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Abstract

Neuromorphic vision sensing (NVS) devices represent visual information as se-

quences of asynchronous discrete events (a.k.a., ’spikes’) in response to changes

in scene reflectance. Unlike conventional active pixel sensing (APS), NVS allows

for significantly higher event sampling rates at substantially increased energy effi-

ciency and robustness to illumination changes. However, neuromorphic vision sens-

ing comes with two key challenges: (i) the lack of large-scale annotated datasets to

train advanced machine learning frameworks with; (ii) feature representation for

NVS is far behind that of APS-based counterparts, resulting in lower accuracy for

high-level computer vision tasks.

In this thesis, we attempt to bridge these gaps by firstly proposing an NVS em-

ulation framework, termed as PIX2NVS, that converts frames from APS videos to

emulated neuromorphic spike events so that we can generate large annotated NVS

data from existing video frame collections (e.g., UCF101, YouTube-8M, YFCC

100m, etc.) used in machine learning research. We evaluate PIX2NVS with three

proposed distance metrics and test the emulated data on two recognition applica-

tions.

Furthermore, given the sparse and asynchronous nature of NVS, we propose a

compact graph representation for NVS, which allows for end-to-end learning with

graph convolutional neural networks. We couple this with a novel end-to-end fea-

ture learning framework that accommodates both appearance-based and motion-

based tasks. The core of our framework comprises a spatial feature learning mod-

ule, which utilizes our proposed residual-graph CNN (RG-CNN), for end-to-end

learning of appearance-based features directly from graphs. We extend this with
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our proposed Graph2Grid block and temporal feature learning module in order to

efficiently model temporal dependencies over multiple graphs and allow for long

temporal extent. We show that performance of this framework generalizes to object

classification, action recognition, action similarity labeling and scene recognition,

with state-of-the-art results. Importantly, our framework preserves the spatial and

temporal coherence of spike events, while requiring less computation and memory.

Finally, to address the absence of large real-world NVS datasets for complex

recognition tasks, we introduce, evaluate and make available a 100k dataset of NVS

recordings of the American Sign Language letters (ASL-DVS) acquired with an ini-

Labs DAVIS240c device under real-world conditions, as well as three neuromorphic

human action dataset (UCF101-DVS, HMDB51-DVS and ASLAN-DVS) and one

scene recognition dataset (YUPENN-DVS) recorded by the DAVIS240c capturing

their screen playback reflectance.



Impact Statement

This PhD thesis is directly related to an EPSRC project, The Internet of Sili-

con Retinas (IoSiRe, EP/P02243X/1). The work of Chapter 3 of this thesis had

contributed to research developments of neuromorphic community. Namely, we

proposed an NVS emulation framework, named as PIX2NVS, that can convert

frames from APS videos to neuromorphic spike events. Therefore, PIX2NVS can

efficiently address the need for larger and more diverse datasets in the neuromor-

phic neuromorphic community: researchers can leverage PIX2NVS to generate

large annotated NVS data for their own academic research.

In addition, in Chapter 4 we proposed a graph based representation for neuro-

morphic events to keep their sparse and asynchronous nature, and we post-process

the graph by using graph convolutional networks. This is the first time to process

neuromorphic events as graphs via graph convolutional neural networks. Our results

from the proposed models in Chapter 4 and Chapter 5 outperform traditional CNNs,

setting the new benchmark, while require less computation and memory. Therefore,

we provide an important direction of applying graph CNNs to event-based cameras

to explore for the neuromorphic community.

Moreover, we address the lack of NVS data for training and inferencing com-

plex recognition tasks by introducing a 100k dataset of NVS recordings of the

American Sign Language letters under real-world conditions, as well as three hu-

man action datasets and one scene recognition dataset recorded by a NVS camera

capturing their screen playback reflectance. To the best of our knowledge, they are

the largest datasets in NVS community. All of these datasets are available and free

to download for the research community, and these datasets can advance the field

of neuromorphic signal processing and machine learning.



Acknowledgements

This thesis benefits tremendously from many people.

First and foremost, I would like to express my sincere thanks to my advisor

Prof. Yiannis Andreopoulos. During the work with him, I am deeply inspired by his

passion on exploring new domain, his vision and ability in dealing with challenging

problems, his profound knowledge and respectful personality. In the constant dis-

cussion with him, he offered me a lot of valuable guidance and suggestion, which

greatly contributed to my research. I highly appreciate his persistent support and

generous encouragement. It is my great honour to work with him.

I would also like to express special thanks to my colleagues, Dr. Aaron

Chadha, Dr. Alhabib Abbas and Dr. Eirina Bourtsoulatze. I am truly expressed

with their concentration on work, rigorous academic attitude, enthusiasm and kind-

ness. In the cooperation with them, they always gave me constructive feedback

and insightful comments. I really owe many thanks to them for their constant and

selfless assistance. It is a great pleasure to have frequent informal discussion with

them.

I would like to extend my gratitude to the dissertation committee members: Dr.

Toni Laura and Dr. Nishanth Sastry for their time and energy spent on the review of

my thesis. I am very grateful for the research opportunity and environment provided

by the Communications and Information Systems Group (CISG) in Dept. of EEE. I

also want to express my sincere gratitude to UCL for awarding me the scholarship

to support my PhD study.

Last but not least, I would express my deepest thanks to my parents. Their

unconditional support and love is the biggest comfort in my study.



Contents

1 Introduction 16

1.1 Neuromorphic Vision Sensing (NVS) . . . . . . . . . . . . . . . . 16

1.1.1 Neuromorphic Vision Sensor . . . . . . . . . . . . . . . . . 16

1.1.2 Advantages of Neuromorphic Vision Sensor . . . . . . . . . 19

1.1.3 Applications of Neuromorphic Vision Sensing . . . . . . . 20

1.2 Challenges and Contribution . . . . . . . . . . . . . . . . . . . . . 27

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Literature Review 32

2.1 Feature extraction for NVS streams . . . . . . . . . . . . . . . . . 32

2.1.1 Handcrafted feature descriptors . . . . . . . . . . . . . . . 32

2.1.2 Frame-based feature leaning for NVS streams . . . . . . . . 37

2.1.3 Event-based feature leaning for NVS streams . . . . . . . . 41

2.2 Graph-based Deep Learning . . . . . . . . . . . . . . . . . . . . . 45

3 PIX2NVS: Parameterized Conversion of Pixel-domain Video Frames to

Neuromorphic Vision Streams 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 PIX2NVS Framework . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Converting Pixels to Intensity . . . . . . . . . . . . . . . . 52

3.2.2 Spike Event Generation . . . . . . . . . . . . . . . . . . . 54

3.2.3 Reference Frame Update . . . . . . . . . . . . . . . . . . . 55

3.3 Distance Metrics to evaluate PIX2NVS . . . . . . . . . . . . . . . 56



Contents 8

3.3.1 Chamfer Distance . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Epsilon Repeatability . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Earth Mover’s Distance (EMD) . . . . . . . . . . . . . . . 57

3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Experimental Emulation and Metrics Validation . . . . . . . . . . . 60

3.4.1 Emulation of PIX2NVS . . . . . . . . . . . . . . . . . . . 60

3.4.2 Effectiveness of Proposed Metrics . . . . . . . . . . . . . . 60

3.4.3 Parameter Optimization with Random Search . . . . . . . . 62

3.5 Evaluating the effectiveness of Emulated NVS Data Streams . . . . 64

3.5.1 Human Action Recognition . . . . . . . . . . . . . . . . . 64

3.5.2 American Sign Language Recognition . . . . . . . . . . . . 69

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Graph-based Object Classification for Neuromorphic Vision Sensing 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Non-uniform Sampling & Graph Construction . . . . . . . 78

4.2.2 Graph Convolution . . . . . . . . . . . . . . . . . . . . . . 79

4.2.3 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.4 Fully Connected Layer . . . . . . . . . . . . . . . . . . . . 84

4.2.5 Residual Graph CNNs . . . . . . . . . . . . . . . . . . . . 84

4.3 Proposed American Sign Language Dataset . . . . . . . . . . . . . 85

4.3.1 Existing Neuromorphic Datasets . . . . . . . . . . . . . . . 85

4.3.2 Description of ASL-DVS . . . . . . . . . . . . . . . . . . . 85

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Parameters Searching w.r.t. Performance and Complexity . . 87

4.4.2 Comparison to the State-of-the-Art . . . . . . . . . . . . . 91

4.4.3 Comparison to Other Graph Convolution . . . . . . . . . . 94

4.4.4 Comparison to Deep CNNs . . . . . . . . . . . . . . . . . 96

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



Contents 9

5 Spatio-Temporal Feature Learning for Neuromorphic Vision Sensing 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Sampling and Graphs Construction . . . . . . . . . . . . . 102

5.2.2 Spatial Feature Learning Module . . . . . . . . . . . . . . . 104

5.2.3 Graph2Grid: From Graphs to Grid Snippet . . . . . . . . . 105

5.2.4 Temporal Feature Learning Module . . . . . . . . . . . . . 106

5.3 Three Applications of Spatial-Temporal Feature Learning . . . . . . 107

5.3.1 Human Action Recognition . . . . . . . . . . . . . . . . . 107

5.3.2 Action Similarity Labeling . . . . . . . . . . . . . . . . . . 114

5.3.3 Scene Recognition . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Concluding Remarks 119

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Appendices 124

A Reference Networks for Object Classification 124

B Reference Networks for Spatial Temporal Feature Learning 128

C Datasets and Code for Algorithm Implementation 132

Bibliography 133



List of Figures

1.1 NVS pixel architecture and the principle of operation. Left: each

pixel of sensor consists of a logarithmic photoreceptor, a differenc-

ing circuit, and two comparators. Right: illustration of operation of

differencing circuit and comparators. Figure is repreduced from [1]. 17

1.2 (a) Scene captured by APS sensor: all pixel intensities is captured at

a fixed frame rate. (b) Scene captured by NVS sensor: only the pixel

intensity change is asychrounously captured. Figure is repreduced

from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Illustration of PIX2NVS framework: videos are firstly extracted as

frames by FFmpeg library, then proposed by LICE module detailed

in Section 3.2.1 and Diff module detailed in Section 3.2.2. Gener-

ate Events module also is illustrated in Section 3.2.2 and reference

update is in Section 3.2.3. . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Experimental NVS events (top) and model-generated ones (bot-

tom). Green/Red points: Trigger ON/OFF. . . . . . . . . . . . . . . 61

3.3 Comparison of PIX2NVS conversion against the spike events

recorded with a DAVIS camera. Green/red points correspond to

+1/-1 (or ON/OFF) spike polarity. Best viewed in color. . . . . . . . 63

3.4 Extracted frame from PIX2NVS for an archery video from UCF-

101; (a) RGB frame; (b) NVS frame (native resolution); (c) NVS

frame (downsampled by 8). The pseudo-color in (c) corresponds to

the continuous range generated after downsampling. . . . . . . . . . 65



List of Figures 11

3.5 Signs for letters A-Z from the American Sign Language (ASL).

Some letters such as M and N only have subtle differences. Let-

ters J and Z are not static signs and require motion. . . . . . . . . . 71

3.6 Example of standardized 3-frame inputs to VGG16 for letters R (top

row) and X (bottom row): (a) Real NVS after 2× 2 median filter;

(b) Emulated NVS; (c) APS (grayscale) . . . . . . . . . . . . . . . 71

4.1 Examples of objects captured by APS and neuromorphic vision sen-

sors. Left: Conventional APS image. Right: Events stream from

NVS sensor (Red:ON, Blue:OFF). . . . . . . . . . . . . . . . . . . 76

4.2 Framework of graph-based object classification for neuromorphic

vision sensing, indluding non-uniform sampling, graph constrnc-

tion and residual-graph CNNs. . . . . . . . . . . . . . . . . . . . . 78

4.3 Quadratic B-spline basis functions (reproduced from [3]): for ker-

nel dimensionality, The heights of the red dots represent trainable

parameters, which are multiplied by the elements of the B-spline

tensor product basis. . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Illustration of graph pooling operation. . . . . . . . . . . . . . . . . 83

4.5 Examples of the ASL-DVS dataset (the visualizations correspond to

letters A-Y, excluding J, since letters J and Z involve motion rather

than static shape). Events are grouped to image form for visualiza-

tion (Red/Blue: ON/OFF events). . . . . . . . . . . . . . . . . . . . 86

4.6 Comparison of proposed NVS dataset w.r.t. the number of class and

the number of total size. . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Examples of archery action captured by APS and NVS devices.

APS devices capture images at fixed frame rates, while NVS de-

vices output a stream of events. (Red:ON, Blue:OFF) . . . . . . . . 100



List of Figures 12

5.2 Framework of graph-based action recognition for neuromorphic vi-

sion sensing. Our framework is able to accommodate both ob-

ject classification and action recognition tasks. We first construct

S graphs from the event stream (where S = 1 for object classifica-

tion), and each graph is passed through a spatial feature learning

module, comprising graph convolutional and pooling layers. For

object classification, the output of this module is mapped to object

classes directly by fully connected layers. For action recognition,

action similarity labeling and scene recognition, we model coarse

temporal dependencies over multiple graphs by converting to a grid

representation via the Graph2Grid module and perform temporal

feature learning with a conventional 3D CNN, before mapping fea-

tures to action classes with fully connected layers. . . . . . . . . . . 103

5.3 Visualization of samples from DVS128 Gesture Dataset and

UCF101-DVS. (A) DVS128 Gesture Dataset: A-1: hand clap;

A-2: right hand rotation clockwise; A-3: air drums; A-4: forearm

roll. (B) UCF101-DVS: B-1: basketball dunk; B-2: bowling; B-3:

wall pushups; B-4: biking . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Action similarity labeling result. ROC curves of proposed and ref-

erence networks evaluated on ASLAN-DVS. . . . . . . . . . . . . . 116

A.1 The overall schema of the Inception v4 network and the stem that

is the input part of network. This figure is reproduced from [4] . . . 125

A.2 The schema for 35×35 grid modules, 17×17 grid modules, 35×35

to 17× 17 and 17× 17 to 8× 8 reduction module and 8× 8 grid

modules. Figures are reproduced from [4] . . . . . . . . . . . . . . 126

A.3 A residual “bottleneck” building block, reproduced from [5] . . . . 126

B.1 The Inflated Inception-V1 architecture (left) and its detailed incep-

tion submodule (right), reproduced from [6] . . . . . . . . . . . . . 129



List of Figures 13

B.2 Block of ResNext: x3 and F are the kernel size and the number of

feature maps, respectively; group is the number of groups of group

convolutions, which divide the feature maps into small groups, re-

produced from [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . 131



List of Tables

3.1 Table of emulation parameters. . . . . . . . . . . . . . . . . . . . . 52

3.2 Average Chamfer distance, ε-repeatability (ε = 2.5) and Earth

Mover’s Distance w.r.t. spatial downsampling (SD), temporal

downsampling (TD) and additive noise (AN) from samples in lab

tests with DAVIS240C and the Mueggler et al. dataset [8]. . . . . . 62

3.3 Inverted ε-repeatability (i.e., 1 minus the ε-repeatability score, with

ε = 3.5), Chamfer distance (with λ =
√

3), EMD and weighted dis-

tance score (smaller is better) between UCF-50 real and emulated

spikes, w.r.t. different PIX2NVS options. . . . . . . . . . . . . . . 63

3.4 Recognition accuracy on UCF-50 between training and testing with

real and emulated NVS frames. . . . . . . . . . . . . . . . . . . . . 69

3.5 Recognition accuracy on sign language dataset when training on

grayscale and emulated NVS frames and and testing on real NVS

frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Top-1 accuracy and complexity (GFLOPs) w.r.t. event sample size,

parameterized by k. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Top-1 accuracy and complexity (GFLOPs) w.r.t. radius distance . . 89

4.3 Top-1 accuracy and complexity (GFLOPs) w.r.t. the length of ex-

tracted events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Top-1 accuracy, complexity (GFLOPs) and size (MB) of networks

w.r.t. depth of convolution layer. . . . . . . . . . . . . . . . . . . . 90

4.5 Top-1 accuracy and size (MB) of networks w.r.t. kernel size . . . . . 91



List of Tables 15

4.6 Accuracy/GFLOPs of networks w.r.t. input size on N-Caltech101,

for conventional deep CNNs with event image inputs. . . . . . . . . 91

4.7 Top-1 acccuracy of our CNNs w.r.t. the state of the art & other

graph convolution networks. . . . . . . . . . . . . . . . . . . . . . 93

4.8 Top-1 acccuracy of our CNNs w.r.t. the state of the art & other

graph convolution networks. . . . . . . . . . . . . . . . . . . . . . 95

4.9 Top-1 acccuracy of our graph CNNs with graph input w.r.t. CNNs

with image form input. . . . . . . . . . . . . . . . . . . . . . . . . 97

4.10 Complexity (GFLOPs) and size (MB) of networks. . . . . . . . . . 98

5.1 Top-1 classification accuracy of DVS128 Gesture Dataset. . . . . . 113

5.2 Top-1 classification accuracy of UCF101-DVS and HMDB51-DVS

w.r.t. various model. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Comparison of networks w.r.t. complexity (GFLOPs) and size

(MB) of networks. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 12 equations used for similarity computation . . . . . . . . . . . . . 116

5.5 Action similarity labeling result on ASLAN-DVS w.r.t. various model117

5.6 Top-1 average recognition accuracy and variance of YUPENN-

DVS w.r.t. various model . . . . . . . . . . . . . . . . . . . . . . . 118

A.1 Architectures for ResNet 50. Building blocks are shown in brackets

with the numbers of blocks stacked. Downsampling is performed

by conv3 1, conv4 1, and conv5 1 with a stride of 2. . . . . . . . . 127

B.1 Architectures for 3D ResNet with 34 layers. Building blocks are

shown in brackets with the numbers of blocks stacked. Downsam-

pling is performed by conv3 1, conv4 1, and conv5 1 with a stride

of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



Chapter 1

Introduction

1.1 Neuromorphic Vision Sensing (NVS)

1.1.1 Neuromorphic Vision Sensor

Conventional active pixel sensing (APS) comprises frame-based vision sensing,

which consists of a 2D array of synchronous pixels capturing light intensity at a

fixed time interval, corresponding to the frame capture rate. However, APS-based

sensing representations are known to be cumbersome for machine learning systems,

due to: limited frame rate, too much redundancy between successive frames; cal-

ibration problems under irregular camera motion; blurriness due to shutter adjust-

ment under varying illumination; and very high power requirements [9]. In biology,

it is known that the mammalian retina converts raw light into electrical spikes in pro-

portion to the relative change in light intensity over time or space; then the spikes

are transmitted to the brain to stimulate high level perception and reaction. This

process extracts all the essential feature of visual scenes rapidly and reliably even

under dynamic lighting conditions, and is known to be extremely energy-efficient

and bandwidth-efficient [10, 11]. Motivated by the biological vision systems that

outperform conventional vision sensor in almost every aspect, the neuromorphic

hardware community is developing a range of new sensing sensors that imitate the

behaviour of biological retina and subsequent vision processing, collectively termed

in this thesis as neuromorphic vision sensing (NVS).

The main principle behind the operation of neuromorphic vision sensing is il-
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Figure 1.1: NVS pixel architecture and the principle of operation. Left: each pixel of sen-
sor consists of a logarithmic photoreceptor, a differencing circuit, and two com-
parators. Right: illustration of operation of differencing circuit and compara-
tors. Figure is repreduced from [1].

lustrated in the Fig. 1.1. As to the principle of operation, the events are computed

asynchronously by each NVS pixel as illustrated. The continuous-time photore-

ceptor output, which encodes intensity logarithmically, is monitored for changes

since the last event was emitted by the pixel. A detected change in log intensity,

which crosses a threshold value, results in the emission of an ON or OFF event,

e.g., the threshold for dynamic vision sensor (DVS) is typically set to about 10%

contrast [1]. Communication of the event to the periphery resets the pixel, which

causes the pixel to memorize the new log intensity value.

NVS sensor is a temporal difference device, each pixel only outputs events in

response to the change of illumination [12]. Given a static scene where illumina-

tion intensity is constant over a period time, these pixels will not output any events.

The output events are dependent on the activity of the scene. That is, when the

logarithm of the intensity value of a CMOS sensor grid position changes, then a

spike event is generated. Each pixel output events in the Address Event Representa-

tion (AER) protocol, a standard interfacing protocol for neuromorphic engineering,

which contains the physical address of the pixel in the array, and generates a single

bit to indicate whether the illumination on the pixel is increased or decreased. The

following notation is commonly used to represent an event emitted by a pixel:

{ei}N = {xi,yi, ti, pi}N (1.1)
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Figure 1.2: (a) Scene captured by APS sensor: all pixel intensities is captured at a fixed
frame rate. (b) Scene captured by NVS sensor: only the pixel intensity change
is asychrounously captured. Figure is repreduced from [2].

where N is the number of total events in a scene and i is the index of these events.

The event ei indicates that the pixel located at the address (xi,yi) on the camera

sensor generates an event at time ti. with the polarity of the change in illumination

encoded as pi ∈ (−1,1). Polarity pi = 1 is referred to as an ON event, representing

the increase in illumination, while pi = −1 correspondingly an OFF event, rep-

resenting the decrease in illumination occurred. In the Fig.1.2, we show the same

scene captured by the APS and NVS camera. In contrast, an APS device captures all

pixel intensities at a fixed frame rate. Therefore, it captures a clear shape of station-

ary object (red ball) and a blurred shape of a fast moving object (blue ball); while

for NVS sensor, it only captures an asynchronous sequence of intensity changes

caused by the fast moving blue ball while information of stationary objects (red ball

and background) will not be recorded.

Several variants of neuromorphic vision sensors are in production today and

can be used as prototypes for actual experiments. One of them is Dynamic Vi-

sion Sensor (DVS) from iniVation 1. DVS has 128× 128 resolution, 120 dB dy-

namic range and 15 microsecond latency, and communicates with a host com-

puter using USB 2.0 [1]. More recently, Brandli developed the dynamic and ac-

tive pixel vision sensor (DAVIS) [13] that can capture both events and synchronous

1iniVation web: https://inivation.com/ (accessed in Feb. 2020)
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greyscale frames. The DAVIS240C camera has 240× 180 resolution, 130 dB dy-

namic range (55dB for greyscale frames) and communicates with a host computer

using USB 2.0. To design event-based visual-inertial methods, DAVIS240c is em-

bedded a time-synchronised inertial measurement unit (IMU) on board that pro-

vides accelerometer and magnetometer data. Recently, several DVS devices have

been proposed by further lowering power consumption, minimum temporal contrast

sensitivity and fixed pattern noise level [14–16]. Another type of neuromorphic vi-

sion sensor is the Asynchronous Time-based Image Sensor (ATIS) camera [17],

which provides absolute intensity values along with events. ATIS combines the

DVS temporal contrast pixel with a new time-based intensity measurement pixel.

Scene intensity change at each pixel causes three consecutive events: the first one

event encodes the polarity as the DVS pixel does, the other two encode an absolute

greyscale value in the inter-event time interval. The main progresses of ATIS, com-

pared to DVS, are its higher resolution (304×240), higher dynamic range (143 dB)

and lower latency (3 us). Recently, colour dynamic and active-pixel vision sensors

have been proposed [18, 19], which can capture spatial details with color and track

movements with high temporal resolution while keeping the data output sparse and

fast.

1.1.2 Advantages of Neuromorphic Vision Sensor

Unlike conventional frame-based cameras that tend to blur the image due to slow

shutter speed, silicon retinas capture the illumination changes caused by fast object

motion. Remarkably, neuromorphic sensors achieve this with: (i) microsecond-

level latency; (ii) low power requirements, e.g., 10mW versus 1–4W for APS-

based video cameras; (iii) robustness to uncontrolled lighting conditions, as no syn-

chronous global shutter is used [20, 21]. In practice, this means that neuromorphic

vision sensing (NVS) data from hardware, like the iniLabs DAVIS240c and the Pix-

ium Vision ATIS cameras, can be rendered to representations comprising up to 2000

frames-per-second (fps). On the other hand, a typical APS video camera only cap-

tures (up to) 60 fps at more than 100 times the active power consumption and with

shutter induced blurriness when rapid illumination changes take place. Therefore,
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the neuromorphic vision sensor will be a good alternative to the conventional APS.

As to advantages of Asynchronous Event-based Vision, as the above descrip-

tion of DVS output, neuromorphic vision sensor provides a revolutionary way for

visual acquisition. It changes the way of how visual data is acquired, transmitted,

encoded and processed. The advantages of event based acquisition over conven-

tional frame-based imagers lie in following aspects [12, 20, 21]: (i) Event based

acquisition is redundancy free: the output from neuromorphic vision sensor com-

pressed data in the form of events responding to illuminance changes, only the dy-

namic information stimulated by a moving object or by the change of light intensity

is recorded. (ii) Event based acquisition is asynchronous: each pixel can trigger an

event independently from others once light intensity change is perceived. No global

clock is used, unlike conventional frame intensity cameras that are sampled by a

fixed interval. The timing of DVS events can be conveyed with a minimum tempo-

ral resolution of 1 us. Thus, the ‘effective frame rate’ is typically of several kHz.

(iii) Event based acquisition has large dynamic range: DVS has dynamic range of

120dB. A large dynamic range is essential for neuromorphic vision sensor working

in different environments both indoors and outdoors. When conventional cameras

encounter over- or under-exposure problems, DVS reacts correctly with the light

intensity of the scene, untouched by its extreme light conditions. Other advantages

of event-based acquisition include low latency thanks to the AER protocol. Low la-

tency is especially suitable for robotic applications that require high-speed sensory

motor coupling. DVS achieves also a very low power consumption of only 23mW.

1.1.3 Applications of Neuromorphic Vision Sensing

As neuromorphic vision sensing has the advantages such as low power comsump-

tion, low latency, and sparse and asynchoronous nature, it is much more suitable

for developing real-time and efficient vision tasks for mobile devices. There exists

many applications with the advance of the NVS devices, and the dominant applica-

tions include visual tracking, detection and recognition, reconstruction, localisation

and mapping, and estimating motion of objects. In the following section, we will

briefly describe the current work about these applications.
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Object visual tracking: Visual tracking aims to locate a moving object over

time and finds a number of applications in computer vision field including video

surveillance, robotics, human-computer interface and vehicle navigation. NVS de-

vices are extremely adaptable to object tracking because of its spatial temporal en-

coding of movement. To simplify the problem, initial work focus on event camera

motion tracking with artificially pre-created or known scenes. For example, a parti-

cle filter based tracking algorithm was proposed by Weikersdorfer and Conradt [22].

This system tracks relatively slow 3-DoF planar robot motion, and the event-based

sensor observes planar scenes parallel to the plane of motion. Mueggler proposed

an on-board 6-DoF localisation flying robot system equipped with a DVS that is

able to track very rapid motion such as flips of a quad-rotor [23] . In this system, a

black and white line-based known target is required and the current 3D position and

orientation is estimated by minimising the point-to-line projection error. Recently,

Gallego proposed a more general 6-DoF motion tracking algorithm, which is able to

tracking fast motions in realistic and natural scenes with a single event camera [24].

To bridge the gap that NVS cameras do not capture synchronous reference

information (i.e. reference image frames or 2D/3D maps), Censi combined a NVS

camera with a standard grey-scale camera to estimate the small relative motion from

the previous frame of a standard camera for every incoming event [25]. However,

this method is subject to high latency, motion blur and low dynamic range because

of their reliance on a standard camera, thus discarding the advantages of using NVS

cameras and introducing extra complications including synchronisation and calibra-

tion problems.

As described in Section 1.1.1, DAVIS240c is embedded an IMU unit that has

a high potential for the complementary nature of event and inertial data. Therefore,

Yuan included the IMU of the DAVIS camera to keep the camera upright in order

to support their vertical line-based tracking [26] . Zhu fused a purely event-based

tracking algorithm with an IMU, to provide accurate metric tracking of a camera’s

full 6-DoF pose [27]. Recently, Rebecq also proposed an accurate key frame-based,

tightly-coupled visual-inertial odometry algorithm based on nonlinear optimisation,
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showing their system works well even in challenging conditions by fully utilising

the NVS cameras’ outstanding properties [28]. Recently, Renner proposed a fully

event-driven vision and processing system for selective attention and tracking [29].

This application is realized on a neuromorphic processor Loihi [30] interfaced to

an event-based Dynamic Vision Sensor DAVIS, where attention mechanism is real-

ized as a recurrent spiking neural network. This attention mechanism is created by

configuring a population of neurons with a winner-take-all connectivity of dynamic

neural fields, which creates sustained activation that supports object tracking.

Detection and Recognition: NVS cameras only capture the motion and repre-

sent it sparsely as a stream of events, which are naturally encoding spatio-temporal

motion information; therefore, they are extremely adaptable to detection and recog-

nition tasks as the background information is already subtracted on the sensor. A

joint project between ETHZ and Samsung conducted a human gesture recognition

interface based on a stereo pair of DVS cameras. The motion trajectory of a moving

hand is detected spatio-temporally by the output events of DVS cameras. Neuro-

morphic approach is used to track correlated events and the stereo vision is used to

strengthen robustness. Finally, gesture patterns are classified by applying a hidden

Markov model (HMM) based method [31]. Recently, researchers from IBM Re-

search developed a low power, fully event-based gesture recognition system [32].

This work implements deep convolutional neural networks end-to-end on event-

based neuro-synaptic processor TrueNorth to recognize hand gestures in real-time.

Most methods follow the principle that feature descriptors are firstly extracted

from NVS data streams and then a classifier is applied for the recognition. Ex-

amples are time-surfaces feature (e.g., HFirst [33], HOTS [34] and HATS [35]),

a time oriented approach to extract spatio-temporal features that are dependent on

the direction and speed of motion of the objects. Ramesh introduced a generic vi-

sual descriptor, termed as distribution aware retinal transform (DART), that encodes

the structural context using log-polar grids for event cameras [36]. Importantly,

DART represents a significant step forward in computing a structural descriptor for

event-based data and can be used in four applications including object classifica-
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tion, tracking, detection and feature matching. Apart form descriptors, there are

end-to-end methods for detection and recognition. They are neither pair an event

stream with standard frame-based deep convolutional neural network (CNN) or re-

cursive architectures [37–40] or use spike neural network (SNN) to directly learn

patterns [41–44]. All of these methods progress the development of recognition

method for neuromorphic events.

As to detection, a limited number of work addresses object detection. Liu

et al. focused on combining a frame-based CNN detector to facilitate the event-

based module [45]. It is true that using deep neural networks for event-based object

detection may achieve good performance with lots of training data and computing

power, but they go against the idea of low-latency, low-power event-based vision.

In contrast, Lenz et al. presented a practical event-based approach to face detection

by looking for pairs of blinking eyes [46]. While this is applicable to human faces in

the presence of activity, it is not a general purpose for event-based object detection

method in case of different shapes or occluded objects.

3D Reconstruction: It is difficult to realise 3D reconstruction purely based on

a stream of events; therefore researchers used multiple event cameras to tackle this

problem. Carneiro et al. presented a N-camera 3D reconstruction algorithm and ap-

plied it to multi-cameras systems of event-based sensors [47]. By using geometrical

and temporal constraints, this method can achieve highly accurate reconstructions

despite the low spatial resolution of the NVS cameras. Belbachir utilised a special

event-based depth camera, which consists of a pair of bio-inspired dynamic vision

line sensors and creates real-time 3D 360◦ panoramas [48], to realise real-time 3D

panoramic reconstruction of natural scenes with dense vertical resolution and high

dynamic range properties. This system also potentially has a low processing cost

and low power consumption. Matsuda et al. combined a NVS camera with an active

projector to develop a new structured light scanning system called the Motion Con-

trast 3D Laser Scanner (MC3D), achieving high quality 3D object reconstruction

that is better than laser scanners or RGB-D cameras [49]. By replacing a stan-

dard camera with a NVS camera, they managed to avoid performance trade-offs
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in acquisition speed, resolution, and efficiency that traditional APS devices strug-

gle. Recently, Rebecq proposed a more lightweight event-based 3D reconstruction

method, which only requires a single moving event camera and its trajectory pro-

vided by an external pose estimator [50]. In contrast to traditional multi-view sys-

tems that estimate dense 3D structure from a set of known viewpoints by solving

the data association problem, this method estimates semi-dense 3D structure with-

out the need for explicit data association or pixel intensity values, and accumulates

the number of rays from an event pixel for every incoming event, then finds 3D

structure information from it.

Localisation and mapping: Performing localisation and mapping simulta-

neously is a difficult problem, especially when only a stream of NVS events is

available. Therefore, researchers simplify this problem by imposing restrictions on

motion and scenes, or combining an NVS camera with other sensors. For instance,

Weikersdorfer et al. proposed a 2D SLAM method to track a ground robot’s pose

while reconstructing a planar ceiling map with an upward DVS camera [22]. Later,

they proposed an event-based 3D SLAM method with a DVS camera combined with

a RGB-D sensor to overcome the limitations of their previous work [51]. The multi-

camera system is able to produce a stream of sparse events with depth information

by finding pixel correspondences between two sensors through off-line calibration,

which enables the estimation of semi-dense 3D structure of the scene. Similarly,

Kueng et al. developed event-based low latency visual odometry algorithm by util-

ising DAVIS cameras that can capture both events and frames simultaneously [52].

They used image frames to update visual features, and the feature is used for map-

ping by probabilistic depth filtering.

The first event-based 2D and 3D SLAM method was proposed in [53] and [54],

they realised joint estimation of general 6-DoF camera motion, scene intensity and

scene 3D depth from pure event data. Later, Milford et al. presented a simple vi-

sual odometry system by using a DVS camera with loop closure and accumulating

frames from events, to investigate a large scale visual SLAM problem [55]. How-

ever, relying on artificial event frames created by accumulating events within a time
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interval introduces unnecessary bounds on the update rate and latency. To overcome

this problem, Kim proposed a method that performs real-time 3D reconstruction

from a single hand-held event camera with no additional sensing and works in un-

structured scenes where there is no prior knowledge [54]. This method is based on

three decoupled probabilistic filters, each estimating 6-DoF camera motion, scene

logarithmic (log) intensity gradient and scene inverse depth, on which a real-time

graph is built to track and model over an extended local work space.

Estimating Visual Motion: Accurate and fast measurement of motion, also

termed as optical flow, is a necessary requirement for using this flow in vision tasks

such as detecting moving obstacles, visual navigation, acquiring structure from mo-

tion information or motion-based recognition. Currently in spite of the large num-

ber of optical flow algorithms, the majority of these methods resemble the original

formulation of Horn-Schunck method [56] and Lucas-Kanade method [57]. Their

high accuracy requires massive and complex computation and diminishes their us-

ability in real-time applications. For instance, the highest-ranking algorithm on the

Middlebury benchmark [58] takes 11 minutes for two frames. However, the devel-

opment of the asynchronous NVS devices make it possible to propose promising

new approaches to visual signal processing.

As described in Section 1.1.1, in contrast to conventional image sensors, the

NVS cameras do not produce frames but asynchronous address-events as output.

They indicate positive and negative changes in log intensity at each pixel address,

generating ON and OFF events respectively. This approach has several advantages

and optical flow algorithms operating on the NVS output can benefit from these

characteristics. Frame-based methods suffer the large displacements problem that

occurs in fast motion, while event-based method provides solution to this prob-

lem. For instance, Benosman [59] made use of the high temporal precision of NVS

data by computing gradients on the surface consisting of most recent events. An-

other problem of conventional optical flow methods is motion discontinuities at

object boundaries, where at least two distinct motions overlap, while in event-based

datasets, they do not have motion discontinuities, because the motion is generated
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by camera rotation. In case of NVS cameras, contrast edges at motion discontinu-

ities would generate events exactly at the discontinuities where Barranco [60] ex-

tract the location and motion of contours. Furthermore, they combined NVS events

with intensity frames to reduce computational cost and increase performance and

stability. Barranco [61] developed a phase-based method to improve estimation in

textured regions. Brosch [62] provided a comprehensive analysis of event-based

visual motion estimation. Recently, they suggested an event-based flow computa-

tion method using biologically inspired filter-banks that detect the orientation of

an edge. Orchard and Etienne-Cummings proposed a spiking neural network ar-

chitecture, which uses synaptic delay to create receptive field that is sensitive to

motion [63]. All these developments are indicative of the potential to resolve major

problems of conventional frame-based flow estimation by using NVS devices.

Related Demonstrations: Here we review some interesting demos imple-

mented by using NVS devices. The following demos were conducted at Neuro-

informatics Institute of ETHZ, Switzerland, where a series of NVS cameras were

invented. (i) A ping-pong player has been built to demonstrate the sensor’s high dy-

namic characteristics and the potential of coupling NVS cameras with high-speed

sensory motor systems [64]. In this demo, the robot arm hits the balls immediately

after they have arrived, in which a small latency of 2.8±0.5ms is measured. (ii) A

rod balancing robot is developed for the same demonstration purpose. The robot is

used to stabilize a pencil by applying event based Hough line transform [65]. The

3D locations of the pencil are calculated by using a pair of DVS cameras mounted

on different angles. The lightweight tracking and control algorithms are computed

on an ARM7 microprocessor, which shows the practicability and the advantages

of integrating DVS into embedded platforms with limited resources. (iii) Another

demo is the development of an object fall detector by tracking vertically falling

point clouds, dedicated to elderly people home caring [66].
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1.2 Challenges and Contribution
As described in Section 1.1.2, NVS has many advantages, such as low latency,

low power requirements, robustness to uncontrolled light, high dynamic range, etc.;

therefore, NVS devices and processors have great potential to solve the limitations

that APS devices suffer and replace the APS devices in many applications. How-

ever, when working with neuromorphic vision sensing, there are two challenges: (i)

lack of large annotated datasets; (ii) machine learning algorithms for NVS are infe-

rior to APS-based counterparts. We will illustrate these challenges that motivate our

work in details, and also illustrate our corresponding solutions and contributions in

following sections.

Challenge 1: One crucial issue is that current work in computer vision with

NVS-based hardware focuses on relatively simple datasets like MNIST digit classi-

fication, or basic motion or geometric shape recognition. To the best of our knowl-

edge, there is currently no NVS-based framework for large-scale multi-class human

action recognition problems corresponding to datasets like UCF101 and HMDB.

Therefore it is uncertain whether current algorithms can also perform well in com-

plex scenarios in real world. It is necessary to build new benchmark datasets in

the NVS domain, in order to advance the state-of-the-art in data-driven learnable

NVS-based computer vision systems. In terms of this challenge, we provide two

solutions to solve the lack of large labeled datasets in following.

1. We propose a NVS emulation, termed PIX2NVS, that converts frames from

APS videos to emulated neuromorphic spike events so that we can gener-

ate large annotated NVS data from existing video frame collections (e.g.,

UCF101, YouTube-8M, YFCC 100m, etc.) used in data-driven learnable

computer vision systems. Moreover, we propose three distance metrics to

quantify the accuracy of the model-generated events against ground-truth

event streams streams. These distance metrics can also be used to search

for better parameter settings for PIX2NVS. Finally, we evaluate the efficacy

of emulated NVS datasets by elaborating on the training and testing aspects

for two separate applications human action recognition and sign language
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recognition. Our results show that training with emulated spike events leads

to marginal loss of accuracy for both applications.

2. We address the lack of NVS data for training and inferencing complex recog-

nition tasks by introducing a 100k dataset of NVS recordings of the American

Sign Language letters (ASL-DVS) acquired with an iniLabs DAVIS240c de-

vice under real-world conditions, as well as three neuromorphic human action

datasets (UCF101-DVS, HMDB51-DVS and ASLAN-DVS) and one scene

recognition dataset (YUPENN-DVS) recorded by the DAVIS240c capturing

their screen playback reflectance. To our best of knowledge, they are amongst

the largest dataset in NVS community. All of these datasets are available to

the research community.

Challenge 2: Even though NVS devices have many advantages, designing al-

gorithms that respond to asynchronous, sparse, yet accurately timed information is

still not typical in computer vision. Crucially, the output of NVS device is fun-

damentally different from the frame-based data that is captured at a fixed global

sampling rate. The image processing community is accustomed to processing im-

ages by looping over the entire image pixels with one frame as a basic processing

unit. In the case of NVS, the major challenge is that an event should be the basic

processing unit with its timestamp information encapsulating the most crucial in-

formation. Therefore, current algorithms for conventional computer vision cannot

be directly applied to NVS data, and new ways of processing are needed for such

data streams. In terms of this challenge, we provide two solutions to address the

problems in NVS data representation and processing in following.

1. We propose a graph based representation for neuromorphic events, allowing

for fast end-to-end graph based training and inference. We design a new

graph-based spatial feature learning module, and we evaluate performance

of this module on object classification. Our results show that this approach

requires less computation and memory in comparison to conventional CNNs,

while achieving superior results to the state-of-the-art in various datasets.



1.2. Challenges and Contribution 29

2. We extend our spatial feature learning module to spatial-temporal feature

learning module with our Graph2Grid block and temporal feature learning

module for efficiently modelling coarse temporal dependencies over multiple

graphs. We evaluate performance of the learning framework on action recog-

nition, action similarity labeling and scene recognition. Results show that our

framework sets the new benchmark in all tasks.

Although we provide potential solutions to the existing challenges, there are

some shortcomings of our proposed methods. As to the PIX2NVS, the timestamp

of generated events are largely restricted by the frame of rate of video collections

and generated events are much cleaner that my decrease the robustness of developed

algorithms. As to the graph-based feature learning, a key limitation is that graphs

are constructed from a fixed-time window of events, which may not adaptable for

various applications. One potential solution is constructing graph dynamically as

we will discussed in the future wrok.

We will list our research outcomes here. The work completed during this PhD

has resulted in four conference publications. There is also a journal paper submitted

to IEEE transaction on image processing which is under review. We also note that

we only present a part of our PhD work in this thesis, and more is included in our

papers. The following are our publication.

1. Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze, Yiannis An-

dreopoulos, ” Graph-based Spatial-temporal Feature Learning for Neuromor-

phic Vision Sensing[J] ”, IEEE Transactions on Image Processing

2. Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze, Yiannis An-

dreopoulos, ” Graph-Based Object Classification for Neuromorphic Vision

Sensing[C] ”, IEEE International Conference on Computer Vision, 2019

3. Yin Bi, Yiannis Andreopoulos, ” PIX2NVS: Parameterized Conversion of

Pixel-domain Video Frames to Neuromorphic Vision Streams[C] ”, IEEE In-

ternational Conference on Image Processing, 2017
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4. Aaron Chadha, Yin Bi, Alhabib Abbas, Yiannis Andreopoulos, ” Neuromor-

phic Vision Sensing for CNN-based Action Recognition[C] ”, IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, pages 7968-

7972, 2019

5. Martini Maria, Khan Nabeel, Yin Bi, Yiannis Andreopoulos et al., ”Chal-

lenges and Perspectives in Neuromorphic-based Visual IoT Systems and Net-

works.” IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, 2020.

Besides the publications, this thesis led to four public datasets for community

and one open-source software.

1. The largest object classification dataset (ASL-DVS) and three multi-classes

and complex human action datasets (UCF101-DVS, HMDB-DVS and

ASLAN-DVS) are available online23.

2. An open-source simulator PIX2NVS is available online 4.

1.3 Thesis Structure
Here we provide an overview of the remaining chapters of this thesis. Chapter 2

reviews recent work published in the field of feature extraction for neuromorphic

vision sensing streams and graph-based deep learning.

Chapter 3 firstly introduces framework of PIX2NVS. We also propose and

evaluate three distance metrics to quantify the accuracy of the model-generated

events against ground-truth, and describe the method of optimizing the parame-

ter of PIX2NVS with random search. Finally, we test on two applications including

human action recognition and American sign language recognition to evaluate the

effectiveness of emulated NVS data.

Chapter 4 proposes a graph based representation for neuromorphic events to

keep their sparse and asynchronous nature and we couple this representation with
2https://github.com/PIX2NVS/NVS2Graph
3https://github.com/PIX2NVS/NVS FeatureLearning
4https://github.com/PIX2NVS/PIX2NVS
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novel residual graph CNN architectures that efficiently preserve the spatial and tem-

poral coherence of spike events for the object classification. Also, we introduce and

make available our ASL-DVS datasets in this chapter.

Chapter 5 proposes a framework for spatio-temporal feature learning by

extending spatial feature learning framework in Chapter 4 with our proposed

Graph2Grid block and temporal feature learning module for efficiently modelling

temporal dependencies over multiple graphs and a long temporal extent. Then we

accommodate this end-to-end feature learning framework to both appearance-based

and motion-based tasks. Specifically, we apply this model into three different ap-

plications including action recognition, action similarity labeling and scene recog-

nition, and followed by experimental validation.

In the last chapter, we conclude the thesis by briefly summarizing the main

content of this thesis and laying out potential prospects of future event-based re-

search based on the insights we gained from the body of work in this thesis.



Chapter 2

Literature Review

In this chapter, we review recent work published in the field of feature extraction for

neuromorphic vision sensing streams and graph-based deep learning. When review-

ing the feature extraction for neuromorhic vision sensing, we start by describing the

feature descriptors extraction for NVS streams, followed by the end-to-end feature

learning methods. Specifically, we mainly divide end-to-end feature learning meth-

ods into frame-based and event-based methods. As our feature learning framework

is based on graph, therefore we also simply review the development of graph-based

deep learning in this chapter.

2.1 Feature extraction for NVS streams
There are mainly two types of feature representation: handcrafted feature extrac-

tion and end-to-end trainable feature learning in neuromorphic vision sensing area.

Moreover we divide end-to-end trainable feature learning methods into two cate-

gories: frame-based and event-based methods. We will simply review these meth-

ods in the following sections.

2.1.1 Handcrafted feature descriptors

Handcrafted feature descriptors are widely used by neuromorphic vision commu-

nity. Some of the most common descriptors are corner detectors and line/edge ex-

traction [67–70]. Clady proposed a method that relies on the use of space–time

properties of moving edges [67]. Specifically, Corner events are defined as the

spatio-temporal locations, which is constrained by the motion attributes of the edges
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with respect to their spatio-temporal locations using local geometric properties of

visual events. Vasco proposed method that adapts the commonly used Harris corner

detector to the event-based data, since an event-based camera naturally enhances

edges in the scene, which simplifies the detection of corner features [68]. Mug-

gler proposed a method to reduce an event stream to a corner event stream [69].

This method extracts relevant tracking information (corners do not suffer from

the aperture problem) and decreases the event rate for later processing stages,

which can processes event by event with very low latency. Later Muggler lever-

aged the continuous-time representation to perform visual-inertial odometry since

a continuous-time representation of the event camera pose can deal with the high

temporal resolution and asynchronous nature in a principled way [71]. This rep-

resentation allows direct integration of the asynchronous events with micro-second

accuracy and the inertial measurements at high frequency. While these efforts were

promising early attempts for NVS-based object classification, their performance

does not scale well when considering complex datasets.

Inspired by their frame-based counterparts, optical flow methods have been

proposed as feature descriptors for NVS [60–63,72,73]. Barranco compared image

motion estimation with asynchronous event-based cameras to Computer Vision ap-

proaches using as input frame-based video sequences, which takes image motion as

“contour motion” [60]. Algorithm presented that accurate contour motion is esti-

mated from local spatio–temporal information for two camera models: the dynamic

vision sensor (DVS), which asynchronously records temporal changes of the lumi-

nance, and a family of new sensors which combine DVS data with intensity signals.

Later, a new paradigm based on asynchronous event-based data provides an interest-

ing alternative and has shown to provide good estimation at high contrast contours

by estimating motion based on very accurate timing. Inspired by this paradigm,

Barranco presentd a simple method for locating those regions, and a novel phase-

based method for event sensors that estimates more accurately these regions [61].

Brosch commented that a gradient-based motion detection and integration scheme,

using the scheme of Lucas and Kanade, can be utilized to numerically estimate
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second-order spatio-temporal derivatives on a function that represents the temporal

derivative of the luminance distribution. This requires to employ proper numerical

difference schemes which also demonstrates the disadvantage of increased noise

sensitivity [62]. He also pointed out that methods exploiting the local structure of

the cloud of events are more robust in general. However, the goodness of fit depends

on the size of the spatio-temporal neighborhood. if we consider a neighborhood

that is too small then the plane fit may eventually become arbitrary and thus insta-

ble. If the neighborhood is too large then the chances increase that the event cloud

contains structure that is not well approximated by a local plane [62]. Therefore, he

suggested a novel filter that samples the event-cloud along different spatio-temporal

orientations, which relies upon the superposition of space-time separable filters with

out-of-phase temporal modulation filter-responses [62]. For a high-accuracy optical

flow, these methods have very high computational requirements, which diminishes

their usability in real-time applications. In addition, due to the inherent disconti-

nuity and irregular sampling of NVS data, deriving compact optical flow represen-

tations with enough descriptive power for accurate classification and tracking still

remains a challenge [62, 63, 72, 73]. Moreover, these approaches have multiple is-

sues regarding to real implementation. The most important observation is that when

a luminance edge passes a pixel’s receptive field of the DVS sensor, the amount of

events is in the range of about 10 events (often even less), thus huge approximation

errors occur. Another issue is that in many real-time applications temporal windows

are small enough such that the motion edge has not already passed through the re-

ceptive field, which largely limits the number of events to even less and leads to

magnifying the outlined problems [62].

Later, Orchard et al. introduced HFirst descriptors that used spike timing to

encode the strength of events and implemented a max operation to output a number

representing the strength of input [33]. Specifically, HFirst is structured in a similar

manner to hierarchical neural models which consist of four layers named Simple

1, Complex 1, Simple 2 and Complex 2. In these frame base architectures, cells

in simple layers densely cover the scene and respond linearly to their inputs, while
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cells in complex layers have a non-linear response and only sparsely cover the scene.

The Simple layers in HFirst are in fact non-linear due to the use of a spike threshold

and binary spike output.

Lagorce et al. proposed event based spatio-temporal features called time-

surfaces [34]. This is a time oriented approach to extract spatio-temporal features

that are dependent on the direction and speed of motion of the objects. Output

events are firstly built as a time-surface that describes the recent time history of

events in the spatial neighborhood of an event, since the structure of these events

contain information about the object and movement. These time-surfaces are then

clustered into prototypes represented as surfaces. When an input event arrives at a

bank of time-surface prototypes, the time-surface associated to the incoming event

is calculated and compared to the time-surface of each prototype. The prototype

with the time-surface most closely matching the surface of the input event will then

generate an output event, resulting in the activation and constituting the output of

next layer. In this way, such architecture consists in a hierarchy Of time-surfaces

which is building and extracting a set of features (the prototypes from the final layer)

out of a stream of input events. The time-surface prototypes be used as time-surface

features descriptors.

Inspired by time-surfaces, Sironi proposed a higher-order representation for lo-

cal memory time surfaces that emphasizes the importance of using the information

carried by past events to obtain a robust representation [35]. This method introduces

a new event-based scalable machine learning architecture, relying on a low-level

operator called Local Memory Time Surface. A time surface is a spatiotemporal

representation of activities around an event relying on the arrival time of events

from neighboring pixels. However, the direct use of this information is sensitive to

noise and non-idealities of the sensors. By contrast, This method emphasizes the

importance of using the information carried by past events to obtain a robust rep-

resentation. Moreover, This method shows how to efficiently store and access this

past information by defining a new architecture based on local memory units, where

neighboring pixels share the same memory block. In this way, the Local Memory
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Time Surfaces can be efficiently combined into a higher-order representation, which

is called Histograms of Averaged Time Surfaces. This results in an event-based ar-

chitecture which is significantly faster and more accurate than existing time surface

feature descriptors [33, 34]. Driven by brain-like asynchronous event based com-

putations, this new architecture offers the perspective of a new class of machine

learning algorithms that focus the computational effort only on active parts of the

network.

Recently, Ramesh et al. introduced a generic visual descriptor termed as DART

that encodes the structural context using log-polar grids for events [36]. A log-polar

grid that simulates the distribution of cones in the primate fovea is centered at the

latest event and the past events, whose space-time coordinates are marked as a ‘star’,

are binned into nearest spatial locations of the grid. Subsequently, the DART de-

scriptor is formed using the overall interpolated event count within each bin of the

logpolar grid. As the neuromorphic camera responds to changes in log-intensity,

a brighter contrast or a faster motion results in an increased event rate. Thus, nor-

malization of the DART descriptor is critical to capture the relative distribution of

the surrounding events, and to account for camera and object motion, the descriptor

is updated on an event-by-event basis using a queue to capture precise space-time

information. This method presents a significant step forward in computing a struc-

tural descriptor for event-based data, and can be applied to four different problems,

namely object classification, tracking, detection and feature matching.

These descriptors are much sensitive to noise and strongly depend on the type

of object motion in scene. Moreover, these descriptors have only proven to be useful

for static object recognition, and they fail to take temporal information into account

and maintain a representation of dynamics over a long time so that they may not be

useful for long-term application such as action recognition evaluated in this thesis.

However,our proposed work is an end-to-end learning system that is robust to the

noise and motion, also it can cover a long temporal extent so that the extracted

feature can be used for long-term application such as action recogntion and activity

similarity labeling.
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2.1.2 Frame-based feature leaning for NVS streams

Two end-to-end feature learning methods are proposed. The first type is frame-

based methods: the main idea is to construct events to grid frame form, then apply

convolution neural networks for the feature learning. i.e., converting the neuro-

morphic events into synchronous frames of spike events, on which conventional

computer vision techniques can be applied.

Zhu et al. [38] introduced a four-channel image form with the same resolution

as the neuromorphic vision sensor: the first two channels encode the number of

positive and negative events that have occurred at each pixel, while last two chan-

nels as the timestamp of the most recent positive and negative event. This proposed

novel image-based representation of an event stream fits into any standard image-

based neural network architecture. The event stream is summarized by an image

with channels representing the number of events and the latest timestamp at each

polarity at each pixel. This compact representation preserves the spatial relation-

ships between events, while maintaining the most recent temporal information at

each pixel and providing a fixed number of channels for any event stream. More-

over, Authors presented a self-supervised learning method for feature estimation

given only a set of events and the corresponding gray scale images generated from

the same camera. As a result, the network can be trained using only data captured

directly from an event camera.

Inspired by the functioning of Spiking Neural Networks (SNNs) to main-

tain memory of past events, leaky frame integration has been used in recent work

[4, 39, 40], where the corresponding position of the frame is incremented of a fixed

amount when a event occurs at that event address. These methods are to make use of

frame reconstruction procedures and conventional frame-based neural networks that

can instead rely on optimized training procedures. Cannici integrated events into a

volatile frame, a spatial structure to maintain events information through time [39].

Specifically, When an event is received, the corresponding pixel of the integrated

frame is incremented of a fixed amount. Meanwhile the whole frame is decremented

of a quantity that depends on the time elapsed between the last received event and



2.1. Feature extraction for NVS streams 38

the previous one. Similar frame construction procedure is proposed in [74], which

divides the time in constant and predefined intervals. Frames are obtained by setting

each pixel to a binary value (depending on the polarity) if at least an event has been

received within the reconstruction interval. With this mechanism, however, time

resolution is lost and the same importance is given to each event, even if it is noise.

Instead method proposed by Cannici in [39] does not distinguish the polarity of the

events, obtaining frames invariant to the object movement, and performs continu-

ous and incremental integration, characteristics that allowed to develop the event

based framework. Later, Cannici focused on enhancing conventional architectures

by designing attention mechanisms that can be used to make these networks focus

only on relevant instants of events recordings and only on the salient portions of

frames [40]. In this work, Cannici developed an algorithm that detects peaks of

events activity and uses them to extract patches from reconstructed frames. This

approach takes inspiration from the spiking neural network where a peak detection

mechanism is used to decide when to output predictions. Instead of leaky integrate-

and-fire neurons, however, this method makes use of region-wise events statistics to

identify and localize peaks, which can efficiently identify regions of interest from

events while improving the translation invariance properties.

Peng et al. [75] proposed bag-of-events (BOE) feature descriptors, which is a

statistical learning method that firstly divides the event streams into multiple seg-

ments and then relies on joint probability distribution of the consecutive events to

represent feature maps. Inspired by information theory and document analysis, this

proposed method uses the joint probability distribution of the consecutive events to

represent each stimulus. Therefore, BOE does not extract any visual features such

as lines or shapes as many existing methods did, and BOE is a probability-based

feature extraction method that has the advantage of good interpretability in mathe-

matics. Moreover, BOE is an online learning algorithm, which does not require the

whole training data set to be provided in advance. In other words, when the labeled

(i.e., training data) and unlabeled events (i.e., testing data) are alternately received,

BOE can smoothly handle the data and will not repeatedly train the feature extrac-
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tion module. The problem is that BOE requires accumulating events into segments

which does not offer a good solution for high-speed application where tasks are

normally realized in real time.

Amir et al. used temporal filter to process the events, regarded the filter

cascades as stacking frames and input these frames to Convolution Neural Net-

works [32]. Specifically, to capture the sequence information required to following

tasks, a cascade of K delayed temporal filters collects a sequence of events. The

first filter outputs a stream of events delayed by one tick, and creates a second copy

of its input which is passed to the next filter in the cascade. Finally, the output

event streams of all K filters are concatenated to form the input features for the first

convolution layer. The neurons in these filters are configured to generate events

stochastically, using a constant leak to decay the membrane potential linearly with

time. Using a stochastic decay makes the rate of filter output events proportional to

the time since the corresponding event was received at the filter input. These tempo-

ral filter cascades may be compared to stacking frames to create a spatio-temporal

input to CNN.

Similary, Ghosh et al. partitioned events into a three dimensional grid of vox-

els where spatio-temporal filters are used to learn the feature, and learnt feature are

as input to feed to convolution neural networks for action recognition [76]. To make

CNNs work with event-based data, one first needs to structurize the spike-events,

which arrives asynchronously as an ever growing set of three dimensional points.

To convert the spike-event point cloud data obtained from a neuromorphic cam-

era into a structured matrix form, authors proposed to structurizing the spike event

data into a 3D grid of voxels, which form a 3D spatio-temporal matrix, where each

voxel contains the number of spike-events within it. In this case, 3D convolution

based filters can be seamlessly integrated to work with such spatio-temporal data.

In this method, a convolutional kernel normally spans a long temporal constant,

which leads to loss of temporal precision of each spike-event. To reduce this infor-

mation loss, a possible workaround is to increase the number of time partitions by

decreasing the voxel size along the temporal dimension.
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Chadha et al. [77] generated frames by summing the polarity of events in

each address as pixel, then fed them into a multi-modal teacher-student framework,

where it employs a pre-trained optical flow stream as a teacher network to trans-

fer knowledge to the NVS student network. By representing the events as frames,

authors can leverage the conventional CNNs to realize the tasks. Specifically, this

framework takes the advantage of optical flow, which firstly initializes the optical

flow I3D with the Kinetics trained weights and then fine-tuning on the target ac-

tion recognition datasets and then initialize the student NVS CNN with the teacher

weights. We will discuss the drawbacks of this work in the last of this section.

Rebecq et al. established the bridge between vision with event cameras and

conventional computer vision [78]. Specifically, they reconstructed natural videos

from a stream of events (i.e. learn a mapping between a stream of events and a

stream of images), which allows to apply off-the-shelf computer vision techniques

to event cameras. Instead of embedding handcrafted smoothness priors into recon-

struction framework, they directly learn video reconstruction from events using a

large amount of simulated event data, but this method, to some extent, requires

complex computation to form the conventional videos, which loses the advantage

of using event cameras.

Recently, Gehrig [37] proposed a general framework that converts asyn-

chronous event-based data into grid-based representations. Instead of assuming the

input event representation as fixed, this conversion process is fully differentiable, al-

lowing to learn a representation end-to-end from raw event data to the task loss. To

achieve this, authors expressed the conversion process through kernel convolutions,

quantizations, and projections, where each operation is differentiable. Specifically,

to derive a meaningful signal from the event measurement field, this method firstly

convolve events with a suitable aggregation kernel; after kernel convolutions, a grid

representation of events can be realized by sampling the convolved signal at regular

intervals. This framework has following advantages. First, it makes the conversion

process fully differentiable, allowing to learn a representation end-to-end from raw

event data to the task loss. In contrast, prior work assumes the input event repre-
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sentation as fixed. Second, it lays out a taxonomy that unifies the majority of extant

event representations in the literature and identifies novel ones.

While useful for early-stage attempts, all of these methods are frame-based

methods that are not suitable for the neuromorphic event’s sparse and asynchronous

nature since the frame sizes that need to be processed are substantially larger than

those of the original NVS streams. The advantages of event-based sensors are di-

luted if their event streams are cast back into synchronous frames in order to use

conventional downstream processing. Essentially, event is basic processing unit for

neuromorphic vision sensing so the data amount needed to be processed is small,

while frame-based methods take one frame as basic processing unit by looping over

entire frame pixel, thus not providing an efficient and power-saving learning sys-

tems. Therefore, our proposed graph-based feature learning can efficiently keep the

sparsity of NVS streams and provide efficient systems.

2.1.3 Event-based feature leaning for NVS streams

The second type of end-to-end feature learning method is event-based methods.

The most commonly used architecture is based on spiking neural networks (SNNs)

[41–43, 79, 80]. Lee introduce a novel supervised learning technique, which can

train general forms of deep SNNs directly from spike signals [42]. This includes

SNNs with leaky membrane potential and spiking winner-takes-all (WTA) circuits.

The key idea of our approach is to generate a continuous and differentiable signal

on which SGD can work, using low-pass filtered spiking signals added onto the

membrane potential and treating abrupt changes of the membrane potential as noise

during error back-propagation. Besides, authors addressed particular challenges of

SNN training: spiking neurons typically require large thresholds to achieve stabil-

ity and reasonable firing rates, but this may result in many “dead” neurons, which

do not participate in the optimization during training. Therefore, novel regular-

ization and normalization techniques are presented, which contribute to stable and

balanced learning. This techniques lay the foundations for closing the performance

gap between SNNs and ANNs, and promote their use for practical applications.

Neftci proposed a method to construct Restricted Boltzmann Machines
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(RBMs) using Integrate & Fire (I&F) neuron models and to train them using an

online, event-driven adaptation of the Contrastive Divergence (CD) algorithm.

Authors took inspiration from computational neuroscience to identify an efficient

neural mechanism for sampling from the underlying probability distribution of the

RBM and identify the conditions under which a dynamical system consisting of

I&F neurons performs neural sampling, suggesting that they can achieve similar

performance. To train the networks easily, authors traind the neural RBMs using

an online adaptation of CD. Specifically, they exploit the recurrent structure of the

network to mimic the discrete “construction” and “reconstruction” steps of CD in

a spike-driven fashion, and Spike Time Dependent Plasticity (STDP) to carry out

the weight updates. Compared to standard CD, no additional connectivity program-

ming overhead is required during the training steps, and both testing and training

take place in the same dynamical system.

Bichler proposed a novel approach that fully embraces the asynchronous and

spiking nature of these sensors and is able to extract complex and overlapping tem-

porally correlated features in a robust and completely unsupervised way [80]. Au-

thors presented a new way of using Spike-Timing-Dependent Plasticity (STDP) to

process real life dynamic spike-based stimuli recorded from a physical AER sen-

sor. Motion pattern can be learned from complex moving sequences with a feed-

forward multilayer unsupervised learning spiking neural network. To do this, au-

thors proposed a new network topology with spatially localized neurons, providing

similar performances with only a tenth of the synapses required compared to a fully-

connected network, Besides, by using the same network topology, receptive fields

quickly emerge from “walking through the environment” recorded sequences even

though no pattern is continuously repeating at a global scale.

While SNNs are theoretically capable of learning complex representations,

they have not achieved the performance of gradient-based methods because of lack

of suitable training algorithms. Essentially, since the activation functions of spik-

ing neurons are not differentiable, SNNs are not able to leverage on popular train-

ing methods such as backpropagation. To address this, researchers currently fol-
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low an intermediate step [44, 74, 81, 82]: a neural network is trained off-line using

continuous/rate-based neuronal models with state-of-the-art supervised training al-

gorithms and then the trained architecture is mapped to an SNN. Perez focused

on vision systems comprising an event-driven sensor and a large number of event-

driven processing modules [74]. However, training of event-driven processing mod-

ules is still an open research problem and its its application to large-scale systems is

presently not practical. Therefore, authors presented an intermediate solution. First,

they built a database of training images (frames) by collecting events from a DVS

camera during fixed time intervals. Second, they trained a frame-driven ConvNet

with this database to perform object recognition. Third, they mapped the learned

parameters of the frame-driven ConvNet to an event-driven ConvNet, and finally,

they fine-tuned some extra available timing-related parameters of the event-driven

ConvNet to optimize recognition. Authors illustrated this with two example Con-

vNet exercises: one for detecting the angle of rotated DVS recordings of walking

human silhouettes, and the other for recognizing the symbols of poker cards when

browsing the card deck in about 1 second in front of a DVS, showing the effective-

ness of the proposed training method.

Similar works are done in [81,82]. In [81], authors proposed a method based on

the Siegert approximation for Integrate-and-Fire neurons to map an offline-trained

Deep Belief Networks (DBNs) onto an efficient event-driven spiking neural network

suitable for hardware implementation. The method is demonstrated in simulation

and by a real-time implementation of a 3-layer network with 2694 neurons used

for visual classification of MNIST handwritten digits. In [82], to reduce the per-

formance losses due to the conversion from analog neural networks (ANN) without

a notion of time to sparsely firing and event-driven SNNs, authors analyzed the

effects of converting deep ANNs into SNNs with respect to the choice of param-

eters for spiking neurons such as firing rates and thresholds. They presentd a set

of optimization techniques to minimize performance loss in the conversion process

for ConvNets and fully connected deep networks, which yields networks that out-

perform all previous SNNs on the MNIST database. However, until now, despite
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their substantial implementation advantages at inference, the obtained solutions are

complex to train and have typically achieved lower performance than gradient-based

CNNs.

There are some other initial attempts on event-based feature learning for neuro-

morphic vision sensing. Besides using SNNs, Wang interpreted an event sequence

as a 3D point clouds in space and time, event cloud is hierarchically fed in Point-

Net [83] to capture spatio-temproal structure of motion, then the learned feature is

used for recognition [2]. Specifically, authors proposed a novel representation to in-

terpret an event sequence as a 3D point clouds in space and time. In their proposed

method, each event becomes a point in a three dimension continuum. Each gesture

generates a distinctive cloud of events coordinate system and they call it space-time

event clouds. By interpreting event streams as space-time event clouds, spatial fea-

tures and temporal features are fused in a 3D space-time continuum. To robustly

differentiate point clouds and recognize corresponding gestures, authors proposed

to adapt PointNet to analyze event-camera data, i.e., event clouds. The event cloud

is hierarchically analyzed using a PointNet-based architecture to capture the essen-

tial spatio-temproal structure of the hand motion, then the learned feature is used

for classification.

Gao designed a broad learning network to deal with the event-based data for the

object classification [84]. They firstly used an asynchronous peak-and-fire mapping

to depict the event-based data. Then a basic broad learning system (BLS) is estab-

lished in the form of a flat network, where the event-based inputs are transferred as

‘feature nodes’ and the structure is expanded as ‘enhancement nodes’. The output

layer is directly connected with the feature nodes and enhancement nodes by the

weights. The broad network provides an alternative way of learning in a go-broad

way, which is different from the deep CNNs models. With the event-based input

data continuously coming, the network becomes broad by adding feature nodes,

enhancement nodes, and additional enhancement nodes. A key advantage is that

proposed incremental BLS can be remodeled by the increment of nodes without the

entire retraining, which facilitates the BLS network extending from a basic network
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to a large one. Another advantage is that bridges the event-based data and the broad

learning, which successfully integrates the asynchronous data into a flexible broad

network.

While providing useful insights, all these event-based methods were test on

simple datasets with a small number of class and clean background: e.g., DVS128

Gesture Datasets used in [2, 32] comprises a set of 11 hand and arm gestures and

the posture dataset in [85,86] includes only three human actions, i.e., bend, sitsand,

and walk. Moreover, all current datasets all were acquired from a relatively noise-

free experimental environment that cannot represent complex real-life scenarios,

which led to many algorithms achieving very high accuracy. It is therefore unlikely

that these methods can obtain such high accuracy for real-world scenarios, as they

cannot capture long-term temporal dependencies. Indeed when these are applied

on more complex dataset (such as UCF101-DVS) for human action recognition,

their performance degrades significantly as discussed in application experiments.

Moreover, our graph-based learning methods can use the well-establish gradient-

based learning rules that can make the training process easy and also provide a

confident performance.

2.2 Graph-based Deep Learning

As our feature learning frameworks are based on graph input, we simply review

the graph-based Deep Learning. Specifically, we will review the development of

graph-based deep learning, types of graph neural networks and application of graph

deep learning in computer vision community.

With the advance of deep neural networks (e.g. CNNs and RNNs) and compu-

tational resource (e.g. GPUs), many machine learning tasks have already changed

from heavily relying on handcrafted feature engineering to extract informative fea-

ture set to various end-to-end deep learning paradigms, and also achieved promising

performance in many applications. One key reason of such successes is that deep

neural netowrks are able to take advantages of the hierarchical patterns and extract

high-level features to achieve a great expressive capability because of grid-like na-
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ture of data (known as Euclidean form). However, there is an increasing number

of real-world applications, such as chemistry molecules, traffic networks and cita-

tion networks, where data are represented in Non-Euclidean form, thus emerges the

graph-based deep learning methods. In this section, we will briefly describe the

development of graph-based neural networks, taxonomy of graph neural networks

and some applications in computer vision field.

The principle of constructing CNNs on graph generally follows two streams:

the spectral perspective [87–93] and the spatial perspective [3, 94–98]. Spectral

convolution applies spectral filters on the spectral components of signals on ver-

tices transformed by a graph Fourier transform, followed by spectral convolution.

Defferrard [89] provided efficient filtering algorithms by approximating spectral

filters with Chebyshev polynomials that only aggregate local K-neighborhoods.

This approach was further simplified by Kipf [87], who considered only the one-

neighborhood for single-filter operation. Levie [88] proposed a filter based on the

Caley transform as an alternative for the Chebyshev approximation. As to spatial

convolution, convolution filters are applied directly on the graph nodes and their

neighbors. Several research groups have independently dealt with this problem. Du-

venaud [94] proposed to share the same weights among all edges by summing the

signal over neighboring vertices followed by a weight matrix multiplication, while

Atwood [95] proposed to share weights based on the number of hops between two

vertices. Finally, recent works [3, 98] make use of the pseudo-coordinates of nodes

as input to determine how the features are aggregated during locally aggregating

feature values in a local patch. Spectral convolution operations require an identical

graph as input, as well as complex numerical computations because they handle the

whole graph simultaneously. Therefore, to remain computationally efficient, our

work follows the spirit of spatial graph convolution approaches and extends them to

NVS data for feature learning.

Graph neural networks (GNNs) can be categorized into following four types:

recurrent graph neural networks, graph convolutional neural networks, graph au-

toencoders, and spatial-temporal graph neural networks. Recurrent Graph Neural
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Networks (RecGNNs) are applied into the cases where the node in a graph con-

stantly exchanges information/message with its neighbors until reaching a stable

state. The aim of RecGNNs is to learn node representations with recurrent neural

architectures, which is lately inherited by spatial-based graph convolutional neural

networks. Similar to the CNNs, graph CNNs generate a node’s representation by

aggregating its own feature and neighbors’ feature. Different from recurrent archi-

tectures, graph CNNs stack multiple graph convolutional layers to extract high-level

node representations. Currently, graph CNNs play an significant role in graph deep

learning field, which are largely used in the application related to node classification

and graph classification. Graph Autoencoders encode nodes/graphs into a vector

representation and reconstruct graph data from the encoded information in an un-

supervised manner, which are widely used to learn network embedding and graph

generative distributions. Spatial-temporal Graph Neural Networks (STGNNs) aim

to learn representation from spatial-temporal graphs by considering spatial depen-

dency and temporal dependency at the same time, which become increasingly im-

portant in a variety of applications such as traffic speed forecasting [99,100], driver

maneuver anticipation [101], and human action recognition [102]. Many current

approaches integrate graph convolutions to capture spatial dependency with RNNs

or CNNs to model the temporal dependency.

Graph-based deep learning technologies are becoming popular in the process

and analysis of image, video and point cloud. In terms of image field, one appli-

cation is image classification. Images are firstly converted to the structured graph

data by carefully hand-crafted graph construction methods (e.g., KNN similarity

graphs), then graph convolutional networks is leveraged as a classifier [89,91,103].

Another application on images is visual question answering that explores the an-

swers to the questions on images [104]. Visual reasoning on images also is a

hot topic. Since images contain multiple objects, understanding the relationships

among the objects helps to characterize the interactions among them [105–107]. As

to application on video, researchers are using graph convolutional neural networks

to realise action recognition. video contents are firstly represented as graphs, e.g.
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spatial-temporal graphs in [102], skeletons-based graphs in [108] and space-time

region graphs in [109], then designed well-suitable graph convolutional networks

to recognize action in videos. As for point clouds, the state-of-the-art deep neural

networks only consider the local features of point clouds and ignore the geometric

relationships among points; therefore researchers took advantage of graph neural

network to solve this problem. For instance, EdgeConv [110] is able to capture

the local geometric structure and maintain the permutation invariance, thus achiev-

ing progressive performance in point cloud segmentation. Recently, a regularized

graph convolutional network where graph Laplacian is dynamically updated to cap-

ture the connectivity of the learned features is proposed for segmentation on point

clouds [111]. Wang et al. proposed a local spectral graph convolutional network

for both point cloud classification and segmentation [90], and Valsesia et al. pro-

posed a localized generative model by using graph convolution to generate 3D point

clouds [112].



Chapter 3

PIX2NVS: Parameterized

Conversion of Pixel-domain Video

Frames to Neuromorphic Vision

Streams

3.1 Introduction

One of the major obstacles in developing neuromorphic-based advanced machine

learning algorithms for recognition, classification and retrieval is the lack of widely-

available event-based neuromorphic vision streams with reliable annotations to train

and test with. Recent work has attempted to resolve this issue by recording limited-

scale annotated datasets in controlled conditions [33,74,113,114], i.e., video frames

displayed in a monitor under controlled frame-rate and brightness/contrast condi-

tions and are recorded with a DVS camera. While such experimental approaches

provided for the first available annotated video datasets in neuromorphic vision

sensing (NVS) format, their three issues are that: (i) the recording is affected by

environmental and monitor conditions (e.g., lighting, monitor flicker, vibrations,

etc.); (ii) high-accuracy synchronization between the played-out video frames and

the corresponding NVS may be difficult to resolve because of drift between the

timing of the playout device and the DVS camera; (iii) due to their hardware na-
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ture, such measurement-based approaches cannot scale to large datasets containing

millions of videos, such as the recently-released Youtube-8M datasets [115]. To

this end, recent work [8, 116, 117] proposed models to generate NVS events using

pixel-wise linear interpolation of the pixel intensity given by successively rendered

images. However, these approaches have one or more of the following detriments:

use of custom bias settings, requirement to have pixel-domain frames captured by

a co-existing active pixel sensor (APS) camera, such as the bundled APS of the

DAVIS240C device, and lack of distortion metrics to quantify the accuracy of the

generated NVS events.

In this chapter, we propose and make available online1 the pixel-to-NVS

(PIX2NVS) framework in Section 3.2, which is a software that can be used to

generate neuromorphic vision streams from any pixel-domain video format. We

also propose and verify three new metrics in Section 3.3 (Chamfer distance, ε-

repeatability and Earth Mover’s Distance (EMD) ) to quantify the accuracy of the

model-generated NVS event streams against ground-truth event streams available

from experimental setups, such as ’.aedat’ files from DAVIS camera deployments.

Moreover, the parameter optimization of PIX2NVS and efficacy of emulated NVS

datasets is put to the test in Section 3.5. Via the use of a 3D convolutional neu-

ral network (CNN), we elaborate on the training and testing aspects for multi-class

human action recognition and sign language recognition applications. Our results

show that training and testing with emulated spike events leads to marginal loss of

accuracy for applications. Importantly, the obtained accuracy gap is within 4.5%.

3.2 PIX2NVS Framework
NVS devices like the iniLabs DAVIS [20] and Pixium Vision ATIS sensors [12,21]

output asynchronous spike events indicating temporal intensity contrast changes.

Spike events are recorded in pixel coordinates, timestamped with microsecond res-

olution and labeled as ON or OFF [20] (denoted by +1 and -1). They are produced

in a format compliant with the address event representation protocol (AER) [118].

1http://www.github.com/pix2nvs
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Figure 3.1: Illustration of PIX2NVS framework: videos are firstly extracted as frames by
FFmpeg library, then proposed by LICE module detailed in Section 3.2.1 and
Diff module detailed in Section 3.2.2. Generate Events module also is illus-
trated in Section 3.2.2 and reference update is in Section 3.2.3.

Our emulation framework produces such spike event streams by processing

any standard compressed format container (e.g., MP4, MKV, etc.) based on the

FFMPEG library2 [121]. The process begins by the decoding of the APS video

frames. These frames are then processed sequentially in order to produce a stream

of spike events, which are stored in text or AEDAT format (AER data file). The aim

of our framework is to produce NVS data that is as similar as possible to an equiva-

lent scene would have been captured with an NVS-generating device. Similarity is

assessed based on the metrics of the next section. The core operation of PIX2NVS

is shown in Algorithm 1 and also illustrated in Fig. 3.1. PIX2NVS consists of

frame extraction module by using FFMPEG, intensity change module, comparison

and events generation module and stream storage. And the details of the operation

are described in the following parts of this section. For clarity, we also summarize

the main emulation parameters in Table 3.1.

2MPEG coding frameworks and FFMPEG are chosen because of their wide availability and
support. However, the proposed framework can also support non-MPEG codecs [119, 120] if a
decoder is made available.



3.2. PIX2NVS Framework 52

Table 3.1: Table of emulation parameters.

Symbol Definition
LICE mode ∈
{LI,CE,LICE}

method for mapping luminance, LI refers to log intensity,
CE refers to contrast enhanced intensity

Tlog threshold to control switch between linear and log
mappings of luminance for LICE mode=LI

dif ∈ {0, avg,
min}

method for computing the difference value between LICE
values at position (x,y)

B size of max-pooling window for local inhibition

Mmax maximum number of spike events to generate per position

Tmap threshold for computing the number of spike events to
generate per position

new ∈
{TRUE,FALSE}

method for generating the LICE values for reference
frame Fn

tstamp method for generating spike timestamps: {RAND,
LINEAR, FIXED}

exp ∈
{TRUE,FALSE}

whether to use exponential moving average for reference
frame update

α moving average update rate, 0 < α < 1

3.2.1 Converting Pixels to Intensity

For every spatial position (x,y) of each frame Fn, the RGB pixel values

(rx,y,gx,y,bx,y), typically ranging between 0 to 255, are first converted into lumi-

nance values via qx,y = 0.299rx,y +0.587gx,y +0.114bx,y or, if hue = TRUE, hue

values via hx,y = bx,y/(rx,y +gx,y). Without loss of generality, for the remainder of

this work we shall be focusing on luminance values. Given that the NVS devices

detect changes in the logarithm of the captured intensity of each spatial position,
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Algorithm 1 Conversion of video frame pixels to NVS.
1: Input: Pixel-domain video frames F0,F1, ...,FN extracted from a video format

container using FFMPEG, parameters: hue, LICE mode, Tlog,γ,Tmap, dif,
new, exp,tstamp, fps

2: Output: Spike event tuples Ee = 〈xe,ye, te,Pe〉 stored in a text file and/or in an
AEDAT stream

3: Operation: Read F0, convert pixels to LICE values, produce spike event tuples
and optionally update LICE values

4: for n = 1 : 1 : N do
5: Read Fn and convert the RGB pixel values to LICE values using Section 3.2.1

6: Find differences of LICE values of successive frames using (3.3), (3.4) and
(3.5)

7: If the difference is equal or exceeds threshold Tmap, then output spike events
with coordinates, polarity and timestamp using (3.6) and (3.7), (3.8)

8: Optionally update LICE values using (3.9) and (3.10)
9: end for

the first mode of PIX2NVS is to convert these values into log-intensity values via:

lx,y =

 qx,y, qx,y ≤ Tlog

ln(qx,y), qx,y > Tlog

(3.1)

with Tlog the threshold used to control the switch between the linear and the log

mapping. For log intensity, Tlog = 0, while for lin-log intensity, the threshold is set

to a value close to 10% of the maximum value, e.g., Tlog = 20.

The limited dynamic range in the APS hardware may mask local scene lu-

minance changes and lead to a different response than log-intensity. Therefore,

we provide a second mode for PIX2NVS via contrast-enhanced intensity val-

ues [122]. Here, we first define the perceptual luminance of each pixel as l′x,y =

100×
√
(qx,y/255)γ , with γ = 2.2, and then calculate the contrast-enhanced inten-

sity at coordinate (x,y) by

lx,y =
∑

1
p=0 |l′x,y− l′x+2p−1,y|+∑

1
p=0 |l′x,y− l′x,y+2p−1|

4
(3.2)

The choice between log-intensity and contrast enhancement (LICE) is controlled by

setting parameter LICE mode ∈ {LI,CE,LICE}, with the third mode applying
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the CE and LI modes sequentially.

3.2.2 Spike Event Generation

In our proposed framework, we provide emulated events by differencing the video

frame lx,y[n] with a reference frame l̄x,y[n− 1]. To this end, we propose three ap-

proaches: (i) co-located differencing (which is enabled by setting parameter dif

= 0):

dx,y = lx,y[n]− l̄x,y[n−1] (3.3)

(ii) two variants of differencing that utilize the average or the minimum value

of the weighted-neighborhood of reference frame values (dif = avg, dif =

min): dx,y = lx,y[n]−
∑

1
p=0 l̄x+2p−1,y[n−1]+∑

1
p=0 l̄x,y+2p−1[n−1]

4

dx,y = lx,y[n]−minp∈0,1(l̄x+2p−1,y+2p−1[n−1])
(3.4)

As correlation in small spatial neighborhoods of natural images is known to be

high [123], we assume that neighboring pixels transmit redundant information. We

therefore emulate local inhibition in our framework by applying a local maximum

on non-overlapping patches of the differences dx,y, with dimensions B×B (B is a

parameter):

(x∗,y∗) = argmax(d(x+si),(y+s j)) ∀sx,sy ∈ {0,1, ...,B} (3.5)

Hence, when local inhibition is enabled, within each patch, we only keep dx,y

for the (x∗,y∗) positions corresponding to the locally maximum difference values

using (3.3) or (3.4).

The eth spike corresponding to frame Fn (out of etot[n] spikes detected in that

frame) is generated if and only if |dx,y| ≥ Tmap; in such a case, the polarity of the

spike is:

Pe = sgn(dx,y) (3.6)

and the coordinates of the spike are (xe,ye) = (x,y). Concerning the timestamp of
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the spike, we can generate it as: (i) a random number between the timestamps of

frames Fn−1 and Fn; (ii) a linearly-scaled value between the timestamps of frames

Fn−1 and Fn; (iii) fixed to the timestamp of frame Fn. Parameter tstamp controls

this:

te =
1

fps
×


U([n−1,n]), tstamp= RAND

n−1+ e
etot[n]

, tstamp= LINEAR

n, tstamp= FIXED

(3.7)

where fps stands for the frame-rate of the video and U([a,b]) returns a uniformly-

distributed number within [a,b].

Following the steps defined in (3.6) and (3.7), up to one spike is generated at

each spatial position of each new frame. However, in this way, the number of gen-

erated spikes per position are limited by the frame rate; this does not encapsulate

cases where the pixel intensity difference dx,y is high [117]. We address this by al-

lowing more than one spike to be generated between frames following an approach

similar to Furber’s work [117]. First, we assign Mmax as the maximum number of

spikes per position. We then compute the number of spikes to generate per position

(x,y), Mx,y, as:

Mx,y = min(Mmax,

⌊
dx,y

Tmap

⌋
) (3.8)

and these additional spikes are timestamped using one of the methods of (3.7).

3.2.3 Reference Frame Update

The default option is to update the reference frame l̄x,y[n] from the LICE values

generated by (3.1) for all positions (x,y) in Fn, i.e.,

l̄x,y[n] = lx,y[n] (3.9)

However, the above reference update method only refers to the current frame

and does not consider the transient response of neuromorphic sensors. Similar to

Furber et al. [117], the reference frame update can alternatively be modeled by

considering an exponential moving average over past frames. This provides a po-
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tentially more accurate representation by accounting for the capacitive memory of

neuromorphic sensors. We define the new reference update at frame Fn as:

l̄x,y[n] =

lx,y[0], if n = 0

αlx,y[n]+ (1−α)l̄x,y[n−1], otherwise
(3.10)

where 0 < α < 1 is the update rate, which can be tuned to match the capacitive

properties of a neuromorphic sensor. The moving average update is enabled by

setting parameter exp = True.

Current NVS cameras only update the log-scaled values of recently-detected

positions. If we follow this approach then we only update the reference frame

with 3.9 or 3.10 for positions (x,y) where a spike is detected, i.e., ∀(x,y) ∈

{(x1,y1), . . . ,(xetot ,yetot)}. In our framework, we can toggle between the default op-

tion of updating all spatial positions, versus the selective updating described above

by setting the parameter new to True or False respectively.

3.3 Distance Metrics to evaluate PIX2NVS
To evaluate the performance of PIX2NVS against ground truth NVS data gen-

erated by hardware experiments, we propose the use of three distance metrics

that quantify spatial correspondences between emulated and experimental spike

events [124]. Firstly, for the n-th frame, we denote the set of I emulated spikes as

E {Eemu
1 (x,y,PΣ), . . . ,Eemu

I (x,y,PΣ)} and the set of J experimental (i.e., real) spikes

as R{Eexp
1 (x,y,PΣ), . . . ,E

exp
J (x,y,PΣ)}.

3.3.1 Chamfer Distance

In the case of the Chamfer distance, for each emulated spike Eemu
i (x,y,PΣ) of the

n-th frame, we first search for experimental spike Eexp
j∗ (x,y,PΣ) (with Eexp

j taken as

all the spikes allocated to the same frame as Eemu
i ) with the minimum Euclidean dis-

tance, calculated based on their spatial coordinates and the weighted polarity λPΣ,

where λ is a positive constant ensuring that the polarity component has compara-

ble amplitude to the mean Euclidean distance between (xemu
i ,yemu

i ) and (xexp
j ,yexp

j ).

Therefore, ∀i,1≤ i≤ I:
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j∗ = argmin
j

∥∥∥(xemu
i ,yemu

i ,λPemu
Σ,i )− (xexp

j ,yexp
j ,λPexp

Σ, j )
∥∥∥ (3.11)

Then, the Chamfer distance of every emulated frame is computed as the mean Eu-

clidean distance between all corresponding spike events {i, j∗}, 1≤ i≤ I:

C(n) =
∑

I
i=1

∥∥∥(xemu
i ,yemu

i ,λPemu
Σ,i )− (xexp

j∗ ,yexp
j∗ ,λPexp

Σ, j∗)
∥∥∥

I
(3.12)

The Chamfer distance for the entire video is found as the average of the distances

over all frames in the video.

3.3.2 Epsilon Repeatability

The ε-repeatability metric is defined per frame as the percentage of emulated spikes

of the same polarity type (positive or negative) that are found within ε distance of at

least one experimental spike. For each emulated spike Eemu
i , we first find whether at

least one spike Eexp
j (of the same polarity type) exists in the same frame with spatial

coordinates that have Euclidean distance smaller or equal to ε . We create a subset

of emulated spikes E ε , where:

E ε = {Eemu,ε
i ∈ E |

∥∥∥(xemu
i ,yemu

i )− (xexp
j ,yexp

j )
∥∥∥≤ ε} (3.13)

Then the ε-repeatability rate for each frame is defined as the ratio of set cardinality

between E ε and E :

rε(n) =
|E ε |

I
(3.14)

The final ε-repeatability for a video sequence is the mean of the frame ε-

repeatability rates rε(n).

3.3.3 Earth Mover’s Distance (EMD)

We introduce EMD as a final distance metric to quantify the accuracy of pixel-to-

NVS conversion. EMD has been proposed as the means to quantify the dissimilarity

between two signatures [125], which is defined as the minimum ’cost’ that must be
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paid to transform one signature into the other, where there is a ’ground distance’

between the basic features that are aggregated into the signature. The EMD is an

effective method of measuring the domain shift between the real and emulated spike

datasets. Essentially, we want to find the flow F = [ f (i, j)] between spikes in sets

E and R (as defined previously) that minimizes the ’work optimization’ problem

stated below:

minimize W (E ,R,F) =
I

∑
i=1

J

∑
j=1

f (i, j)d(i, j)

subject to f (i, j)≥ 0, 1≤ i≤ I,1≤ j ≤ J,
I

∑
i=1

f (i, j)≤
∣∣∣Pexp

Σ, j

∣∣∣ , 1≤ j ≤ J

J

∑
j=1

f (i, j)≤
∣∣Pemu

Σ,i
∣∣ , 1≤ i≤ I

and
I

∑
i=1

J

∑
j=1

f (i, j) = min

(
∑
∀i

∣∣Pemu
Σ,i
∣∣ ,∑
∀ j

∣∣∣Pexp
Σ, j

∣∣∣)
(3.15)

After initializing the flow uniformly, this optimization problem can be solved

using linear programming [125]. In our study, we set the ”ground distance”,

d(i, j) =
∥∥∥(xemu

i ,yemu
i )− (xexp

j ,yexp
j )
∥∥∥. The EMD can thus be interpreted as the min-

imum work required to ”transport” the polarity between emulated and real spike

event sets E and R such that both sets are evenly distributed, normalized by the

total optimum flow Fopt, i.e.,

EMD(E ,R) =
∑i ∑ j fopt(i, j)d(i, j)

∑i ∑ j fopt(i, j)
(3.16)

The size of the flow matrix F grows exponentially with the number of spike events

and, as such, becomes non-trivial to compute. We are able to partially offset the

complexity by dividing each frame into a grid of spike blocks and computing the

EMD between spatially corresponding blocks of real and emulated spikes. De-

noting the subset of emulated and real spikes in block k as E S
k ∈ E and RS

k ∈ R

respectively, the distance D for frame n is now computed over 1≤ k ≤ K:
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D(n) =
K

∑
k=1

EMD(E S
k ,R

S
k ) (3.17)

In this paper, we set K = 16. The final distance for a video sequence is computed

by averaging D(n) over all frames.

3.3.4 Discussion

Each distance metric of this section measures a notion of dissimilarity between the

experimental and the emulated spike event sets. The Chamfer distance is an asym-

metric measure that is maximally biased towards the subset of experimental spikes

that are closest to the emulated ones. This bias is relaxed in the ε-repeatability met-

ric, which, however, remains parametric to the choice of ε . In addition, repeatability

is a zero-order metric – it only accounts for the number of ’valid’ spikes – whereas

Chamfer distance is a first order metric as it incorporates the average distance be-

tween spike events. Finally, the EMD can be seen as an unbiased distance metric

that, within each spatial area, considers each spike event distribution as a whole.

However, EMD is substantially more expensive to compute on large datasets and

will also be more affected by the contribution of outliers in the E and R sets than

the Chamfer distance and the ε-repeatability.

We can take advantage of the complementary aspects of the three distances in

order to rank the accuracy of each parameter setup of PIX2NVS in a more robust

manner. As we described before, Chamfer distance is a local metric which can mea-

sure fine-grained difference of two sets of events, while EMD is a global distance

metric that globally quantify the difference of polarity distribution. Epsilon repeata-

bility measure the patch difference. Specifically, when utilizing these distances for

emulation parameter selection, we calculate a ”Weighted Score” measure, where,

for each experiment, we average the three distances after L2-normalizing their val-

ues.
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3.4 Experimental Emulation and Metrics Validation

3.4.1 Emulation of PIX2NVS

We use an iniLabs DAVIS240C camera to record pixel-domain video frames and ex-

perimental NVS events simultaneously, the latter serving as ground truth. We then

deploy our PIX2NVS model based on the captured video frames in order to gener-

ate artificial NVS events to compare against the ground truth. Beyond this, we also

validate the accuracy of our model based on a recently-released dataset [8]. The pa-

rameters used for the reported experiments were: hue=FALSE, LICE mode=LI,

Tlog = 20,Tmap = 0.4, dif=0, new=TRUE, tstamp=FRAME, and fps is set ac-

cording to the frame rate of the utilized video content.

A qualitative comparison between the real and model-generated events is

shown in Fig.3.2. It is evident that the model-generated NVS events are clustered

around frame times (since we use tstamp=FRAME). In addition, real NVS events

contain flicker noise due to the underlying electronics, while our model-generated

NVS datasets do not include such noise since they are based on threshold differ-

encing of LICE values. moreover, the amount of emulated events are less then real

one, we largely ascribe this difference to the setting of threshold. If we lower the

threshold, them more events are generated. Beyond these effects, the qualitative

comparison shows that our model appears to be generating events that resemble the

spatio-temporal structure of real NVS events from the DAVIS240C. The biggest

limitation with generated data is that timestamp resolution is inherently restricted

by the frame rate of videos, which is typically in the regime of frame rate per sec-

ond. Therefore, we can see the cascades of events in the generated data, while the

real events are more smooth in the temporal extent.

3.4.2 Effectiveness of Proposed Metrics

Because of the presence of such flicker noise in the experimentally derived NVS, we

measure the proposed metrics in reference to the model-generated data. In order to

evaluate the suitability of the proposed Chamfer distance, ε-repeatability and Earth

Mover’s Distance in the domain of NVS data, before measurement with each metric,
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Figure 3.2: Experimental NVS events (top) and model-generated ones (bottom).
Green/Red points: Trigger ON/OFF.

we impose artificial spatio-temporal distortions in the model-generated events by:

(i) spatial downsampling (SD) of the events’ coordinates; (ii) temporal downsam-

pling (TD) by reduction of the fps value used for the grouping of NVS events into

frames; (iii) pseudo-random injection of additive noise (AN) NVS events at 1% to

7% of the possible spatial coordinates within each model NVS frame. Experiments

are conducted using the dataset of Mueggler et al. [8] and real DVS events and

video frames captured with a DAVIS240C camera in our laboratory. For the cases

of SD and TD, measurement is carried out by first upscaling the downscaled NVS

events to the original spatio-temporal resolution before using the process described

in Section 3.3. If the proposed metrics are appropriate for the utilized NVS data, we

expect that, as we impose such SD/TD/AN distortions: (i) the Chamfer distance and

Earth Mover’s Distance will increase; (ii) the ε-repeatability will decrease. Indeed,

the results, shown in Table 3.2, validate this expectation for all cases. Therefore,

we conclude that these three metrics are appropriate for the quantification of the

accuracy of model-generated NVS events.
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Table 3.2: Average Chamfer distance, ε-repeatability (ε = 2.5) and Earth Mover’s Distance
w.r.t. spatial downsampling (SD), temporal downsampling (TD) and additive
noise (AN) from samples in lab tests with DAVIS240C and the Mueggler et al.
dataset [8].

Datasets Lab Tests Mueggler [8]
Methods Chamfer ε-Rep. EMD Chamfer ε-Rep. EMD

Original data 1.81 0.86 2.27 1.27 0.89 2.31

SD
120×90 2.71 0.73 2.34 1.86 0.80 2.37
80×60 2.74 0.72 2.42 1.90 0.78 2.44
60×45 3.12 0.66 2.50 2.17 0.72 2.51

TD
fps/2 2.07 0.82 2.36 1.38 0.87 2.34
fps/3 2.24 0.78 2.41 1.44 0.87 2.39

AN

1% 2.31 0.80 2.30 1.76 0.85 2.33
3% 3.11 0.74 2.34 2.11 0.81 2.36
5% 3.28 0.70 2.39 2.34 0.78 2.40
7% 3.55 0.67 2.45 2.52 0.69 2.43

3.4.3 Parameter Optimization with Random Search

Before carrying out any action recognition experiments with emulated and real

NVS, we must decide on the emulation parameters to use from the multitude of

options of Table 3.1. To this end, we utilize the proposed distance metrics of Sec-

tion 3.3 and the recently-released UCF-50 NVS recordings, i.e., a subset of UCF-

101 consisting of 50 action categories [126], recorded with a DAVIS camera setup

under the conditions described by Hu et al. [113]. We perform an adaptive ran-

dom search over the emulation parameter space by repeatedly computing the dis-

tance metrics on the available UCF-50 NVS dataset and combining them into the

”Weighted Score” measure described in Section 3.3. As this measure converges,

we reduce the hypersphere radius from where we select the next hyperparameter set

around the parameter options that led to decreased weighted distance.

We report the obtained distances for an indicative set of parameters in Table

3.3. The results confirm that, as we tend towards the optimal configuration, the do-

main shift between emulated and real spike datasets decreases. The only exception

was the EMD metric, which was slightly increased in some parameter options. This

is attributed to the contribution of outlier experimental points (or noise) and it em-

phasizes the significance of using the Weighted Score in Table 3.3 as the metric to
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Table 3.3: Inverted ε-repeatability (i.e., 1 minus the ε-repeatability score, with ε = 3.5),
Chamfer distance (with λ =

√
3), EMD and weighted distance score (smaller

is better) between UCF-50 real and emulated spikes, w.r.t. different PIX2NVS
options.

θ Similarity Metrics
Tlog B Mmax Tmap new exp Inv. ε-rep Chamfer EMD Score

20 2 1 0.4 False False 0.575 5.455 2.448 0.500
0 2 1 0.2 False False 0.496 4.479 2.597 0.454
0 2 1 0.2 False True 0.469 4.387 2.467 0.435
0 2 1 0.2 True True 0.464 4.253 2.434 0.427
0 1 3 0.2 True True 0.455 4.172 2.307 0.414

 

(c) PIX2NVS, settings of bad parameters (d) PIX2NVS, settings of good parameters 

Figure 3.3: Comparison of PIX2NVS conversion against the spike events recorded with
a DAVIS camera. Green/red points correspond to +1/-1 (or ON/OFF) spike
polarity. Best viewed in color.

perform parameter optimization. Fig. 3.3 presents a visual comparison between the

original APS frame [Fig. 3.3(a)], the recorded spike events with the DAVIS cam-

era [Fig. 3.3(b)], and the emulated spike events with the worst and best PIX2NVS

parameter settings from Table 3.3 (first and last row), shown in Fig. 3.3(c) and

Fig. 3.3(d), respectively. Overall, it is clear that the best performance is achieved

when opting for exponential moving average and full-reference frame update {exp

= True, new = True}, as this effectively accounts for past frames and longer
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motion cues. We find that varying the local inhibition window size B has min-

imal effect on accuracy, whilst setting Tlog = 0 [i.e., using ln(qx,y) in (3.1)] for

LICE mode = LI is beneficial in comparison to the other two modes. Impor-

tantly, the main source of similarity gain and domain alignment is achieved by in-

creasing the maximum number of spikes generated, Mmax, and decreasing the filter

threshold, Tmap, at each position and per reference frame. As shown by (3.8) and

confirmed by the visual example given in Fig. 3.3(c+d), this generates more spikes

and thus increases the per-frame granularity of the emulator. Importantly, while the

settings of the last row of Table 3.3 worked well for the utilized APS video con-

tent and NVS hardware (DAVIS camera), the use of the proposed distance metrics

allows for the tuning of the emulation parameters under any APS input video and

NVS camera hardware as long as indicative measurements are available.

3.5 Evaluating the effectiveness of Emulated NVS

Data Streams

In this section, we evaluate the proposed framework for training a CNN based on

emulated NVS data that has been generated with the PIX2NVS framework. Specif-

ically, we test two studies here, namely CNN-based human action recognition in

Section 3.5.1 and American Sign Language recognition in 3.5.2.

3.5.1 Human Action Recognition

Network Input: Deep CNNs requires the input as the grid images, so we firstly

group the events into frames as input. We use the PIX2NVS framework to extract

the emulated NVS events from RGB video frames, which provides us with train-

ing data correspondences for the NVS domain. The emulator generates a set of

event tuples Ee = {〈xe,ye, te,Pe〉} over the video sequence, where the event polarity

Pe =±1 (i.e., representing ON or OFF). Let us denote the complete set of event and

non-event tuples as E = {< x,y, t,P> |(< x,y, t,P>/∈Ee)→P= 0}. We can aggre-

gate the polarities into a single NVS frame f [n] corresponding to the nth (H×W )

RGB video frame by summing the polarities at each spatial position (x,y) for events
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Figure 3.4: Extracted frame from PIX2NVS for an archery video from UCF-101; (a) RGB
frame; (b) NVS frame (native resolution); (c) NVS frame (downsampled by
8). The pseudo-color in (c) corresponds to the continuous range generated after
downsampling.

falling in the (n−1)th and nth video frame time interval I. For the nth video frame,

the summed polarity at position (x,y), f [n](x,y) is denoted as:

f [n](x,y) = ∑
t∈I

P(x,y, t) (3.18)

This enables spatio-temporal correspondence with the video frames. While this

frame grouping is artificial, it allows for the use of CNNs for the recognition task

[127], and we can now aggregate consecutive NVS frames into training volumes vs.

The UCF-50 [126] dataset is composed of 320× 240 RGB pixels per frame.

Contrary to dense RGB frames, the NVS frames are notably sparse, which means

several convolutional layers will be are required in order to extract complex rep-

resentations from the input. The bulk of the execution complexity of a multilayer

CNN is typically in the lower convolutional layers; doubling the input resolution

to the CNN quadruples the number of activation in these layers. One option to

reduce the running time is to memorize the convolutional operations in the lower

layers and hash the non-zero entries and corresponding locations [128, 129]. In-

stead, when dealing with action recognition tasks, we argue that it is not necessary

to model fine spatial dependencies. As such, we propose to decrease the input spar-

sity by downsampling the NVS frames by a factor of 8. This draws parallels to the

sensing resolution of the human eye which, except for the fovea, is mostly consid-

ered to be low. Beyond such analogies, the practical benefit of downsampling is

that it reduces the number of activation and the overall complexity of the network
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substantially. For the datasets considered in this paper, this results in an NVS frame

Φ ∈ RW×H , with W = 40 and H = 30. Fig. 3.4 shows an NVS frame at native and

downsampled resolution for one of the frames of a UCF-101 video.

In order to compensate for the low spatial resolution, we take a long temporal

extent of T > 100 consecutive NVS frames. This is contrary to recent proposals

using high-resolution optical flow [130, 131], which typically ingest only a few

frames per input (typically around 10) and inline with recent work that proposed

such metrics for motion-based video classification [132]. A longer temporal extent

is more likely to encompass the relevant action for classifying the video, without

clipping it out. We therefore fix the temporal extent T to 160, which is close to the

average number of extracted NVS frames per video in UCF-101. Finally, in order

to make our CNN input independent of the NVS resolution, we use a fixed spatial

size N×N, which is cropped/resized from Φ; in this paper we set N = 24. Our final

network input Φ̂ ∈ RN×N×T is thus 3D and can be ingested by a 3D CNN3.

Network Architecture: The resized network inputs can be considered anal-

ogous to the motion vector magnitude that can be extracted from standard com-

pressed video formats such as MPEG/ITU-T AVC/H.264 [133] and HEVC [134].

We therefore opt to utilize a recent 3D CNN architecture proposed for action recog-

nition with motion vector inputs [132]. As demonstrated therein:

• the 3D CNN architecture achieves an optimal balance between complexity

and classification performance, requiring substantially less parameters than

other CNN based classifiers [130, 135];

• all convolutions and pooling are spatiotemporal in their extent;

• all convolutional layers and the first two fully-connected layers use the para-

metric ReLU activation function [136].

3As validation for our chosen setup, we have experimented with doubling the spatial resolution
to 60×80 for our 3D CNN input, whilst lowering the temporal extent to 64 and varying the temporal
strides, in order to maintain an equivalent complexity. When evaluating on UCF-50 we found that
results are within 1% of the results reported in this paper, which suggests that, when using a longer
temporal extent, downsampling has marginal effect in the accuracy during inference.
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However, whereas two channels are required to ingest the δx and δy motion vector

components as extracted from the video codec, we modify the 3D CNN to ingest

a single N×N× 1×T stream corresponding to the NVS frames produced by our

PIX2NVS emulation framework (during training) or the DAVIS camera hardware

(during testing).

3D CNN Training: We train the network using stochastic gradient descent

with momentum set to 0.9. For the initialization and hyperparameters, we follow

the protocol of previous work that utilized motion vector inputs [132] for video

classification using UCF-101 and HMDB. It is important to note that, for our ex-

periments on UCF-50, because this dataset is a subset of UCF-101 and is therefore

prone to overfitting, we train the network from scratch. As such, we follow the

same training configuration as UCF-101 but reduce the training time, decaying by

a factor of 0.1 every 20k iterations, for 50k iterations. To further minimize the

chance of overfitting due to the low spatial resolution and the small size of the

training split for all datasets, we supplement the training with heavy data augmen-

tation. To this end, we concatenate the NVS frames into a single W ×H × 1×T

volume and apply the following steps; (i) a multi-scale random cropping to fixed

size Nc×Nc× 1×T from this volume, by randomly selecting a value for Nc from

N× c with c ∈ {0.5,0.667,0.833,1.0}; as such, the cropped volume is randomly

flipped and spatially resized to N×N× 1× T ; (ii) normalizing the input by sub-

tracting the global mean and dividing by the global standard deviation over all val-

ues in the input. This normalizes the active sites in the NVS volume and is crucial

for the training loss to decrease monotonically. During training, we apply addi-

tional regularization in the network by using dropout ratio of 0.8 on the first two

fully-connected layers together with weight decay of 0.0005.

Testing based on Maximal Motion Activity Crops: During testing, per

video, we generate 5 random volumes of temporal size T from which to test on.

Rather than using the standard 10-crop testing (center and four corners, unflipped

and flipped) [137], we propose to extract the salient region in each volume, which

we identify as having continuous spike activity over consecutive NVS frames. In
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order to locate this region, we first sum over the absolute values of all frames in

a volume to generate a spike activity map M ∈ RW×H . We sum-pool the map in-

tensities in M by sliding an N×N window over the activity map, thus generating

a map of summed motion per potential crop M′. We then locate the salient region

by finding the index of the maximum value in M′ . Per volume, we thus extract a

crop at this position and a center crop, both of size N×N×T , and consider both

horizontally flipped and unflipped counterparts. As such, we average the scores

to produce a single score for the video. In this respect, we only have to process

4 crops per volume to generate the score. When evaluating on UCF-101 (split 1),

the difference in performance between our proposal and 10-crop testing is less than

1%, whilst our proposal requires less than half the processing to generate the test

results.

Accuracy of NVS-based Action Recognition: Table 3.4 presents the results

on UCF-50 when using real & emulated spike events to train & test. The recognition

accuracy only drops up to 5.1% when training & testing between different spike

event sets, in comparison to using the same spike event types. To the best of our

knowledge, we are the first to evaluate on UCF-50 with a deep CNN ingesting

NVS inputs and our results are competitive or surpass well-known results on this

dataset [126]. Specifically, the most competitive results to ours is the APS-based

work of Todorovic et al. [138], which achieves 81.03% on UCF-50 by modelling

extracted video frame features on a stochastic Kronecker graph that requires 50-

100W [139] for the APS capture and preprocessing on a dual-core CPU to extract

video frame features. Therefore, despite the loss of 6.16% in accuracy, our approach

is four orders of magnitude more power efficient for the capturing and preprocessing

stages, as there is no preprocessing beyond spike aggregation and framing and the

DAVIS camera incurs only 10mW of active power consumption [20, 113].

More recent proposals focus on UCF-101, which is a bigger and more chal-

lenging dataset, and tend to utilize motion activity or APS frames as inputs to a

deep learning framework [132]. To assess our proposal against such inputs, we

compare its recognition accuracy with the one achieved when the same CNN is
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Table 3.4: Recognition accuracy on UCF-50 between training and testing with real and
emulated NVS frames.

Test
Real Emulated

Train
Real 79.92% 75.32%

Emulated 74.87% 78.36%

trained with the motion vector magnitude input I =
√

δx2 +δy2 that was extracted

from the video coding format [132]. On UCF-101 (split 1), both NVS and MV-

based CNNs were found to achieve comparable accuracy, i.e., 70.7% and 71.0%

respectively. This result can also be interpreted as initial experimental validation

that NVS and motion vector inputs from the video codec comprise scene activity

representations that can be found to be equally informative for a 3D CNN. With re-

gards to benchmarks against the state-of-the-art, recent work utilizing optical flow

and CNNs [130] is able to achieve 81.2% on UCF-101, which is 11% higher than

our results. However, the APS frame capture and preprocessing for optical flow

extraction requires a GPU, which incurs extreme power and latency overheads in

comparison to spike ingestion. For instance, Brox flow estimation is reported to

run at only 0.15 FPS on a Tesla K80 GPU [132] (with active power of more than

200W). Similarly as before, this corresponds to four orders of magnitude of power

increase for the sensing and preprocessing stages in comparison to our approach

that only requires power of the order of 10mW for the spike events to be captured,

aggregated and framed to be ingested by our CNN (which has 3 times less weights

than optical-flow oriented CNN processing [132]).

3.5.2 American Sign Language Recognition

In order to further validate our proposal against APS inputs, we introduce a new sign

language dataset for NVS-based classification. The dataset consists of 1200 real and

1200 emulated NVS recordings, each representing a different static sign of 24 letters

(A-Y, excluding J) from the American Sign Language. The emulated spike events

are generated using the PIX2NVS framework on APS video recordings, which are

captured using a standard laptop camera. The real spike events are generated with
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an iniLabs DAVIS240c NVS camera set up in the same environment and at the

same position and orientation to the person. Each signed letter recording lasts a

couple of seconds and is produced with different static hand positioning and hand

motion relative to the camera in order to introduce natural variance into the dataset.

Note that the experiments done in this section are different from the the American

sign language recognition experiments in Chapter 4. Specifically, the purpose here

is to evaluate our emulator PIX2NVS and using frame-based CNNs as tool, while

in Chapter 4 we design experiments to evaluate the graph representation and our

graph CNNs and also we largely increase the amount of ALS datasets used in the

experiment.

Network Input and Architecture: Fig. 3.5 shows the required hand pose for

each letter of the alphabet. For some letters (e.g., M and N), there is little variation

in finger positioning. Similar to prior work on sign language recognition [140],

letters J and Z are excluded from our dataset as their ASL designation requires

motion. Due to the relatively static (and short) nature of the sign recordings, having

a long temporal extent over the video is less important when evaluating the signed

letter, as the hand can be considered a rigid body with mainly translational motion

and limited rotational motion over the video duration. Therefore, contrary to the

UCF-101 action recognition task, spatial resolution is more important than temporal

extent, in order to distinguish between the individual fingers. As such, for this

dataset we opt for the standard VGG16 architecture pre-trained on ImageNet and

fine-tune all convolution layers and the first two fully connected layers on the sign

language dataset. However, as the NVS frames comprise only one channel, we

repurpose the RGB channels of the VGG16 input to take three consecutive frames,

in order to introduce local motion cues that may assist recognition performance.

Fig.3.6 compares the three-frame real NVS, emulated NVS and APS

(grayscale) inputs for two examples from the datasets. Under our experimental

setup, the DAVIS camera turned out to produce higher-than-expected ”salt & pep-

per” noise. Therefore, prior to CNN ingestion, we denoised each NVS frame by

median filtering with a block size of 2× 2. Such denoising is commonly applied
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Figure 3.5: Signs for letters A-Z from the American Sign Language (ASL). Some letters
such as M and N only have subtle differences. Letters J and Z are not static
signs and require motion.

Figure 3.6: Example of standardized 3-frame inputs to VGG16 for letters R (top row) and
X (bottom row): (a) Real NVS after 2×2 median filter; (b) Emulated NVS; (c)
APS (grayscale)

when converting NVS sensing to frame representations [141], and, in this case, we

have found that it improves the visual similarity with the emulated NVS frames.

This is illustrated in Fig. 3.6 for letters R and X.

Training and Testing: We train the VGG16 architecture using stochastic gra-

dient descent with momentum set to 0.9. The learning rate is initialized at 10−3
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and decayed by a factor of 0.1. We complete training at 15k iterations. In order to

combat overfitting, we set dropout and weight decay on the first two fully connected

layers to 0.8 and 0.005 respectively. We first resize the input frames such that the

smaller side is 256 and keep the aspect ratio. We then use a multi-scale random

cropping of the resized RGB frame; the cropped volume is subsequently randomly

flipped, and normalized according to its mean and standard deviation, as in Section

3.5.1. During testing, as the background is relatively uniform, we only take a single

maximal motion activity crop following the method described in Section 3.5.1.

Accuracy of NVS-based Sign Language Recognition: We further motivate

the efficacy of the proposed NVS emulation on the sign language recognition. First,

in order to show that transfer learning on the grayscale frames does not suffice (since

the domain shift between the pixel and NVS is too large), Table 3.5 compares the

accuracy achieved on the real NVS frames when fine-tuning pre-trained VGG16 on

grayscale frames versus fine-tuning on emulated NVS frames. The emulated spikes

are generated using the best parameter set measured on UCF-50 (i.e., the bottom

row of Table 3.3). Table 3.5 shows that the use of PIX2NVS allows for more than

35% increase in accuracy by converting pixels to a representation that resembles

experimental spike events.

In order to assess this result against other approaches, we compare against

recent work on real-time sign language recognition using consumer depth cam-

eras [140]. The paper uses data recorded from an Intel Creative Gesture Cam-

era. This device is a low-cost time-of-flight camera with range from 10cm to 1m,

maximal frame rate of 50 fps, resolution of 240× 320 pixels (for depth data), and

dynamic power consumption in the order of the Kinect sensor [142], i.e., 2.25–

4.7W [143] (versus only 10mW for the DAVIS sensor). Their dataset consists of 3

subjects performing the same 24 signs from the ASL sign language as in our dataset

(letters A-Y except J). The recognition accuracy is reported at 78%, which is only

4.5% higher than our result in Table 3.5. In summary, by using NVS-based inputs

we are able to achieve comparable accuracy on a larger sign language recognition

dataset, whilst our CNN inputs are: (i) of lower resolution, (ii) generated by the
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DAVIS camera at significantly higher framerate and (iii) with two orders of magni-

tude lower power consumption.

Table 3.5: Recognition accuracy on sign language dataset when training on grayscale and
emulated NVS frames and and testing on real NVS frames.

Test
NVS (Real)

Train
APS (Grayscale) 38.28%
NVS (Emulated) 73.52%

3.6 Conclusion
A key challenge when attempting recognition tasks with NVS data is the lack of an-

notated datasets to train advanced machine learning frameworks with. In this paper,

we attempt to address this by proposing NVS emulation framework that can con-

vert APS videos from action recognition datasets to emulated NVS spike events.

Our main observations are: (i) we demonstrate how downsampling the converted

NVS and grouping them into ’frame’ representations of long temporal extent leads

to dense representations that are suitable for 3D CNN training for action recogni-

tion; (ii) our results show that the gap between emulated spike events for training

and real spike events for testing is approximately five percentile points, which indi-

cates minimal domain shift after the proposed PIX2NVS framework; (iii) training

and testing with emulated NVS spike events is shown to achieve comparable per-

formance to the equivalent network that uses motion vector magnitudes extracted

from the compressed bitstream of the utilized videos; (iv) we demonstrate how em-

ulated NVS inputs can be used with a pre-trained ImageNet CNN for sign language

recognition and introduce a new NVS-based sign language recognition dataset for

evaluation; (v) overall, via PIX2NVS and appropriate parameter setting, for the first

time, NVS-based action recognition is shown to be within range of the best results

of recent proposals that ingest APS data. Also, we proposed and evaluated three

distance metrics to quantify the accuracy of the model-generated events against

ground-truth and optimize the parameter of PIX2NVS with random search.
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Acknowledge that there are shortcomings in our proposed methods. First of

all, the timestamp of generated events are largely restricted by the frame of rate of

video collections, which may increase the latency of NVS streams. Even though we

used linear interpolation method to assign timestamps, the temporal resolution still

is a challenge to improve. In addition, generated events are much cleaner compared

to the real events captured from NVS device. This may not imitate the nature of real

events so that it may not make the developed algorithms have the same performance

when using them in real life applications. As we all know, the noise definitely can

increase the robustness of the algorithms. These drawbacks are definitely needed to

be improved in the future work.



Chapter 4

Graph-based Object Classification

for Neuromorphic Vision Sensing

4.1 Introduction

Object classification finds numerous applications in visual surveillance, human-

machine interfaces, image retrieval and visual content analysis systems. Follow-

ing the prevalence and advances of CMOS active pixel sensing (APS), deep con-

volutional neural networks (CNNs) have already achieved good performance in

APS-based object classification problems [5, 137]. However, APS-based sens-

ing is known to be cumbersome for machine learning systems because of limited

frame rate, high redundancy between frames, blurriness due to slow shutter adjust-

ment under varying illumination, and high power requirements [144]. Inspired by

the photoreceptor-bipolar-ganglion cell information flow in low-level mammalian

vision, researchers have devised cameras based on neuromorphic vision sensing

(NVS) [21, 144, 145]. NVS hardware outputs a stream of asynchronous ON/OFF

address events (a.k.a., ’spikes’) that indicate the changes in scene reflectance. An

example is shown in Fig 4.1, where the NVS-based spike events correspond to a

stream of coordinates and timestamps of reflectance events triggering ON or OFF

in an asynchronous manner. This new principle significantly reduces the memory

usage, power consumption and redundant information across time, while offering

low latency and very high dynamic range.
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Figure 4.1: Examples of objects captured by APS and neuromorphic vision sensors. Left:
Conventional APS image. Right: Events stream from NVS sensor (Red:ON,
Blue:OFF).

However, it has been recognized that current NVS-based object classification

systems are inferior to APS-based counterparts because of the limited amount of

work on NVS object classification and the lack of NVS data with reliable an-

notations to train and test with [21, 144, 146]. In this Chapter, we improve on

these two issues by firstly proposing graph-based object classification method for

NVS data. Previous approaches have either artificially grouped events into frame

forms [4, 38–40] or derived complex feature descriptors [35, 72, 147], which do not

always provide for good representations for complex tasks like object classification.

Such approaches dilute the advantages of compactness and asynchronicity of NVS

streams, and may be sensitive to the noise and change of camera motion or view-

point orientation. To the best of our knowledge, this is the first attempt to represent

neuromorphic spike events as a graph, which allows us to use residual graph CNNs

for end-to-end task training and reduces the computation of the proposed graph con-

volutional architecture to one-fifth of that of ResNet50 [5], while outperforming or

matching the results of the state-of-the-art.

With respect to benchmarks, most neuromorphic datasets for object classifi-

cation available to date are generated from emulators [70, 117, 148], or recorded

from APS datasets via recordings of playback in standard monitors [113, 149, 150].

However, datasets acquired in this way cannot capture scene reflectance changes as

recorded by NVS devices in real-world conditions. Therefore, creating real-world

NVS datasets is important for the advancement of NVS-based computer vision. To

this end, we create and make available a dataset of NVS recordings of 24 letters (A-
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Y, excluding J) from the American sign language. Our dataset provides more than

100K samples, and to our best knowledge, this is the largest labeled NVS dataset

acquired under realistic conditions.

In this chapter we address two issues. First, in Section 4.2, we briefly ex-

plain the framework of graph-based object classification for neuromorphic vision

sensing. Specifically, in Section 4.2.1, we propose a graph-based representation

for neuromorphic spike events, allowing for fast end-to-end task training and infer-

ence; in Section 4.2.5, we introduce residual graph CNNs (RG-CNNs) as classifier

for object classification. This network requires less computation and memory in

comparison to conventional CNNs, while achieving superior results to the state-

of-the-art in various datasets as shown in Section 4.4. Second, we source one of

the largest and most challenging neuromorphic vision datasets, acquired under real-

world conditions, and make it available to the research community in Section 4.3.

We summary the novelties and contributions of this chapter here:

1. Graph representation for NVS streams pave a new ways for researchers to

explore as this kind of presentation can maintains compactness and sparsity

of events.

2. There are many potential applications by coupling graph representation with

graph-based deep learning methods, which not only can be implemented in

an end-to-end manners, but also can use the well-established gradient-based

learning rules to train a system with better performance.

3. Graph-based learning methods for NVS streams do not dilute the advantages

of neuromorphic vision sensing, which can offer a efficient system that re-

quire less memory and computation.

4.2 Methodology
Our goal is to represent the stream of spike events from neuromorphic vision sen-

sors as a graph and perform convolution on the graph for object classification. Our

model is visualized in Fig. 4.2: a non-uniform sampling strategy is firstly used to
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Figure 4.2: Framework of graph-based object classification for neuromorphic vision sens-
ing, indluding non-uniform sampling, graph constrnction and residual-graph
CNNs.

obtain a small set of neuromorphic events for computationally and memory-efficient

processing; then sampling events are constructed into a radius neighborhood graph,

which is processed by our proposed residual-graph CNNs for object classification.

As to residual-graph GNNs, it is mainly stacked by graph residual block, graph

pooling layers and fully connected layers as a classifier. The details will be de-

scribed in the following section.

4.2.1 Non-uniform Sampling & Graph Construction

Given a NVS sensor with spatial address resolution of H×W , we express a volume

of events produced by an NVS camera as a tuple sequence:

{ei}N = {xi,yi, ti, pi}N (4.1)

where (xi,yi)∈RH×W indicates the spatial address at which the spike event occured,

ti is the timestamp indicating when the event was generated, pi ∈ {+1,−1} is the

event polarity (with +1, -1 signifying ON and OFF events respectively), and N is

the total number of the events. To reduce the storage and computational cost, we

use non-uniform grid sampling [151] to sample a subset of M representative events

{ei}M from {ei}N , where M� N. Effectively, one event is randomly selected from

a space-time volume with the maximum number of events inside. If we consider
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s{ei}k
i=1 to be such a grid containing k events, then only one event ei (i ∈ [1,k]) is

randomly sampled in this space-time volume. We then define the sampling events

{ei}{m} on a directed graph G = {ν ,ε,U}, with ν being the set of vertices, ε the

set of the edges, and U containing pseudo-coordinates that locally define the spatial

relations between connected nodes. The sampling events are independent and not

linked, therefore, we regard each event ei : (xi,yi, ti, pi) as a node in the graph, such

that νi : (xi,yi, ti), with νi ∈ ν . We define the connectivity of nodes in the graph

based on the radius-neighborhood-graph strategy. Namely, neighboring nodes νi

and ν j are connected with an edge only if their weighted Euclidean distance di, j is

less than radius distance R. For two spike events ei and e j, the Euclidean distance

between them is defined as the weighted spatio-temporal distance:

di, j =
√

α(|xi− x j|2 + |yi− y j|2)+β |ti− t j|2 ≤ R (4.2)

where α and β are weight parameters compensating for the difference in spatial

and temporal grid resolution (timing accuracy is significantly higher in NVS cam-

eras than spatial grid resolution). To limit the size of the graph, we constrain the

maximum connectivity degree for each node by parameter Dmax.

We subsequently define u(i, j) for node i, with connected node j, as u(i, j) =[∣∣xi− x j
∣∣ , ∣∣yi− y j

∣∣] ∈ U. After connecting all nodes of the graph G = {ν ,ε,U} via

the above process, we consider the polarity of events as a signal that resides on the

nodes of the graph G. In other words, we define the input feature for each node i,

as f (0)(i) = pi ∈ {+1,−1}.

4.2.2 Graph Convolution

Generalizing neural networks to data with graph structures is an emerging topic

in deep learning research. The principle of constructing CNNs on graph gener-

ally follows two streams: the spectral perspective [87–93] and the spatial perspec-

tive [3, 94–98]. Spectral convolution applies spectral filters on the spectral compo-

nents of signals on vertices transformed by a graph Fourier transform, followed by

spectral convolution. Defferrard [89] provided efficient filtering algorithms by ap-
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proximating spectral filters with Chebyshev polynomials that only aggregate local

K-neighborhoods. This approach was further simplified by Kipf [87], who consider

only the one-neighborhood for single-filter operation. Levie [88] proposed a filter

based on the Caley transform as an alternative for the Chebyshev approximation.

As to spatial convolution, convolution filters are applied directly on the graph nodes

and their neighbors. Several research groups have independently dealt with this

problem. Duvenaud [94] proposed to share the same weights among all edges by

summing the signal over neighboring vertices followed by a weight matrix multi-

plication, while Atwood [95] proposed to share weights based on the number of

hops between two vertices. Finally, recent work [3, 98] makes use of the pseudo-

coordinates of nodes as input to determine how the features are aggregated during

locally aggregating feature values in a local patch. Spectral convolution operations

require an identical graph as input, as well as complex numerical computations be-

cause they handle the whole graph simultaneously, so it is not suitable for the vari-

able and large graphs constructed from NVS. Therefore, to remain computationally

efficient, our work follows the spirit of spatial graph convolution approaches and

extends them to NVS data for object classification.

Similar to conventional frame-based convolution, spatial convolution opera-

tions on graphs are also an one-to-one mapping between kernel function and neigh-

bors at relative positions w.r.t. the central node of the convolution. Let i denote a

node of the graph with feature f (i), N(i) denote the set of neighbors of node i and

g(u(i, j)) denote the weight parameter constructed from the kernel function g(.).

The graph convolution operator⊗ for this node can then be written in the following

general form

( f ⊗g)(i) =
1
|N(i)| ∑

j∈N(i)
f ( j) ·g(u(i, j)) (4.3)

where |N(i)| is the cardinality of N(i). We can generalize (4.3) to multiple input

features per node. Given the kernel function g = (g1, ...,gl, ...,gMin) and input node

feature vector fl , with Min feature maps indexed by l, the spatial convolution opera-
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Figure 4.3: Quadratic B-spline basis functions (reproduced from [3]): for kernel dimen-
sionality, The heights of the red dots represent trainable parameters, which are
multiplied by the elements of the B-spline tensor product basis.

tion ⊗ for the node i with Min feature maps is defined as:

(f⊗g)(i) =
1
|N(i)|

Min

∑
l=1

∑
j∈N(i)

fl( j) ·gl(u(i, j)) (4.4)

The kernel function g defines how to model the coordinates U. The content

of U is used to determine how the features are aggregated and the content of fl( j)

defines what is aggregated. Therefore, several spatial convolution operations [3,96–

98] on graphs were proposed by using different choice of kernel functions g. Among

them, SplineCNN [3] achieves state-of-the-art results in several applications, so

in our work we use the same kernel function as in SplineCNN. In this way, we

leverage properties of B-spline bases as shown in Fig. 4.3 to efficiently filter NVS

graph inputs of arbitrary dimensionality. Let ((Nm
1,i)1≤i≤k1, ...,(N

m
d,i)1≤i≤kd) denote d

open B-spline bases of degree m with k = (k1, ...,kd) defining d-dimensional kernel

size [152]. Let wp,l ∈W denote a trainable parameter for each element p from the

Cartesian product P = (Nm
1,i)i×· · ·× (Nm

d,i)i of the B-spline bases and each of the

Min input feature maps indexed by l. Then the kernel function gl : [a1,b1]×· · ·×
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[ad,bd]→R is defined as:

gl(u) = ∑
p∈P

wp,l ·
d

∏
i=1

Ni,pi(ui) (4.5)

We denote a graph convolution layer as Conv(Min,Mout), where Min is the number

of input feature maps and Mout is the number of output feature maps indexed by l
′
.

Then, a graph convolution layer with bias bl , activated by activation function ξ (t),

can be written as:

Convl′ = ξ (
1
|N(i)|

Min

∑
l=1

∑
j∈N(i)

fl( j) · ∑
p∈P

wp,l (4.6)

·
d

∏
i=1

Ni,pi(ui)+bl′ )

where l
′
= 1, ..,Mout, indicates the l

′
th output feature map. Given a series of C graph

convolutional layers (Conv(c))c∈[0,C], the c-th layer has corresponding input feature

map f(c) over all nodes, with the input feature for node i of the first layer Conv(0),

f (0)(i) = pi ∈ {+1,−1}.

Finally, to accelerate deep network training, we use batch normalization [153]

before the activation function in each graph convolutional layer. That is, the whole

node feature fl′ over l
′
channel map is normalized individually via:

f
′

l′
=

fl−E( fl′ )√
Var( fl′ )+ ε

· γ +β (4.7)

where l
′
= 1, ..,Mout, E( fl′ ) and Var( fl′ ) denote mean and variance of fl′ respec-

tively, ε is used to ensure normalization does not overflow when the variance is

near zero, and γ and β represent trainable parameters.

4.2.3 Pooling Layer

The utility of a pooling layer is to compact feature representations, in order to

preserve important information while discarding irrelevant details [154]. In con-

ventional APS-oriented CNNs, because of the uniform sampling grid (e.g., regular
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Figure 4.4: Illustration of graph pooling operation.

pixel array in images), pooling layers can be easily implemented by performing a

max, average, or sum operation over neighbouring features. Similar to recent work

in graph pooling [155], we apply pooling in order to obtain a coarser NVS graph.

As shown in the pooling layer of the Fig. 4.4, we first derive fixed-size clusters for

graphs based on the node coordinates, then aggregate all nodes within one cluster,

followed by the computation of new coordinates and features for the new nodes.

Given a graph representation, let us denote the spatial coordinates for node i as

(x′i,y
′
i) ∈ RH ′×W ′ and resolution as H ′×W ′. We define the cluster size as sh× sw,

which corresponds to the downscaling factor in the pooling layer, leading to
⌈

H ′
sh

⌉
×⌈

W ′
sw

⌉
clusters. Given there are num nodes {ν1, ...,νnum} in one cluster, only one new

node is generated on each cluster. For this new node, the coordinates (xnew,ynew)

are the average of coordinates of these num nodes, xnew = b∑num
i=1 xi/numc

ynew = b∑num
i=1 yi/numc .

(4.8)

And the feature is the average or maximum of feature of these num nodes, according

to whether a max pooling (MaxP) or average pooling (AvgP) strategy is used. fνl,new = MaxPool( fνl,i) = maxnum
i=1 ( fνl,i) OR

fνl,new = AvgPool( fνl,i) = ∑
num
i=1 fνl,i/num

(4.9)

Importantly, if there are connected nodes between two clusters, we as-

sume the new generated nodes in these two clusters are connected with an

edge. Let’s denote a max-pooling/average-pooling layer using above strategy with

MaxP(O)/AvgP(O), where O is the number of output channels. sh and sw are the
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dimension size of clusters, allowing for various down-scaling.

4.2.4 Fully Connected Layer

Given Min feature maps f−→ RP×Min from a graph with P nodes, similar to CNNs,

a fully connected layer in a graph convolutional network is a linear combination

of weights linking all input features to outputs. Let us denote f p
l (x) as the feature

in lth feature map of the pth node, then we can derive a fully connected layer for

q = 1, ...,Q as:

f out
q (x) = ξ (

P

∑
p=1

Min

∑
l=1

FP×Min×Q f p
l (x)) (4.10)

where Q is the number output channels indexed by q, F is trainable weight with

size P×Min×Q, ξ (t) is the non-linear activation function, e.g. ReLU: ξ (t) =

max(0, t). For the remainder of the paper, we use FC(Q) to indicate a fully con-

nected layer with Q output dimensions, comprising the results of (4.10).

4.2.5 Residual Graph CNNs

Inspired by the idea of ResNet [5], we propose residual graph CNNs in order to

resolve the well-known degradation problem inherent with increasing number of

layers (depth) in graph CNNs [156]. We apply residual connections for NVS-based

object classification, as shown in the related block of Fig. 4.2. Consider the plain

(non-residual) baseline is a graph convolutional layer with the kernel size of 5 in

each dimension, followed by a batch normalization [153] that accelerates the con-

vergence of the learning process. We consider a “shortcut” connection as a graph

convolution layer with kernel size of 1 in each dimension, which matches the di-

mension of the output future maps, and is also followed by batch normalization.

Then we perform element-wise addition of the node feature between shortcut and

the baseline, with ReLU activation function. We denote the resulting graph residual

block as Resg(cin,cout), with cin input feature maps and cout output feature maps.

We follow the common architectural pattern for feed-forward networks of in-

terlaced convolution layers and pooling layers topped by fully-connected layers.

For an input graph, a single convolutional layer is firstly applied, followed by batch

normalization, and max pooling. This is then followed by L graph residual blocks,
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each followed by a max pooling layer. Finally, two fully connected layers map the

features to classes. For example, for L = 2, we have the following architecture:

Conv −→MaxP −→ Resg −→MaxP −→ Resg −→MaxP −→ FC −→ FC.

4.3 Proposed American Sign Language Dataset
In this section, we first describe the existing NVS object classification datasets and

then we introduce our dataset that provides for an enlarged pool of NVS training

and testing examples for handshape classification.

4.3.1 Existing Neuromorphic Datasets

Many neuromorphic datasets for object classification are converted from standard

frame-based datasets, such as N-MNIST [114], N-Caltech101 [114], MNIST-DVS

[149] and CIFAR10-DVS [150]. N-MNIST and N-Caltech101 were acquired by an

ATIS sensor [145] moving in front of an LCD monitor while the monitor is dis-

playing each sample image. Similarly, MNIST-DVS and CIFAR10-DVS datasets

were created by displaying a moving image on a monitor and recording with a

fixed DAVIS sensor [1]. Emulator software has also been proposed in order to gen-

erate neuromorphic events from pixel-domain video formats using the change of

pixel intensities of successively rendered images [70, 117, 148]. While useful for

early-stage evaluation, these datasets cannot capture the real dynamics of an NVS

device due to the limited frame rate of the utilized content, as well as the limita-

tions and artificial noise imposed by the recording or emulation environment. To

overcome these limitations, N-CARS dataset [35] was created by directly record-

ing objects in urban environments with an ATIS sensor. This two-class real-world

dataset comprises 12,336 car samples and 11,693 non-car samples (background)

with 0.1 second length. Despite its size, given that it only corresponds to a binary

classifier problem, N-CARS cannot represent the behaviour of object classification

algorithms on more complex NVS-based tasks.

4.3.2 Description of ASL-DVS

We present a large 24-class dataset of handshape recordings under realistic condi-

tions. Its 24 classes correspond to 24 letters (A-Y, excluding J) from the American
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Figure 4.5: Examples of the ASL-DVS dataset (the visualizations correspond to letters A-
Y, excluding J, since letters J and Z involve motion rather than static shape).
Events are grouped to image form for visualization (Red/Blue: ON/OFF
events).

 

N-MNIST CIFAR10-DVS 

N-Caltech101 

ASL-DVS 

N-CARS 

MNIST-DVS 

Figure 4.6: Comparison of proposed NVS dataset w.r.t. the number of class and the number
of total size.
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Sign Language (ASL), which we call ASL-DVS. Examples of recordings are shown

in Fig 4.5. The ASL-DVS was recorded with an iniLabs DAVIS240c NVS camera

set up in an office environment with low environmental noise and constant illumina-

tion. For all recordings, the camera was at the same position and orientation to the

persons carrying out the handshapes. Five subjects were asked to pose the different

static handshapes relative to the camera in order to introduce natural variance into

the dataset. For each letter, we collected 4,200 samples (total of 100,800 samples)

and each sample lasts for approximately 100 milliseconds. As is evident from Fig.

4.5, our ASL-DVS dataset presents a challenging task for event-based classifiers,

due to the subtle differences between the finger positioning of certain letters, such

as N and O (first two letters in row 3). Fig. 4.6 shows a comparison of existing NVS

datasets w.r.t. the number of classes and total size. Within the landscape of existing

datasets, our ASL-DVS is a comparably complex dataset with the largest number

of labelled examples. We therefore hope that this will make it a useful resource for

researchers to build comprehensive model for NVS-based object recognition, espe-

cially given the fact that it comprises real-world recordings. ASL-DVS and related

code can be found at this link: https://github.com/PIX2NVS/NVS2Graph.

4.4 Experimental Results

4.4.1 Parameters Searching w.r.t. Performance and Complexity

In this section, we explore how performance and complexity are affected when vary-

ing the key parameters of our approach. Via the ablation studies reported here, we

justify the choice of parameters used for our experiments in the final experiments.

With regards to the parameters of the proposed graph CNNs, we experiment

with the non-residual (i.e., plain) graph architecture (G-CNN) as a representative

example, and explore the performance when varying the depth of graph convolution

layer and the kernel size of graph convolution. Concerning the graph construction,

our studied parameters are the time interval under which we extract events, the

event sample size and the radius distance (R) used to define the connectivity of the

nodes. All experiments reported in this supplementary note were conducted on the

https://github.com/PIX2NVS/NVS2Graph
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N-Caltech101 dataset, since it has the highest number of classes among all datasets.

Finally, training methods and data augmentation follow the description given in

Section 5.1 of the paper.

Event Sample Size for Graph Construction: The primary source of input

compression is the non-uniform sampling of the events prior to graph-construction,

which is parameterized by k in the paper. We explore the effects of this input com-

pression by varying k and evaluating the accuracy to complexity (GFLOPs) tradeoff

in Table 4.1. No compression (i.e., k = 1) gives accuracy/GFLOPs = 0.636/3.74,

whereas increasing compression with k = 12 gives accuracy/GFLOPs = 0.612/0.26

(i.e., 93% complexity saving). This suggests that the accuracy is relatively insensi-

tive to compression up to k = 12 (with k = 8 providing an optimal point) and it is the

graph CNN that provides for state-of-the-art accuracy.

Table 4.1: Top-1 accuracy and complexity (GFLOPs) w.r.t. event sample size, parameter-
ized by k.

k Accuracy GFLOPs
1 0.636 3.74
8 0.630 0.39

12 0.612 0.26

Radius Distance: When constructing graphs, the radius-neighborhood-graph

strategy is used to define the connectivity of nodes. The radius distance (R) is

an important graph parameter: when the radius is large, the number of generated

graph edges increases, i.e., the graph becomes denser and needs increased GFLOPs

for the convolutional operations. On the other hand, if we set a small radius, the

connectivity of nodes may decrease to the point that it does not represent the true

spatio-temporal relations of events, which will harm the classification accuracy. In

this ablation study, we varied the radius distance to R = {1.5,3,4.5,6}, to find the

best distance with respect to accuracy and complexity. The results are shown in

Table 4.2, where we demonstrate that radius distance above 3 cannot improve the

model performance while incurring significantly increased complexity. Therefore,

in our paper we set the radius distance to 3. Note that when radius distance changes

from 4.5 to 6, the required computation increases only slightly because of the max-
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imum connectivity degree Dmax that is set to 32 to constrain the edge volume of

graph.

Table 4.2: Top-1 accuracy and complexity (GFLOPs) w.r.t. radius distance

Radius distance Accuracy GFLOPs
1.5 0.551 0.33
3 0.630 0.39

4.5 0.626 0.98
6 0.624 1.19

Time Interval of Events: For each sample, events within a fixed time interval

are randomly extracted to input to our object classification framework. In this study,

we test under various time intervals, i.e., 10, 30, 50 and 70 milliseconds, to see their

effect on the accuracy and computation. The results are shown in Table 4.3. When

extracting 30ms-events from one sample, the model achieves the highest accuracy,

with modest increase in complexity over 10ms-events. Therefore, we opted for this

setting in our paper.

Table 4.3: Top-1 accuracy and complexity (GFLOPs) w.r.t. the length of extracted events

length (ms) Accuracy GFLOPs
10 0.528 0.31
30 0.630 0.39
50 0.613 0.92
70 0.625 1.27

Depth of Graph Convolution Layers: As to the architecture of graph con-

volution networks, experimental studies by Li et al. [156] show that the model

performance saturates or even drops when increasing the number of layers be-

yond a certain point, since graph convolution essentially pushes representations

of adjacent nodes closer to each other. Therefore, the choice of depth of graph

convolution layers (D) affects the model performance as well as its size and its

complexity. In the following experiment, we tested various depths from 2 to 6,

each followed by a max pooling layer, and subsequently concluding the archi-

tecture with two fully connected layers. The number of output channels (Cout)

in each convolution layer and the cluster size ([sh,sw]) in each pooling layers

were as follows: (i) D = 2: Cout = (128,256), [sh,sw] = (16× 12,60× 45); (ii)
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D = 3: Cout = (64,128,256), [sh,sw] = (8× 6,16× 12,60× 45); (iii) D = 4:

Cout = (64,128,256,512), [sh,sw] = (4× 3,16× 12,30× 23,60× 45); (iv) D = 5:

Cout = (64,128,256,512,512), [sh,sw] = (4× 3,8× 6,16× 12,30× 23,60× 45);

(v) D = 6: Cout = (64,128,256,512,512,512), [sh,sw] = (2× 2,4× 3,8× 6,16×

12,30×23,60×45). For all cases, the number of output channels of the two fully

connected layers were 1024 and 101 respectively. The results are show in Table 4.4:

while the highest accuracy is obtained when the depth is 5, complexity (GFLOPs)

and size (MB) of the network is substantially increased in comparison to D = 4.

Therefore, in our paper, we set the depth of graph convolution layer to D = 4.

Table 4.4: Top-1 accuracy, complexity (GFLOPs) and size (MB) of networks w.r.t. depth
of convolution layer.

Depth Accuracy GFLOPs Size (MB)
2 0.514 0.11 5.53
3 0.587 0.16 6.31
4 0.630 0.39 18.81
5 0.634 1.05 43.81
6 0.615 2.99 68.81

Kernel Size: Kernel size determines how many neighboring nodes’ features

are aggregated into the output node. This comprises a tradeoff between model size

and accuracy. Unlike conventional convolution, the number of FLOPs needed is

independent of the kernel size. This is due to the local support property of the B-

spline basis functions [3]. Therefore we only report the accuracy and model size

with respect to various kernel sizes. In this comparison, the architecture is the same

as the G-CNNs in Section 5.1, with the only difference being that the kernel size

is increasing between 2 to 6. The results are shown in the Table 4.5. When kernel

size is set as 3, 4, 5 and 6, the networks achieve the comparable accuracy, while the

size of network increases significantly when the kernel size increases. In our work,

we set kernel size in the graph convolution to 5, due to the slightly higher accuracy

it achieves. It is important to note that, even with a kernel size of 5 that incurs

a larger-size model in comparison to size of 3, our approach is still substantially

less complex than conventional deep CNNs, as shown in Table 4.7 in the following

section.
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Table 4.5: Top-1 accuracy and size (MB) of networks w.r.t. kernel size

Kernel size Accuracy Size (MB)
2 0.543 5.02
3 0.626 8.30
4 0.621 12.90
5 0.630 18.81
6 0.627 26.02

Table 4.6: Accuracy/GFLOPs of networks w.r.t. input size on N-Caltech101, for conven-
tional deep CNNs with event image inputs.

Input Size VGG 19 Inception V4 ResNet 50
224×224 0.549/19.63 0.578/9.24 0.637/3.87
112×112 0.457/4.93 0.4272/1.63 0.595/1.02
56×56 0.300/1.29 0.343/0.22 0.517/0.28

G-CNNs 0.630/0.39 RG-CNNs 0.657/0.79

Input Size for Deep CNNs: We investigate how the input size controls the

tradeoff between accuracy and complexity for conventional deep CNNs trained on

event images. We follow the training protocol and event image construction de-

scribed in Section 5.2 of the paper, but now downsize the event image inputs to

various resolutions prior to processing with the reference networks. The accuracy

and complexity (GFLOPs) is reported on N-Caltech101 in Table 4.6. ResNet-50

offers the highest accuracy/GFLOPs tradeoff for conventional CNNs, ranging from

0.637/3.87 to 0.517/0.28. However, our RG-CNN trained on graph inputs surpasses

accuracy of ResNet-50 for all resolutions, whilst offering comparable complexity

(0.79 GFLOPs).

4.4.2 Comparison to the State-of-the-Art

In our experiments, the datasets of Fig. 4.6 are used to validate our algorithm.

For the N-MNIST, MNIST-DVS and N-CARS datasets, we use the predefined

training and testing splits, while for N-Caltech101, CIFAR10-DVS and ASL-DVS,

we follow the experiment setup of Sironi [35]: 20% of the data is randomly se-

lected for testing and the remaining is used for training. For each sample, we

randomly extract a single 30-millisecond time window of events, as input to our

object classification framework. During the non-uniform sampling, the maximal

number of events k in each space-time volume is set to 8. When constructing
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graphs, the radius R is 3, weighted parameters α and β are set to 1 and 0.5×10−5,

respectively, and the maximal connectivity degree Dmax for each node is 32. As

to the architecture of graph convolution networks, we choose two residual graph

blocks for simple datasets N-MNIST and MNIST-DVS (L = 2). The architec-

ture of our network for these datasets is Conv(1,32)−→MaxP(32)−→Resg(32,64)

−→MaxP(64)−→Resg(64,128)−→MaxP(128)−→ FC(128)−→FC(Q), with Q

is the number of classes of each dataset, and the cluster size in each pooling

layer is 2×2, 4×4 and 7×7, respectively. For the remaining datasets, three

residual graph blocks (L=3) are used, and the utilized network architecture is

Conv(1,64)−→MaxP(64)−→Resg(64,128)−→MaxP(128)−→Resg(128,256)−→

MaxP(256)−→ Resg(256,512)−→MaxP(512)−→FC(1024)−→FC(Q). Since the

datasets are recorded from different sensors, the spatial resolution of each sensor

is different (i.e., DAVIS240c: 240×180, DAVIS128 & ATIS: 128×128), lead-

ing to various maximum coordinates for the graph. We therefore set the cluster

size in pooling layers in two categories; (i) N-Caltech101 and ASL-DVS: 4×3,

16×12, 30×23 and 60×45; (ii) CIFAR10-DVS and N-CARS: 4×4, 6×6, 20×20

and 32×32. We also compare the proposed residual graph networks (RG-CNNs)

with their corresponding plain graph networks (G-CNNs) that stacked the same

number of graph convolutional and pooling layers. The degree of B-spline bases m

of all convolutions in this work is set to 1.

In order to reduce overfitting, we add dropout with probability 0.5 after the

first fully connected layer and also perform data augmentation. In particular, we

spatially scale node positions by a randomly sampled factor within [0.95,1), per-

form mirroring (randomly flip node positions along 0 and 1 axis with 0.5 probabil-

ity) and rotate node positions around a specific axis by a randomly sampled factor

within [0,10] in each dimension. Networks are trained with the Adam optimizer for

150 epochs, with batch size of 64 and learning rate of 0.001. The learning rate is

decayed by a factor of 0.1 after 60 and 110 epochs.

To compare with the state-of-the-arts, we compute the accuracy of classifi-

cation accordingly. We compare Top-1 classification accuracy obtained from our
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Table 4.7: Top-1 acccuracy of our CNNs w.r.t. the state of the art & other graph convolution
networks.

Model N-MNIST MNIST-DVS N-Caltech101
H-First [33] 0.712 0.595 0.054
HOTS [147] 0.808 0.803 0.210

Gabor-SNN [42, 157] 0.837 0.824 0.196
HATS [35] 0.991 0.984 0.642

G-CNNs (this work) 0.985 0.974 0.630
RG-CNNs (this work) 0.990 0.986 0.657

Model CIFAR10-DVS N-CARS ASL-DVS
H-First [33] 0.077 0.561 -
HOTS [147] 0.271 0.624 -

Gabor-SNN [42, 157] 0.245 0.789 -
HATS [35] 0.524 0.902 -

G-CNNs (this work) 0.515 0.902 0.875
RG-CNNs (this work) 0.540 0.914 0.901

model with that from HOTS [147], H-First [33], SNN [42, 157] and HATS [35].

HOTS relies on a time-oriented approach to extract spatio-temporal features from

the asynchronously acquired dynamics of a visual scene, which describes the re-

cent time history of events in the spatial neighborhood of an event. Specifically,

HOTS [147] considers the times of most recent events with the same polarity in

the spatial neighbourhood and extracts a spatial receptive field, allowing to build

the event-context, then exponential decay kernels are applied to the obtained values

to constitute the time-surface. H-First [33] takes advantage of timing information

provided by AER sensors and uses spike timing to encode the strength of neuron ac-

tivation, with stronger activated neurons spiking earlier. This enables to implement

a MAX operation using a simple temporal Winner-Take-All rather than performing

a synchronous MAX operation. Inspired by time-surfaces, HATS [35] is a higher-

order representation for local memory time surfaces that emphasizes the importance

of using the information carried by past events to obtain a robust representation.

For SNN, the results are previously published, while for HOTS, H-First and

HATS, we report results from Sironi [35], since we use the same training and testing

methodology. The results are shown in Table 4.7. On five out of the six evaluated

datasets, our proposed RG-CNNs consistently outperform these methods and sets
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a new state-of-the-art, achieving near-perfect classification on smaller datasets, N-

MNIST and MNIST-DVS.

4.4.3 Comparison to Other Graph Convolution

Graph convolution generalizes the traditional convolutional operator to the graph

domain. Similar to frame-based convolution, graph convolution has two types

[158]: spectral and spatial. Spectral convolution [89–93] defines the convolution

operator by decomposing a graph in the spectral domain and then applying a spec-

tral filter on the spectral components. Spatial convolution [3, 96–98] aggregates

a new feature vector for each vertex using its neighborhood information weighted

by a trainable kernel function. Similar to conventional frame-based convolution,

spatial convolution operations on graphs are also an one-to-one mapping between

kernel function and neighbors at relative positions w.r.t. the central node of the

convolution. In this experiment, we compare the performance with respect to dif-

ferent graph convolution operation. Here we consider four other graph convolution

operations: GCN [87], ChebConv [89], MoNet [98] and GIN [159].

ChebConv is a spectral graph convolution operation. As we illustrated before,

spectral convolution [89–93] defines the convolution operator by decomposing a

graph in the spectral domain and then applying a spectral filter on the spectral com-

ponents. Therefore, we have the following useful property that if the spectral filter

is an order of K polynomial, it is exactly K-hop localized in the spatial domain.

Defferrard et al. [89] exploited this property and designed localized filters of the

form of polynomial parametrization, however, the computational complexity is still

high because of the multiplication with the Fourier basis. Thus, designed the spec-

tral filter using Chebyshev polynomial so that filter can thus be parametrized as the

truncated expansion, which largely reduce the computational complexity. GCN [87]

is proposed by Kipf and Welling who simplified the Chebyshev polynomial of or-

der K to the linear form. Such a model can alleviate the problem of overfitting on

local neighborhood structures for graphs with very wide node degree distributions,

Additionally, this layer-wise linear formulation allows to build deeper models with

a fixed computational budget. MoNet [98] is a Spatial Graph Convolution opera-
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tion, which generalises the previous spatial domain framework on non-Euclidean

domains by introducing a local system of d-dimensional pseudo-coordinates and

defines parametric kernels using Gaussian kernel instead of using fixed kernel con-

structions. GIN characterizes the representational capacity of GNNs via a slightly

weaker criterion: a powerful heuristic called Weisfeiler-Lehman (WL) graph iso-

morphism test; hence enables GNNs to not only discriminate different structures,

but also to learn to map similar graph structures to similar embeddings and cap-

ture dependencies between graph structures [159]. Capturing structural similarity

of the node labels is helpful for generalization particularly when the co-occurrence

is sparse across different graphs or there are noisy edges and node features.

Table 4.8: Top-1 acccuracy of our CNNs w.r.t. the state of the art & other graph convolution
networks.

Model N-MNIST MNIST-DVS N-Caltech101
GIN [159] 0.754 0.719 0.476

ChebConv [89] 0.949 0.935 0.524
GCN [87] 0.781 0.737 0.530

MoNet [98] 0.965 0.976 0.571
G-CNNs (this work) 0.985 0.974 0.630

RG-CNNs (this work) 0.990 0.986 0.657
Model CIFAR10-DVS N-CARS ASL-DVS

GIN [159] 0.423 0.846 0.514
ChebConv [89] 0.452 0.855 0.317

GCN [87] 0.418 0.827 0.811
MoNet [98] 0.476 0.854 0.867

G-CNNs (this work) 0.515 0.902 0.875
RG-CNNs (this work) 0.540 0.914 0.901

Table 4.8 includes the classification results stemming from other graph con-

volutional networks. The architectures of all control networks are the same as our

plain graph networks (G-CNNs) in this section, with the only difference being the

graph convolutional operation. The training details and data augmentation methods

are the same as illustrated before. The classification accuracy stemming from all

networks of Table 4.8 indicates that our proposed RG-CNN and G-CNN outper-

form all other graph convolutional networks.
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4.4.4 Comparison to Deep CNNs

In order to further validate our proposal, we compare our results with conventional

deep convolutional networks trained on event-based frames. We train/evaluate

on three well-established CNNs; namely, VGG 19 [160], Inception V4 [161] and

ResNet 50 [5]. Given that the format of the required input for these CNNs is frame-

based, we group neuromorphic spike events to frame form over a random time seg-

ment of 30ms, similar to the grouping images of Zhu [38]. The two-channel event

images have the same resolution as the NVS sensor, with each channel encoding

the number of positive and negative events respectively at each position. To avoid

overfitting, we supplement the training with heavy data augmentation: we resize

the input images such that the smaller side is 256 and keep the aspect ratio, then

randomly crop, flip and normalize 224×224 spatial samples of the resized frame.

We train all CNNs from scratch using stochastic gradient descent with momentum

set to 0.9 and L2 regularization set to 0.1×10−4, and the learning rate is initialized

at 10−3 and decayed by a factor of 0.1 every 10k iterations.

The Top-1 classification accuracy of all networks is reported in Table 4.9, with

the implementation of our proposed G-CNNs and RG-CNNs being the same as in

Section 4.4.2. As to reference networks, despite performing comprehensive data

augmentation and L2 regularization to avoid overfitting, the results acquired from

conventional CNNs are still below the-state-of-the-art since event images contain

far less information (see Fig. 4.1). However, the accuracy of our proposals surpasses

that of conventional frame-based deep CNNs on nearly all datasets.

We now turn our attention to the complexity of our proposals and compare the

number of floating-point operations (FLOPs) and the number of parameters of each

model. In conventional CNNs, we compute FLOPs for convolution layers as [162]:

FLOPs = 2HW (CinK2 +1)Cout (4.11)

where H, W and Cin are height, width and the number of channels of the input fea-

ture map, K is the kernel size, and Cout is the number of output channels. For graph

convolution layers, FLOPs stem from 3 parts [3]; (i) for computation of B-spline
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Table 4.9: Top-1 acccuracy of our graph CNNs with graph input w.r.t. CNNs with image
form input.

Model N-MNIST MNIST-DVS N-Caltech101
VGG 19 [160] 0.972 0.983 0.549

Inception V4 [161] 0.973 0.985 0.578
ResNet 50 [5] 0.984 0.982 0.637

G-CNNs (this work) 0.985 0.974 0.630
RG-CNNNs (this work) 0.990 0.986 0.657

Model CIFAR10-DVS N-CARS ASL-DVS
VGG 19 [160] 0.334 0.728 0.806

Inception V4 [161] 0.379 0.864 0.832
ResNet 50 [5] 0.558 0.903 0.886

G-CNNs (this work) 0.515 0.902 0.875
RG-CNNNs (this work) 0.540 0.914 0.901

bases, there are Nedge(m+1)d threads each performing 7d FLOPs (4 additions and

3 multiplications), where Nedge is the number of edges, m the B-spline basis de-

gree and d the dimension of graph coordinates; (ii) for convolutional operations,

the FLOPs count is 3NedgeCinCout(m+1)d , with factor 3 stemming from 1 addition

and 2 multiplications in the inner loop of each kernel and Cin and Cout is the number

of input and output channels, respectively; (iii) for scatter operations and the bias

term, the FLOPs count is (Nedge +Nnode)Cout, where Nnode is the number of nodes.

In total, we have

FLOPs = Nedge(m+1)d(3CinCout +7d)+(Nedge +Nnode)Cout

For fully connected layers, in both conventional CNNs and GCNs, we compute

FLOPs as [162] FLOPs = (2I− 1)O, where I is the input dimensionality and O

is the output dimensionality. With regards to the number of parameters, for each

convolution layer in both CNNs and GCNs, it is (CinK2 + 1)Cout, while in fully

connected layers, it is (Cin + 1)Cout. As shown by (4.12), FLOPs of graph con-

volution depend on the number of edges and nodes. Since the size of input graph

varies per dataset, we opt to report representative results from N-Caltech101 in Ta-

ble 4.10. G-CNNS and RG-CNNs have a smaller number of weights and require

the less computation compared to deep CNNs. The main reason is that the graph
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Table 4.10: Complexity (GFLOPs) and size (MB) of networks.

Model GFLOPs Size (MB)
VGG 19 [160] 19.63 143.65

Inception V4 [161] 12.25 42.62
ResNet 50 [5] 3.87 25.61

G-CNNs 0.39 18.81
RG-CNNs 0.79 19.46

representation is compact, which in turn reduces the amount of data needed to be

processed. For N-Caltech101, the average number of nodes of each graph is 1,000,

while grouping events into a 2-channel image makes the input size equal to 86,400.

4.5 Conclusion
Neuromorphic vision sensing (NVS) devices represent visual information as se-

quences of asynchronous discrete events (a.k.a., ’spikes’) in response to changes in

scene reflectance. Unlike conventional active pixel sensing (APS), NVS allows for

significantly higher event sampling rates at substantially increased energy efficiency

and robustness to illumination changes. However, object classification with NVS

streams cannot leverage on state-of-the-art convolutional neural networks (CNNs),

since NVS does not produce frame representations. To circumvent this mismatch

between sensing and processing with CNNs, we propose a compact graph repre-

sentation for NVS, which allows for condensed representations, and in turn allow

for end-to-end task training and fast post-processing that matches the compact and

non-uniform sampling of NVS hardware. We couple this with novel residual graph

CNN architectures and show that, when trained on spatio-temporal NVS data for

object classification, such residual graph CNNs preserve the spatial and temporal

coherence of spike events, while requiring less computation and memory. Finally, to

address the absence of large real-world NVS datasets for complex recognition tasks,

we present and make available a 100k dataset of NVS recordings of the American

sign language letters, acquired with an iniLabs DAVIS240c device under real-world

conditions.



Chapter 5

Spatio-Temporal Feature Learning

for Neuromorphic Vision Sensing

5.1 Introduction

Beyond event sparsity and asynchronicity, neuromorphic event streams are naturally

encoding spatio-temporal motion information [144]; as such, they are extremely

adaptable to tasks related to moving objects such as action analysis/recognition, ob-

ject tracking or high-speed moving scenes. As an illustration, Fig. 5.1 shows a

neuromorphic event stream, overlaid with the corresponding RGB frames recorded

at the video frame rate; events are plotted according to their spatio-temporal coordi-

nates and color coded as blue (OFF) and red (ON). Notably, there are many more in-

termediate events between the RGB frames, which indicates the substantially higher

frame rate achievable with an NVS device and asynchronous outputs. Furthermore,

the asynchronicity removes the data redundancy from the scene, which reduces to

the power requirement to 10mW, compared to several hundreds of mW for APS

sensors. Remarkably, NVS devices achieve this with microsecond-level latency and

robustness to uncontrolled lighting conditions as no synchronous global shutter is

used. We therefore look to perform feature learning directly on the raw neuromor-

phic events. This is in contrast to recent work on action analysis/recognition [163],

which relies on extracting spatio-temporal features from RGB frames and thus in-

herits the limitations associated with APS cameras.
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Figure 5.1: Examples of archery action captured by APS and NVS devices. APS devices
capture images at fixed frame rates, while NVS devices output a stream of
events. (Red:ON, Blue:OFF)

Unfortunately, effective methods for representation learning on neuromorphic

events to solve complex computer vision tasks are currently limited and outper-

formed by their APS-based counterparts. This is partly due to a limited research

in the NVS domain, as well as a lack of NVS data with reliable annotations to

train and test on [21, 144, 146]. Yet, more so, the sheer abundance of asynchronous

and sparse events means that feature learning directly on events can be particularly

cumbersome and unwieldy. Much of the recent success of computer vision comes

from the definition of robust and invariant feature or interest point extractors and

descriptors. Thus far, most approaches have attempted to solve this issue by either

artificially grouping events into frame forms [4,38–40] or deriving complex feature

descriptors [35, 72, 147], which do not always provide for good representations for

complex tasks like action recognition. Moreover, such approaches dilute the advan-

tages of the asynchronicity of NVS streams by limiting the frame-rate, and may be

sensitive to the noise and change of camera motion or viewpoint orientation. Fi-

nally these methods fail to model long temporal event dependencies explicitly and

maintain a representation of the feature dynamics over time, thus rendering them

less viable for action recognition and action similarity-based tasks. More recent

methods have employed end-to-end feature learning, where a convolutional neu-

ral network (CNN) [32, 76] or spiking neural network (SNN) [79, 80] is trained to

learn directly from raw observations. While these methods show great promise,

CNN-based learning methods require event grouping into frames and therefore suf-

fer from the same drawbacks as above. On the other hand, SNN-based methods are
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complex to train, which results in lower performance compared to gradient-based

alternatives.

In this chapter, we propose an end-to-end feature learning framework trained

directly on neuromorphic events. Instead of using CNNs or SNNs, we propose to

leverage on graph-based learning. By representing events as graphs, we are able

to maintain event asynchronocity and sparsity, while performing training with tra-

ditional gradient-based backpropagation. To the best of our knowledge, this is the

first attempt to represent neuromorphic spike events as graphs, and the first time

neuromorphic events have been trained with graph convolution neural networks and

end-to-end feature learning. Our proposed graph based framework is able to accom-

modate both appearance and motion-based tasks; in this paper, we focus on action

recognition, action similarity labeling and scene recognition as representative tasks.

For object classification in Chapter 4, we design a spatial feature learning module,

comprising graph convolutional layers and graph pooling layers, for processing a

single input event graph. While in this chapter we extend this module with tem-

poral feature learning, in order to learn a spatio-temporal representation over the

entire input. Specifically, we introduce a Graph2Grid block for aggregating a se-

quence of graphs over a long temporal extent. Each event graph in the sequence

is first processed by a spatial feature learning module; the mapped graphs are then

converted to grid representation by the Graph2Grid block and the resulting frames

are stacked, for processing with any conventional 2D or 3D CNN. This is inspired

by recent work in APS-based action recognition [163] that processes multiple RGB

frames with 2D CNNs and aggregates the learned representations with a 3D convo-

lution fusion and pooling.

In order to address the lack of NVS data for evaluation, we introduce the largest

sourced NVS dataset for action recognition and action similarity labeling. We

leverage on existing APS-based datasets such as UCF101 [126], HMDB51 [164],

ASLAN [165] and YUPENN [166], and convert these to the NVS domain by

recording the display with an NVS camera. The generated NVS datasets, UCF101-

DVS, HMDB51-DVS and ASLAN-DVS, represent the largest NVS datasets for
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human action. We evaluate our framework on these three tasks in Sec. 5.3 and

show that our framework achieves state-of-the-art results on both tasks compared to

recent work or conventional frame-based approaches.

5.2 Methodology
The architecture for our graph-based spatio-temporal feature learning network is

shown in the Fig. 5.2, and it consists of four parts: graph construction and sampling,

spatial feature learning module, Graph2Grid module and temporal feature learning

module. The neuromorphic events are firstly sampled and connected with a se-

quence of graphs. For object classification, a single graph is typically constructed,

whereas for action recognition with longer temporal extent, multiple graphs are ex-

tracted over the event stream duration. The graphs are then individually processed

by a spatial feature learning module, which consists of multiple graph convolution

and pooling layers to map the input to a coarser graph encoding. For object classi-

fication, we obtain a single graph encoding that we pass to a single fully connected

layer for prediction. Conversely, for action recognition and action similarity label-

ing, we obtain multiple graph encodings. As such, we convert the graphs to a grid

representation with our Graph2Grid module and stack the resulting frames, for tem-

poral feature learning with a 3D CNN. In this way, we are able to effectively and

efficiently learn spatio-temporal features for motion-based applications, such as ac-

tion recognition. We provide more details on each component of the framework in

the following sections.

5.2.1 Sampling and Graphs Construction

To maintain a representation of the feature dynamics over time, We introduce

the parameter S to represent the number of graphs constructed from one sample.

Given that an application, such as object classification in Chapter 4, focuses on

appearance-based feature and typically only requires a short temporal extent, we

set S = 1. Specifically, we randomly extract Tvol length events over the entire event

stream to construct a graph. Conversely, in this chapter, we are exploting the both

spatial and temporal feature learning, thus we divide the event stream into S vol-
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umes with the same time duration, then we construct a graph for each volume in

which Tvol (Tvol < T/S, where T is sample duration) length events are randomly

extracted to construct a graph, giving us a set of graphs G = {Gn}S
n=1. In this

way, we efficiently model coarse temporal dependencies over the duration of the

sample, without constructing a single large and substantially complex graph. The

graphs can thus be processed individually by our spatial feature learning module

before fusion with our Graph2Grid module and temporal feature learning. This is

inspired by recent work on action recognition with RGB frames [163], which fuses

representations over coarse temporal scales with 3D convolutions and pooling; in-

deed, our graph-based framework is substantially more lightweight and does not

suffer from the limitations of active pixel sensing. As to the graph construction

progress for each volume, we follow the technology in 4.2.1 for implementation.

Specifically, extracted events are firstly sampled by using non-uniform sampling

that largely reduces the amount of data for post-processing and allows for a more

computation-efficient system; then sampled events are regarded as nodes of graph

and we define the connectivity of nodes using the radius-neighborhood-graph strat-

egy as illustrated in 4.2; finally the polarity of events are regarded as feature that is

inside each node. We just make simple description here and for more details please

refer to the Section 4.2.1.

5.2.2 Spatial Feature Learning Module

The constructed graphs are first fed individually into a spatial feature learning mod-

ule, where our framework learns appearance information. According to the common

architectural pattern for feed-forward neural networks, these graph convolutional

neural networks are built by interlacing graph convolution layer and graph pooling

layers, where the graph convolution layer performs a non-linear mapping and the

pooling layer reduces the size of the graph.

Inspired by the ResNet architecture [5], we propose residual graph CNNs for

our spatial feature learning module, in order to resolve the well-known degradation

problem inherent with increasing number of layers (depth) in graph CNNs [156].

Especially, graph CNNs easily suffer from the problem of over-smoothing; this is,
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when the networks go deeper, the feature in all nodes turn to be the same. This

largely degrade the performance of model. Our residual graph CNN (RG-CNN) is

effectively composed of a series of residual blocks and pooling layers. Considering

equations (4.3) and (4.7) denote a single graph convolutional layer with batch nor-

malization [153] that accelerates the convergence of the learning process, we apply

residual connections in spatial feature learning module by summing element-wise

the outputs of graph convolutions. Our “shortcut” connection comprises a graph

convolution layer with kernel size K = 1 for mapping the feature dimension to the

correct size, and is also followed by batch normalization. A residual block is illus-

trated at the bottom right of Fig. 4.2. We denote the resulting graph residual block

as Resg(cin,cout), with cin input feature maps and cout output feature maps.

A residual block is followed by max pooling over clusters of nodes; given a

graph representation, let us denote the spatial coordinates for node i as (x′i,y
′
i) ∈

RH ′×W ′ and resolution as H ′×W ′. We define the cluster size as sh× sw, which

corresponds to the downscaling factor in the pooling layer of
⌈

H ′
sh

⌉
×
⌈

W ′
sw

⌉
. For

each cluster, we generate a single node, with feature set to the maximum over node

features f in the cluster, and coordinates set to the average of node coordinates

(x′i,y
′
i) in the cluster. Importantly, if there are connected nodes between two clusters,

we assume the new generated nodes in these two clusters are connected with an

edge.

5.2.3 Graph2Grid: From Graphs to Grid Snippet

For motion-based tasks, we need to model temporal dependencies over the entire

event stream. As discussed in Section 5.2.1, given a long video duration, it is not

feasible to construct a single graph over the entire event stream, due to the sheer

number of events. It is more computationally feasible to generate multiple graphs

for time blocks of duration TV . These are processed individually by the spatial

feature learning module. However, to model coarse temporal dependencies over

multiple graphs, we must fuse the spatial feature representations. We propose a

new Graph2Grid module that transforms the learned graphs from our spatial fea-

ture learning module to a grid representation and performs stacking over temporal
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dimension, as illustrated in Fig. 4.2. In this way. we are effectively able to cre-

ate pseudo frames from the graphs, with Min channels and timestamp (n− 1)TV ,

corresponding with the n-th graph.

Again, denoting the output spatial feature learning map as f spatial
l (i) for the

lth output feature map of the ith node with coordinates (x′i,y
′
i) ∈ RHspatial×Wspatial , we

define a grid representation fgrid(i) of spatial size Hspatial×Wspatial as follows:

f grid
a,b,l =

 f spatial
l (i), when a = x′i,b = y′i

0, otherwise
(5.1)

where (a,b) ∈ RHspatial×Wspatial . The resulting grid feature representation fgrid ∈

RHspatial×Wspatial×Min is for a single graph; for S graphs over the temporal sequence,

we simple concatenate over a fourth temporal dimension. We denote the re-

sulting grid feature over S graphs as Fgrid = fgrid,1||fgrid,2|| . . . ||fgrid,S, where || de-

notes concatenation over the temporal axis. Thus, the dimensions of Fgrid is thus

Hspatial×Wspatial×Min×S. This grid feature matrix can therefore be fed to a conven-

tional 3D convolutional neural network in our temporal feature learning module, in

order to learn both the coarse temporal dependencies, but also a full spatio-temporal

representation of the input. The key reason why we start from events to graph, then

back to grid feature matrix is that we do need to construct multiple graphs to cover

the long-temporal extent and meanwhile it is difficult to learn temporal dependen-

cies from multiple various graphs. One advantage is that constructed grid feature

matrix has the much smaller resolution compared to the original spatial resolution

so that we still can effectively learn the temporal feature as we discussed in the end

of section 5.2.4.

5.2.4 Temporal Feature Learning Module

The output feature matrix Fgrid contains both spatial and temporal information over

the entire video duration, which can be effectively encoded with a conventional

3D CNN [135] in order to generate a final spatio-temporal representation of the

video input for action recognition. In this work, we consider three network ar-
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chitectures for the 3D CNN; a plain architecture with interlaced 3D convolutional

and pooling layers, an I3D-based architecture comprising multiple I3D blocks as

configured in [6], and a 3D residual block design. Our 3D residual block design

is illustrated in Fig. 4.2; essentially for C consecutive convolutional layers, every

c−2-th layer is connected to the c-th layer via a non-linear residual connection, for

all c ∈ {3,5 . . .C− 2,C}, and every layer is followed by batch normalization. For

all architectures, we aggregate the features in the final layer of the CNN with global

average pooling and pass to a fully connected layer for classification. We provide

further experimental details in Section 5.3, describing number of input and output

channels per layer.

It is worth noting that while 3D CNNs are notorious for being computationally

heavy, typical NVS cameras like the iniLabs DAVIS240c has spatial resolutions of

the order of 240×180; in conjunction with the use of pooling in our spatial feature

learning module, this means that the spatial size of Fgrid is at most 30× 30. This

is substantially lower input resolution than APS-based counterparts ingesting RGB

frames, where the spatial resolution to the 3D CNN is typically 224×224 or higher.

5.3 Three Applications of Spatial-Temporal Feature

Learning
In this section, we demonstrate the potential applications of our framework as a

method of representation learning for high-level computer vision tasks with NVS

inputs. We firstly focus on the large-scale multi-class human action recognition in

Section 5.3.1, then turn to action similarity labeling in Section 5.3.2, finally move

to scene recognition in Section 5.3.3.

5.3.1 Human Action Recognition

The understanding and recognition of human action have gained a substantial re-

search interest among the computer vision community in last decades which can be

applied in many areas including intelligent surveillance, human behavior analysis,

and so on. For human action recognition, appearances and dynamics are crucial
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A-(1) A-(2) A-(4) A-(3) 

B-(1) B-(2) B-(3) B-(4) 

Figure 5.3: Visualization of samples from DVS128 Gesture Dataset and UCF101-DVS. (A)
DVS128 Gesture Dataset: A-1: hand clap; A-2: right hand rotation clockwise;
A-3: air drums; A-4: forearm roll. (B) UCF101-DVS: B-1: basketball dunk;
B-2: bowling; B-3: wall pushups; B-4: biking

and complementary aspects, therefore proposed spatial-temporal feature learning

framework can be seen as a way to model the human action.

Datasets: Most action recognition methods for neurmorphic vision sensing are

tested on the DVS128 Gesture Dataset [32] and posture dataset [85]. The DVS128

Gesture Dataset comprises 1,342 instances of a set of 11 hand and arm gestures and

posture dataset includes only three human actions; namely, consisting of 191 bend,

175 sitstand and 118 walk actions. Both of them are collected from experimental

setting environment with clean background. These datasets are simple and have

limited number in both size and class; as such, they cannot represent complex real-

life scenarios and are not robust to evaluation for advanced algorithms. Moreover,

while useful for early-stage attempts, algorithms [2, 32, 85, 86] evaluated on these

datasets (including our framework) already achieve high accuracy. Therefore, it is

necessary to establish larger and more complex datasets for algorithm evaluation in

the NVS domain.

For the purpose of evaluating APS-based solutions, UCF101 [126] and

HMDB51 [164] are widely used to evaluate the performance of the algorithms.

Specifically, UCF-101 has about 13,300 videos with 101 different human actions

and HMDB51 has about 6,600 videos with 51 human action categories. We there-

fore propose to convert these datasets to the neuromorphic domain; this requires

recording the APS videos with an NVS camera. Recent work by Hu et al. [113]

recorded UCF51, by displaying existing benchmark videos on a monitor and record-
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ing with a stationary a neuromorphic vision sensor under controlled lighting condi-

tions; however UCF51 only represents a small subset of UCF101 over 51 classes.

Similarly, we follow the same recording protocol of [113] and record the remaining

of UCF101 and HMDB51. Each video is displayed by a monitor that is set to its

highest brightness and contrast setting. The display is recorded by a neuromorphic

vision sensor DAVIS240c that is adjusted to cover the region of interest on the moni-

tor. The recording is set in a dark room where only the monitor is the light source. In

this way, we generate the largest neuromorphic datasets available for action recog-

nition, which also correspond with the standard datasets evaluated on in the APS

domain. We refer to these NVS datasets as UCF101-DVS and HMDB51-DVS re-

spectively. These datasets will be released to the public domain as a contribution of

the thesis.

Implementation Details: We select the number of graphs S constructed from

the event stream from the set {8,16}, and present our results for both settings in

the Table 5.1 and 5.2. For each volume, events within Tvol = 1/30 seconds are con-

structed into one spatial graph, and each node in the graph is connected to its nearest

node. We utilize our proposed residual graph CNNs (RG-CNN) for the spatial fea-

ture learning module. For the DVS128 gesture dataset, only two residual blocks are

stacked, each followed by a graph max-pooling layer, and for this module we use

the architecture: Resg(1,64)−→MaxPg(2,2)−→Resg(64,128) −→MaxPg(4,4).

Conversely, and for UCF101-DVS and HMDB51-DVS, three residual blocks

are used and the architecture is: Resg(1,32)−→MaxPg(2,2)−→Resg(32,64)

−→MaxPg(4,3) −→Resg(64,128) −→MaxPg(8,6). For the temporal feature

learning module, we explore three types of architecture as described in Section

5.2.4:

• Plain 3D: For plain 3D CNN, we consider a series of consecutive 3D convo-

lutional and pooling layers, where each intermediate convolution layer is fol-

lowed by batch normalization layer and a ReLU activation function. We refer

to a traditional 3D convolution layer with batch normalization and activation

function as Conv3D(cin,cout), where cin and cout are the number of input and
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output channels respectively. 3D max pooling and global average pooling

are denoted as Pool3D and GlobAvgP respectively, fully connected layer as

FC and number of task classes as Q. The plain 3D convolution architecture

can thus be represented as follows (assuming 128 input channels after the

Graph2Grid block): Conv3D(128,128) −→ Pool3D −→ Conv3D(128,256)

−→ Pool3D −→ Conv3D(256,512) −→ Pool3D −→ Conv3D(512,512) −→

Pool3D −→ GlobAvgP −→ FC(Q). With notation (h,w, t) denoting height,

width and time dimensions, we note that the kernel size and stride in every

convolution layer is (3,3,3) and (1,1,1) respectively, and the window size

and stride in all 3D max pooling layers is (2,2,2), expect for the first pooling

layer, where the stride is (2,2,1) (to ensure that there is not too aggressive a

temporal downscaling early on).

• Inception-3D(4): We additionally consider an Inception-3D based archi-

tecture, comprising a series of four consecutive I3D blocks. In order to

ensure that the temporal feature learning does not become a bottleneck, we

restrict the number of I3D blocks to four. Our implementation of the I3D

block is a concatenation of four streams of convolution layers with vary-

ing kernel size, and matches that of Carreira et al. [6]. Where we use the

shorthand Incb(cin,cout) to denote each b-th I3D block, we setup our archi-

tecture as the following: Inc1(128,480) −→ Pool3D −→ Inc2(480,512) −→

Pool3D −→ Inc3(512,512)−→ Pool3D −→ Inc4(512,512) −→ Pool3D

−→ GlobAvgP −→ FC(Q). The number of output channels of the n-

th convolutional layer for the s-th stream is labelled as cout[s][n], and the

number of output channels per convolutional layer for each I3D block

is: Inc1=[[128], [128,192], [32,96],64], Inc2=[[192], [96,208], [16,48],64],

Inc3=[[160], [112,224], [24,64],64], Inc4=[[128], [128,256], [24,64],64].

• Residual 3D: Finally, we consider 3D residual CNNs, where we effectively

replace the I3D block with a 3D residual block. The 3D residual block design

for temporal feature learning is illustrated in Fig. 4.2; essentially, there are
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two 3D convolutional layers in the base stream of the block, with a non-linear

residual connection from the input of the first to the output of the second

layer. We can define a 3D residual block as Res(cin,cinter,cout), where cinter

represents the number of input channels to the second convolutional layer in

the base stream and cin and cout are the number of input and output channels

respectively to the residual block. The 3D residual CNN is defined as follows:

Res(128,256,512) −→ Pool3D −→ Res(512,512,1024) −→ Pool3D −→

GlobAvgP−→ FC(Q). Again, denoting (h,w, t) as the height, width and time

dimensions, the kernel size is (3,3,3) and stride is (1,1,1) for all convolutional

layers in the base stream, and all 3D max pooling layers are as defined for

the plain 3D CNN.

Sampled graphs are spatially scaled by a randomly sampled factor within

(0.8,1) and randomly left-right flipped with probability 0.5. We use the prede-

fined training and test set for DVS128 Gesture Dataset and for UCF101-DVS and

HMDB51-DVS, we use the training/test splits (standard ’Split1’) defined for their

APS counterparts (UCF101 and HMDB51). For all of our reported results, we train

using the Adam optimizer for 150 epochs, with batch sizes respectively set to 32

and 16 for S = 8 and S = 16. The learning rate is set to 0.001, with stepwise decay

by a factor of 0.1 after 60 and 100 epochs.

Reference Networks: We compare action recognition results of our proposed

RG-CNN + Plain 3D, RG-CNN + Incep. 3D(4) and RG-CNN + Res. 3D with

reference networks from the APS video domain repurposed for the NVS domain.

Here, we include C3D [135], I3D [6], 3D ResNet with 34 layers [167], P3D with

63 layers [168], R2+1D [169] and 3D ResNext with 50 layers [7]. In contrast to our

framework, these networks are entirely grid-based and require artificial grouping

of events into frame form. Therefore, to feed these networks we follow a similar

approach to Chadha et al. [77], and construct a single frame by summing events

within a 1/30s duration at each spatial position of the NVS devices. The resulting

event frame has two channels, as ON and OFF events are grouped independently.
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We generate S = 8 or S = 16 frames from event volumes, in order to align with

the number of input graphs utilized in our framework. To avoid over-fitting during

training, we supplement the training with data augmentation: first, we normalize the

input and re-size the input frames such that the smaller side is 128 (178 for P3D,

256 for I3D) and keep the aspect ratio, then use a random cropping of 112× 112

(160×160 for P3D, 224×224 for I3D) spatial samples of the re-sized frame, finally

the cropped volume is randomly left-right flipped. We train all models from scratch

using stochastic gradient descent with momentum set to 0.9, and the learning rate is

initialized at 0.01 and decayed by a factor of 0.1 every 50 epochs.

Results: We first evaluate our method on the DVS128 Gesture Dataset, and

compare with both recent state-of-the-art methods and reference networks. The re-

sults are shown in Table 5.1, and for all recent methods, considered event recording

duration is set to 0.25 and 0.5 seconds. We follow the same set up to set the num-

ber of graphs, enabling a fair comparison. Examining the results, we see that the

LSTM-based method [170] is outperformed by other methods. We attribute this to

the fact that the LSTM method regards event streams as pure temporal sequences

and only learns the temporal features from the events, without encoding spatial de-

pendencies. On the contrary, PointNet-based methods [2, 83, 171] take the input

as a point cloud and learn to summarize the geometric features, which boosts accu-

racy. With regards to reference networks, although I3D [6] and 3D ResNet 34 [167]

perform spatio-temporal feature learning, there is no explicit modelling of event de-

pendencies as events are directly grouped into frames. As such, our proposal out-

performs all existing works and reference networks on this dataset and sets a new

benchmark. We attribute this to the combination of our graph representation, spatial

feature learning and temporal feature learning over multiple graphs, which results

in learning a more informative spatio-temporal representation of the input.

As shown in Fig. 5.3, DVS128 Gesture Dataset is too simple since we can see

evident pattern difference, while UCF101-DVS is complex events volumes. And

also, as shown in Table 5.1, the results on DVS128 Gesture Dataset are already close

to perfect accuracy. Therefore, we further evaluate our algorithms on our newly
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Table 5.1: Top-1 classification accuracy of DVS128 Gesture Dataset.

Method Duration(0.25s) Duration(0.5s)
LSTM [170] 0.882 0.865
PointNet [83] 0.887 0.902

PointNet++ [171] 0.923 0.941
Amir CVPR2017 [32] - 0.945
Wang WACV2019 [2] 0.940 0.953

ResNet 34 [167] 0.943 0.955
I3D [6] 0.951 0.965

RG-CNN + Plain 3D 0.954 0.968
RG-CNN + Incep. 3D(4) 0.957 0.968

RG-CNN + Res. 3D 0.961 0.972

introduced datasets, UCF101-DVS and HMDB51-DVS, which contain more classes

and overall present a more challenging task for action recognition. We note that

when evaluating current NVS-based methods for action recognition on UCF101-

DVS and HMDB51-DVS, the accuracy obtainable is only around 5%-7%, since

these methods only perform spatial (PointNet, PointNet++) or temporal (LSTM)

feature learning, and thus leaning to degenerate solutions. Therefore, we focus our

comparison on reference networks for these datasets.

The Top-1 recognition accuracy of all networks is reported in Table 5.2 for

UCF101-DVS and HMDB51-DVS. We again present results on our framework

for Plain 3D, Inecption-3D(4) and Residual 3D variants of our temporal feature

learning module and compare directly with reference networks. As is evident, the

reference networks are outperformed by our variants of our model. Specifically,

the highest performance obtained from reference models is from I3D, while our

base model (RG-CNN + Plain 3D) outperforms I3D by 3.3% and 6.1% in terms of

UCF101-DVS and HMDB51-DVS when S = 8 inputs constructed from the event

stream, respectively. Note that when varying the temporal feature learning architec-

ture from Plain 3D, to Inception-3D(4) and Residual 3D, our model performance

increases slightly, due to the higher capacity of these architectures.

Complexity Analysis:We compare the complexity of our proposed learning

framework against external benchmarks, and do so with respect to the number of

floating-point operations (FLOPs) and required parameter counts. For graph convo-
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Table 5.2: Top-1 classification accuracy of UCF101-DVS and HMDB51-DVS w.r.t. vari-
ous model.

Model
UCF101 DVS HMDB51 DVS
S = 8 S = 16 S = 8 S = 16

C3D [135] 0.382 0.472 0.342 0.417
ResNet 34 [167] 0.513 0.579 0.350 0.438

P3D 63 [168] 0.484 0.534 0.343 0.404
R2+1D 36 [169] 0.496 0.628 0.312 0.419
ResNext 50 [7] 0.515 0.602 0.317 0.394

I3D [6] 0.596 0.635 0.386 0.466
RG-CNN + Plain óD 0.629 0.663 0.447 0.494

RG-CNN + Incep. 3D(4) 0.632 0.678 0.452 0.515
RG-CNN + Res. 3D 0.627 0.673 0.455 0.497

lutional and fully-connected layers, FLOPs and parameter numbers are computed

as detailed in Section 4.4.4. For conventional 3D convolution, we compute FLOPs

as 2HWT (CinK3 + 1)Cout, where H, W , and T are the height, width, and tempo-

ral length, Cin is the number of input feature channels, K is the kernel size, and

Cout is the number of output channels. Using similar notation, parameter accounts

of conventional 3D convolution are expressed as (CinK3 + 1)Cout. Since FLOPs

of graph convolutions depend on edge and node counts (see Section 4.4.4), we re-

port exemplar results for UCF101-DVS in Table 5.3. For each sample, 16 graphs

are sampled as inputs to the spatial feature learning module, and FLOPs in respec-

tive modules are the averages over the whole of UCF101-DVS. Our results show

how graph convolutions can manage with smaller or comparable size input vol-

umes compared to all external benchmarks. As for complexity, though our models

require more floating-point operations when compared to P3D-63 and ResNext-50,

graph convolutions achieve better performance in all three datasets. On the other

hand, accuracies of I3D are close to ours while requiring complexities which are

two to three times higher.

5.3.2 Action Similarity Labeling

Action similarity detection is a binary classification task wherein predictions are

made about the alignment of action pairs. In other words, models are required to

learn to evaluate the similarity of actions rather than recognize particular actions.
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Table 5.3: Comparison of networks w.r.t. complexity (GFLOPs) and size (MB) of net-
works.

Model FLOPs(×109) #params(×106)
C3D [135] 39.69 78.41

ResNet 34 [167] 11.64 63.70
P3D 63 [168] 8.30 25.74

R2+1D 36 [169] 41.77 33.22
ResNext 50 [7] 6.46 26.05

I3D [6] 30.11 12.37
RG-CNN + Plain 3D 12.46 6.95

RG-CNN + Incep. 3D(4) 12.39 3.86
RG-CNN + Res. 3D 13.72 12.43

The challenge of action similarity labeling lies in that the actions of the test set

belong to separate classes and are not available during training [165]. That is to

say, training does not provide an opportunity to learn models actions presented at

test time. To the best of our knowledge, as of yet there is no work on action sim-

ilarity classification in neuromorphic domain, and no existing dataset can be used

for action similarity evaluation. We use the ASLAN [165] dataset which comprises

3,697 samples from 432 different action classes. Using the same experiment set-

ting to the one described in Section IV-B, we captured ASLAN-DVS to be publicly

provisioned for relevant research.

Training Details: We use the ’View-2’ method as detailed in [165] to split

samples into 10 mutually exclusive subsets, where each subset contains 600 video

pairs, with 300 to be classified as ’similar’ and 300 to be classified as ’not similar’.

We report our results by averaging scores on 10 separate experiments in a leave-

one-out cross validation scheme. In this application, we use models trained for

action recognition as a feature extractor, and constructed 16 graphs from one sample

to pass to the feature extractor. Specifically, we extract outputs as L2-normalised

features from the last GlobalAvgP and Pool3D layers as two types of features.

Following the same setup as in [165], and we independently compute 12 different

distances as similarity index as shown in Table 5.4 for every a input pair. Finally,

a support vector machine with a radial basis kernel is trained to classify whether

action pairs are of similar or different activities. As baselines, we consider the
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Figure 5.4: Action similarity labeling result. ROC curves of proposed and reference net-
works evaluated on ASLAN-DVS.

performance of the external benchmarks detailed in Section 5.3.1, where features

are extracted as the outputs of the last two layers, and classifications are performed

by support vector machines.

Table 5.4: 12 equations used for similarity computation
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Results: We reported the results including accuracy (Acc.) and area under

ROC curve (AUC) and compare with the reference models in Table 5.5. Our RG-

CNN + Incep. 3D(4) framework outperforms state-of-the-art acquired from I3D by

2.6% on accuracy and 3.1% on AUC. We also plot ROC curve in Fig.5.4, which

clearly indicates that our graph-based feature learning methods made a improve-

ment in this task. The complexity and computation analysis of our proposed spatio-
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Table 5.5: Action similarity labeling result on ASLAN-DVS w.r.t. various model

Model Acc. AUC
ResNet 34 [167] 0.605 0.643

P3D 63 [168] 0.598 0.638
R2+1D 36 [169] 0.615 0.652
ResNext 50 [7] 0.605 0.643

I3D [6] 0.623 0.659
RG-CNN + Plain 3D 0.635 0.674

RG-CNN + Incep. 3D(4) 0.649 0.690
RG-CNN + Res. 3D 0.641 0.684

temporal feature learning framework and reference networks are the same as in

Section 5.3.1.

5.3.3 Scene Recognition

Scene recognition is a fundamental challenge that provides priors for the presence

of actions, surfaces and objects, since ”scene” refers to a place where an action

or event occurs [166], therefore scene recognition is one of the hallmark tasks of

computer vision that allows definition of a context for object recognition.

Dataset: This is the first work on scene recognition in neuromorphic vision

sensing area. In active pixel sensing area, YUPENN is widely used to evaluate the

scene recognition algorithms, so we recorded YUPENN-DVS from YUPENN [166]

using the same settings as described in Section 5.3.1 for UCF101-DVS and HMDB-

DVS. YUPENN-DVS consists of 14 scene categories and each contains 30 samples.

Training Details: We evaluate the model on YUPENN-DVS and the train-

ing and testing procedures on YUPENN-DVS follows the standard leave-one-out

evaluation protocol for YUPENN as in [166]. The parameter of architecture and

reference models are the same as in 5.3.1, we also follow the training detail in that

section and data augmentation as well. Similar to Section 5.3.1, we evaluate the

performance with respect to various input length (8 and 16 graphs).

Results: Top-1 average accuracy and variance of YUPENN-DVS for scene

recognition is reported in Table 5.6. When setting S is 8, our RG-CNN + Res. 3D

framework outperforms state-of-the-art acquired from I3D by 5.6% on accuracy,

setting as new benchmark. Likewise, our frameworks achieve better performance
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compared to all reference networks when we set S as 16.

Table 5.6: Top-1 average recognition accuracy and variance of YUPENN-DVS w.r.t. vari-
ous model

Model S=8 S=16
ResNet 34 0.707±0.085 0.842±0.113

P3D 63 0.490±0.102 0.763±0.108
R2+1D 36 0.431±0.077 0.741±0.085
ResNext 50 0.562±0.089 0.815±0.135

I3D 0.824±0.062 0.900±0.098
RG-CNN + Plain 3D 0.873±0.072 0.946±0.120

RG-CNN + Incep. 3D(4) 0.877±0.160 0.950±0.105
RG-CNN + Res. 3D 0.880±0.060 0.945±0.091

5.4 Conclusion
In this chapter we develop an end-to-end trainable graph-based spatial temporal

feature learning framework for neuromorphic vision sensing. We first represent

neuromorphic events as graphs, which are explicitly aligned with the compact and

non-uniform sampling of NVS hardware. We couple this with an efficient end-

to-end learning framework, comprising graph convolutional networks for spatial

feature learning directly from graph inputs. We extend our framework with our

Graph2Grid module that converts the graphs to grid representations for coarse tem-

poral feature learning with conventional 3D CNNs. we develop three variants of

network architectures for the 3D CNN; a plain architecture with interlaced 3D con-

volutional and pooling layers, an I3D-based architecture comprising multiple I3D

blocks. We demonstrate how this framework can be employed for action recog-

nition, action similarity labeling and scene recognition, and evaluate our frame-

work on all tasks with proposed large-scale neuromorphic dataset, showing that our

model outperforms the reference networks in alll tasks. We additionally propose and

make available four large-scale neuromorphic datasets in order to motivate further

progress in the field. Finally, our results on all datasets show that we outperform all

recent NVS-based proposals while maintaining lower complexity.



Chapter 6

Concluding Remarks

In this final chapter, we summarise the main contributions presented in this the-

sis, and further discuss their current limitations and potential improvements. Then

we share some ideas of future research to move towards improvement of emula-

tor PIX2NVS. Finally, we suggest some practical solutions for fully exploring the

spatial-temporal feature extraction for neuromorphic vision sensing, which aim at

being efficient and robust enough for more difficult tasks under environment with

very rapid motion and extreme lighting variation.

6.1 Summary
In this thesis, we tried to bridge the gaps between the neuromorphic vision sensing

(NVS) and active pixel sensing. As NVS is a newly proposed sensing technology,

the performance of computer vision related tasks is far behind its counterpart. The

reasons are lack of large-scale datasets for developing robust algorithms and the

limited number of work in NVS domain. Therefore, we mainly solved these two

problems by proposing an emulator to generate large-scale datasets from existing

video collections and developing a feature learning model to extract feature for

different computer vision tasks.

We began in Chapter 3 with PIX2NVS, a parameterized conversion of pixel-

domain video frames to neuromorphic vision streams, which can convert frames

from APS videos to emulated neuromorphic spike events. Importantly, we can

generate large annotated NVS data from existing video frame collections used in
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machine learning research using PIX2NVS emulator. Then we proposed and eval-

uated three distance metrics to quantify the accuracy of the model-generated events

against ground-truth and optimized the parameter of PIX2NVS with random search.

Finally, via the conventional deep CNNs, we test emulated data on two applica-

tions including human action recognition and American sign language recognition

to evaluate the effectiveness of emulated NVS data.

In Chapter 4, we moved to developing vision-related algorithm for NVS.

Specifically, we designed an object classification framework for NVS that is com-

putationally efficient. In this framework, we proposed a graph based representation

for neuromorphic events to keep their sparse and asynchronous nature and we cou-

ple this representation with novel residual graph CNN architectures that efficiently

preserves the spatial and temporal coherence of spike events for the object classifi-

cation. Also, we present and make available a 100k dataset of NVS recordings of

the American sign language letters, to address the absence of large real-world NVS

datasets for complex recognition tasks.

In Chapter 5, we extended spatial feature learning framework in chapter 4 to

spatial-temporal feature learning framework so that the extracted feature can be

used in both appearance and motion based applications. Specifically, we proposed

a Graph2Grid block and temporal feature learning module for efficiently modelling

temporal dependencies on multiple graphs over a long temporal extent. Then we

accommodated this end-to-end feature learning framework to both appearance and

motion based tasks. Specifically, we applied this model into three different applica-

tions including action recognition, action similarity labeling and scene recognition,

and followed by experimental validation showing that our proposed framework out-

performs all recent methods on intensive datasets. In this chapter, we also released

largest neuromorphic human action datasets and scene recognition datasets.

6.2 Future Work

Several of the proposals of this thesis can be extended in future work. We note that

in Chapter 3, due to the parameter tuning with the three proposed distortion met-
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rics, our approach is reproachable for a number of applications and NVS camera

configurations. We can improve domain adaptation in NVS emulation even further

by embedding supervision from real NVS events into the emulator framework, e.g.,

by using a generative adversarial network (GAN) [172]. In addition, the PIX2NVS

frame grouping (as described in Section 3.5.1) currently involves aggregating spikes

within the same video interval by summing their polarities. While this provides an

efficient method for CNNs to ingest the NVS spike events, in doing so, we po-

tentially lose some of the per-interval motion dependencies that would be better

described by modelling the spatio-temporal displacement between the spike events.

Such modelling would further enable us to model a continuous NVS streams over

the video duration. We shall be pursuing these ideas and analysis in future work.

Moreover, the timestamp of events is restricted by the frame rate of videos, to in-

crease the latency of events, it is possible to assign the dynamic timestamp for each

events based on the interpolation of pixels.

Chapter 4 and Chapter 5 pave the way for more efficient feature extraction

for NVS events. Events are firstly represented as graph as the input of framework.

We observed that the size of graph is still large even though we apply non-uniform

sampling over events before graph construction. The reason is that the sampling

technology is still naive so that the size of events does not decrease largely. In the

future work, we may explore more advanced sampling technology that can take use

of the nature of neuromorphic vision sensing data to reduce the amount of data and

keep more spatial and temporal information at the same time. Moreover, it would

be interesting to see if we could design a more adaptive sampling technology with

respect to various sensing scenarios and objects to effectively and efficiently reduce

the number of events.

As to the graph construction in Chapter 4 and Chapter 5, the design of the meth-

ods utilised the well-established radius-neighborhood graph construction method

that is defined as the weighted spatio-temporal distance. This method, to some ex-

tent, is computationally cumbersome, which make them difficult to be deployed

on computationally limited platforms in real time. Therefore, one direction of this
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work is to place more emphasis on exploring the nature of events to construct graph

effectively for efficient and real-time hardware implementations, so that we will

not lose the neuromorphic sensors’ advantage of low latency. Moreover, an im-

portant future direction for this work is the extension of the graph applications to

the other NVS-related computer vision tasks, e.g. visual tracking, mapping and

3D reconstruction, etc.. As we described, graph representation is able to keep the

compact, sparse and asynchronous representation, which definitely is an option for

post-processing of neuromorphic events.

In general, research in NVS is still in its infancy compared to APS, and we

acknowledge that more efforts are needed to develop systems with higher accuracy.

Our work is indeed one such strand of efforts, both via its proposals to use graph-

based representations, but also by releasing new datasets. APS-based CNN methods

benefit from pre-training and initialization of CNN architectures on ImageNet and

similarly-large APS datasets, the likes of which are not yet available on the NVS

domain. Our work in releasing datasets also aims to close this gap. Progress in com-

moditizing hardware is also under way, e.g., Samsung is devoting significant R&D

in this space and has released new hardware, i.e., their recent Samsung SmartThings

Vision camera, which may definitely advance the progress of the NVS community.

Therefore, an important direction is to use the avaliable datasets to develop robust

few-shot learning methods that can learn to make reliable predictions from small

datasets as the new rise of the NVS hardware.

Moreover, there is a interesting a direction to considering APS or LiDAR as

complementary and combing it with NVS to acquire high performance and maintain

the high efficiency. We did initial exploration in our previous work [77] in which

improvements can be obtained by transfer learning between information learnt from

APS to NVS representations. However, this also comes at the loss of efficiency in

the sensing and representation (as frames have to be used). Therefore, we believe

more is to be gained in the accuracy-complexity sense by better datasets, better NVS

hardware and better ways of aggregating NVS into compact representations. Effec-

tively, this argument is extendable to APS as well: one can extend the efficiency
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of APS systems by using LiDAR cameras, but this comes at significantly higher

cost and significantly increased energy consumption. That is, similar to the APS-

LiDAR comparison, NVS can be seen as a significantly faster and energy-efficient

sensing modality in comparison to APS, which comes, however, with some loss in

the descriptive power of the obtained signal. Therefore, corresponding algorithms

that are still power-efficient and effective when involving more complementary are

interesting to explore.



Appendix A

Reference Networks for Object

Classification

In this appendix, we introduce the details of deep reference networks used in Sec-

tion 4 for object classification. In Section 4, we include three typical deep CNNs:

VGG 19 [160], Inception V4 [161] and ResNet 50 [5], and all of them have their

own specific architectures.

VGG 19: VGG 19 is combined by a stack of convolutional layers and fol-

lowed by three Fully-Connected (FC) layers. The input to ConvNets is a fixed-

size (224× 224), and is passed through a stack of convolutional layers, where

the filters is with a very small receptive field (3× 3). The convolution stride

is fixed to 1 pixel and spatial resolution is preserved after convolution. Spa-

tial pooling is carried out by five max-pooling layers that is performed over a

2× 2 pixel window and with stride 2. The details is as following (The convolu-

tional layer parameters are denoted as ”conv(receptive field size-number of chan-

nels)”: input(224×224)→ 2× conv(3−64)→ maxpool→ 2× conv(3−128)→

maxpool → 4× conv(3−256) → maxpool → 4× conv(3−512) → maxpool →

4× conv(3−512)→maxpool→ 3×FC.

Inception V4: Inception V4 is the combination of the two commonly used

architectures: residual connections introduced by He et al. in [5] and the latest

revised version of the Inception architecture in [173]. This straightforward inte-

gration enables the network to be more deeper and wider. Figure A.1 shows the
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Figure A.1: The overall schema of the Inception v4 network and the stem that is the input
part of network. This figure is reproduced from [4]

architecture of Inception v4 in details, and Figure A.2 shows the every components

of Inception v4.

ResNet 50: Residual connection is proposed to address the degradation prob-

lem when the networks go deeper. In stead of stacking layers directly to fit a desired

underlying mapping, Residual learning hypothesizes that it is easier to optimize the

residual mapping than to optimize the origina mapping. The residual block is shown

as in Fig. A.3. In our work, we used 50 layers ResNet as referenced model, and
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Figure A.2: The schema for 35×35 grid modules, 17×17 grid modules, 35×35 to 17×17
and 17× 17 to 8× 8 reduction module and 8× 8 grid modules. Figures are
reproduced from [4]

Figure A.3: A residual “bottleneck” building block, reproduced from [5]

Table A.1 illustrates the whole architecture of the ResNet 50.
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Table A.1: Architectures for ResNet 50. Building blocks are shown in brackets with the
numbers of blocks stacked. Downsampling is performed by conv3 1, conv4 1,
and conv5 1 with a stride of 2.

layer name input size Parameters

conv1 112×112
7×7,64, stride 2

3×3 max pool, stride 2

conv2 x 56×56

1×1, 64
3×3, 64
1×1, 256

 ×3

conv3 x 28×28

1×1, 128
3×3, 128
1×1, 512

 ×4

conv4 x 14×14

1×1, 256
3×3, 256
1×1, 1024

 ×6

conv5 x 7×7

1×1, 512
3×3, 512
1×1, 2048

 ×3

average pool 1×1 average pool,1000-d fc,softmax



Appendix B

Reference Networks for Spatial

Temporal Feature Learning

Here we mainly introduce the architecture of the reference networks (e.g. C3D

[135], I3D [6], 3D ResNet with 34 layers [167], P3D with 63 layers [168], R2+1D

[169] and 3D ResNext with 50 layers [7]) used in Sec.5. All of them were proposed

for the spatial-temporal feature learning for APS video.

C3D: C3D is a simple, yet effective approach for spatio-temporal feature

learning using deep 3-dimensional convolutional networks, which are good fea-

ture learning machines that model appearance and motion simultaneously. C3D

net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by

a softmax output layer. All 3D convolution kernels are 3× 3× 3 with stride 1

in both spatial and temporal dimensions and all pooling kernels are 2× 2× 2,

except for pool1 is 1× 2× 2. The parameter details of C3D is as following:

conv1a(64)→ pool1→ conv2a(128)→ poo2→ conv3a(256)→ conv3b(256)→

pool3→ conv4a(512)→ conv4b(512)→ pool4→ conv5a(512)→ conv5b(512)→

FC6(4096)→ FC7(4096)→ softmax. Note that the number in the brackets are the

number of channels.

I3D: I3D is Inflated 3D Convolutional networks that is based on the 2D Con-

vNet inflation; this is, filters and pooling kernels of very deep image classification

ConvNets are expanded into 3D, which is easily done by starting with a 2D archi-

tecture and inflating all the filters and pooling kernels – endowing them with an
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Figure B.1: The Inflated Inception-V1 architecture (left) and its detailed inception submod-
ule (right), reproduced from [6]

additional temporal dimension. I3D is able to learn seamless spatio-temporal fea-

ture from video while leveraging successful ImageNet architecture designs and even

their parameters. Figure B.1 shows the architecture of I3D in details.

3D ResNet: Inspired by the residual 2D CNNs [5], 3D ResNet [167] was pro-

posed to explore the possibility of training a very deep 3D CNNs for action recog-

nition. Deep 3D CNNs are difficult to train because of the large number of their

parameters, while residual connection paves the way for the feasibility of learn-

ing spatial temporal feature. Table B.1 illustrates the architecture of 3D ResNet,

and the difference between 3D ResNet and original 2D ResNets is the number of

dimensions of convolutional kernels and pooling.

Table B.1: Architectures for 3D ResNet with 34 layers. Building blocks are shown in
brackets with the numbers of blocks stacked. Downsampling is performed by
conv3 1, conv4 1, and conv5 1 with a stride of 2.

layer name Parameters

conv1
7×7×7,64, stride 1(T), 2(XY)

3×3×3 max pool, stride 2

conv2 x
[

3×3×3, 64
3×3×3, 64

]
×3

conv3 x
[

3×3×3, 128
3×3×3, 128

]
×4

conv4 x
[

3×3×3, 256
3×3×3, 256

]
×6

conv5 x
[

3×3×3, 512
3×3×3, 512

]
×3

average pool average pool,400-d fc,softmax
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P3D: It is a natural way to learn spatial temporal feature Using 3D CNNs, but

training of 3D CNN is very computationally expensive and the model size also has

a quadratic growth compared to 2D CNNs. P3D is designed to mitigate the above

limitations by devising a family of bottleneck building blocks that leverages both

spatial and temporal convolutional filters [168]. Specifically, P3D uses 1× 3× 3

convolutional layer and one layer of 3×1×1 convolutions in a parallel to replace

a standard 3× 3× 3 convolutional layer. As such, the model size is significantly

reduced and the advantages of pre-learnt 2D CNN in image domain could also be

fully leveraged by initializing the 1× 3× 3 convolutional filters with 3× 3 convo-

lutions in 2D CNN. Moreover, P3D uses Pseudo-3D Residual Net that composes

each designed block in different placement throughout a whole ResNet-like archi-

tecture to enhance the structural diversity of the network. As a result, the temporal

connections in P3D ResNet are constructed at every level from bottom to top and

the learnt video representations encapsulate information related to objects, scenes

and actions in videos, making them generic for various video analysis tasks.

R2+1D: R2+1D introduces two new forms of spatiotemporal convolution that

can be viewed as middle grounds between the extremes of 2D (spatial convolution)

and full 3D [169]. Architecture of R2+1D is ResNet like 3D CNNs with two im-

proved formulation. The first formulation is employing 3D convolutions only in

the early layers of the network, with 2D convolutions in the top layers. As such,

3D convolutions in the early layers is a low/mid-level operation to model the mo-

tion, while 2D convolutions in the top layers realize spatial reasoning leading to

accurate feature representation. The second spatio-temporal variant is a “(2+1)D”

convolutional block, which explicitly factorizes 3D convolution into two separate

and successive operations, a 2D spatial convolution and a 1D temporal convolution.

From this module, an additional nonlinear rectification is added between these two

operations, effectively doubling the number of nonlinearities. Besides, decomposi-

tion facilitates the optimization, yielding in practice both a lower training loss and

a lower testing loss.

3D ResNext: 3D ResNext is ResNet-based architectures with 3D convolu-
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Figure B.2: Block of ResNext: x3 and F are the kernel size and the number of feature maps,
respectively; group is the number of groups of group convolutions, which di-
vide the feature maps into small groups, reproduced from [7].

tions. Different from the original bottleneck block, the ResNeXt block introduces

group convolutions, which divide the feature maps into small groups. Moreover,

ResNext introduces cardinality, which refers to the number of middle convolutional

layer groups in the bottleneck block. And increasing the cardinality of 2D architec-

tures is more effective than using wider or deeper ones [174]. In our work, we use

ResNext with 50 layers as reference and its residual block is shown in Figure B.2.



Appendix C

Datasets and Code for Algorithm

Implementation

In this appendix, we provide reference link for the code used to make this thesis and

our public datasets.

1: PIX2NVS software introduced in Chapter 3 can be found in this link:

https://github.com/PIX2NVS/PIX2NVS

2: Code for Chapter 4 and ASL-DVS dataset can be downloaded via this

Github page:

https://github.com/PIX2NVS/NVS2Graph.

3: Code for Chapter 5 and UCF101-DVS, HMDB-DVS and ASLAN-DVS

datasets are also public and can be found in following Github page:

https://github.com/PIX2NVS/NVS FeatureLearning.
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[92] Aliaksei Sandryhaila and José MF Moura. Discrete signal processing on

graphs. IEEE Trans. Signal Process., 61(7):1644–1656, 2013.

[93] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and

Pierre Vandergheynst. The emerging field of signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular

domains. arXiv:1211.0053, 2012.

[94] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bom-

barell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convo-

lutional networks on graphs for learning molecular fingerprints. In Advances

in Neural Inf. Process. Syst., pages 2224–2232, 2015.

[95] James Atwood and Don Towsley. Diffusion-convolutional neural networks.

In Advances in Neural Inf. Process. Syst., pages 1993–2001, 2016.

[96] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein.
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