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Abstract

Metabolomics, the large-scale study of small molecules, enables the underlying

biochemical activity and state of cells or tissues to be directly captured. Nuclear

Magnetic Resonance (NMR) Spectroscopy is one of the major data capturing tech-

niques for metabolomics, as it provides highly reproducible, quantitative informa-

tion on a wide variety of metabolites. This work presents possible solutions for three

problems involved to aid the development of better algorithms for NMR data analy-

sis. After reviewing relevant concepts and literature, we first utilise observed NMR

chemical shift titration data for a range of urinary metabolites and develop a the-

oretical model of chemical shift using a Bayesian statistical framework and model

selection procedures to estimate the number of protonation sites, a key parameter

to model the relationship between chemical shift variation and pH and usually un-

known in uncatalogued metabolites. Secondly, with the aim of obtaining explicit

concentration estimates for metabolites from NMR spectra, we discuss a Monte

Carlo Co-ordinate Ascent Variational Inference (MC-CAVI) algorithm that com-

bines Markov chain Monte Carlo (MCMC) methods with Co-ordinate Ascent VI

(CAVI), demonstrate MC-CAVI’s suitability for models with hard constraints and

compare MC-CAVI’s performance with that of MCMC in an important complex

model used in NMR spectroscopy data analysis. The third distribution seeks to im-

prove metabolite identification, one of the biggest bottlenecks in metabolomics and

severely hindered by resonance overlapping in one-dimensional NMR spectroscopy.

In particular, we present a novel Bayesian method for widely used two-dimensional
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(2D) 1H J-resolved (JRES) NMR spectroscopy, which has considerable potential

to accurately identify and quantify metabolites within complex biological samples,

through combining B-spline tight wavelet frames with theoretical templates. We

then demonstrate the effectiveness of our approach via analyses of JRES datasets

from serum and urine.



Impact Statement

Metabolomics, as an expression of genetic and environmental factors, is essential to

facilitating our further comprehension of how humans and other organisms function

as individuals and interacting complex systems. 1H Nuclear Magnetic Resonance

(NMR) spectroscopy is one of the main techniques used for metabolite data acqui-

sition but usually large and heavily structured. The aim of this thesis is to design

pioneering analytical approaches and statistical methods to aid the development

of better algorithms for NMR data analysis. The establishment of our work can

have a great contribution inside academia. First, the estimation of the number of

protonation sites from NMR spectroscopic data may be valuable for the future de-

velopment of algorithms for analysis of metabolomic 1H NMR spectra including

alignment, annotation and peak fitting. Second, our discuss about the efficacy of

MC-CAVI algorithm helps researchers in choosing algorithms for NMR data analy-

sis and deciding future directions for algorithms improvement. Third, our Bayesian

model for JRES NMR spectroscopy data analysis, which has the capacity to in-

corporate information from previous experiments and reduce resonance overlap-

ping, benefits teams who focus on deconvolution and quantification of metabolites

(e.g. Metabolomics Research Group in RIKEN Center for Sustainable Resource

Science) and gives a guidance for developing Bayesian models for other spectro-

scopic datasets.

The work of the thesis can be effortlessly extended outside academia. Pharmaceu-

tical industry has studied metabolomics for nearly three decades now. Research
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group with these companies can utilise our model for JRES to their advantage in ac-

curate metabolite deconvolution and quantification, which will assist a wide range

of applications such as genetically modified plants development, disease-screening

and drug toxicity and pharmacology study. Our approach for estimating the num-

ber of protonation sites will also give assistance to the development of NMR data

analysing packages. In addition, the discussion of MC-CAVI algorithm can be ap-

plied to a variety of areas including the booming field of artificial intelligence where

computational efficiency is especially important due to the extremely large datasets.
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Chapter 1

Introductory Material

1.1 Metabolomics

In the post-genomic era, utilising “omic” techniques to investigate different levels

of biological organisation is gaining increasing and extensive popularity in both

industry and academia. Being different from other “omic” measures, the small

molecules, also known as metabolites, within cells, biofluids, tissues or organisms,

and their concentrations directly reflect the underlying biochemical activities and

states of cells or tissues. Therefore, when explaining the relationship between

genes and the overall function of a system, metabolomics, i.e. the large-scale study

of metabolome (the complete set of metabolites) and their interaction within an or-

ganism, more closely reveals the activities of the organism at a functional level [56].

Metabolomics can be formally defined as “the comprehensive quantitative anal-

ysis of all the metabolites of an organism or specified biological sample”, typi-

cally involving “the quantitative measurement of the multi-parametric time-related

metabolic responses of a complex (multi-cellular) system to a pathophysiological

intervention or generic modification” [95]. Although the terms “metabolomics”,

“metabonomics”, metabolic “fingerprinting” or “profiling” were assigned subtly

different definitions originally, they are usually interchangeably used nowadays.
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Generally, around 2,000 major metabolites for humans are considered. This num-

ber, however, increases substantially when secondary metabolites from bacteria,

fungi, or plants are considered [27, 35].

Focusing on high-throughput identification and quantification of metabolites [96],

metabolomics brings an extra dimension to our knowledge of biological systems

because metabolic fluxes, i.e. the rate of turnover of molecules through a metabolic

pathway, are regulated not only by gene expression, but also by additional fac-

tors, such as the abundance of metabolites as substrates (molecules acted upon by

enzymes) [122]. Metabolites in biofluids are in dynamic equilibrium with those

metabolites in cells and tissues so that their metabolic profile reflects the state tran-

sition of an organism caused by environmental or disease factors. Therefore, as

an expression of genetic and environmental factors, metabolomics is essential to

facilitate our further comprehension of how humans and other organisms function

as individuals and interacting complex systems.

Metabolomics is utilised extensively from studying drug toxicity and pharmacology

to disease-screening for conditions, such as, cancer or diabetes [65, 69, 75, 94, 97].

For example, “personalised health-care solutions”, which is the ultimate customi-

sation of healthcare, requires metabolomics for quick medical diagnosis to identify

disease. Besides, in agriculture, metabolomics can help us to develop genetically

modified plants and to estimate associated risks of difference modification by ob-

taining a glimpse of their complex biochemistry through informative snapshots ac-

quired at different time points during plant growth.

1.2 1H Nuclear Magnetic Resonance Spectroscopy
Almost all experiments in metabolomics require identification or quantification of

metabolites in complex biological mixtures, usually biofluids or tissue samples.
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Thus, depending on the aims or priorities of a study or experiment, a variety of

data-capturing techniques is employed in metabolomics, each with its own advan-

tages and disadvantages. Among these techniques, 1H Nuclear Magnetic Resonance

(NMR) spectroscopy is one of the main techniques used for metabolite data acqui-

sition [80, 115] because of its many advantages:

• NMR spectroscopy requires minimal sample preparation so that the analysis

process is highly reproducible.

• NMR spectroscopy is able to give an almost global metabolite profile includ-

ing structural information, which enables the identification of the most abun-

dant metabolites.

• NMR spectroscopy has the potential to detect nearly all proton-containing

metabolites and allows metabolites to be detected simultaneously without pre-

selection.

• NMR spectroscopy is capable of measuring concentrations as low as 100µM

[111] and even lower with some techniques such as cryoprobe technology

[141].

With all these advantages, 1H NMR is widely applied and research in NMR based

metabolomics has obtained substantial attention in biomedical sciences, with nu-

merous applications in the areas of biology and medicine, including biochemistry

[104, 99], oncology [57, 64], disease diagnostics [18, 11], epidemiology [66, 131],

genetics [70, 34], organism classification [20, 88], and toxicology [81, 59]. For

instance, [11] show that in patients affected by head and neck squamous cell carci-

noma and undergoing radio-/chemo-radiotherapy real-time dynamic changes in the

serum metabolome can be detected at the beginning of the treatment using NMR-

based metabolomics. This metabolic alterations are characteristic for malnutrition

or cachexia and their early detection enables identifying and monitoring patients
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with a higher risk of weight loss.

NMR spectroscopy, however, is not flawless. One major drawback of NMR spec-

troscopy, compared with other analytical methods (e.g. mass spectrometry), is its

relatively poor sensitivity: there are usually thousands of metabolites in biofluids,

but a typical NMR spectrum only contains signals from a few hundred of the most

abundant metabolites.

NMR spectroscopy is based on the fact that in a static magnetic field, the atomic

nuclei (in this case 1H) absorb at a frequency proportional to the strength of the

field, by detecting the resonance of hydrogen nuclei. When placed in a magnetic

field, the magnetic moment of the hydrogen atom adopts one of the two permitted

orientations of different energy. The difference in energy of these two states is

dependent upon the strength of interaction between the magnetic moment of the

nucleus and the field [68]. This energy difference is chemical shift, which can be

measured by using electromagnetic radiation of a certain frequency which drives

the nuclei to shift between states.

The position and number of chemical shifts can be used to diagnose the chemical

structure of the molecule. Therefore, the NMR spectrum for each metabolite is

comprised of a characteristic pattern of peaks or resonances, derived from three

main factors:

1. The chemical shift (δ ) of each resonance relies on the local magnetic field

experienced by each nucleus. The local magnetic field is dependent upon the

extent to which molecular orbitals shield the influence of the external spec-

trometer field. Therefore the chemical shift reveals the bonding configuration

and chemical structure of the metabolite. While Hz is the fundamental fre-
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quency unit of NMR, the frequency observed is based on the strength of the

magnetic field. Thus the position of each peak is given in a scale of parts

per million (ppm) instead through dividing the response frequency (in Hz) by

the carrier frequency (in MHz) [68] and the y-axis is measured and standard-

ised by dividing peak heights to the peak heights of an internal standard (e.g.

3-(Trimethylsilyl)-Propionic acid-D4 (TSP)).

2. Spin-spin coupling (also known as J-coupling or scalar coupling) is the phe-

nomenon of magnetic interactions between close nuclei. Due to spin-spin

coupling, a proton has more than one resonant frequency resulting in a jux-

taposition of peaks named as a “multiplet” (as shown in Figure 1.1), whose

pattern is determined by the chemical structure of the molecule.

3. For a given metabolite, with the assumption that there are no differential re-

laxation effects, integrated peak area is proportional to the number of existing

1H nuclei and allows quantification of the concentration of the metabolite.

A typical NMR spectrum is characterised by a 1-dimensional (1D) signal, which

consists of a series of resonance intensity measurements taken over a grid of fre-

quencies (a scale of ppm of an internal standard), where the x-axis corresponds

to the resonant frequency (usually plotted to decrease from left to right), which

is controlled artificially through experiments. The y-axis corresponds to the reso-

nance intensity, which are the observations of the experiment. The intensity varies

in proportion to metabolite concentrations detected and metabolites are represented

by “peaks” in the spectral data, where the instrument has registered the presence of

a molecular species within the biofluid. Another important component of a NMR

spectrum is the chemical shift, which is the resonant frequency (location on the

x-axis) of a peak and hence is inferred from the observations. An example of 1H

NMR spectra is shown in Figure 1.2.
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Figure 1.1: Example of a NMR multiplet signal resulting from spin-spin cou-
pling.

The spectrum from a pure compound will comprise a “signature” of peaks, which

contains some information of the structure of the compound. Under ideal condi-

tions, each peak has the form of a Lorentzian curve. A zero-centred, standardized

Lorentzian function can be represented by the following equation (i.e., the pdf of a

Cauchy distribution with scale parameter γ/2):

`γ(x) =
2γ

π(4x2 + γ2)
, (1.1)

where γ is interpreted as the “peak-width at half-height” (or “linewidth”) and x

is the resonance frequency. The NMR spectrum of a complex mixture can be

effectively approximated by a linear combination of several spectra from pure com-

pounds, i.e a biofluid spectrum containing K different metabolites can be treated

as K-dimensional object, in which each dimension is the concentration signal of

a single metabolite [82]. This superposition of peaks and multiplets generates a
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Figure 1.2: Example of 1H NMR Spectra

complex spectrum where individual signature patterns overlap. These spectra can

be further complicated by the shift of peak position, which is the mixed conse-

quences of matrix effects, variation in experimental conditions and differences in

the chemical properties of the sample, e.g pH value and the strength of other ionic

species in the mixture [33]. These problems, combined with background noise

and the presence of contaminants, result in difficulty in designing automated algo-

rithms for deconvolution and quantification of metabolites from NMR spectroscopy.

Identification and quantification of metabolite signals in NMR data has made huge

progresses as a consequence of the development of several databases aimed to docu-

ment metabolite data, such as Biological Magnetic Resonance Bank (BMRB) [129],

which provides the information on molecules including peptides, proteins, and nu-

cleic acids, and the Human Metabolome Database (HMDB) [136, 137, 138, 139],
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which focuses more specifically on small molecule metabolites discovered in the

human body. Although these databases are valuable, there are still several chal-

lenges in curating the “ideal” data resources. One major problem is that these

databases are inherently limited in their coverage. The other problem is that the

experimental conditions may be inconsistent for different metabolite data. For in-

stance, there might be much variation in pH in different experiments.

Astle et al. [3] developed a Bayesian model, which incorporated information avail-

able in online databases on the patterns of spectral resonance generated by human

metabolites, to automate peak assignment and spectral deconvolution for 1D 1H

NMR spectra in the frequency domain. This model and its specially designed

MCMC strategy are implemented in the R package BATMAN [60]. However,

this model cannot fully address the problems of target signals being overlapped

by other sharp signals, which are not explicitly modelled. This problem is par-

ticularly pronounced in crowded spectral regions. Therefore, it is of paramount

importance to develop appropriate statistical approaches to precisely identify and

quantify metabolites within complex biological samples, so that the capability of

metabolomics can be fully realised.

1.3 JRES
The full capability of metabolomics cannot be achieved until appropriate ap-

proaches are established to precisely identify and quantify metabolites within

complex biological samples. Spectral deconvolution and identification can be

substantially improved by going from one- to two-dimensional spectra at the ex-

pense of prolonged experimental time. Two-dimensional (2D) NMR methods have

considerable potential and become increasingly popular in metabolomics. Com-

pared to 1D spectra, peak overlap in 2D spectra is greatly diminished because spin

magnetization is transferred between different nuclear spins and provides more so-
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phisticated spectra. The introduction of an additional dimension allows for a better

representation of metabolites, which greatly aids biomarker identification.

A popular 2D method for metabolomics is 2D 1H J-resolved NMR spectroscopy

(JRES), first introduced by Aue et al. [5]. Unlike other 2D methods, such as correla-

tion spectroscopy (COSY) [4, 17] or total correlation spectroscopy (TOCSY) [32],

which use J-coupling to correlate chemical shifts of the coupling spins, JRES dis-

perses the overlapping resonances into a second dimension and provides a metabolic

fingerprint in a relatively short acquisition time because of the low number of in-

crements recorded in the spin-spin coupling dimension. In 1D spectra, much of the

peak overlap is due to each resonance being split into multiple peaks by J-coupling.

Moving this dispersion into a separate dimension in JRES therefore significantly

reduces congestion, and enhances metabolite identification and estimation [84].

2D JRES spectra are collections of convolved peaks, of which Figure 1.3 shows

an example. Each spectral peak corresponds to magnetic nuclei resonating in the

biological mixture represented by a pair of frequency coordinates determining the

displacement of the peak in the (x,y)-plane. The x-axis corresponds to the chemical

shift and is measured in parts per million (ppm) of the resonant frequency of a

standard peak. The y-axis corresponds to the J-coupling information and shows

the distance of each peak from the centre of the resonance in Hz/F , where F is the

operating frequency of the spectrometer in MHz. Volume under each peak on the

z-axis is proportional to the concentration of the corresponding metabolite in the

biological mixture.

Resonance frequencies of magnetic nuclei are largely determined by their molec-

ular environment, that is, the chemical structure of the molecules in which they

are embedded and the configuration of their chemical bonds within the molecules.

Consequently, every metabolite has a characteristic molecular 2D 1H J-resolved
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Figure 1.3: Example of a JRES spectrum surface plot. The x-axis corresponds
to the chemical shift and is measured in parts per million (ppm) of
the resonant frequency of a standard peak. The y-axis corresponds
to the J-coupling information and shows the distance of each peak
from the center of the resonance measured in Hz/F . The standard-
ized intensity on the z-axis is proportional to the concentration of
the corresponding metabolite.

NMR signature, i.e. presents itself as a convolution of peaks that appear in specific

positions in the 2D JRES spectrum. The peaks of a signature often have signifi-

cantly different chemical shifts and J-coupling information, and so appear widely

separated in a spectrum.

1.4 Bayesian Inference

In order to perform inference of both 1D and 2D NMR data, which is large and

heavily structured, sophisticated statistical techniques are necessary. Bayesian

methodology has the capacity of being able to incorporate expert knowledge,

database information and previous experiment results into the prior distribution,

and is extensively applied in the field of metabolomics for several purposes (e.g.,

latent variable analysis, network/pathway analysis, variable selection/dimension
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reduction and spectral deconvolution).

Bayesian inference is an approach to statistics in which all forms of uncertainty

are expressed with probability. To start with, we need to specify a model, which

we assume is adequate, to describe the situation of interest. Then, based on our

beliefs about the situation before seeing the data y, we formulate a prior distribu-

tion p(θ |φφφ) over θ , where θ denotes the unknown parameter of the model and φφφ

denotes the hyperparameters. After observing the data, we apply Bayes’ theorem

(alternatively Bayes’ law or Bayes’ rule) to obtain a posterior distribution for the

unknown parameters, combining the information from both the prior and the data.

This process can be stated mathematically as the following equation:

p(θ |y,φφφ) = p(y|θ)p(θ |φφφ)
p(y|φφφ)

, (1.2)

where p(θ |y,φφφ) is called the posterior probability of the parameter θ . From the

posterior distribution of the unknown parameter (p(θ |y,φφφ)), we are able to com-

pute predictive distributions for future observations and describe the data generat-

ing process through, for example, calculating the expectation and variance of the

unknown parameter (θ ). p(y|θ) is the likelihood function of the data and p(y|φφφ) is

the marginal likelihood, which can be calculated by the following equation:

p(y|φφφ) =
ˆ

θ

p(y|θ)p(θ |φφφ)dθ . (1.3)

p(y|φφφ) is also referred to as “model evidence”.

In the case of multi-parameter models, where θθθ = (θ1, ...,θk), deriving the proba-

bility distribution of the parameters of interest, say θ1, requires averaging over the

remaining parameters. The marginal distribution p(θ1|y) needs to be derived from
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the joint posterior distribution p(θθθ |y) = p(θ1,θ2, ...,θk|y) by:

p(θ1|y) =
ˆ

θk

ˆ
θk−1

...

ˆ
θ2

p(θ1,θ2, ...,θk|y)dθ2dθ3...dθk (1.4)

or alternatively

p(θ1|y) =
ˆ

θk

ˆ
θk−1

...

ˆ
θ2

p(θ1|θ2, ...,θk,y)p(θ2,θ3, ...,θk|y)dθ2dθ3...dθk. (1.5)

These high dimensional posterior distributions are usually rather challenging to cal-

culate either analytically or numerically. The problem of making inference on this

type of distributions can be addressed by employing Markov Chain Monte Carlo

(MCMC) methods. MCMC methods are a class of algorithms for sampling (simu-

lation of random draws) from a complex probability distribution, say f (x) by con-

structing a Markov chain that has f (x) as its equilibrium distribution. A discrete-

time Markov chain is a stochastic process {Xt : t = 0,1,2, ...} satisfying the Markov

property (also known as the memoryless property) such that:

P(Xn = xn|X0 = x0,X1 = x1, ...,Xn−1 = xn−1) = P(Xn = xn|Xn−1 = xn−1) (1.6)

i.e. the probability distribution of future state is only determined by the present

state, not on the entire observation history [44]. For a continuous-time Markov

chain {Xt : t ≥ 0} with state space S, the Markov property follows:

P(X(t) = j|X(s) = i,X(tn−1) = in−1, . . . ,X(t1) = i1) =P(X(t) = j|X(s) = i), (1.7)

where 0 ≤ t1 ≤ t2 ≤ ·· · ≤ tn−1 ≤ s ≤ t is any non-decreasing sequence of n+ 1

times and i1, i2, . . . , in−1, i, j ∈ S are any n+1 states in the state space, for any inte-

ger n≥ 1. Once a large enough sample has been obtained, all the essential features

of the probability distribution of interest can be approximated and summarized to
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any degree of accuracy.

There are many MCMC methods, such as the Metropolis-Hastings algorithm, which

is simple but practical and can be used, in principle, to obtain random samples from

any arbitrarily complicated target distribution of any dimension that is known up to

a normalizing constant. Suppose we need to draw samples from f (x), a complex

probability distribution whose normalization constant is impossible or extremely

difficult to calculate. The Metropolis-Hastings algorithm requires only the value of

a function, say g(x), which is proportional to f (x):

g(x) ∝ c∗ f (x) (1.8)

where c is the normalizing constant. For each iteration t, a candidate value Y is pro-

posed for Xt+1 using a “proposal distribution”, say q(x), with acceptance probability

α(Xt ,Y ), which has the following form:

α(Xt ,Y ) = min{1, g(Y )q(Xt |Y )
g(Xt)q(Y |Xt)

}. (1.9)

A special case of the Metropolis-Hastings algorithm is the Gibbs sampling (or

Gibbs sampler), whose probability of acceptance is equal to one. Gibbs sam-

pling is applicable when the conditional distribution of each variable is known

and is easy (or at least, easier) to sample from while the joint distribution is not

known explicitly or is difficult to sample from directly. Suppose a large sample of

θθθ = (θ1,θ2, ...,θk) needs to be obtained from the joint distribution f (θ1,θ2, ...,θk).

Then for each draw (t = 1,2, ...), θ
(t)
i is sampled from the conditional distribu-

tion p(θ (t)
i |θ

(t)
1 ,θ

(t)
2 , ...,θ

(t)
i−1,θ

(t)
i+1, ...,θ

(t)
k ), which is proportional to the joint dis-

tribution f (θ1,θ2, ...,θk). In other words, each variable is sampled given the

most recently updated values of rest variables. There are various ways to extend
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Metropolis-Hastings algorithm, for example, the Metropolis-adjusted Langevin al-

gorithm (MALA), based on solving the Langevin diffusion,

dXt =
1
2

∇ log f (Xt)dt +dBt , (1.10)

where Bt is the standard Brownian motion and ∇ f denotes the gradient of f . Al-

though computing the gradient at each iteration requires extra time, there is strong

evidence that the MALA algorithm provides noticeable speed-ups in convergence

[109]. Particle Markov chain Monte Carlo (PMCMC) is another extension of the

Metropolis-Hastings algorithm, where sequential Monte Carlo (SMC) is introduced

to design efficient high dimensional proposal distributions. With appropriate choice

of proposal distribution, PMCMC is suitable for sampling from a target distri-

bution with much high dimension and complex patterns of dependence [2]. The

application of adaptive rejection sampling (ARS) methods for sampling from the

full-conditional densities [90] is another extension of the Metropolis-Hastings al-

gorithms.

Burn-in is the practice of throwing away some iterations at the beginning of an

MCMC run. In theory, the Markov chain eventually converges to the desired distri-

bution, but it is possible that the initial samples follow a very different distribution,

especially when the chosen starting point is from a region with low density. There-

fore, a burn-in period is often utilised so that the effect of initial values on posterior

inference is minimized since it is unlikely to start with a good initial point. In

practice, we usually choose a large value, say M, and assume that after M iterations,

the Markov chain has reached its target distribution. The samples drawn after the

burn-in are used for posterior inference.

Thinning, i.e. saving only every kth iteration, is a strategy commonly adopted
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in MCMC to reduce high sample autocorrelation and avoid biased Monte Carlo

standard errors when consecutive draws are highly correlated with each other. For

example, to obtain a run of 10,000 iterations one would run k×10,000 simulations

and save only every kth one. But note that thinning a Markov chain can be unnec-

essary and inefficient because a fraction of all the posterior samples generated are

thrown away [83]. Maceachern and Berliner [87] show that you always get more

precise posterior estimates if the entire Markov chain is used. However, thinning is

also an attempt to speed up post-processing or reduce required computer storage.

Assessing the convergence of a Markov chain is always a major challenge. Despite

much theoretical research into convergence issues, there is limited benefit thus far

for practical applications. Although it remains impossible to be completely certain

that the simulated draws are representative enough to summarize the posterior dis-

tribution or calculate any relevant quantities of interest, there are many diagnostic

measures and techniques available to help evaluating convergence. Cowles and

Carlin [29] provide a detailed review of convergence diagnostics.

A trace plot of samples versus the simulation index is one of the most straightfor-

ward visual analysis in assessing convergence. Two examples of trace plots are

shown in Figure 1.4.

Figure 1.4: Left panel: a trace plot of a well-mixed Markov chain; Right panel:
a trace plot of a poorly-mixed Markov chain
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The plots in Figure 1.4 indicate whether the chain has converged to its stationary

distribution or if it gets stuck in a local region and moves poorly. A relatively

constant mean and variance are usually aspects of stationarity that are examined in

a trace plot. Plotting the sample mean up to each iteration versus the simulation

index can also be useful to detect a relatively constant mean. In addition, investigat-

ing the auto-correlation is helpful to assess the convergence of the Markov chain.

The decrease of the correlation as the lag (kth lag auto-correlation) increases is an

indication of convergence.

There are several Markov chain convergence diagnostic tests, e.g. Gelman-Rubin

convergence diagnostic and Geweke diagnostic. The Gelman-Rubin diagnos-

tics evaluates MCMC convergence by analysing the difference between multi-

ple Markov chains. For each model parameter, between-chains and within-chain

variances are estimated. Large differences between these variances indicate non-

convergence. The Geweke diagnostic compares the means of the first and last part

of a Markov chain. If the difference between these two means are small enough,

the Markov chain is assumed to have reached the stationary distribution.

Several software packages, e.g. The BUGS [86] (Bayesian inference Using Gibbs

Sampling) family and JAGS (Just another Gibbs sampler), are available for au-

tomating the Bayesian analysis of models by MCMC methods. JAGS is a program

developed by Plummer [102] and has been employed in many fields including

metabolomics. JAGS, being compatible with BUGS family by using a particular

version of the same modelling language, is highly extensible and allows users to

develop new libraries and add-ons.

After it was released in 2012, Stan [21], another software written in C++ for statis-

tical inference, is gaining increasing popularity. Stan uses reverse-mode automatic
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differentiation to calculate gradients of the model so that gradient-based MCMC

algorithms, gradient-based variational Bayesian methods and gradient-based opti-

mization can be implemented. No-U-Turn sampler (NUTS), Hamiltonian Monte

Carlo (HMC), Black-box Variation Inference (BBVI) are some examples of algo-

rithms behind Stan. These algorithms make Stan usually more efficient and con-

verge faster than JAGS.

1.5 Variational Inference

Variational Inference (VI) [72, 133] is a powerful method to approximate intractable

integrals. As an alternative strategy to Markov chain Monte Carlo (MCMC) sam-

pling, VI is fast, relatively straightforward for monitoring convergence and typically

easier to scale to large data [14] than MCMC. The key idea of VI is to approximate

difficult-to-compute conditional densities of latent variables, given observations, via

use of optimization. A family of distributions is assumed for the latent variables,

as an approximation to the exact conditional distribution. VI aims at finding the

member, amongst the selected family, that minimizes the Kullback-Leibler (KL)

divergence from the conditional law of interest.

Let x and z denote, respectively, the observed data and latent variables. The goal

of the inference problem is to identify the conditional density (assuming a relevant

reference measure, e.g. Lebesgue) of latent variables given observations, i.e. p(z|x).

Let L denote a family of densities defined over the space of latent variables – we

denote members of this family as q = q(z) below. The goal of VI is to find the

element of the family closest in KL divergence to the true p(z|x). Thus, the original

inference problem can be rewritten as an optimization one: identify q∗ such that

q∗ = argmin
q∈L

KL(q | p(·|x)) (1.11)
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for the KL-divergence defined as

KL(q | p(·|x)) = Eq[logq(z)]−Eq[log p(z|x)]

= Eq[logq(z)]−Eq[log p(z,x)]+ log p(x),

with log p(x) being constant w.r.t. z. Notation Eq refers to expectation taken over z∼

q. Thus, minimizing the KL divergence is equivalent to maximising the evidence

lower bound, ELBO(q), given by

ELBO(q) = Eq[log p(z,x)]−Eq[logq(z)]. (1.12)

Let Sp⊆Rm, m≥ 1, denote the support of the target p(z|x), and Sq⊆Rm the support

of a variational density q ∈L – assumed to be common over all members q ∈L .

Necessarily, Sp ⊆ Sq, otherwise the KL-divergence will diverge to +∞.

Many VI algorithms focus on the mean-field variational family, where variational

densities in L are assumed to factorise over blocks of z. That is,

q(z) =
b

∏
i=1

qi(zi), Sq = Sq1×·· ·×Sqb, z = (z1, . . . ,zb) ∈ Sq, zi ∈ Sqi, (1.13)

for individual supports Sqi ⊆Rmi , mi ≥ 1, 1≤ i≤ b, for some b≥ 1, and ∑i mi = m.

It is advisable that highly correlated latent variables are placed in the same block to

improve the performance of the VI method.

There are, in general, two types of approaches to maximise ELBO in VI: a co-

ordinate ascent approach and a gradient-based one. Co-ordinate ascent VI (CAVI)

[13] is amongst the most commonly used algorithms in this context. To obtain a

local maximiser for ELBO, CAVI sequentially optimizes each factor of the mean-

field variational density, while holding the others fixed. Analytical calculations

on function space – involving variational derivatives – imply that, for given fixed
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q1, . . . ,qi−1,qi+1, . . . ,qb, ELBO(q) is maximised for

qi(zi) ∝ exp
{
E−i[log p(zi−,zi,zi+,x)]

}
, (1.14)

where z−i := (zi−,zi+) denotes vector z having removed component zi, with i−

(resp. i+) denoting the ordered indices that are smaller (resp. larger) than i; E−i is

the expectation taken under z−i following its variational distribution, denoted q−i.

The above suggest immediately an iterative algorithm, guaranteed to provide values

for ELBO(q) that cannot decrease as the updates are carried out.

The expected value E−i[log p(zi−,zi,zi+,x)] can be difficult to derive analytically.

Also, CAVI typically requires traversing the entire dataset at each iteration, which

can be overly computationally expensive for large datasets. Gradient-based ap-

proaches, which can potentially scale up to large data – alluding here to recent

Stochastic-Gradient-type methods – can be an effective alternative for ELBO op-

timisation. However, such algorithms have their own challenges, e.g. in the case

reparameterization Variational Bayes (VB) analytical derivation of gradients of the

log-likelihood can often be problematic, while in the case of score-function VB

the requirement of the gradient of logq restricts the range of the family L we can

choose from.

In real-world applications, hybrid methods combining Monte Carlo with recur-

sive algorithms are common, e.g., Auto-Encoding Variational Bayes, Doubly-

Stochastic Variational Bayes for non-conjugate inference, Stochastic Expectation-

Maximization (EM) [7, 116, 134]. In VI, Monte Carlo is often used to estimate the

expectation within CAVI or the gradient within derivative-driven methods. This is

the case, e.g., for Stochastic VI [63] and Black-Box VI (BBVI) [105].

BBVI is used in this work as a representative of gradient-based VI algorithms. It al-

lows carrying out VI over a wide range of complex models. The variational density

q is typically chosen within a parametric family, so finding q∗ in (1.11) is equiv-
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alent to determining an optimal set of parameters that characterize qi = qi(·|λi),

λi ∈ Λi ⊆ Rdi , 1≤ di, 1≤ i≤ b, with ∑
b
i=1 di = d. The gradient of ELBO w.r.t. the

variational parameters λ = (λ1, . . . ,λb) equals

∇λ ELBO(q) := Eq
[
∇λ logq(z|λ ){log p(z,x)− logq(z|λ )}

]
(1.15)

and can be approximated by black-box Monte Carlo estimators as, e.g.,

̂∇λ ELBO(q) := 1
N

N

∑
n=1

[
∇λ logq(z(n)|λ ){log p(z(n),x)− logq(z(n)|λ )}

]
, (1.16)

with z(n) iid∼ q(z|λ ), 1≤ n≤N, N ≥ 1. The approximated gradient of ELBO can then

be used within a stochastic optimization procedure to update λ at the kth iteration

with

λk+1← λk +ρk
̂∇λk
ELBO(q), (1.17)

where {ρk}k≥0 is a Robbins-Monro-type step-size sequence [107]. As we will see

in later sections, BBVI is accompanied by generic variance reduction methods, as

the variability of (1.16) for complex models can be large.

Remark 1 (Hard Constraints). Though gradient-based VI methods are some times

more straightforward to apply than co-ordinate ascent ones, – e.g. combined with

the use of modern approaches for automatic differentiation [77] – co-ordinate

ascent methods can still be important for models with hard constraints, where

gradient-based algorithms are laborious to apply. (We adopt the viewpoint here

that one chooses variational densities that respect the constraints of the target, for

improved accuracy.) Indeed, notice in the brief description we have given above for

CAVI and BBVI, the two methodologies are structurally different, as CAVI does not

necessarily require to be build up via the introduction of an exogenous variational

parameter λ . Thus, in the context of a support for the target p(z|x) that involves
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complex constraints, a CAVI approach overcomes this issue naturally by blocking

together the zi’s responsible for the constraints. In contrast, introduction of the vari-

ational parameter λ creates sometimes severe complications in the development of

the derivative-driven algorithm, as normalising constants that depend on λ are ex-

tremely difficult to calculate analytically and obtain their derivatives. Thus, a main

argument spanning this work – and illustrated within it – is that co-ordinate-ascent-

based VI methods have a critical role to play amongst VI approaches for important

classes of statistical models.

Remark 2. The discussion in Remark 1 is also relevant when VB is applied with

constraints imposed on the variational parameters. E.g. the latter can involve co-

variance matrices, whence optimisation has to be carried out on the space of sym-

metric positive definite matrices. Recent attempts in the VB field to overcome this

issue involves updates carried out on manifolds, see e.g. Tran et al. [125].

Remark 3. Inserting Monte Carlo steps within a VI approach (that might use a

mean field or another approximation) is not uncommon in the VI literature. E.g.,

Forbes and Fort [48] employ an MCMC procedure in the context of a Variational

EM (VEM), to obtain estimates of the normalizing constant for Markov Random

Fields – they provide asymptotic results for the correctness of the complete algo-

rithm; Tran et al. [126] apply Mean-Field Variational Bayes (VB) for Generalised

Linear Mixed Models, and use Monte Carlo for the approximation of analytically

intractable required expectations under the variational densities; several references

for related works are given in the above papers. Our work focuses on MC-CAVI,

and develops theory that is appropriate for this VI method. This algorithm has not

been studied analytically in the literature, thus the development of its theoretical

justification – even if it borrows elements from Monte Carlo EM – is new.
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1.6 A Bayesian Model of NMR Spectra

The NMR spectrum can contain information for a few hundreds of compounds.

Resonance peaks generated by each compound must be identified in the spectrum

after deconvolution. The spectral signature of a compound is given by a combi-

nation of peaks not necessarily close to each other. Such compounds can generate

hundreds of resonance peaks, many of which overlap. This causes difficulty in peak

identification and deconvolution. The analysis of NMR spectrum is further com-

plicated by fluctuations in peak positions among spectra induced by uncontrollable

variations in experimental conditions and the chemical properties of the biologi-

cal samples, e.g. by the pH. Nevertheless, extensive information on the patterns

of spectral resonance generated by human metabolites is now available in online

databases. By incorporating this information into a Bayesian model, we can decon-

volve resonance peaks from a spectrum and obtain explicit concentration estimates

for the corresponding metabolites. Spectral resonances that cannot be deconvolved

in this way may also be of scientific interest; these are modelled in Astle et al. [3]

using wavelet basis functions. More specifically, an NMR spectrum is a collec-

tion of peaks convoluted with various horizontal translations and vertical scalings,

with each peak having the form of a Lorentzian curve. A number of metabolites

of interest have known NMR spectrum shape, with the height of the peaks or their

width in a particular experiment providing information about the abundance of each

metabolite.

We now describe the Bayesian model of NMR Spectra for the deconvolution and

quantification of metabolites developed by Astle et al. [3] which is used to compare

the efficacy of MCMC and VI in Chapter 3 and inspires our model for 2D JRES

spectrum in Chapter 4s. The available data are represented by the pair (x,y), where

x is a vector of n ordered points (of the order 103− 104) on the chemical shift

axis – often regularly spaced – and y is the vector of the corresponding resonance
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intensity measurements (scaled, so that they sum up to 1). The conditional law of

y|x is modelled under the assumption that yi|x are independent Normal variables

and

E [yi |x ] = φ(xi)+ξ (xi), 1≤ i≤ n. (1.18)

Here, the φ component of the model represents signatures that we wish to assign to

target metabolites. The ξ component models signatures of remaining metabolites

present in the spectrum, but not explicitly modelled. We refer to this latter as resid-

ual spectrum and we highlight the fact that it is important to account for it as it can

unveil important information not captured by φ(·). Function φ is constructed para-

metrically using results from the physical theory of NMR and information available

from online databases or expert knowledge, while ξ is modelled semiparametri-

cally with wavelets generated by a mother wavelet (symlet 6) that resembles the

Lorentzian curve.

More analytically,

φ(xi) =
M

∑
m=1

tm(xi)βm

where M is the number of metabolites modelled explicitly and β = (β1, . . . ,βM)>

is a parameter vector corresponding to metabolite concentrations. Based on the

theoretical shape function for NMR peaks (Eq. 1.1), function tm(·) represents a

continuous template function that specifies the NMR signature of metabolite m and

it is defined as

tm(δ ) = ∑
u

Vm,u

∑
v=1

zm,u ωm,u,v `γ(δ −δ
∗
m,u− cm,u,v), δ > 0, (1.19)

where u is an index running over all multiplets assigned to metabolite m, v is an

index representing a peak in a multiplet and Vm,u is the number of peaks in mul-

tiplet u of metabolite m. In addition, δ ∗m,u specifies the theoretical position on the

chemical shift axis of the centre of mass of the uth multiplet of the mth metabolite;
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zm,u is a positive quantity, usually equal to the number of protons in a molecule of

metabolite m that contributes to the resonance signal of multiplet u; ωm,u,v is the

weight determining the relative heights of the peaks of the multiplet; cm,u,v is the

translation determining the horizontal offsets of the peaks from the centre of mass

of the multiplet. Both ωm,u,v and cm,u,v can be computed by empirical estimates of

the so-called J-coupling constants; see Hore [67] for more details. The information

of zm,u and J-coupling constants can be found in online databases or from expert

knowledge.

The residual spectrum is modelled through wavelets,

ξ (xi) = ∑
j,k

ϕ j,k(xi)ϑ j,k

where ϕ j,k(·) denote the orthogonal wavelet functions generated by the symlet-6

mother wavelet, see Astle et al. [3] for full details; here, ϑ = (ϑ1,1, . . . ,ϑ j,k, . . .)
> is

the vector of wavelet coefficients. Indices j,k correspond to the kth wavelet in the

jth scaling level.

Finally, overall, the model for an NMR spectrum can be re-written in matrix form

as:

W (y−Tβ ) = In1ϑ + ε, εεε ∼ N(0,In1/λ ), (1.20)

where W ∈Rn×n1 is the inverse wavelet transform, M is the total number of known

metabolites, T is an n×M matrix with its (i,m)th entry equal to tm(xi) and λ is a

scalar precision parameter.

1.6.1 Prior Specification

Astle et al. [3] assign the following prior distribution to the parameters in the

Bayesian model. For the concentration parameters βm, because its support should

be confined to R+, Astle et al. [3] assume a Normal prior truncated below at zero
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for each βm,

βm ∼ TN(em,1/sm,0,∞),

where em = 0 and sm = 10−3, for all m = 1, . . . ,M. This prior distribution is flexible

enough for a wide range of research problems. Since Astle et al. [3] focus on the

spectra generated by biofluids, for which peak widths vary negligibly within spectra,

a single common peak width parameter γ is assumed for peaks within a spectrum

and the prior distribution is

γ ∼ LN(0,1),

where LN denotes a Log-Normal distribution. Moreover, for the multiplet chemical

shift parameters δ ∗m,u, which do fluctuate slightly between spectra due to different

experimental conditions, an estimate δ̂ ∗m,u for each δ ∗m,u is obtained from online

databases (e.g. HMDB [see 136, 137, 138, 139]) to construct an informative prior

that

δ
∗
m,u ∼ TN(δ̂ ∗m,u,10−4, δ̂ ∗m,u−0.03, δ̂ ∗m,u +0.03),

where the truncation is chosen because the positional noise is local and smaller fluc-

tuations are more probable. In the regions of the spectrum where both parametric

(i.e. φ ) and semiparametric (i.e. ξ ) components need to be fitted, the likelihood is

unidentifiable. To tackle this problem, Astle et al. [3] opt for shrinkage priors for the

wavelet coefficients and include a vector of hyperparameters ψ – each component

ψ j,k of which corresponds to a wavelet coefficient – to penalize the semiparamet-

ric component. To reflect prior knowledge that NMR spectra are usually restricted

to the half plane above the chemical shift axis, Astle et al. [3] introduce a vector

of hyperparameters τ , each component of which, τi, corresponds to a spectral data

point, to further penalize spectral reconstructions in which some components of
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W −1ϑϑϑ are less than a small negative threshold. In conclusion, motivated by a scale

mixture of Multivariate Normals with smoothed truncation limits

p(ϑ |ψ,τ,λ ) =
λ n1/2

∏ j,k ψ
1/2
j,k

Cψ,τ,λ
exp

(
−1

2 ∑
j,k

λψ j,kϑ
2
j,k

)
1
{

W −1
ϑ ≥ τ

}
,

ψ j,k ∼ Gamma(c j,d j/2),

τi ∼ TN(h,1/(λ r),−∞,h),

λ ∼ Gamma(a,e/2)

Astle et al. [3] specify the following joint prior density for (ϑ ,ψ,τ,λ ),

p(ϑ ,ψ,τ,λ ) ∝ λ
a+n+n1

2 −1
{

∏
j,k

ψ
c j−0.5
j,k exp

(
− ψ j,kd j

2

)}
× exp

{
− λ

2

(
e+∑

j,k
ψ j,k ϑ

2
j,k + r

n

∑
i=1

(τi−h)2
)}

×1
{

W −1
ϑ ≥ τ, h1n ≥ τ

}
,

where ψ introduces local shrinkage for the marginal prior of ϑ and τ is a vector of

n truncation limits, which bounds W −1ϑ from below. The truncation imposes an

identifiability constraint: without it, when the signature template does not match the

shape of the spectral data, the mismatch will be compensated by negative wavelet

coefficients, such that an ideal overall model fit is achieved even though the signa-

ture template is erroneously assigned and the concentration of metabolites is over-

estimated. Finally we set c j = 0.05, d j = 10−8, h = −0.002, r = 105, a = 10−9,

e = 10−6; see Astle et al. [3] for more details.

1.6.2 MCMC Algorithm

To make inferences about the model parameters, Astle et al. [3] implement an

MCMC algorithm with three types of MCMC updates:

• There are Gibbs samplers for β , ϑ , ψ , τ and λ
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• There are Metropolis-Hastings updates for each δ ∗m,u and γ

• There are Metropolis-Hastings block updates to break the posterior correla-

tion between the semiparametric (ξ ) and the parametric (φ ) model compo-

nents. The block updates include: (i) δ ∗m,u and ϑ ; (ii) β and ϑ

In addition, in order to improve convergence and mixing, Astle et al. [3] temper

the likelihood and penalize the wavelet component of the model during the burn-in

stage.

Python, C++ and R have been extensively used during the development of this the-

sis. In Chapter 2, JAGS was used via R to perform Bayesian statistical analyses.

Python was adopted to analyse data from online databases and summarise posterior

distributions. In Chapter 3, Python was employed to perform Bayesian inference

for relatively simple models and C++ was used for full NMR spectra analysis. In

Chapter 4, 1D NMR data and JRES data were analysed with C++.

1.7 Aims
Metabolite identification, data processing and interpretation of results are three ma-

jor bottlenecks within metabolomic research. Metabolite identification, which is

complicated by the great variability of molecular structures and abundance, depends

upon the robustness of the data capture techniques. Data processing and reduction

techniques are complicated and depend on each laboratory’s focus area since dif-

ferent results can be produced from a same dataset through different software and

statistical methods by different research groups. All these affect the reproducibility

and validation of metabolite analysis. Given the complex nature of the numerous

statistical challenges within metabolomics research, we aim to tackle a few of these

problems.

• In Chapter 2, to aid the development of better algorithms for 1H NMR data

analysis, we use observed NMR chemical shift titration data to estimate the
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number of protonation sites, a key parameter in the theoretical relationship

between pH and chemical shift. A Bayesian model is developed and fit to

the data incorporating theoretical knowledge on chemical shifts, using model

selection procedures in a MCMC algorithm.

• In Chapter 3, to improve the computational efficiency of NMR data analysis,

we discuss, and then apply a Monte Carlo Co-ordinate Ascent VI (MC-CAVI)

algorithm in a sequence of problems of increasing complexity, and study its

performance. We also contrast MC-CAVI with MCMC and a representative

of derivative-based VI methods – Black Box VI (BBVI) through simulated

and real examples, some of which involve hard constraints, which is the major

difficulty in the R package “BATMAN” [3]. In the end, we demonstrate MC-

CAVI’s effectiveness in NMR spectroscopy analysis.

• In Chapter 4, to aid metabolite identification by reducing resonance over-

lapping, based on a combination of theoretical templates and B-spline tight

wavelet frames, we describe a novel Bayesian method for the analysis of JRES

datasets from complex biological mixtures. Posterior inference is performed

through specially devised Markov chain Monte Carlo methods. We demon-

strate the effectiveness of our approach via analyses of datasets from serum

and urine.

• In Chapter 5, we discuss the main results and contributions of this project and

outline some future research directions.



Chapter 2

Bayesian Estimation of the Number

of Protonation Sites from NMR

Spectroscopic Data

This chapter has been published in Metabolomics. 2018; 14(5): 56. [140].

2.1 Background

In 1H NMR, the chemical shift and multiplicity pattern are characteristics of the

metabolite’s chemical structure, but are complicated by small sample-to-sample

changes in the position of individual resonances due to changes in pH, ionic strength

or other physical parameters[45]. While these can be ameliorated to some degree

by careful analytical procedures, such as addition of buffers and control of physical

conditions, changes in chemical shifts are still present in most NMR metabolomic

data sets. Computational approaches to correct these changes, such as alignment,

can introduce artefacts and are not able to correct shift changes which swap the

ordering of resonances [132]. Chemical shift changes can become a major problem

in the statistical analysis of NMR metabolomics data, as they disrupt the linear

relationship between NMR intensity at a given position and metabolite abundance

[42]. Thus, it becomes important to characterise and model chemical shift changes
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(see e.g. Takis et al. [121]), in part to aid construction of better algorithms for

data analysis, such as alignment or peak-fitting. Tredwell et al. [127] in 2016 re-

ported titration model parameters such as acid/base limits and pKas for 33 identified

metabolites in human urine, as well as titration curves for a further 65 unidentified

peaks. A key problem in modelling NMR spectra from untargeted metabolomics

is the unknown structure of the molecules giving rise to each resonance, and thus

the lack of knowledge of important parameters. In particular, the number of proton

binding sites strongly influences the relationship of chemical shift with pH, but has

traditionally been hard to infer from titration data alone. To solve this problem,

we aim to develop a Bayesian approach to estimate the number of proton binding

sites in 1H NMR metabolomics data, without expert knowledge of the molecule’s

chemical structure.

2.2 Methods

2.2.1 The model

As protonation is usually rapid and reversible on the NMR timescale, the theoret-

ical chemical shift (δ̃ ) is a weighted average of the limiting chemical shifts of the

unprotonated (δA) and the protonated (δHA) states of the molecule [58, 120].

H. et al. [58] model the theoretical chemical shift as a function of pH and pKa as

follows

δ̃ =
δA +δHA(10(pKa−pH))

1+10(pKa−pH)
(2.1)

Szakacs et al. [120] extend this approach to molecules with q > 1 protonation sites:

δ̃ =
δA +∑

q
i=1 δHiA10(∑

q
j=q−i+1 pK j)−ipH

1+∑
q
k=1 10(∑

q
l=q−k+1 pKl)−kpH

, (2.2)
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accounting for the interaction between protons bound at different binding sites and

the statistics of proton binding.

From (2.1)-(2.2), it is evident that the theoretical chemical shift follows a titration

curve which describes the position of the resonance over a range of pH. When the

number of sites is known, nonlinear fitting can be applied using Equation (2.2) to

model the titration curve to obtain the pKa values, as well as the acid and base

chemical shift limits [127]. However, in many metabolomics applications (for ex-

ample alignment), the number of protonation sites may not be known, especially

for unknowns or molecules of complex structure. Thus it is of interest to consider

whether the number of protonation sites can be estimated along with the pH depen-

dence of the chemical shift.

Here, we focus on inferring the number of protonation sites from observations of

chemical shift changes for a given resonance at different pH values. Due to their

small size, few metabolites have many protonation sites. We therefore limit the

search space to 1-site, 2-site and 3-site models, although the approach can be eas-

ily extended to include more than 3 protonation sites if required. We employ a

Bayesian approach because it provides a natural way of incorporating prior infor-

mation and combining results of different experiments. In the Bayesian framework,

it is, in principle, easy to incorporate model choice in the inferential process by

specifying an appropriate prior distribution on the model space. Posterior inference

is performed through Markov chain Monte Carlo (MCMC) methods. In this con-

text, as model selection involves models with different dimensions, we employ a

Reversible jump MCMC algorithm, which is implemented in the software JAGS

[102].

We propose a non-linear Bayesian regression model for each NMR resonance for
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each molecule. In particular, we assume that the observed chemical shift, yi, follows

a Normal distribution, with mean δ̃ , representing the theoretical chemical shift, and

variance σ2, the measurement error:

yi|δ̃i,σ
2 ∼ N(δ̃ ,σ2)

The theoretical chemical shift δ̃i is a function of the pH, pKa, δA and the number of

protonation sites as described in Equation (2.2).

2.2.2 Specification of Prior Knowledge

Since most metabolites have up to three protonation sites, we specify as prior

distribution on the number of protonation sites a Uniform distribution on the set

{1,2,3}. Therefore, each model is a priori equally likely. We complete the model

by specifying a prior distribution on the remaining parameters. Assuming no ad-

ditional spectral effects and conditioning on the number of sites q, we choose a

Uniform distribution defined over the NMR ppm scale [0,10] as prior for δA and

δH jA, j = 1, . . . ,q.

Moreover, to improve efficiency in searching the parameter space and avoid identi-

fiability issues (where different combinations of parameter values lead to the same

likelihood value so that the model is not able to distinguish between them) we

impose an order constraint on the δA and δHjA values, in descending or ascending

order according to the trend of the data. This improves MCMC convergence and

the accuracy of estimation. The order direction can be estimated, for example, by

fitting a simple linear regression, y = βpH + b, to the data and considering the

sign of the estimated slope parameter β . If β > 0, the relationship between chem-

ical shift and pH is approximately increasing and we would impose the constraint

δA > δH1A > δH2A > .. . > δHqA on the parameter space. On the other hand, if β < 0,
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we would impose restriction δA < δH1A < δH2A < .. . < δHqA.

For most metabolites the change in chemical shift between adjacent protonation

sites is smaller than 1ppm and the total shift change from most acidic to most basic

peak position is also smaller than 1ppm. This allows us to assume that the change

of chemical shift between adjacent protonation sites is smaller than 1ppm, i.e.

0 < |δA−δH1A|< 1 0 < |δH jA−δH j+1A|< 1, j = 1,2,3, ...

Finally, an Inverse-Gamma prior distribution with parameters (a2,a), which is often

used as a Bayesian prior for error variance, is chosen for σ2. Note that a, which

reflects the measurement error, should be chosen carefully according to the ex-

periment. In our model, a = 104 is chosen based on empirical estimation of the

measurement error related to the resolution of the spectrometer and its ability to

measure peak position [74].

The details regarding model parameters are shown in Table 2.1.

Observed To be estimated
y, pH σ , δ̃ , q, δA, δH jA, pKa

Table 2.1: Details about Parameters

We fit the model to each resonance independently. We pick as an estimate of q

the number of protonation sites with highest posterior probability. We then refit

the same model but fix q equal to its posterior estimate to obtain an estimate of

the other parameters conditional on q. Posterior inference is performed in JAGS,

running four chains of the MCMC algorithm for 50,000 iterations with a burn-in

period of 25,000. The code of JAGS can be found in Appendix A1.
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2.2.3 Prior Specification for pKa

A great advantage of working in a Bayesian framework is the ability of the model

to incorporate problem specific prior information. To specify informative prior

knowledge on the pKa range, which aids computational stability and improves con-

vergence of the MCMC algorithm, we exploit information available in the Human

Metabolome Database (version 4.0) [136, 137, 138, 139], which records the pKa

values of many common metabolites.

pKa is the negative base-10 logarithm of the acid dissociation constant of a solution.

In our modelling, it is the value of pH corresponds to the middle point of the change

part of a chemical shift titration curve. By studying the empirical distribution of

the pKa values downloaded from the database, we found that the distribution of

pKa values has a heavy right tail. We choose as prior range for pKa [1.2,13.7]

to correspond to the pH range of our data. This range includes most metabolites

reported in HMDB, but excludes values below the 7% and above the 90% percentile

of the pKa distribution.

2.2.4 Data

Details of sample collection, NMR acquisition and data processing can be found in

Tredwell et al. [127]. All data used in this study is publicly available as Supple-

mentary material to the original article under the Creative Commons attribution 4.0

International License https://creativecommons.org/licenses/by/4.0/. Briefly, a urine

sample was collected from five different individuals and pooled to obtain an aver-

age representative human urine sample. To avoid chemical shift effects from metal

ions the urine was treated with chelex resin to reduce both Ca2+ and Mg2+ concen-

trations without significantly altering metabolite composition. Note that, while this

results in non-physiological concentrations of these ions, it is not expected to affect

the ability of the model to recover the number of protonation sites. The pool was
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then titrated to produce 51 samples covering the range 2 < pH < 12. Spectra were

acquired on a Bruker Avance DRX600 NMR spectrometer (Bruker BioSpin, Rhe-

instetten, Germany), with a 1H frequency of 600 MHz. A one-dimensional NOESY

sequence was used with water suppression, and data were acquired into 64K data

points over a spectral width of 12 KHz, with 8 dummy scans and 64 scans per sam-

ple. Spectra were processed in iNMR 3.4 (Nucleomatica, Molfetta, Italy). Fourier

transform of the free-induction decay was applied with a line broadening of 0.5 Hz.

Spectra were manually phased and automated first order baseline correction was

applied. Metabolites were assigned using the Chenomx NMR Suite 5.1 (Chenomx,

Inc., Edmonton, Alberta, Canada) relative to 4,4-dimethyl-4-silapentane-1-sulfonic

acid (DSS) as an internal standard. Metabolite peak positions were obtained using

in-house MATLAB scripts. A version of the scripts for peak picking and spline fits

are part of the BATMAN project (batman.r-forge-project.org). Data

for one metabolite (phenylalanine at 7.35 and 7.41 ppm) were discarded as it was

found that the peak positions could not be measured accurately due to the high level

of peak overlap in this region of the spectra.

2.3 Results and Discussion
Our aim is to estimate the number of protonation sites for small molecule metabo-

lites from their observed NMR pH titration curves. From Figure 2.1, it is clear

that when the number of protonation sites is estimated correctly, the chemical shift

changes match the data quite well.

Table 2.2: Comparison of the literature number of sites and the number esti-
mated by the model

Estimated Number of Sites
1 2 3 Total

1 25 1 0 26
2 5 9 0 14

Literature
Number
of Sites 3 0 4 7 11
Total 30 14 7 51

batman.r-forge-project.org


2.3. Results and Discussion 57

Figure 2.1: Upper panel: 1H NMR spectra with pH adjusted from 2 to 12.
Lower left panel: Observed chemical shift positions (y) of 51 reso-
nances. Lower right panel: Fitted chemical shift positions (δ̃ ) for
the 51 resonances. Only resonances with correct q predicted are
shown.

A summary of the results is shown in Table 2.2. More detailed results for each

resonance can be found in Table 2.3. Of the 51 resonances, the estimated number

of sites matches that found in the literature in 41 cases (80.4%). It is evident that

most of the incorrect predictions (10 out of 51) result from an underestimation of

the number of sites compared to the literature value. The literature site numbers are

sourced from Handbook of Biochemistry and Molecular Biology [85]. Where this

was not possible, (Hydroxyisobutyrate, Hydroxyisovalerate, Indoxyl and Methyl-

2-Oxovalerate) the number was determined from an assessment of the molecular

structure.
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Table 2.3: Probability of different numbers of protonation sites, estimated
number of protonation sites and literature number of protonation
sites for 51 resonances from 32 metabolites in human urine. Rows
with correctly estimated numbers of sites are shown in bold.

Metabolite
Database

ID

Chemical

Shift

at PH7.4

1 Site

Prob.

2 Site

Prob.

3 Site

Prob.

Estimated

Number

of Sites

Literature

Number

of Sites

Hydroxy-

isobutyrate
HMDB0000729 1.347 91.893 7.488 0.619 1 1

Hydroxy-

isovalerate
HMDB0000754 1.260 86.597 12.795 0.608 1 1

Indoxyl HMDB0004094 7.192 93.017 5.688 1.295 1 1

Methyl-2-

Oxovalerate
HMDB0000695 1.093 95.383 4.326 0.291 1 1

Acetate HMDB0000042 1.910 93.326 5.879 0.795 1 1

Alanine HMDB0000161 1.212 0 80.827 19.173 2 2

Allantoin HMDB0000462 5.383 97.868 2.049 0.083 1 1

Citrate HMDB0000094 2.528 0 75.404 24.596 2 3

Citrate HMDB0000094 2.646 0 47.869 52.131 3 3

Creatinine HMDB0000562 3.033 87.889 11.593 0.518 1 2

Creatinine HMDB0000562 4.043 94.992 4.65 0.358 1 2

Formate HMDB0000142 8.448 92.786 6.377 0.837 1 1

Glucose HMDB0000122 5.228 98.661 1.284 0.055 1 1

Hippurate HMDB0000714 3.960 70.111 27.403 2.486 1 1

Hippurate HMDB0000714 7.541 86.036 9.798 4.166 1 1

Hippurate HMDB0000714 7.627 92.742 6.114 1.144 1 1

Hippurate HMDB0000714 7.824 92.264 5.387 2.349 1 1

Hippurate HMDB0000714 8.512 54.082 26.841 19.077 1 1

Histidine HMDB0000177 7.253 0 42.669 57.331 3 3

Histidine HMDB0000177 8.188 0 7.55 92.45 3 3

Imidazole HMDB0001525 7.229 59.201 37.952 2.847 1 1

Imidazole HMDB0001525 8.040 0 73.582 26.418 2 1

Isoleucine HMDB0000172 0.902 0.801 65.964 33.235 2 2



2.3. Results and Discussion 59

Lactate HMDB0000190 1.320 89.155 9.941 0.904 1 1

Leucine HMDB0000687 0.932 83.263 14.099 2.638 1 2

Mannitol HMDB0000765 3.673 92.487 6.501 1.012 1 1

Mannitol HMDB0000765 3.797 96.633 2.676 0.691 1 1

Mannitol HMDB0000765 3.864 96.567 2.964 0.469 1 1

Methyl-

Succinate
HMDB0001844 1.062 43.561 50.274 6.165 2 2

Piperazine HMDB0014730 3.526 0 65.255 34.745 2 2

TMethyl-

Histidine
HMDB0000479 6.873 0 14.792 85.208 3 3

TMethyl-

Histidine
HMDB0000479 8.306 0 0 100 3 3

TMethyl-

Histidine
HMDB0000001 3.788 0 94.773 5.227 2 3

TTMethyl-

Histidine
HMDB0000001 6.909 0 16.988 83.012 3 3

TTMethyl-

Histidine
HMDB0000001 8.396 0 23.514 76.486 3 3

Tartrate HMDB0029878 4.322 5.764 51.864 42.372 2 2

Taurine HMDB0000251 3.412 86.863 7.137 6 1 2

Threonine HMDB0000167 1.194 14.472 67.882 17.646 2 2

Trigonelline HMDB0000875 4.429 68.693 19.481 11.826 1 1

Trigonelline HMDB0000875 8.073 74.875 17.025 8.1 1 1

Trigonelline HMDB0000875 8.822 77.588 15.531 6.881 1 1

Trigonelline HMDB0000875 8.834 58.857 30.807 10.336 1 1

Trigonelline HMDB0000875 9.115 67.411 21.353 11.236 1 1

Tris CHEBI:9754 3.715 94.453 5.363 0.184 1 1

Tryptophan HMDB0000929 7.719 87.38 11.156 1.464 1 2

Tyrosine HMDB0000158 6.885 0 90.202 9.798 2 3

Tyrosine HMDB0000158 7.207 0 90.592 9.408 2 3

Valine HMDB0000883 0.906 0 79.851 20.149 2 2

Valine HMDB0000883 1.060 2.967 77.568 19.465 2 2

Xylose HMDB0000098 5.190 98.475 1.476 0.049 1 1



2.3. Results and Discussion 60

transAconitate HMDB0000958 6.574 0 64.477 35.523 2 2

Given the estimation of the number of protonation sites, the other parameters of the

model (acid limits, base limits and pKa values) can be estimated using the same

model. The modelled pKa values closely agree with the literature values [85], and

the modelled acid and base limits are also in good agreement with the previously

modelled values [127]. Therefore we do not present these in detail here. Four

examples including 1, 2 and 3 protonation sites, (Acetate, Alanine, Threonine and

TTMethylHistidine) are shown in Table 2.4 and Figure 2.2.

Table 2.4: Literature and Modelled Results of Acetate, Alanine, Threonine and
TTMethylHistidine

Metabolite Literature pKa Values Modelled pKa Values Modelled Acid and Base Limits
Acetate 4.760 4.591 1.910 2.089
Alanine 2.340 9.690 2.384 9.980 1.212 1.472 1.573
Threonine 2.630 10.430 2.072 9.195 1.194 1.322 1.379
TTMethyl-
Histidine 1.690 6.480 8.850 1.832 6.062 9.302 6.910 7.040 7.390 7.491
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Figure 2.2: Measured Chemical Shift Changes for Acetate, Alanine, Threonine
and TTMethylHistidine with literature pKa Values (yellow vertical
line), fitted pKa values (green vertical line) and the fit of the theo-
retical model (red line). The x-axis corresponds to pH and y-axis
corresponds to ppm.

2.3.1 Metabolites with incorrectly estimated number of proto-

nation sites

The model failed to estimate the correct number of protonation sites for 10 out of

51 resonances. There are several types of problem leading to incorrect estimation

of the number of protonation sites. The first type occurs when at least one literature

pKa value lies outside the range of the observed data. Taurine is a good example of

this, as shown in Figure 2.3, where it can be seen that one pKa lies at pH 1.5, while

the data only cover the pH range 3.2-12.
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Figure 2.3: Examples of resonances with incorrectly estimated numbers of
sites: Taurine, Citrate, Creatinine, Imidazole with literature pKa
Values (yellow vertical line), fitted pKa values (green vertical line)
and the fit of the theoretical model (red line). The x-axis corre-
sponds to pH and y-axis corresponds to ppm.

The second type of inaccurate estimation happens when two adjacent pKas are so

close that the change in chemical shift between them is too small compared to the

measurement error. The δ 2.7 resonance of citrate is a good example of this, as in

Figure 2.3, where the smooth titration curve around pH 4-5 does not suggest the

presence of the third pKa at 4.75. A third type of incorrect estimate happens when

the change of chemical shift is too small so that the transition can not be detected

near the pKa value, for instance creatinine as shown in Figure 2.3. Conversely, the

change in the chemical shift can be too large compared to the estimated measure-

ment error, for example imidazole as shown in Figure 2.3, forming a fourth type of

inaccuracy.

Some molecules have multiple resonances and so the question arises of whether
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to combine them, or if not, how to pick the best resonance to model. We do not

recommend to combine resonances from the same molecule as, with our data, this

tended to over estimate the number of protonation sites leading to a poorer fit.

Instead, it is preferred to pick a resonance with "good behaviour", i.e. one which

is not overlapped, shows strong changes in chemical shift, but with a good number

of observations near each chemical shift transition (near the pKa). When more than

one resonance from the same molecule are modelled and give different predictions

for the number of sites, we recommend to use information such as the model fit

error to judge which estimation is more reliable. We note that this does not apply in

fully untargeted analysis when the metabolites are unidentified, and thus one does

not know if two resonances come from the same molecule.

2.4 Conclusions

The Bayesian fit based on the model of Szakacs et al. [120] can effectively estimate

the number of protonation sites for many small molecule metabolites, given suffi-

cient pH titration data. Incorrect estimations are mainly due to cases where pKa

values are very similar, and thus could not be distinguished, and/or a lack of data in

the necessary pH ranges. We note that, even when the number of sites was incor-

rectly estimated, it is still possible to estimate the chemical shift position of a reso-

nance quite accurately in most cases. The information obtained from the modelling

procedure described here could be useful in a number of ways. For example, the pH

could be estimated from the positions of a few well known and easily located reso-

nances. This could then be used to predict the chemical shift positions of resonances

of other metabolites expected in a sample, which could then help with automated

annotation, alignment or peak fitting (as an initial position estimate). The predicted

number of protonation sites may also be helpful during the process of identifying

unknown compounds, although orthogonal analytical information would almost al-



2.5. Compliance with Ethical Standards 64

ways be needed in addition. Overall, we hope that this modelling approach may be

valuable for the future development of algorithms for analysis of metabolomic 1H

NMR spectra including alignment, annotation and peak fitting.

2.5 Compliance with Ethical Standards
Ethical approval This study analysed previously collected data which involved

human participants who had provided informed consent. These ethical issues are

described in detail in Tredwell et al. [127].

Informed Consent Informed consent was obtained from all individual participants

included in the study.

Data Availability The metabolomics and metadata reported in this paper are avail-

able as supplementary information to the original study [127] which is available

from the Springer website under the Creative Commons attribution 4.0 International

License https://creativecommons.org/licenses/by/4.0/.



Chapter 3

On the Efficacy of Monte Carlo

Implementation of CAVI

3.1 Background

Sophisticated statistical techniques are essential for NMR data analysis because

NMR data is often large and heavily structured . Astle et al. [3] incorporate exten-

sive information on the patterns of spectral resonance generated by human metabo-

lites from online databases into a Bayesian model and deconvolve resonance peaks

from a spectrum and obtain explicit concentration estimates for the corresponding

metabolites. Posterior inference is performed by MCMC with specifically designed

block updates and annealing. Variational Inference (VI) [72, 133] is a powerful

alternative strategy to MCMC sampling because it is fast, straightforward for mon-

itoring convergence and typically easier to scale to large data [14] than MCMC. In

real-world implementations of complex models, Monte Carlo methods are widely

used to estimate expectations in coordinate-ascent VI algorithms and gradients in

derivative-driven VI algorithms. Therefore, combing Monte Carlo methods with VI

has great potential to improve computational efficiency of NMR data analysis.

The main contributions of this section are:
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(i) We discuss, and then apply a Monte Carlo CAVI (MC-CAVI) algorithm

in a sequence of problems of increasing complexity, and study its perfor-

mance. As the name suggests, MC-CAVI uses the Monte Carlo princi-

ple for the approximation of difficult-to-compute conditional expectations,

E−i[log p(zi−,zi,zi+,x)], within CAVI.

(ii) We provide a theoretical justification for the algorithm by showing analyti-

cally that, under suitable regularity conditions, MC-CAVI will get arbitrarily

close to a maximiser of the ELBO with high probability.

(iii) We contrast MC-CAVI with MCMC and BBVI through simulated and real ex-

amples, some of which involve hard constraints; we demonstrate MC-CAVI’s

effectiveness in an important application imposing such hard constraints, with

real data in the context of Nuclear Magnetic Resonance (NMR) spectroscopy.

3.2 MC-CAVI Algorithm

3.2.1 Description of the Algorithm

We begin with a description of the basic CAVI algorithm. A double subscript will

be used to identify block variational densities: qi,k(zi) (resp. q−i,k(z−i)) refers to

the density of the ith block (resp. all blocks but the ith), after k updates have been

carried out on that block density (resp. k updates have been carried out on the blocks

preceding the ith, and k−1 updates on the blocks following the ith).

• Step 0: Initialize probability density functions qi,0(zi), i = 1, . . . ,b.

• Step k: For k ≥ 1, given qi,k−1(zi), i = 1, . . . ,b, execute:

– For i = 1, . . . ,b, update:

logqi,k(zi) = const.+E−i,k[log p(z,x)],
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with E−i,k taken w.r.t. z−i ∼ q−i,k.

• Iterate until convergence.

Assume that the expectations E−i[log p(z,x)], {i : i ∈ I }, for an index set I ⊆

{1, . . . ,b}, can be obtained analytically, over all updates of the variational density

q(z); and that this is not the case for i /∈ I . Intractable integrals can be approx-

imated via a Monte Carlo method. (As we will see in the applications later in

the chapter, such a Monte Carlo device typically uses samples from an appropriate

MCMC algorithm.) In particular, for i /∈ I , one obtains N ≥ 1 samples from the

current q−i(z−i) and uses the standard Monte Carlo estimate

Ê−i[log p(zi−,zi,zi+,x)] =
∑

N
n=1 log p(z(n)i− ,zi,z

(n)
i+ ,x)

N
.

Implementation of such an approach gives rise to MC-CAVI, described in Algo-

rithm 1.

Algorithm 1: MC-CAVI

Require: Number of iterations T and Number of Monte Carlo samples N.

Require: E−i[log p(zi−,zi,zi+,x)] in closed form, for i ∈I .

1 Initialize qi,0(zi), i = 1, . . . ,b.

2 for k = 1 : T do

3 for i = 1 : b do

4 If i ∈I , set qi,k(zi) ∝ exp
{
E−i,k[log p(zi−,zi,zi+,x)]

}
;

5 If i /∈I :

6 Obtain N samples, (z(n)i−,k,z
(n)
i+,k−1), 1≤ n≤ N, from q−i,k(z−i).

7 Set
qi,k(zi) ∝ exp

{
Ê−i,k[log p(zi−,zi,zi+,x)]

}
= exp

{∑
N
n=1 log p(z(n)i−,k

,zi,z
(n)
i+,k−1,x)

N

}
.

8 end
9 end
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Please note that, in Algorithm 1, due to Monte Carlo updates of parameters /∈ I ,

the E−i,k[log p(zi−,zi,zi+,x)] is not the exact value of expectation over iterations.

We use symbol E to denote the closed form of expectation while Ê denotes the

expectations without closed forms where we will apply the Monte Carlo techniques.

Further illustration is provided in Section 3.3.

3.2.2 Applicability of MC-CAVI

We discuss here the class of problems to which MC-CAVI can be applied. It is

desirable to avoid settings where the order of samples or statistics to be stored in

memory increases with the iterations of the algorithm. To set-up the ideas we begin

with CAVI itself. Motivated by the standard exponential class of distributions, we

work as follows.

Consider the case when the target density p(z,x) ≡ f (z) is assumed to have the

structure,

f (z) = h(z)exp
{
〈η ,T (z)〉−A(η)

}
, z ∈ Sp, (3.1)

for s-dimensional constant vector η = (η1, . . . ,ηs), vector function T (z) =

(T1(z), . . . ,Ts(z)), with some s ≥ 1, and relevant scalar functions h > 0, A; 〈·, ·〉

is the standard inner product in Rs. Notice that we omit reference to the data x in

(3.1), as x is fixed and irrelevant for our purposes and f is not required to integrate

to 1. Also, we are given the choice of block-variational densities q1(z1), . . . ,qb(zb)

in (1.13). Following the definition of CAVI from Section 3.2.1 – assuming that the

algorithm can be applied, i.e. all required expectations can be obtained analytically

– the number of ‘sufficient’ statistics, say Ti,k giving rise to the definition of qi,k

will always be upper bounded by s. Thus, in our working scenario, CAVI will be

applicable with a computational cost that is upper bounded by a constant within



3.2. MC-CAVI Algorithm 69

the class of target distributions in (3.1) – assuming relevant costs for calculating

expectations remain bounded over the algorithmic iterations.

Moving on to MC-CAVI, following the definition of index set I in Section 3.2.1,

recall that a Monte Carlo approach is required when updating qi(zi) for i /∈ I ,

1≤ i≤ b. In such a scenario, controlling computational costs amounts to having a

target (3.1) admitting the factorisations,

h(z)≡ hi(zi)h−i(z−i), Tl(z)≡ Tl,i(zi)Tl,−i(z−i), 1≤ l≤ s, for all i /∈I . (3.2)

Once (3.2) is satisfied, we do not need to store all N samples from q−i(z−i), but sim-

ply some relevant averages keeping the cost per iteration for the algorithm bounded.

We stress that the combination of characterisations in (3.1)-(3.2) is very general and

will typically be satisfied for most practical statistical models.

3.2.3 Theoretical Justification of MC-CAVI

An attractive feature of MC-CAVI versus derivative-driven VI methods is its struc-

tural similarity with Monte Carlo Expectation-Maximization (MCEM). Thus, one

can build on results in the MCEM literature to prove asymptotical properties of

MC-CAVI; see e.g. [26, 15, 78, 50]. To avoid technicalities related with working

on general spaces of probability density functions, we begin by assuming a param-

eterised setting for the variational densities – as in the BBVI case – with the family

of variational densities being closed under CAVI or (more generally) MC-CAVI

updates.

Assumption 1 (Closedness of Parameterised q(·) Under Variational Update). For

the CAVI or the MC-CAVI algorithm, each qi,k(zi) density obtained during the iter-

ations of the algorithm, 1≤ i≤ b, k ≥ 0, is of the parametric form

qi,k(zi) = qi(zi|λ k
i ),
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for a unique λ k
i ∈ Λi ⊆ Rdi , for some di ≥ 1, for all 1≤ i≤ b.

(Let d = ∑
b
i=1 di and Λ = Λ1×·· ·×Λb.)

Under Assumption 1, CAVI and MC-CAVI can be corresponded to some well-

defined maps M : Λ 7→ Λ, MN : Λ 7→ Λ respectively, so that, given current varia-

tional parameter λ , one step of the algorithms can be expressed in terms of a new

parameter λ ′ (different for each case) obtained via the updates

CAVI: λ
′ = M(λ ); MC-CAVI: λ

′ = MN(λ ).

For an analytical study of the convergence properties of CAVI itself and relevant

regularity conditions, see e.g. [8, Proposition 2.7.1], or extensive work in numerical

optimisation. Expressing the MC-CAVI update – say, the (k+1)th one – as

λ
k+1 = M(λ k)+{MN(λ

k)−M(λ k)}, (3.3)

it can be seen as a random perturbation of a CAVI step. In the rest of this section

we will explore the asymptotic properties of MC-CAVI. We follow closely the ap-

proach in [26] – as it provides a less technical procedure, compared e.g. to [50] or

other work about MCEM – making all appropriate adjustments to fit the derivations

into the setting of the MC-CAVI methodology. We denote by Mk, M k
N , the k-fold

composition of M, MN respectively, for k ≥ 0.

Assumption 2. Λ is an open subset of Rd , and the mappings λ 7→ ELBO(q(λ )),

λ 7→M(λ ) are continuous on Λ.

If M(λ ) = λ for some λ ∈ Λ, then λ is a fixed point of M(). A given λ ∗ ∈ Λ is

called an isolated local maximiser of the ELBO(q(·)) if there is a neighborhood of

λ ∗ over which λ ∗ is the unique maximiser of the ELBO(q(·)).

Assumption 3 (Properties of M(·) Near a Local Maximum). Let λ ∗ ∈ Λ be an

isolated local maximum of ELBO(q(·)). Then,
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(i) λ ∗ is a fixed point of M(·);

(ii) there is a neighborhood V ⊆ Λ of λ ∗ over which λ ∗ is a unique maximum,

such that ELBO(q(M(λ )))> ELBO(q(λ )) for any λ ∈V\{λ ∗}.

Notice that the above assumption refers to the deterministic update M(·), which

performs co-ordinate ascent; thus requirements (i), (ii) are fairly weak for such a

recursion. The critical technical assumption required for delivering the convergence

results in the rest of this section is the following one.

Assumption 4 (Uniform Convergence in Probability on Compact Sets). For any

compact set C ⊆ Λ the following holds: for any ρ,ρ ′ > 0, there exists a positive

integer N0, such that for all N ≥ N0 we have,

inf
λ∈C

Prob
[∣∣MN(λ )−M(λ )

∣∣< ρ
]
> 1−ρ

′.

It is beyond the context of this paper to examine Assumption 4 in more depth. We

will only stress that Assumption 4 is the sufficient structural condition that allows

to extend closeness between CAVI and MC-CAVI updates in a single algorithmic

step into one for arbitrary number of steps.

We continue with a definition.

Definition 1. A fixed point λ ∗ of M(·) is said to be asymptotically stable if,

(i) for any neighborhood V1 of λ ∗, there is a neighborhood V2 of λ ∗ such that for

all k ≥ 0 and all λ ∈V2, Mk(λ ) ∈V1;

(ii) there exists a neighbourhood V of λ ∗ such that limk→∞ Mk(λ ) = λ ∗ if λ ∈V .

We will state the main asymptotic result for MC-CAVI in Theorem 1 that follows;

first we require Lemma 1.

Lemma 1. Let Assumptions 1-3 hold. If λ ∗ is an isolated local maximiser of

ELBO(q(·)), then λ ∗ is an asymptotically stable fixed point of M(·).
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The main result of this section is as follows.

Theorem 1. Let Assumptions 1-4 hold and λ ∗ be an isolated local maximiser of

ELBO(q(·)). Then there exists a neighbourhood, say V1, of λ ∗ such that for starting

values λ ∈V1 of MC-CAVI algorithm and for all ε1 > 0, there exists a k0 such that

lim
N→∞

Prob
(
|M k

N−λ
∗|< ε1 for some k ≤ k0

)
= 1.

The proofs of Lemma 1 and Theorem 1 can be found in Appendices A2 and A3,

respectively.

3.2.4 Stopping Criterion and Sample Size

The method requires the specification of the Monte Carlo size N and a stopping

rule.

Principled - but Impractical - Approach

As the algorithm approaches a local maximum, changes in ELBO should be getting

closer to zero. To evaluate the performance of MC-CAVI, one could, in principle,

attempt to monitor the evolution of ELBO during the algorithmic iterations. For

current variational distribution q = (q1, . . . ,qb), assume that MC-CAVI is about to

update qi with q′i = q′i,N , where the addition of the second subscript at this point

emphasizes the dependence of the new value for qi on the Monte Carlo size N.

Define,

∆ELBO(q,N) = ELBO(qi−,q′i,N ,qi+)−ELBO(q).

If the algorithm is close to a local maximum, ∆ELBO(q,N) should be close to

zero, at least for sufficiently large N. Given such a choice of N, an MC-CAVI

recursion should be terminated once ∆ELBO(q,N) is smaller than a user-specified

tolerance threshold. Assume that the random variable ∆ELBO(q,N) has mean µ =

µ(q,N) and variance σ2 = σ2(q,N). Chebychev’s inequality implies that, with
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probability greater than or equal to (1−1/K2), ∆ELBO(q,N) lies within the interval

(µ −Kσ ,µ +Kσ), for any real K > 0. Assume that one fixes a large enough K.

The choice of N and of a stopping criterion should be based on the requirements:

(i) σ ≤ ν , with ν a predetermined level of tolerance;

(ii) the effective range (µ − Kσ ,µ + Kσ) should include zero, implying that

∆ELBO(q,N) differs from zero by less than 2Kσ .

Requirement (i) provides a rule for the choice of N, which is assumed to be applied

over all 1 ≤ i ≤ b, for q in areas close to a maximiser, and requirement (ii) a rule

for defining a stopping criterion. Unfortunately, the above considerations – based

on the proper term ELBO(q) that VI aims to maximise – involve quantities that

are typically impossible to obtain analytically or via some reasonably expensive

approximation.

Practical Considerations

Similarly to MCEM, it is recommended that N increases as the algorithm becomes

more stable. It is computationally inefficient to start with a large value of N when

the current variational distribution can be far from the maximiser. In practice, one

may monitor the convergence of the algorithm by plotting relevant statistics of the

variational distribution versus the number of iterations. We can declare that conver-

gence has been reached when such traceplots show relatively small random fluctu-

ations (due to the Monte Carlo variability) around a fixed value. At this point, one

may terminate the algorithm or continue with a larger value of N, which will further

decrease the traceplot variability. In the applications in this chapter, we typically

have N ≤ 100, so calculating, for instance, Effective Sample Sizes to monitor the

mixing performance of the MCMC steps is not practical.
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3.3 Numerical Examples – Simulation Study

In this section we illustrate MC-CAVI with two simulated examples. First, we apply

MC-CAVI and CAVI on a simple model to highlight main features and implementa-

tion strategies. Then, we contrast MC-CAVI, MCMC, BBVI in a complex scenario

with hard constraints.

3.3.1 Simulated Example 1

We generate n = 103 data points from N(10,100) and fit the semi-conjugate

Bayesian model

Example Model 1

x1, . . . ,xn ∼ N(ϑ ,τ−1),

ϑ ∼ N(0,τ−1),

τ ∼ Gamma(1,1).

Let x̄ be the data sample mean. In each iteration, the CAVI density function – see

(1.14) – for τ is that of the Gamma distribution Gamma(n+3
2 ,ζ ), with

ζ = 1+
(1+n)E(ϑ 2)−2(nx̄)E(ϑ)+∑

n
j=1 x2

j
2 ,

whereas for ϑ that of the Normal distribution N( nx̄
1+n ,

1
(1+n)E(τ)). (E(ϑ),E(ϑ 2)) and

E(τ) denote the relevant expectations under the current CAVI distributions for ϑ

and τ respectively; the former are initialized at 0 – there is no need to initialise E(τ)

in this case. Convergence of CAVI can be monitored, e.g., via the sequence of values

of θ :=(1+n)E(τ) and ζ . If the change in values of these two parameters is smaller

than, say, 0.01%, we declare convergence. Figure 3.1 shows the traceplots of θ , ζ .

Convergence is reached within 0.0017secs1, after precisely two iterations, due to

1A Dell Latitude E5470 with Intel(R) Core(TM) i5-6300U CPU@2.40GHz is used for all exper-
iments in this paper.
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Figure 3.1: Tracplots of ζ (left), θ (right) from application of CAVI in Simu-
lated Example 1.

the simplicity of the model. The resulting CAVI distribution for ϑ is N(9.6,0.1),

and for τ it is Gamma(501.5,50130.3) so that E(τ)≈ 0.01.

Assume now that q(τ) is intractable. Since E(τ) is required to update the approxi-

mate distribution of ϑ , an MCMC step can be employed to sample τ1, . . . ,τN from

q(τ) to produce the Monte Carlo estimate Ê(τ) = ∑
N
j=1 τ j/N. Within this MC-

CAVI setting, Ê(τ) will replace the exact E(τ) during the algorithmic iterations.

(E(ϑ),E(ϑ 2)) are initialised as in CAVI. For the first 10 iterations we set N = 10,

and for the remaining ones, N = 103 to reduce variability. We monitor the values

of Ê(τ) shown in Figure 3.2. The figure shows that MC-CAVI has stabilized after

about 15 iterations; algorithmic time was 0.0114secs. To remove some Monte Carlo

variability, the final estimator of E(τ) is produced by averaging the last 10 values

of its traceplot, which gives Ê(τ) = 0.01, i.e. a value very close to the one obtained

by CAVI. The estimated distribution of ϑ is N(9.6,0.1), the same as with CAVI.

The performance of MC-CAVI depends critically on the choice N. Let A be the

value of N in the burn-in period, B the number of burn-in iterations and C the value

of N after burn-in. Figure 3.3 shows trace plots of Ê(τ) under different settings of

the triplet A-B-C.

As with MCEM, N should typically be set to a small number at the beginning of

the iterations so that the algorithm can reach fast a region of relatively high prob-
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Figure 3.2: Traceplot of Ê(τ) generated by MC-CAVI for Simulated Example
1, using N = 10 for the first 10 iterations of the algorithm, and
N = 103 for the rest. The y-axis gives the values of Ê(τ) across
iterations.

Figure 3.3: Traceplot of Ê(τ) under different settings of A-B-C (respectively,
the value of N in the burn-in period, the number of burn-in itera-
tions and the value of N after burn-in) for Simulated Example 1.

A-B-C 10-10-105 103-10-105 105-10-105 10-30-105 10-50-105

time (secs) 0.4640 0.4772 0.5152 0.3573 0.2722
Ê(τ) 0.01 0.01 0.01 0.01 0.01

Table 3.1: Results of MC-CAVI for Simulated Example 1.
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Figure 3.4: Plot of convergence time versus variance of Ê(τ) (left panel) and
versus Monte Carlo sample size N (right panel).

ability. N should then be increased to reduce algorithmic variability close to the

convergence region. Figure 3.4 shows plots of convergence time versus variance

of Ê(τ) (left panel) and versus N (right panel). In VI, iterations are typically ter-

minated when the (absolute) change in the monitored estimate is less than a small

threshold. In MC-CAVI the estimate fluctuates around the limiting value after con-

vergence. In the simulation in Figure 3.4, we terminate the iterations when the

difference between the estimated mean (disregarding the first half of the chain) and

the true value (0.01) is less than 10−5. Figure 3.4 shows that: (i) convergence time

decreases when the variance of Ê(τ) decreases, as anticipated; (ii) convergence time

decreases when N increases. In (ii), the decrease is most evident when N is still rel-

atively small After N exceeds 200, convergence time remains almost fixed, as the

benefit brought by the decrease of variance is offset by the cost of extra samples.

(This is also in agreement with the practice of setting N equal to a small value at the

initial iterations of the algorithm.)

3.3.2 Variance Reduction for BBVI

In non-trivial applications, the variability of the initial estimator ∇λ ÊLBO(q)

within BBVI in (1.16) will typically be large, so variance reduction approaches

such as Rao-Blackwellization and control variates [105] are also used. Rao-



3.3. Numerical Examples – Simulation Study 78

Blackwellization [24] reduces variances by analytically calculating conditional ex-

pectations. In BBVI, within the factorization framework of (1.13), where λ =

(λ1, . . . ,λb), and recalling identity (1.15) for the gradient, a Monte Carlo estima-

tor for the gradient with respect to λi, i ∈ {1, . . . ,b}, can be simplified as

∇λiÊLBO(qi) =
1
N

N

∑
n=1

[
∇λi logqi(z

(n)
i |λi){logci(z

(n)
i ,x)− logqi(z

(n)
i |λi)}

]
, (3.4)

with z(n)i
iid∼ qi(zi|λi), 1≤ n≤ N, and,

ci(zi,x) := exp
{
E−i[log p(zi−,zi,zi+,x)]

}
.

Depending on the model at hand, term ci(zi,x) can be obtained analytically or via

a double Monte Carlo procedure (for estimating ci(z
(n)
i ,x), over all 1 ≤ n ≤ N) –

or a combination of thereof. In BBVI, control variates [113] can be defined on a

per-component basis and be applied to the Rao-Blackwellized noisy gradients of

ELBO in (3.4) to provide the estimator,

∇λiÊLBO(qi) =
1
N

N

∑
n=1

[
∇λi logqi(z

(n)
i |λi){logci(z

(n)
i ,x)− logqi(z

(n)
i |λi)− â∗i }

]
,

(3.5)

for the control,

â∗i :=
∑

di
j=1 Ĉov( fi, j,gi, j)

∑
di
j=1 V̂ar(gi, j)

,

where fi, j, gi, j denote the jth co-ordinate of the vector-valued functions fi, gi re-

spectively, given below,

gi(zi) := ∇λi logqi(zi|λi),

fi(zi) := ∇λi logqi(zi|λi){logci(zi,x)− logqi(zi|λi)}.
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3.3.3 Simulated Example 2: Model with Hard Constraints

In this section, we discuss the performance and challenges of MC-CAVI, MCMC,

BBVI for models where the support of the posterior – thus, also the variational

distribution – involves hard constraints.

Here, we provide an example which offers a simplified version of the NMR problem

discussed in Section 3.4 but allows for the implementation of BBVI, as the involved

normalising constants can be easily computed. Moreover, as with other gradient-

based methods, BBVI requires to tune the step-size sequence {ρk} in (1.17), which

might be a laborious task, in particular for increasing dimension. Although there

are several proposals aimed to optimise the choice of {ρk} (16, 77), MC-CAVI does

not face such a tuning requirement.

We simulate data according to the following scheme: observations {y j} are gener-

ated from N(ϑ +κ j,θ
−1), j = 1, . . . ,n, with ϑ = 6, κ j = 1.5 · sin(−2π + 4π( j−

1)/n), θ = 3, n = 100. We fit the following model:

Example Model 2

y j | ϑ ,κ j,θ ∼ N(ϑ +κ j,θ
−1),

ϑ ∼ N(0,10),

κ j | ψ j ∼ TN(0,10,−ψ j,ψ j),

ψ j
i.i.d.∼ TN(0.05,10,0,2), j = 1, . . . ,n,

θ ∼ Gamma(1,1).

MCMC

We use a standard Metropolis-within-Gibbs. We set y = (y1, . . . ,yn), κ =

(κ1, . . . ,κn) and ψ = (ψ1, . . . ,ψn). Notice that we have the full conditional dis-
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tributions,

p(ϑ |y,θ ,κ,ψ) = N
(∑

n
j=1(y j−κ j)θ

1
10+nθ

, 1
1

10+nθ

)
,

p(κ j|y,θ ,ϑ ,ψ) = TN
( (y j−ϑ)θ

1
10+θ

, 1
1

10+θ
,−ψ j,ψ j

)
,

p(θ |y,ϑ ,κ,ψ) = Gamma
(
1+ n

2 ,1+
∑

n
j=1(y j−ϑ−κ j)

2

2

)
.

(Above, and in similar expressions written in the sequel, equality is meant to be

properly understood as stating that ‘the density on the left is equal to the density of

the distribution on the right’.) For each ψ j, 1≤ j ≤ n, the full conditional is,

p(ψ j|y,θ ,ϑ ,κ) ∝

φ(
ψ j− 1

20√
10

)

Φ(
ψ j√
10
)−Φ(

−ψ j√
10
)
I [ |κ j|< ψ j < 2 ], j = 1, . . . ,n,

where φ(·) is the density of N(0,1) and Φ(·) its cdf. The Metropolis-Hastings

proposal for ψ j is a Uniform variate from U(0,2).

MC-CAVI

For MC-CAVI, the logarithm of the joint distribution is given by,

log p(y,ϑ ,κ,ψ,θ) = const.+ n
2 logθ − θ ∑

n
j=1(y j−ϑ−κ j)

2

2 − ϑ 2

2·10

−θ −
n

∑
j=1

κ2
j +(ψ j− 1

20 )
2

2·10

−
n

∑
j=1

log(Φ(
ψ j√
10
)−Φ(

−ψ j√
10
)),

under the constraints,

|κ j|< ψ j < 2, j = 1, . . . ,n.
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To comply with the above constraints, we factorise the variational distribution as,

q(ϑ ,θ ,κ,ψ) = q(ϑ)q(θ)
n

∏
j=1

q(κ j,ψ j). (3.6)

Here, for the relevant iteration k, we have,

qk(ϑ) = N
(∑

n
j=1(y j−Êk−1(κ j))Ek−1(θ)

1
10+nEk−1(θ)

, 1
1

10+nEk−1(θ)

)
,

qk(θ) = Gamma
(
1+ n

2 ,1+
∑

n
j=1Ek,k−1((y j−ϑ−κ j)

2)

2 )
)
,

qk(κ j,ψ j) ∝ exp
{
− Ek(θ)(κ j−(y j−Ek(ϑ)))2

2 − κ2
j +(ψ j− 1

20 )
2

2·10

}/(
Φ(

ψ j√
10
)−Φ(

−ψ j√
10
)
)

· I [ |κ j|< ψ j < 2 ], 1≤ j ≤ n.

The quantity Ek,k−1((y j−ϑ −κ j)
2) used in the second line above means that the

expectation is considered under ϑ ∼ qk(ϑ) and (independently) κ j ∼ qk−1(κ j,ψ j).

Then, MC-CAVI develops as follows:

• Step 0: For k = 0, initialize E0(θ) = 1, E0(ϑ) = 4, E0(ϑ
2) = 17.

• Step k: For k ≥ 1, given Ek−1(θ), Ek−1(ϑ), execute:

– For j = 1, . . . ,n, apply an MCMC algorithm – with invariant law

qk−1(κ j,ψ j) – consisted of a number, N, of Metropolis-within-Gibbs

iterations carried out over the relevant full conditionals,

qk−1(ψ j|κ j) ∝

φ(
ψ j− 1

20√
10

)

Φ(
ψ j√
10
)−Φ(

−ψ j√
10
)
I [ |κ j|< ψ j < 2 ],

qk−1(κ j|ψ j) = TN
( (y j−Ek−1(ϑ))Ek−1(θ)

1
10+Ek−1(θ)

, 1
1

10+Ek−1(θ)
,−ψ j,ψ j

)
.
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As with the full conditional p(ψ j|y,θ ,ϑ ,κ) within the MCMC sam-

pler, we use a Uniform proposal U(0,2) at the Metropolis-Hastings step

applied for qk−1(ψ j|κ j). For each k, the N iterations begin from the

(κ j,ψ j)-values obtained at the end of the corresponding MCMC itera-

tions at step k− 1, with very first initial values being (κ,ψ j) = (0,1).

Use the N samples to obtain Êk−1(κ j) and Êk−1(κ
2
j ).

– Update the variational distribution for ϑ ,

qk(ϑ) = N
(∑

n
j=i(y j−Êk−1(κ j))Ek−1(θ)

1
10+nEk−1(θ)

, 1
1
10+nEk−1(θ)

)
and evaluate Ek(ϑ), Ek(ϑ

2).

– Update the variational distribution for θ ,

qk(θ) = Gamma
(
1+ n

2 ,1+
∑

n
j=1 Êk,k−1((y j−ϑ−κ j)

2)

2

)
and evaluate Ek(θ).

• Iterate until convergence.

BBVI

For BBVI we assume a variational distribution q(θ ,ϑ ,κ,ψ |ααα,γγγ) that factorises as

in the case of CAVI in (3.6), where

ααα = (αϑ ,αθ ,ακ1, . . . ,ακn,αψ1, . . . ,αψn) ,

γγγ = (γϑ ,γθ ,γκ1, . . . ,γκn,γψ1, . . . ,γψn)
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to be the variational parameters. Individual marginal distributions are chosen to

agree – in type – with the model priors. In particular, we set,

q(ϑ) = N(αϑ ,exp(γϑ )),

q(θ) = Gamma(exp(αθ ),exp(γθ )),

q(κ j,ψ j) = TN(ακ j ,exp(2γκ j),−ψ j,ψ j)⊗TN(αψ j ,exp(2γψ j),0,2), 1≤ j ≤ n.

It is straightforward to derive the required gradients (see Appendix A4 for the ana-

lytical expressions). BBVI is applied using Rao-Blackwellization and control vari-

ates for variance reduction. The algorithm is as follows,

• Step 0: Set η = 0.5; initialise ααα0 = 0, γγγ0 = 0 with the exception α0
ϑ
= 4.

• Step k: For k ≥ 1, given αααk−1 and γγγk−1 execute:

– Draw (ϑ i,θ i,κ i,ψ i), for 1≤ i≤N, from qk−1(ϑ), qk−1(θ), qk−1(κ,ψ).

– With the samples, use (3.5) to evaluate:

∇
k
αϑ

ÊLBO(q(ϑ)), ∇
k
γϑ

ÊLBO(q(ϑ)),

∇
k
αθ

ÊLBO(q(θ)), ∇
k
γθ

ÊLBO(q(θ)),

∇
k
ακ j

ÊLBO(q(κ j,ψ j)), ∇
k
γκ j

ÊLBO(q(κ j,ψ j)), 1≤ j ≤ n,

∇
k
αψ j

ÊLBO(q(κ j,ψ j)), ∇
k
γψ j

ÊLBO(q(κ j,ψ j)), 1≤ j ≤ n.

(Here, superscript k at the gradient symbol ∇ specifies the BBVI itera-

tion.)

– Evaluate αααk and γγγk:

(ααα,γγγ)k = (ααα,γγγ)k−1 +ρk∇
k
(ααα,γγγ)ÊLBO(q),
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where q = (q(ϑ),q(θ),q(κ1,ψ1), . . . ,q(κn,ψn)). For the learning rate,

we employed the AdaGrad algorithm [39] and set ρk = η diag(Gk)
−1/2,

where Gk is a matrix equal to the sum of the first k iterations of the

outer products of the gradient, and diag(·) maps a matrix to its diagonal

version.

• Iterate until convergence.

Results

The three algorithms have different stopping criteria. We run each for 100secs for a

fair comparison. Please note that with 100secs, MCMC and MC-CAVI have already

achieved satisfying convergence (for MCMC, the z-scores of Geweke’s Diagnostic

for ϑ and θ are 0.19 and 0.28 respectively; for MC-CAVI, the chain fluctuates stably

around a small area) while BBVI does not. A summary of results is given in Table

3.2. Model fitting plots and algorithmic traceplots are shown in Figure 3.5.

MCMC MC-CAVI BBVI

Iterations
No. Iterations = 2,500
Burn-in = 1,250

No. Iterations = 300
N = 10
Burn-in = 150

No. Iterations = 100
N = 10

ϑ 5.927 (0.117) 5.951 (0.009) 6.083 (0.476)
θ 1.248 (0.272) 8.880 (0.515) 0.442 (0.172)

Table 3.2: Summary of results: last two rows show the average for the cor-
responding parameter (in horizontal direction) and algorithm (in
vertical direction), after burn-in (the number in brackets is the cor-
responding standard deviation). All algorithms were executed for
102secs. The first row gives some algorithmic details.

Table 3.2 indicates that all three algorithms approximate the posterior mean of ϑ

effectively; the estimate from MC-CAVI has smaller variability than the one of

BBVI; the opposite holds for the variability in the estimates for θ . Figure 3.5 shows

that the traceplots for BBVI are unstable, a sign that the gradient estimates have

high variability. In contrast, MCMC and MC-CAVI perform rather well. Figure 3.6

shows the ‘true’ posterior density of ϑ (obtained from an expensive MCMC with
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Figure 3.5: Model fit (left panel), traceplots of ϑ (middle panel) and traceplots
of θ (right panel) for the three algorithms: MCMC (first row), MC-
CAVI (second row) and BBVI (third row) – for Example Model 2
– when allowed 100secs of execution. In the plots showing model
fit, the green line represents the data without noise, the orange line
the data with noise; the blue line shows the corresponding poste-
rior means and the grey area the pointwise 95% posterior credible
intervals.

Figure 3.6: Density plots for the true posterior of ϑ (blue line) – obtained via
an expensive MCMC – and the corresponding approximate distri-
bution provided by MC-CAVI.

10,000 iterations – 5,000 burn-in) and the corresponding approximation obtained

via MC-CAVI. In this case, the variational approximation is quite accurate at the
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estimation of the mean but underestimates the posterior variance (rather typically

for a VI method). We mention that for BBVI we also tried to use normal laws as

variational distributions – as this is mainly the standard choice in the literature –

however, in this case, the performance of BBVI deteriorated even further.

3.4 Application to 1H NMR Spectroscopy
We demonstrate the utility of MC-CAVI in a statistical model proposed in the field

of metabolomics by Astle et al. [3], and used in NMR (Nuclear Magnetic Reso-

nance) data analysis (Section 1.6). The aim of the analysis is: (i) to deconvolve

resonance peak in the spectrum and assign them to a particular metabolite; (ii)

estimate the abundance of the catalogued metabolites; (iii) model the component of

a spectrum that cannot be assigned to known compounds.

BATMAN is an R package for estimating metabolite concentrations from NMR

spectral data using a specifically designed MCMC algorithm [60] to perform pos-

terior inference from the Bayesian model described in Section 1.6. We implement

a MC-CAVI version of BATMAN and compare its performance with the original

MCMC algorithm. Details of the implementation of MC-CAVI are given in the

Appendix. Due to the complexity of the model and the datasize, it is challenging

for both algorithms to reach convergence. We run the two methods, MC-CAVI and

MCMC, for approximately an equal amount of time, to analyse a full spectrum with

1,530 data points and modelling parametrically 10 metabolites. We fix the number

of iterations for MC-CAVI to 1,000, with a burn-in of 500 iterations; we set the

Monte Carlo size to N = 10 for all iterations. The execution time for this MC-CAVI

algorithms is 2,048secs. For the MCMC algorithm, we fix the number of iterations

to 2,000, with a burn-in of 1,000 iterations. This MCMC algorithm has an execution

time of 2,098secs.

In 1H NMR analysis, β (the concentration of metabolites in the biofluid) and δ ∗m,u
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(the peak positions) are the most important parameters from a scientific point of

view. Traceplots of four examples (β3, β4, β9 and δ4,1) are shown in Figure 3.7.

These four parameters are chosen due to the different performance of the two meth-

ods, which are closely examined in Figure 3.9. For β3 and β9, traceplots are still far

from convergence for MCMC, while they move towards the correct direction (see

Figure 3.7) when using MC-CAVI. For β4 and δ4,1, both parameters reach a stable

regime very quickly in MC-CAVI, whereas the same parameters only make local

moves when implementing MCMC. For the remaining parameters in the model,

both algorithms present similar results. Please note that, due to the difficulty in-

volved in convergence of both algorithms, two algorithms are compared with same

running time. The convergence of MC-CAVI is not better than that of MCMC in

terms of convergence diagnostics. The argument we claim that is that, although

both algorithms have not reached convergence, according to the close examination

we performed with Figure 3.9 later, with the same running time, MC-CAVI algo-

rithms reached an area more "correct" than MCMC.

Figure 3.8 shows the fit obtained from both the algorithms, while Table 3.3 reports

posterior estimates for β . From Figure 3.8, it is evident that the overall performance

of MC-CAVI is similar as that of MCMC since in most areas, the metabolite fit (or-

ange line) captures the shape of the original spectrum quite well. Table 3.3 shows

that, similar to standard VI behaviour, MC-CAVI underestimates the variance of

the posterior density. We examine in more detail the posterior distribution of the β

coefficients for which the posterior means obtained with the two algorithms differ

more than 1.0e-4. Figure 3.9 shows that MC-CAVI manages to capture the shapes

of the peaks while MCMC does not, around ppm values of 2.14 and 3.78, which

correspond to spectral regions where many peaks overlap making peak deconvo-

lution challenging. This is probably due to the faster convergence of MC-CAVI.

Figure 3.9 shows that for areas with no overlapping (e.g. around ppm values of 2.66

and 7.53), MC-CAVI and MCMC produce similar results.
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Figure 3.7: Traceplots of Parameter Value against Number of Iterations after
the burn-in period for β3 (upper left panel), β4 (upper right panel),
β9 (lower left panel) and δ4,1 (lower right panel). The y-axis cor-
responds to the obtained parameter values (the mean of the dis-
tribution q for MC-CAVI and traceplots for MCMC). The red line
shows the results from MC-CAVI and the blue line from MCMC.
Both algorithms are executed for the same (approximately) amount
of time.

β1 β2 βββ 333 βββ 444 β5

MC-CAVI
mean 6.0e-6 7.8e-5 1.4e-3 4.2e-4 2.6e-5
sd 1.8e-11 4.0e-11 1.3e-11 1.0e-11 6.2e-11

MCMC
mean 1.2e-5 4.0e-5 1.5e-3 2.1e-5 3.4e-5
sd 1.1e-10 5.0e-10 1.6e-9 6.4e-10 3.9e-10

β6 β7 β8 βββ 999 β10

MC-CAVI
mean 6.1e-4 3.0e-5 1.9e-4 2.7e-3 1.0e-3
sd 1.5e-11 1.6e-11 3.9e-11 1.6e-11 3.6e-11

MCMC
mean 6.0e-4 3.0e-5 1.8e-4 2.5e-3 1.0e-3
sd 2.3e-10 7.5e-11 3.7e-10 5.1e-9 7.9e-10

Table 3.3: Estimation of β obtained with MC-CAVI and MCMC. (The coef-
ficients of β for which the posterior means obtained with the two
algorithms differ by more than 1.0e-4 are shown in bold.)
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Figure 3.8: Comparison of MC-CAVI and MCMC in terms of Spectral Fit.
The upper panel shows the Spectral Fit from MC-CAVI algorithm.
The lower panel shows the Spectral Fit from MCMC algorithm.
The x-axis corresponds to chemical shift measure in ppm. The y-
axis corresponds to standard density.

Comparing MC-CAVI and MCMC’s performance in the case of the NMR model,

we can draw the following conclusions:

• In NMR analysis, if many peaks overlap (see Figure 3.9), MC-CAVI can

provide better results than MCMC.

• In high-dimensional models, where the number of parameters grows with the

size of data, MC-CAVI can converge faster than MCMC.

• Choice of N is important for optimising the performance of MC-CAVI. Build-

ing on results derived for other Monte Carlo methods (e.g. MCEM), it is rea-

sonable to choose a relatively small number of Monte Carlo iterations at the

beginning when the algorithm can be far from regions of parameter space of

high posterior probability, and gradually increase the number of Monte Carlo
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Figure 3.9: Comparison of Metabolites Fit obtained with MC-CAVI and
MCMC. The x-axis corresponds to chemical shift measure in ppm.
The y-axis corresponds to standard density. The upper left panel
shows areas around ppm value 2.14 (β4 and β9). The upper right
panel shows areas around ppm 2.66 (β6). The lower left panel
shows areas around ppm value 3.78 (β3 and β9). The lower right
panel shows areas around ppm 7.53 (β10).

iterations, with the maximum number taken once the algorithm has reached a

mode.

3.5 Conclusion

As a combination of VI and MCMC, MC-CAVI has the potential to improve NMR

spectroscopy analysis and provides a powerful inferential tool particularly in high

dimensional settings when full posterior inference is computationally demanding

and the application of optimization and of noisy-gradient-based approaches, e.g.

BBVI, is hindered by the presence of hard constraints. The MCMC step of MC-

CAVI is necessary to deal with parameters for which VI approximation distribu-

tions are difficult or impossible to derive, for example due to the impossibility to
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derive closed-form expression for the normalising constant. General Monte Carlo

algorithms such as sequential Monte Carlo and Hamiltonian Monte Carlo can be

incorporated within MC-CAVI. Compared with MCMC, the VI step of MC-CAVI

speeds up convergence and provides reliable estimates in a shorter time. Moreover,

MC-CAVI scales better in high-dimensional settings. As an optimization algorithm,

MC-CAVI’s convergence monitoring is easier than MCMC. Moreover, MC-CAVI

offers a flexible alternative to BBVI. This latter algorithm, although very general

and suitable for a large range of complex models, depends crucially on the qual-

ity of the approximation to the true target provided by the variational distribution,

which in high dimensional setting (in particular with hard constraints) is very diffi-

cult to assess.



Chapter 4

Bayesian deconvolution and

quantification of metabolites from

J-resolved NMR spectroscopy

4.1 Background

While metabolite identification and quantification in 1D NMR spectroscopy are

severely hindered by resonance overlapping, JRES, a popular 2D method for

metabolomics, disperses the overlapping resonances into a second dimension. With

this extra dimension, JRES has the potential to significantly reduce congestion, and

enhance metabolite identification and estimation [84].

Standard analysis of JRES data is often based on 1D projections of the 2D spec-

tra. For example, Viant [130] perform multivariate statistical analyses for JRES

metabolomics data by taking projections of each 2D spectrum onto the chemical

shift axis. For instance, 1D projections of JRES spectra inevitably discard the

spin-spin coupling measurements, which potentially become important for further

discrimination between different metabolites, especially within complex biological

samples. J-coupling also has the advantage that the coupling patterns are less sen-
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sitive to changes in pH than chemical shift values [93]. This is not an ideal strategy

as it does not allow to fully exploit information from one dimension.

Gómez et al. [55] combine 2D JRES with 1D NMR spectra to avoid peak misidenti-

fication. Their quantification step, however, is still performed on the 1D spectrum.

Kikuchi et al. [76] construct a database for 2D JRES spectra from 598 metabolite

standards and develop analytic tools for absolute quantification. However, their

quantification tool only supports 38 commonly observed major metabolites. An-

other typical approach is to unfold the 2D data into a single row vector which can

then be used in supervised or unsupervised machine learning algorithms. For ex-

ample, Parsons et al. [100] are able to discriminate liver samples from fish derived

from different polluted rivers using this simple approach. Again, this process does

not make full use of the information provided by the second dimension.

The most widely used statistical methods to analyse 2D JRES data from their origi-

nal format are: (i) binning the spectrum to reduce dimensionality and evaluating

summary statistics; (ii) unsupervised multivariate clustering techniques, such as

Ward’s algorithm or K-means, applied to bucketed or original spectral data; and

(iii) peak alignment followed by pattern recognition methods using principal com-

ponent analysis or partial least squares regression. The limitations of bucketing

spectral data are well documented [30, 49] and, in general, none of these methods

fully exploit the information in the spectrum. While these methods usually lead

to the identification of spectral regions associated, for example, to a phenotype of

interest, they still require extensive work for the identification and estimation of

concentration of metabolites. Perhaps, even more importantly, they do not provide

measures of uncertainty associated with the estimates.

Potentially the most accurate approach to analyze an intact 2D JRES spectrum is

fitting manually each individual resonance to the theoretical peak shape of a cer-

tain metabolite. Peak identification is complicated by variations in peak positions
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between spectra, caused by inevitable and uncontrollable changes in experimental

conditions and differences in the chemical properties of the biological samples. Ex-

pert spectroscopist deconvolution is rarely practical for JRES spectra because it is

time consuming and requires knowledge about metabolite resonance patterns. Tar-

geted profiling [135], usually performed in 1D against a standard library of metabo-

lite resonance peaks, reduces the requirement of expert spectroscopist knowledge

but is still labour intensive. Therefore, we aim to develop a full likelihood based

approach to analyse 2D JRES data, which allows for expert guided automatic de-

convolution, identification and quantification of metabolites.

Contribution of this section: Since JRES datasets are large (typically 50− 100

times larger than comparable 1D NMR spectra) and heavily structured, specialized

models and appropriate tools are required to perform metabolite quantification. To

the best of our knowledge, there are no efficient statistical methods available for

analysing JRES spectra, which automatically combine the data-generating mecha-

nisms and the extensive prior knowledge available in online databases, and at the

same time provide measures of uncertainty. In this section, we develop a fully

likelihood based approach to analyse 2D JRES data from complex biological mix-

tures, which allows for expert guided automatic deconvolution, identification and

quantification of metabolites. The advantages of our method are that it allows direct

quantification of metabolites drawn from a library of known compounds, disam-

biguation of assignment of highly overlapping resonances, deconvolution of signals

in highly crowded regions, and estimates of uncertainty in relative concentrations

and peak positions. Note that in many applications only relative concentration

estimation, i.e. estimation of the ratio of concentrations between samples, is fea-

sible since absolute quantification usually involves calibration of signals from a

biological mixture of interest using reference signals from a standard containing a

detectable compound of unknown concentration.
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Our approach is based on a combination of theoretical templates and B-spline tight

wavelet frames. The incorporation of theoretical or empirical metabolite templates

is a clear advantage in terms of model interpretability as compared to common

analysis tools in metabolomics such as bucketing, principal component analysis

and partial least squares or to a model based only on basis function representation

of the spectrum. We perform posterior inference through specially devised Markov

chain Monte Carlo (MCMC) methods. Finally, we demonstrate the effectiveness of

our approach on simulated data and via analyses of datasets from serum and urine.

4.2 Modelling
Acquisition of NMR data requires sampling at regularly spaced time points to yield

time domain data, which needs to be transformed to Fourier/frequency domain (as

shown in Figure 1.3). The Fourier transform is necessary to convert the spectrum

represented by a series of cosines in time domain to an easily recognisable spectrum

in frequency domain. Next, the resulting 2D frequency spectra require specific pro-

cessing, which comprises mainly of two steps: tilting the spectrum, followed by

symmetrisation. Tilting involves moving the centre of the peaks corresponding

to the same multiplet in the J-coupling dimension so that they are aligned in the

chemical shift dimension. Points other than the centre are also moved in a simi-

lar manner. In other words, after tilting, peak maxima in each multiplet appear at

the same resonance frequency. Since the tilted peaks have now been subjected to

a shearing transformation, the resultant peak shapes have changed from the initial

unprocessed spectrum. Consequently, the spectrum has to be symmetrised, forcing

the signal intensities to become symmetric around the centre line of the spectrum

along the J-coupling dimension. After symmetrisation, the peaks are truncated, but

still centred. eAfter this standard preprocessing, which is typically performed fully

automatically with the spectrometer manufacturer’s proprietary software (or using
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publicly available packages such as NMRglue [62], a frequency-domain 2D JRES

spectrum, as exemplified in Figure 1.3, is given by position vectors x= (x1, . . . ,xNC)

on the chemical shift axis and y= (y1, . . . ,yNJ) on the J-coupling axis, together with

a measurement matrix z = (zi j)i=1,...,NC; j=1,...,NJ whose elements are the resonance

intensities at the usually uniformly spaced positions (xi,y j). Depending on the res-

olution of the spectrum and the size of the region under consideration, NC typically

is of the order 103−104, while NJ typically is of the order 102−103. The intensity

measurements are corrupted by noise and therefore, although inherently positive

quantities, may in some cases be negative valued. We standardize the intensities to

satisfy ∑i, j zi j = 1.

We model z | x,y assuming that zi j | x,y are independent Normal random variables

with

E(zi j | x,y) = φ(xi,y j)+ξ (xi,y j), for 1≤ i≤ NC and 1≤ j ≤ NJ. (4.1)

The φ component of the model corresponds to signal from targeted metabolites

which we aim to quantify and for which prior information in the form of spec-

tral signatures is available, either catalogued in public databases or through expert

knowledge. The ξ component of the model represents the signal generated by untar-

geted and/or unknown metabolites or other molecules and may, if necessary, include

partial signals from metabolites whose residual resonances are modeled in the φ

component. This construction mirrors an equivalent modelling strategy developed

by Astle et al. [3] for 1D NMR data. We model the φ component parametrically

via continuous functions of continuous chemical shift and J-coupling information,

using the physical theory of J-resolved NMR [see, e.g., 84]. The ξ component is

modelled nonparametrically using a wavelet system constructed from a piecewise

linear B-spline [see 38].
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4.2.1 Modelling of catalogued metabolite signal

In theory, resonance signatures of different metabolites are independent and aggre-

gate in the JRES spectrum by convolution, with an intensity proportional to molecu-

lar abundance. Each molecular compound has a specific spectral signature given by

a set of multiplets across the spectrum. These multiplets are characterized by their

position δ on the chemical shift axis and the position ζ of their individual peaks on

the J-coupling axis.

More precisely, the targeted signal is a linear combination of the signatures of M

different targeted metabolites, i.e.

φ(δ ,ζ ) =
M

∑
m=1

βmtm(δ ,ζ ) for (δ ,ζ ) ∈ R2, (4.2)

where the tm are continuous template functions specifying the JRES signatures of

the metabolites, with concentrations βm that are proportional to the molecular abun-

dance of the m-th metabolite in the biological mixture. The number of targeted

metabolites M is specified by the researcher and depends on the available prior in-

formation and the scientific problem. In general, M varies between one to several

hundreds.

The JRES signatures tm of the metabolites are a superposition of multiplets, each

of which is in turn a superposition of individual peaks. Multiplets appear at certain

positions on the chemical shift and J-coupling axes. The number of peaks, their dis-

tances from each other and relative heights can be used for metabolite identification.

More precisely,

tm(δ ,ζ ) = ∑
u

ρmugmu(δ −δ
?
mu,ζ ), (4.3)

where u is indexing the multiplets gmu belonging to the m-th metabolite. The

chemical shift parameter δ ?
mu of the multiplet specifies the position of the centre
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Figure 4.1: Peak configurations of some common multiplet types. The x-axis
indicates chemical shift while the y-axis indicates the J-coupling.
The upper panel shows a doublet with chemical shift δ ?

mu and peak
offset ζmuv. The lower panel shows a triplet and quadruplet.

of mass of gmu. The coefficients ρmu are usually equal to the number of protons in

a molecule of the metabolite that contributes resonance signal to the u-th multiplet.

Due to relaxation effects [67] the ρmu may not always be positive integers, in which

case they have to be interpreted as “effective" proton contributions. The volume
´

∞

−∞

´
∞

−∞
gmu(δ ,ζ )dδ dζ is assumed to be constant over m and u. Thus the volume

under each tm is proportional to the number ∑u ρmu of resonating protons in the m-th

molecule, giving a measure of abundance. These observations will become crucial

when we describe our shrinkage strategy in Section 4.3.
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Besides few exceptions, the peak configurations of the multiplets gmu can be clas-

sified into several common types, such as doublets, triplets, or doublet of doublets

(see Figure 4.1). This classification, together with a small number of continuous

quantities called J-coupling constants, which determine the distance of each peak

from the centre of the multiplet along the J-coupling axis, completely parametrize a

multiplet. We model multiplets gmu as weighted averages of Vmu translated general-

ized bivariate Student-t densities fσ1σ2ν with zero mean and zero correlation, which

we will discuss in more detail in (4.5) below. More precisely,

gmu(δ ,ζ ) =
Vmu

∑
v=1

wmuv fσ1σ2ν(δ ,ζ −ζmuv), (4.4)

where the weights wmuv (which over v sum to one, and are available through data

banks and expert knowledge) determine the relative heights of the peaks in the

multiplet. The translation parameters ζmuv determine the J-coupling offsets of the

peaks from the centre of mass of the multiplet. Multiplets are usually symmetric

around ζ = 0, with {−ζmuv}v=1,...,Vmu = {ζmuv}v=1,...,Vmu , and wmuv′ = wmuv when-

ever ζmuv′ =−ζmuv, see Figure 4.1.

Under ideal experimental conditions, the individual peaks in 1D NMR spectra have

the shape of Lorentzians [25]. In 2D JRES spectra the tensor product of two

Lorentzian curves may be used to fit individual peaks, however, the precise math-

ematical description of peak shapes in JRES spectra has yet to be determined [54].

In many types of spectroscopy, Voigt profiles are used to model peak shapes [19].

They can be understood as a convolution of Lorentzian and Gaussian profiles, each

of which is derived from different underlying physical processes. However, the

relative importance of these processes is difficult to estimate from the data and is

usually inferred from evidence for light/heavy tails. We therefore choose to model

peaks by generalized bivariate Student-t distribution kernels with zero mean and
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zero correlation given by

fσ1σ2ν(δ ,ζ −ζmuv) =
Γ((ν +2)/2)

Γ(ν/2)πνσ1σ2

(
1+

1
ν

(
δ 2

σ2
1
+

(ζ −ζmuv)
2

σ2
2

))−(ν+2)/2

for (δ ,(ζ −ζmuv)) ∈ R2,

(4.5)

where σ1,σ2 are scaling parameters controlling peak width, ν represents the number

of degrees of freedom controlling the tail decay, and Γ denotes the Gamma func-

tion. Individual peak shapes in our model are thus controlled by three parameters.

Student-t kernels have shapes that are similar to Voigt profiles, with the degree of

freedom corresponding to the mixing weights, and are attractive as (4.5) coincides

with the Cauchy distribution when ν = 1, i.e. with a Lorentzian curve in the 1D

case, and converges to a Normal distribution as ν approaches infinity. As such they

give modelling flexibility to accommodate different peak shapes as well as experi-

mental noise. Since it is difficult to estimate the relative importance of the physical

processes leading to the particular strength of Laurentzian and Gaussian in the peak

formation via convolution, and since the noise in JRES measurements is not yet well

understood, in our applications we fix ν at large value, based on the observation that

peaks in the data decay rapidly, and in general the choice of ν should be dictated by

the particular experimental conditions.

4.2.2 Modelling of uncatalogued metabolite signal

We model the uncatalogued component of (4.1) using a discrete B-spline wavelet

tight frame. Although many applications utilise wavelet bases, redundant wavelet

families perform better in rest areas. (Redundancy means that many of the wavelet

coefficients are close to zero. Therefore, a high-quality signal approximation can

still be achieved even thought those coefficients are disregarded.) Wavelet frames

are the easiest to apply among redundant wavelet families. Frames have first been
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introduced by Duffin and Schaeffer [40] and gained in popularity since the work

of Daubechies et al. [31]. Daubechies constructed a famous orthonormal basis for

the space of square-integrable functions, they are named wavelets because of their

short fast oscillating waves. While frames are widely used in engineering appli-

cations [89, 23], they have been employed less in other fields. (There are many

different frames for different applications, e.g. Gabor frames for audio-processing.

[6]) For a comprehensive introduction to wavelet frames we refer to Mallat [89] and

for further details on the particular systems described in this section to Dong and

Shen [37, 38]. Wavelet frames are representation systems consisting of shifts and

dilations of compactly supported functions that can provide multiresolution repre-

sentations of signals, consisting of a low-pass approximation (corresponds to low-

pass filters) and high-pass details (corresponds to high-pass filters). They enable

localized and adaptive processing of data, e.g. in accordance with prior informa-

tion, and have successfully been applied in metabolomics. The local support of rep-

resentation functions makes wavelet expansions a local-influence model, whereas

their overlapping support acts as a regularizing mechanism that facilitates stabil-

ity. Wavelet frames are stable in the sense that small changes in coefficients do

not perturb the function significantly and vice versa. Together with the locality

and the filtering in low- and high-pass channel information, these characteristics

make the expansion coefficients highly interpretable. Beyond stability, localization,

and multiresolution, particular wavelet frames offer many advantages in applica-

tions. Among the most relevant to this work are the support size of the wavelets,

their symmetry (because usually the shape and the form of the signal being filtered

matches the general shape of the wavelet and theoretical shape of NMR signal is

symmetric) and smoothness properties, as well as the redundancy of the overall

system, i.e. its ability to provide sparse and parsimonious representations. Small

support size translates to better localization of feature coefficients of the signal and

is desirable since it implies lower computational costs and sparse approximation to
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local features. Symmetry of the frame elements has the advantage that the corre-

sponding transform can be implemented using mirror boundary conditions without

introducing artefacts or increasing the computational burden. This is particularly

important in metabolomics applications, since metabolite resonances often appear

close to the spectral boundaries. Moreover, metabolomic data has a high amount

of inherent local symmetries. To account for the symmetry of peaks in 1D NMR

spectra, Astle et al. [3] use Symlet 6 (from the family of Daubechies’ least asym-

metric wavelets) to model uncatalogued metabolites, as they want to preserve the

orthonormality of the representation system. There are several strategies to simul-

taneously achieve perfect symmetry, small support and smoothness, one of which

is to give up orthonormality and to use wavelet tight frames. Tight frames provide

stable signal decomposition and reconstruction in the same fashion as orthonormal

bases, while having built in redundancy, thus enabling sparser representations than

(bi)orthogonal systems and in turn allowing the application of strong shrinkage pri-

ors to the transformed coefficients.

Given Ψ := {ψ1, . . . ,ψr} ⊂ L2(R), a wavelet system can be represented by

X(Ψ) := {ψl,n,k : 1≤ l ≤ r;n,k ∈ Z},

where ψl,n,k := DnTkψk = 2n/2ψl(2n ·−k) are shifts and dilations. If X(Ψ) is tight

frame for L2(R), then it is called a tight wavelet frame for L2(R) and the elements

of Ψ are called wavelets.

Given a separable Hilbert space H with inner product 〈·, ·〉 and a finite or countable

index set I, a sequence {gi}i∈I ⊂H is called a tight frame for H if

f = ∑
i∈I
〈 f ,gi〉gi for all f ∈H . (4.6)
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Tight frames thus provide perfect signal reconstruction in the same way as Hilbert

space orthonormal bases, without requiring the frame elements to be orthonormal or

the coefficients in (4.6) to be unique. (Tight frames are generalizations of the con-

cept of orthonormal basis in Hilbert spaces.) Indeed, the only properties of Hilbert

space orthonormal bases that [3] use for their inferential method is (4.6). A tight

frame is, in fact, an orthonormal basis if and only if all its elements have unit norm.

The coefficients {〈 f ,gi〉}i∈I ∈ `2(I) are called the canonical frame coefficients of f ,

where `2(I) denotes the space of square-summable scalar sequences indexed by I.

The analysis operator of the tight frame maps every signal f ∈H to its sequence

of canonical frame coefficients. Its adjoint operator is called the synthesis operator

and maps c ∈ `2(I) to the superposition ∑i∈I c(i)gi ∈H . The system {gi}i∈I is a

tight frame if and only if the composition of its analysis and synthesis operator is

the identity on H .

The elements of a wavelet frame are generated by shifts and dilations of, in general

more than one, generators, called framelets. (In other words, if a wavelet system

X(Ψ) is a frame, its elements are referred as framelets. Framelets are wave-like

functions (wavelets) without an orthonormal basis.) In this article, we use a discrete

B-spline wavelet tight frame. A spline wavelet is a wavelet constructed by using a

spline function, which is a class of functions mainly applied when data interpola-

tion or smoothing is required. This class of frames is widely used in wavelet frame

based image restoration and has first been introduced by Ron and Shen [112]. The

framelets can be defined via framelet filters, which are the coefficients with which

the framelet can be written as a linear combination of shifts of refinement func-

tions. When processing digital images/data, the actual framelet functions are never

necessary and only framelet filters are needed. The tight frame is generated via a

set of finitely supported framelet filters {a(l)}r
l=1 ∈ `2(Zd) (where here d ∈ {1,2}
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depending on the dimensionality of our problem) that define a shift-invariant system

{(a(l)( j− k)) j∈Zd : l ∈ {1, . . . ,r},k ∈ Zd}, (4.7)

consisting of all of their integer shifts. Sufficient for the system (4.7) to be a tight

frame for `2(Zd) is that the filters satisfy the unitary extension principle condition

of Ron and Shen [112]. The unitary extension principle of Ron and Shen [112]

states that:

Let φ ∈ L2(R) be compactly supported refinable with finite mask h0 and φ̂(0) = 1.

Suppose Ψ = {ψ1, . . . ,ψr} are defined by finite masks h1, . . . ,hr. Then X(Ψ) is a

tight frame for L2(R) provided for all ξ ∈ R,

r

∑
l=0
|ĥl(ξ )|2 = 1 and

r

∑
l=0

ĥl(ξ )ĥl(ξ +π) = 0.

If, furthermore, r = 1 and ‖φ‖= 1 then X(Ψ) is an orthonormal basis of L2(R).

When the system (4.7) is a tight frame, the analysis and synthesis operators are

given via discrete convolutions by

W : u ∈ `2(Zd)→

(
∑

j∈Zd

a(l)( j− k)u( j)

)
(k,l)∈Zd×{1,...,r}

∈ `2(Zd×{1, . . . ,r})

(4.8)

and

W> : c ∈ `2(Zd×{1, . . . ,r})→

(
r

∑
l=1

∑
j∈Zd

c(k− j, l)a(l)( j)

)
k∈Zd

∈ `2(Zd). (4.9)

The wavelet systems, corresponding to filters satisfying the unitary extension prin-

ciple condition via the refinement equations from multiresolution analysis theory,

form a wavelet tight frame of functions for L2(Rd), for which (4.8) and (4.9) de-

scribe the undecimated single level fast wavelet transform. (Undecimated wavelet
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transform is a wavelet transform algorithm designed to overcome the lack of

translation-invariance of the decimated wavelet transform, which is achieved by

removing the downsamplers and upsamplers in the decimated wavelet transform

and upsampling the filter coefficients by a factor of 2 j−1 in the jth level of the al-

gorithm.) Since in our practical application both signals and filters are finite we

identify `2(Zd) with RNC×NJ and `2(Zd×{1, . . . ,r}) with RNC×NJ×r for d = 2, and

with RNC , respectively RNC×r, for d = 1. The convolutions in (4.8) and (4.9) are per-

formed using symmetric boundary extensions matching the symmetry of the respec-

tive filters. The mask of B-spline of order m has the form ĥ0(ξ ) := e−i j ξ

2 cosm(ξ/2),

where j = 0 for even m and j = 1 for odd m. In case d = 1, we use the r = 3 filters

a(1) =
1
4
(1,2,1), a(2) =

√
2

4
(1,0,−1), a(3) =

1
4
(−1,2,−1).

The lowpass filter a(1) is the refinement mask of the univariate piecewise linear

B-spline B2(x) = max(1−|x|,0), since B2(x) has mask

ĥ0(ξ ) = (cosξ/2)2 =
1
4
(eiξ/2 + e−iξ/2)2 =

1
4
(eiξ +2+ e−iξ ).

While the highpass filters a(2) is a wavelet mask of piecewise linear anti-symmetric

( f (x) =− f (−x)) framelet and a(3) is a wavelet mask of piecewise linear symmetric

( f (x) = f (−x)) framelet. The wavelet masks are

ĥ1(ξ ) =−i
√

2(sinξ/2)(cosξ/2) =

√
2

4
(e−iξ − eiξ )

and

ĥ2(ξ ) =−(sinξ/2)2 =−1
4
(e−iξ −2+ eiξ ).

In our JRES application, i.e. when d = 2, we use the r = 9 tensor products of

a(1),a(2) and a(3), i.e., the tight frame we are using consists of the integer-shifts of
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nine filters with common support size 3×3.

Note that the number r of filters is dictated by the choice of order for the B-splines

and framelets. Our choice of piecewise linear order is motivated by computational

tractability. We have experimented with piecewise cubic order, in which case a

negligible improvement of performance comes at a computational cost that is unac-

ceptable for applications, since then r = 5 for the 1D case and r = 25 for 2D case.

Moreover, note that we use an undecimated transform, as those perform better than

decimated transforms in coefficient processing applications, where shift-invariance

of coefficients is desirable due to inaccuracies introduced via positional noise (i.e.

noise in multiplet position) and during data acquisition. For details we refer to [89],

where the undecimated transform is referred to as the à-trous algorithm. Finally, we

refrain from using several dilation levels as the consequential increase in data size

on the transform side would render the MCMC-algorithm unnecessarily expensive

while yielding no significant improvements.

4.2.3 Likelihood

Given measurements z ∈ RNC×NJ and targeted metabolites Tm := (tm(xi,y j))i, j ∈

RNC×NJ (m = 1, . . . ,M), the likelihood of our model in framelet domain is defined

by

Wz =
M

∑
m=1

βmWTm +θθθ + εεε, εi j` ∼ N(0,λ−1), (4.10)

where θθθ ∈ RNC×NJ×r are wavelet frame coefficients of the untargeted signal, r be-

ing the number of framelets, and εεε = (εi j`) ∈RNC×NJ×r are independent identically

Normal distributed errors with scalar precision parameter λ . For every l = 1, . . . ,r,

the matrix (θi jl)i, j ∈ RNC×NJ contains the canonical framelet coefficients of the l-th

framelet. In the spectral regions specified by the theoretical templates we encounter

identifiability issues in the estimation of βββ = (β1, . . . ,βM)> as we are attempting
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to fit both parametric and nonparametric components. To address this problem we

specify localized shrinkage priors. While the identifiability problem in 1D has al-

ready been tackled by Astle et al. [3] by imposing a hard thresholding constraint in

signal domain, their approach makes computations inefficient and therefore infea-

sible for the 2D setting. In Sections 4.3 and 4.6, we compare our approach with the

prior and wavelet specifications of Astle et al. [3] and highlight the advantages of

our method.

4.3 Prior specifications

The problem of identifiability of the regression coefficients βββ of the targeted signal

and the frame coefficients θθθ of the untargeted signal in the likelihood (4.10) arises

because in some regions of the spectrum we attempt to fit both the targeted theoret-

ical templates and the untargeted frame component, while the frame component θθθ

alone could be used to fit the observed spectra perfectly. Scientific interest is mainly

in estimating the relative metabolite concentrations βββ . To resolve the unidentifia-

bility problem, therefore, sparse solutions for θθθ are preferred, where some of the

components of θθθ are shrunk towards zero by assigning them a prior distribution

with heavy tails and concentration of mass near zero. For 1D NMR spectra, As-

tle et al. [3] assign a global prior distribution to shrink the wavelet coefficients.

Additionally, the authors impose a hard thresholding constraint to components of

W>θθθ (where W> denotes the inverse wavelet transform with respect to Symlet 6

wavelets) that fall below a small negative threshold parameter, to which they as-

sign a hyperprior to perform local shrinkage [see Eq. (7) in 3]. The rationale is to

prevent the wavelet component of the model to compensate for mismatched metabo-

lites. However, this strategy presents several practical limitations: (i) the compo-

nents of θθθ become highly correlated which significantly slows down convergence

of the MCMC algorithm; (ii) the implementation of optimization algorithms, such

as gradient-based variational inference, becomes difficult; (iii) the posterior distri-
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bution of the wavelet coefficients becomes increasingly complex with growing data

size, making it challenging to impose such constraint for JRES spectra which usually

are 50− 100 times larger than comparable 1D NMR spectra. For these reasons we

opt for an alternative strategy and introduce additional local shrinkage in wavelet

frame domain, driven by expert knowledge.

Shrinkage priors: To tackle the unidentifiability problem, we enforce sparse so-

lutions for θθθ via global and local shrinkage. There are two main approaches to

shrinkage in the Bayesian framework: two component discrete mixture priors (usu-

ally with a point mass at zero) known as the spike-and-slab [92, 52] and a variety

of continuous shrinkage priors (see, for example,Polson et al. [103], Bhattacharya

et al. [10], Piironen et al. [101], Bhadra et al. [9]. )The spike-and-slab prior is intu-

itively appealing as it perform automatic variable selection when the spike is taken

to be a delta-spike in the origin and it usually performs well in applications. The

main disadvantages of this approach are that the results can be sensitive to prior

hyperparameter choices (in particular slab variance and prior on the inclusion prob-

ability) and that the posterior inference can be too computationally expensive in

high dimensions. On the other hand, continuous shrinkage priors are computation-

ally tractable and offer scalable solutions to complex problems and usually yield

similar results to those obtained with a spike and slab approach. Computationally

efficient and widely used shrinkage priors are the horseshoe [22], the LASSO [123]

and the Student-t prior [124]. We use the horseshoe prior since its flat Cauchy-like

tails allow components of θθθ to assume large values a posteriori when supported by

the data, while its infinitely tall spike at the origin provides strong shrinkage for

small entries of θθθ . We further make use of the localization of the framelets to addi-

tionally shrink the framelet coefficients θθθ in regions of targeted metabolites.

In more detail, given a global shrinkage parameter τ , the horseshoe prior for θi jl
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can be represented as the scaled mixture of Normals

(θi jl | µi jl,τ)∼ N(0,µ2
i jlτ

2), µi jl ∼ C+(0,ci jl), for all i, j, l,

where the θi jl | τ are conditionally independent and where the local shrinkage pa-

rameters µi jl are assigned half Cauchy distributions. As suggested by Gelman

[51], we also assign a half Cauchy distribution to the global shrinkage parame-

ter, τ ∼ C+(0,d). The hyperparameters ci jl and d govern the amount of local and

global shrinkage imposed. For the choice of the ci jl we adopt the following local

shrinkage strategy:

(i) Consider spectral regions in the targeted components to which we wish to ap-

ply additional local shrinkage in framelet domain, i.e., regions where we want to fit

theoretical templates. In these regions, the local shrinkage strategy will shrink the

signals from the uncatalogued part, which helps most of the signals being explained

by the catalogued part. We suggest that additional local shrinkage should be applied

to at least one multiplet of each targeted metabolite. To facilitate accurate posterior

concentration estimates, at least one multiplet for each metabolite should decon-

volve correctly, and we thus would like to apply extra local shrinkage to multiplets

that are less overlapped with strong untargeted signals, so that they can better drive

concentration estimation. For instance, in the urine spectrum shown in Figure 4.6

the area around 3.660ppm usually presents severe overlapping, thus, we would not

consider extra local shrinkage for multiplets around 3.660ppm. If there is no prior

information regarding overlap available, we propose the following two options: (1)

For each metabolite, apply extra local shrinkage to the multiplets corresponding to

the largest number of protons. The motivation for this strategy is that multiplets with

higher number of protons are less likely to be overlapped with stronger signals from

untargeted metabolites. For example, the metabolite Valine has four multiplets, lo-

cated at 0.976ppm, 1.029ppm, 3.601ppm and 2.261ppm. The latter multiplet is not
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considered in this work due to its extremely complex structure. The corresponding

height ratios of the three remaining multiplets, which are proportional to their num-

ber of H-protons, are 3:3:1 and thus we apply extra shrinkage to the two multiplets

with the highest number of protons, located at around 1.029ppm and 0.976ppm.

(2) Apply extra local shrinkage to all multiplets of the targeted metabolites. This

second option is more straightforward and allows robust concentration estimation

even when signals of targeted metabolites are partially overlapped with strong sig-

nal components of untargeted metabolites. The reason is that the extra shrinkage

pushes framelet coefficients towards zero, leaving part of the signal unexplained

and leading to an underestimation of the precision parameter λ . For the examples

presented in this article we use the first option, as model fitting using this option is

often more satisfactory.

(ii) While shrinkage is performed in framelet domain, the spectral regions chosen in

the previous step are characterized by parameters δ ?
mu and ζmuv in frequency domain

(see Figure 4.1). Using prior information about the uncertainty of these parameters,

discussed below, we determine regions, centred around (δ ?
mu,ζmuv), of likely lo-

cations for the specified multiplets and identify the index set I ×J ⊂ NC×NJ

for which (xi,y j) belongs to the determined regions. (Recall that the index (i, j)

identifies a position in frequency domain.) First, choose low and high shrink-

age parameters 0 ≤ cl < ch, and let ωi j = ch if (i, j) ∈ I ×J and ωi j = cl if

(NC×NJ) \ (I ×J ). Next, define the hyperparameters ci jl controlling the local

shrinkage of the coefficients θi jl of the l-th framelet filter (l = 1, . . . ,r) located at

position (i, j) ∈ NC×NJ via a running average across the filters support with the

low and high shrinkage regions described through (ωi j) in signal domain. Specifi-

cally, noting that all filters we use have support of size 3×3, consider the index sets

Si j = ({i−1, i, i+1}×{ j−1, j, j+1})∩ (NC×NJ) within the data grid and define
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ci jl via

log10 ci jl :=
1
|Si j| ∑

(m,n)∈Si j

ωmn.

This means that higher shrinkage is applied in the specified regions, with the level

of shrinkage weakening towards the boundary of the regions.

Figure 4.2 illustrates the rationale for applying local shrinkage and its effect on the

estimation of concentrations in the urine spectrum that we consider in further detail

in Section 4.6. We focus on a region in which the targeted metabolites Valine and

Isoleucine (templates shown in top panel) are overlapped with an untargeted sig-

nal component. The experimentally observed spectrum, shown in black in the the

middle and bottom panels, exhibits a multiplet at 0.998ppm that, in theory, could

be assigned to either Isoleucine or Valine, a multiplet at 1.045ppm that can only

belong to Valine, and signal at around 3.660ppm, part of which could be assigned

to Isoleucine. This region is problematic as it is highly overlapped. Note, that there

is a multiplet of Isoleucine at around 0.923ppm, but no signal is detected in the

given spectrum. Without local (but only global) shrinkage (middle panel), part of

the untargeted signal at around 3.660ppm is assigned to Isoleucine, as there the

theoretical template for this metabolite presents a mutiplet. In this case, this lat-

ter region is driving the estimation of concentration of Isoleucine and the model

is relatively insensitive to the information in the region around 0.923ppm. Conse-

quently, the signature template of Isoleucine does not match the shape of the spec-

tral data between 0.920ppm and 1.000ppm. The resulting mismatch between the

observed spectrum and the overall targeted metabolite fit is being compensated by

a negative frame component such that a perfect overall model fit is achieved even

though the Isoleucine concentration is erroneously overestimated. This also leads

to coarse overestimation of the concentration for Valine, since the two multiplets at

0.998ppm (overlapping with the multiplet from Isoleucine) and 1.045ppm should

have the same intensity. The mutiplet at 1.045ppm is driving the estimation of con-



4.3. Prior specifications 112

centration, but it needs to compensate for the fact that signal at 0.998ppm needs to

be split between the two metabolites. Altogether, the conflicting information from

different parts of the spectrum results in a negative frame component.

Increasing the overall global shrinkage does not resolve this phenomenon, and re-

sults in signals in highly overlapped regions getting erroneously over-explained.

Moreover, additional global shrinkage would further push the framelet coefficients

to zero, leaving relevant parts of the signal unexplained and consequently result in

underestimating the precision parameter λ . However, introducing additional local

shrinkage to the frame coefficients in regions of targeted metabolites, as described

in (i) and (ii) above, can successfully address the problem. As shown in the bottom

panel, the region around 0.922ppm is then driving the estimation of concentration

of Isoleucine. Because among three regions (0.922 ppm, 0.997 ppm and 3.660

ppm) where signals of Isoleucine are expected, there is least overlapping in the re-

gion around 0.922ppm and signals in this region are very weak, which indicates

the concentration of Isoleucine should be approximately zero. The region around

1.045ppm is driving the estimation of concentration of Valine. Because, same as

that in Isoleucine, among two regions (0.997 ppm and 1.045 ppm), where signals

of Valine are expected, there is least overlapping in the region around 1.045ppm

and signals in this region are positive, which indicates the concentration of Valine

should be some positive value. Due to the extra local shrinkage the frame compo-

nent captures mainly the untargeted signal and is prevented from compensating for

misfitted targeted metabolites.

The remaining prior specifications (for the coefficients of the targeted metabolites

and for the precision parameter) are generalizations of the 1D priors used in Astle

et al. [3] to our 2D model.

Prior for precision parameter λ : We opt for a conjugate prior and choose a Gamma

distribution with shape parameter a and rate b/2, where smaller values of a and

b correspond to increased uncertainty in the value of λ . For the simulations and
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Figure 4.2: Effect of additional local shrinkage applied to framelet coefficients
of selected targeted regions. For ease of visualization, spectra are
vectorised columnwise and plotted in 2D. On the x-axis we report
the chemical shift region of the multiplet, on the y-axis their inten-
sities. The top panel shows the templates of the metabolites Valine
and Isoleucine that are targeted. The theoretical template of the
multiplet structure of Valine is doublet-doublet-doublet with pro-
ton intensity ratio 3:3:1 (recall that we do not include one of the
Valine multiplets in the analysis), while that of Isoleucine is triplet-
doublet-doublet with proton intensity ratio 3:3:1. Additional lo-
cal shrinkage is applied in the experiment shown in the bottom
panel to the regions of high proton multiplets, i.e. to the first three
columns in the lower panel, meaning that estimation is driven by
Valine. Compared to the middle panel, in which no additional local
shrinkage is applied, this strategy leads to improved accuracy of
the concentration estimation for the metabolites.

examples described in this article we choose a = 10−6 and b = 10−9.

Priors for peak widths: The spectra considered in this article are generated from

the biofluids urine and serum. While in this case peak widths change between spec-
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tra, their changes are negligible within spectra. We therefore assume that peaks

within a spectrum are dependent upon two global peak width parameters σ1 and

σ2, see (4.5), for which we choose log-Normal distributions with median 1Hz/F

and variance 4.6Hz2/F2, where F is the operating frequency of the spectrometer in

MHz. These priors give good support to a broad region around 1Hz/F , the typical

peak widths generated by modern spectrometers [67]. Note that the assumption of

common peak widths can easily be relaxed, since local deviations at the metabolite,

multiplet or peak level can be modelled via Gaussian random effects on logσ1 and

logσ2.

Prior for peak shape: In some applications it might be useful to also assign a prior to

the peak shape parameter. Similar to peak widths, peak shapes vary between spec-

tra, but negligibly within spectra. Thus, we assume that peaks within a spectrum

depend on a common peak shape parameter ν , see (4.5), to which a log-Normal

prior distribution with mean zero and variance 25 can be assigned. This prior gives

good support to a broad region around zero. In Section 4.6, we prefer to fix ν .

Priors for multiplets: The parametrization of metabolite signature templates is done

in two steps, see (4.3) and (4.4), via linear combinations of multiplets along the

chemical shift axis, which in turn arise as linear combinations of Student-t distri-

butions (4.5) along the J-coupling axis. Uncertainty of peak positions can therefore

be modelled separately within and between multiplets. The parameters ζmuv and

wmuv, determining the peak positions on the J-coupling axis and their amplitudes

within multiplets in (4.4), can be computed via simple rules from the J-coupling

constants Jmu (see [67] for details) and may be assumed to be constant across spec-

tra. The multiplet chemical shift parameters δ ?
mu and J-coupling constants Jmu vary

slightly between spectra as a result of differing experimental conditions. Empir-

ical estimates Ĵmu for Jmu and δ̂ ?
mu for δ ?

mu are published in online databases and

can be used to construct an informative prior distribution. The deviations of both

Jmu and δ ?
mu from their estimates are local, with smaller variations more likely than
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larger ones. Therefore, for each Jmu we assign a truncated Normal prior distribution

with mean Ĵmu, variance 7Hz2, and truncation region [1
2 Ĵmu,

3
2 Ĵmu]. For each δ ?

mu

we choose a truncated Normal prior distribution with mean δ̂ ?
mu, variance 10−4ppm,

and truncation region [δ̂ ?
mu− 0.03ppm, δ̂ ?

mu + 0.03ppm]. Note that, given specific

knowledge about the variability of particular multiplet locations across spectra, it

may be appropriate to specify a multiplet- or metabolite-specific alternative for Jmu

or δ ?
mu.

Priors for metabolite abundances: Each coefficient βm in (4.2) corresponds to the

resonance intensity signature of a metabolite and is proportional to the abundance

of the metabolite in the biological mixture. Since intensities are positive, the sup-

port of the priors for each βm is restricted to [0,∞). Conjugacy considerations

motivate the use of a truncated Normal prior distribution for each component, i.e.

βm ∼ TN(em,1/s2
m,0,∞). This distribution has sufficient flexibility to encode prior

information for a wide range of research problems. For the examples presented in

this article we choose em = 0 and s2
m = 10−6 for all m = 1, . . . ,M, indicating low

prior information.

The details regarding model parameters are shown in Table 4.1.

Observed Known To be estimated
z, δ , ζ wmuv, Vmu, ρmu βββ , θθθ , µi jl , τ , λ , σ1, σ2, ν , Jmu, δ ?

mu

Table 4.1: Details about Parameters

4.4 MCMC algorithm
We implement an MCMC algorithm to sample from the posterior distribution of the

model parameters. Compared to the MCMC strategy in Astle et al. [3], in our setup

the MCMC becomes more efficient and easy to implement. For further details on the

specific update steps we refer to Supplementary Materials.

We employ Gibbs samplers to update the components of βββ and θθθ , both having
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truncated Normal conditional distributions, and the precision parameter λ , which

has a Gamma distribution. For each of the remaining parameters controlling the tar-

geted and untargeted components of the model we use Metropolis-Hastings updates.

Specifically, to update the peak widths parameters σ1 and σ2 we use log-Normal

proposals. To update the multiplet chemical shift parameter δ ?
mu, we propose δ ?′

mu

from the truncated Normal distribution

TN
(

δ
?
mu,V

2
δ ?

mu
, δ̂ ?

mu−0.03ppm, δ̂ ?
mu +0.03ppm

)

centred on the current parameter value. Similarly, for the J-coupling constants Jmu,

we propose J′mu from the truncated Normal distribution

TN
(

Jmu,V 2
Jmu

,
1
2

Ĵmu,
3
2

Ĵmu

)
.

For the local shrinkage parameters µi jl and the global shrinkage parameter τ we em-

ploy Gaussian proposals truncated below at zero. All proposal variances are adapted

using the adaptive Metropolis-within-Gibbs algorithm of Roberts and Rosenthal

[110], i.e. each proposal variance is tuned to target an acceptance rate of 0.45 by

increments and decrements, whose magnitude asymptotically decays at a rate pro-

portional to the inverse of the square root of the iteration number.

Additional Metropolis-Hastings block updates, which prevent the Markov chain

from getting trapped in local modes, can be added effortlessly to the described

MCMC algorithm. For example, in order to reduce correlation between chains from

the targeted and untargeted components of the model in framelet domain, a joint up-

date of a parameter for the targeted component may be introduced. When compared

to single parameter updates, such block updates allow the Markov chain to move

further, but their acceptance rate is lower. Considering computational efficiency in

view of the sizes of JRES spectra, Metropolis-Hastings block updates are therefore
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Figure 4.3: Top panel: Comparison between the logarithm of the true relative
concentrations and the estimated relative concentrations obtained
with our method on the ten mixtures. Bottom panel: Performance
comparison between our approach and the bucketing method on
the ten simulated biological mixtures.

not utilised in the examples of this article.

4.5 Simulation study

We examine the performance of our method on ten simulated datasets which are

created from empirical JRES spectra of the four metabolites Valine (bmse000811),

Isoleucine (bmse000884), Threonine (bmse000810) and Glucose (bmse000797)

available from the Biological Magnetic Resonance Bank [BMRB, 128]. The syn-

thetic data is generated as follows. First, the empirical spectral template of each

metabolite is normalised so that the intensities sum up to one. Then the simulated

spectrum is obtained through a linear combination of the four templates with pre-
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specified weights. Finally we add Gaussian noise. More specifically, the spectrum

of the ith simulated biological mixture is

Mixi = wi
V SV +wi

ISI +wi
T ST +wi

GSG + εεε for i = 1, . . . ,10,

where wi
V ,w

i
I,w

i
T and wi

G represent the weights of the Valine, Isoleucine, Threonine

and Glucose metabolites, respectively, and SV ,SI,ST and SG represent the respec-

tive normalised spectral templates. The weights of the biological mixture can be

interpreted as the relative concentrations of each metabolite. Gaussian noise εεε with

mean zero and variance 0.0012 is added to each spectrum. To estimate the rela-

tive concentrations of each metabolite in the different mixtures, we also create a

baseline spectrum in which all weights are equal to one. We estimate the relative

concentration as the ratio between the estimates obtained for the mixture and the

ones obtained from the baseline spectrum.

To assess the performance of our model, we compare the logarithm of the estimated

relative concentrations with the logarithm of the true relative concentrations. Prior

hyperparameters are set as d = 103.5, cl = 0 and ch = 5. The choice of cl = 0

is guided by Carvalho et al. [22], for the choice of d and ch see Section 4.5 of

Supplementary Material. For each dataset, we run 10,000 iterations of the MCMC

algorithm, a burn-in of 5,000 iterations and thinning every five iterations. Fig-

ure 4.3 shows the comparison between true relative concentrations and estimated

relative concentrations for the ten biological mixtures. It is evident that our method

can estimate the relative concentration very well. Furthermore, we compare our

results with those obtained by bucketing (i.e. binning) the spectral data, which is

commonly done in metabolic analysis [see, for example, 118]. In this method bins

around multiplets corresponding to each metabolite are defined, with bin bound-

aries validated by an NMR expert. Then relative concentration estimates of each

metabolite are obtained by taking the sum of the intensities in the spectral bins
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corresponding to each metabolite. From Figure 4.3 it is clear that the bucketing

method does not perform as well. Further details on the simulation results and the

comparison are presented in Supplementary Material A7.

4.6 Performance on urine and serum spectra

We examine the performance of our method on a urine and a serum dataset. 1H NMR

spectra of human urine and serum samples were obtained from healthy participants

of the Airwave Health Monitoring Study [43]. The samples were prepared and ac-

quired according to protocols published in Dona et al. [36]. Spectra were acquired at

600MHz with Bruker Ascend configured to the Bruker IVDr specification (Bruker

Corporation, Billerica, MA, USA) at 300K (urine) or 310K (serum). 1D NMR spec-

tra were acquired using nuclear Overhauser enhancement spectroscopy (NOESY)-

presat using gradients and water suppression (noesygppr1d pulse sequence), a spec-

tral window of 20ppm (urine) or 30ppm (serum), 4s relaxation delay, 10ms mixing

time, to a total of 32 transients acquired with 64k data points for urine or 96k data

points for serum. 2D JRES data was acquired using the jresgpprqf pulse sequence,

with water suppression, a spectral window of 16.6ppm, 2s relaxation delay, 2 scans

and 40 increments in the indirect dimension. The spectra were automatically phased

and baseline-corrected and chemical shifts were referenced using singlet signal of

TSP set at 0ppm (urine) or to the doublet resonance of α-glucose set at 5.23ppm

(serum) using Topspin 3.2 software (Bruker Biospin Ltd).

4.6.1 Jres spectra

We demonstrate the performance of our proposed method on the 2D JRES human

urine spectrum, with targeted metabolites Valine, Leucine, Isoleucine, Alanine,

Lactate and 3-Hydroxy-butyrate. A second performance demonstration on the 2D

JRES human serum spectrum is included in Section A9 of the Supplementary Mate-

rial, and yields results broadly similar to the urine spectrum. A sensitivity analysis
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Figure 4.4: Deconvolution surface plot from urine JRES spectrum for the re-
gion around 1.337ppm, where the resonance is generated by Lac-
tate. For ease of visualization we plot the fit on a grid of equally
spaced points with distance 0.002ppm for the chemical shift axis.

on the 2D JRES human urine spectrum is included in Section A10 of Supplementary

Material.

To improve computational efficiency in the quantitative analysis of the test dataset

we make use of the theoretical symmetry of 2D JRES spectra with respect to the

chemical shift axis and only analyze data with non-negative J-coupling values.

Since peaks in the observed spectrum exhibit thin tails, which in some cases drop

abruptly to zero due to experimental artefacts, we use bivariate Gaussian distri-

butions, corresponding to bivariate Student-t distributions with large degree of

freedom (ν = 10,000). Hyperparameters are set to d = 103.5, ch = 5 and cl = 0.

We run the MCMC algorithm for 10,000 iterations, following upon 5,000 burn-in

iterations, with thinning (selecting every fifth value). The resolution of the urine

spectrum is NC×NJ = 436×26 and the experiment is performed on a laptop with

3.1GHz Intel Core i5 processor, resulting in a run time of 1065 minutes.

Figure 4.8 shows heat maps of the measured spectrum, overall fitting and metabolite
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fitting, while Figure 4.4 shows a surface plot of the metabolite fit around 1.337ppm.

Along with the additional column-wise 2D plots of the metabolite estimations pro-

vided in Figures 3 and 4 in Supplementary Material, they illustrate that our method

performs well with respect to goodness of fit, metabolite deconvolution and esti-

mation of relative concentrations. The estimated posterior mean squared error is

7.721×10−9. For Valine (Figure 3, top panel, in Supplementary Material, the first

and second multiplets are fitted very well, while the signal from the third multiplet

is relatively weak and overlapped with stronger signals from untargeted metabo-

lites, resulting in problematic fitting results. For Leucine (Figure 3, bottom panel,

in Supplementary Material, the first and second multiplet should theoretically have

the same amplitude (which is not observed); however our method estimates a mid-

level concentration of Leucine, resulting in overestimation of the first multiplet and

underestimation of the second multiplet. This is reasonable as concentrations are

averaged across multiplets. The concentration for Isoleucine (Figure 4, top panel,

in Supplementary Material) is close to zero as the signal is very weak at the location

of its first multiplet. For Alanine, Lactate and 3-Hydroxybutyrate (Figure 4, bottom

panel, in Supplementary Material), the peak shapes differ from Gaussian kernels

due to unmodelled experimental conditions. Consequently for each multiplet the

high amplitude centre peaks are estimated correctly, while the remaining peaks are

slightly underestimated.

As for the convergence of the MCMC, Figures 5 – 10 in Supplementary Material

show traceplots of the log-likelihood, of the concentration parameter of Valine and

3-Hydroxybutyrate, of some randomly selected framelet coefficients, of the chem-

ical shift parameter δ , of the J-coupling shift ζ , and of the precision parameter λ .

While it can be seen that framelet coefficients and the precision parameter reach

convergence quickly, the Markov chain for other parameters, such as the concen-

tration of metabolites, is slow to explore the support of the posterior distribution,
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i.e. the Markov chain is mixing slowly. This is to be expected due to overlap and

shift of the multiplets. Moreover, it is well known that, when using the horseshoe

prior with correlated variables, a main concern is the multimodality of the posterior,

which can lead to difficulties in sampling and especially to slow convergence of the

MCMC. Nevertheless, from Figure 5 in Supplementary Material it can be seen that

the traceplot of the log-likelihood is satisfactory [108].

Finally, in Figures 20 – 25 in Supplementary Material we report the posterior dis-

tribution of the concentration parameters and the chemical shift and translation pa-

rameters of the six metabolites for the serum and the urine spectra.

4.6.2 Comparison between 1D NMR and 2D JRES deconvolu-

tion and quantification, and with bucketing

In the metabolomic literature it is widely accepted that the second dimension pro-

vided in 2D JRES spectra can help to mitigate the challenges in the identification

and quantification of metabolites in 1D NMR spectroscopy that are mainly due to

overlapping ([47, 46]). We illustrate this point by comparing relative concentra-

tion estimates using our approach on 1D NMR and on 2D JRES urine spectra from

the same sample. Relative concentrations are considered for both datasets since

their scaling differs due to data normalization. As baseline metabolite we choose

Valine, since it is relatively isolated in both the 1D and the 2D spectra. In Fig-

ure 4.5 we compare the estimation results for relative concentrations obtained via

our method applied to 1D NMR data, 2D JRES and via the bucketing method. (For

the numerical values see Table 2 in Supplementary Material.) Note that bucket-

ing only produces point estimates with no quantification of uncertainty. It is evi-

dent that the relative concentration estimates of Leucine, Isoleucine, Alanine and

3-Hydroxybutyrate differ significantly between 1D and 2D spectra. Obviously, 1D

NMR leads to much wider 95% credible intervals due to the fact that less information

is available in the data. In most cases the credible intervals obtained from 1D and 2D
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Figure 4.5: Posterior relative concentration estimates and posterior standard
deviations using our method on the urine spectrum from 1D NMR
measurements, from 2D JRES measurements as well as using the
bucketing method on the 2D JRES measurements. Valine is chosen
as baseline. For four of the five targeted metabolites the posterior
means of the estimates obtained using the second dimension differ
by more than 25%. The figure shows 95% credible intervals. Note
that bucketing only produces point estimates with no quantification
of uncertainty of the estimate.

data do not overlap, clearly showing the potential of 2D NMR spectroscopy. Note

that Figure 4.6 shows that the signals from Leucine (around 0.95ppm), Isoleucine

(around 0.93ppm, 1.00ppm, 3.65ppm) and 3-Hydroxybutyrate (around 1.20ppm)

are severely overlapped with signals from other untargeted or uncatalogued metabo-

lites. This makes identification of signals from targeted metabolites challenging and

results in inaccurate estimation of the concentrations. Due to additional information

available from the J-coupling dimension, the overlapping issue is less severe in 2D

JRES spectra, see Figure 4.8. The underestimation of the concentration for Alanine

(around 1.49ppm) from the 1D spectrum stems from fixing J-coupling constants

at values slightly different from those observed, as indicated in Figure 4.6 (around

1.49ppm). Moreover, when dealing with urine, a further obstacle to identification
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BATMAN Our Model
Representation functions
for residual spectrum

Symlet 6 Spline framelets

Theoretical peak Lorentzian Student-t kernel

Identifiability constraint
Hard constraint through
truncation

Horseshoe prior with local
shrinkage strategy

Table 4.2: Comparison of modelling strategy between BATMAN and our ap-
proach.

and quantification is that some metabolites might be present in the sample at low

intensities. In our application the intensities of Valine, Leucine, and Isoleucine sig-

nals are lower in urine as compared to their intensities in serum. The signals from

Valine can be clearly observed in the JRES spectrum in Figure 4.8, while the signals

from Leucine and Isoleucine are present with much lower intensities. This implies

that the true concentrations of Leucine and Isoleucine in this urine sample should

be much lower than that of Valine. However, the concentration estimates of Valine,

Leucine and Isoleucine from the 1D NMR data are close to each other, while the

estimates from the 2D JRES data are in line with what would be expected, see Ta-

ble 2 in Supplementary Material. Traditional bucketing has limitations when being

applied to 2D JRES spectra. Firstly, it is difficult to choose the bin boundaries for

metabolites in regions of severe overlapping or weak signals, and secondly, severe

overlapping can result in overestimation of concentration.

4.6.3 1D NMR spectra and comparison with BATMAN

The R package BATMAN [Bayesian automated analyzer for NMR, see 60, 61] imple-

ments the Bayesian method for 1D NMR introduced by Astle et al. [3], but currently

cannot be run on 2D NMR data. We therefore compare our method with BATMAN

on the 1D human urine data set. Notice that our approach is also suitable to analyse

1D NMR spectra (see Section 4.6.2 below), as it improves on the original strategy

adopted in BATMAN. The main modelling differences between our work and the

paper by [3] are summarised in Table 4.2. Our improvements have led to a more
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Figure 4.6: Deconvolution of selected regions from the urine 1D NMR data.
The x-axis corresponds chemical shift in ppm and y-axis to intensi-
ties. The top panel shows resonances generated by Valine, Leucine,
Isoleucine and 3-Hydrixybutyrate. The lower middle panel and
lower right panel show resonances generated by Alanine and Lac-
tate, respectively. The lower left panel shows resonances gener-
ated by untargeted metabolites and weak signals from Valine and
Isoleucine.

interpretable model, which is easier to extend to complex set-ups and other 2D NMR

techniques and which allows for more efficient computational algorithms.

For a fairer comparison of the efficacy of the untargeted component of our method

with BATMAN, we use, like BATMAN does, Lorentzians (i.e. densities of Student-

t distributions with one degree of freedom) to model individual peaks, and, when

possible, employ the same peak width priors and MCMC strategy as in Astle et al.

[3]. Moreover, theoretically, J-coupling constants vary only insignificantly between
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spectra, motivating Astle et al. [3] to disregard the fluctuation of J-coupling con-

stants. We therefore also keep J-coupling constants fixed. Parameter values for

BATMAN are tuned to yield optimal results for the given data. Specifically, they are

set as aw = 10−9, bw = 10−6, e = 4, f = 0.35, g = 105, and h = −0.002. For our

method, we set the shrinkage parameters to d = 102.5, ch = 2 and cl = 0. For both

models, 10,000 iterations of MCMC are performed after 9,000 burn-in iterations.

Figure 4.6 shows deconvolution of selected region of the urine spectrum obtained

with our method. The deconvolution is conditional on the posterior mean of the

peak width and chemical shift parameters and is plotted on the same grid as the

original spectrum. The original spectral data are shown by the black lines and the

framelet component of the model by the red dashed lines. We obtain similar re-

sults for BATMAN (results not shown). Indeed, the posterior mean squared error,

calculated as the squared difference between the data and the fitted spectrum, is

1.195× 10−5 for our method and 1.193× 10−5 for BATMAN, which shows a good

performance of both methods. Nevertheless the main limitation of of BATMAN lies

in the convergence issues of the MCMC algorithm, due also to the hard constraint

that does not allow for an efficient update of the wavelet coefficients. Table 4.3

shows a comparison between the summary statistics of the effective sample sizes

(ESS) [106] and of the integrated autocorrelation times (IAC) [28, 73] of the wavelet

coefficients for BATMAN and the framelet coefficients for our method. The ESS

provides an estimate of the number of independent draws from the posterior distri-

bution of a parameter of interest, while the IAC provides a measure of the efficiency

of the sampling algorithm in terms of accuracy of the estimates, with smaller values

corresponding to greater efficiency. Using 1000 samples, the mean of the distribu-

tion of the ESS of our method is higher than that of BATMAN, indicating a greater

number of independent draws in the MCMC for our approach. Since the time re-

quirement of our method is smaller, this implies that the rate of convergence of the

untargeted component is faster and the algorithm is more efficient. This is further
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Quantile
Mean

Std
dev

Time
in secs

Mean
/time5% 25% 50% 75%

ESS BATMAN 90 261 683 906 613 336 7125 0.09
Our method 98 1000 1000 1000 914 241 5004 0.18

IAC BATMAN 1.01 1.15 1.45 2.52 2.75 3.95
Our method 0.92 0.98 1.04 1.11 2.05 12.24

Table 4.3: Comparison of effective sample sizes (ESS) and integrated autocor-
relation times (IAC) of the coefficients of the uncatalogued signal
component between BATMAN and our method. We report summary
statistics of the ESS and IAC values of all wavelet/framelet coeffi-
cients.

Figure 4.7: Deconvolution of resonances generated by untargeted metabolites
for a selected region from a urine 1D NMR spectrum. The x-axis
corresponds to chemical shift in ppm and the y-axis to the intensi-
ties. The measured spectrum is shown in black, while the B-spline
frame component of our model is plotted in red and the Symlet 6
wavelet component of BATMAN in blue.

supported by comparing the IACs: once again, on average, the posterior estimation

from our method is more accurate and mixing is improved. Figure 4.7 illustrates that

in regions where most of the spectrum is modelled only by framelets, our method

improves the fitting compared to BATMAN when using the same number of sam-

ples. This is because in the original algorithm in BATMAN the presence of hard

constraints included in the model to ensure identifiability lead to lower acceptance

rate as they are not always satisfied during MCMC sampling.
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4.7 Conclusion

The major advantage of 2D JRES spectra over 1D NMR spectra is that they aid de-

convolution, identification and concentration estimation of metabolites by providing

information on a second dimension. Presently, there are no automated methods for

analyzing 2D JRES spectra that make use of the extensive prior information avail-

able in online databases about the physical processes generating the spectral data.

Such expert information can be conveniently incorporated into our Bayesian model

via specification of informative prior distributions. Analysis of serum and urine

spectra, as well as simulations on synthetic data, show that our method can identify

resonance peaks correctly. Peak misalignment may occur when a target resonance

is overlapped with, or located close to, other strong signals. The latter is inevitable

for any method when peaks overlap sufficiently.

A clear advantage of our method is its applicability to JRES spectra of any complex

mixture, such as food, soil or petroleum. As prior information on metabolite reso-

nance patterns become more accessible, extensive and precise, a Bayesian method

to estimate metabolite concentrations automatically and accurately from 2D JRES

spectra has the potential to contribute to many metabolomics research projects. It

is, for instance, straightforward to extend our proposed method to a joint model of

multiple JRES spectra in which the concentration parameter vector of the targeted

metabolites is shared across spectra and treated as a fixed effect, while the remaining

parameters in each spectrum are independent. Updates involving components of the

concentration vector for the targeted metabolites should then be slightly adjusted

from those of the simpler model to reflect the dependence upon multiple spectra.

Updates for the remaining parameters remain valid within each spectrum. More-

over, it is in principle straightforward to introduce random effects, with metabolite

concentrations varying over spectra, or to incorporate our model into more complex

hierarchies in which the main scientific aim might, for instance, be classification or
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clustering.

Our method can be used on both 1D and 2D data. The 1D version of our statistical

model is more efficient than BATMAN and can be extended to other 2D spectroscopy

techniques (e.g. COSY or TOCSY) with the main difference being the type of expert

information included in the model. The main limitation of our work is the computa-

tional burden of the MCMC algorithm, which limits the applicability of our model

to a large collection of spectra. We are developing variational algorithms which can

greatly speed up computations, but at the cost of uncertainty evaluation.
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Figure 4.8: Heat maps for intensities from the urine JRES dataset. The x-
axis corresponds to chemical shift in ppm, the y-axis to J-coupling
in MHz/F. Plots show original data (upper panel), overall fit-
ting, i.e., metabolite and framelet fitting (middle panel), and fit-
ting of metabolites only (lower panel). Multiplets in the lower
panel from left to right: Valine (3.601ppm), Alanine, Lactate, 3-
Hydroxybutyrate, Valine (1.029ppm), Valine (0.976ppm), Leucine
(0.95ppm), Leucine (0.94ppm). The Isoleucine fit is not visible in
the lower panel as its concentration estimation is close to zero.



Chapter 5

Final Remarks

5.1 General conclusion

The biggest bottleneck within metabolomics is identification or quantification of

metabolites in complex biological mixtures, which is required by almost all ex-

periments in metabolomics. Employing NMR spectroscopy (one of the leading

technologies used to capture metabolite data) generates large and heavily struc-

tured metabolite dataset. Although analytical approaches and statistical methods

for NMR data analysis have been improved, the bottleneck still exists due to a huge

diversity of molecular structures and variation of abundance.

Comparing the experimental NMR data with extensively available reference spectra

from online databases remains the most reliable approach for metabolite identifi-

cation and quantification, which have made huge progress because of the devel-

opment of several databases, e.g BMRB and HMDB. Although these databases

provide great value, there are still several challenges to overcome so that we can

fully exploit the potential of these databases. One major problem is that the exper-

imental conditions may be inconsistent for different metabolite data contained in

these databases. For instance, there might be much variation in pH in different ex-

periments. Besides, online metabolite libraries are continually expanding to include
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more metabolite information from an extensive range of biofluids, organisms and

experimental conditions. To match unknown resonance with numerous reference

standards from these databases, advanced spectral matching algorithms with both

accuracy and efficiency are required. Besides, combining and utilising information

from different NMR methods, e.g. 1D 1H NMR and JRES, requires close examina-

tion.

This thesis tackled three problems involved. In Chapter 2, we design a Bayesian

model to effectively estimate the number of protonation sites from sufficient pH

titration data for many small molecule metabolites, based on the model of Szakacs

et al. [120]. Even when the number of sites was incorrectly estimated, our model is

still possible to estimate the chemical shift position of a resonance quite accurately

in most cases. The information obtained from the modelling procedure could be

valuable for the future development of algorithms for analysis of metabolomic 1H

NMR spectra including alignment, annotation and peak fitting. For example, the pH

of 1H NMR spectra could be estimated from the positions of a few well known and

easily located resonances. This pH information could then be used to predict the

chemical shift positions of resonances of other metabolites expected in a sample,

which could then help with automated annotation, alignment or peak fitting (as an

initial position estimate). The predicted number of protonation sites may also be

helpful during the process of identifying unknown compounds, although orthogonal

analytical information would almost always be needed in addition.

In Chapter 3, we show that MC-CAVI, as a combination of VI and MCMC, has the

potential to improve NMR spectroscopy analysis. Compared with traditionally used

MCMC in NMR data analysis, the VI step of MC-CAVI speeds up convergence,

makes convergence monitoring easier and provides reliable estimates in a shorter

time. Moreover, general Monte Carlo algorithms such as sequential Monte Carlo
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and Hamiltonian Monte Carlo can also be incorporated within MC-CAVI effort-

lessly to further improve the efficiency and accuracy of NMR data analysis. This

algorithm can also provides a powerful inferential tool for models particularly in

high dimensional settings when full posterior inference is computationally demand-

ing and the application of optimization and of noisy-gradient-based approaches, e.g.

BBVI, is hindered by the presence of hard constraints. Besides, MC-CAVI offers

a flexible alternative to BBVI. This latter algorithm, although very general and

suitable for a large range of complex models, depends crucially on the quality of

the approximation to the true target provided by the variational distribution, which

in high dimensional setting (in particular with hard constraints) is very difficult to

assess.

In Chapter 4, we show that, compared with 1D NMR spectra, the extra information

provided by JRES on a second dimension is able to aid deconvolution, identification

and concentration estimation of metabolites. Therefore, we design an automated

method for analyzing 2D JRES spectra that makes use of the extensive prior infor-

mation available in online databases about the physical processes generating the

spectral data via Bayesian methodology, which has the ability to incorporate expert

information conveniently via specification of informative prior distributions. Anal-

ysis of serum and urine spectra show that our method can identify resonance peaks

correctly. Our method can also be used on 1D NMR data. The 1D version of our

statistical model is more efficient than BATMAN and our model can be extended to

2D spectroscopy techniques (e.g. COSY, TOCSY) with the main difference being

the type of expert information included in the model.

Metabolomics is a booming field of study and has become a versatile tool, with

unceasing technological advancement. Utilising information from difference forms

of NMR spectroscopy, development data modelling and incorporating advanced al-
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gorithms are crucial to further our comprehension of metabolomics. This thesis

contribute to all these three aspects, with the goal to provide assistance to future

metabolomics research.

5.2 Future research
In this section, we list some future research directions, which can be beneficial

in deepening the understanding of metabolomics and applicability of NMR data

analysis.

In future research, one direction is to identify more promising techniques that can be

applied in NMR data analysis and combine them to further increase the efficiency

of the computational algorithm. One possibility is expectation propagation (EP),

which has the potential to reduce computational cost still providing reliable esti-

mate. Introduced by Minka [91], EP soon became a popular approximate Bayesian

inference algorithm and was widely applied in statistics, physics [98], deep learn-

ing [79] and etc. Suppose we aim to find a tractable distribution, say q(x), to ap-

proximate in tractable target distribution, say p(x). In Section 1.5, we discussed

variational inference (VI), which identifies an optimal q∗(x) such that

q∗(x) = argmin
q(x)∈L

KL(q(x) | p(x)), (5.1)

where L denotes a family of densities, and KL denotes the Kullback-Leibler di-

vergence. EP, however, achieves the approximation by choosing q?(x) such that

q?(x) = argmin
q(x)∈L

KL(p(x) | q(x)). (5.2)

Swaroop and Turner [119] showed that EP’s uncertainty estimates do not collapse

pathologically as they do for mean field VI. Therefore, with its superior speed and

accuracy, EP has the potential to further improve the computational accuracy and
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efficiency of data analysis in metabolomics.

Another possibility is PAC-Bayes, where PAC stands for Probably Approximately

Correct. Over the past two decades, PAC-Bayes has been applied as a princi-

pled machinery to tackle difficult problems in a wide range of situations such

as classification [53], sparse regression [1] and etc. Suppose we have observa-

tions (X ,Y ) = {(xi,yi)}n
i=1 ∈ (X ,Y )n and we assume that each element (xi,yi)

(i = 1 . . .n) is randomly sampled from an unknown data generating distribution, say

D. In other words, (X ,Y ) ∼ Dn. We consider loss functions l : F ×X ×Y → R,

where F is a set of predictors f : X → Y . Therefore, the empirical risk on the

observation (X ,Y ) is defined as

L̂l
X ,Y ( f ) =

1
n

n

∑
i=1

l( f ,xi,yi)

and the generalization error over distribution D is defined as

Ll
D( f ) = E(x,y)∼Dl( f ,x,y).

Given the empirical estimate E f∼ρ̂ L̂l
X ,Y ( f ), PAC-Bayes studies Probably Approx-

imately Correct generalization bounds E f∼ρ̂Ll
D( f ), where ρ̂ is the posterior dis-

tribution derived from observations (X ,Y ). There are two advantages of these

generalization bounds: (i) They do not rely on a testing sample; (ii) They are uni-

formly valid for all ρ̂ over F . Therefore, PAC-Bayes could also be useful in data

analysis in metabolomics.

Another direction is to extend our Bayesian model in Chapter 4 to other 2D spec-

troscopy techniques. One possibility is correlation spectroscopy (COSY), which is

introduced by Jeener [71] in 1971. Although COSY is the first method in 2D NMR,
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it is still one of the most commonly utilised sequences for identifying molecules

by their spin-spin couplings and has been applied for metabolite identification

in complex mixtures [114, 117], which is usually perceived as difficult. COSY

is widely used because it has the capacity to unambiguously identify metabolites

of interest in biological mixtures and it does not require long sample pre-treatments.

The second possibility is total correlation spectroscopy (TOCSY), an extension of

COSY. Unlike COSY, which only generate correlations between geminal or vicinal

protons within a given spin system, TOCSY is able to create correlations between

all protons, even when they are distant. Bingol et al. [12] demonstrated the quantifi-

cation of metabolites via TOCSY based on the assumption that TOCSY transfers

can be quantitatively estimated by numerical integration of the Liouville von Neu-

mann equation, which describes the underlying many-spin physics.

Dufour et al. [41] demonstrated COSY’s suitability in quantifying pharmaceutical

compounds through a simple linear regression model and Bingol et al. [12] quan-

tifies the concentration by simply calculating the numerical integration. Therefore,

incorporating experts’ knowledge and former experimental results into prior distri-

butions, a Bayesian model for COSY or TOCSY could be an accurate and valuable

analytical technique for the quantification of metabolites.
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A1 JAGS Code

model {

for (i in 1:N){

yobs1[i] ~ dnorm(mu1[i], tau)

yobs2[i] ~ dnorm(mu2[i], tau)

mu1[i] = (deltaa + (incr*deltah1a+decr*deltah1a1)*pow(10,pKa1-pH[i]) +

mod2*(incr*deltah2a+decr*deltah2a1)*pow(10,pKa1+mod2*pKa2-2*pH[i]) +

mod3*(incr*deltah3a+decr*deltah3a1)*

pow(10,pKa1 + mod2*pKa2 + mod3*pKa3 -3*pH[i]))/

(1+pow(10,pKa1-pH[i])+mod2*pow(10,pKa1+mod2*pKa2-2*pH[i]) +

mod3*pow(10,pKa1 + mod2*pKa2 + mod3*pKa3 -3*pH[i]))

mu2[i] = (d2eltaa + (incr*d2eltah1a+decr*d2eltah1a1)*pow(10,p2Ka1-pH[i]) +

mod2*(incr*d2eltah2a+decr*d2eltah2a1)*pow(10,p2Ka1+mod2*p2Ka2-2*pH[i]) +

mod3*(incr*d2eltah3a+decr*d2eltah3a1)*

pow(10,p2Ka1 + mod2*p2Ka2 + mod3*p2Ka3 -3*pH[i]))

/(1+pow(10,p2Ka1-pH[i])+mod2*pow(10,p2Ka1+mod2*p2Ka2-2*pH[i]) +

mod3*pow(10,p2Ka1 + mod2*p2Ka2 + mod3*p2Ka3 -3*pH[i]))

}

mod ~ dcat(p.model[1:3])

inde ~ dcat(p.inde[1:2])

p.model[1] = 1/3

p.model[2] = 1/3

p.model[3] = 1/3

p.inde[1] = 1

p.inde[2] = 0

for (j in 1:3){

xi[j] <-1

}

mod2 <- 1 - (mod == 1)
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incr <- (inde == 1)

decr <- (inde == 2)

mod3 <- (mod == 3)

deltaa ~ dunif(0,10)

deltah1a ~ dunif(deltaa,min(deltaa+1,10))

deltah2a ~ dunif(deltah1a,min(deltah1a+1,10))

deltah3a ~ dunif(deltah2a,min(deltah2a+1,10))

deltah1a1 ~ dunif(max(0,deltaa-1),deltaa)

deltah2a1 ~ dunif(max(0,deltah1a1-1),deltah1a1)

deltah3a1 ~ dunif(max(0,deltah2a1-1),deltah2a1)

d2eltaa ~ dunif(0,10)

d2eltah1a ~ dunif(d2eltaa,min(d2eltaa+1,10))

d2eltah2a ~ dunif(d2eltah1a,min(d2eltah1a+1,10))

d2eltah3a ~ dunif(d2eltah2a,min(d2eltah2a+1,10))

d2eltah1a1 ~ dunif(max(0,d2eltaa-1),d2eltaa)

d2eltah2a1 ~ dunif(max(0,d2eltah1a1-1),d2eltah1a1)

d2eltah3a1 ~ dunif(max(0,d2eltah2a1-1),d2eltah2a1)

pKa1 ~ dunif(1.2,13.7)

pKa2 ~ dunif(1.2,pKa1)

pKa3 ~ dunif(1.2,pKa2)

p2Ka1 ~ dunif(1.2,13.7)

p2Ka2 ~ dunif(1.2,p2Ka1)

p2Ka3 ~ dunif(1.2,p2Ka2)

tau ~ dgamma(10^8,10^4)}
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A2 Proof of Lemma 1
Proof. Part (i): For a neighborhood of λ ∗, we can chose a sub-neighborhood V as

described in Assumption 3. For some small ε > 0, the set V0 = {λ : ELBO(q(λ ))≥

ELBO(q(λ ∗))−ε} has a connected component, say V ′, so that λ ∗ ∈V ′ and V ′ ⊆V ;

we can assume that V ′ is compact. Assumption 3 implies that M(V ′)⊆V0; in fact,

since M(V ′) is connected and contains λ ∗, we have M(V ′) ⊆ V ′. This completes

the proof of part (i) of Definition 1.

Part (ii): Let λ ∈ V ′. Consider the sequence {Mk(λ )}k with a convergent

subsequence, Mak(λ ) → λ1 ∈ V ′, for increasing integers {ak}. Thus, we

have that the following holds, ELBO(q(Mak+1(λ ))) ≥ ELBO(q(M(Mak(λ ))))→

ELBO(q(M(λ1))), whereas we also have that ELBO(q(Mak+1(λ )))→ELBO(q(λ1)).

These two last limits give the implication that ELBO(q(M(λ1))) = ELBO(q(λ1)),

so that λ1 = λ ∗. We have shown that any convergent subsequence of {Mk(λ )}k has

limit λ ∗; the compactness of V ′ gives that also Mk(λ )→ λ ∗. This completes the

proof of part (ii) of Definition 1.
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A3 Proof of Theorem 1
Proof. Let V1 be as V ′ within the proof of Lemma 1. Define V2 = {λ ∈ V1 : |λ −

λ ∗| ≥ ε}, for an ε > 0 small enough so that V1 6= /0. For λ ∈V2, we have M(λ ) 6= λ ,

thus there are ν ,ν1 > 0 such that for all λ ∈V2 and for all λ ′ with |λ ′−M(λ )|< ν ,

we obtain that ELBO(q(λ ′))− ELBO(q(λ )) > ν1. Also, due to continuity and

compactness, there is ν2 > 0 such that for all λ ∈ V1 and for all λ ′ such that |λ ′−

M(λ )| < ν2, we have λ ′ ∈ V1. Let R = supλ ,λ ′∈V1
{ELBO(q(λ ))−ELBO(q(λ ′))}

and k0 = [R/ν1] where [·] denotes integer part. Notice that given λ k
N := M k

N(λ ),

we have that {|M k+1
N −M(λ k

N)| < ν2} ⊆ {λ k+1
N ∈ V1}. Consider the event FN =

{λ k
N ∈ V1 ; k = 0, . . . ,k0}. Under Assumption 4, we have that Prob[FN ] ≥ pk0 for p

arbitrarily close to 1. Within FN , we have that |λ k
N −λ ∗| < ε for some k ≤ k0, or

else λ k
N ∈V2 for all k≤ k0, giving that ELBO(q(λ k

N))−ELBO(q(λ ))> ν1 ·k0 > R,

which is impossible.
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A4 Gradient Expressions for BBVI

∇αϑ
logq(ϑ) = (ϑ −αϑ ) · exp(−γϑ ),

∇γϑ
logq(ϑ) =−1

2 +
(ϑ−αϑ )

2

2 · exp(−γϑ ),

∇αθ
logq(θ) =

(
γθ − Γ′(exp(αθ ))

Γ(exp(αθ ))
+ log(θ)

)
· exp(αθ ),

∇γθ
logq(θ) = exp(αθ )−θ · exp(γθ ),

∇ακ j
logq(κ j,ψ j) =

κ j−ακ j
exp(2γκ j )

+
φ(

ψ j−ακ j
exp(γκ j )

)−φ(
−ψ j−ακ j
exp(γκ j )

)

exp(γκ j )(Φ(
ψ j−ακ j
exp(γκ j )

)−Φ(
−ψ j−ακ j
exp(γκ j )

))
, 1≤ j ≤ n

∇αψ j
logq(κ j,ψ j) =

ψ j−αψ j
exp(2γψ j )

+
φ(

2−αψ j
exp(γψ j )

)−φ(
−αψ j

exp(γψ j )
)

exp(γψ j )(Φ(
2−αψ j

exp(γψ j )
)−Φ(

−αψ j
exp(γψ j )

))
, 1≤ j ≤ n

∇γκ j
logq(κ j,ψ j) =

(κ j−ακ j )
2

exp(2γκ j )
−1+

(ψ j−ακ j )φ(
ψ j−ακ j
exp(γκ j )

)+(ψ j+ακ j )φ(
−ψ j−ακ j
exp(γκ j )

)

exp(γκ j )(Φ(
ψ j−ακ j
exp(γκ j )

)−Φ(
−ψ j−ακ j
exp(γκ j )

))
, 1≤ j ≤ n

∇γψ j
logq(κ j,ψ j) =

(ψ j−αψ j )
2

exp(2γψ j )
−1+

(2−αψ j )φφφ(
2−αψ j

exp(γψ j )
)+(αψ j )φφφ(

−αψ j
exp(γψ j )

)

exp(γψ j )(Φ(
2−αψ j

exp(γψ j )
)−Φ(

−αψ j
exp(γψ j )

))
, 1≤ j ≤ n.
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A5 MC-CAVI Implementation of BATMAN
In the MC-CAVI implementation of BATMAN, taking both computation efficiency

and model structure into consideration, we assume that the variational distribution

factorises over four partitions of the parameter vectors, q(β ,δ ∗,γ), q(ϑ ,τ), q(ψ),

q(θ). This factorization is motivated by the original Metropolis-Hastings block

updates in Astle et al. [3]. Let B denote the wavelet basis matrix defined by the

transform W , so W (B) = In1 . We use v−i to represent vector v without the ith

component and analogous notation for matrices (resp., without the ith column).

Set E(θ) = 2a/e, E(ϑ 2
j,k) = 0, E(ϑ) = 0, E(τ) = 0, E(Tβ ) = y, E

(
(Tβ )>(Tβ )

)
=

y>y.

For each iteration:

1. Set q(ψ j,k) = Gamma
(
c j +

1
2 ,

E(θ)E(ϑ 2
j,k)+d j

2

)
; calculate E(ψ j,k).

2. Set q(θ) = Gamma(c,c′), where we have defined,

c = a1 +n1 +
n
2 ,

c′ = 1
2

{
∑
j,k
E(ψ j,k)E(ϑ 2

j,k)+E
(
(W y−W Tβ −ϑ)>(W y−W Tβ −ϑ)

)
+ r(E(τ)−h1n)+ e

}
;

calculate E(θ).

3. Use Monte Carlo to draw N samples from q(β ,δ ∗m,u,γ), which is derived via

(1.14) as,

q(β ,δ ∗,γ) ∝ exp
{
− E(θ)

2

(
(W TTT β )>W TTT β −2W TTT β (W y−E(ϑ))

)}
× p(β )p(δ ∗)p(γ),
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where p(β ), p(δ ∗), p(γ) are the prior distributions specified in Section 1.6.1.

• Use a Gibbs sampler update to draw samples from q(β |δ ∗m,u,γ). Draw

each component of β = (βm) from a univariate Normal, truncated below

at zero, with precision and mean parameters given, respectively, by

P := sm +E(θ)(W TTT i)
>(W TTT i),

(W TTT i)
>(W y−W TTT−iβ−i−E(ϑ))E(θ)/P.

• Use Metropolis–Hastings to update γ . Propose log(γ ′)∼N(log(γ),V 2
γ ).

Perform accept/reject. Adapt V 2
γ to obtain average acceptance rate of

approximately 0.45.

• Use Metropolis–Hastings to update δ ∗m,u. Propose,

(δ ∗m,u)
′ ∼ TN(δ ∗m,u,V

2
δ ∗m,u

, δ̂ ∗m,u−0.03, δ̂ ∗m,u +0.03).

Perform accept/reject. Adapt V 2
δ ∗m,u

to target acceptance rate 0.45.

Calculate E(Tβ ) and E
(
(Tβ )>(Tβ )

)
.

4. Use Monte Carlo to draw N samples from q(ϑ ,τ), which is derived via (1.14)

as,

q(ϑ ,τ) ∝

exp
{
− E(θ)

2

(
∑
j,k

ϑ j,k
(
(ψ j,k +1)ϑ j,k−2

(
W y−W E(TTT β )

)
j,k

)
+ r

n

∑
i=1

(τi−h)2
)}

× I
{

W −1
ϑ ≥ τ, h1n ≥ τ

}
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• Use Gibbs sampler to draw from q(ϑ |τ). Draw ϑ j,k from:

TN
( 1

1+E(ψ j,k)

(
W y−W E(TTT β )

)
j,k,

1
E(θ)(1+E(ψ j,k))

,L,U
)

where we have set,

L = max
i:Bi{ j,k}>0

τi−Bi−{ j,k}ϑ−{ j,k}
Bi{ j,k}

U = min
i:Bi{ j,k}<0

τi−Bi−{ j,k}ϑ−{ j,k}
Bi{ j,k}

and Bi{ j,k} is the ( j,k)th element of the ith column of B.

• Use Gibbs sampler to update τi. Draw,

τi ∼ TN
(
h,1/(E(θ)r),−∞,min

{
h,(W −1

ϑ)i
})

.

Calculate E(ϑ 2
j,k), E(ϑ), E(τ).
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A6 Details of MCMC strategy

Denote by N(y;b,c) the density of a multivariate Normal distribution with mean b

and variance c evaluated at y. Further, denote the combination of targeted metabo-

lites by Tβββ := ∑m βmTm. Finally, denote by 〈·, ·〉 the Euclidean inner product on

RNC×NJ×r and by ‖ · ‖ its associated norm (i.e. the Frobenius norm). Prior distribu-

tions of the parameters are defined in Section 4.3.

Scheme of the MCMC:

1. Gibbs sampler for βm: (Prior location em = 0 for simplicity). Draw β ′m from

univariate Normal distribution, truncated below at zero, with precision pa-

rameter p = sm +λ‖Tm‖2 and mean

λ

p

〈
WTm,W

(
z− ∑

k 6=m
βkTk

)
−θθθ

〉
.

2. Gibbs sampler for θi jl: Draw θ ′i jl from univariate Normal distribution with

precision parameter p = λ +(µi jlτ)
−2 and mean

(λ/p)(W(z−Tβββ ))i jl .

3. Metropolis-Hastings update for peak widths: For i = 1,2, propose log(σ ′i )

from a N(log(σi),V 2
σi
). The target distribution is

P(σi | rest) ∝ N(Wz;WTβββ +θθθ ,1/λ ) f (σi),

where f (σi) is the prior distribution of σi. Perform an accept reject step.

Adapt V 2
σi

to target acceptance rate 0.45.

4. Metropolis-Hastings update for multiplet location parameters: Propose δ ?′
mu
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from truncated Normal distribution

TN
(

δ
?
mu,V

2
δ ?

mu
; δ̂

?
mu−0.03ppm, δ̂ ?

mu +0.03ppm
)
.

The target distribution is

P(δ ?
mu | rest) ∝ N(Wz;WTβββ +θθθ ,1/λ ) f (δ ?

mu),

where f (δ ?
mu) is the prior distribution of δ ?

mu. Perform an accept reject step.

Adapt V 2
δ ?

m,u
to target acceptance rate 0.45.

Propose J′mu from

TN
(

Jmu,V 2
Jmu

;
1
2

Ĵmu,
3
2

Ĵmu

)
.

The target distribution is

P(Jmu | rest) ∝ N(Wz;WTβββ +θθθ ,1/λ ) f (Jmu),

where f (Jmu) is the prior distribution of Jmu. Perform an accept reject step.

Adapt V 2
Jmu

to target acceptance rate 0.45.

5. Metropolis-Hastings update for shrinkage parameters: Propose µ ′i jl from

TN
(

µi jl,V 2
µi jl

;0,∞
)
.

The target distribution is

P(µi jl | rest) ∝ N(θi jl;0,µ2
i jlτ

2) f (µi jl),

where f (µi jl) is the prior distribution of µi jl . Perform an accept reject step.
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Adapt V 2
µi, j,l

to target acceptance rate 0.45.

Propose τ ′ from TN
(
τ,V 2

τ ,0,∞
)
. The target distribution is

P(τ | rest) ∝ f (τ)∏
i, j,l

N(θi jl;0,µ2
i jlτ

2),

where f (τ) is the prior distribution of τ . Perform an accept reject step. Adapt

V 2
τ to target acceptance rate 0.45.

6. Gibbs sampler for λ : Draw λ ′ from Gamma distribution with shape parame-

ter a+NCNJr and rate

1
2

(
b+‖W(y−Tβββ )−θθθ‖2

)
.
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A7 Simulation study details

For the description of the simulation study see Section 4.5. Here, Table 1 reports

the true relative concentrations for the ten simulated datasets, their posterior mean

estimates obtained with our method, as well as the estimates obtained with the buck-

eting method. Figure 1 shows the heatmaps of the ten simulated datasets, while

Figure 2 shows the baseline spectrum with bin boundaries used for the bucketing

method in red.

Figure 1: Heatmap of the intensities of the ten simulated biological mixtures
(from 1 to 10 row-wise). The x-axis corresponds to chemical shift in
ppm, y-axis to J-coupling in MHz/F.
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Figure 2: Heatmap of the simulated JRES baseline spectrum with bin bound-
aries (red). The x-axis corresponds to chemical shift in ppm, y-axis
to J-coupling in MHz/F.

Mix Val Isol Thr Glu Mix Val Isol Thr Glu
1 RC 3 4 2 1 6 RC 4 3 10 2

BAYES 3.0 4.0 2.0 1.0 BAYES 3.7 2.9 11.6 2.1
BIN 3.3 3.8 2.0 1.1 BIN 3.6 3.5 10.0 2.5

2 RC 2 1 5 4 7 RC 0.5 0.1 10 5
BAYES 2.0 0.9 6.0 4.0 BAYES 0.5 0.1 11.5 4.6
BIN 1.6 1.4 5.0 4.2 BIN 0.4 0.2 10.0 5.4

3 RC 2.5 3.5 0.5 1.5 8 RC 0.3 0.2 0.4 0.5
BAYES 2.5 3.5 0.4 1.6 BAYES 0.3 0.2 0.5 0.5
BIN 2.8 3.2 0.5 1.5 BIN 0.3 0.2 0.4 0.5

4 RC 5 2 3 0.5 9 RC 7 8 9 10
BAYES 5.0 1.8 3.2 0.4 BAYES 6.9 7.8 10.9 10.4
BIN 4.0 3.1 3.0 0.6 BIN 7.3 7.9 9.0 10.3

5 RC 5 0.5 1 3 10 RC 10 5 2.5 0.7
BAYES 5.1 0.4 1.0 3.1 BAYES 10.0 5.0 2.3 0.6
BIN 3.5 2.1 1.0 3.0 BIN 8.2 7.0 2.5 0.8

Table 1: True relative concentrations (RC), posterior estimates of relative con-
centrations obtained with our model (BAYES) and estimates obtained
by bucketing/binning (BIN) for ten simulated biological mixtures of
Valine (Val), Isoleucine (Iso), Threonine (Thr) and Glucose (Glu).
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A8 Additional figures and convergence from urine

data

Here we show two additional deconvolution results (Figures 3 and 4) and display

traceplots (Figures 5 – 10) for assessing the convergence of the MCMC algorithm

when run on the urine dataset of Section 4.6.1 of the main manuscript. Moreover,

Table 2 reports the numerical values of the estimates corresponding to Figure 4.5

obtained applying our method on 1D and 2D mesurements, and bucketing the 2D

measurements of urine dataset of Section 4.6.1 of the main manuscript.

Valine Leucine Isoleucine Alanine Lactate
3-Hydroxy-

butyrate
1D NMR RC 1.000 1.045 0.712 3.468 2.918 4.550

SD 0.274 0.262 0.862 0.757 1.228
2D JRES RC 1.000 0.246 0.003 9.220 2.813 0.659

SD 0.003 0.004 0.061 0.025 0.008
2D BIN RC 1.000 0.120 2.279 2.776 1.867 0.563

Table 2: Posterior relative concentration estimates (RC) and posterior stan-
dard deviations (SD) using our method on urine spectra from 1D
NMR measurements as compared to 2D JRES measurements and to
2D bucketing/binning. Note that no standard deviation is available
for the bucketing/binning method. Valine is chosen as baseline. For
four of the five targeted metabolites the posterior means of the esti-
mates obtained using the second dimension differ by more than 25%.



A8. Additional figures and convergence from urine data 151

Figure 3: Deconvolution of selected regions from the urine JRES data. Panels
show resonances generated by Valine (top panel) and Leucine (bot-
tom panel). On the x-axis we report the chemical region of the mul-
tiplet. On the y-axis we report the intensity of the multiplet. The
data is vectorised columnwise and plotted in 2D. Original data is dis-
played in black, untargeted component of the model is displayed in
red.
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Figure 4: Deconvolution of selected regions from the urine JRES spectrum. Top
panel shows resonances generated by Valine and Isoleucine. The lat-
ter is not present at a detectable level. Bottom panel shows reso-
nances generated by Alanine, Lactate and 3-Hydroxybutyrate. On
the x-axis we report the chemical shift region of the multiplet. On
the y-axis we report the intensity of the multiplet. The data is vec-
torised columnwise and plotted in 2D.
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Figure 5: Traceplot of the log-likelihood.

Figure 6: Traceplot of logβ (concentration parameter) of Valine (right panel)
and 3-Hydrixybutyrate (left panel). The x-axis corresponds to the
number of iterations, the y-axis corresponds to the logarithm of the
sample value.
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Figure 7: Traceplots of logθi jl for four randomly chosen framelet parameters.
The x-axis corresponds to the number of iterations, the y-axis corre-
sponds to the logarithm of sample values.

Figure 8: Traceplot of logλ (precision parameter). The x-axis corresponds to
the number of iterations, the y-axis corresponds to the logarithm of
sample value
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Figure 9: Traceplot of logδ (chemical shift parameter) of Valine 1.029ppm (left
panel) and Leucine 0.95ppm (right panel). The x-axis corresponds to
the number of iterations, the y-axis corresponds to the logarithm of
sample values.

Figure 10: Traceplot of logζ (J-coupling parameter) of Isoleucine 3.65ppm
(left panel) and Alanine (right panel). The x-axis corresponds to
the number of iterations, the y-axis corresponds to the logarithm of
sample values.
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A9 Serum metabolite quantification from JRES

spectrum

We demonstrate the performance of our method on a serum JRES spectrum of

resolution NC × NJ = 160× 26, with targeted metabolites Valine, Leucine and

Isoleucine. We run the MCMC algorithm for 10,000 iterations, following upon

5,000 burn-in iterations, with thinning (selecting every fifth value). The experiment

is performed on a laptop with 3.1GHz Intel Core i5 processor, resulting in a runtime

of 44 minutes. The posterior estimate of the mean squared error is 1.711×10−8.

Figure 12 shows heat maps of the spectrum, overall model fitting and metabolite fit-

ting. Our method correctly identifies the the targeted metabolites. Figure 11 shows

a surface plot in the region around 0.958ppm, while Figure 13 shows a vectorized

2D plot of our fitting. Figures 11 and 13 show that the overall quantification result

is especially accurate for Leucine. For Valine, theoretically, the amplitude ratios of

the three mutiplets should be 3:3:1. Consequently, the first and second multiplet are

underestimated since the height of the third multiplet is constrained by the data. For

Leucine, the measured spectral peaks differ from Gaussian kernels due to unmod-

elled experimental conditions. Therefore, for both multiplets, high amplitude center

peaks are slightly overestimated while the remaining peaks are slightly underesti-

mated. In the case of Isoleucine, the first multiplet is estimated correctly, while the

second multipet is underestimated and the third multiplet is overestimated slightly

for similar reasons.
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Figure 11: Surface plot of deconvolution for region around 0.958ppm from the
serum JRES spectrum. In this region the resonance is generated by
the second multiplet of Leucine. For ease of visualization we plot
the fit on a ppm-grid of 0.002 equally spaced points.
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Figure 12: Heat maps for intensities from serum JRES spectrum. The x-axis
corresponds to chemical shift in ppm, y-axis to J-coupling in MHz/F.
Upper panel shows the original data, middle panel shows the over-
all fitting (metabolite fitting and wavelet fitting), and lower panel
shows metabolite fitting only. The multiplets in the lower panel
from left to right are: Isoleucine (3.66ppm), Valine (3.60ppm), Va-
line (1.03ppm), Isoleucine (1.00ppm), Valine (0.98ppm), Leucine
(0.95ppm), Leucine (0.94ppm), Isoleucine (0.93ppm).
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Figure 13: Deconvolution of selected regions from serum JRES spectrum. Pan-
els show resonances generated by Valine (top), Leucine (middle)
and Isoleucine (bottom). On the x-axis we report the chemical shift
region of the multiplet. On the y-axis we report the intensity of the
multiplet. The data is vectorised columnwise and plotted in 2D.
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A10 Sensitivity analysis

We perform a sensitivity analysis using the urine spectrum analysed in Section 4.6.

We investigate the robustness of posterior inference on the three most important pa-

rameters (concentration β , chemical shift δ , J-coupling translation ζ ) to the choice

of the prior hyperparameters for λ (scalar precision), τ (global shrinkage) and µi jl

(local shrinkage). We do not consider the sensitivity with respect to the remaining

hyperparameters, since those are either well informed from expert knowledge and

experimental conditions (e.g. the peak width parameter σ ) or guided by the specific

application (e.g. cl = 0).

Scalar precision parameter: In Section 4.3, we present results for the scalar preci-

sion parameter λ being a Gamma random variable with shape parameter a = 10−6

and rate b/2 = 10−9/2 (mean 2× 103 and variance 4× 1012). We compare infer-

ence obtained using this prior with those obtained for two different hyperparameter

choices: (i) Shape parameter a = 10−7 and rate b/2 = 10−10/2 (mean 2×103 and

variance 4× 1013); (ii) Shape parameter a = 10−4 and rate b/2 = 10−8/2 (mean

2×104 and variance 4×1012). In other words, we investigate changes in inference

caused by a different choice of the mean of the prior distribution or of the prior vari-

ance. From Figures 14 and 15, we conclude that when only changing the variance

of the prior distribution of λ , the posterior estimate of the shift parameters remains

almost unchanged. On the other hand, changing the mean of the prior distribution

of λ , we obtain different posterior results for the shift parameters. In our simula-

tions, increasing the mean of the prior distribution of λ results in underestimation

of the concentration parameters of some metabolites (Alanine and Lactate), see Fig-

ure 15. In short, it is better to choose a proper prior distribution for λ according to

experimental noise. In our experience, a Gamma distribution with shape parameter

a = 10−6 and rate b/2 = 10−9/2 works well in both 1D and 2D data analysis.
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Global shrinkage parameter: In Section 4.3, we present results when the global

shrinkage parameter τ follows a half Cauchy distribution C+(0,d) with d = 103.5.

To investigate sensitivity, we perform posterior inference also for d = 102.5 and

104.5. From Figures 16 and 17, we conclude that increasing d from 103.5 to 104.5

results in a slight change in the posterior estimates of both δ and ζ , while the

estimation of the concentration parameters are robust. Decreasing d from 103.5

to 102.5 results in an overestimation of the concentration parameters, as well as an

increase in the posterior estimate of the mean squared error, due to the fact that the

framelet component of the model is able to accommodate for the overestimation

of metabolite concentrations by concentrating the posterior reconstruction of the

uncatalogued signal around negative values. Since the concentration is usually the

main parameter of interest, it is advisable to start the analysis with a large value of

d.

Local shrinkage parameters: The choice of the half Cauchy distribution for the

local shrinkage parameters µi jl is discussed in detail in Section 4.3. The hyperpa-

rameter ch in the prior distribution of the µi jl controls the strength of local shrinkage

and in the main manuscript we fix ch = 5. Here, we explore the sensitivity with re-

spect to ch, considering also the values ch = 4 and 6. From Figures 18 and 19, it

can be seen that increasing ch affects the posterior distribution of ζ , while decreas-

ing ch leads to different inference for δ . Posterior estimates of the concentration

parameters βm also change slightly for different values of ch.

Finally, we conclude that posterior inference is more sensitive to the choice of ch

than to the choice of λ or τ , and extra caution needs to be taken when setting ch.

The choice usually depends on the amount of overlap with uncatalogued signals and

the presence or absence of isolated multiplets for each metabolite template.
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Figure 14: Comparison of posterior means of the shift in peak locations ob-
tained with different prior distributions for the scalar precision pa-
rameter λ .

Figure 15: Comparison of posterior means of concentration parameters ob-
tained with different prior distributions for the scalar precision pa-
rameter λ .
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Figure 16: Comparison of shift in peak locations with different prior distribu-
tions for the global shrinkage parameter τ .

Figure 17: Comparison of estimated concentration with different prior distri-
butions for the global shrinkage parameter τ .
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Figure 18: Comparison of posterior estimates of shift in peak locations ob-
tained with different prior distributions for the local shrinkage pa-
rameters µi jl .

Figure 19: Comparison of posterior estimates of concentration with different
prior distributions for the local shrinkage parameters µi jl .
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A11 Posterior distributions for serum and urine

spectra

Here we include some posterior distributions of concentration parameters, chemi-

cal shift parameters, and J-coupling parameters for the serum spectra discussed in

Section A9 above (Figures 20, 21, 22) and for the urine spectra (Figures 23, 24, 25)

discussed in Section 4.6.1. Due to peak overlap and shift, almost all posteriors are

multi-modal distributions. This corresponds to the challenges met in convergence.

Figure 20: Posterior distributions of concentration parameters of the serum
spectra.
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Figure 21: Posterior distributions of chemical shift parameters of the serum
spectra.



A11. Posterior distributions for serum and urine spectra 167

Figure 22: Posterior distribution of the J-coupling parameters of the serum
spectra.
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Figure 23: Posterior distributions of the concentration parameters of the urine
spectra.
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Figure 24: Posterior distributions of the chemical shift parameters of the urine
spectra.
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Figure 25: Posterior distribution of the J-coupling parameters of the urine
spectra.
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