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1.  Introduction

Magnetic drug targeting (MDT) has recently become a topic 
of interest among researchers due to its potential to localize 
and retain therapeutic agents efficiently in a target region, 
which has possible applications for the treatment of a range 
of diseases including cancer [1–5] and damaged blood ves-
sels [6–8]. MDT using permanent magnets is advantageous 
because static magnetic fields and forces can be applied inside 
the body without being attenuated by tissue or posing a risk of 
magnetic hyperthermia [9, 10]. There are, however a number 
of challenges to overcome before the technique can be consid-
ered clinically viable [9, 11]. A major issue is that magnetic 

fields and, hence, forces decay rapidly with distance, limiting 
applications to relatively shallow targets in the human body 
[12–14]. Additionally, the applied magnetic force must over-
come the hydrodynamic drag force of blood before a useful 
quantity of agent can be captured and retained against the flow 
of the circulatory system [15–18].

MDT delivery systems usually consist of a therapeutic 
agent contained within a bio-compatible carrier functional-
ized or loaded with superparamagnetic iron oxide nanoparti-
cles, and much work has focused on increasing the magnetic 
moment of these carriers [19–22]. Mesoscopic magnetic 
carriers (nanometres to microns) are particularly interesting 
because of a favourable ratio between magnetic and Stokes’ 
drag forces allowing for improved accumulation [10], and 
the ability to tailor multi-modal composite carriers that may 
encapsulate a combination of drugs [23], can be functional-
ized for application-specific biochemical interactions [24, 25] 
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Abstract
Arrays of permanent magnet elements have been utilized as light-weight, inexpensive sources 
for applying external magnetic fields in magnetic drug targeting applications, but they are 
extremely limited in the range of depths over which they can apply useful magnetic forces. 
In this paper, designs for optimized magnet arrays are presented, which were generated 
using an optimization routine to maximize the magnetic force available from an arbitrary 
arrangement of magnetized elements, depending on a set of design parameters including the 
depth of targeting (up to 50 mm from the magnet) and direction of force required. A method 
for assembling arrays in practice is considered, quantifying the difficulty of assembly and 
suggesting a means for easing this difficulty without a significant compromise to the applied 
field or force. Finite element simulations of in vitro magnetic retention experiments were 
run to demonstrate the capability of a subset of arrays to retain magnetic microparticles 
against flow. The results suggest that, depending on the choice of array, a useful proportion of 
particles (more than 10%) could be retained at flow velocities up to 100 mm s−1 or to depths as 
far as 50 mm from the magnet. Finally, the optimization routine was used to generate a design 
for a Halbach array optimized to deliver magnetic force to a depth of 50 mm inside the brain.
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and are responsive to external stimuli for imaging [26] and 
controlled release [27, 28]. However, while it is well under-
stood that the carrier formulation needs to be optimized for 

the application [5, 11, 29, 30], there is increasing recogni-
tion that the external magnet system also needs to be tailored 
to the requirements and constraints of a given application, 

Figure 1.  Flow diagram representing the routine for optimizing magnet arrays within an arbitrary parameter space.

Figure 2.  (a) The result of an optimization is given in terms of an arrangement of magnetization vectors which each represent the final 
orientation of an element in space. Vectors are colour-coded by magnetization direction. Projections onto the x–y and x–z planes are 
displayed on the back-planes. (b) Where the output can be approximated by a cylindrically symmetrical arrangement, the optimized 
configuration is projected onto a 2D plane to generate a 2D vector map of a side cross-section through the middle of the array and  
(c) regions with the same magnetization are merged into individual shapes. (d) The resultant magnet arrangement can then be specified 
in terms of a series of cylindrically symmetrical segments with different dimensions.

J. Phys. D: Appl. Phys. 49 (2016) 225501
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accounting for the depth and physiological flow regime at the 
target [14, 17, 31–36].

In our previous study [37], we developed an optimization 
routine to determine the configuration of an assembly of 
inexpensive, readily available cubic permanent magnet ele-
ments offering the maximum field gradient at a given distance 
from the array. The aim of the present study was to signifi-
cantly expand this approach to the design of magnetic arrays 
consisting of elements of arbitrary shape. We show that the 
resultant arrays are capable of generating almost two to three 
times as much magnetic force as arrays constructed using 
cubic elements for the same volume of magnetic material, 
depending on the optimization distance.

The difficulty of assembling arrays consisting of mul-
tiple permanent magnet segments due to the repulsive dipole 
forces that arise in some configurations is also considered and 
addressed. Designs of shapes generated using a uniform mag-
netization are proposed as appropriate for the soft ferromagn
etic core of ‘open-pot’ electromagnets, such as that reported 
by Alexiou et al [38]. Finite element simulations of a subset 
of arrays are performed to demonstrate capture of magnetic 
particles in a range of physiologically relevant flow velocities 
and at depths up to 50 mm from the magnet surface. Finally, 
the versatility of the optimization routine is demonstrated in 
the form of a design of a Halbach array specifically tailored to 
actuate and retain magnetic particles against flow at different 
tissue depths inside the brain.

2.  Method

2.1.  Model of magnetic force

A general expression for the magnetic force, F, on a single 
domain superparamagnetic particle with a moment of 

VM B( )µ =  is given by

VF B M B ,( ) ( )µ= ∇ ⋅ = ∇ ⋅� (1)

where M is the magnetization of the particle, which depends 
on the field, V is the volume of the particle and B H0µ=  is 
the magnetic flux density, proportional to the applied field, 
H. As the particle is superparamagnetic, it is assumed that M 
and B are parallel. The magnetization of a superparamagn
etic particle can be described using a Langevin function, 
L y y ycoth 1( ) ( ) /= − ,
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where Ms is the saturation magnetization of the particle, H is 
the applied field inside the particle and k TB  is the product of 
the Boltzmann constant and the temperature [39–41].

The field emitted by an array consisting of an arbitrary con-
figuration of magnetic elements was calculated by breaking 
the magnet into a 3-dimensional arrangement of evenly dis-
tributed point moments, following a method described previ-
ously [37]. Each moment emits a dipole field described by
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where VMdiµ =  is the point moment, M is the magnetization 
of the permanent magnet, Vd  is the volume occupied by the 
point and ′r  is the position vector relative to the point moment. 
In the optimization routine described below, the normalized 
magnetic force due to the field emitted by an array of magnets 
on a superparamagnetic particle at a position of interest (POI) 
was calculated. The normalized magnetic force (or force per 
moment) is given by

M V

M

M
B

F

s s
( )= ∇� (4)

and has units of T m−1 [38]. When the particle is saturated 
(M Ms= ), the normalized force is equivalent to the field 
gradient emitted by the array. The superparamagnetic par-
ticle considered here has the same saturation magnetization 
as Fe3O4 at room temperature (M 4.7 10s

5= ×  A m−1) and a 
diameter of 10 nm.

The model was implemented using console applica-
tions written in the C� programming language (Microsoft 
Corporation, Redmond, WA, USA).

2.2.  Optimization routine

An optimization routine was developed to generate designs of 
arbitrarily-shaped magnet arrays to deliver the maximal nor-
malized force on a particle at the POI (rPOI) given a series 
of design parameters, including the volume to be optimized, 
the nominal direction of normalized force (Fnomˆ ), the volume 

Table 1.  Parameters used in particle tracing simulations.

Symbol Description Value(s) Unit

τp Particle velocity 
response time

( ) /( )ρ µr2 18p p
2 s

μ Fluid dynamic 
viscosity

× −8.9 10 4 Pa.s

u Fluid flow mean 
velocity

2.5–250 mm s−1

mp Particle mass ( / )ρ π r4 3p p
3 kg

rp Particle radius × −5 10 7 m

g Gravity 
acceleration

9.8 m s−2

ρ Fluid density 1000 kg m−3

ρp Particle density ( )α ρ αρ− +1 polysty Fe O3 4
kg m−3

ρpolysty Polystyrene 
density

1050 kg m−3

ρFe O3 4
Fe3O4 density 5240 kg m−3

α Volumetric ratio 
of Fe3O4

0.1

MNdFeB NdFeB 
magnetization

×1.14 106 A m−1

MsFe O3 4
Fe3O4 saturation 
magnetization

×4.7 105 A m−1

K Clausius– 
Mossotti factor

( )/( )µ µ µ µ− + 2r,p r,f r,p r,f

µr,p Particle relative 
permeability

χ+1

µr,f Fluid relative 
permeability

1
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of the magnet (Vmag), and the list of allowable magnetization 
directions contained within the array (figure 1). An initial 
array is constructed to occupy the volume to be optimized 
consisting of both magnetized and non-magnetized elements, 
with magnetized elements occupying the positions closest to 
the POI. The total volume of the magnetized elements is lim-
ited to Vmag at each step using a subroutine described below. 
The main routine then starts at the element closest to the POI 
and tests each allowable magnetization orientation, retaining 
the one that results in the best value of the optimized para
meter, M VF r FPOI nom sˆ( ) /⋅  generated by the whole array at the 

POI. The process is then repeated for the next closest element 
until all elements in the array have been treated. At this point, 
convergence is tested by comparing the attained array to the 
configuration of the starting array. If the routine has changed 
the array and resulted in an improvement in the optimized 
parameter, the process is rerun using the attained array as the 
new starting array and again starting from the element closest 
to the POI until all elements have been treated. If the routine 
does not change the array after treating all elements and the 
optimized parameter cannot be improved, the array is consid-
ered optimized.

Figure 3.  (a) FEM simulations were performed in COMSOL by constructing a 3D model of an orthogonally magnetized array ( =z 20POI  
mm, V  =  100 cc) following the method described in figure 2. The field inside and outside the array is calculated and mapped onto the 
x–z plane. (b) A laminar flow is set up in a straight, 2D channel to simulate the trajectories of magnetic microbeads (black dots) under the 
influence of the field generated by the array inside the channel, showing that more particles accumulate in regions where the magnetic field 
and force are stronger. The colour bars indicate the magnitude of the magnetic field. The direction of flow is to the right.

Figure 4.  2D element vector maps in the x–z plane of arrays optimized for a position of interest along the z-axis, 20 mm away from the 
upper face of the magnet. The first column shows designs optimized using a uniform magnetization vector set, the second column shows 
designs optimized with an orthogonal vector set and the third column displays optimizations using a diagonal vector set. Designs in (a)–(c) 
are constrained to magnet volumes of 50 cm3, while (d)–(f ) are constrained to 500 cm3. Elements are colour-coded by magnetization vector.

J. Phys. D: Appl. Phys. 49 (2016) 225501
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Whenever the combined volume of all elements with a 
non-zero magnetization exceeds the Vmag parameter, a subrou-
tine is performed in order to find and demagnetize the element 
that makes the least contribution to the normalized force. As 
the force depends on the gradient of the total field generated 
by the array at the POI, it cannot be assumed that this ele-
ment is the element furthest from the POI. To find the ele-
ment to demagnetize, each magnetized element is temporarily 
replaced by a non-magnetized element of the same volume 
and M VF r FPOI nom sˆ( ) /⋅  for the remaining array is recorded. 
The element that makes the least difference to the optimized 
parameter when replaced by a non-magnetic element is 
demagnetized.

A collection of optimized arrays were generated by varying 
different parameters in the optimization routine, including 
the volume of the magnet, the distance between the magnet 
and the POI, the direction of force and the set of allowable 
magnetizations. Unless otherwise specified, the initial magnet 
array was constrained to a 0.2 0.2 0.1× ×  m3 optimization 
volume positioned directly below the x–y plane, with the 
POI set along the z-axis above the x–y plane. The default ele-
ment density was 4 cc−1. Three sets of allowable magneti-
zation directions were investigated, within which all possible 

magnetization vectors had the same magnitude as that of an 
N52 grade NdFeB permanent magnet (1.14 106×  A m−1).  
The first set (uniform magnetizations) contained a magnetiza-
tion vector aligned with the z-axis and a zero vector (totaling 
two possible configurations). The second set (orthogonal mag-
netizations) contained six vectors pointing in the positive and 
negative of each orthogonal direction, along with a zero vector 
(seven possible configurations). The third set (diagonal mag-
netizations) contained all vectors in the orthogonal set, along 
with all possible corner and edge diagonal directions and a 
zero vector, totaling 27 possible magnetization configurations.

The routine returns the position and magnetization of all 
magnetized elements at optimization. Figure 2 shows how a 
resultant arrangement of magnetization vectors can be inter-
preted and converted into a design of constructable shapes and 
dimensions, particularly when the output is approximately 
cylindrically symmetrical (which is often the case). This is 
done by merging regions with the same magnetization into 
individual segments. The difficulty of assembling large per-
manent magnet segments that, in some configurations, can be 
strongly repulsive, must be considered [37] and is quantified 
here in terms of the internal magnetic potential energy, Uint, 
which is calculated by summing Bi intµ− ⋅  for each element, 

Figure 5.  (a) Field profiles on a log scale along the z-axis of a 
subset of magnet arrays optimized with different magnet volumes. 
(b) Normalized force profiles on a log scale along the z-axis of the 
same magnet arrays.

Figure 6.  (a) B at the POI (along the z-axis, 20 mm away from 
the face of the magnet) of magnet arrays optimized with different 
magnet volumes. (b) /F M Vs  for the same arrays at the same POI as 
a function of magnet volume.

J. Phys. D: Appl. Phys. 49 (2016) 225501
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where Bint is the field generated at the dipole position by the 
array without the merged magnet segment containing the ele-
ment. Larger values of Uint are interpreted as arrays that are 
more difficult to assemble.

2.3.  Finite element simulations

Finite element modeling was performed using COMSOL 
Multiphysics 5.0 (COMSOL, Inc, Burlington, MA, USA) 
to assess the suitability of a subset of optimized arrays for 
magnetic drug targeting applications via particle tracing sim-
ulations. Particles with the same properties as magnetically 
loaded polystyrene microbeads were simulated in a laminar 
flow within a straight channel primed with water flowing 
above the magnet in the x-direction. Capture efficiency was 
determined by quantifying the proportion of particles that 
accumulated in the region above the magnet after a simulation 
time of 200 s. The field emitted by a given array was calcu-
lated using the ‘magnetostatics, no currents’ interface of the 
‘AC/DC module’ after constructing the geometry of the array 
in a 3D model following the method described for figure 2. 
The capture efficiency and microbead accumulation was then 
approximated to first-order [42] in a simplified 2D geometry 

by first modeling the flow profile in a 3 mm wide channel 
using the ‘laminar flow’ interface of the ‘CFD module’ (set-
ting a no-slip boundary condition at the wall and zero outlet 
pressure), and then using the ‘particle tracing module’ to solve 
the trajectories of particles in flow under the influence of a 
drag force, gravity and a magnetophoretic force described by 
the following three equations respectively:

mF u v
1

D
p

p( )
⎛

⎝
⎜

⎞

⎠
⎟
τ

= −� (5a)

mF gg p
p( )ρ ρ

ρ
=

−
� (5b)

r KF H2 ,M p
3

0 r,f
2π µ µ= ∇� (5c)

where the various parameters are given in table 1. The field 
in (5c) was taken as an interpolated function of the solu-
tion to the 3D array model in the x–z plane (figure 3). The 
magnetic permeability of microbeads, r,pµ  was set to 1 χ+ , 
where M H H( )/χ =  is the magnetic susceptibility, and M H( ) 
is described using (2) and assuming an effective superpara-
magnetic cluster diameter of 10 nm to account for the fact that 
particles approach magnetic saturation when exposed to the 
particularly intense fields emitted at the face of an optimized 
array. The saturation magnetization of microbeads was set to 

MsFe O3 4α , where α is the volumetric ratio of superparamagn
etic Fe3O4 in microbeads. The density of particles was given 
by 1p polysty Fe O3 4

( )ρ α ρ αρ= − + .

3.  Results and discussion

3.1.  Volume-dependent optimizations

Optimizations were performed to generate magnet designs 
of different volumes between 10 and 1000 cc, using one of 
the three magnetization vector sets described in section 2.2, 
with the POI set at 20 mm along the z-axis and Fnomˆ  directed 
towards the magnet (in the negative z direction). Figure  4 
shows 2D element maps of a subset of optimized designs 
with Vmag constrained to 50 or 500 cc. Using a larger magne-
tization vector set results in arrays that are more tightly con-
fined closer to the POI. Typically, uniform arrangements have 
tapered tips on the ‘front’ face of the magnet (closer to the 
POI), causing the field to decay more rapidly in the region 
close to the POI (increasing the B( )∇  component of (4)). 
This isn’t the case for the overall Halbach arrangements (con-
sisting of orthogonal and diagonal magnetization sets), but the 
central magnet segment ( M kM z

ˆ= ) is typically shaped in a 
similar way. When Vmag is large, the Halbach arrangements 
acquire a ring shaped segment around the upper surface that 
is uniformly magnetized in the M kz

ˆ−  direction. In most of the 
Halbach designs, following the magnetization in a straight 
line along the diameter of the upper surface reveals a linear 
Halbach arrangement, with the elements magnetized to redi-
rect the density of flux lines through the central axis of the 
design.

Figure 7.  (a) Internal magnetic potential energy as a function of 
magnet volume, using different possible magnetization sets.  
(b) The total computation time of the optimization routine for each 
magnetization set as a function of magnet volume.

J. Phys. D: Appl. Phys. 49 (2016) 225501
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Figure 5 shows the dependence of the magnitude of B and 
F M Vs/  on position along the z-axis for a set of arrays with 
magnet volumes of 10 and 1000 cc. In each case, past a cer-
tain distance (usually about 15 mm) the field and force profiles 
decay approximately exponentially with distance (straight 
on a lin-log graph), highlighting the difficulty of applying 
useful magnetic forces over a long spatial range. The diagonal 
arrangements are able to exert significant normalized forces 
very close to the face of the magnet, exceeding 100 T m−1, 
even for the 10 cc magnet, but the uniform shapes tend to per-
form better at long range, with the 10 and 1000 cc uniform 
magnet applying greater fields at z  =  50 mm than Halbach 
arrangements of the same volume and not decaying as quickly 
in normalized force. Over the entire displayed range, the diag-
onal Halbach arrangements are superior to orthogonal designs 
with the same volume.

The effect of changing magnet volume on the field and 
force generated at the POI is displayed in figure 6. This indi-
cates that for each magnetization set, B zPOI( ) and F z M VPOI s( )/  
increase approximately logarithmically with Vmag and, for 
designs with orthogonal magnetizations, a factor of  ∼5 
increase in volume is required to raise the normalized force 
by 10 T m−1. Notably, the 100 cc orthogonal array produces 
a normalized force of 20.3 T m−1 at the POI, almost twice 
the force of a double layer cubic element array at the same 
distance (11.9 T m−1) reported in reference [37], which was 
optimized using the same set of parameters.

The internal magnetic potential energy, shown in figure 7(a) 
was calculated following the method described in section 2.2 
as a metric to gauge the difficulty of assembling an optimized 
array from individual segments of uniform magnetization. 
Uniformly magnetized shapes have a Uint of 0 J assuming they 

are machined from a single piece and not assembled from 
smaller elements that are repulsive in certain configurations. 
As the number of possible magnetization vectors increases 
and, thus, the number of segments required to assemble an 
array, the internal magnetic potential energy also rises. This 
demonstrates the main disadvantage of designs using diagonal 
magnetizations; while arrays utilizing diagonal configurations 
tend to result in the most intense field and force values, their 
assembly is complicated by the fact that many of the config-
urations between neighbouring segments are repulsive. The 
potential energy density in the 1000 cc array with diagonal 
magnetization vectors is 3.3 105×  J m−3.

The required computation time to execute the optim
ization routine for each design on a computer with an 
Intel(R) Core(TM) i7 processor and 8 GB RAM is shown in 
figure  7(b). Uniformly and orthogonally magnetized arrays 
with V 100mag ⩽  cc and an element density of 4 cc−1 can be 
optimized in under an hour. Diagonally magnetized arrays 
require significantly more time to optimize.

3.2.  Position of interest dependent optimizations

A set of optimizations was performed with the magnet 
volume constrained to 100 cc and the nominal direction of 
force fixed towards the magnet (pull force). The position of 
interest was varied along the z-axis and designs were gener-
ated for each of three possible magnetization sets described 
previously. Figure 8 shows the resultant designs with the POI 
set at distances of 5 and 50 mm away from the magnet. For 
each magnetization set, increasing zPOI yields designs that are 
more tightly confined to the x–y plane, resulting in flatter, disc 
shaped volumes. When the POI is very close to the face of the 

Figure 8.  2D vector maps in the x–z plane of arrays optimized for different positions of interest along the z-axis, with the magnet volume 
constrained to 100 cc. Arrays in the first column are uniformly magnetized, in the second column are orthogonally magnetized and in the 
third column are diagonally magnetized. The position of interest for designs in (a)–(c) is 5 mm from the upper surface of the magnet and,  
in (d)–(f ) it is 50 mm from the magnet.

J. Phys. D: Appl. Phys. 49 (2016) 225501
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array (figures 8(a)–(c)), the uniformly magnetized arrays tend 
to exhibit the same tapered point seen in analogous designs in 
figure 4, while Halbach designs have more segments magne-
tized with a component pointing away from the POI, in order 
to redirect flux more efficiently through the front face of the 
array along the z-axis.

The relatively high proportion of elements off-axis that are 
magnetized away from the POI results in extremely high field 
and force values very close to the face of the arrays, as shown 
in the profiles of B  and F M Vs/  in figure  9. Both types of 
Halbach arrays optimized for z 5opt =  mm are able to obtain 
a field of 1.6 T and a field gradient in excess of 300 T m−1 
at short range, and are even capable of applying normalized 
forces greater than 100 T m−1 as far as 7 mm away. These field 
gradients are remarkable, and are more than twice as forceful 
as unresolved (i.e. difficult to assemble) cubic, pull arrays 
of the same volume reported previously (maximum B( )∇  of  
139 T m−1) [37], and almost three times as forceful as the 
corresponding resolved arrays which were determined to 
be easier to construct (capable of applying 124 T m−1). To 
our knowledge, the only other magnetic systems capable of 
applying field gradients of several hundred T/m over milli-
metre length scales that have been considered for MDT are 
based on superconducting magnets [43, 44]. However, the 

field profiles in figure  9(a) are not persistent and drop off 
fairly rapidly, with the magnitude of B exhibiting minima at 
about 25 mm, coinciding with a change in direction of field 
from positively aligned with the z-axis to negatively aligned. 
This results in very small push forces from the magnets in 
the region between  ∼25–40 mm, between the two minima in 
F M Vs/  (figure 9(b)).

The fields and forces emitted by uniformly magnetized 
arrangements decay less rapidly as a function of distance than 
those emitted by orthogonal and diagonal Halbach arrays 
optimized for the same POI. Similarly, arrays optimized for 
a further POI also perform better over a longer range of dis-
tances than arrays optimized for z 5opt =  mm. The diagonal 
array optimized for 50 mm is capable of delivering a normal-
ized force greater than 10 T m−1 at 28.5 mm, while the field 
remains above 0.1 T up to 43 mm away.

Figure 10 shows how the field and normalized force vary 
for different arrays at the POI, as a function of POI. The 
behaviour of B zPOI( ) highlights how the advantages of using 
Halbach arrays over uniform magnets diminish at long ranges, 
particularly for orthogonal arrangements at z 50POI =  mm, 
where the improvement over the uniform design is indis-
cernible. Figure  10(b) shows that, while diagonal arrange-
ments apply superior forces at all POIs, the improvement 
over orthogonal arrays is relatively small, particularly when 

Figure 9.  (a) Field profiles and (b) normalized force profiles along 
the z-axis of arrays shown in figure 8, optimized for either 5 or 
50 mm away from the magnet face.

Figure 10.  (a) Field and (b) normalized force of different arrays at 
the position of interest, as a function of the position of interest.

J. Phys. D: Appl. Phys. 49 (2016) 225501



L C Barnsley et al

9

the POI is set close to the magnet. When z 5POI =  mm, the 
performance of the diagonal arrangement is 10% better than 
the orthogonal array, while, for z 50POI =  mm arrays, using a 
diagonal magnetization set results in a 20% greater force than 
the orthogonal design.

The behaviour of the field and force in a x–y and x–z plane 
from an orthogonal magnet design with z 20POI =  mm is dis-
played in figure 11. It is noted that, while the force in the x–y 
plane 5 mm above the surface of the magnet is directed towards its 
centre axis, the strongest forces coincide with the regions where 
the magnetization changes on the upper surface of the design.

3.3.  Direction of force dependent optimizations

The optimization routine was used to investigate how optim
ized designs vary with different nominal directions of force. 
Vmag was fixed to 100 cc and the POI was set at 20 mm along 
the z-axis, while the angle between the nominal direction of 
force and the negative z-axis, labeled θ, was rotated through 
the x–z plane (this convention was chosen so that 0θ = � 
results in the nominal direction of force pointing toward the 
magnet, optimizing for a pull force, and 180θ = � coincides 
with a nominal direction of force away from the magnet, to 
maximize the push force at the POI).

A subset of resultant designs consisting of uniform and 
orthogonal arrays is displayed in figure 12. For the uniform 
array with 90θ = �, in order to obtain a component of force 
in the  −x-direction along the z-axis, the array splits into two 
parts, with most of the volume of the magnet occupying the  −x, 
−z quadrant. When 180θ = �, a toroid shape results, centred 
around the z-axis. With this geometry, a push force results at 
the POI because the field close to the face of the toroid is neg-
ative along the z-axis (the cyan line in figure 13(a)). This field 
changes direction at a distance along the z-axis dictated by the 
geometry of the toroid; the transition from negative to positive 
field results in a push force away from the local minimum in 
field (figure 13(b)).

Setting 180θ = � with orthogonal magnetization vectors 
essentially ‘inverses’ the pattern in the centre of the array, 
with a segment magnetized anti-parallel to z occupying the 
central axis, and surrounding elements magnetized to redirect 
flux away from this segment and into a toroid with the same 
magnetization and comparable dimensions to the shape gener-
ated for the uniform case.

Close to the face of the array, the field for arrays optim
ized with 90θ = � is almost parallel to the x-axis, while the 
field for arrays with θ set to 180� points in the negative z-
direction (figure 13(a)). However, as the distance from the 

Figure 11.  Simulations showing the magnitude of the (a) field and (b) normalized force in the x–y plane 5 mm above the upper surface of 
the orthogonal magnet design shown in figure 2 ( =V 100mag  cc, =z 20POI  mm). (c) and (d) show the same outputs in the x–z plane above 
the array. The arrows indicate the direction of the field or force projected on the plane.
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array increases, the field vector rotates to be more closely 
aligned in the z-direction, either gradually in the case of 

90θ = � arrays, or as a sudden transition in the case of push 
force arrays. Figure 13(b) shows that, even arrays optimized 
for 180θ = � are only capable of applying a push force over a 
short distance of  ∼15 mm along the main axis, as seen by the 
range for which the the force points at 180� to the  −z-direc-
tion (between the two minima in the magnitude of the force 
profiles). The range of push force is slightly greater for 
the uniform arrangement, but the orthogonal array gives a 
slightly greater force. Push force arrays can be useful for non-
invasive magnetic injection when physiological flows in the 
region of interest are low [45, 46], but for applications where 
carriers need to be separated from high blood flow velocities 
(e.g. partially-occluded and/or injured arteries, or around the 

leaky vasculature of tumours), high field gradients (more than 
10 T m−1) that persist over a range of several centimetres are 
more useful [38, 47].

The capability of arrays optimized with different θ 
values to deliver field or force to the POI 20 mm away is 
displayed in figure 14. Of interest is the fact that the angle 
of the relevant vectors at the POI is largely independent 
of the magnetization set used to generate the design, but 
diagonal magnetized arrays are consistently able to deliver 
about twice as much normalized force than the analogous 
uniform arrangements. However, while the diagonal mag-
netization set performs the best of the tested sets with all θ, 
the difference in performance between diagonal and orthog-
onal arrangements is diminished when a push force is the 
objective.

Figure 12.  Designs of (a)–(c) uniformly and (d)–(f ) orthogonally magnetized arrays optimized to apply forces in different directions at a 
distance 20 mm from the upper face of the array. Each design shows vector maps of the top x–y surface and a side x–z cross-section through 
the middle of the array. The first column shows designs with θ = �0  (pull force), the second column shows θ = �90  and the third column 
shows θ = �180  (push force).
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3.4.  Particle tracing simulations

Particle tracing simulations were performed using COMSOL 
software following the method described in section 2.3, to cal-
culate the trajectories of magnetic microbeads in fluid flow 
past a subset of optimized magnet arrays. The field profiles 
for three orthogonal magnet arrays (z 5POI = , 20 and 50 mm 
as reported in section 3.2) were calculated by assembling 3D 
models following the method described in figure 2. Fluid flow 
velocities and particle trajectories were calculated inside a 
2D channel that was 3 mm wide, with the channel centre-line 
(corresponding to max fluid velocity) positioned at various dis-
tances, zd between 5 and 50 mm above the upper surface of the  
array. As the laminar flow profiles were calculated in 2D,  
the velocity along the centre-line of the channel was 1.5 times 
the nominal, mean flow velocity, which was varied between 
2.5 and 250 mm s−1 (corresponding to Reynolds numbers 
between 8.4 and 840). The lower end of this range is of the 
same order as blood flow velocities in the cerebral cortex  
[48, 49], while the upper end of this range is comparable with 
those observed in tumours [50, 51].

Mesh independence was determined for the 3D model of 
the z 50POI =  mm orthogonal array by using the available 

physics-controlled meshes and increasing the mesh density 
until no variation was observed in the field profile along the 
z-axis. Figure 15(a) shows that mesh independence is obtained 
once the mesh density exceeds  ∼2.14 106×  elements m−3 and 
that the finite element calculations agreed well with the dipole 
model for all meshes. As calculation of magnetic field using 
COMSOL’s interfaces was not computationally intensive on 
the PC described in section 3.1, the finest available physics-
controlled mesh density was used for all subsequent calcul
ations of field profiles for the other arrays. A similar procedure 
was followed for the 2D model by calculating the fluid velocity 
magnitude along the width of the channel (figure 15(b)), and 
mesh independence was attained for meshes with a density 
greater than 9.33 107×  elements m−2. A mesh density of 
2.68 108×  elements m−2 was used for particle tracing simula-
tions (containing a minimum element size of 2.08 10 6× −  m).

Figure 16 shows the capture efficiency of microparticles 
as a function of flow velocity using different arrays and with 
the channel set at different distances. In each case, the cap-
ture efficiency decays approximately as a power law with 
flow velocity, typically with an index of about  −0.6 (closer 
to  −0.7 when zd  =  50 mm). At a channel position of 5 mm, 
there is very little difference in the total capture efficiency of 
the z 5POI =  mm and z 20POI =  mm arrays, although there is 

Figure 13.  (a) The field along the z-axis generated by the designs 
of figure 12. The inset shows how the angle of this field deviates 
from the z-axis as a function of position. (a) The normalized force 
along the z-axis of the same arrays. Here, the inset shows the angle 
between the force vector and the  −z-direction.

Figure 14.  (a) Field and (b) normalized force of different arrays at 
the position of interest, as a function of θ. The insets give the angles 
of the vectors at the POI, as defined in figure 13.
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a difference in the distribution of captured particles along the 
length of the channel (figure 17(b)). At further channel dis-
tances, the z 5POI =  mm array is vastly inferior to the other 
two arrays due to the fact that its applied force decays most 
rapidly with space, while the array that performs the best is 
the one that was optimized for that range. Our previous work 
on magnetic carriers [37, 52] has indicated that a capture 
efficiency of 10% is sufficient to significantly increase the 
acoustic response detected from retained magnetic micro-
bubbles under ultrasound exposure and this would in turn be 
expected to generate a therapeutic effect [53]. On this basis an 
optimized array (i.e. z zdPOI = ) would be able to retain a diag
nostically and/or therapeutically relevant number of particles 
in flow velocities of 100 mm s−1 at 5 mm, 25 mm s−1 at 20 mm 
and 2.5 mm s−1 at 50 mm.

The accumulation distribution was quantified by counting 
the relative proportion of captured microparticles that were 
distributed along the length of the channel above the magnet 
in 5 mm incremental sections. The accumulation distribution 
inside the channel set 5 mm above the z 20POI =  mm array is 

Figure 15.  (a) FEM simulations in 3D of field profiles along the 
z-axis of an orthogonally magnetized array optimized for =z 50POI  
mm using different mesh densities, compared with predictions 
using the dipole model (black dots). (b) 2D simulations of the flow 
profile in a 3 mm diameter channel with a mean inlet flow velocity 
of 10 mm s−1. In these simulations, mesh independence is obtained 
once the mesh density exceeds ×9.33 107 elements m−2.

Figure 16.  Capture efficiency as a function of velocity. Simulations 
were performed using three different orthogonally magnetized 
arrays, =z 5POI  mm (black), =z 20POI  mm (red) and =z 50POI  mm 
(blue) and three different channel positions, 5 mm (dotted lines), 
20 mm (solid lines) and 50 mm (dashed lines) away from the face of 
the magnet. The teal line indicates a useful capture efficiency.

Figure 17.  (a) The relative proportion of accumulated particles 
along the length of the channel above the magnet at different 
inlet flow velocities. The channel is positioned 5 mm above an 
orthogonal array ( =z 20POI  mm). (b) The accumulation distribution 
with different arrays ( =z 5POI  mm in black, =z 20POI  mm in red, 
=z 50POI  mm in blue) and u set to 10 mm s−1. The inset shows how 

the magnitude of the field varies along the bottom of the channel for 
each array.
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displayed in figure 17(a). At all velocities, two peaks emerge, 
one coinciding with the z-axis, above the centre of the array, 
and one coinciding with the leading edge of the array, where 
the field profile has a local shoulder. Figure 17(b) shows how 
accumulation varies using the different arrays and setting the 
inlet velocity to 10 mm s−1. At this range, the z 5POI =  mm 
array is better able to localize more particles in the region 
near to the centre of the array, owing to a strong attraction 
to the particularly intense and narrow peak in field profile 
in this region along the channel (displayed in the inset). The 
z 50POI =  mm array exhibits a local minimum in the field 
around this region, resulting in very few particles being 
directed to the target.

3.5.  Consideration of assembly forces

In order to assemble Halbach arrays, the sometimes repul-
sive dipole forces that arise between neighbouring permanent 
magnet elements must be overcome. This challenge can be 
somewhat mitigated by separating neighbouring segments 
that are in repulsive configurations, but this may result in a 
compromise in the field and force generated by the array along 
the z-axis. The designs of the 100 cc orthogonally and diago-
nally magnetized Halbach arrays optimized for z 50POI =  mm  
(displayed in figures  8(e) and (f )) were resimulated after 
introducing a minimum separation distance, d between each 
segment.

Figure 18 shows how introducing a gap up to 10 mm 
between segments can reduce the internal magnetic poten-
tial energy associated with each array, Uint which is used 
to gauge the relative difficulty of assembling a given array. 
Introducing a gap of 10 mm into the orthogonal array lowers 
Uint by more than 60%, compared with the same design with 
no gap. Our model allows us to compare this quantity to that 
of other arrays reported in the literature, such as a Halbach 
cylinder (108 o.d. 54 i.d. 115   × ×  mm3) assembled by Cugat 
et al [54]. Our analysis suggests this design has a Uint value 

of 10.6 J, which is favourably comparable to the values we 
report for optimized orthogonal arrays with separations 
greater than  ∼6 mm, implying that the challenges associated 
with assembling these designs can be overcome. The potential 
energy density of the orthogonal design with d  =  10 mm is 
6.56 104×  J m−3.

The field, B and force, F generated by the orthogonal 
and diagonal arrays with different separation distances were 
calculated along the z-axis at positions 5 and 50 mm away 
from the magnets. Figure 19 shows how B/B0 and F/F0 vary 
for these two arrays at these two positions for different gap 
sizes, d, where B0 and F0 are the field and force respec-
tively when d  =  0 mm. Varying d has a much greater effect 
on the diagonal array than the orthogonal array; a separa-
tion of 10 mm only diminishes the field generated by the 
orthogonal array at 5 mm by  ∼11%, and the compromise at 
50 mm is even less (figure 19(a)). Interestingly, the force at 
5 mm, displayed in figure 19(b), increases for both arrays for 
larger d, a consequence of the fact that the field gradient in 
this region is changing more rapidly due to a faster decay in 
field. At z  =  50 mm, F generated by the diagonal array decays 
so rapidly with d that, for separations greater than 6 mm, 
the orthogonal array produces a greater total force than the 

Figure 18.  Uint versus a minimum separation distance between 
each segment in the designs of orthogonal and diagonal Halbach 
arrays initially optimized for a distance 50 mm from the magnet 
( =V 100mag  cc).

Figure 19.  (a) The ratio between ( )B d  and ( )=B d 0  for orthogonal 
and diagonal designs initially optimized for =z 50POI  mm, 
calculated at 5 and 50 mm along the z-axis. (b) The ratio between 

( )F d  and ( )=F d 0  for the same arrays at the same positions.
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diagonal array. This is notable because no other parameter set 
investigated in the present study yields an optimized arrange-
ment from the orthogonal magnetization set that is capable 
of applying more force than the analogous design using the 
diagonal magnetization set.

3.6.  Example application

The optimization routine can readily be adapted for specific 
magnetic drug targeting applications by defining parameters 
related to the position of interest, nominal direction of force 
and volume of magnetic material, and also the dimensions of 
the constrained shape of the optimization volume, taking into 
account the anatomy and physiology (in particular, fluid flow 
and vessel diameter in the vessel network near the target) of 
the targeted region. A design volume was set up to optimize a 
Halbach array of orthogonally magnetized segments to target 
and retain magnetic microparticles in the vessel network 
around the brain at a depth of 50 mm, which has a range of 
possible applications (for example, magnetic microbubbles 
can be used for localized opening of the blood–brain barrier 
to deliver drugs to brain tumours [26]). The helmet-shaped 

design volume consisted of a hemisphere with an internal 
radius of 100 mm and a thickness of 15 mm above the x–y 
plane, and the magnet volume was constrained to 200 cc 
(equivalent to a magnet weight of 1.5 kg). The direction of 
force was set at 45� to the z-axis, to provide a component of 
force that acts against the general direction of blood flow in 
the region of interest, along with the component of force that 
pulls towards the magnet.

The resultant design is shown in figure 20. The top view 
is similar to the designs of orthogonally magnetized arrays 
discussed in previous sections, skewed to be more weighted 
towards the  −x quadrants to accommodate the diagonal direc-
tion of force. The performance of the array along the z-axis 
is exhibited in figure  21. Past about 25 mm from the inside 
surface of the magnet, the direction of field and force varies 
little while the magnitude of these vectors decays approxi-
mately exponentially. However, notably the field decays 
approximately linearly in a region between  ∼15 and 25 mm 
from the magnet, resulting in a relatively consistent magni-
tude of force over this range. This region also coincides with 
a transition in the direction of force, with the magnet pulling 

Figure 20.  Vector maps displaying the optimized design of a 
helmet-shaped Halbach array. A view from above, looking down 
onto the top surface projected on a x–y plane (top), and a side 
view of the cross-section in the x–z plane (bottom) are shown. The 
red dot indicates the POI in the x–z plane (50 mm from the inside 
surface of the magnet, on the z-axis), while the black arrow gives 
the nominal direction of force, �45  to the z-axis. The gray lines show 
the constraints of the design volume.

Figure 21.  The magnitude of (a) field and (b) normalized force 
emitted by the optimized helmet-shaped Halbach array along the z-
axis, directly below the inside surface of the magnet. (The position 
axis is plotted so that the source of field is to the left side of the 
graph for consistency.) The insets show the angle of the relevant 
vectors with respect to the z-axis, following the conventions 
described for figure 13.
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in the positive x-direction when z  <  15 mm (as opposed to the 
negative x-direction, commensurate with the nominal direc-
tion of force, past this transition point). This spatial range is 
of interest as it approximately corresponds to the depth of the 
cerebral cortex, which contains vessel diameters typically 
between 2.5 and 40 micron [55, 56], with flow velocities in the 
order of  ∼0.5–1 mm s−1 [48, 49]. Considering a normalized 
force of  ∼10 T m−1, and extrapolating from the simulations 
in section 3.4, an extremely high capture efficiency would be 
expected.

The field and force maps exhibited in figure 22 show that 
the most intense fields occur near to regions where the mag-
netization changes between segments in the array. Notably, 
the nominal direction of force shown in figure 22(d) points 
from the position of interest, towards the interface between 
the segments magnetized in the z-direction and the positive x-
direction (gray and green segments respectively in figure 20). 
The change in direction in the force vector seen along the z-
axis in figure 21(b) may then be understood as particles get-
ting close enough to the magnet that they are more attracted to 
the local maximum in field adjacent to the interface between 
segments magnetized in the z- and negative x-directions 
(colour-coded gray and blue).

4.  Conclusion

An optimization routine developed previously for the design 
of Halbach arrays consisting of cubic elements has been 
modified and expanded to generate arbitrarily shaped magnet 
arrays optimized to deliver magnetic force depending on 
a range of different design parameters. We have presented 
designs of optimized uniform magnet geometries and Halbach 
arrays, demonstrating how the performance of different 
arrangements varies as a function of the design parameters.  
The magnetic force applied by the arrays increases logarithmi-
cally with magnet volume, while the force emitted at the posi-
tion of interest decreases almost exponentially as the position 
of interest gets further from the magnet. The number of allowed 
magnetization vectors is considered as a design parameter, and 
while using a greater variety of different magnetizations results 
in increased force output, it also leads to arrays that are more 
difficult to assemble, owing to repulsive dipole forces between 
neighbouring elements. A method to overcome this problem 
is considered, with simulations suggesting that introducing 
a small gap between repulsive segments can make optim
ized Halbach arrays significantly easier to assemble without 
causing a large compromise to the applied field and force.

Figure 22.  (a) and (b) display the field and force respectively, applied by the helmet-shaped Halbach array in an x–y plane 25 mm below the 
inside surface of the magnet (z  =  75 mm). (c) and (d) show the same quantities in the x–z plane below the array. The red dot in (d) indicates 
the position of interest, while the black arrow displays the nominal direction of force.
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Simulations of magnetic microbeads under the influence of 
fluid flow in a 3 mm wide channel and a subset of optimized 
array designs performed using COMSOL software suggest that 
a useful proportion of particles could be captured and retained 
at short range (5 mm) in mean fluid velocities of 100 mm s−1 
or at further depths of 50 mm, when the velocity was 2.5 mm 
s−1, depending on the choice of magnet. Finally, a design for 
a helmet magnet to apply an optimal magnetic force 50 mm 
deep inside the brain was generated to show the versatility of 
the optimization routine to address specific applications. For 
this design, particles tend to be most strongly attracted towards 
regions of the magnet where an interface exists between magnet 
segments. Based on the flow regime in the cerebral cortex, we 
suggest a high proportion of trapping in this region is feasible. 
Our examples of optimized arrays show that, using the pre-
sent optimization routine, magnet arrays can be designed and 
assessed for specific magnetic drug targeting applications once 
the required depth of targeting, direction of magnetic force, 
volume of magnet and the physiological features and flow 
regimes around the target have been accounted for.
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