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Abstract— The work presented in this paper shows the 

performance of various time-frequency distributions when 

gathering ELectronic INTelligence (ELINT) from an 

electromagnetic environment that contains transmissions from 

radars operating in a Low Probability of Interception (LPI) mode. 

A radar device varying waveform parameters on a pulse-by-pulse 

basis to enhance sensing capabilities and/or to avoid interception 

warrants a method that can assign a unique Pulse Descriptor 

Word (PDW) to each pulse detected. The simulations presented 

here makes use of a Deep Learning classifier that is fed by time-

frequency images of noisy LFM pulses that each have unique 

signal parameters. The performance of the radar pulse classifier 

is conveyed for multiple time-frequency methods. The results 

show that the time-frequency representation requirements for 

accurate PDW generation varies for each signal parameter being 

estimated whilst also having a dependence on the SNR of the 

intercepted signal. 
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I. INTRODUCTION 

The modern-day electromagnetic (EM) environment is 
likely to be heavily cluttered with communications and radar 
signals particularly in urban areas and along trade/travel routes.  
The EM environment will contain different types of radar 
systems that are each designed to observe a particular region in 
space (as shown in Fig. 1). These systems may have the ability 
to operate in different modes and hence utilize a variety of 
waveforms. A radar system changing its mode of operation may 
be preassigned behavior or due to external influences. Parts of 
the world in which there is conflict are expected to have a larger 
presence of radar and jamming signals due to the importance of 
full spectrum situation awareness in the modern battlefield [1]. 
LPI waveforms are radar signals that are designed to be able to 
sense the surrounding environment whilst not giving other radar 
systems the ability to detect the signal. This creates a game of 
cat-and-mouse involving LPI radar system designers and those 
developing ELINT receivers. 

The generic Linearly Frequency Modulated (LFM) 
waveform is still widely used today for radar systems operating 

in an LPI mode [2] due to its simplicity and effectiveness [3]. As 
LFM is still commonly used by radar designers, a means of 
accurately classifying LFM transmissions will need to be robust 
to other interfering chirp signals. Radars aiming to avoid 
interception may look to employ elaborate techniques that vary 
the parameters of the LFM waveform on a pulse-by-pulse 
basis [4]. A means of extracting the parameters of each LFM 
pulse accurately will allow the existence of multiple emitters to 
be detected. A simple LFM signal model will be described in 
Section II alongside a Pulse Descriptor Word (PDW) which is 
used to assign a label to each LFM pulse. 

 

Fig. 1. Different types of radar systems within a modern EM environment [1] 

The Time-Frequency (TF) domain can be used to analyze a 
signal’s spectrum over time. It has been widely used to estimate 
the parameters of a detected signal such as the modulation 
scheme [5] [6]. Estimating radar signal parameters will allow the 
sensing capability of its emitter to be estimated. Various TF 
transforms have been developed in the past to display a signal in 
the TF domain and each of these methods has particular 
properties.  Examples of four TF techniques will be described in 
Section III. 

Further considerations have to be made when considering the 
nature of signals in the TF domain when measuring in realistic 
scenarios. The work here concerns the analysis of LFM signals 
on a pulse-by-pulse basis, techniques that are used to split a 



pulse-train into individual pulse are described in [7]. 
The presence of multipath reflections will cause interleaving 
pulses to be measured and will need further processing methods 
to extract the fundamental pulse repetition frequency which is 
described in [8]. Radar systems making use of scanning antenna 
beam patterns to perform imaging will also cause the SNR of a 
signal to vary over multiple pulses with respect to an ELINT 
gathering receiver [9]. The effect of an intercepted emitter using 
antenna beam scanning techniques on the amplitude modulation 
of a captured signal is not considered here but can be extracted 
using the SNR element of the PDW generator described here. 

II. SIGNAL GENERATION & ESTIMATION 

A. Linear Frequency Modulation 

An ELINT surveillance receiver is required to be able to 
intercept and classify LPI signals [4]. A simple, deterministic 
example of an LPI waveform that only requires a relatively 
inexpensive transceiver device to utilize is the LFM waveform. 
The complex representation of a baseband LFM pulse with 
amplitude A, Chirp bandwidth Δf, and Chirp duration ΔT that is 
contaminated with uncorrelated AWGN with zero-mean and a 
variance of σn is given by (1).  

𝑠(𝑡) = 𝐴 𝑒𝑗(2𝜋(
∆𝑓
∆𝑇

)𝑡2+𝜑) + 𝐴𝑊𝐺𝑁(𝜇𝑛 = 0, 𝜎𝑛) 

 for 0<t<ΔT () 

It is assumed that the In-phase and Quadrature components are 
measured with independent AWGN. A complex measurement 
of the waveform will enhance the signal analysis due to the 
phase information being included. 

B. Pulse Descriptor Words 

A PDW is an array that consists of estimated signal parameters 
in an attempt to gather ELINT of the electromagnetic 
environment [7]. A PDW may be constructed to be versatile or 
can be made waveform-specific. 

A radar designer will select a waveform to meet a specification 
that typically details a systems capability in measuring the range, 
angle and velocity of an object. A passive receiver gaining 
ELINT will need to estimate these waveform parameters in the 
presence of other signals and noise. A radar designer can employ 
waveform design techniques to improve the capability of a radar 
system whilst also making the transmissions robust to 
interception/interrogation. Agile waveforms that vary waveform 
parameters on a pulse-by-pulse basis to achieve these objectives 
will need to be considered.  

The PDW considered here for noisy LFM pulses will consist of 
three elements: chirp duration, chirp bandwidth and SNR (2). 
The PDW array has three elements for the simulations presented 
here although this could be modified to suite more elaborate 
waveforms or even for emitter identification by instead 
estimating signal imperfections rather than signal parameters.  

  𝑃𝐷𝑊 = [𝛥𝑓𝑒, 𝛥𝑇𝑒 , 𝑆𝑁𝑅𝑒]  (2) 

The PRF (Pulse Repetition Frequency) is not estimated due to 
this parameter usually being processed at different stages of an 
ELINT gathering system as conveyed in [7] and [10].     

III. TIME-FREQUENCY REPRESENTATION 

A. Cohen’s Class 

Cohen’s class [11] describes a set of bilinear distributions 
that allow time-frequency analysis of complex/real signals and 
is represented by (3) [12]. A distribution that is a member of the 
Cohen’s class can be evaluated on a single signal in which (3) 
contains the autocorrelation function or it can be used to cross-
correlate between two signals.  

𝐶(𝑡, 𝑓) = ∫ 𝑠 (𝜃 +
𝜏

2
) 𝑠∗ (𝜃 −

𝜏

2
) 𝜙(𝑡 − 𝜃, 𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜃𝑑𝜏 

       (3) 

The two-dimensional kernel function Φ in (4) allows filtering in 
the TF domain and is given by the Fourier transform of ϕ in (3): 

   Φ(θ, τ) =  ℱ(ϕ(t, τ))  (4) 

Cross-term products that occur for signals with multiple 
frequency components can degrade signal parameter extraction 
and thus the kernel function allows the suppression of this form 
of interference. 

A unique kernel function will produce a distinct auto-term 
signature and cross-term interference pattern. The finer the 
resolution of the TF signature, the higher the SNR for a given 
noisy signal. Cross-term filtering can make signal parameter 
extraction more accurate and less computationally extensive. 

B. Examples of Time-Frequency Distributions  

The Short Time Frequency Transform (STFT) or 
spectrogram method is the TF given by the kernel function in 
(5). 

 𝛷𝐺(𝜃, 𝜏) = ∫ ℎ∗ (𝑢 −
𝜏

2
) ℎ (𝑢 +

𝜏

2
) 𝑒−𝑗𝜃𝑢𝑑𝑢 (5) 

The STFT is referred to as the Gabor transform (GT) when a 
Gaussian window is used. The STFT is limited by the resolution 
of the window imposed by the windowing function h(·). This 
limitation can be exceeded by using alternative TF distributions.  

The Wigner-Ville Distribution (WVD) is the Fourier 
Transform of the autocorrelation function which is the Cohen 
class expression in (3) with a unity kernel function (6). 
The finest TF resolution is achieved with the WVD but at the 
consequence of suffering from severe cross-term interference 
patterns for signals with multiple-frequency components. 

  𝛷𝑊𝑉(𝜃, 𝜏) = 1   (6) 

The cross-term interference can be suppressed by applying a 
Gaussian smoothening function with the expense of a loss in 
resolution. The WVD with a Gaussian smoothening function 
applied is commonly referred to as the Pseudo Wigner-Ville 
distribution (PWVD). 

The Choi-Williams distribution (CWD) [13] has a kernel 
function that gives it a better resolution than the Gabor 



Transform and less cross-term interference than the WVD. 
The CWD method is computed with (3) whilst using the kernel 
function in (7).  The parameter α gives variability in the axis in 
which the TF filtering is applied. 

  𝛷𝐶𝑊(𝜃, 𝜏) = 𝑒−𝛼(𝜃𝜏)2
  (7) 

Equations (3) to (7) are in continuous form but will need to be 
implemented for discrete signals due to the stochastic 
component of a noisy LFM pulse (1). The Discrete TF codes 
made available at [14] and [15] will be used to perform all of the 
time-frequency results presented here. The four time-frequency 
distribution/transforms of interest here have been previously 
labeled in bold.  

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. Noisy LFM data (SNR=10dB, Δf=0.5Fs and ΔT=100/Fs) processed 

using different TF methods: (a) GT (b) WVD (c) PWVD (d) CWD 

The baseband LFM pulses shown in Fig. 2 are of the same noisy 
signal although each of the images have been produced by a 
different TF technique. These plots illustrate the unique TF 
resolutions and interference patterns produced by each TF 
distribution. 

IV. DEEP LEARNING CLASSIFICATION METHOD 

The classification method used in the work presented here is 
based on AlexNet [16] which is a Convolutional Neural 
Network (CNN) developed for image classification. An article 
was previously published that makes use of the same Deep 
Learning method but instead for the classification of modulation 
schemes [5]. Each CNN input image was generated by inserting 
a noisy LFM pulse into each of the four time-frequency 
distributions stated in Section III. The image generated by each 
TF transform was down-sampled to 240x240 pixels for 
consistency. RGB values were then extracted for each generated 
image and these color values correspond to the magnitude of the 
TF transform output. The overall signal generation and 
classification procedure is visible in Fig. 3 and the CNN training 
parameters used are displayed in Table I. 

 

 

Fig. 3. Block diagram showing the simulation process for each PDW element 

 

 



TABLE I.  DEEP LEARNING PARAMETERS USED 

Parameter Value 

Maximum Epochs 5 

Initial Learn Rate 0.001 

Weight Learn Rate Factor 20 

Bias Learn Rate Factor 

 
20 

 

To assign a PDW to a measured signal, a set of categories 
were defined prior to the training of the CNN. The following 
uniformly sampled categories were constructed for each of the 
three PDW elements: 

  𝐶∆𝑓𝑒 = [
𝐹𝑠

10
, 2

𝐹𝑠

10
, … ,5

𝐹𝑠

10
]  (8) 

  𝐶∆𝑇𝑒 = [10𝑇𝑠, 20𝑇𝑠, … ,100𝑇𝑠] (9) 

  𝐶𝑆𝑁𝑅𝑒 = [−9𝑑𝐵, −6𝑑𝐵 … ,9𝑑𝐵] (10) 

Ts and Fs are the sampling time and frequency respectively. 
The category increments of Fs/10, 10Ts and 3 decibels in (8), (9) 
and (10) respectively were arbitrary chosen but deemed 
acceptable to separate repeating LFM with significantly 
different sensing capabilities. The work presented here will not 
consider sub-Nyquist sampling of signals. Each CNN had a 
dataset of 1000 noisy LFM signals (1) that were generated with 
signal parameters generated by uniform pdfs. The uniform pdfs 
of the three signal parameters had ranges which correspond to 
the max and min values in the category vectors (8), (9) and (10). 
The TF representation of each noisy LFM signal was then stored 
in an image format inside a database alongside the 
corresponding signal parameter used for generation (ΔF, ΔT and 
SNR).  The CNN is trained with 80% of the dataset and then 
tested on with 10% of the dataset. The remaining 10% was then 
used for validation. 

V. RESULTS & ANALYSIS 

A. Δfe & ΔTe classification using pulses with constant SNR 

The simulation results presented here show the optimal TF 
method for estimating the chirp period and bandwidth elements 
of (2). The CNN training database made use of noisy LFM 
pulses that have been generated with the same SNR value and 
this was done iteratively for each value in (10). 
The classification accuracy incurred for different SNR values 
are shown in Fig. 4. Table II shows the optimal TF method 
alongside the achieved maximum classification accuracy for all 
of the TF methods used. The LFM bandwidth estimation 
accuracy improved by 60% over the SNR range simulated 
whereas the pulse period estimation accuracy stayed 
approximately constant at around 80%. The WVD distribution 
was found to be the optimal TF distribution for all of the cases 
simulated apart from the SNR=3dB and SNR=-3dB scenarios 
when classifying the pulse period. A more accurate signal 
parameter extractor might be expected when using TF methods 
that filter out cross-term interference (all but WVD) for high 
SNR scenarios (SNR>0dB) although for the Deep Learning 
classifier used here this was not the case. Using the kernel 

function in (3) to filter out cross-term interference can reduce 
the capability of a CNN to extract sufficient features for correct 
classification.  

TABLE II.  OPTIMAL TFD AND MAXIMUM CLASSIFICATION ACCURACY 

SNR Δfe ΔTe (Δfe, + ΔTe)/2 

-9 dB 28% 

 

78% 53% 

-6 dB 52% 

 

82% 67% 

-3 dB 72% 

 

81% 76% 

0 dB 81% 

 

82% 81% 

3 dB 86% 

 

83% 83% 

6 dB 84% 

 

83% 84% 

9 dB 88% 

 

81% 85% 

 

 

TABLE III.  CLASSIFICATION ACCURACY OF PDW (2) FOR EACH TFD 

 Δfe ΔTe SNRe (Δfe, + ΔTe + SNRe)/3 

GT 79 68 80 76 

WVD 84 87 79 83 

PWVD 86 82 75 81 

CWD 82 83 77 81 

 

Optimal TFD color scheme 

 

GT  PWVD  

WVD  CWD  

 



 

Fig. 4. Classification accuracy for signals with different signal-to-noise ratios 

B. Δfe, ΔTe & SNRe classification with categories in (8)-(10) 

Table III displays the classification accuracy when using a 

database of 1000 noisy LFM pulses that were generating using 

the parameters in (8), (9) and (10). Training a CNN to classify 

each element of (2) for SNR values between -9dB and 9dB 

showed a different optimal TF distribution for each of the three 

PDW elements. This shows that training the CNN with data 

containing a larger range of noise statistics alters the CNN 

operation significantly. The Wigner-Ville distribution was seen 

to have the highest classification accuracy overall. The results 

show that using multiple TF distributions to classify different 

elements of a PDW can lead to a more accurate classifier 

compared to using a single TF method. 

VI. CONCLUSION 

The importance of gaining as much information as possible 
about the surrounding electromagnetic environment for 
EM superiority has been stated. The ability to generate pulse 
descriptor words from noisy LPI radar signals by using a Deep 
Learning classifier on time-frequency images has been shown. 
Simulation results presented here have shown that the filtering 
of cross-term interference by using a kernel function was seen 
to degrade the performance of a Deep Learning LPI pulse 
classifier. Results have also been presented that show the use of 
multiple time-frequency distributions for different elements of a 
pulse descriptive word can improve the classification accuracy. 

VII. FUTURE WORK 

The full version of this paper will extend the work presented 
here to other waveforms modulation types such as phase-coded 
and non-linear frequency modulated waveforms. This will 
involve the generation of more elaborate Pulse Descriptor 
Words. The classification algorithms robustness to the presence 
of other sources of noise such as clutter and jamming devices 
are also of interest to the research.  
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