% 

Total tau 2.93 ± 1.30 × 10 2 18.55% 

Phosphorylated tau 4.80 ± 1.44 × 10 1 18.62% 

Diagnosis – 69.89% 

Fig. 2. (A) MinimalRNN. (B) MinimalRNN up- 

date equations. s t and g t denote categorical 

(i.e., diagnosis) and continuous variables re- 

spectively ( Table 1 ). The input x t to each RNN 

cell comprised the diagnosis s t and continu- 

ous variables g t (Eq. (1)). Note that s t was rep- 

resented using one-hot encoding. The hidden 

state h t was a combination of the previous hid- 

den state 𝒉 𝒕 −1 and the transformed input u t (Eq. 

(4)). The forget gate f t weighed the contribu- 

tions of the previous hidden state 𝒉 𝒕 −1 and cur- 

rent transformed input u t toward the current 

hidden state h t (Eq. (3)). The model predicted 

the next month diagnosis �̂� 𝒕 +1 and continuous 

variables ̂𝒈 𝒕 +1 using the hidden state h t (Eqs. (5) 

and (6)). ⊙ and 𝝈 denote element-wise product 

and the sigmoid function respectively. 
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Fig. 3. The minimalRNN was trained to predict the next observation given the 

current observation (e.g., predicting �̂� 2 given x 1 ). Errors between the actual 

observations (e.g., x 2 ) and predictions (e.g., �̂� 2 ) were used to update the model 

parameters. The hidden state h t encoded information about the subject up until 

time t . 

𝐿  

C  
ontrol. If the second entry was one, then the participant was mild cog-

itively impaired. If the third entry was one, then the participant had

D dementia. For now, we assume that all variables were observed at

ll timepoints; the missing data issue will be addressed in Section 2.4 . 

At each timepoint, the transformed input u t (Eq. (2) in Fig. 2 ) and

he previous hidden state 𝒉 𝒕 −1 were used to update the hidden state h t 
Eqs. (3) and (4) in Fig. 2 B). The hidden state can be interpreted as

ntegrating all information about the subject up until that timepoint.

he hidden state h t was then used to predict the observations at the

ext timepoint 𝒙 𝒕 +1 (Eqs. (5) and (6) in Fig. 2 B). 

In the ADNI database, data were collected at a minimum interval of

 months. However, in practice, data might be collected at an unsched-

led time (e.g., month 8 instead of month 6). Consequently, the duration

etween timepoints t and 𝑡 + 1 in the RNN was set to be 1 month. How-

ver, experiments with different durations were also performed with

ittle impact on the results (see Section 2.7.2 ). 

.3.1. Training with no missing data 

The RNN training is illustrated in Fig. 3 . The RNN was trained

o predict the next observation ( x t ) given the previous observations

 𝒙 1 , 𝒙 2 , … , 𝒙 𝒕 −1 ). The errors between the predicted outputs (e.g. �̂� 2 ) and

he ground truth outputs (e.g. x 2 ) were used to update the model pa-

ameters. The error (or loss L ) was defined as follows: 
 = 

∑
𝑡> 1 

(
Cr ossEntr opy ( 𝒔 𝒕 , �̂� 𝒕 

)
+ MAE ( 𝒈 𝒕 , �̂� 𝒕 )) (7)

r ossEntr opy ( 𝒔 𝒕 , �̂� 𝒕 ) = − 

3 ∑
𝑗=1 

𝒔 
𝒋 

𝒕 
log ̂𝒔 𝒋 

𝒕 
(8)
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Fig. 4. Predicting future timepoints ( ̂𝒙 4 , �̂� 5 , �̂� 6 , etc.) given three initial time- 

points ( x 1 , x 2 , and x 3 ). Prediction started at month 4. Since there were no ob- 

served data at timepoints 4 and 5, the predictions ( ̂𝒙 4 and �̂� 5 ) were used as 

inputs (at timepoints 5 and 6 respectively) to predict further into the future. 
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Fig. 5. Different strategies to impute missing data. (A) Forward-filling imputed 

missing values using the last observed value. (B) Linear-filling imputed missing 

values using linear interpolation between previous observed and next observed 

values. Notice that linear-filling did not work for months 8, 9 and 10 because 

there was no future observed data for linear interpolation, so forward filling 

was utilized for those timepoints. (C) Model-filling imputed missing values using 

model predictions. 
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AE ( 𝒈 𝒕 , �̂� 𝒕 ) = 

1 
23 

23 ∑
𝑗=1 

|||𝒈 𝑗 𝒕 − ̂𝒈 
𝑗 

𝒕 

||| (9)

It is important to note that the loss function was only evaluated using

vailable observations. Missing data were not considered when comput-

ng the loss. Furthermore, we note that the two terms in the loss function

 Eq. (7) ) were weighted equally. Changing the relative weights of the

wo terms could potentially influence the model performance. However,

his would increase the number of hyperparameters, so we did not ex-

eriment with varying the weighting in this study. The value of h 0 was

et to be 0. During training, gradients of loss L with respect to the model

arameters were back-propagated to update the RNN parameters. The

NN was trained using Adam ( Kingma and Ba, 2015 ). 

.3.2. Prediction with no missing data 

Fig. 4 illustrates how the RNN was used to predict AD progression in

n example subject (from the validation or test set). Given observations

or months 1, 2 and 3, the goal of the model was to predict observations

n future months. From month 4 onwards, the model predictions ( ̂𝒙 4 and

̂  5 ) were fed in as inputs to the RNN (for months 5 and 6 respectively)

o make further predictions (dashed lines in Fig. 4 ). 

.4. Missing data 

As seen in Table 1 , there were a lot of missing data in ADNI. This

as exacerbated by the fact that data were collected at a minimum in-

erval of 6 months, while the sampling period in the RNN was set to be

 month (to handle off-schedule data collection). During training, the

oss function was evaluated only at timepoints with available observa-

ions. Similarly, when evaluating model performance ( Section 2.6 ), only

vailable observations were utilized. 

The missing data also posed a problem for the RNN update equations

 Fig. 2 B), which assumed all variables were observed. Here, we explored

wo “preprocessing ” strategies ( Sections 2.4.1 & 2.4.2 ) and one “integra-

ive ” strategy ( Section 2.4.3 ) to handle the missing values. As explained

n the introduction, “preprocessing ” strategies impute the missing data

n a separate preprocessing. The imputed data is then used for subse-

uent modeling. On the other hand, “integrative ” strategies incorporate

he missing data issue directly into the model or training strategies. 

.4.1. Forward filling 

Forward filling involved imputing the data using the last timepoint

ith available data ( Che et al., 2018 ; Lipton et al., 2016b ). Fig. 5 A il-

ustrates an example of how forward-filling in time was used to fill in

issing input data. In this example, there were two input variables A

nd B. The values of feature A at time t = 2, 3 and 4 were filled using the

ast observed value of feature A (at time t = 1). Similarly, the values at
 = 7, 8 of feature A were filled using value at t = 6 when it was last ob-

erved. If data was missing at the first timepoint, the mean value across

ll timepoints of all training subjects was used for the imputation. 

.4.2. Linear filling 

The previous strategy utilized information from previous timepoints

or imputation. One could imagine that it might be helpful to use previ-

us and future timepoints for imputation. The linear filling strategy per-

ormed linear interpolation between the previous timepoint and the next

ime point with available data ( Junninen et al., 2004 ). Fig. 5 B shows an

xample of linear interpolation. Values of feature A at time t = 2, 3, 4, 6

ere filled in using linear interpolation. However, linear-filling did not

ork for months 8, 9 and 10 because there was no future observed data

or linear interpolation, so forward-filling was utilized for those time-

oints. Like forward filling, if data was missing at the first timepoint,

he mean value across all timepoints of all training subjects was used

or the imputation. 

.4.3. Model filling 

We also considered a novel model filling strategy of filling in missing

ata. As seen in Section 2.3.2 ( Fig. 5 ), the prediction of the RNN could

e used as inputs for the next timepoint. The same approach can be used

or filling in missing data. 

Fig. 5 C shows an example of how the RNN was used to fill in missing

ata. At time t = 2 to 6, the values of feature A were filled in using
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Table 2 

Hyperparameter search space of Mini- 

malRNN, LSS and LSTM estimated from 

the validation sets using HORD. 

Hyper-parameter Range 

Input dropout rate 0.0–0.5 

Recurrent dropout rate 0.0–0.5 

L2 weight regularization 10 −7 –10 −5 

Learning rate 10 −5 –10 −2 

Number of hidden layers 1–3 

Size of hidden state 128–512 
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redictions from the RNN. The RNN could also be used to extrapolate

eatures that “terminate early ” (e.g., time t = 8 and 9). 

A theoretical benefit of modeling filling was that the full sets of fea-

ures were utilized for the imputation. For example, both features A and

 at time t = 1 were used by the RNN to predict both input features at

ime t = 2 ( Fig. 5 C). This was in contrast to forward or linear filling,

hich would utilize only feature A (or B) to impute feature A (or B). 

Like forward filling, if data was missing at the first timepoint, the

ean value across all timepoints of all training subjects was used for

he imputation. 

.5. Baselines 

We considered four baselines: constant prediction, support vector

achine/regression (SVM/SVR), linear state-space (LSS) model, and

ong short-term memory (LSTM) model. 

.5.1. Constant prediction 

The constant prediction algorithm simply predicted all future values

o be the same as the last observed values. The algorithm did not need

ny training. While this might seem like an overly simplistic algorithm,

e will see that the constant prediction algorithm is quite competitive

or near term prediction. 

.5.2. SVM/SVR 

As explained in the introduction, most previous studies have focused

n a “static ” variant of the problem, where the goal is to predict a sin-

le timepoint or a set of pre-specified timepoints in the future. Here, we

ill consider such a baseline by using SVM to predict clinical diagnosis

which was categorical) and SVR to predict ADAS-Cog13 and ventric-

lar volume (which were continuous). The models were implemented

sing scikit-learn ( Pedregosa et al., 2011 ). We note that separate mod-

ls were trained for each target variable (clinical diagnosis, ADAS-Cog13

nd ventricular volume). 

Because SVM/SVR accepts fixed length feature vectors, it cannot

andle subjects with different number of input timepoints. Therefore,

e trained different SVM/SVR models using 1 to 4 input timepoints

spaced 6 months apart) to predict the future. The 6-month interval was

hosen because the ADNI data was collected roughly every 6 months.

s can be seen in Section 3.1 , the best results were obtained with 2 or 3

nput timepoints, so we did not explore more than 4 input timepoints.

he features were concatenated across the input timepoints. For exam-

le, since there were 23 features at each timepoint, then for the “2 input

imepoints ” SVM/SVR models, the input features constituted a vector of

ength 46. On the other hand, for the “3 input timepoints ” SVM/SVR

odels, the input features constituted a vector of length 69. 

For each SVM/SVR baseline, we trained separate SVM/SVR models

o predict 10 sets of timepoints (spaced 6 months apart) into the future,

.e., 6, 12, 18,…,60 months into the future. 60 months were the maxi-

um because of insufficient data to train SVM/SVR to predict further

nto the future ( Fig. 1 B). To summarize, separate SVM/SVR models were

rained for different target variable (clinical diagnosis, ADAS-Cog13 and

entricular volume), for different number of input timepoints (1, 2, 3 or

 input timepoints) and for different number of future predictions (6, 12,

8,…,60 months). This yielded a total of 3 × 4 × 10 = 120 SVM/SVR

odels. 

To maximize the number of data samples for training, we used all

vailable timepoints in the training subjects to train the SVM/SVR mod-

ls. For example, let us consider a training subject with 10 observed

imepoints spaced 6 months apart. In the case of the SVM/SVR models

ith one input timepoint, this subject would contribute 9 training sam-

les to train a model for predicting 6 months ahead, 8 training samples

o train a model for predicting 12 months ahead, 7 training samples to

rain a model for predicting 18 months ahead, and so on. 

The linear filling strategy ( Fig. 5 B) was used to handle missing data.

e also experimented with using multivariate functional principal com-
onent analysis (MFPCA) for filling in the missing data ( Happ and

reven, 2018 ; Li et al., 2018 ). Because prediction performance was eval-

ated at every month in the future, prediction at intermediate months

e.g., months 1 to 5, months 7 to 11, etc.) were linearly interpolated.

rediction from month 61 onwards utilized forward filling based on the

rediction at month 60. 

One tricky issue arose when a test subject had insufficient input time-

oints for a particular SVM/SVR baseline. For example, the 4-timepoint

VM/SVR baseline required 4 input timepoints in order to predict future

imepoints. In this scenario, if a test subject only had 2 input timepoints,

hen the 2-timepoint SVM/SVR was utilized for this subject even though

e were considering the 4-timepoint SVM/SVR baseline. We utilized

his strategy (instead of discarding the test subject) in order to ensure

he test sets were exactly the same across all algorithms. 

.5.3. Linear state space (LSS) model 

We considered a linear state space (LSS) baseline by linearizing the

inimalRNN model ( Fig. 6 ). Other than the update equations ( Fig. 6 ),

ll other aspects of training and prediction were kept the same. For

xample, the LSS models utilized the same data imputation strategies

 Section 2.4 ) and were trained with the same cost function using Adam.

.5.4. Long short term memory (LSTM) model 

The LSTM model is widely used for modeling sequences and tem-

oral trajectories ( Ghazi et al., 2019 ; Lipton et al., 2016a ). We have

reviously used LSTM for predicting AD progression ( Nguyen et al.,

018 ). Here, we favor minimalRNN over LSTM models, as they have

ess parameters, so are less prone to overfitting when data is limited.

ee Appendix A for further discussion. 

.6. Performance evaluation 

We randomly divided the data into training, validation and test sets.

he ratio of subjects in the training, validation and test sets was 18:1:1.

he training set was used to train the model. The validation set was

sed to select the hyperparameters. The test set was used to evaluate

he models’ performance. For subjects in the validation and test sets,

he first half of the timepoints of each subject were used to predict the

econd half of the timepoints of the same subject. All variables (except

iagnostic category, which was categorical rather than continuous) were

-normalized. The z-normalization was performed on the training set.

he mean and standard deviation from the training set was then utilized

o z-normalize the validation and test sets. The random split of the data

nto training, validation and test sets was repeated 20 times to ensure

tability of results ( Kong et al., 2019 ; Li et al., 2019 ; Varoquaux, 2018 ).

are was taken so that the test sets were non-overlapping so that the

est sets across the 20 data splits covered the entire dataset. 

The HORD algorithm ( Regis and Shoemaker 2013 ; Eriksson et al.,

015 ; Ilievski et al., 2017 ) was utilized to find the best hyperparame-

ers by maximizing model performance on the validation set. We note

hat this optimization was performed independently for each train-

ng/validation/test split of the dataset. The hyperparameter search
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Fig. 6. (A) Linear state space (LSS) model. 

Observe the gray cell is much simpler than 

the minimalRNN (B) LSS update equations. 

s t and g t denote categorical (i.e., diagno- 

sis) and continuous variables respectively 

( Table 1 ). The input x t to each LSS cell com- 

prised the diagnosis s t and continuous vari- 

ables g t (Eq. (10)). Like before, s t was rep- 

resented using one-hot encoding. The hid- 

den state h t was a combination of the previ- 

ous hidden state 𝒉 𝒕 −1 and the input x t (Eq. 

(11)). The model predicted the next month diagnosis ̂𝒔 𝒕 +1 and continuous variables �̂� 𝒕 +1 using the hidden state h t (Eqs. (12) and (13)). 

Table 3 

Hyperparameter search space of 

the SVM/SVR models estimated 

from the validation sets using 

HORD. 

SVM SVR 

Kernel Linear or RBF 

Epsilon NA 10 −3 – 10 −0 

Penalty 10 −3 – 10 3 

Gamma 10 −3 – 10 3 

Fig. 7. Prediction performance as a function of the number of input timepoints 

in the test subjects. 
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pace for minimalRNN, LSS, and LSTM is shown in Table 2 . The hy-

erparameter search space for the SVM/SVR is shown in Table 3 . The

nal set of hyperparameters are found in Tables S1 to S13. 

Following the TADPOLE competition, diagnosis classification accu-

acy was evaluated using the multiclass area under the operating curve

mAUC; Hand and Till, 2001 ) and balanced class accuracy (BCA) met-

ics. The mAUC was computed as the average of three two-class AUC

AD vs not AD, MCI vs. not MCI, and CN vs not CN). For both mAUC and

CA metrics, higher values indicate better performance. ADAS-Cog13

nd ventricles prediction accuracy was evaluated using mean absolute

rror (MAE). Lower MAE indicates better performance. The final per-

ormance for each model was computed by averaging the results across

he 20 test sets. Even though the 20 test sets do not overlap, the subjects

sed for training the models do overlap across the test sets. Therefore,

he prediction performances were not independent across the 20 test

ets. To account for the non-independence, we utilized the corrected re-

ampled t -test ( Bouckaert and Frank, 2004 ) to evaluate differences in

erformance between models. 

.7. Further analysis 

.7.1. Impact of the number of input timepoints on prediction accuracy 

For the minimalRNN to be useful in clinical settings, it should ide-

lly be able to perform well with as little input timepoints as possible.

herefore, we applied the best model ( Section 2.6 ) to the test subjects

sing only 1, 2, 3 or 4 input timepoints ( Fig. 7 ). This is different from the

ain benchmarking analysis ( Section 2.6 ), where all input timepoints

which accounted for half of the total number of timepoints) of the test

ubjects were used for predicting future timepoints. Test subjects with

ess than 4 input timepoints were discarded, so that the same test sub-
ects were evaluated across the four conditions (i.e., 1, 2, 3 or 4 input

imepoints). Because we discarded some test subjects, the result of this

nalysis is not comparable to that of the main benchmarking analysis

 Section 2.6 ). 

.7.2. Effect of temporal resolution of minimalRNN 

Even though the ADNI data was collected at a minimum interval of

 months, in practice, data was not collected at exactly 6-month inter-

al, e.g., the data might be collected at month 4, instead of the sched-

led data collection at month 6. Furthermore, the TADPOLE challenge

equired participants to make future prediction at a monthly interval

ith prediction performance evaluated at a monthly resolution. There-

ore, our main analysis utilized minimalRNN models with a temporal

esolution of 1 month. 

However, the choice of temporal resolution (i.e., number of months

etween timepoints) might affect the performance of the minimalRNN.

or example, using a finer temporal resolution (e.g., 1-month interval

ersus 6-month interval) leads to more missing data, which might lead

o worse performance. On the other hand, using a coarser temporal res-

lution (e.g., 6-month interval versus 1-month interval) leads to greater

is-alignment between the minimalRNN’s timepoints and the actual ob-

ervations. For example, if we consider a minimalRNN with a temporal

esolution of 6 months, then actual observed data at month 10 would

eed to be assigned to month 12, which might lead to worse perfor-

ance. Finally, using a coarser temporal resolution results in fewer hid-

en state updates between two points in time, making it potentially eas-

er for the minimalRNN to learn longer-term temporal patterns. 

Here, we experimented with three different temporal resolutions:

-month interval, 3-month interval, and 6-month interval. The RNN

odels were trained and tested using the same procedure described in

ection 2.6 , including hyperparameter search. For training the 3-month

nd 6-month minimalRNN models, observed data were assigned to the

losest timepoint. To evaluate performance of the 3-month and 6-month

inimalRNN models, their predictions were linearly interpolated to ob-

ain a temporal resolution of 1 month. Performance was evaluated only

t timepoints with observed ground truth data. 

.7.3. Impact of different terms in the minimalRNN model 

To investigate which term in the minimalRNN model is important

or model performance, we conducted ablation experiments whereby we

radually simplify the MinimalRNN update equations in 4 steps ( Fig. 8 ).

n the last step (Variant 4), the simplified update equations were the

ame as the update equations of the linear state space (LSS) model. The

blated RNN models were trained and tested using the same procedure

escribed in Section 2.6 , including hyperparameter search. 

.7.4. Impact of different features on prediction performance 

We performed feature ablation to analyze the contributions of dif-

erent features to prediction performance of the trained minimalRNN

odel. To ablate a feature in the input data, the value of that feature

as set to the mean value in the dataset, while the other input fea-

ures were left unaltered. Thus, there were 23 different versions of input

ata, whereby each version has a different feature ablated. We used the
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Fig. 8. Different ablated minimalRNN models. Ablation is done by simplifying 

the update equations. 
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T  
rained minimalRNN model from each split of the data (as described

n Section 2.6 ) and the ablated input data to make prediction in the

est data. A large drop in prediction performance when a feature was

blated would suggest that the feature was important for the trained

inimalRNN model to make accurate predictions. 

.8. TADPOLE live leaderboard 

The TADPOLE challenge involves the prediction of ADAS-Cog13,

entricular volume and clinical diagnosis of 219 ADNI partici-

ants for every month up to five years into the future. We note

hat these 219 participants were a subset of the 1677 subjects

sed in this study. However, the future timepoints used to eval-

ate performance on the live leaderboard ( https://tadpole.grand-

hallenge.org/D4_Leaderboard/ ) were not part of the data utilized in

his study. Here, we utilized the entire dataset (1677 participants) to

une a set of hyperparameters (using HORD) that maximized perfor-

ance either (1) one year into the future or (2) all years into the future.

e then submitted the predictions of the 219 participants to the TAD-

OLE leaderboard. 

.9. Data and code availability 

The code used in this paper can be found at https:

/github.com/ThomasYeoLab/CBIG/tree/master/stable _ projects/ 

redict _ phenotypes/Nguyen2020 _ RNNAD . This study utilized data from

he publicly available ADNI database ( http://adni.loni.usc.edu/data-

amples/access-data/ ). The particular set of participants and features

e used is available at the TADPOLE website ( https://tadpole.grand-

hallenge.org/ ). 
. Results 

.1. Overall performance 

Fig. 9 illustrates the test performance of minimalRNN and four base-

ines (LSS, LSTM, constant prediction, and SVM/SVR). For brevity, we

enote minimalRNN as RNN in all subsequent figures and tables. For

larity, we only showed minimalRNN with model filling (RNN–MF), LSS

ith model filling (LSS–MF), LSTM with model filling (LSTM-MF) and

VM/SVR using one input timepoint because they yielded the best re-

ults within their model classes. Table 4 shows the test performance of

ll models across all three missing data strategies. 

We performed statistical tests comparing the three minimalRNN

ariants (RNN–FF, RNN–LF and RNN–MF) with all other baseline ap-

roaches (LSS, LSTM, constant prediction, SVM/SVR). Multiple com-

arisons were corrected with a false discovery rate (FDR) of q < 0.05.

NN-MF showed the best results and was statistically better than most

aseline approaches ( Table 4 ). For example, RNN-MF was statistically

etter than LSS-MF for clinical diagnosis, but not ADAS-Cog13 or ven-

ricular volume. Similarly, RNN-MF was statistically better than LSTM-

F for clinical diagnosis and ventricular volume, but not ADAS-Cog13.

In terms of handling missing data, model filling (MF) performed bet-

er than forward filling (FF) and linear filling (LF), especially when

redicting ADAS-Cog13 and ventricular volume ( Table 4 ). Interest-

ngly, more input timepoints do not necessarily lead to better predic-

ion in the case of SVM/SVR. In fact, the SVM/SVR model using one

imepoint was numerically better than SVM/SVR models using more

imepoints, although differences were small. This might be because

VM/SVR models with one input timepoint had access to more training

ata than SVM/SVR models with more input timepoints ( Section 2.5.2 ).

urthermore, SVM/SVR models with more input timepoints had to

andle longer feature vectors, which increased the risk of overfitting

 Section 2.5.2 ). 

Recall that for test subjects, the first half of the timepoints of each

ubject were used to predict the second half of the timepoints of the

ame subject ( Section 2.6 ). Table 5 shows the breakdown of subjects

ased on their clinical diagnoses at the last input timepoints (with ob-

erved clinical diagnoses) and the last timepoints (with observed clin-

cal diagnoses). For example, if a subject had 10 timepoints, then the

0 timepoints were split into 5 input (observed) timepoints and 5 unob-

erved timepoints we seek to predict. Then, in the case of this subject,

he last input timepoint would be timepoint 5 and the last timepoint

ould be timepoint 10. If the subject did not have observed clinical di-

gnosis at timepoint 10, then we would consider the clinical diagnosis

t timepoint 9 and so on. We note that a small number of subjects was

ot included in Table 5 because they did not have any observed clinical

iagnosis in the first half and/or second half of the timepoints. 

Fig. 10 shows the breakdown of the prediction performance ( Fig. 9 )

nto six different groups. The “stable ” groups (NC-S, MCI-S, AD) com-

rised subjects whose diagnostic categories were the same at the last

nput timepoint and the last timepoint. The “progressive ” groups (NC-

, MCI-P) comprised subjects who progressed along the AD dementia

pectrum (e.g., from MCI to AD). Finally, the MCI recovered (MCI-R)

roup comprised subjects who have reverted from MCI to NC. We did

ot consider the 4 subjects that reverted from AD to MCI because of

he small sample size. We note that diagnostic prediction performance

as measured using accuracy (fraction of correct predictions) instead of

AUC and BCA because there was only one class in the stable groups. 

In the case of predicting ventricular volume or ADAS-Cog13, mini-

alRNN was comparable to or numerically better than all baselines. In

he case of diagnostic category, minimalRNN compared favorably with

ll baselines except for constant prediction in the stable groups. The rea-

on is that it is optimal to predict all future diagnostic categories to be

he same as the last observed diagnosis in the stable groups. However,

n reality, whether subjects are stable or not is not known in advance.

herefore, for the stable groups, constant prediction should be treated

https://tadpole.grand-challenge.org/D4_Leaderboard/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/Nguyen2020_RNNAD
http://adni.loni.usc.edu/data-samples/access-data/
https://tadpole.grand-challenge.org/
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Fig. 9. Performance of the best models from 

each model class averaged across 20 test sets. 

Error bars show standard error across test sets. 

For clinical diagnosis, higher mAUC and BCA 

values indicate better performance. For ADAS- 

Cog13 and ventricles, lower MAE indicates bet- 

ter performance. For brevity, we denote min- 

imalRNN as RNN. The RNN, LSS, LSTM, and 

SVM/SVR models corresponded to RNN–MF, 

LSS-MF, LSTM-MF, and SVM/SVR ( = 1tp) in 

Table 4 respectively. MinimalRNN performed 

the best. See Fig. S1 for all models. 

Table 4 

Prediction performance averaged across 20 test sets. For clinical diagnosis, higher mAUC and BCA values indicate better performance. For ADAS-Cog13 

and Ventricles, lower MAE indicates better performance. FF indicates forward filling. LF indicates linear filling. MF indicates model filling. SVM/SVR 

( = 1tp) utilized one input timepoint. SVM/SVR ( ≤ 2tp) utilized at most 2 input timepoints (see Section 2.5.2 for details) and so on. The best result for 

each performance metric was bolded. RNN–MF was numerically the best across all metrics. For brevity, we denote minimalRNN as RNN. Statistical tests were 

performed between all three minimalRNN variants (RNN-FF, RNN-LF, RNN-MF) and all baseline approaches. Multiple comparisons were corrected using a 

false discovery rate (FDR) of q < 0.05. Only p-values for RNN-MF are shown. Normal font indicates that RNN-MF was statistically better, while gray font 

indicates that RNN-MF was not statistically better after FDR correction. The results of SVM/SVR with MFPCA filling are shown in Table S14. 

Table 5 

Breakdown of subjects based on their clin- 

ical diagnoses at the last input timepoints 

(with observed clinical diagnoses) and the 

last timepoints (with observed clinical diag- 

noses). 

Last timepoint 

Last input timepoint NC MCI AD 

NC 427 63 21 

MCI 37 469 235 

AD 0 4 391 
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s an upper bound on prediction performance, rather than a baseline.

e note constant prediction did not achieve 100% accuracy in the sta-

le groups because the clinical diagnoses could fluctuate over time. For

xample, if a subject had 4 timepoints with corresponding diagnoses

C, NC, MCI and NC. Then, the subject would be classified as NC-stable

ecause the second and fourth timepoints had the same NC diagnoses. 
Fig. 11 shows the breakdown of the prediction performance from

ig. 9 in yearly interval up to 6 years into the future. Not surprisingly,

he performance of all algorithms became worse for predictions further

nto the future. The constant baseline was very competitive against the

ther models for the first year, but performance for subsequent years

ropped very quickly. The minimalRNN model was comparable or nu-

erically better than all baseline approaches across all the years. 

.2. Further analysis 

.2.1. MinimalRNN using one and four input timepoints in test subjects 

chieve comparable performance 

Given that the MinimalRNN with model filling (RNN–MF) performed

he best ( Table 4 ), we further explored how well the trained RNN–MF

odel would perform on test subjects with different number of input

imepoints. Fig. 12 shows the performance of RNN-MF averaged across

0 test sets using different number of input timepoints. The exact nu-

erical values are reported in Table 6 . RNNs using 2 to 4 input time-

oints achieved similar performance across all metrics. RNN using 1
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Fig. 10. Prediction performance broken down 

into six different groups: NC stable (NC-S), 

NC progressive (NC-P), MCI recovered (MCI-R), 

MCI stable (MCI-S), MCI progressive (MCI-P) 

and AD stable (AD). The numbers in the brack- 

ets indicate the numbers of subjects in the re- 

spective groups. For brevity, we denote mini- 

malRNN as RNN. The minimalRNN compared 

favorably with all baseline algorithms in almost 

all groups. 

Table 6 

Test performance of minimalRNN model with model filling strategy (RNN-MF) using different numbers of input timepoints (after 

training with all timepoints). Results were averaged across 20 test sets. Statistical tests were performed to test for differences between 

using 4 timepoints versus less timepoints. The gray font indicates that there was no statistical difference that survived FDR of 

q < 0.05. 

Table 7 

Test performance of minimalRNN model with model filling strategy (RNN-MF) at different temporal resolution. We note that the top 

row (1-month interval) was the same as in Table 4 . Results were averaged across 20 test sets. The best result for each performance 

metric was bolded. There was no significant difference across different temporal resolutions. 

mAUC (more = better) BCA (more = better) ADAS-Cog13 (less = better) Ventricles (less = better) 

1-month interval 0.944 ± 0.014 0.887 ± 0.024 4.30 ± 0.53 0.00156 ± 0.00022 

3-month interval 0.942 ± 0.016 ( p = 0.58) 0.886 ± 0.026 ( p = 0.88) 4.11 ± 0.49 ( p = 0.079) 0.00153 ± 0.00014 ( p = 0.59) 

6 month interval 0.940 ± 0.017 ( p = 0.27) 0.885 ± 0.023 ( p = 0.75) 4.13 ± 0.51 ( p = 0.22) 0.00158 ± 0.00021 ( p = 0.79) 
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nput timepoint had numerically worse results, especially for ventricu-

ar volume. However, there was no statistical difference between using

 input timepoint and 4 input timepoints even in the case of ventricular

olume ( p = 0.20). 

.2.2. Varying temporal resolution has little impact on performance 

Table 7 shows the prediction performance of the RNN-MF model

hen the temporal resolution varied from 1-month interval to 6-month
nterval. There was no significant difference in prediction performance

cross different temporal resolutions. 

.2.3. Impact of different terms in the minimalRNN model 

Table 8 shows the performances of the original minimalRNN model

RNN-MF) and 4 ablated variants decreasing in complexity from RNN-

F to variant 4 (LSS-MF). Numerically, RNN-MF had the best results

ompared with all 4 variants. However, it was not the case that perfor-
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Fig. 11. Prediction performance from 

Fig. 9 broken down into yearly interval up to 

6 years into the future. For brevity, we denote 

minimalRNN as RNN. All algorithms became 

worse further into the future. MinimalRNN 

was comparable to or numerically better than 

all baseline algorithms across all years. See 

Fig. S2 for all models. 

Table 8 

Test performance of the original minimalRNN model (RNN-MF) and different ablated variants. Results were averaged 

across 20 test sets. The best result for each performance metric was bolded. 

mAUC (more = better) BCA (more = better) ADAS-Cog13 (less = better) Ventricles (less = better) 

RNN–MF 0.944 ± 0.014 0.887 ± 0.024 4.30 ± 0.53 0.00156 ± 0.00022 

Variant 1 0.934 ± 0.018 0.878 ± 0.022 4.59 ± 0.53 0.00200 ± 0.00055 

Variant 2 0.928 ± 0.019 0.868 ± 0.034 4.41 ± 0.43 0.00179 ± 0.00040 

Variant 3 0.932 ± 0.013 0.876 ± 0.021 4.32 ± 0.49 0.00186 ± 0.00034 

Variant 4 (LSS–MF) 0.926 ± 0.025 0.861 ± 0.029 4.38 ± 0.49 0.00177 ± 0.00028 
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MAE. 
ance continually degraded from the most complex model (RNN-MF) to

he least complex model (LSS-MF). Interestingly, among the 4 variants,

SS-MF (Variant 4) showed the worst performance for clinical diagno-

is, but close to the best performance for ADAS-Cog13 and ventricular

olume. This suggests that some level of nonlinearity might be more

seful for predicting clinical diagnosis, but less so for ADAS-Cog13 and

entricular volume. Overall, it was difficult to conclude that a specific

omponent was essential to minimalRNN’s performance. This might not

e surprising because as its name suggested, the minimalRNN was de-

igned to be as simple as possible, so removing any component yielded

omewhat worse results. 
.2.4. Impact of different features on prediction performance 

The results of the feature ablation experiments are shown in Table 9 .

nsurprisingly, ablating diagnosis resulted in the most significant drop

n diagnostic mAUC and BCA, while ablating ADAS-Cog13 and ven-

ricular volume resulted in the most significant increase in ADAS-

og13 MAE and ventricular MAE respectively. Ablating CDRSB also

ed to a noticeable drop in diagnosis mAUC and BCA, probably be-

ause CDRSB is used in the diagnosis of an individual. Interest-

ngly, ablating CDRSB also led to a noticeable increase in ventricular
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Fig. 12. Test performance of minimalRNN 

model with model filling strategy (RNN-MF) 

using different numbers of input timepoints (af- 

ter training with all timepoints). Results were 

averaged across 20 test sets. Even though the 

minimalRNN model using 1 input timepoint 

yielded numerically worse results, the differ- 

ences were not significant (see Table 6 ). 

Table 9 

Test performance of minimalRNN model (RNN-MF) with different features ablated (replacing input feature with the mean value). Results were 

averaged across 20 test sets. Prediction performance of the original model was bolded. For each column, the top two ablated features leading to 

the largest drop in performance were bolded and italicized. 

mAUC (more = better) BCA (more = better) ADAS-Cog13 (less = better) Ventricles (less = better) 

No Ablation 0.944 ± 0.014 0.887 ± 0.024 4.30 ± 0.53 0.00156 ± 0.00022 

Ablate CDRSB 0.916 ± 0.049 0.858 ± 0.055 4.29 ± 0.48 0.00162 ± 0.00025 

Ablate ADAS-Cog11 0.943 ± 0.015 0.884 ± 0.024 5.15 ± 0.95 0.00161 ± 0.00022 

Ablate ADAS-Cog13 0.941 ± 0.021 0.875 ± 0.029 6.96 ± 3.31 0.00160 ± 0.00025 

Ablate MMSE 0.945 ± 0.014 0.882 ± 0.023 4.43 ± 0.56 0.00157 ± 0.00021 

Ablate RAVLT immediate 0.942 ± 0.016 0.882 ± 0.025 4.69 ± 0.62 0.00155 ± 0.00022 

Ablate RAVLT learning 0.943 ± 0.014 0.884 ± 0.023 4.33 ± 0.52 0.00159 ± 0.00022 

Ablate RAVLT forgetting 0.945 ± 0.015 0.887 ± 0.023 4.29 ± 0.52 0.00155 ± 0.00021 

Ablate RAVLT forgetting percent 0.935 ± 0.028 0.878 ± 0.029 4.89 ± 1.19 0.00165 ± 0.00024 

Ablate Functional Activities Questionnaire (FAQ) 0.943 ± 0.016 0.882 ± 0.026 4.29 ± 0.45 0.00155 ± 0.00020 

Ablate Montreal Cognitive Assessment (MOCA) 0.944 ± 0.015 0.883 ± 0.026 4.56 ± 0.59 0.00155 ± 0.00021 

Ablate Ventricles 0.944 ± 0.014 0.887 ± 0.025 4.29 ± 0.49 0.00166 ± 0.00017 

Ablate Hippocampus 0.941 ± 0.014 0.884 ± 0.025 4.40 ± 0.58 0.00158 ± 0.00021 

Ablate Whole brain volume 0.945 ± 0.015 0.886 ± 0.024 4.30 ± 0.53 0.00157 ± 0.00021 

Ablate Entorhinal cortical volume 0.944 ± 0.015 0.883 ± 0.025 4.33 ± 0.55 0.00156 ± 0.00021 

Ablate Fusiform cortical volume 0.944 ± 0.014 0.883 ± 0.024 4.29 ± 0.50 0.00156 ± 0.00022 

Ablate Middle temporal cortical volume 0.945 ± 0.015 0.884 ± 0.024 4.33 ± 0.50 0.00156 ± 0.00022 

Ablate Intracranial volume 0.945 ± 0.014 0.886 ± 0.025 4.29 ± 0.53 0.00156 ± 0.00020 

Ablate Florbetapir (18F-AV-45) - PET 0.944 ± 0.015 0.887 ± 0.024 4.29 ± 0.52 0.00155 ± 0.00020 

Ablate Fluorodeoxyglucose (FDG) - PET 0.943 ± 0.014 0.883 ± 0.025 4.30 ± 0.54 0.00155 ± 0.00021 

Ablate Beta-amyloid (CSF) 0.944 ± 0.016 0.884 ± 0.025 4.33 ± 0.51 0.00156 ± 0.00022 

Ablate Total tau 0.944 ± 0.015 0.885 ± 0.025 4.34 ± 0.54 0.00156 ± 0.00021 

Ablate Phosphorylated tau 0.943 ± 0.014 0.885 ± 0.023 4.37 ± 0.55 0.00156 ± 0.00021 

Ablate Diagnosis 0.878 ± 0.032 0.770 ± 0.031 4.31 ± 0.43 0.00157 ± 0.00021 
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.3. TADPOLE live leaderboard 

The original LSTM model ( Nguyen et al., 2018 ) was ranked 5th (out

f 53 entries) in the TADPOLE grand challenge in July 2019 (entry

CBIL ” in https://tadpole.grand-challenge.org/Results/ ). Our current

inimalRNN models were ranked 2nd and 3rd (out of 63 entries) on the

eaderboard as of June 3rd, 2020 (entries ( “CBIL-MinMFa ” and “CBIL-

inMF1 ”; https://tadpole.grand-challenge.org/D4_Leaderboard/ ). In-

erestingly, the model obtained from hyperparameters tuned to

redict all years into the future ( “CBIL-MinMFa ”) performed bet-

er than the model obtained from hyperparameters tuned to pre-

ict one year into the future ( “CBIL-MinMF1 ”), even though the

eaderboard currently utilized about one year of future data for

rediction. 
. Discussion 

In this work, we adapted a minimalRNN model for predicting lon-

itudinal progression in AD dementia. Our approach compared favor-

bly with baseline algorithms, such as SVM/SVR, LSS, and LSTM mod-

ls. However, we note that there was no statistical difference between

he minimalRNN and LSS for predicting ADAS-Cog13 and ventricular

olume even though other studies suggested benefits of modeling non-

inear interactions between features ( Popescu et al., 2019 ). 

As can be seen when setting up the SVM/SVR baseline models

 Section 2.5.2 ), there were a lot of edge cases to consider in order

o adapt a “static ” prediction algorithm (e.g., SVM/SVR) to the more

dynamic ” longitudinal prediction problem we considered here. For ex-

mple, data is wasted because static approaches generally assume that

https://tadpole.grand-challenge.org/Results/
https://tadpole.grand-challenge.org/D4_Leaderboard/
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articipants have the same number of input timepoints. Therefore, for

he SVM/SVR models using 4 input timepoints, we ended up with only

454 participants out of the original 1677 participants. This might ex-

lain why the SVM/SVR model using 1 input timepoint compared fa-

orably with the SVM/SVR model using 4 input timepoints ( Table 4 ).

nother issue with static models is that the relationship between input

eatures and outputs might vary over time (i.e., temporal conditional

hift; Oh et al., 2018 ; 2019 ), thus better performance might be achieved

y building separate models to predict month 12, month 18, and so on.

ere, we built multiple separate SVM/SVR models to predict at a fixed

umber of future timepoints and performed interpolation at intermedi-

te timepoints. By contrast, state-based models (e.g., minimalRNN, LSS,

r LSTM) are more elegant in the sense that they handle participants

ith different number of timepoints and can in principle predict unlim-

ted number of timepoints into the future. 

Even though the ADNI dataset comprised participants with multi-

le timepoints, for the algorithm to be clinically useful, it has to be

uccessful at dealing with missing data and participants with only one

nput timepoint. We found that the “integrative ” approach of using the

odel to fill in the missing data (i.e., model filling) compared favorably

ith “preprocessing ” approaches, such as forward filling or linear fill-

ng. However, it is possible that more sophisticated “preprocessing ” ap-

roaches, such as matrix factorization ( Mazumder et al., 2010 ; Nie et al.,

017 ; Thung et al., 2016 ) or wavelet interpolation ( Mondal and Perci-

al, 2010 ), might yield better results. We note that our model filling

pproach can also be considered as a form of matrix completion since

he RNN (or LSS) was trained to minimize the predictive loss, which

s equivalent to maximizing the likelihood of the training data. How-

ver, matrix completion usually assumes that the training data can be

epresented as a matrix that can be factorized into low-ranked or other

pecially-structured matrices. On the other hand, our method assumes

emporal dependencies between rows in the data matrix (where each

ow is a timepoint). 

Our best model (minimalRNN with model filling) had similar perfor-

ance when using only 1 input timepoint instead of 4 input timepoints,

uggesting that our approach might work well with just cross-sectional

ata (after training using longitudinal data). However, we might have

imply lacked the statistical power to distinguish among the different

onditions because of the smaller number of subjects in this experiment.

verall, there was no noticeable difference among using 2, 3 or 4 input

imepoints, while the performance using 1 input timepoint appeared

orse, but the difference was not statistically significant ( Fig. 12 ). 

Although our approach compared favorably with the baseline algo-

ithms, we note that any effective AD dementia treatment probably has

o begin early in the disease process, potentially at least a decade be-

ore the emergence of behavioral symptoms. However, even in the case

f our best model (minimalRNN with model filling), prediction perfor-

ance of clinical diagnosis dropped from a BCA of 0.935 in year 1 to a

CA of 0.810 in year 6, while ventricular volume MAE increased from

.00104 in year 1 to 0.00511 in year 6. Thus, significant improvement

s needed for clinical utility. 

One possible future direction is to investigate new features, e.g.,

hose derived from diffusion MRI or arterial spin labeling. Previous stud-

es have also suggested that different atrophy patterns (beyond the tem-

oral lobe) might influence cognitive decline early in the disease process

 Noh et al., 2014 ; Byun et al., 2015 ; Ferreira et al., 2017 ; Zhang et al.,

016 ; Risacher et al., 2017 ; Sun et al., 2019 ), so the atrophy features

onsidered in this study ( Table 1 ) might not be optimal. Although the

ew features may be correlated with currently used features, the new

eatures might still provide complementary information when modeling

D progression ( Popescu et al., 2019 ). Another possible source of infor-

ation might come from electronic health records (EHR), which can be

ollected more frequently and easily than neuropsychological test scores

r MRI scans ( Tjandra et al., 2020 ). Combining neuropsychological test

cores, MRI scans and EHR might potentially yield better prediction. 
As mentioned in the introduction, an earlier version of our algo-

ithm was ranked 5th out of 50 entries in the TADPOLE competition.

ur current model was ranked 2nd out of 63 entries on the TADPOLE

ive leaderboard as of June 2nd, 2020. Interestingly, the top team con-

idered additional handcrafted features, which might have contributed

o its success. Furthermore, the top team utilized a non-deep-learning al-

orithm XGboost ( Chen and Guestrin, 2016 ), which might be consistent

ith recent work suggesting that for certain neuroimaging applications,

on-deep-learning approaches might be highly competitive ( He et al.,

020 ) 

. Conclusion 

Using 1677 participants from the ADNI database, we showed that

he minimalRNN model was better than other baseline algorithms for

he longitudinal prediction of multimodal AD biomarkers and clinical

iagnosis of participants up to 6 years into the future. We explored three

ifferent strategies to handle the missing data issue prevalent in longi-

udinal data. We found that the RNN model can itself be used to fill in

he missing data, thus providing an integrative strategy to handle the

issing data issue. Furthermore, we also found that after training with

ongitudinal data, the trained RNN model can perform reasonably well

sing one input timepoint, suggesting the approach might also work for

ross-sectional data. 
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ppendix A 

This appendix summarizes differences between the minimalRNN and

STM. For the convenience of the readers, the minimalRNN state equa-

ions ( Fig. 2 B) are repeated below. 

𝒖 𝒕 = tanh 
(
𝑾 𝒙 𝒙 𝒕 

)
 𝒕 = 𝝈

(
𝑼 𝒉 𝒉 𝒕 −1 + 𝑾 𝒖 𝒖 𝒕 

)
𝒉 𝒕 = 𝒇 𝒕 ⊙ 𝒉 𝒕 −1 + 

(
1 − 𝒇 𝒕 

)
⊙ 𝒖 𝒕 

For ease of comparison, we use a similar set of notations to show the

STM state equations below. 

𝒖 𝒕 = tanh 
(
𝑼 

𝒖 
𝒉 
𝒉 𝒕 −1 + 𝑾 

𝒖 
𝒙 
𝒙 𝒕 
)

𝒊 𝒕 = 𝝈
(
𝑼 

𝒊 
𝒉 
𝒉 𝒕 −1 + 𝑾 

𝒊 
𝒖 
𝒙 𝒕 
)

 𝒕 = 𝝈
(
𝑼 

𝒇 

𝒉 
𝒉 𝒕 −1 + 𝑾 

𝒇 
𝒖 𝒙 𝒕 

)

𝒐 𝒕 = 𝝈
(
𝑼 

𝒐 
𝒉 
𝒉 𝒕 −1 + 𝑾 

𝒐 
𝒖 
𝒙 𝒕 
)

𝒄 𝒕 = 𝒇 𝒕 ⊙ 𝒄 𝒕 −1 + 𝒊 𝒕 ⊙ 𝒖 𝒕 

𝒉 𝒕 = 𝒐 𝒕 ⊙ tanh 
(
𝒄 𝒕 
)

As can be seen, minimalRNN uses fewer parameters than LSTM by

oing away with the output gate ( o t ) and setting the input gate ( i t ) to be

he complement of the forget gate (i.e. ( 1 − 𝒇 𝒕 ) ). The hyperbolic tangent

s also removed from the computation of h t , thus making 𝒉 𝒕 = 𝒄 𝒕 . In

ddition, the term 𝒉 𝒕 −1 is removed from the computation of the term u t 
n the minimalRNN, so the hidden state ( h t ) of the minimalRNN decays

o zero when the input ( x t ) is zero. Note that in the context of our study,

ll variables (except clinical diagnosis) were z-normalized ( Section 2.6 ).

hus, input of zero corresponds to observing the mean value. In contrast,

he hidden state of the LSTM can fluctuate even when the input is zero.
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