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Abstract: We analyse data from the Southall And Brent REvisited (SABRE) tri-ethnic study, where measure-
ments ofmetabolic and anthropometric variables have been recorded. In particular, we focus onmodelling the
distribution of insulin resistance which is strongly associated with the development of type 2 diabetes. We
propose the use of a Bayesian nonparametric prior tomodel the distribution of HomeostasisModel Assessment
insulin resistance, as it allows for data-driven clustering of the observations. Anthropometric variables and
metabolites concentrations are included as covariates in a regression framework. This strategy highlights the
presence of sub-populations in the data, characterised by different levels of risk of developing type 2 diabetes
across ethnicities. Posterior inference is performed through Markov Chains Monte Carlo (MCMC) methods.

Keywords: cluster analysis; dirichlet process; gibbs sampling; metabolomics; SABRE study.

1 Introduction

The global epidemic of type 2 diabetes disproportionately affects non-European ethnic groups. South-Asians
(from the Indian subcontinent) form the largest ethnic minority group in the UK with prevalence of diabetes in
South-Asians estimated to be 2–4 times higher than that of the general population [1]. Africans-Caribbean in
the UK, although fewer in number, are also at greater risk of developing type 2 diabetes, with prevalence also
estimated at 2–4 times that of the general UK population [1].

The causal mechanisms underlying development of type 2 diabetes remain poorly understood, and no
study has yet conclusively explained the reasons for the excess risk of diabetes experienced by South-Asian
and African-Caribbean populations, suggesting that complex metabolic disturbances may underlie the ethnic
differences [2]. Insulin resistance is a frequent precursors of type 2 diabetes in all populations and can be
measured non-invasively using indices such as the Homeostasis Model Assessment (HOMA IR), which can be
calculated from fasting blood glucose and insulin levels [3].

The main purpose of this work is to explore potential mechanisms underlying the marked ethnic differ-
ences in insulin resistance (Figure 1). Awide range ofmetabolic and phenotypicmeasures is available from the
baseline study of the Southall And Brent REvisited (SABRE) population-based cohort. SABRE was initiated in
the late 1980s in North-west London with the aim of studying ethnic differences in cardiovascular disease and
diabetes. The study includes people of European, South-Asian and African-Caribbean descent, aged 40–69
years at baseline [4].
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By employing Bayesian nonparametric statistical methods, we cluster individuals based on their HOMA IR
levels. In doing so, we are able to account for the effect of covariates, in our case anthropometric measures and
metabolites concentrations, identify the most influential variables and determine if the effects of covariates
vary by ethnicity. We allow for clusters of individuals belonging to different ethnic groups.

Measurements of over 200 metabolites or ratios of metabolites, obtained through nuclear magnetic
resonance spectroscopy, are available for more than 3000 stored baseline serum samples [5]. Lipoproteins are
classified according to their density (very-low-density lipoprotein [VLDL], low-density lipoprotein [LDL],
intermediate-density lipoprotein [IDL] and high-density lipoprotein [HDL]). Each lipoprotein subclass can be
further characterised by its lipid composition (i.e. triglycerides, phospholipids, free cholesterol and cholesterol
esters) and its particle size. The full list of metabolites included in the analysis is available in Table 1 in
Supplementary Material. We include three important enzymes, alanine aminotransferase, aspartate amino-
transferase and gamma glutamyl transferase. Anthropometric variables are also included, in particular global
measures of body fat distribution such as waist to hip ratio (WHR) andmore specific adiposity measures, such
as sagittal diameter and subscapular skinfold thickness. The full list of anthropometric and clinic covariates
can be found in Table 2 in Supplementary Material. We exclude from the analysis individuals with known
diabetes since they were already receiving anti-diabetes medication or had undergone lifestyle modifications
that might alter their metabolite levels and potentially the conclusions of the analysis. In this paper, we focus
on the SABRE study baseline metabolic and phenotypic dataset. To address our research aims, we use a
Bayesian nonparametric prior, the Dependent Generalized Dirichlet Process (DGDP) [6], within a regression
framework. The discrete nature of the DGDP allows for data-driven clustering of the observations. We specify
the DGDP prior on the regression intercept and the error precision parameter, allowing for cluster specific
locations and precisions. The choice of theDGDPallows a greatflexibility, accounts for inter-subject variability
and it does not fix a priori the number of clusters. When prior evidence is available, through the calibration of
the DGDP hyper-parameters, we can favour a large number of clusters, allowing estimation of more hetero-
geneous groups. Moreover, to deal with the large number of clinical and anthropometric covariates and
metabolites available, we adopt a Spike and Slab approach [7, 8] in order to perform variable selection on the
design matrix and highlight the most important determinant of the clinical outcome under study.

The paper is organised as follows. Section 2 introduces the statistical model. In Section 3 we present the
results of the analysis and discuss the relevance of such results from the clinical point of view. Section 4
concludes the paper with a discussion and summary on the main achievements of this work.
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Figure 1: HOMA IR: empirical distribution by ethnicity (the vertical lines correspond to the sample median).
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2 The model

Let y � (y1,…, yn) be a variable observed over n individuals. We assume a linear regression model:

yi � β0 + ∑
p−1

j�1
βjxij + εi (1)

where p is the number of independent variables (including the intercept). The error terms εi are assumed to be
normally distributed as

εi ∼
iidN(0, τ2)

with mean 0 and precision τ2. The model in Eq. (1) assumes the same parameters for each observation. This
assumption can be relaxed by allowing, for example, β0 and τ2 to varywith i (randomeffectmodel), accounting
for inter-subject variability:

yi � βi0 + ∑
p−1

j�1
βjxij + εi (2)

where

εi ∼
indN(0, τ2i ) (3)

In thisway, a subject-specific intercept andprecision are introduced in themodel, allowing formore flexibility.
We now need to specify a prior on the model parameters. In particular, we need to choose a random effect

distribution for (β0i, τ2i ). A traditional and computationally convenient choice is a Normal random effects

model for βi0 and a Gamma distribution for τ2i . Instead, we prefer to opt for a nonparametric random effects
distribution as, often, the parametric assumptions are too restrictive in applications. The random effects
distribution needs to accommodate the heterogeneity in the population and to allow for outliers, clustering
and over-dispersion. At the same time, the model should not be overly complex and should still allow
computationally efficient implementation of full posterior inference. Ideally the model should be a natural
generalization of a traditional random effects distribution. In the next section we describe our choice of prior
distribution.

2.1 Prior distributions

The model in Eq. (2) requires the specification of a prior distribution for the vector of regression coefficients

β � (β1,…, βp−1), the intercept βi0 and the precision parameter τ2i . We adopt a nonparametric prior, the DGDP

prior, on the vector (βi0, τ2i ). As explained below, this choice of prior distribution allows to cluster the ob-
servations. Moreover the use of the DGDP prior provides both flexibility and parsimony about the number of
parameters that we introduce in the model. We now present a brief review of the main properties of the
Dirichlet Process (DP) and its generalisation to the DGDP. The DP (see Ref. [9, 10] for basic properties) is
arguably themostwidely used nonparametric Bayesian prior, mainly because of computational simplicity and
ease of interpretation. In DP based models computational complexity of posterior simulation is in theory
dimension independent, allowing specification of possibly high dimensional random effects distributions. A
randommeasure P that is generated by a DP is almost surely discrete. Sethuraman [11] provides a constructive
definition of this process, showing that if a randomprobabilitymeasure P is distributed according to aDP, with
mass parameter α and base measure G0, then it admits the following representation:

P � ∑
∞

k�1
ψkδθk (4)
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where the atoms θ1, θ2,… are iid realisations fromG0, δθk is the Diracmeasure that assignsmass probability one
in correspondence of the location θk. The weights ψk follow a stick-breaking process (see Ref. [12] for details):

ψk � ϕk ∏
k−1

j�1
(1 − ϕj), k � 2, 3,… (5)

with ϕk ∼
iidBeta(1, α) and ψ1 � ϕ1. By construction we have 0 ≤ ψk ≤ 1 and∑∞

k�1ψk � 1. The discreteness of the DP
induces clustering of the subjects in the sample based on the unique values of the random effects parameters
(in our case θk � (β0k , τ2k)), where the number K of clusters is unknown and learned from the data.

In this paper we are interested in modelling the distribution of HOMA IR in each of the three ethnic groups
(i) allowing for borrowing information across groups (ii) highlighting differences and similarities (iii) ac-
counting for the effect of covariates. To this end, we employ a generalisation of the DP proposed by Ishwaran
and James [12] and Hjort [13]; the Generalised Dirichlet Process (GDP). The GDP employees a richer para-
metrisation in the stick-breaking construction, allowing greater flexibility in the moments of the random
distributions. Consider the stick-breaking in Eq. (5), where the elements ϕk are draws from a Beta (1, α). In the
generalisation proposed by Hjort [13], the ϕk still draws from a Beta distribution, but the first hyper-parameter
does not need to be fixed to one. Inwhat followswe use an alternative parametrisation of the Beta distribution,
where the hyper-parameters are specified in terms of themean and the concentration parameter. In theGDP the
{ϕk} are then independent draws from a Beta(μkυk , (1 − μk)υk):

p(ϕk

∣∣∣∣υk , μk) � Γ(υk)
Γ(υkμk)Γ(υk(1 − μk))ϕ

υkμk−1
k (1 − ϕk)υk(1−μk)−1 (6)

where

E(ϕk) � μk ∈ (0, 1)
and

Var(ϕk) � μk(1 − μk)
(1 + υk)

with υk ∈ (0,∞), are the expected value and the variance of the Beta randomvariable respectively. Theweights
of the GDP admit the same stick-breaking construction as for the DP. Hjort [13] proposes a more parsimonious
parametrisation of Eq. (6), setting μk � μ and υk � υ. This simplification does not impose significant restriction
in applications. We now explain how we introduce ethnicity information in the distribution of HOMA IR. The
final model will contain two main components: one for the clinical covariates and one for the patients effect.
The model for the covariates expresses prior information on how covariate influence the clinical outcome,
while the nonparametric prior (GDP) is used as random effect distribution to capture inter-patients variability.
Moreover, it is desirable to specify a random effect distribution for each ethnicity in a way that the random
effect distributions are related (similar or very different), but not necessarily identical.

There is a wealth of literature on how to extend the DP to incorporate covariate information, for example,
letting the weights and/or locations of the infinite mixture in Eq. (4) depend on a variable of interest that
defines sub-groups in the observations. See the seminal paper of MacEachern [14] on the Dependent Dirichlet
Process (DDP). Similarly, also the GDP can be extended in presence of categorical covariates. Barcella et al. [6]
introduces the DGDP, where the dependence among random distributions is introduced through the weights
ψk of themixture in four. The parametersψk are generated from the stick-breaking process, so the dependence
is introduced directly on the parameters υ and μ.

Consider G groups defined by a covariate of interest g ∈ G, where G is the covariate space. We let μ, which
represents the mean of the Beta random variables depend on the particular value of g, while we assume the
same υ across groups. We denote with μg the mean of the Beta random variable corresponding to group g. In

our application groups are defined by the ethnicity. The random measure Pg, i.e. the random distribution
associated to group g, is then defined as:
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Pg � ∑
∞

k�1
ψk, gδθk

Here θk � (β0k , τ2k). In particular, dependence across the μg , g � 1,…,G, is obtained by specifying a Beta
regression on μg and using a categorical predictor zg, i.e. an indicator variable which denotes to which
group the observations are associated to. This strategy allows for group dependent clustering of the
observations. See Ref. [6] for details and clustering properties. Finally, the full model for HOMA IR is
specified as follows

y1g ,…, yng
∣∣∣∣g,Pg ∼ind∫


N(β0 + ∑

p−1

j�1
xijβj, τ

2)Pg(dβ0dτ2)
P1,…,PG

∣∣∣∣∣υ, μg ,G0 ∼ DGDP(υ, μg ,G0)
G0(β0, τ2)∣∣∣∣m0, κ20, τa, τb � N(m0, κ20) × Gamma(τa, τb)

f(μg) � zgη

υ|aυ, bυ ∼ Gamma(aυ, bυ)

for g � 1,…,G. The parameter μ is linked through a function f (e.g. logit or probit), mapping from (0, 1) into
( −∞,∞), to the linear predictor zgηwhere η is a vector of regression coefficients of appropriate dimension to
which we assign a standard Normal prior:

η ∼ N(ημ,ηΣ)
where ημ and ηΣ denote the prior mean and covariance matrix respectively. We assume independence a priori
between the parameters β0 and τ2, which is reflected in the choice of the base measure G0, defined as the
product of a Normal distribution and a Gamma distribution.

We specify a Spike and Slab prior on each of the p − 1 regression coefficients βj. This prior specification
provides an effective variable selection strategy [7, 15]. We introduce indicator variables ωj:

βj � ωjN(μβ, τ
2
β) + (1 − ωj)δ0(βj) (7)

where p(ωj � 1
∣∣∣∣π) � π is the probability of the slab, i.e. the probability that a covariate is included in themodel,

while 1 − π represents the probability of the spike, i.e. the probability that the regression coefficient corre-
sponding to the jth covariate is equal to 0 and does not affect the response. As before, δ0(βj) is a mass point at
zero, representing the spike of the mixture. μβ represents the prior mean (usually set to 0) of the slab
component and τ2β is the prior precision.

The parameter π is assigned a Beta prior:

π ∼ Beta(πa,πb) (8)

where πa and πb are the hyper-parameters of the Beta distribution (e.g. setting πa � πb � 1 gives a uniform
distribution). Appropriate choices of these hyper-parameter allows us to impose sparsity in the variable
selection.

2.2 Posterior inference

Posterior inference is performed through Markov Chain Monte Carlo (MCMC) methods. A detailed
description of the algorithm is provided in Supplementary Material. We run the MCMC for 30,000
iterations, discarding a burn-in period of 10,000, thinning every five iterations. We specify the following
hyper-parameters: the truncation level of the stick-breaking is set to L � 30. This threshold works well in
our application since the number of non-empty clusters is always below 20. The base measure pa-

rameters are set to m0 � 0, κ20 � 0.1, τa � 0.5, τb � 0.5. The DGDP concentration parameter υ has a
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Gamma prior with aυ � 2 and aυ � 1, with expected value aυ/bυ � 2. The regression coefficient η is
parametrised with prior mean ημ � (0,0,0) and ηΣ � I3. The slab of the regression coefficient βj is a

Normal distribution with prior mean μβ � 0 and prior precision τ2β � 0.1. The prior inclusion probability π
has a Beta prior with parameters πa � πb � 1.

3 Results

We employ the proposed model to analysis data from the SABRE study. The empirical distribution of the
outcome of interest, the Homeostatic Model Assessment insulin resistance (HOMA IR) is shown for the three
ethnic groups in Figure 1. Particularly noticeable is the difference between the distribution of HOMA IR in
Europeans and South-Asians. The South-Asian distribution is slightly shifted to the right and has a heavier
right tail, indicating a higher percentage ofmore insulin resistant individuals. The distribution showsmultiple
local modes, pointing towards the existence of multiple sub-populations in the sample.

3.1 HOMA IR: cluster analysis

Posterior inference for HOMA IR shows evidence of 10 clusters.We use the Binder loss function [16] available in
the R packagemcclust, to estimate the number of clusters in the sample and the clustering allocation based on
the MCMC output. In Figure 2 we show the empirical distribution of the outcome HOMA IR in each of the 10
estimated clusters. The overlap between some of the curves is due to the fact that the clusters are estimated
conditionally to the covariates andmetabolite levels included in the regressionmodel. Table 1 summarises the
ethnic composition of each cluster, while Table 2 provides some basic information in terms of age, smoking
habits, percentage of females and percentage of first generations (i.e. foreign-born) migrants in each cluster. It
is worth noting that clusters 8, 9 and 10, the most insulin resistant clusters, are mostly composed of first
generation migrants. In Table 3 we report the ethnic composition of each cluster based on the sub-region of
origin. The majority of South-Asians come from the Punjabi-Sikh minority, which represents the major South-
Asian component in each cluster, with the exception of cluster 9, where there is a higher percentage of South-
Asians of Muslim origin. To understand which covariates are the most important determinant of the response,
we examine the posterior probability of each regression coefficient to be different from zero,
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Figure 2: Empirical distribution of HOMA IR in each cluster. Black lines denote clusters with a higher proportion of Europeans,
while red lines denote a higher proportion of South-Asians. A description of cluster main characteristics is given in Table 1. The
numbers above each distribution denote the cluster.
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Table : Cluster specific ethnic membership.

Cluster number Europeans South-Asians Africans-Caribbean Total number

    

    

    

    

    

    

    

    

    

    

Table : Mean age, proportion of smoke habits, proportion of females and proportion of first generationmigrants in each cluster.
Sample standard deviations in parentheses.

Cluster number Mean age Ex-smoker Current smoker Females
proportion

First generation

 . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.)

Table : Proportion of Ethnic sub-groups of origin in each cluster (Max per row in underlined).

Cluster
number

Africans
Caribbean

Gujarati
Hindu

Irish Muslim Native
British

Other
Europeans

Other South-
Asians

Punjabi
Hindu

Punjabi
Sikh

 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
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p(ωj � 1
∣∣∣∣rest, data). 10 predictors have the respective p(ωj � 1

∣∣∣∣rest, data) > 0.5 and are considered for further

analysis (Figures 3–5).
Cluster 1 is the largest and least insulin resistant group (n = 1249, 57% of participants). Its ethnic

composition is: 71% of Europeans, 39% of South-Asians and 70% of Africans-Caribbean. The second largest
group is cluster 6, comprising 243 participants (11% of the total, of which, 8% of Europeans, 13% of South-
Asians and 24% of Africans-Caribbean). It is evident the net distinction between clusters with a South-Asian
majority, compared with Europeans, which are all characterised by higher levels of HOMA IR, with the
exception of cluster 4. Cluster 4 is entirely composed of South-Asians. In particular the cluster is characterized
by almost only first-generation migrants, a higher proportion of females (0.33), relative to the other clusters

Figure 3: From top to bottom, boxplots of Acetoacetate, Alanine and Glycine. Black boxplots indicate clusters with a majority of
Europeans, while red boxplots indicate clusters with a majority of South-Asians.
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and a lower proportion of current smokers (0.16), compared with the other cluster containing South-Asians.
Cluster 5 (entirely Europeans) compared with cluster 1, presents both measures of adiposity(subscapular
skinfold and sagittal diameter) aremodestly higher, while levels of the amino acids tyrosine and isoleucine are
significantly higher. Moreover, acetoacetate levels are lower compared to cluster 1, while the levels of alanine
aminotransferase (ALT) in cluster 5 are higher than in cluster 1 (Figure 5), the latter suggesting that raised
HOMA IR levels may be characterised in this cluster by increased insulin levels with reduced clearance of
insulin by the liver [17], implying relatively intact pancreatic beta cell function. The metabolite patterns for
cluster 5 also indicate associations with both central and subcutaneous adiposity and amino acid
perturbations.

Each of the 10 clusters has a distinctive metabolic and phenotypic profile, consistent with suggestions
that there are different pathways to type 2 diabetes [18] and that some pathways may be more strongly
associated with a particular ethnic group. For example clusters 4 and 9 are entirely composed of South-
Asians, while clusters 2, 3 and 5 are entirely Europeans. Of these clusters, 8, 9 and 10 are among the most

Figure 4: From top to bottom, boxplots of Histidine, Isoleucine and Phospholipids in large HDL. Black boxplots indicate clusters
with a majority of Europeans, while red boxplots indicate clusters with a majority of South-Asians.
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insulin resistant with high levels of tyrosine, alanine, ALT and subcutaneous adiposity. Some of the clusters
identified are very small and will need replication in larger studies together with formal pathway analysis.
However, these methods have generated intriguing, novel and persuasive clusters, which highlight the
complexity and potential multiplicity of mechanisms underlying the development of insulin resistance and
type 2 diabetes.

4 Conclusions

This paper proposes the use of a nonparametric random interceptmodel, through the adoption of a Dependent
GDP prior on the intercept coefficient and precision parameter of a linear regression. Alternative nonpara-
metric Bayesian priors, such as the Hierarchical Dirichlet Process [19] or the Probit Srick-breaking Process [20].
The DGDP allows us to analyse multiple groups of patients and provides data-driven clustering of the

Figure 5: From top to bottom, boxplots of Tyrosine, sagittal diameter and Alanine Aminotransferase. Black boxplots indicate
clusters with a majority of Europeans, while red boxplots indicate clusters with a majority of South-Asians.
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observations thanks to the Bayesian nonparametric prior. The random probability measures share the same
sets of atoms, but the weights associated to each atoms differ (slightly or abruptly) across measures Pg, i.e.
across groups. This construction is extremely flexible as it covers a large class of distributions. Moreover,
varying weights can provide probability measures which can be remarkably close (when weights are similar),
as well as probability measures which are far apart (when the weights are dissimilar). See, for example,
Hatjispyros et al. [21].

We specify a spike and slab prior on the regression coefficients to effectively performs variable selection on
the covariates, allowing us to understand which variables are more important in predicting the dependent
variable of interest, i.e. HOMA IR. We employ the proposed model to analyse the data from the SABRE cohort
study, a tri-ethnic information rich dataset on cardiovascular and metabolic diseases. Our clinical interest
focuses on modelling the distribution of HOMA IR. We include anthropometric variables and metabolites
concentrations as covariates in the regression framework. The results highlight the presence of sub-
populations in the data, with a multi-ethnic composition, characterised by different levels of HOMA IR, which
can lead to a different risk of developing type 2 diabetes. From the analysis, it is evident that cluster with higher
levels of insulin resistance are composed mainly by the South-Asian ethnicity and, in particular, the more
extreme clusters present a higher proportion of first-generation migrants. The results obtained from our
analysis are promising and the proposed model has the potential to highlight areas for further research.
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