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Abstract

The general theme of this thesis is providing and studying a new understanding of some statistical
models and computational methods based on a Markov process/chain. Section 1-4 are devoted to
reviewing the literature for the sake of completeness and the better understanding of Section 5-7 that
are our original studies.

Section 1 is devoted to understanding a Markov process since continuous and discrete types of a
Markov process are hinges of the thesis. In particular, we will study some basics/advanced results of
Markov chains and Ito diffusions. Ergodic properties of these processes are also documented.

In Section 2 we first study the Metropolis-Hastings algorithm since this is basic of other MCMC meth-
ods. We then study more advanced methods such as Reversible Jump MCMC, Metropolis-adjusted
Langevin algorithm, pseudo marginal MCMC and Hamiltonian Monte Carlo. These MCMC methods
will appear in Section 3, 4 and 7.

In Section 3 we consider another type of Monte Carlo method called sequential Monte Carlo (SMC).
Unlike MCMC methods, SMC methods often give us on-line ways to approximate intractable objects.
Therefore, these methods are particularly useful when one needs to play around with models with
scalable computational costs. Some mathematical analysis of SMC also can be found. These SMC
methods will appear in Section 4, 5, 6 and 7.

In Section 4 we first discuss hidden Markov models (HMMs) since all statistical models that we con-
sider in the thesis can be treated as HMMs or their generalisation. Since, in general, HMMs involve
intractable objects, we then study approximation ways for them based on SMC methods. Statistical
inference for HMMs is also considered. These topics will appear in Section 5, 6 and 7.

Section 5 is largely based on a submitted paper titled Asymptotic Analysis of Model Selection Cri-
teria for General Hidden Markov Models with Alexandros Beskos and Sumeetpal Sidhu Singh, https:
//arxiv.org/abs/1811.11834v3. In this section, we study the asymptotic behaviour of some inform-
ation criteria in the context of hidden Markov models, or state space models. In particular, we prove
the strong consistency of BIC and evidence for general HMMs.

Section 6 is largely based on a submitted paper titled Online Smoothing for Diffusion Processes Ob-
served with Noise with Alexandros Beskos, https://arxiv.org/abs/2003.12247. In this section, we
develop sequential Monte Carlo methods to estimate parameters of (jump) diffusion models.

Section 7 is largely based on an ongoing paper titled Adaptive Bayesian Model Selection for Diffu-
sion Models with Alexandros Beskos. In this section, we develop adaptive computational ways, based
on sequential Monte Carlo samplers and Hamiltonian Monte Carlo on a functional space, for Bayesian
model selection.
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Impact statement

The work presented in this thesis has a potential impact on both academic and industrial communities.
First, the studies shed light on a new understanding of model selection methods in the context

of hidden Markov models. Indeed, we have verified model selection consistency which has been an
open problem in the context of hidden Markov models. Since model selection problems also frequently
arise in practice, our theoretical results could be useful guidance for industrial communities. Here we
emphasise that hidden Markov models are routinely used in such diverse disciplines as finance, speech
recognition and epidemiology so that they are practical statistical models.

Also, this thesis provides novel algorithms based on sequential Monte Carlo in the context of
statistical inference for (jump) diffusion models. In particular, we develop algorithms on the infinite-
dimensional path-space under the weak assumptions commonly used in the literature. Therefore, our
algorithms are applicable to a wide class of diffusion models compared with the literature. This study
is of great importance for industrial communities as well since the implementation of our algorithms is
quite simple so that non-experts could easily use them. It should be emphasised that diffusion models
are extremely popular ones among financial companies.

Finally, this study also explores ways to make use of SMC samplers in the context of Bayesian model
selection. In particular, we again focus on diffusion models. Research on Bayesian model selection
for diffusion models has been limited despite its great importance for both academic and industrial
communities. The main difficulty comes from the high-dimensional nature of diffusion models. Our
study could be a guiding principle to deal with this problem. Also, we show that SMC samplers give
rise to natural methods to learn adaptively tuning parameters.
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Frequently used notations

• Let (E, E) be a measurable space. For a function f : E → R, we write ‖f‖∞ := supx∈E | f(x) |,
and we denote the set of all functions such that ‖f‖∞ <∞ by Bb(E).

• Given a measurable space (E, E), we denote the set of all finite signed measures by S(E), the set
of all probability measures by P(E) ⊂ S(E).

• For some µ(dx) ∈ P(E), x i.i.d.∼ µ(dx) denotes that a random variable x is independent and
identically distributed according to µ(dx).

• Let (Ω,F ,P) be a probability space. We write E to denote the expectation with respect to P, and
the variance of a random variable X is denoted as V [X] := E

[
(X − E [X])

2
]
. The covariance of

random variables X and Y is denoted by Cov(X,Y ) := E [(X − E [X]) (Y − E [Y ])].

• For p ≥ 1 and given a measurable space (E, E , µ), Lp(µ) denotes the set of µ−equivalent functions
in the set such that

{
f : E → Rd;

(∫
E
| f(x) |p µ(dx)

)1/p
<∞

}
.

• For any x, y ∈ Rd, 〈x, y〉 denotes
∑d
i=1 xiyi and ‖x‖ denotes

√∑d
i=1 x

2
i .

• N (µ,Σ) denotes the Gaussian distribution on Rd with mean µ ∈ Rd and covariance matrix
Σ ∈ Rd×d. Also, N (x;µ,Σ) denotes its density x 7→ N (x;µ,Σ).

• We write f(n) = O(g(n)) if limn→∞
f(n)
O(g(n)) <∞ holds.

• We use w.r.t. as an abbreviation for with respect to, w.p.1 as an abbreviation for with probability
1, and iff as an abbreviation for if and only if.
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1 Markov processes

1.1 Introduction

The statistical models and algorithms will be introduced and developed in this thesis are mainly based
on a Markov process, which is a special class of a stochastic process. Therefore, this chapter is devoted
to providing some basic and advanced results of Markov processes. In particular, we will focus on the
two important Markov processes, that is Markov chains and Ito diffusions.

1.2 General properties of a Markov process

1.2.1 Basics of stochastic processes

Let (Ω,F ,P) be a probability space and (E, E) be a measurable space. Following Pavliotis (2014);
Çınlar (2011) closely, we first begin with the definition of a stochastic process.

Definition 1. Let (E, E) be a measurable space and T be an arbitrary set. For each t ∈ T , denote
by Xt(ω) a random variable taking values in (E, E). Then, the collection {Xt : t ∈ T} is called a
stochastic process with a state space (E, E) and a parameter set T .

In general, one might take E = Rd with d ≥ 1, and E = B(Rd). When T = Z+, then a stochastic
process Xt(ω) is called a discrete time stochastic process, and when T = R+, Xt(ω) is called a
continuous time stochastic process. In the sequel of this section, we will focus on the case when
T = R+ and E = Rd .

Clearly, a stochastic process Xt(ω) has two inputs, that is t ∈ T and ω ∈ Ω. For given ω ∈ Ω, the
map t 7→ Xt(ω) is called a sample path or trajectory of the process X. Also, given t ∈ T , the map
ω 7→ Xt(ω) is a random variable. We will denote the map t 7→ Xt(ω) by Xt and the map ω 7→ Xt(ω)

by X. Notice that the process {Xt : t ∈ T} can be considered as a random variable X which takes
values in the product space (ET , E⊗T ). The distribution (or law) of the random variable X on the
product space (ET , E⊗T ) is then given as the push-forward measure, which might be expressed as
Law(X) := P(X−1(A)) for A ∈ E⊗T .

Apparently, one can seldom describe the law of X explicitly. Recall that the product σ−algebra
E⊗T is generated by the finite dimensional rectangles. Therefore, a probability measure on (ET , E⊗T )

can be identified by the following finite dimensional distributions.

Definition 2. Let ti ∈ T and i ∈ {1, 2, · · · k}. The finite dimensional distributions (FDDs) of a
stochastic process {Xt : t ∈ T} are defined by:

P (Xt1 ∈ A1, Xt2 ∈ A2, · · · , Xtk ∈ Ak) ,

where Ai ∈ E for each i ∈ {1, 2, · · · k}.

In general, we are particularly interested in long time behaviour of a stochastic process {Xt : t ∈ T}.
Then it is stationarity to characterise such long tine behaviour. A process satisfies the following
definition is often said to be a strongly stationary process or a strictly stationary process.
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Definition 3. A stochastic process {Xt : t ∈ T} is said to be strongly stationary if

P (Xt1 ∈ A1, Xt2 ∈ A2, · · · , Xtk ∈ Ak) = P (Xt1+s ∈ A1, Xt2+s ∈ A2, · · · , Xtk+s ∈ Ak) ,

holds for any s ∈ T .

Loosely speaking, definition 3 requires that all FDDs of process {Xt : t ∈ T} are invariant under
time shift for any integer k and time time parameter t. Clearly, strongly stationary processes are
identically distributed for all t. Assume that E

[
X2
t

]
< ∞ for any t, that is Xt ∈ L2 (P). Then notice

that if {Xt : t ∈ T} is strongly stationary, we have that:

E [Xt+s] = E [Xt] ,

Cov (Xt, Xt+s) = Cov (X1, X1+s) ,

for all s ∈ T. Therefore, we can observe that the mean of a strongly stationary process is constant and
the covariance of it only depends on the difference between the two time parameters t and s. These
observations lead us to the following definition.

Definition 4. Assume that E
[
X2
t

]
< ∞ for any t. A stochastic process {Xt : t ∈ T} is said to be a

weakly stationary (process) if the followings hold:

i) E [Xt] = µ for any t ∈ T .

ii) γ(t, s) := E [(Xt − µ) (Xs − µ)] = γ(t− s) for any t, s ∈ T .

As we have studied, a strongly stationary process (with finite second moment) is a weakly stationary
process but not vice versa. For instance, let Zt

i.i.d.∼ N (0, 1) and set:

Xt :=

Zt if t is even,

1√
2
(Z2

t−1 − 1) if t is odd.

Then one can show that E [Zt] = 0 and V [Xt] = 1 for both even and odd t, and hence Cov(Xt, Xt+s) =

0. Thus Xt is weakly stationary. Whilst P(Xt < xt) = P(Zt < xt) for all even t, we have that:

P(Xt < xt) = P
(

1√
2

(Z2
t−1 − 1) < xt

)
,

= P
(
−
√√

2xt + 1 < Zt−1 <

√√
2xt + 1

)
,

for all odd t. Clearly P(Xt < 0) = 0.5 for all even t and P(Xt < 0) 6= 0.5 for all odd t. Thus such Xt is
not strongly stationary in this case. In the sequel, we will use stationary for strong stationary sense.

Definition 5. Let (E, E) and (F,F) be measurable spaces. The mapping K : E × F → R+ is called
a transition kernel from (E, E) into (F,F) if K satisfies the followings:

i) The mapping x 7→ K(x,B) is E−measurable for any B ∈ F .

ii) The mapping B 7→ K(x,B) is a measure on (F,F) for any x ∈ E.
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If K(x, F ) = 1 for all x ∈ E, then K is called a probability transition kernel. For f ∈ Bb(F ),
importantly, a transition kernel K induces the following operators so-called right Multiplication and
left Multiplication, see, e.g, Çınlar (2011, Theorem 1.6.3):

Kf(x) :=

∫
F

K(x, dy)f(y), (1.1)

µK(B) :=

∫
E

µ(dx)K(x,B). (1.2)

Proposition 1. Let f ∈ Bb(F ) and K be a transition kernel from (E, E) into (F,F). Then for
any x ∈ E, Kf(x) =

∫
F
K(x, dy)f(y) ∈ Bb(E). Also let µ ∈ S(E). Then for any B ∈ F ,

µK(B) =
∫
E
µ(dx)K(x, dy) ∈ S(F ). Also, for µ ∈ S(E) and f ∈ Bb(F ), (µK)f = µ(Kf) =∫

E
µ(dx)

∫
F
K(x, dy)f(y).

1.2.2 Markov process

We will introduce a special class of a stochastic possess. Let Ft be a filtration generated by a stochastic
process Xt, that is, a non-decreasing family of the smallest σ− algebra such that Xt is a measurable
function w.r.t. it. Using a filtration Ft, we can define the following particularly important class of a
stochastic process.

Definition 6. (Markov process). A stochastic process {Xt : t ∈ T} on a measurable space (E, E)

is said to be a Markov process if for all s, t ∈ T with s < t and B ∈ E :

P (Xt ∈ B | Fs) = P (Xt ∈ B | Xs) (1.3)

holds, where Ft is the filtration generated by {Xt : t ∈ T}. (1.3) can be equivalently defined as, for
any f ∈ Bb(E) and all s, t ∈ T with s < t,

E [f(Xt) | Fs] = E [f(Xt) | Xs] .

Example 1. Standard Brownian motion. An important example of a Markov process is a standard
Brownian motion or Wiener process. 1−dimensional Brownian motion Bt : R+ → R is a real-valued
stochastic process such that:

i) B0 = 0 w.p.1.

ii) t 7→ Bt is continuous w.p.1.

iii) For any 0 ≤ s < t, Bt −Bs is independent and distributed according to a Gaussian distribution
with mean 0 and variance t− s.

Let Fn be the filtration generated by Bn. Then for any f ∈ Bb(R), we have E [f(Bt) | Fs] =

E [f(Bt −Bs +Bs) | Fs] = E [g(Bt −Bs, Bs) | Fs] where g(x, y) = f(x+ y). Since Bt −Bs is is inde-
pendent of Fs andBs is Fs−measurable, we conclude that E [g(Bt −Bs, Bs) | Fs] = E [g(Bt −Bs, Bs) | Bs] =

E [f(Bt) | Bs]. Thus a standard Brownian motion is a Markov process.
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Markov processes provide a theoretical basis not only for many modern computational methods
but also for statistical modelling. Indeed, what we will see models and methods in the sequel of this
paper are typically based on Markov processes. A transition kernel from (E, E) into (E, E) is called a
Markov kernel on (E, E) if K(x,E) = 1 for all x ∈ E. In other words, a Markov kernel is a probability
transition kernel from (E, E) into (E, E). In this case, we can write K : E × E → [0, 1].

Let {Ps,t} be a family of a Markov kernel on (E, E). That is, assuming Xs = x, we have that
Ps,t(x,B) = P (Xt ∈ B | Xs = x) for all s, t ∈ T with s ≤ t . Then a Markov process is said to be a time-
homogenous Markov process if {Ps,t} depends only on the difference t−s, i.e., if P (Xt ∈ B | Xs = x) =

Ps,t(x,B) = Pt−s(x,B) holds. In the sequel, we will restrict our attention to time-homogenous case.
In this case, the FDDs of a time-homogeneous Markov process starting at x at t = 0 are given by:

P (Xt1 ∈ B1) = Pt1(x,B1),

P (Xt1 ∈ B1, Xt2 ∈ B2) =

∫
B1

Pt1(x, dx1)Pt2−t1(x1, B2),

...

P (Xt1 ∈ B1, · · · , Xtk ∈ Bk) =

∫
B1

· · ·
∫
Bk−1

Pt1(x, dx1) · · ·Ptk−tk−1
(xk−1, dxk).

This can be extended to a case when one has an initial distribution, say µ on E. In this case, we have
that:

P (Xt1 ∈ B1, · · · , Xtk ∈ Bk) =

∫
E

∫
B1

· · ·
∫
Bk−1

µ(dx)Pt1(x, dx1) · · ·Ptk−tk−1
(xk−1, dxk).

Also, as a consequence of the Markovian property, we have the Chapman-Kolmogorov equation.

Proposition 2. Let {Xt : t ∈ T} be a time-homogenous Markov process on (E, E). Then for any
s, t ∈ T with s ≤ t and B ∈ E we have that:

Pt(x,B) =

∫
E

Ps(x, dy)Pt−s(y,B).

Proof. Due to the tower property of the conditional expectation, we have that:

Pt(x,B) = P (Xt ∈ B | X0 = x) = E [I {Xt ∈ B} | X0 = x] ,

= E [E [I {Xt ∈ B} | X0 = x] | Fs] = E [E [I {Xt ∈ B} | Fs] | X0 = x] ,

= E [P (Xt ∈ B | Xs = y) | X0 = x] = E [Pt−s(y,B) | X0 = x] ,

=

∫
E

Ps(x, dy)Pt−s(y,B).

Therefore, as for a time-homogenous Markov process, the transition from time s to time t can
be decomposed into two steps, that is, the first step goes from the initial state at time s to the
intermediate state at time t− s. Then it moves from the intermediate state to the final state at time t.
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The Chapman-Kolmogorov equation is one of the ubiquitous tools to analyse Markov processes. For
instance, as we will study later, the filtering problem of hidden Markov models can be studied through
the Chapman-Kolmogorov equation.

As we studied, we can define the operators for time-homogenous Markov processes as follows. Let
Tt be the linear operator acting on f ∈ Bb(E) such that:

Ttf(x) :=

∫
E

f(y)Pt(x, dy) = E [f(Xt) | X0 = x] , (1.4)

for t ∈ T with a notational convention T0 = I. From the Chapman-Kolmogorov equation and Fubini’s
theorem, it is clear to see that:

Tt+sf(x) =

∫
E

f(y)Pt+s(x, dy) =

∫
E

∫
E

f(y)Ps(z, dy)Pt(x, dz),

=

∫
E

(∫
E

f(y)Ps(z, dy)

)
Pt(x, dz) =

∫
E

(Tsf(z))Pt(x, dz),

= Tt ◦ Tsf(x),

and thus time-homogenous Markov processes can be studied via a semigroup of the operators {Tt},
this is an example of the Markov semigroup. From Jensen’s inequality, we have that:

‖Ttf(x)‖∞ =

∥∥∥∥∫
E

f(y)Pt(x, dy)

∥∥∥∥
∞

≤ ‖f(y)‖∞
∫
E

P (x, dy) = ‖f(y)‖∞ ,

thus Tt is a contraction operator semigroup on (Bb(E), ‖‖∞). Let Cb(E) be a space of continuous and
bounded functions on E. For f ∈ Cb(E), denote by D(L) the set of all functions such that:

Lf := lim
t↓0

Ttf − f
t

, (1.5)

exsist. The operator L : D(L)→ Cb(E) is called the (infinitesimal) generator of the operator semigroup
Tt. The generator L is particularly useful for studying diffusion processes, as we will see later. Define
u(t, x) := Ttf(x) and notice that one can write Tt = exp (tL). Then we have that:

∇tu(t, x) = ∇tTtf(x) = ∇tTt exp (tLf) ,

= L (tLf) = LTtf(x) = Lu(t, x).

Since it is true that u(0, x) = T0f(x) = f(x), these give rise to:∇tu(t, x) = Lu(t, x),

u(0, x) = f(x).
(1.6)

(1.6) is called the backward Kolmogorov equation. Clearly, the backward Kolmogorov equation determ-
ines the dynamics of the conditional expectation of (time-homogeneous) Markov processes. Also, we
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can define the adjoint operator of Tt, which acts for µ ∈ P(E) and B ∈ E such that:

T ∗t µ(B) :=

∫
E

µ(dx)P (x,B) =

∫
E

µ(dx)P(Xt ∈ B | X0 = x). (1.7)

Indeed, we have that: ∫
f(x)T ∗t µ(dx) =

∫
Ttf(x)µ(dx),

therefore Tt and T ∗t are adjoint operators. Also, as we studied, it can be shown that T ∗t µ ∈ P(E) for
µ ∈ P(E). Since Tt and T ∗t are adjoint, we can write T ∗t = exp (tL∗) where L∗ is the adjoint operator
of the generator L. Suppose that a time-homogeneous Markov process has an initial distribution, say
µ(dx) ∈ P(E), in the sense that X0 ∼ µ(dx). We define:

µt(dx) = T ∗t µ(dx). (1.8)

This is the law of the (time-homogeneous) Markov process. Then, in the same manner as L, we have
∇tµt = L∗µt and µ0 = µ. Furthermore, assume that µ and µt admit the density denoted by p and pt
respectively w.r.t. the he Lebesgue measure. In this case, we have that:∇tpt = L∗pt,

p0 = p.
(1.9)

This is the forward Kolmogorov equation or the Fokker–Planck equation. We note the if one setsX0 = x

then p0 = δx.

1.2.3 Invariant distributions and ergodicity of Markov processes

As we noted, of particular interest is the long time behaviour of a time-homogeneous Markov process. In
other words, we are interested in the stochastic stability of a time-homogeneous Markov process. Then
an invariant distribution and ergodicity are two fundamental concepts to characterise such behaviour.
We first introduce the definition of an invariant distribution.

Definition 7. Let {Xt : t ∈ T} be a time-homogenous Markov process on (E, E). Then µ(dx) ∈ P(E)

said to be an invariant distribution of the process if:

T ∗t µ(B) = µ(B) (1.10)

for any B ∈ E and t ∈ T holds.

In other words, an invariant distribution is a fixed point of T ∗t . Assume that µ(dx) be an invariant
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distribution and X0 ∼ µ(dx). Then FDDs of a time-homogenous Markov process are:

P (Xt1+s ∈ B1, · · · , Xtk+s ∈ Bk) =

∫
E

∫
B1

· · ·
∫
Bk−1

µ(dx)Pt1+s(x, dx1) · · ·Ptk−tk−1
(xk−1, dxk),

=

∫
B1

· · ·
∫
Bk−1

µ(dx)Pt1(x, dx1) · · ·Ptk−tk−1
(xk−1, dxk),

therefore, the condition (1.10) implies that a time-homogeneous Markov process starting from µ(dx)

has to be (strongly) stationary, and an invariant distribution is also called a stationary distribution
of a Markov process to emphasise this fact. Also, above observation implies that if X0 ∼ µ(dx) then
Xt ∼ µ(dx) for any t ∈ T with t > 0. Notice that dividing (1.10) by t and taking t ↓ 0 give rise to:

L∗p = 0. (1.11)

This is often called the stationary Fokker-Plank equation in the context of diffusion processes.
Intuitively, an invariant distribution governs long time behaviour of a time-homogeneous Markov

process. However, first of all, it is not clear to see whether an invariant distribution is a unique one.
Also, an invariant distribution itself does not say anything about the situation in which {Xt : t ∈ T}
starts from an arbitrary initial distribution. That is, for X0 ∼ µ0(dx), we are informally interested in
whether:

lim
t→∞

T ∗t µ0(dx) = µ(dx),

holds in some sense, where µ(dx) is a unique invariant distribution of {Xt : t ∈ T}. This leads us to
the following definition, called ergodicity.

Definition 8. (Ergodicity Pavliotis (2014, Chapter 2.4)). Let {Xt : t ∈ T} be a time-
homogenous Markov process on (E, E). If there exists a unique distribution µ(dx) satisfying T ∗t µ(dx) =

µ(dx), then the time-homogenous Markov process is said to be ergodic w.r.t. µ(dx).

Here we note that definition (8) can be obtained as a corollary of the definition of the ergodicity
of a dynamical system in the context of a time-homogenous Markov process. See Hairer (Corollary
5.12, 2018) for instance. As a consequence of ergodicity, we have the following key theorem, as a
consequence of Birkhoff’s ergodic theorem.

Theorem 1. Let {Xt : t ∈ T} be a time-homogenous ergodic Markov process on (E, E) with an
arbitrary initial distribution and f ∈ Bb(E). Then we have that, w.p.1,

1

t

∫ t

0

f(Xs)ds→
∫
E

f(x)µ(dx),

as t→∞, where µ(dx) is a unique invariant distribution.

Theorem 1 is also used as the definition of ergodicity, especially in physics (Pavliotis, 2014). Indeed,
Definition 8 and Theorem 1 are equivalent. We note that, as we studied in subsubsection 1.2.1, if a time-
homogenous Markov process is ergodic, then it will eventually become a process with no correlation
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since the process will eventually be stationary. Thus the (auto) covariance of the process will decay
as t → ∞. Clearly, Theorem 1 says that the average w.r.t. time converges to the mathematical
expectation on space, and indeed this gives us theoretical justification to use a (time-homogeneous)
Markov process for simulation and modelling.

Although general theory for establishing uniqueness and existence of an invariant distribution of
time-homogeneous Markov processes may be available, see Hairer (2010) for instance, the technicalities
involved are beyond the scope of this thesis. Thus, to study uniqueness and existence of an invariant
distribution, or ergodicity, we will restrict our attention to the two classes of (time-homogeneous)
Markov processes in the following two successive subsections. That is, we will study the properties of
Markov chains and Diffusion processes in what follows.

1.3 Markov chain

1.3.1 Basics of Markov chains

A Markov chain is a Markov process with a discrete time parameter t ∈ Z+, so we will take T =

Z+ throughout this section. To be precise, let (Ω,F ,P) be a probability space and {Xt : t ∈
T} be a stochastic process taking values on (E, E). Let FXt be the filtration such that Ft :=

σ (Xt : j ≤ t, j ∈ T ). Then {Xt : t ∈ T} is said to be a Markov chain if P (Xt+1 ∈ B | Ft) =

P (Xt+1 ∈ B | Xt = xt) holds (w.p.1) for any B ∈ E . It can be shown that this definition is equi-
valent to the condition such that for any f ∈ Bb(E), E [f(Xt+1) ∈ B | Ft] = E [f(Xt+1) ∈ B | Xt = x]

holds (w.p.1) for any B ∈ E .

Definition 9. Let P be a Markov kernel on (E, E). A Markov chain {Xt : t ∈ T} is said to be a
time-homogeneous Markov chain if P (Xt+1 ∈ B | Xt = x) = P (x,B) holds for any B ∈ E and t ∈ T .

Applying Proposition 2 to a time-homogeneous Markov chain immediately gives rise to the follow-
ing, we omit the proof.

Proposition 3. Let {Xt : t ∈ T} a time-homogenous Markov chain on (E, E) with a Markov kernel
P . Then we have that:

P (Xn ∈ B | X0 = x) = Pn(x,B),

for any B ∈ E , where

P 1 = P, Pn(x,B) =

∫
E

P (x, dy)Pn−1(y,B),

also

Pn+k(x,B) =

∫
E

Pn(x, dy)P k(y,B),

holds for any n, k ≥ 1.
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Example 2. Autoregressive model. Consider the following example of a Markov chain:

Xt = φXt−1 + εt,

where εt
i.i.d.∼ N (0, σ2) with X0 = x. Then the Markov kernel (transition density) p(x, x′) is given

by N (x′;φx, σ2). Also we have Xt = φ(φXt−2 + εt−1) + εt = · · · = φtx +
∑t−1
n=0 φ

nεt−n so that
Xt ∼ N (φtx,

∑t−1
n=0 φ

2nσ2) follows from the reproductive property of a Gaussian distribution. If
| φ |< 1, then we have Xt → N

(
0, σ2

1−φ2

)
as t → ∞ in distribution. Also it can be shown that this

chain is stationary.

Notice that we can write P (x,B) = P (Xn+1 ∈ B | Xn = x) for any n ∈ T for a time-homogenous
Markov chain. As a consequence of Proposition 3, if one specifies an initial distribution v of X0, then ν
and P completely characterise the joint distribution of a time-homogenous Markov chain {Xt : t ∈ T}
in the sense that:

E [f(X0:n)] =

∫
En+1

f(x0:n)ν(dx0)P (x0, dx1) · · ·P (xn−1, dxn),

for f ∈ Bb(En+1). Also, the marginal distribution of Xn is given by:

µ(dxn) =

∫
ν(dx0)Pn(x0, dxn). (1.12)

As before, we define the following operator on P(E).

Definition 10. Let P be a Markov kernel on (E, E). For µ ∈ P(E), we define the operator T ∗ on
P(E) such that:

T ∗µ(B) :=

∫
E

µ(dx)P (x,B), (1.13)

for B ∈ E .

The operator T ∗ is often called left multiplication. We note that if one takes µ(dx) = δy(dx) then∫
E
µ(dx)P (x,B) = P (y,B). Recall that µ ∈ P(E) is said to be an invariant distribution (measure) if:

µ(B) = T ∗µ(B),

holds, in other words,
∫
E
µ(dx)P (x,B) = µ(B) holds. In this case, we will also say a Markov kernel P

preserves µ. Suppose that µ ∈ P(E) is an invariant distribution and X0 ∼ µ(dx0), then:

µ(B) =

∫
E

[∫
E

µ(dx)P (x, dy)

]
P (y,B),

=

∫
E

µ(dx)P 2(x,B),

...

=

∫
E

µ(dx)Pn(x,B) = P (Xn ∈ B) ,
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holds for B ∈ E from Proposition 3 so that a Markov chain {Xt : t ∈ T} is strongly stationary if
its initial distribution is an invariant one. Equivalently µ(dx) is an invariant distribution of Xt if
X0 ∼ µ(dx) then X1 ∼ µ(dx). We also introduce the following important definition.

Definition 11. Let P be a Markov kernel on (E, E). We say P is reversible w.r.t. µ ∈ P(E) if∫
A

µ(dx)P (x,B) =

∫
B

µ(dx)P (x,A), (1.14)

holds for any A,B ∈ E . Equivalently if:

µ(dx)P (x, dy) = µ(dy)P (y, dx),

holds.

Clearly, if P is reversible w.r.t. µ ∈ P(E), then
∫
A
µ(dx)P (x,B) =

∫
B
µ(dx)P (x,E) = µ(B) so

that P preserves µ. Thus reversibility implies invariance. Also we will say P is µ−reversible. The
condition (1.14) is also known as the detailed balance condition. Notice that if one takes µ ∈ P(E) as
an initial distribution of a a time-homogenous Markov chain {Xt : t ∈ T}, then the condition (1.14)
implies:

E [f(X0, X1)] =

∫
f(x0, x1)µ(dx0)P (x0, dx1),

=

∫
f(x1, x0)µ(dx0)P (x0, dx1),

so X0 and X1 are exchangeable in the sense that the distribution of (X0, X1) is the same as of (X1, X0)

hence the distribution of (X0, · · ·Xn) is the same as of (Xn, · · ·X0) for any n ∈ T by induction.

Example 3. Again consider the autoregressive model (Example 2). Assume that X0 ∼ N
(

0, σ2

1−φ2

)
.

Then X1 = φX0 +ε1 ∼ N
(

0, σ2

1−φ2

)
follows from the reproductive property of a Gaussian distribution.

Thus N
(

0, σ2

1−φ2

)
is an invariant distribution of the chain. Also the joint distribution of (X0, X1) is

given by N

((
E[X0]

E[X1]

)
,

(
V[X0] Cov(X0, X1)

Cov(X1, X0) V[X1]

))
. Since E[X0] = E[X1] and V[X0] =

V[X1], the joint distribution of (X0, X1) is the same as the one of (X1, X0) so that the chain is
N
(

0, σ2

1−φ2

)
−reversible and thus exchangeable.

In the context of reversible Markov chains, there are two important Hilbert spaces. Let L2(π) be
the Hilbert space of real functions which are integrable with respect to a probability measure π ∈ P(E)

such that: ∫
E

f(x)2π(dx) < +∞⇐⇒ f ∈ L2(π), (1.15)
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equipped with the inner product and associated norm:

〈f, g〉 :=

∫
E

f(x)g(x)π(dx),

‖f‖2 :=

(∫
E

f(x)2π(dx)

)1/2

.

We note that L2(π) should be understood as the equivalent class of the quotient space so that we will
treat ‖f‖2 as a norm. We will not cover the completion issues. For f ∈ L2(π), we also define:

L2
0(π) :=

{
f ∈ L2(π) :

∫
E

f(x)π(dx) = 0

}
, (1.16)

=
{
f ∈ L2(π) : 〈f, 1〉 = 0

}
.

Thus L2
0(π) is the subspace of L2(π) orthogonal to the constant functions. Since the linear function f 7→

〈f, 1〉 is continuous, L2
0(π) is a closed subspace of L2(π) and thus is also a Hilbert space, see Kreyszig

(1978, Theorem 3.2-4) for instance. Notice that for f, g ∈ L2
0(π), we have that Cov(f(X), g(X)) = 〈f, g〉

and V(f(X)) = 〈f, f〉. Then, as before, we define the right multiplication for f ∈ Bb(E):

T f(x) :=

∫
E

f(y)P (x, dy), (1.17)

that is, T f(x) = E [f(Xn) | Xn−1 = x]. We will also write T f depending on the context. First of all,
one can observe that:∫

E

T f(x)µ(dx) =

∫
E

∫
E

f(y)P (x, dy)µ(dx),

=

∫
E

f(y)

∫
E

µ(dx)P (x, dy) =

∫
E

f(x)T ∗µ(dx),

so that T and T ∗ are adjoint operators, as we mentioned. Then, the Jensen’s inequality again gives:

[T f(x)]
2

=

[∫
E

f(y)P (x, dy)

]2

≤
∫
E

f(y)2P (x, dy).

Moreover, suppose that P is π−reversible and f ∈ L2(π), then we have that:

‖T f(x)‖22 =

∫
E

[T f(x)]
2
π(dx) ≤

∫
E

∫
E

f(y)2P (x, dy)π(dx),

=

∫
E

f(y)2π(dy) = ‖f‖22 < +∞,

holds by Fubini’s theorem so that T is a bounded linear (thus continuous) operator in L2(π). Also,
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critically, we can show that for f, g ∈ L2(π):

〈T f, g〉 =

∫
E

∫
E

π(dx)P (x, dy)f(y)g(x) =

∫
E

∫
E

π(dy)P (y, dx)f(y)g(x),

=

∫
E

∫
E

π(dy)P (y, dx)f(x)g(y) = 〈f, T g〉 ,

holds if P is π−reversible so that T = T ∗ in L2(π) meaning T is a (Hilbert) self-adjoint operator in
L2(π). Thus we have the following.

Proposition 4. A Markov kernel P is π−reversible iff T (1.17) is a self-adjoint operator in L2(π).

1.3.2 Ergodicity of Markov chains

Recall that an invariant distribution is defined as a fixed point of the operator T ∗. Although there
are several ways to establish ergodicity of Markov chains, one straightforward way to establish the
uniqueness of an invariant distribution is using the Banach fixed-point theorem (also known as the
contraction mapping theorem), see, e.g. Kreyszig (1978, Chapter 5). That is, we want to show that
the operator T ∗ : P(E) → P(E) has a unique fixed point. We refer to Hairer and Mattingly (2011);
Douc et al. (2018); Hairer (2018) for the details of this approach.

To do so, clearly, some care is needed. To be precise, a normed space (P(E), ‖·‖) has to be a
complete one with some norm ‖·‖, and T ∗ has to be contraction mapping on that space. As for
the norm, we will use the total variation norm. Recall that any µ ∈ S(E) can be decomposed
(Hahn decomposition) as the difference of two positive measures (denoted by µ+ and µ−) with disjoint
supports, that is they are singular. Then the total variation norm of µ ∈ S(E) is given by:

‖µ‖TV := µ+(E)− µ−(E). (1.18)

In the context of Markov chains, the following definition is routinely used as a definition of ergodicity
of Markov chains.

Definition 12. Let {Xt : t ∈ T} be a (time-homogenous) Markov chain on (E, E) with a Markov
kernel P and an invariant distribution π ∈ P(E). Then {Xt : t ∈ T} is said to be ergodic if:

lim
n→∞

‖µPn(·)− π(·)‖TV = 0, (1.19)

holds for any initial distribution µ ∈ P(E).

We note that if a (time-homogenous) Markov chain is ergodic tine the sense, then Theorem 1 holds
so that Definition 8 and Definition 12 are equivalent, see, e.g. Douc et al. (2018, Proposition 5.2.14).
Also, it can be shown that (S(E), ‖‖TV ) is a normed vector space. Then the total variation norm
induces the following distance.

Definition 13. Let (E, E) be a measurable space. Then for any µ, ν ∈ P(E), the total variation

25



distance d(µ, ν)TV is given by:

d(µ, ν)TV :=
1

2
‖µ− ν‖TV = sup

B∈E
(µ(B)− ν(B)) .

We note that the total variation distance is defined for µ, ν ∈ S(E). To see the meaning of the
total variation distance, we assume that µ, ν ∈ P(E) admit densities (also denoted as µ, ν) w.r.t. the
common Lebesgue measure, say dx so that 1

2 ‖µ− ν‖TV = supB∈E
∣∣∫
B

(µ(x)− ν(x)) dx
∣∣. Then we

have the following useful proposition.

Proposition 5. Let (E, E) be a measurable space and assume that µ, ν ∈ P(E) admit densities w.r.t.
the common Lebesgue measure dx. Then we have that:

d(µ, ν)TV =
1

2

∫
E

| µ(x)− ν(x) | dx.

Proof. Let A := {x ∈ E : µ(x) ≥ ν(x)}. Then we have that:∫
E

| µ(x)− ν(x) | dx =

∫
A

(µ(x)− ν(x)) dx+

∫
E\A

(µ(x)− ν(x)) dx,

≤ 2 sup
B∈E

∣∣∣∣∫
B

(µ(x)− ν(x)) dx

∣∣∣∣ .
Also, since

∫
E

(µ(x)− ν(x)) dx = µ(E)− ν(E) = 0 = ν(E)− µ(E) =
∫
E

(ν(x)− µ(x)) dx, we obtain:∫
A

(µ(x)− ν(x)) dx =

∫
E\A

(µ(x)− ν(x)) dx.

Besides, for any B ∈ E , we have that:∣∣∣∣∫
B

(µ(x)− ν(x)) dx

∣∣∣∣ = max

{∫
B

(µ(x)− ν(x)) dx,

∫
B

(ν(x)− µ(x)) dx

}
,

≤ max

{∫
B∩A

(µ(x)− ν(x)) dx,

∫
B∩(E\A)

(ν(x)− µ(x)) dx

}
,

≤ max

{∫
A

(µ(x)− ν(x)) dx,

∫
E\A

(µ(x)− ν(x)) dx

}
,

=

∫
A

(µ(x)− ν(x)) dx =
1

2

∫
E

| µ(x)− ν(x) | dx,

here we used
∫
E
| µ(x) − ν(x) | dx = 2

∫
A

(µ(x)− ν(x)) dx. Taking the supremum over B ∈ E gives
rise to:

sup
B∈E

∣∣∣∣∫
B

(µ(x)− ν(x)) dx

∣∣∣∣ ≤ 1

2

∫
E

| µ(x)− ν(x) | dx,

thus 1
2

∫
E
| µ(x)− ν(x) | dx = supB∈E

∣∣∫
B

(µ(x)− ν(x)) dx
∣∣ = 1

2 ‖µ− ν‖TV .

Remark 1. Recall that we say µ, ν ∈ P(E) are singular if there exists A ∈ E such that µ(A) = ν(Ac) =
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0, and write µ ⊥ ν in such case. Then it can be shown that µ ⊥ ν is equivalent to d(µ, ν)TV = 2. Also,
it turns out that d(µ, ν)TV < 2 is equivalent to µ, ν ∈ P(E) are not singular.

Thus, it turns out that the total variation distance d(µ, ν)TV is just the L1 distance between
µ, ν ∈ P(E) when they admit densities. Upon observing this proposition, we immediately obtain the
following lemma, we omit the proof since this follows from the completeness of L1 space, which is well
known, see Hairer (2018, Lemma 4.28) for instance.

Lemma 1. Let (E, E) be a mesurable space and assume that µ, ν ∈ P(E) admit densities w.r.t.
the common Lebesgue measure dx. Then the space (P(E), ‖‖TV ) is Banach space and the space
(P(E), dTV ) is Polish space.

Uniform ergodicity The definition of ergodicity in (1.19) does not say anything about the rate of
this convergence. We first introduce the Dobrushin coefficient.

Definition 14. (Dobrushin coefficient). Let {Xt : t ∈ T} be a (time-homogenous) Markov chain
on (E, E) with a Markov kernel P . Then the Dobrushin coefficient ∆(P ) is given by:

∆(P ) := sup
µ6=ν∈P(E)

dTV (µP, νP )

dTV (µ, ν)
= sup
µ6=ν∈P(E)

‖µP − νP‖TV
‖µ− ν‖TV

. (1.20)

Notice that for two Markov kernels P,Q, it can be shown that:

dTV (µPQ, νPQ) ≤ ∆(Q)dTV (µP, νP ) ≤ ∆(Q)∆(P )dTV (µ, ν), (1.21)

so that:

∆(PQ) ≤ ∆(P )∆(Q). (1.22)

Moreover, taking µ, ν = δx, δx′ gives rise to the following (Douc et al., 2018, Lemma 18.2.2).

Lemma 2. Let {Xt : t ∈ T} be a (time-homogenous) Markov chain on (E, E) with a Markov kernel
P . Then:

∆(P ) = sup
x,x′∈E

dTV (P (x, ·), P (x′, ·)) ≤ 1.

The following convergence rate property is called uniform ergodicity.

Definition 15. (Uniform ergodicity). Let {Xt : t ∈ T} be a time-homogenous Markov chain on
(E, E) with a Markov kernel P and an invariant distribution π ∈ P(E). Then {Xt : t ∈ T} is called
uniformly ergodic if there exists constants C <∞ and ρ ∈ (0, 1) such that:

sup
x∈E
‖Pn(x, ·)− π(·)‖TV ≤ Cρ

n, (1.23)

holds for any n ∈ T .
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Clearly, (1.23) implies that limn→∞ supx∈E ‖Pn(x, ·)− π(·)‖TV = 0 since a constant C < ∞ does
not depend on x ∈ E. Therefore, uniform ergodicity requires a Markov chain {Xt : t ∈ T} uniformly
geometrically converges to a invariant distribution π ∈ P(E) in terms of total variation distance.
Indeed, it can be shown that limn→∞ supx∈E ‖Pn(x, ·)− π(·)‖TV = 0 implies (1.23), see e.g. Douc
et al. (2018, Chapter 18). The following lemma says if ∆(P ) < 1, then a (time-homogenous) Markov
chain will forget its initial distribution (position) exponentially fast.

Lemma 3. Let {Xt : t ∈ T} be a (time-homogenous) Markov chain on (E, E) with a Markov kernel
P . Then for any µ, ν ∈ P(E), the sequence {dTV (µPn, νPn);n ∈ T} is non-increasing and:

dTV (µPn, νPn) ≤ ∆(P )ndTV (µ, ν). (1.24)

If π ∈ P(E) is an invariant distribution, then for any µ ∈ P(E), the sequence {dTV (µPn, πPn);n ∈ T}
is decreasing and dTV (µPn, π) ≤ ∆(P )ndTV (µ, π).

Proof. From Proposition 3 and (1.21), we have that dTV (µPn+1, νPn+1) ≤ ∆(P )dTV (µPn, νPn) holds
since ∆(P ) ≤ 1 (Lemma 2), so that {dTV (µPn, νPn);n ∈ T} is non-increasing. Then (1.24) follows
by induction. Taking ν = π gives rise to the rest of the claim since πPn = π.

Again, if ∆(P ) < 1 then limn→∞ dTV (µPn, νPn) = 0 holds exponentially fast for any µ, ν ∈ P(E).

This property of Markov chains is known as the forgetting property. From Lemma 3 and the Banach
fixed-point theorem, we immediately have the following.

Theorem 2. Let {Xt : t ∈ T} be a (time-homogenous) Markov chain on (E, E) with a Markov kernel
P such that for some integer n, ∆(Pn) ≤ ρ < 1 holds. Then P admits a unique invariant distribution
π ∈ P(E), and for any µ ∈ P(E), dTV (µPm, π) ≤ ρbm/ncdTV (µ, π) holds where bxc is the floor
function.

Since the total variation distance of two probability measures is always less than 1, under the
assumptions in Theorem 2, we have that:

dTV (µPm, π) ≤ (1− ρ)bm/nc. (1.25)

This implies that the convergence is uniform w.r.t. any initial distributions µ ∈ P(E) if Theorem 2
holds. Therefore, we next introduce the sufficient condition, known as the Doeblin/Minorisation con-
dition, of Theorem 2.

Definition 16. (Doeblin condition). Let {Xt : t ∈ T} be a (time-homogenous) Markov chain on
(E, E) with a Markov kernel P . Then P satisfies the Doeblin condition if there exists an integer n ≥ 1,
ε > 0 and a probability measure ν ∈ P(E) such that for any x ∈ X and B ∈ E :

Pn(x,B) ≥ εν(B). (1.26)

Remark 2. If (1.26) holds, then such ε is necessarily ε ∈ (0, 1]. Indeed, taking B = E gives rise to
1 = Pn(x,E) ≥ εν(E) = ε.
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Proposition 6. Let {Xt : t ∈ T} be a (time-homogenous) Markov chain on (E, E) with a Markov
kernel P . Assume that P satisfies the Doeblin condition (1.26). Then we have that ∆(Pn) ≤ 1 − ε.
That is, the chain is uniformly ergodic.

Proof. Define P̃ (x,B) := (1 − ε)−1 {P (x,B)− εν(B)} for any x ∈ E, B ∈ E . The Doeblin condition
guarantees that P̃ is a Markov kernel, and we have µP − µ′P = (1 − ε)

{
µP̃ − µ′P̃

}
. Therefore, in

particular, we have:

1

2
‖Pn(x, ·)− Pn(x′, ·)‖TV =

1

2
(1− ε)

∥∥∥P̃n(x, ·)− P̃n(x′, ·)
∥∥∥
TV

,

≤ (1− ε)∆(P̃n) ≤ 1− ε,

and thus we have ∆(Pn) ≤ 1− ε since the last inequality above does not depend on x ∈ X.

Geometric ergodicity The notion of uniform ergodicity is restrictive in practice, especially when
a state space of a chain is a non-compact set. Indeed, consider again the autoregressive model
(Example 2) with εn

i.i.d.∼ N (0, 1). Then n−step transition density pn(x, ·) is given by N
(
φnx, 1−φ2n

1−φ2

)
,

and an invariant density π is given by N
(

0, 1
1−φ2

)
. Therefore, from Proposition 5, we have:

sup
x∈R
‖pn(x, ·)− π‖TV = 1.

Thus the convergence is not uniform. This motivate us to define the following convergence rate
property.

Definition 17. (Geometric ergodicity). Let {Xt : t ∈ T} be a time-homogenous Markov chain on
(E, E) with a Markov kernel P and an invariant distribution π ∈ P(E). Then {Xt : t ∈ T} is called
geometrically ergodic if there exists a constant ρ ∈ (0, 1), and a non-negative function M(x) : E →
[0,∞] such that

∫
E
M(x)π(dx) <∞ w.p.1. and for all x ∈ E and n ∈ T :

‖Pn(x, ·)− π(·)‖TV ≤M(x)ρn.

Also, we introduce the following conditions.

Definition 18. (Geometric drift condition). Let {Xt : t ∈ T} be a time-homogenous Markov
chain on (E, E) with a Markov kernel P . Then the kernel P satisfies a geometric drift condition (or a
Foster-Lyapunov condition) if there are constants 0 < λ < 1 and b <∞, and a function V : E → [1,∞),
such that:

PV ≤ λV + b, (1.27)

i.e. such that
∫
E
P (x, dy)V (y) ≤ λV (x) + b for any x ∈ E.

Definition 19. (Local Dobrushin coefficient). Let {Xt : t ∈ T} be a (time-homogenous) Markov
chain on (E, E) with a Markov kernel P . Then the local Dobrushin coefficient ∆L(P,K) of the kernel
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P an a set K ⊆ E is is given by:

∆L(P,K) := sup
x,y∈K

‖P (x, ·)− P (y, ·)‖TV = sup
x 6=y∈K

‖δxP − δyP‖TV
‖δx − δy‖TV

(1.28)

= sup
µ 6=ν∈P(K)

‖µP − νP‖TV
‖µ− ν‖TV

.

The following result (Hairer and Mattingly, 2011; Eberle, 2020) shows that geometric ergodicity is
a consequence of the Geometric drift condition and the local Doeblin condition.

Theorem 3. (Eberle, 2020, Theorem 3.22),(Hairer and Mattingly, 2011, Theorem 3.1, 3.2). Assume
that there exists a function V : E → [1,∞) such that the geometric drift condition holds with constants
λ, b and

∆L(P, {x ∈ E;V (x) ≤ r}) < 1, (1.29)

for some r > 2b/(1 − λ). Then there is a constant β ∈ R+ such that unique invariant probability
measure π satisfying

∫
E
V (x)π(dx) <∞, and geometric ergodicity holds:

‖Pn(x, ·)− π(·)‖TV ≤ Wβ (Pn(x, ·), π(·)) ≤ αnβ
(

1 + βV (x) + β

∫
E

V (x)π(dx)

)
,

where Wβ(µ, ν) for µ, ν ∈ P(E) is defined as:Wβ(µ, ν) := infX∼µ,Y∼ν E [dβ (µ, ν)] ,

dβ(x, y) := 1{x 6=y} (1 + βV (x) + βV (y)) .
(1.30)

Proof. Given x 6= y ∈ E, selet (X,Y ) such that P (X 6= Y ) = ‖δxP − δyP‖TV . Take λ = 1− γ < 1 for
γ > 0 so that r > 2b/γ. Then for any β > 0, we have that:

Wβ(P (x, ·), P (y, ·)) ≤ P (X 6= Y ) + βE [V (X)] + βE [V (Y )] ,

= ‖δxP − δyP‖TV + βPV (x) + βPV (y),

≤ 1 + 2βb+ β(1− γ)(V (x) + V (y)),

from the geometric drift condition (1.27) and the fact that the total variation distance of two probability
measures is always less than 1. Then we obtain:

Wβ(P (x, ·), P (y, ·)) ≤ dβ(x, y) + 2βb− βγ(V (x) + V (y)),

assume that first r ≥ V (x) + V (y). Define δ := β(rγ−2b)
1+βr and this is positive since rγ − 2b > 0. Then

it can be shown that Wβ(P (x, ·), P (y, ·)) ≤ (1 − δ)dβ(x, y). Next assume that r < V (x) + V (y).
The from (1.29), one can show that, with the choices ε := min

{
1−∆L(P,{x∈E;V (x)≤r})

2 , λ
}

and β ≤
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1−∆L(P,{x∈E;V (x)≤r})
4b :

Wβ(P (x, ·), P (y, ·)) ≤ ∆L(P, {x ∈ E;V (x) ≤ r}) + 2bβ + β(1− γ)(V (x) + V (y)),

≤ (1− ε)dβ(x, y).

As a result, we have that:

Wβ(P (x, ·), P (y, ·)) ≤ (1−min {δ, ε})dβ(x, y),

for any x 6= y ∈ E. Thus there exists a unique stationary distribution π satisfying
∫
E
V (x)π(dx) <∞

due to the Banach fixed-point theorem. Define αβ := (1−min {δ, ε}) < 1. Then we have that:

Wβ(P (x, ·)n, π) =Wβ(δxP
n, πPn) ≤ αnβWβ(δx, π),

= αnβ

(
1 + βV (x) + β

∫
E

V (x)π(dx)

)
.

The result follows from the fact that ‖µ− ν‖TV ≤ Wβ(µ, ν) with equality for β = 0 for any µ 6= ν ∈
P(E).

Consider again the autoregressive model (Example 2) with εn
i.i.d.∼ N (0, σ2). Define V (x) =| x | +1.

Then PV (x) ≤ 1+ | φ | V (x) +E[| ε |] = 1+ | φ | V (x). Thus (1.27) holds under the condition | φ |< 1.
For large enough r, we have:

∆L(P, {x ∈ E; | x | +1 ≤ r}) = sup
|x|≤r−1

sup
|y|≤r−1

∥∥N (φx, σ2)−N (φy, σ2)
∥∥
TV
≤ 1.

Then the autoregressive model is geometrically ergodic.

1.4 Diffusion process

1.4.1 Ito integrals

In this section, we focus on a special class of Markov process. A diffusion process is a (continuous time)
Markov process with no jumps. In particular, we focus on Ito diffusions, following Øksendal (2003);
Pavliotis (2014). To do so, we first need to consider the following integral, called the Ito integral :

I(f) :=

∫ T

S

f(t, ω)dWt(ω), (1.31)

where Wt is 1−dimensional Brownian motion. We define the class of functions which Ito integrals are
well defined.

Definition 20. (Øksendal, 2003, Definition 3.1.4). Let V be a class of functions f(t, ω) : R+×Ω→ R
such that

i) (t, ω)→ f(t, ω) is B(R+)×F−measurable.

ii) Let Ft be the filtration generated by Wt. Then f(t, ω) is Ft adopted.
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iii) E
[∫ T
S
f(t, ω)2dWt(ω)

]
<∞.

For f ∈ V, I(f) can be defined as the following 3 steps. First, let g ∈ V be a bounded and continuous
function w.r.t. ω , and divide the interval [S, T ] as t0 = S < t1 < · · · tn = T . Then one can find a
step function φn(t, ω) :=

∑n
j=1 gj(tj , ω)1{[tj ,tj+1)}(t) such that E

[∫ T
S

(g − φn)2dt
]
→ 0 as n → ∞,

where 1{x} is an indicator function. Then let h ∈ V be bounded. Using the bounded convergence
theorem, one can show that there exists gn ∈ V such that g(·, ω) is continuous for any n and ω, and
E
[∫ T
S

(gn − h)2dt
]
→ 0 holds as n→∞. As a result, the dominated convergence theorem implies that

there exists a sequence {hn} ∈ V such that hn is bounded for each n and E
[∫ T
S

(f − hn)2dt
]
→ 0 holds

as n→∞ for f ∈ V. Critically, it can be shown that E
[(∫ T

S
φn(t, ω)dWt(ω)

)2
]

= E
[∫ T
S
φn(t, ω)2dt

]
,

and this implies that the sequence {
∫ T
S
φn(t, ω)dWt(ω)} forms a Cauchy sequence in L2(P). Therefore,

we finally can define the Ito integral.

Definition 21. (Ito integrals). Let f ∈ V. Then the Ito integral of f is defined as L2(P)−limit:

I(f) = lim
n→∞

∫ T

S

φn(t, ω)dWt(ω),

where {φn} is a sequence of step functions such that:

E

[∫ T

S

(f(t, ω)− φn(t, ω))
2
dt

]
→ 0,

as n→∞.

Notice that the definition of the Ito integral is similar to the one of the Lebesgue integral. However,
whilst the Lebesgue integral is defined as the almost sure limit, the Ito integral is defined as the L2(P)

limit of the Cauchy sequence. Also, the multidimensional Ito integral can be defined, see Øksendal
(2003, Chapter 3). We obtain the following important result.

Proposition 7. (The Ito isometry). For any f ∈ V, we have that:

E

(∫ T

S

f(t, ω)dWt(ω)

)2
 = E

[∫ T

S

f(t, ω)2dt

]
.

Proof. See Øksendal (2003, Corollary 3.1.7).

Also we introduce a martingale.

Definition 22. (Martingale). Let {Xt : t ∈ T} be a stochastic process and Ft be the filtration
generated by {Xt : t ∈ T}. Then {Xt : t ∈ T} is said to be a martingale w.r.t. Ft if

i) Xt is adopted w.r.t. Ft.

ii) E [| Xt |] <∞ for all t.

iii) E [Xt | Fs] = Xs for all s ≤ t.
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Clearly a Brownian motion Wt is a martingale w.r.t. the filtration Ft generated by {Wt : t ∈ T}.
Indeed, E [Wt | Fs] = E [Wt −Ws +Ws | Fs] = E [Wt −Ws | Fs] +Ws = Ws.

Proposition 8. For any f ∈ V,
∫ t

0
f(t, ω)dWs(ω) is a martingale w.r.t. the filtration Fs generated by

{Ws : s ∈ [0, t]}.

Proof. See Øksendal (2003, Collorary 3.2.6).

1.4.2 Basics of Ito diffusions

Definition 23. (Ito diffusions). A time homogeneous Ito diffusion is a stochastic process Xt(ω) :

[0, T ]× Ω→ Rd satisfying a stochastic differential equation (SDE) of the form:

dXt = b(Xt)dt+ σ(Xt)dWt, (1.32)

with X0 = x, where Wt is a m−dimensional Brownian motion and measurable functions b : Rd → Rd,
σ : Rd → Rd×m satisfy:

| b(x)− b(y) | + | σ(x)− σ(y) | ≤ C | x− y |, (1.33)

for any x, y ∈ Rd and some constant C > 0, that is b and σ are Lipschitz continuous.

Notice that from (1.33) we have | b(x) |≤| b(0) | +C | x |≤ {| b(0) | +C} (1+ | x |) and | σ(x) |≤|
σ(0) | +C | x |≤ {| σ(0) | +C} (1+ | x |) . The following theorem guarantees existence and uniqueness
of the solution to (1.32).

Theorem 4. Assume that (1.33) holds. Then there exists an unique Xt such that Xt is adopted w.r.t.
the filtration Ft generated by {Wt : t ∈ [0, T ]} and:

i) X0 = x w.p.1.

ii)
∫ t

0

{
| b(Xs) | + | σ(Xs) |2

}
ds <∞ w.p.1.

iii) (1.32) holds w.p.1, that is Xt = x+
∫ t

0
b(Xs)ds+

∫ t
0
σ(Xs)dWs holds w.p.1.

Proof. See Øksendal (2003, Theorem 5.2.1).

The meaning of uniqueness in Theorem 4 is that if Xt and Yt are strong solutions to (1.32), then
Xt = Yt for any t w.p.1. The solution of the SDE (1.32) has the Markovian property and continuous
path so that it is indeed a diffusion process, see Øksendal (2003, Chapter 8) for details. In the case of
Ito diffusions, the generator L in (1.5) is defined as:

L =

d∑
i=1

bi(x)
∂

∂xi
+

1

2

d∑
i,j=1

Σi,j(x)
∂2

∂xi∂xj
, (1.34)

where Σ(x) := σ(x)σ(x)>. In many scenarios, one might want to know the expression of a new process
Vt = g(t,Xt) where g : [0, T ]×Rd → Rd is a twice continuously differentiable function and Xt is an Ito
diffusion. Using the operator in (1.34), the following theorem shows that how to derive the expression
of dVt.

33



Theorem 5. (Ito’s lemma). Let Xt be an Ito diffusion, and g : [0, T ] × Rd → Rd be a twice
continuously differentiable function. Then the process Vt = g(t,Xt) is also an Ito diffusion satisfying:

V (t,Xt) = V (X0) +

∫ T

0

∂V

∂s
(s,Xs)ds+

∫ T

0

LV (s,Xs)ds

+

∫ T

0

〈∇V (s,Xs), σ(Xs)dWs〉 ,

or equivalently:

dV (t,Xt) =
∂Vt
∂t

dt+

d∑
i=1

∂Vt
∂xi

dXi +
1

2

d∑
i,j=1

∂2V

∂xi∂xj
dXidXj , (1.35)

where dWidWj = δijdt,dWidt = dtdWi = dtdt = 0.

Proof. We refer to Øksendal (2003, Chapter 4) for a rigorous proof. Here we provide an informal proof
when d = 1. First divide the interval [0, T ] as t0 = 0 < t1 < · · · tn = T . A Taylor series expansion of
Vt = g(t,Xt) gives rise to:

VT = V0 + lim
n→∞

[
n∑
i=1

∂g

∂t
(ti − ti−1) +

n∑
i=1

∂g

∂x
(Xti −Xti−1

) +
1

2

n∑
i=1

∂2g

∂t2
(ti − ti−1)2

+

n∑
i=1

∂2g

∂t∂x
(ti − ti−1)(Xti −Xti−1) +

1

2

n∑
i=1

∂2g

∂x2
(Xti −Xti−1)2 + · · ·

]
,

where g are evaluated at (ti, Xti). Also, it might be shown that:

lim
n→∞

[
n∑
i=1

∂g

∂x
(Xti −Xti−1

)

]
= lim
n→∞

[
n∑
i=1

∂g

∂x
b(Xti)(ti − ti−1) +

n∑
i=1

∂g

∂x
σ(Xti)(Wti −Wti−1

)

]
,

=

∫ T

0

∂g

∂x
b(Xs)ds+

∫ T

0

∂g

∂x
σ(Xs)dWs,

and:

lim
n→∞

[
n∑
i=1

∂2g

∂x2
(Xi −Xi−1)2

]
= lim
n→∞

[
n∑
i=1

∂2g

∂x2
b(Xti)

2(ti − ti−1)2 +

n∑
i=1

∂2g

∂x2
σ(Xti)

2(Wti −Wti−1
)2

+ 2

n∑
i=1

∂2g

∂x2
b(Xti)σ(Xti)(ti − ti−1)(Wti −Wti−1

)

]
,

=

∫ T

0

∂2g

∂x2
σ(Xs)dt,

since (Wti −Wti−1
)2 → dt as ti − ti−1 → 0, and (ti − ti−1)2 → 0 and (ti − ti−1)(Wti −Wti−1

)→ 0 as
ti − ti−1 → 0. As a result, we have that:

VT = V0 +

∫ T

0

(
∂g(t,Xt)

∂t
+
∂g(t,Xt)

∂x
b(Xt) +

1

2

∂2g(t,Xt)

∂x2
σ2(Xt)

)
ds+

∫ T

0

∂g

∂x
σ(Xt)dWt.
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Example 4. Integration by parts. Let Xt and Yt be Ito diffusions. Consider g(x, y) = xy. Then
applying Theorem 5 to this function gives rise to

d(XtYt) =
∂g(x, y)

∂x
dXt +

∂g(x, y)

∂y
dYt +

1

2

∂2g(x, y)

∂x2
(dXt)

2

+
∂2g(x, y)

∂x∂y
dXtdYt +

1

2

∂2g(x, y)

∂y2
(dYt)

2,

= YtdXt +XtdYt + dXtdYt.

Thus we have that:

XtYt = X0Y0 +

∫ t

0

YsdXs +

∫ t

0

XsdYs +

∫ t

0

dXsdYs, (1.36)

and this is called the integration by parts formula.

Example 5. Ornstein–Uhlenbeck process. Consider the following scalar SDE:

dXt = (θ − µXt)dt+ σdWt,

with X0 = x. Then the generator L of the process if given by:

L = (θ − µx)
d

dx
+
σ2

2

d2

dx2
.

Take g(t, x) = x exp (µt). Then Theorem 5 implies:

dXt exp (µt) =
d

dt
Xt exp (µt) dt+ L (Xt exp (µt)) dt+∇ (Xt exp (µt))σdWt,

= µXt exp (µt) dt+ (θ − µXt) exp (µt) dt+ exp (µt)σdWt,

= θ exp (µt) dt+ exp (µt)σdWt,

and thus:

Xt exp (µt) = x+ θ

(
exp(µt)

µ
− 1

µ

)
+ σ

∫ t

0

exp (µs) dWs,

←→ Xt =
θ

µ
+

(
x− θ

µ

)
exp(−µt) + σ

∫ t

0

exp (−µ(t− s)) dWs.

Example 6. Geometric Brownian motion. Consider the following scalar SDE:

dXt = µXtdt+ σXtdWt,

with X0 = x. Then the generator L is given by:

L = µx
d

dx
+
σ2x2

2

d2

dx2
.
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Take g(t, x) = log(x). Then Theorem 5 implies:

d logXt = L (logXt) dt+∇ (logXt)σXtdWt,

=

(
µXt

1

Xt
+
σ2X2

t

2

(
− 1

X2
t

))
dt+

1

Xt
σXtdWt,

=

(
µ− σ2

2

)
dt+ σdWt,

and thus:

log
Xt

X0
=

(
µ− σ2

2

)
t+ σWt,

←→ Xt = x exp

((
µ− σ2

2

)
t+ σWt

)
.

As a particular and important application of Ito’s lemma from a statistical point of view, one
might want to remove σ(Xt) from an Ito diffusion. Suppose that now one has a 1−dimensional Ito
diffusion Xt. To obtain an SDE with unit diffusion coefficient σ(·) = 1, consider a transform y = h(x).
From Ito’s lemma, we have that dYt = Lh(Xt)dt + ∇h(Xt)σ(Xt)dWt. This implies the condition
∇h(Xt)σ(Xt) = 1 to obtain the required SDE, and we have:

h(x) =

∫ x

z

1

σ(x)
dx, (1.37)

where z is any arbitrary value ofXt. Applying Ito’s lemma to the map h(x) yields Lh(x) = b(x)
σ(x)−

∇σ(x)
2

so that we have: dYt = bY (Yt)dt+ dWt,

bY (y) := b(h−1(y))
σ(h−1(y)) −

∇σ(h−1(y))
2 .

(1.38)

We summarise the transformation known as the Lamperti transform.

Proposition 9. (Lamperti transform). Let Xt be 1−dimensional Ito diffusion. Define the map
h(x) = y as in (1.37) Then the process solving the SDE in (1.38) has the same law as Xt.

Example 7. Cox-Ingersoll-Ross process. Consider the following process:

dXt = (µ− αXt)dt+ σ
√
XtdWt,

with X0 = x. Then the transform h(x) in (1.37) is given by h(x) = 2
σ

√
x. The generator L of the

process is given by L = (µ− αx) d
dx + σ2x

2
d2

dx2 . As a result, we obtain:

Lh(x) =
(µ
σ
− σ

4

)
x−1/2 − α

σ
x1/2.
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Then for Yt = 2
σ

√
Xt, we have:

dYt =
(µ
σ
− σ

4

)
X
−1/2
t dt− α

σ
X

1/2
t dt+ dWt,

=

(
2µ

σ2
− 1

2

)
1

Yt
dt− α

2
Ytdt+ dWt.

In practice, it is important to know the expression of a likelihood function, which is defined as the
Radon–Nikodym derivative between two probability measures. The following theorem, known as the
Girsanov theorem, describes the Radon–Nikodym derivative between two probability measures induced
by two different Ito diffusions. Roughly speaking, the Girsanov theorem says that if one changes b(·)
in an Ito diffusion, then the law of the process will not change dramatically. For the sake of simplicity,
here we only consider the case when d = 1.

Theorem 6. (The Girsanov theorem). Let P(1) be the law induced by the Ito diffusion solving
dXt = b(1)(Xt)dt + σ(Xt)dW

(1)
t , and P(2) be the one induced by the Ito diffusion solving dXt =

b(2)(Xt)dt+ σ(Xt)dW
(2)
t with X0 = x. Define:

u(x) :=
b(2)(x)− b(1)(x)

σ(x)
, (1.39)

and assume that:

EP(1)

[
exp

(
1

2

∫ t

0

u(Xs)
2

)
ds

]
<∞. (1.40)

Also define:

G (Xt) := exp

(∫ t

0

u(Xs)dW
(1)
s − 1

2

∫ t

0

u(Xs)
2ds

)
,

= exp

(∫ t

0

b(2)(Xs)− b(1)(Xs)

σ(Xs)
dXs +

∫ t

0

b(1)(Xs)
2 − b(2)(Xs)

2

2σ(Xs)2
ds

)
. (1.41)

Then P(1) and P(2) are equivalent measures with the Radon-Nikodym derivative given by:

dP(2)

dP(1)

(
X[0,t]

)
= G (Xt) . (1.42)

Proof. We refer to Øksendal (2003, Chapter 8) for a rigorous proof. Here we provide an informal proof
of the expression in (1.42). First divide the interval [0, T ] into M intervals with size δ = T

M . Due
to the Markovian property, the discretised joint density of (X1δ, X2δ, · · ·XMδ) under P1, denoted by
p(1) (X1δ, X2δ, · · ·XMδ), is given by the product of the discretised conditional density of Xkδ given
X(k−1)δ under P1, denoted by p(1)(Xkδ | X(k−1)δ), which is given by:

p(1)(Xkδ | X(k−1)δ) =
1√

2πσ(X(k−1)δ)2δ
exp

(
−
(
Xkδ −X(k−1)δ − b(1)(X(k−1)δ)δ

)2
2σ(X(k−1)δ)2δ

)
.
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Therefore, we have:

log

(
p(2)(Xkδ | X(k−1)δ)

p(1)(Xkδ | X(k−1)δ)

)
=

(Xkδ −X(k−1)δ)(b
(2)(X(k−1)δ)− b(1)(X(k−1)δ))δ

σ(X(k−1)δ)2δ

+

(
b(1)(X(k−1)δ)

2 − b(2)(X(k−1)δ)
2
)
δ2

2σ(X(k−1)δ)2δ
.

Taking summation over k and δ ↓ 0 gives rise to the result.

Example 8. Let P be the law induced by a 1−dimensional Ito diffusion, and W be the one induced
by a standard Brownian motion, that is dXt = σ(Xt)dWt. From Theorem 6, we have that:

dP
dW

(
X[0,t]

)
= exp

(∫ t

0

b(Xs)

σ(Xs)
dXs −

∫ t

0

b(Xs)
2

2σ(Xs)2
ds

)
.

1.4.3 The Fokker–Planck equation

Let Xt be d−dimensional Ito diffusion. If the density pt(x) of the process exists, then p is given by the
solution to the Fokker–Planck equation (1.9). Also if the stationary Fokker–Planck equation (1.11)
holds, then the process is ergodic. Again, the Fokker–Planck equation of Ito diffusions is given by:

∂p
∂t = −

∑d
i=1

∂
∂xi

(bi(x)p) + 1
2

∑d
i,j=1

∂2

∂xi∂xj
(Σi,j(x)p),

p(x, 0) = µ0(x),
(1.43)

where µ0 is an initial density. Following Pavliotis (2014, Chapter 4), we define the following.

Definition 24. (Classical solution to the Fokker–Planck equation). A solution to the Fok-
ker–Planck equation (1.43) is said to be classical if:

i) Transition density p of the process is twice continuously differentiable.

ii) For any T > 0, there exists a constant c > 0 such that ‖pt(x)‖L∞(0,T ) ≤ c exp
(
a ‖x‖2

)
, where

L∞ is the vector space of essentially bounded measurable functions with the essential supremum
norm.

iii) limt→0 pt(x) = µ0(x).

Theorem 7. (Pavliotis, 2014, Theorem 4.1) Assume that:

i) There exists a constant a > 0 such that
∑d
i,j=1 Σi,j(x)ξiξj ≥ a ‖ξ‖2 for any ξ ∈ Rd uniformly in

x ∈ Rd.

ii) There exists a constant M > 0 such that ‖Σ(x)‖ ≤ M ,
∥∥∥b̃(x)

∥∥∥ ≤ M (1 + ‖x‖), ‖c̃(x)‖ ≤

M
(

1 + ‖x‖2
)
where b̃(x) := −bi(x)+

∑d
i=1

∂Σi,j
∂xj

and c̃(x) := 1
2

∑d
i,j=1

∂2

∂xi∂xj
Σi,j(x)−

∑d
i=1

∂bi(x)
∂xi

.

Then there exists a unique classical solution to the Fokker–Planck equation so that the Ito diffusion is
ergodic.
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Next we consider the detailed balance condition for Ito diffusion, see 11 in the case of Markov
chains. To do so, we first define:

Ji(p) := bi(x)p− 1

2

d∑
i=1

∂

∂xj
(Σi,j(x)p) , (1.44)

so that the Fokker–Planck equation (1.43) can be written as ∂p
∂t + ∇J(p) = 0, where i−th com-

ponent of J is Ji in (1.44). Recall that the generator L of Ito diffusions is L =
∑d
i=1 bi(x) ∂

∂xi
+

1
2

∑d
i,j=1 Σi,j(x) ∂2

∂xi∂xj
. Therefore, we want to find a condition that makes L is a self-adjoint operator

in L2(p). Assume that a Ito diffusion Xt is ergodic so that an invariant distribution pt is the solution
to the stationary Fokker-Plank equation (1.11):

L∗pt = 0,

where again L∗ is the adjoint operator of L, and notice that this implies ∇J(pt) = 0. Let f, g ∈ L2(p)

be twice differentiable functions so that we want show that 〈Lf, g〉p = 〈f,L∗g〉p = 〈f,Lg〉. Then it
can be shown that:

〈−Lf, g〉p =
1

2
〈Σ∇f,∇g〉p +

〈
f, p−1

t ∇gJ(pt)
〉
,

see Pavliotis (2014, Chapter 4) for details. From this L is a self-adjoint operator in L2(p) iff:

J(pt) = 0, (1.45)

and this is the detailed balance condition for Ito diffusions.

Proposition 10. (Pavliotis, 2014, Proposition 4.5, Theorem 4.5) Let Xt be d−dimensional ergodic
Ito diffusion with an invariant distribution pt defined as L∗pt = 0. The the process is reversible iff
(1.45) holds.

1.4.4 Numerical approximation of SDEs

To simulate Ito diffusions, one needs to solve SDEs numerically since they do not have a closed-form
solution in general. Given an Ito diffusion Xt on [0, T ] with X0 = x, first one needs to divide the
interval [0, T ] into M points such as 0 = t0 < t1 < · · · tM = T with a step size δ := T

M = ti − ti−1.
We write Yi = Xti with ti := δi, that is Y := {Yi; 0 ≤ i ≤ M} is a discrete time approximation of
X := {Xt; 0 ≤ t ≤ T} on the grid {iδ}Mi=0. We then introduce the following two convergence criteria.

Definition 25. (Strong/Weak convergence). Let Xt be an Ito diffusion on [0, T ] with X0 = x

and Y be its discrete time approximation on the grid {iδ}Mi=0. We say Y converges strongly to X at
time T > 0 with order γ > 0 if there exists a finite constant C > 0 and a positive constant δ0 such
that:

E [‖XT − YT ‖] ≤ Cδγ , (1.46)
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for any δ ∈ (0, δ0). We say Y converges weakly to X at time T > 0 with order β > 0 if for any
polynomial g, there exists a constant Kg and a positive constant δ0 such that

|E [g(XT )]− E [g(YT )]| ≤ Kgδ
β , (1.47)

for any δ ∈ (0, δ0) provided that these functionals exist.

Complete reviews of the numerical solutions of SDEs can be found in Platen (1999); Higham (2001).
In particular, we focus on the Euler-Maruyama scheme. The Euler-Maruyama scheme of X is given
by the recursive equation:

Yi+1 = Yi + b(Yi)δ + σ(Yi)δWi+1, (1.48)

for 0 ≤ i ≤M − 1 where Y0 = X0, δ := T
M , δWi := Wti −Wti−1

and thus δWi
i.i.d.∼ N (0, δ). Then the

corresponding continuous time approximation of Xt is as follows:

Ŷt := Yi +

∫ t

ti

b(Xti)ds+

∫ t

ti

σ(Xti)dWs, (1.49)

so that Ŷti = Yi. The following theorem provides that the strong convergence order of the Euler-
Maruyama scheme is 1

2 , we omit the proof.

Theorem 8. Mao (2007, Theorem 2.7.3) Let Xt be an Ito diffusion on [0, T ] with X0 = x and Ŷt be
its continuous time approximation (1.49). Then for any p ≥ 1, under 1.33, we have that:

E
[

sup
0≤t≤T

∥∥∥Xt − Ŷt
∥∥∥p] ≤ C(p, T )

Np/2
,

where C(p, T ) is a constant depending on p, T .

We also note that (1.48) induces the Markov chain x 7→ x + δb(x) +
√
δσ(x)W , W ∼ N (0, Id).

Assume that:

lim
|x|→∞

2xb(x) + trace
(
σ>(x)σ(x)

)
+ δ | b(x) |2

| x |2
≤ 0. (1.50)

If one takes V (x) =| x |2, then (1.50) impels that there exist b, γ ∈ (0,∞) such that PV = 2δxb(x) +

trace
(
σ>(x)σ(x)

)
δ+ δ2 | b(x) |2≤ b− γV so that we have PV ≤ b+ λV with λ = 1− γ < 1 thus (18)

holds. Also for any r ∈ (0,∞), we have that:

∆L(P, {x ∈ Rd; | x |2≤ r}) = sup
|x|≤
√
r

sup
|y|≤
√
r

∥∥N (x+ δb(x), δσ(x)σ(x)>
)
−N

(
y + δb(y), δσ(y)σ(y)>

)∥∥
TV

,

≤ 1,

thus we obtain the following, see Eberle (2020) for instance.

Proposition 11. Let Xt be an Ito diffusion on [0, T ] with X0 = x and Y be its Euler-Maruyama
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approximation in(1.48). Assume that (1.50) holds. Then the Markov chain induced by the Euler-
Maruyama approximation of Xt is geometrically ergodic.
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2 Markov chain Monte Carlo methods

2.1 Introduction

Suppose that one wants to evaluate an integral of the form of π(f) :=
∫
f(x)π(dx) for f ∈ Bb(E) and

π ∈ P(E). In Bayesian statistics, π(dx) is often (maybe always) a posterior distribution and thus such
integral will be the posterior expectation of f . If one could generate random numbers directly from
the target π(dx), a natural approximation of π(f) would be:

π̂(f) :=
1

N

N∑
i=1

f(x(i)),

where x(i) i.i.d.∼ π(dx). This class of approximation methods is called a Monte Carlo method, we refer
to Robert and Casella (2013) for a general reference of Monte Carlo methods. Suppose that one
has π̃ ∈ S(E) where, again, S(E) denotes the set of all finite signed measures over the measurable
space (E, E). In practice, π̃(dx) will correspond to a posterior density w.r.t. the Lebesgue measure
known up to a normalising constant. That is, π̃(dx) will be the product of a likelihood function and a
(non-conjugate) prior distribution. In this case, one cannot use the vanilla Monte Carlo any more.

Instead of sampling directly from a target distribution, Markov chain Monte Carlo (MCMC) meth-
ods generate (dependent) samples from a Markov chain which is constructed by users. That is, the
main objective of MCMC is that, given a target distribution, one has to construct an ergodic Markov
chain which has the target distribution as an invariant distribution.

The main objective of this section is to provide some basic and detailed results of a variety of
MCMC methods which will appear implicitly and explicitly in the rest of the thesis. We refer to
Roberts and Rosenthal (2004) as a general reference of MCMC methods.

2.2 Metropolis–Hastings

Following closely Tierney (1994, 1998), we begin with the Metropolis-Hastings algorithm. Most MCMC
methods are (partially or fully) based on the Metropolis-Hastings algorithm, or can be considered as
a special case of it. Let π(dx) be a target distribution on (E, E) which is potentially known up to a
normalizing constant. In order to define the Metropolis–Hastings kernel for π(dx), one has to specify
a proposal Markov kernel Q(x, dy) on (E, E), which can be admitting a density q w.r.t. the Lebesgue
measure v, that is Q(x, dy) = q(x, y)v(dy). Based on Q(x, dy), we want to construct the Markov kernel
P (x, dy) which satisfies: ∫

A

π(dx)P (x,B) =

∫
B

π(dx)P (x,A), (2.1)
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for any A,B ∈ E , or equivalently π(dx)P (x, dy) = π(dy)P (y, dx) on the product space (E ×E, E ⊗E).
This is because taking A = E and (2.1) give rise to:∫

E

π(dx)P (x,B) =

∫
B

π(dx)P (x,E),

= π(B),

which implies that πP = π. Therefore, the condition (2.1) is a sufficient condition that a Markov
kernel P (x, dy) leaves π(dx) invariant. Recall that the condition (2.1) is often called the detailed
balance condition. Also, notice that (2.1) implies:

P (Xn ∈ A,Xn+1 ∈ B) = P (Xn ∈ B,Xn+1 ∈ A) ,

thus such Markov chain is reversible. Then consider the Metropolis–Hastings kernel :

P (x, dy) = Q(x, dy)α(x, y) + δx(dy) (1− ᾱ(x)) , (2.2)

ᾱ(x) :=

∫
α(x, y)Q(x, dy). (2.3)

where α(x, y) is a measurable function such that α(x, y) : E ×E → [0, 1]. Thus, (2.2) can be algorith-
mically understood as:

i) Given x, propose a move y via Q(x, dy).

ii) Accept y w.p. α(x, y).

iii) Otherwise, stay at x.

Then, it turns out that (2.2) satisfies (2.1) iff

π(dx)Q(x, dy)α(x, y) = π(dy)Q(y, dx)α(y, x) (2.4)

holds. To obtain such well-defined α(x, y), let µ(dx, dy) := π(dx)Q(x, dy) and µ>(dx, dy) := µ(dy, dx) =

π(dy)Q(y, dx). Then it can be shown that there exists a set C ∈ E⊗E such that µ and µ> are mutually
absolutely continuous on C and mutually singular on Cc. Then we write µC and µ>C as the restrictions
of µ and µ> on C. From the Radon–Nikodým theorem, we have that (Tierney, 1998, Proposition1):

r(x, y) :=
µC(dx, dy)

µ>C(dx, dy)
, (2.5)

such that 0 < r(x, y) <∞ and r(x, y) = 1
r(y,x) for all x, y ∈ E. In practice, the set C can be understood

as the state such that moves from x to y and from y to x are both possible in the Markov chain with
some initial distribution and the transition kernel Q(x, dy). Then the detailed condition in (2.4) can
be alternatively expressed as:

µ(dx, dy)α(x, y) = µ>(dx, dy)α(y, x). (2.6)
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From this, it can be shown that (2.2) satisfies (2.1) iff

α(y, x) =
µ(dx, dy)

µ>(dx, dy)
α(x, y) = r(x, y)α(x, y) (2.7)

holds w.p.1 on C, see e.g. Tierney (1998, Theorem2). Then for x, y ∈ E, consider the following
acceptance probability function αMH :

αMH(x, y) :=

min {1, r(y, x)} , if (x, y) ∈ C,

0, otherwise.
(2.8)

Then for x, y ∈ C, we have that:

r(x, y)αMH(x, y) = min {r(x, y), r(x, y)r(y, x)} ,

= min {r(x, y), 1} = αMH(y, x),

thus (2.2) satisfies (2.1) with αMH(x, y). If we assume that there exists a common dominating measure
ν such that π(dx) = π(x)ν(dx) and Q(x, dy) = q(y | x)ν(dy) hold. Then we can take:

C = {(x, y) : π(x)q(y | x) > 0, π(y)q(x | y) > 0} ,

and:

r(x, y) =
π(x)q(y | x)

π(y)q(x | y)
. (2.9)

Then the following theorem immediately follows from the construction.

Theorem 9. Consider the Metropolis–Hastings kernel (2.2) with acceptance probability function αMH

defined in (2.8). That is:

P (x, dy) = Q(x, dy)αMH(x, y) + δx(dy) (1− ᾱMH(x)) ,

ᾱMH(x) :=

∫
αMH(x, y)Q(x, dy).

Then we have that π(dx)P (x, dy) = π(dy)P (y, dx).

We can informally summarise above discussions as follows under the assumption that there exists
a common dominating measure ν such that π(dx) = π(x)ν(dx) and Q(x, dy) = q(y | x)ν(dy) hold.

Algorithm 1 Metropolis–Hastings

i) Given x, propose a move y via q(· | x).

ii) Set x = y w.p. min
{

1, π(y)q(x|y)
π(x)q(y|x)

}
.

iii) Repeat step 1 and 2 enough times.
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Remark 3. Notice that π(y)q(x|y)
π(x)q(y|x) does not depend on the normalising constant of the density π(x).

Indeed, π(y)
π(x) = π̃(y)/Z

π̃(x)/Z = π̃(y)
π̃(x) where π̃ ∈ S(E) and Z is the corresponding normalising constant.

Example 9. Independent type Metropolis-Hastings.
Set a proposal density such as q(y | x) = q(y). Then (2.9) becomes r(x, y) = π(y)q(x)

π(x)q(y) . The Metro-
polis–Hastings with this choice of the proposal density is often called the independent type Metropolis-
Hastings.

Example 10. Random Walk Metropolis.
Set a proposal density such as q(y | x) = q(x | y). The most common choice might be q(y | x) =

q(x− y) = q(y − x). Then (2.9) becomes r(x, y) = π(y)
π(x) . The Metropolis–Hastings with this choice of

the proposal density is often called the random walk Metropolis-Hastings. A typical choice of such q is
y = x+ ε where ε i.i.d.∼ N

(
0, σ2I

)
with σ2 > 0.

Although there are many valid acceptance probability functions satisfying the condition (2.6),
critically, the Metropolis–Hastings kernel (2.2) with (2.8) is optimal in terms of the asymptotic variance.
To see this, again define L2(π) such that:

L2(π) :=

{
x ∈ E :

∫
E

f(x)π(dx) <∞
}
,

equipped with the inner product 〈f, g〉 :=
∫
E
f(x)g(x)π(dx).Without loss of generality, we can restrict

our attention to the space L2
0(π) ⊂ L2(π), where:

L2
0(π) :=

{
f ∈ L2(π) :

∫
E

f(x)π(dx) = 0

}
.

Notice that 〈f, g〉 = Cov(f, g) for f, g ∈ L2
0(E). Suppose that a Markov kernel P (x, dy) satisfies (2.1)

w.r.t. π(dx). In this case, we have that:

〈Pf, g〉 =

∫ ∫
P (x, dy)f(y)g(x)π(dx) =

∫ ∫
P (y, dx)f(y)g(x)π(dy),

=

∫ ∫
P (x, dy)f(x)g(y)π(dx) = 〈f, Pg〉 ,

implying P is self-adjoint on L2(π), again. For f ∈ L2(π), the Dirichlet form for the Markov kernel P
is given by:

EP (f) := 〈f, f〉 − 〈f, Pf〉 ,

=

∫
f(x)2π(dx)−

∫ ∫
f(x)P (x, dy)f(y)π(dx),

=

∫ ∫
f(x) [f(x)− f(y)]π(dx)P (x, dy),

=

∫ ∫
f(y) [f(y)− f(x)]π(dx)P (x, dy),

=
1

2

∫ ∫
[f(y)− f(x)]

2
π(dx)P (x, dy). (2.10)
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Next, define f̂N := 1
N

∑N
i=1 P

i−1f(x) for f ∈ L2(π). Then the asymptotic variance V arπ(f, P ) is
defined as:

V arπ(f, P ) := lim
N→∞

V ar(f̂N ) = lim
N→∞

V ar
(√

Nf̂N

)
. (2.11)

Suppose that f ∈ L2
0(π) and X0 ∼ π. Then it can be shown that:

V arπ(f, P ) =
〈
f, (I + P )(I − P )−1f

〉
, (2.12)

and:

〈f, (I − P )f〉 = sup
g∈L2

0(E,π)

2 〈f, g〉 − EP (g),

see Sherlock (2018) for details. As a result, for f ∈ L2
0(π) and X0 ∼ π, we can show that:

V arπ(f, P ) = sup
g∈L2

0(E,π)

4 〈f, g〉 − EP (g)− 〈f, f〉 , (2.13)

here note that 〈f, f〉 =
〈
f, (I − P )(I − P )−1f

〉
so that

〈
f, (I + P )(I − P )−1f

〉
= 2

〈
f, (I − P )−1f

〉
−

〈f, f〉. Suppose that one has two π−invariant Markov kernels P1 and P2. Then we immediately have
the following.

Theorem 10. Tierney (1998). Suppose that one has two π−reversible Markov kernels P1 and P2 such
that for any g ∈ L2

0(π), EP1(g) ≥ EP2(g). Then V arπ(f, P1) ≤ V arπ(f, P2) holds.

Now consider the Metropolis–Hastings kernel. From (2.10), the Dirichlet form of the Markov kernels
is:

EP (f) =
1

2

∫ ∫
[f(y)− f(x)]

2
π(dx) (Q(x, dy)α(x, y) + δx(dy) (1− ᾱ(x))) ,

=
1

2

∫ ∫
[f(y)− f(x)]

2
π(dx)Q(x, dy)α(x, y).

Also, it is clear to see that:

α(x, y) = r(y, x)α(y, x) ≤ min {1, r(y, x)} = αMH(x, y)

holds for any α(x, y) satisfying (2.7). Then write PMH for the Metropolis–Hastings kernel with (2.8)
and Pα for any π−invariant reversible Markov kernel with any α(x, y) satisfying (2.7). For fixed
Q(x, dy), we clearly have that:

EPMH (g) ≥ EPα(g), (2.14)

for any g ∈ L2
0(π). This leads to the following.

Theorem 11. Tierney (1998). Let Q(x, dy) be fixed. Then amongst reversible Markov kernels P of
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the form:

P (x, dy) = Q(x, dy)α(x, y) + δx(dy) (1− ᾱ(x)) ,

ᾱ(x) :=

∫
α(x, y)Q(x, dy),

where α(x, y) satisfying (2.7), the one minimizing V arπ(f, P ) for any f ∈ L2(E, π) is P (x, dy) =

Q(x, dy)αMH(x, y) + δx(dy) (1− ᾱMH(x)) .

Proof. This follows from (2.14) and Theorem 10.

Remark 4. Theorem 11 tells us only about the asymptotic variance of π−reversible Markov kernels.
Thus, it does not tell us anything about non-reversible Markov kernels, or about non-asymptotic vari-
ance.

Next, we consider the ergodicity of the Metropolis-Hastings algorithm. Consider first the inde-
pendent type Metropolis-Hastings (Example 9). Assume that for a target density π and a proposal
density q, there exists ε > 0 such that:

inf
x∈E

q(x)

π(x)
≥ ε. (2.15)

Then we have the following.

Proposition 12. Assume that the constant defined in (2.15) exists. Then the independent type
Metropolis-Hastings is uniformly ergodic.

Proof. Let P (x, ·) be the Markov kernel induced by the independent type Metropolis-Hastings. Then
for any x ∈ E and A ∈ E , we have that:

P (x,A) ≥
∫
A

q(y) min

{
1,
π(y)q(x)

π(x)q(y)

}
dy,

=

∫
A

π(y) min

{
q(y)

π(y)
,
q(x)

π(x)

}
dy,

≥ ε
∫
A

π(y)dy = επ(A).

Notice that this ε is necessarily ε ∈ (0, 1] since 1 = P (x,E) ≥ επ(E) = ε. Thus the Markov kernel
induced by the algorithm satisfies the Doeblin condition, and the result follows.

We also consider the random walk Metropolis-Hastings (Example 10). Critically, Roberts and
Tweedie (1996b, Proposition 3.1) show that, in the case of the Hastings-Metropolis algorithm, a Markov
kernel is geometrically ergodic iff there exists a real-valued function V > 1 such that:

lim sup
|x|→∞

PV (y)

V (x)
< 1, (2.16)

where PV (y) :=
∫
P (x, dy)V (y) again. Recall that the Markov kernel induced by the Hastings-

Metropolis algorithm is given by P (x, dy) = Q(x, dy)αMH(x, y) + δx(dy)
(
1−

∫
αMH(x, y)Q(x, dy)

)
so
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that we have:

PV (y)

V (x)
=

∫
V (y)

V (x)
Q(x, dy)αMH(x, y) +

∫
V (y)

V (x)
a(x)δx(dy) =

∫
V (y)

V (x)
Q(x, dy)αMH(x, y) + a(x)

=

∫ [
V (y)

V (x)
− 1

]
Q(x, dy)αMH(x, y) + 1,

where we have defined a(x) := 1−
∫
αMH(x, y)Q(x, dy). Thus, (2.16) becomes:

lim sup
|x|→∞

∫ [
V (y)

V (x)
− 1

]
Q(x, dy)αMH(x, y) < 0. (2.17)

To utilise the criterion in (2.17), we need to restrict the class of a target density. Let p(·) be a
continuous and positive density over R. Then p(·) is said to be log-concave in the tails if there exists
a > 0 and some x′ such that for all y ≥ x ≥ x′:

log p(x)− log p(y) ≥ a(y − x),

and also for any y ≤ x ≤ −x′:

log p(x)− log p(y) ≥ a(x− y),

hold.

Proposition 13. Let P be the Markov kernel induced by the random walk Metropolis-Hastings. Assume
that E = R and a target density π(·) is log-concave in tails. Then P is geometrically ergodic.

Proof. We adopt the proof of Roberts and Tweedie (1996b); Mengersen and Tweedie (1996). For the
sake of simplicity, assume that q(y | x) = q(x− y) = q(y − x). Take V (x) = exp (s | x |) for 0 < s < a.
Also notice that we can the integral in (2.17) as:

I :=

∫ [
V (y)

V (x)
− 1

]
Q(x, dy)αMH(x, y)

=

∫ 0

−∞

[
es(|y|−x) − 1

]
αMH(x, y)Q(x, dy)︸ ︷︷ ︸
A

+

∫ x

0

[
es(y−x) − 1

]
αMH(x, y)Q(x, dy)︸ ︷︷ ︸
B

+

∫ 2x

x

[
es(y−x) − 1

]
αMH(x, y)Q(x, dy)︸ ︷︷ ︸
C

+

∫ ∞
2x

[
es(y−x) − 1

]
αMH(x, y)Q(x, dy)︸ ︷︷ ︸
D

.

Then for 0 < s < a and x ≥ x′, the assumptions imply π(y)
π(x) ≤ exp (−a (| y − x |)) so that:

D =

∫ ∞
2x

[
es(y−x) − 1

] π(y)

π(x)
Q(x, dy)

≤ exp (2x(s− a))Q(x, (2x,∞))→ 0,
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by taking x′ →∞. Also we have that:

A ≤
∫ −x
−∞

[
es(|y|−x) − 1

]
e−a(|y|−x)Q(x, dy) +

∫ 0

−x

[
es(|y|−x) − 1

]
Q(x, dy),

≤ Q(x, (−x,−∞)) +

∫ 0

−x

[
es(|y|−x) − 1

]
Q(x, dy).

Notice that the second integral on the right hand side is strictly negative for any x so that A → 0 as
x′ →∞. As for B and C, recall that we have assumed q(x− y) = q(y − x). Therefore, we can bound
these two terms by:∫ x

0

[
e−sz − 1 + e(s−a)z + e−az

]
q(z)dz = −

∫ x

0

(1− e(s−a)z)(1− e−sz)q(z)dz,

whose integrand is positive and increasing in z so that strictly negative, thus I →< 0 as x′ →∞. The
symmetricity of the log-concave assumption ensures that the same argument holds if x′ → −∞ so that
the claim follows from Roberts and Tweedie (1996b, Proposition 3.1).

To get Proposition 13, we need to assume that target distributions are log-concave in the tails.
Indeed, Mengersen and Tweedie (1996, Theorem 3.3) show the following necessary condition for geo-
metric ergodicity.

Theorem 12. Mengersen and Tweedie (1996). Let P be the Markov kernel induced by the random
walk Metropolis-Hastings. Let π ∈ P(E) be a target. If P is geometrically ergodic then there exists
s > 0 such that: ∫

es|x|π(dx) <∞.

Theorem 12 essentially implies that the random walk Metropolis-Hastings cannot be geometrically
ergodic for targets with heavy tails.

Again, consider the random walk Metropolis-Hastings with the proposal density q(y | x) = N
(
y;x, σ2I

)
.

Given this choice, another natural question would be the optimal choice of the parameter σ2. In this
context, Roberts et al. (1997) study the targets of the form π(x) =

∏d
i=1 f(xi) with Gaussian jump

proposals y(d) ∼ N
(
0, σ2(d)Id

)
here we have used d to emphasise the dependency on dimension. As

d increases, the number of proposed moves obviously increases so that the random walk Metropolis-
Hastings becomes more likely to propose unreasonable moves. As a consequence, the acceptance
probability αMH(x, y) (2.8) might degenerate into 0 as d ↑ ∞. To overcome this problem, Roberts
et al. (1997) consider scaling the parameter σ2(d):

σ2(d) :=
`2

d
, (2.18)

where ` is a positive constant. Clearly, (2.18) is a decreasing function of dimension d. The key idea of
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Roberts et al. (1997) is that they consider the following Markov process:

Z
(d)
1 (t) := X

(d)
1btdc,

where b·c is the floor function and thus X(d)
1btdc is the first component of the chain after iteration btdc.

Therefore, the algorithm proposes a move every 1/d time step. This process allows us to consider
asymptotic behaviour of the chain with d ↑ ∞ since that rescales the time between each step as well.
Under some analytical conditions on π(x), one can show that :

Z
(d)
1 (t)→ Z(t),

where the convergence is in distribution, and Z(t) satisfies the Langevin equation such that:

dZt =
1

2
h(`)∇ log f(Zt) +

√
h(`)dWt, (2.19)

h(`):=2`2Φ

(
−1

2
`I1/2

)
,

I :=E
[
(∇ log f)

2
]
.

Here, h(`) is sometimes called a speed measure for the diffusion process in the sense that Z(t) can be
expressed as a sped up version of the process U(t), i.e., Z(t) = U(h(`)t) where = is in distribution
sense, where U(t) is given by:

dUt :=
1

2
∇ log f(Ut)dt+ dWt.

Indeed, it can be shown that setting ds = h(`)dt gives rise to dUt = dZt, again = is in distribution.
Consider the expected acceptance rate in d−dimensions:

αMH(d, `) :=

∫ ∫
π(x(d))αMH(x(d), y(d))q(y(d) | x(d))dx(d)dy(d) (2.20)

=

∫ ∫
min

{
π(x(d))q(y(d) | x(d)), π(y(d))q(x(d) | y(d))

}
dx(d)dy(d).

Then the following theorem says that αMH(d, `) converges to 2Φ
(
− 1

2`I
1/2
)
so maximising h(`) gives

rise to the optimal choice of σ2(d) in terms of the acceptance probability.

Theorem 13. Roberts et al. (1997, Theorem 1.1, Corollary 1 .2). Under some regular conditions on
π(x), X(d)

1btdc converges to Z(t) defined in (2.19) in distribution as d ↑ ∞. Also the expected acceptance
rate in d−dimensions αMH(d, `) converges to α(`):=2Φ

(
− 1

2`I
1/2
)
as d ↑ ∞. h(`) is maximised at the

unique value ˆ̀= 2.38/I1/2 for which α(ˆ̀) = 0.234 and h(ˆ̀) = 1.3/I.

2.3 Reversible jump MCMC

The reversible jump MCMC (RJMCMC) algorithm is a trans-dimensional version of the Metropolis-
Hastings algorithm, developed in Green (1995). Due to its nature, RJMCMC has been used especially
in the context of Bayesian model selection and mixture models, for instance, see Hastie and Green
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(2012); Robert and Casella (2013, Chapter 11) for details. For the sake of simplicity, we bravely confine
our attention to Bayesian model selection.

We first introduce Bayesian model selection. Assume that one has a countable set of k parametric
models, denoted byM := {Mk}k∈K associated with a collection of likelihood functions p(y | θk,Mk)

where y is data, θk ∈ Θk is the parameter and the parameter space respectively. Also, one has to
specify a collection of priors on the parameters θk denoted by π(θk) and ones on models denoted by
π(Mk). In general, π(θk) is a density w.r.t. the Lebesgue measure on Θk and π(Mk) is a one w.r.t.
the counting measure onMk. Set Θ := ∪kΘk × {Mk} . The posterior model probability ofMk given
y can be obtained as:

Π(Mk | y) =
π(Mk)

∫
p(y | θk,Mk)π(θk)∑

l∈K π(Ml)
∫
p(y | θl,Ml)π(θl)

, (2.21)

where we have assumed that θk andMk are independent for each k ∈ K.
The main difficulty to explore on the space Θ, or equivalently on the joint posterior Π(Mk, θk) ∝

p(y | θk,Mk)π(θk)π(Mk) is that dim (Θk) and dim (Θk′) may differ, where dim(x) denotes the di-
mension of x. Consider a move from xk := (Mk, θk) to xk′ := (Mk′ , θk′). Then, what we want to
construct is that the Markov kernel P (x, dx′) satisfies the following detailed balance condition (2.4):∫

(x,x′)∈A×B
Π(dx)P (x, dx′) =

∫
(x,x′)∈A×B

Π(dx′)P (x′, dx), (2.22)

for any A,B ∈ Θ. To construct such a kernel, we again use the Metropolis–Hastings kernel (2.2), that
is (2.22) becomes:∫

(x,x′)∈A×B
Π(dx)Q(x, dx′)α(x, x′) =

∫
(x,x′)∈A×B

Π(dx′)Q(x′, dx)α(x′, x), (2.23)

Again, as we discussed (see also Tierney, 1998; Green, 1995), it can be shown that Π(dx)Q(x, dx′) is
dominated by a symmetric measure µ on Θ × Θ with the corresponding density f . Intuitively, this
means that jumps are limited to moves from Mk to close models in the sense that their dimensions
are close (but slightly different), might be nested. As a result, (2.6) becomes:∫

(x,x′)∈A×B
f(x, x′)α(x, x′)µ(dx, dx′) =

∫
(x,x′)∈A×B

f(x′, x)α(x′, x)µ(dx′, dx). (2.24)

Recall (see (2.7)) that (2.24) holds iff α(x, x′) = f(x′,x)
f(x,x′) , and this leads to the following Green’s ratio:

αG(x, x′) :=
Π(dx′)Q(x′, dx)

Π(dx)Q(x, dx′)
, (2.25)

clearly the Metropolis–Hastings kernel with αG(x, x′) leaves Π(dx) invariant due to Theorem 9.
Notice that although (2.25) is mathematically well defined, a constructive representation of µ(dx, dx′)

is still not clear. Then, the idea of Green (1995) is to impose a dimension matching condition in the
sense that there exists transformation from θk to θk′ such that it is a diffeomorphism (the transforma-
tion and its inverse mapping are differentiable). Let dk and dk′ be the dimensions of θk and θk′ . Then
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one first simulates random variables uk→k′ ∈ Uk→k′ ⊂ R`k→k′ and set (θk′ , uk′→k) = tk→k′(θk, uk→k′)

where t : Θk×Uk→k′ → Θk′×Uk′→k is a diffeomorphism, that is its inverse mapping is tk→k′ := t−1
k→k′ :

Θk′×Uk′→k → Θk×Uk→k′ , where uk′→k ∈ Uk′→k ⊂ R`k′→k , and thus dk+`k→k′ = dk′+`k′→k. There-
fore, RCMCMC extends the spaces Θk and Θk′ to the augmented spaces Θk×Uk→k′ and Θk′ ×Uk′→k.
Let gk→k′(uk→k′) and gk′→k(uk′→k) be the densities of uk→k′ and uk′→k. As a result, now our augmen-
ted target densities are Π(Mk, θk)gk→k′(uk→k′) and Π(Mk′ , θk′)gk′→k(uk′→k). Define the Jacobian of
the transformation tk→k′ :

Jk→k′(θk, uk→k′) := det

∣∣∣∣(∂tk→k′(θk, uk→k′)∂(θk, uk→k′)

)∣∣∣∣ , (2.26)

and now we are ready to summarise the discussion as the following algorithm.

Algorithm 2 Reversible Jump MCMC (Green, 1995).

i) Given (Mk, θk), sample Mk′ | Mk ∼ q(· | Mk) and uk→k′ ∼ gk→k′(·), and set (θk′ , uk′→k) =
tk→k′(θk, uk→k′).

ii) Accept (Mk′ , θk′) w.p. min {1, αG(xk, xk′)} where:

αG(xk, xk′) :=
p(y | θk′ ,Mk′)π(θk′)π(Mk′)gk′→k (uk′→k) q(Mk | Mk′)

p(y | θk,Mk)π(θk)π(Mk)gk→k′ (uk→k′) q(Mk′ | Mk)
Jk→k′(θk, uk→k′).

iii) Repeat step 1 and 2 sufficient times.

The apparent implementational problem of Algorithm 2 is the choices of tk→k′ and gk→k′ which are
not straightforward, and depend on the problem being considered. Generally speaking, bad choices
of tk→k′ and gk→k′ will end up with poor a performance of the algorithm. Some suggestions can be
found in Brooks et al. (2003), and Dellaportas et al. (2006) study applications of the algorithm to
diffusion-type models, for instance.

2.4 Pseudo-marginal MCMC

Suppose that a target π ∈ P(E) has a density π(x) w.r.t. some reference measure a, say dx. In
addition, suppose that π(x) now cannot be evaluated point-wise. To facilitate the discussion, consider
a posterior distribution given some data y and admits a density w.r.t. dθ, which is also denoted by π.
That is, we have:

π(θ | y) =
p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

, (2.27)

where θ 7→ p(y | θ) is the likelihood of the observations and we assign a prior for of density θ w.r.t.
dθ. In many practical cases, the likelihood p(y | θ) cannot be evaluated point-wise, so that the
Metropolis-Hastings algorithm (Algorithm 1) cannot be directly used anymore in this setting. This
problem routinely appears especially in the context of latent variable models. For instance, let x be a
some latent variable in the sense that one cannot directly observe from data, defined on say (X,X ).
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It is well-known that joint MCMC exploring (x, θ) will suffer from slow mixing due to difficulty in
updating the latent process, x, or due to strong correlation between (x, θ). This leads us to calculate
the marginal likelihood p(y | θ) =

∫
X
p(y, x | θ)dx =

∫
X
p(x | θ)p(y | x, θ)dx. If this is the case,

the ideal acceptance probability of the marginal algorithm is min
{

1, p(y|θ
′)p(θ′)q(θ|θ′)

p(y|θ)p(θ)q(θ′|θ)

}
, which is again

might not be obtained in practice due to p(y | θ).
To overcome this problem, we first introduce an auxiliary random variable w on a measurable space

say (W,W). The main idea of pseudo-marginal MCMC (Beaumont, 2003; Andrieu and Roberts, 2009)
is that, whilst one cannot work with the target π(dx), one can construct an extended target π(dx, dw)

on the product space (E ×W, E ×W) to approximate π(dx), or to approximate the ideal acceptance
probability. To do so, define a distribution π̃N on the product space (E ×W, E ×W):

π̃N (dx, dw) := π(dx)πx(dw), (2.28)

with πx(dw) := Qx,N (dw)w where {Qx,N (dw)}x,N∈E,N is a family of distributions on (W,W) such that
for each x,N :

E [Wx,N ] = 1, (2.29)

where Wx,N ∼ Qx,N (·). We assume that Wx,N is strictly positive w.p.1. {Wx,N}x,N are often referred
as the weights. Let f ∈ Bb (E) . Then, from the condition in (2.29), we have that:∫

f(x)wπ(dx)Qx,N (dw) =

∫
f(x)π(dx),

and thus exactness follows in this sense. Next define a proposal kernel Q̃N as follows:

Q̃N ((x,w) , (dy, du)) := Q(x, dy)Qy,N (du), (2.30)

where Q : E × E → [0, 1]. Then from (2.8), the acceptance probability is given by:

αpseudo ((x,w) , (y, u)) :=

{
1,
π(y)uq(y | x)

π(x)wq(x | y)

}
. (2.31)

From Theorem 9, it is clear to see that the Metropolis–Hastings kernel (2.2) with (2.30) and (2.31)
admits the extended target π̃N (dx, dw) as an invariant distribution.

Algorithm 3 Pseudo-marginal MCMC (Beaumont, 2003; Andrieu and Roberts, 2009).
Given the current variables (x,w):

i) Propose a move y via q(· | x).

ii) Given y, propose a move u via Qy,N (·) and hence obtain π̃N (dy, du).

iii) Set (x,w) = (y, u) w.p. (2.31).

iv) Repeat from step 1 to 3 sufficiently enough times.
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Example 11. As an example, consider (2.27) of the following latent variable model. Let {Xn}n≥1 be
X−valued i.i.d. latent variables, which have the density such that Xn

i.i.d.∼ fθ(·). Suppose that one can
observe {Xn}n≥1 only in the sense that Yn | Xn ∼ gθ(· | Xn). Then the likelihood function is given by
p(y1:n | θ) :=

∏n
k=1

∫
X fθ(xk)gθ(yk | xk)dxk, which is analytically intractable. Then consider unbiased

estimation of p(y1:n | θ) via importance sampling. To do so, for k = 1, . . . , n and i = 1, . . . , N , we
introduce weights wkθ (uk,i) such that:

wkθ (uk,i) :=
fθ(xk,i)gθ(yk | xk,i)

qθ(xk,i | yk)
,

where qθ(· | ·) is an importance density, and here we assumed that Xk,i can be independently sampled
from γk(θ, uk,i) with uk,i

i.i.d.∼ qu(·) and γk : Θ × X → X. Then, we might approximate the likelihood
without bias as follows:

p(yk | θ, uk) :=
1

N

N∑
i=1

wkθ (uk,i), p(y1:n | θ, u) :=
n∏
k=1

p(yk | θ, uk),

so that now Algorithm 3 can be applied.

To see efficiency of Algorithm 3, consider the expected acceptance rate, that is E [αpseudo ((x,w) , (y, u))] =∫
wαpseudo ((x,w) , (y, u))Qx,N (dw)Qy,N (du). Recall that x 7→ min {1, x} is a concave function. Thus

we have that:∫
wαpseudo ((x,w) , (y, u))Qx,N (dw)Qy,N (du) = EQx,N (dw)

[
EQy,N (du)

[
min

{
w,

uπ(y)q(y | x)

π(x)q(x | y)

}]]
,

≤ EQx,N (dw)

[
min

{
EQy,N (du) [w] ,EQy,N (du)

[
uπ(y)q(y | x)

π(x)q(x | y)

]}]
,

= EQx,N (dw)

[
min

{
w,

π(y)q(y | x)

π(x)q(x | y)

}]
,

≤ min

{
EQx,N (dw) [w] ,EQx,N (dw)

[
π(y)q(y | x)

π(x)q(x | y)

]}
,

=

{
1,
π(y)q(y | x)

π(x)q(x | y)

}
,

therefore, the acceptance rate of a pseudo-marginal algorithm is never greater than that of the exact
marginal algorithm. Indeed, Andrieu and Vihola (2015) show the the asymptotic variance of the exact
marginal algorithm is always less than that of a pseudo-marginal algorithm, see Andrieu and Vihola
(2015, Theorem 7).

2.5 Metropolis-adjusted Langevin algorithm

Let π ∈ P(E) be a target, and suppose that one wants to find a diffusion process Xt which π leaves
invariant. Then, as we studied, the stationary Fokker-Planck equation has to satisfy:

−
∑
i

∂

∂xi
bi(x)π(x) +

1

2

∑
i,j

∂2

∂xi∂xj
Σi,j(x)π(x) = 0, (2.32)
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where Σ := σ>σ. In other words, now we consider the inverse problem such that, given the target π,
we want to solve (2.32). Then imposing the detailed balance condition gives rise to:

b(x)π(x) +
1

2

∑
i,j

∂2

∂xi∂xj
Σi,j(x)π(x) = 0. (2.33)

(2.33) implies that, in order to obtain samples from the target π, we may focus on reversible diffusion
processes. If one sets Σ = I, then b = 1

2π
−1∇π = 1

2∇ log π. This leads to the Langevin dynamics:

dXt =
1

2
∇ log π(Xt)dt+ dWt, (2.34)

here we note that (2.34) is often called Smoluchowski dynamics as well in the context of physics. Since
− log π(x) satisfies the Poincaré inequality, (2.34) might converge exponentially fast to the target π
unless π is multimodal, see Roberts and Tweedie (1996b, Theorem 2.3, Theoren 2.4) for details.

In practice, one has to discretise (2.34) with a step size ε > 0. Applying the Euler–Maruyama
method on the interval [0, T ], for instance, then yields:

Xi+1 = Xi +
ε

2
∇ log π(Xi) +

√
εξi, (2.35)

where ξi
i.i.d.∼ N (0, I) and ε := T

M with a positive integer M . Although (2.34) has the desirable
properties, such discretisation may destroy these properties due to the discretisation error. To offset
the error induced by the discretisation, following Besag (1994), Roberts and Tweedie (1996a) use the
Metropolis–Hastings kernel with the proposal:

Q(x, :) = N
(
x+

ε

2
∇ log π(x), εI

)
, (2.36)

which leads to the Metropolis-adjusted Langevin algorithm (MALA) as follows.

Algorithm 4 Metropolis-adjusted Langevin algorithm (Roberts and Tweedie, 1996a; Besag, 1994).

i) Given x, propose a move y via (2.36).

ii) Set x = y w.p. αMH(x, y) defined in (2.8).

iii) Repeat step 1 and 2 sufficient times.

In the same manner as Theorem 13, Roberts and Rosenthal (1998) show that, as the dimensions
d ↑ ∞, the optimal acceptance rate for the algorithm is 0.574 for Algorithm 4. Critically, in the case
of MALA, one needs to scale the parameter ε as ε = `2

d1/3
. It turns out the computational complexity,

as d ↑ ∞, of MALA is O(d1/3) compared with one of the random walk Metropolis-Hastings is O(d).
Therefore, MALA is much more efficient than the random walk Metropolis-Hastings. This is not a
surprising result since if one were able to obtain samples directly from (2.34), then the acceptance
probability would be close to 1 by the construction.
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2.6 Hamiltonian Monte Carlo

Let q ∈ Rd be the variables of interest. Hamiltonian Monte Carlo (HMC) first introduces auxiliary
variables p ∈ Rd. In the context of molecular dynamics, q and p are often called position variables
and momentum variables respectively. Let D := 2d. The total energy of the system is given by the
(separable) Hamiltonian H : RD 7→ R such that:

H(q, p) := U(q) +K(p), (2.37)

where U : Rd 7→ R is called the potential function and K : Rd 7→ R is called the kinetic function. Also,
in this setting, RD is called the phase space. In statistics, U(q) might be proportional to the (log)
negative target distribution from which one wants to sample. Also, the kinetic function is often of the
form:

K(p) =
1

2
p>M−1p, (2.38)

where the d × d matrix M is called the mass matrix. This class of kinetic functions is often called
Gaussian kinetic function (Betancourt, 2017). We note that although K(·) can depend on q, we will
restrict ourselves to a separable Hamiltonian. Let t ∈ R+ be an auxiliary time index. Then the
Hamiltonian dynamics is given by:

dq(t)
dt = ∇pH(q(t), p(t)) = M−1p(t),

dp(t)
dt = −∇qH(q(t), p(t)) = −∇U(q(t)).

(2.39)

Let x := (q, p) ∈ RD and define the matrix:

J :=

[
0d×d Id×d

−Id×d 0d×d

]
. (2.40)

Using this, (2.39) can be equivalently formulated as:

dx(t)

dt
= J∇H(x). (2.41)

Given an initial condition {q(0), p(0)} = (p0, q0) =: x0 ∈ RD, if H(x) is bounded below and ∇H(x)

is locally Lipschitz continuous, then existence and uniqueness of (2.41) follows, see e.g., Stoltz and
Rousset (2010). Then, (2.41) introduces the flow {Φt} in the sense that Φt(x0) is the value at time t
of the solution x(t) of the Hamiltonian dynamics (2.41) with an initial condition x0.

Next we study some properties of flow {Φt}. A mapping Φt : RD 7→ RD is said to be symplectic if
for any point x ∈ RD:

∇Φ>J∇Φ> = J, (2.42)

holds, where J is defined in (2.40). Notice that the matrix J satisfies J> = −J = J−1. Then we have
the following propositions.
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Proposition 14. The flow {Φt} induced by (2.41) is symplectic.

Proof. See, e.g., Neal (2011); Betancourt (2017).

As a consequence of Φt being symplectic, we immediately have the following important result.

Proposition 15. The determinant of ∇Φ is always 1 for any point x ∈ RD.

Proof. Assume that det (J) 6= 0. Then from Proposition 14, for any point x ∈ RD, we have that:

det
(
∇Φ>

)
det (J) det (∇Φ) = det (J) ,

and this gives rise to det (∇Φ) = 1 since det (J) 6= 0 and thus det
(
∇Φ>

)
det (∇Φ) = 1.

Essentially, what Proposition 15 says is following. Let LebD denote the Lebesgue measure on RD.
Then for any Borel A ∈ B(RD), we have LebD (Φt(A)) = LebD (A) for any t ∈ R+. Equivalently, for
bounded f ∈ Bb(RD), we have that

∫
Φt(A)

f(q, p)µ(dq)ν(dp) =
∫
A
f(Φt(A)) det (∇Φt(A))µ(dq)ν(dp) =∫

A
f(Φt(A))µ(dq)ν(dp) for any t ∈ R+ and Lebesgue measures. Proposition 15 is called volume pre-

servation. Also we have the following.

Proposition 16. For any t ∈ R+, the flow {Φt} induced by (2.41) and the Hamiltonian function H()
in (2.37) satisfy H ◦ Φt = H.

Proof. dH(x(t))
dt = ∂H(x)

∂q
dq(t)
dt + ∂H(x)

∂p
dp(t)
dt = ∂H(x)

∂q
∂H(x)
∂p − ∂H(x)

∂p
∂H(x)
∂q = 0, thus H(Φt(x0)) = H(x0).

Proposition 16 is called energy conservation. From volume preservation (Proposition 15) and energy
conservation (Proposition 16), the following key claim immediately follows.

Theorem 14. For each t, the probability measure in RD the density Z−1exp (−H(q, p)) w.r.t. Lebesgue
is preserved by the flow Φt induced by (2.41):∫

Φt(A)

Z−1exp (−H(q, p))µ(dq)ν(dp) =

∫
A

Z−1exp (−H(q, p))µ(dq)ν(dp),

for any Borel A ∈ B(RD), where Z is the normalising constant.

Proof. For any Borel A ∈ B(RD):∫
Φt(A)

Z−1 exp (−H(q, p))µ(dq)ν(dp) =

∫
A

Z−1 exp (−H(Φt(A))) | det (Φt(A)) | µ(dq)ν(dp),

=

∫
A

Z−1 exp (−H(A))µ(dq)ν(dp).

The key implication of Theorem 14 is as follows. Assume that now the potential function U(q) is
the negative logarithm of the density of the target, say π(dq). That is, we have that:

π(dq) = Z−1
q exp (−U(q))µ(dq), Zq =

∫
Rd

exp (−U(q))µ(dq).
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This means that exp (−H(q, p)) has the unnormalised density exp (−U(q))× exp
(
− 1

2p
>M−1p

)
, since

q and p are statistically independent. Clearly, the target distribution π(dq) is the q−marginal of
exp (−H(q, p)), and p−marginal of it is the standard Gaussian distribution. Then, in this set-up,
Theorem 14 implies that the following ideal algorithm will construct a Markov process in Rd reversible
w.r.t. the target π(dq), see e.g., Sanz-Serna (2014, Section 9) or Bou-Rabee and Sanz-Serna (2018,
Section 5).

Proposition 17. Let L > 0 denote the duration parameter. Define the transitions qn 7→ qn+1 in Rd

by the following procedure.

i) Sample pn from a d−dimensional standard Gaussian distribution N (0,M).

ii) Obtain (qn+1, pn+1) by evolving the Hamiltonian dynamics (2.41) over the time interval [0, L].

iii) Let projq denote the projection on the q−component. Set qn+1 = q(L) = projq(qn, pn) and discard
pn+1.

Then the Markov process qn 7→ qn+1 leaves the target π(dq) invariant marginally. Also, the Markov
process is reversible w.r.t. the target π(dq).

Proof. The first claims follows immediately from Theorem 14. The Markovian property follows from
the fact that the past enters the computation of q1 only through q0. We will study later such reversibility
by studying the flow {Φt}.

Next we study further the properties of the flow {Φt}. The linear map S : RD → RD is said to be
linear involution in RD if S(S(x)) = x for any x ∈ RD. In particular, we consider the momentum flip
involution:

S(q, p) = S(q − p). (2.43)

Clearly, the momentum flip involution is linear involution. Assume that the Hamiltonian H(q, p) is a
even function of the momentum, i.e., H(q, p) = H(q,−p). Equivalently, H(q, p) = H(S(q, p)). Suppose
that (q(t), p(t)) is a solution of (2.39), and set (q̂(t), p̂(t)) := (q(−t),−p(−t)). Then observe that:

dq̂(t)

dt
=

dq(t)

d(−t)
= ∇pH(q(−t), p(−t)) = ∇pH(q(−t),−p(−t)) = ∇pH(q̂(t), p̂(t)),

dp̂(t)

dt
=
d(−p(t))
d(−t)

= −∇qH(q(−t),−p(−t)) = −∇qH(q̂(t), p̂(t)).

From this observation, we can obtain reversibility (w.r.t. S) of the flow {Φt}:

S ◦ Φt = Φ−t ◦ S,

⇐⇒ Φ−t = S ◦ Φt ◦ S. (2.44)

We note that the flow {Φt} itself is not reversible, although applying the momentum flip involution S
makes {Φt} reversible. Also notice that Φt ◦ Φ−t = Id, so we have that:

Φ−t = Φ−1
t . (2.45)
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The property (2.45) is called symmetry. From reversibility and symmetry, we have that:

Φ−1
t = S ◦ Φt ◦ S = Φ−t.

The following result follows from (2.44) and (2.45), and will be useful in the sequel.

Proposition 18. Bou-Rabee and Sanz-Serna (2018, Proposition 2.5). The flow {Φt} and the mo-
mentum flip S satisfy:

| det (∇Φt (S(Φt))) | =| det (∇Φt (x)) |−1 .

All in all, we summarise the important properties of the flow {Φt} as the following theorem.

Theorem 15. Let the flow {Φt} by (2.41), the Hamiltonian function H(q, p) in (2.37) and S be the
momentum flip in (2.43). Then we have the followings:

i) det (∇Φt) = 1.

ii) H ◦ Φt = H.

iii) S ◦ Φt = Φ−t ◦ S.

iv) Φ−t = Φ−1
t .

v) Let π̃(dq, dp) ∝ exp (−H(q, p))µ(dq)ν(dp). Then any Borel A ∈ B(RD), the push forward meas-
ure π̃(Φ−1

t (A)) is equal to π̃(A).

If one had samples from ideal algorithm (Proposition 17), then such samples would leave the target
invariant as we studied. However, one cannot, in general, solve the Hamiltonian dynamics analytically
(2.41). This leads us to resort to numerical integrators. Some care is needed here. As we studied, the
flow {Φt} has several desirable properties, see ,e.g., Theorem 15. We do not want such properties to
break down due to discretisation. Although it cannot preserve energy conservation, the best-known
volume preserving, reversible w.r.t. S algorithm to integrate the Hamiltonian dynamics numerically is
the Verlet/leapfrog integrator : see, e.g. Bou-Rabee and Sanz-Serna (2018, Section 4) and Stoltz and
Rousset (2010, Section 1).

The leapfrog integrator is based on Strang’s splitting. Recall that, since it is separable, one can
split the Hamiltonian into two parts:

H(1)(q) := U(q), H(2)(p) :=
1

2
p>M−1p, (2.46)

clearlyH(q, p) = H(1)(q)+H(2)(p). As forH(1)(q), the corresponding dynamics are dq(t)dt = ∇pH(1)(q) =

0 and dp(t)
dt = −∇qH(1)(q) = −∇U(q). Also, as for H(2)(p), we have that dq(t)

dt = ∇pH(2)(p) = M−1p

and dp(t)
dt = −∇qH(2)(p) = 0. Then let ε ∈ R+ and L ∈ N. The leapfrog integrator proceeds as follows.
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Given initial points (q0, p0) ∈ RD, one can iterate L times following step:
pk+1/2 = pk − ε

2∇U(qk),

qk+1 = qk + εM−1pk+1/2,

pk+1 = pk+1/2 − ε
2∇U(qk+1),

(2.47)

for k ∈ {0, · · · , L − 1}. This sequence defines a discrete dynamical system for k ∈ {0, · · · , L − 1} as
follows:

(qk+1, pk+1) = Ξ
(1)
ε/2 ◦ Ξ(2)

ε ◦ Ξ
(1)
ε/2(qk, pk)

=: Ψ (1)
ε (qk, pk),

where Ξ
(1)
ε , Ξ

(2)
ε : RD → RD are given for all (q, p) ∈ RD by:

Ξ(1)
ε (q, p) := (q, p− ε

2
∇U(q)), Ξ(2)

ε (q, p) := (q + εM−1p, p). (2.48)

By iterating this process, we can define the sequence for k ≥ 1:

Ψ◦(k+1)
ε = Ψ◦(k)

ε ◦ Ψ (1)
ε . (2.49)

It is clear to see that the Jacobian of Ξ
(1)
ε , denoted by J(Ξ

(1)
ε ), is given by:

J(Ξ(1)
ε ) =

(
1 0

− ε
2∇

2U(q) 1

)
,

thus we conclude that det
(
J(Ξ

(1)
ε )
)

= 1. Also, one can show that det
(
J(Ξ

(2)
ε )
)

= 1. As a result,
we have the following. Note that the composition of two volume preserving mappings is itself volume
preserving, see Bou-Rabee and Sanz-Serna (2018, Proposition 2.2).

Proposition 19. The approximated flow {Ψ◦(k)
ε } for k ∈ {0, · · · , L} in (2.49) preserves volume pre-

servation of the exact flow {Φt} for any ε ∈ R+.

To see reversibility of {Ψ◦(k)
ε } w.r.t. the momentum flip involution S, consider (here we setM = Id

without loss of generality): qk+1 = qk + εpk − ε2

2 ∇U(qk),

pk+1 = pk − ε
2∇U(qk)− ε

2∇U(qk+1).
(2.50)

Using this expression, we have:

projq(Ψ (1)
ε (qk,−pk)) = qk+1 − εpk+1 −

ε2

2
∇U(qk+1),

= qk + εpk −
ε2

2
∇U(qk)− ε

(
pk −

ε

2
∇U(qk)− ε

2
∇U(qk+1)

)
− ε2

2
∇U(qk+1),

= qk,
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and:

projp(Ψ (1)
ε (qk,−pk)) = −

(
−pk+1 −

ε

2
∇U(qk+1)− ε

2
∇U(projq(Ψ (1)

ε (qk,−pk)))
)
,

= −
(
−
(
pk −

ε

2
∇U(qk)− ε

2
∇U(qk+1)

)
− ε

2
∇U(qk+1)− ε

2
∇U(qk)

)
,

= pk.

These observations imply S ◦ Ψ (1)
ε ◦ S = (qk,−pk) =

(
Ψ

(1)
−ε

)
since:

projq(Ψ
(1)
−ε (qk, pk)) = qk,

projp(Ψ
(1)
−ε (qk, pk)) = −pk.

holds. Thus we have the following.

Proposition 20. The approximated flow {Ψ◦(k)
ε } for k ∈ {0, · · · , L} (and Ψ (1)

ε ) in (2.49) preserves
reversibility (w.r.t. S) of the flow {Φt}.

As we mentioned, the approximated flow {Ψ◦(k)
ε } does not preserve energy conservation, and a

natural strategy for correcting this bias will be to use the Metropolis- Hastings scheme. This is pretty
much the same as MALA. After L leapfrog steps, one has the last points of the numerical trajectory
(qL, pL) with transition:

Q(q′, p′ | q0, p0) = δ(q′ − qL)δ(p′ − pL).

Consider the ratio of the transitions without the momentum flip:

Q(q0, p0 | qL, pL)

Q(qL, pL | q0, p0)
=

0

1
,

so the Metropolis- Hastings acceptance probability will be always zero. This is because, without the
momentum flip, the approximated flow {Ψ◦(k)

ε } proceeds only forwards (Betancourt, 2017). Again, the
approximated flow {Ψ◦(k)

ε } itself is not reversible. If we modify (but not necessarily) the bias via the
Metropolis- Hastings scheme, then we need to apply the momentum flip to the the approximated flow
{Ψ◦(k)

ε }, which gives rise to the reversible proposal:

Q(q′, p′ | q0, p0) = δqL(q′ − qL)δ(p′ + pL).

π̃(q, p) ∝ exp (−H(q, p)). In this case, the Metropolis- Hastings acceptance probability becomes:

αH(qL,−pL) := min

(
1,

Q(q0, p0 | qL,−pL)π̃(qL,−pL)

Q(qL,−pL | q0, p0)π̃(q0, p0)

)
,

= min

(
1,
δ(q0 − q0)δ(−p0 + p0)π̃(qL,−pL)

δ(qL − qL)δ(−pL + pL)π̃(q0, p0)

)
,

=min

(
1,

exp (−H(qL,−pL))

exp (−H(q0, p0))

)
, (2.51)
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as desired. Now we are ready to introduce the Hamiltonian Monte Carlo (HMC), also known as the
hybrid Monte Carlo, presented first in Duane et al. (1987). Notice that if the exact flow {Φt} were
available, that is ΦL = Ψ

◦(L)
ε , then:

exp (−H(qL,−pL))

exp (−H(q0, p0))
= 1,

due to Proposition 16. Therefore, the better numerical scheme Ψ◦(L)
ε can end up with the higher

probability of acceptance.

Algorithm 5 Hamiltonian Monte Carlo (HMC) (Duane et al., 1987).

i) Draw pn from N (0,M) given qn.

ii) Obtain (q∗n+1, p
∗
n+1) = Ψ

◦(L)
ε (qn, pn) by iterating (2.49) L− 1 times.

iii) Set qn+1 = q∗n+1 w.p.

αH(q∗n+1,−p∗n+1)=min

(
1,

exp
(
−H(q∗n+1,−p∗n+1)

)
exp (−H(qn, pn))

)
,

otherwise set qn+1 = qn.

iv) Discard p∗n+1.

v) Repeat from the first step to the fourth step sufficiently large n times.

Following Stoltz and Rousset (2010, Section 2) and Sanz-Serna (2014) closely, we study the validity
of Algorithm 5.

Lemma 4. Let µ be a Lebesgue measure on RD which is preserved by the momentum flip S, that is
for any A ∈ B(RD), µ(A) = µ(S(A)) = µ(S(A)−1). Let K be a kernel on RD such that:∫

A

µ(dx)K(x,B) =

∫
B

µ(dy)K(S(y), S(A)), (2.52)

for any A,B ∈ B(RD). Then we have that:

i) The measure µ is invariant w.r.t. K.

ii) At stationarity, the Markov chain {ξi} generated by K is statistically same as the chain {S(ξi)}.

Proof. Take A = RD, then we have that:∫
RD

µ(dx)K(x,B) =

∫
B

µ(dy)K(S(y),RD),

=

∫
B

µ(dy) = µ(B),
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this proves that the measure µ is invariant w.r.t. K. Next, by the definition, we obtain:

P (S(ξn) ∈ S(A) | S(ξn+1) ∈ S(B)) = P (ξn ∈ A | ξn+1 ∈ B) ,

=
P (ξn ∈ A, ξn+1 ∈ B)

P (ξn+1 ∈ B)
.

Recall that, for any n, P (ξn+1 ∈ B) = P (ξn ∈ B). Set y = S(x) and using µ(S(dx)) = µ(dx) give rise
to: ∫

A

µ(dx)K(x,B) =

∫
S(B)

µ(S(dx))K(x, S(A)),

=

∫
S(B)

µ(dx)K(x, S(A)),

and this implies P (ξn ∈ A, ξn+1 ∈ B) = P (ξn ∈ S(B), ξn+1 ∈ S(A)). As a result, we have that:

P (S(ξn) ∈ S(A) | S(ξn+1) ∈ S(B)) =
P (ξn ∈ A, ξn+1 ∈ B)

P (ξn+1 ∈ B)
,

=
P (ξn ∈ S(B), ξn+1 ∈ S(A))

P (ξn ∈ S(B))
,

P (ξn+1 ∈ S(A) | ξn ∈ S(B)) .

Lemma 5. Let µ be a Lebesgue measure on RD which is preserved the momentum flip S, that is for
any A ∈ B(RD), µ(A) = µ(S(A)) = µ(S(A)−1). Assume that K is a Markov kernel in RD such that
the two measures:

K(S(y), S(dx))µ(du), K(x, dy)µ(dx)

are equivalent on RD × RD so that one can define a function r(x, y) such that:

r(x, y) :=
K(S(y), S(dx))µ(dy)

K(x, dy)µ(dx)
. (2.53)

Define ξn 7→ ξn+1 ∈ RD by:

i) Draw ξ∗n+1 from K(ξn, ·).

ii) Set ξn+1 = ξ∗n+1 w.p. min(1, r(ξn, ξ
∗
n+1)) otherwise set ξn+1 = S(ξn).

Then the induced Markov chain satisfies (2.52) and thus µ is an invariant measure.

Proof. The Kernel Q of this chain is:

Q(x, dy) = (1 ∧ r(x, y))K(x, dy) + (1− α(x))δS(x)(dy),

α(x) :=

∫
(1 ∧ r(x, y))K(x, dy).
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We want to show that:

(1 ∧ r(x, y))K(x, dy)µ(dx)︸ ︷︷ ︸
A

+ (1− α(x))δS(x)(dy)µ(dx)︸ ︷︷ ︸
B

=

(1 ∧ r(S(y), S(x)))K(S(y), S(dx))µ(dy)︸ ︷︷ ︸
A

+ (1− α(S(y)))δy(S(dx))µ(dy)︸ ︷︷ ︸
B

,

First, notice that:

1

r(S(y), S(x))
=

K(S(y), S(dx))µ(S(dy))

K(S(S(x)), S(S(dy)))µ(S(dx))

=
K(S(y), S(dx))µ(dy)

K(x, dy)µ(dx)
= r(x, y),

since µ(dx) = µ(S(dx)) and S ◦ S(x) = x. Then, using the fact min(1, r) = rmin
(
1, 1

r

)
gives rise to:

min (1, r(x, y))K(x, dy)µ(dx) = min (1, r(S(y), S(x))) r(x, y)K(x, dy)µ(dx),

and by the definition of r(x, y) we have that:

min (1, r(S(y), S(x))) r(x, y)K(x, dy)µ(dx) = min (1, r(S(y), S(x)))K(S(y), S(dx))µ(dy),

thus the A terms are equal. Next we compare the B terms. Let f ∈ Bb(RD × RD) and consider the
change of variables x = S(x′). Then by we have that:∫

RD×RD
f(x, y)(1− α(S(y)))δy(S(dx))µ(dy) =

∫
RD×RD

f(S(x′), y)(1− α(S(y)))δy(dx′)µ(dy),

=

∫
RD

f(S(y), y)(1− α(S(y)))µ(dy).

Next take y = S(x). Then we obtain:∫
RD

f(S(y), y)(1− α(S(y)))µ(dy) =

∫
RD

f(S(S(x)), S(x))(1− α(S(S(x))))µ(S(dx)),

=

∫
RD

f(x, S(x))(1− α(x))µ(dx),

=

∫
RD×RD

f(x, y)(1− α(x))δS(x)(dy)µ(dx),

thus the B terms, and thus the claim follows from Lemma 4.

Lemma 6. Let µ be the Lebesgue measure on RD with the density which is proportional to exp (−H())

w.r.t. dy with H ◦ S = S. Besides, assume that the numerical flow {Ψ◦(k)
ε } is symmetric w.r.t. the

momentum flip S and volume preserving. Define a transition kernel by:

K(x, dy) = δ
Ψ
◦(L)
ε (x)

dy. (2.54)
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Then such µ and K satisfy conditions in Lemma 5 and the Metropolis-Hastings ratio r(x, y) in (2.53)

is given by
exp(−H(Ψ◦(L)

ε (x))
exp(−H(x)) .

Proof. Let f ∈ Bb(RD × RD). We first consider the numerator in (2.53), and define:

IN :=

∫
RD×RD

f(x, y)K(S(y), S(dx))µ(dy)

=

∫
RD×RD

f(x, y)δ
Ψ
◦(L)
ε (S(y))

S(dx)µ(dy).

Define x = S(x′) and this gives, recall that S ◦ Ψ (L)
ε =

(
Ψ

(L)
ε

)−1

◦ S,

IN =

∫
RD×RD

f(S(x′), y)δ
Ψ
◦(L)
ε (S(y))

S(S(dx′))µ(dy)

=

∫
RD

f
(
S(Ψ◦(L)

ε (S(y))), y
)
µ(dy),

=

∫
RD

f

((
Ψ (L)
ε

)−1

(y), y

)
exp(−H(y))dy,

and then change of the variable x =
(
Ψ

(L)
ε

)−1

(y) gives:

IN =

∫
RD

f
(
x, Ψ (L)

ε (x)
)

exp(−H(Ψ (L)
ε (x))) | ∇det

((
Ψ (L)
ε

)
(x)
)
| dx,

=

∫
RD

f
(
x, Ψ (L)

ε (x)
)

exp(−H(Ψ (L)
ε (x)))dx.

As for the denominator of (2.53), we have that:

ID :=

∫
RD×RD

f(x, y)K(x, dy)µ(dx),

=

∫
RD×RD

f(x, y)δ
Ψ
◦(L)
ε (x)

dyµ(dx),

=

∫
RD

f
(
x, Ψ◦(L)

ε (x)
)

exp(−H(x))dx.

Thus we conclude that δ
Ψ
◦(L)
ε (S(y))

S(dx)µ(dy) and δ
Ψ
◦(L)
ε (x)

dyµ(dx) are equivalent on RD × RD, and
taking f = 1 yields the claim.

Theorem 16. The chain induced by Algorithm 5 leaves marginally exp(−U(x)) invariant.

Proof. The Kernel Q of this is given by:

Q(x, dy) = (1 ∧ r(x, y))δ
Ψ
◦(L)
ε (x)

dy + (1− α(x))δS(x)(dy),

r(x, y) =
exp(−H(Ψ

(L)
ε (x)))

exp(−H(x))
,

α(x) :=

∫
(1 ∧ r(x, y))δ

Ψ
◦(L)
ε (x)

dy.
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Lemma 6 and Lemma 5 ensure that this kernel induced by Algorithm 5 admits well-defined the
Metropolis-Hastings ratio, and also that chains satisfy the condition (2.52). Thus the claim follows
from Lemma 4.

Let L be fixed and take M = I in Algorithm 5. Then L steps proposals for (p, q) of the HMC can
be expressed as:qt+Lε = qt + Lε2∇ logU(qt)/2 + ε2

∑L−1
i=1 (L− i)∇ logU(qt+iε) + Lεpt,

pt+Lε = pt + ε2∇ logU(qt)/2 + ε
∑L−1
i=1 (L− i)∇ logU(qt+iε) + ε∇ logU(qt+Lε)/2.

(2.55)

Upon observing the similarity between (2.55) and the proposal of MALA (Algorithm 4), Livingstone
et al. (2019) establish, under appropriate conditions, the results which a version (fixed L) of HMC will
be and not be geometrically ergodic inspired by the results such as Proposition 13 and Theorem 12. In
Durmus et al. (2017), the irreducibility and geometric ergodicity of HMC with either fixed or random
number of steps of the symplastic integrator is studied, under more analytical assumptions.

Optimal scaling is studied in Beskos et al. (2013b). This paper shows that for i.i.d. targets, the
leapfrog step size ε has to be scaled as ε = `

d4 and it turns out that HMC requires O(d1/4) steps to
explore the state space as d ↑ ∞. Also, they identify the asymptotically optimal acceptance probability
analytically is 0.651.

2.7 Advanced Hamiltonian Monte Carlo

As we noted in subsection 2.6, one has to decrease the leapfrog step size ε with order O(d−1/4), or the
acceptance probability will degenerate into 0 at the end. To address this problem, Beskos et al. (2011,
2013a) study the HMC on Hilbert spaces. The aim of this section is to present well-defined HMC for
targets in (2.56) developed in Beskos et al. (2011, 2013a).

To facilitate argument, suppose that we are interested in estimating path of (scalar) diffusion
process in a certain interval [0, l] where l > 0. In this case, the distributions of interest are defined on
the infinite-dimensional Hilbert space such that H = L2([0, l],R). We want to sample from a target
distribution which is obtained as a change of Gaussian measures on a certain (separable ) Hilbert
space H. To be precise, let Π0 be a centred Gaussian law denoted by N (0, C) where C is the covariance
operator. Then we are interested in a target Π such that:

dΠ

dΠ0
∝ exp (−Φ(q)) , (2.56)

where Φ(q) : H 7→ R. It turns out that the target distribution can be expressed as:

Π(x) ∝ exp

(
−Φ(q)− 1

2

〈
q, C−1q

〉)
, (2.57)

for q ∈ H. We set L := C−1. Then, for x ∈ H, consider the following Hamiltonian which can be
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understood as the corresponding version of (2.37) on H×H:

H(q, p) = Φ(q) +
1

2
〈q, Lx〉+

1

2
〈p,Mp〉 , (2.58)

where M is a a user-specified mass operator which has to be well-defined covariance operator on H.
That is, p ∼ N (0,M). We setM = L so that C−1 =M = L. Upon this specification, same as before,
the Hamiltonian dynamics is given by:

dq
dt = ∇pH(q, p) = p,

dp
dt = −∇qH(q, p) = −q − C∇Φ(q).

(2.59)

here we omit dependency on t from notations for the sake of simplicity. Again, we can split (2.59) into
the followings:

H(1)(q) := Φ(q), H(2)(q, p) :=
1

2
〈q, Lq〉+

1

2
〈p, Lp〉 . (2.60)

As for H(1)(q), the corresponding dynamics are dq
dt = ∇pH(1)(q) = 0 and dp

dt = −∇qH(1)(q) = −C∇Φ(q).

Also, as for H(2)(q, p), we have that dq
dt = ∇vH(2)(q, p) = p and dp

dt = −∇xH(2)(q, p) = −q. Notice that
both equations can be solved analytically. Then the corresponding solution operators are given by:

Θt(q, p) = (q, p− tC∇Φ(q)) , (2.61)

Θ̃t(q, p) = (cos(t)q + sin(t)p,− sin(t)q + cos(t)p) , (2.62)

and thus the numerical integrator is given by:

Ψ◦(k+1)
ε = Ψ◦(k)

ε ◦Ψ(1)
ε , (2.63)

where we have defined (qk+1, pk+1) = Ψ
(1)
ε := Θε/2 ◦ Θ̃ε ◦ Θε/2(qk, pk). Notice that, with the choice

cos(ε?) = 1−ε2/4
1+ε2/4 for ε > 0 (see Beskos et al. (2013a)), the corresponding numerical integrator can be

alternatively expressed as: 
pk/2 = p0 − ε

2
q0+qk

2 − ε
2C∇Φ(q0),

qk = q0 + εpk/2,

pk = pk/2 − ε
2
q0+qk

2 − ε
2C∇Φ(qk),

(2.64)

which can be understood as a semi-implicit-type integrator of the leap-frog. Also, in the same manner,
we define the corresponding acceptance probability:

αH (qL,−pL) := min

(
1,

exp (−H(qL,−pL))

exp (−H(q0, p0))

)
, (2.65)

and we summarise the algorithm as follows.
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Algorithm 6 HMC on Hilbert spaces (Beskos et al., 2011, 2013a).

i) Draw pn from N (0,M) given qn.

ii) Obtain (q∗n+1, p
∗
n+1) = Ψ

◦(L)
ε (qn, pn) by iterating (2.63) L− 1 times.

iii) Set qn+1 = q∗n+1 w.p.

αH(q∗n+1,−p∗n+1) =min

(
1,

exp
(
−H(q∗n+1,−p∗n+1)

)
exp (−H(qn, pn))

)
,

otherwise set qn+1 = qn.

iv) Discard p∗n+1.

v) Repeat from the first step to the fourth step sufficiently large n times.

To see validity of Algorithm 6, consider the Gaussian product measure on H ×H via the change
of measure such that Q0 := N (0, C)×N (0, C) so that:

Q(dx, dv) := exp (−Φ(q))Q0(dq, dv).

Also we define the sequence of probability measures as follows:

Qi := Qi−1 ◦Ψ−i,

for 1 ≤ i ≤ L and set:

g(q) := −C1/2∇Φ(q), (2.66)

for q ∈ H. Notice that we need the assumption which ensures that C∇Φ(q) is an element of the
Cameron-Martin space of the Gaussian measure Π0 for any q ∈ H w.p.1. under the measure Π0.
Besides, we need the following lemma.

Lemma 7. Let Π0 = N (0, C) on H and set T (q) = q+ C1/2q0, q ∈ H and where q0 ∈ H is a constant.
Then we have that

d
{

Π0 ◦ T−1
}

d {Π0}
(q) = exp

(
−1

2
| q0 |2 +

〈
q0, C

−1/2q
〉)

.

Proof. Proposition 1.17 of Da Prato (2006) ensures that the measure Π0 ◦ T−1 is N (C1/2q0, C). Since
C1/2q0 is an element of the Cameron-Martin space of C, Π0 ◦ T−1 and Π0 are equivalent so that
d{Π0◦T−1}
d{Π0} (q) = exp

(
− 1

2 | q
0 |2 +

〈
q0, C

−1/2q
〉)

follows from Theorem 2.8 of Da Prato (2006).

For the sake of completeness, we provide a self-contained proof, based on Beskos et al. (2013a).
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Lemma 8. We have that:

dQi

dQ
(qi, pi) =

dQi−1

dQ0
(qi−1, pi−1)×G(qi, pi)×G(qi−1, pi−1 +

ε

2
C1/2g(qi−1)),

where we have defined:

G(q, p) := exp

(〈 ε
2
g(q), C−1/2p

〉
− 1

2

∣∣∣ ε
2
g(q)

∣∣∣2) =
d
{
Q0 ◦Θ−1

ε/2

}
dQ0

(q, p), (2.67)

where g(x) is defined in (2.66).

Proof. From the definition, first we have Qi = Qi−1 ◦Θ−1
ε/2 ◦ Θ̃−1

ε/2 ◦Θ−1
ε/2. Then we get:

dQi

dQ0
(qi, pi) =

d
{
Qi−1 ◦Θ−1

ε/2 ◦ Θ̃−1
ε? ◦Θ−1

ε/2

}
dQ0

(qi, pi),

=
d
{
Qi−1 ◦Θ−1

ε/2 ◦ Θ̃−1
ε? ◦Θ−1

ε/2

}
d
{
Q0 ◦Θ−1

ε/2

} (qi, pi)×
d
{
Q0 ◦Θ−1

ε/2

}
dQ0

(qi, pi),

=
d
{
Qi−1 ◦Θ−1

ε/2 ◦ Θ̃−1
ε?

}
dQ0

(
Θ−1
ε/2 (qi, pi)

)
×G(qi, pi),

here we used Lemma Lemma 7 with q0 = g(q). Notice that Θ−1
ε/2 ◦ Θ̃−1

ε? (qi, pi) = Θε/2(qi−1, pi−1) holds
by the construction. As a result, we obtain:

d
{
Qi−1 ◦Θ−1

ε/2 ◦ Θ̃−1
ε?

}
dQ0

(
Θ−1
ε/2 (qi, pi)

)
=
d
{
Qi−1 ◦Θ−1

ε/2 ◦ Θ̃−1
ε?

}
{
dQ0 ◦ Θ̃−1

ε?

} (
Θ−1
ε/2 (qi, pi)

)
,

=
d
{
Qi−1 ◦Θ−1

ε/2

}
dQ0

(
Θε/2(qi−1, pi−1)

)
,

=
d
{
Qi−1 ◦Θ−1

ε/2

}
d
{
Q0 ◦Θ−1

ε/2

} (
Θε/2(qi−1, pi−1)

)
×
d
{
Q0 ◦Θ−1

ε/2

}
dQ0

(
Θε/2(qi−1, pi−1)

)
,

=
dQi−1

dQ0
(qi−1, pi−1)×G

(
Θε/2(qi−1, pi−1)

)
,

=
dQi−1

dQ0
(qi−1, pi−1)×G

(
qi−1, pi−1 +

ε

2
C1/2g(qi−1)

)
.

here notice that Q0 ◦ Θ̃−1
ε? = Q0, the expression in (2.67) and the construction of Θε/2. Therefore, we

have that:

dQi

dQ0
(qi, pi) =

dQi−1

dQ0
(qi−1, pi−1)×G(qi, pi)×G

(
qi−1, pi−1 +

ε

2
C1/2g(qi−1)

)
.
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Critically, lemma Lemma 8 gives rise to:

dQL

dQ0
(qL, pL) =

dQ

dQ0
(q0, p0)

L∏
i=1

G(qi, pi)G
(
qi−1, pi−1 +

ε

2
C1/2g(qi−1)

)
.

Moreover, define:

p−i−1 := projp ◦Θε/2(qi−1, pi−1) = pi−1 +
ε

2
C1/2g(qi−1),

p+
i−1 := projp ◦ Θ̃ε? ◦Θε/2(qi−1, pi−1) = pi −

ε

2
C1/2g(qi).

Using these, we can calculate as follows (recall C−1 = L =M):

log
{
G(qi, pi)G

(
qi−1, pi−1 +

ε

2
C1/2g(qi−1)

)}
=

=
〈 ε

2
g(qi), C−1/2pi

〉
− 1

2

∣∣∣ ε
2
g(qi)

∣∣∣2 +
〈 ε

2
g(qi−1), C−1/2pi−1

〉
− 1

2

∣∣∣ ε
2
g(qi−1)

∣∣∣2 ,
=

1

2
〈pi, Lpi〉+

1

2

〈
p+
i , Lp

+
i

〉
+

1

2
〈pi−1, Lpi−1〉 −

1

2

〈
p+
i−1, Lp

+
i−1

〉
,

=
1

2
〈qi, Lqi〉+

1

2
〈pi, Lpi〉 −

1

2
〈qi−1, Lqi−1〉 −

1

2
〈pi−1, Lpi−1〉 ,

so that log
∑L
i=1G(qi, pi)G

(
qi−1, pi−1 + ε

2C
1/2g(qi−1)

)
= H(qL, pL) − Φ(qL)- 1

2 〈q0, Lp0〉 − 1
2 〈p0, Lp0〉.

Since dQ
dQ0

(q0, p0) = exp (−Φ(q0)) = exp
(

1
2 〈q0, Lq0〉+ 1

2 〈p0,Mp0〉 − H(q0, p0)
)
, we finally obtain the

following proposition.

Proposition 21. QL is absolutely continuous w.r.t. Q0, and:

dQL

dQ0
(qL, pL) = exp (H(qL, pL)− H(q0, p0)− Φ(qL)) .

Roughly speaking, Proposition 21 implies that Metropolis acceptance ratio can be well defined on
the concerning Hilbert space. Next, we check the Markov kernel induced by the advanced HMC is
indeed reversible. To do so, we heuristically assume that {Ψ◦(k)

ε } for k ∈ {0, · · · , L} preserves volume
on H. This is true, for instance, H = Rd.

Proposition 22. The Markov kernel induced by Algorithm 6 leaves the target invariant.

Proof. Assume that (q0, p0) ∼ Q. Then for the next position q′ and projq ◦Ψ
◦(L)
ε (q0, p0) = qL, we have

that:

q′ = I
{
u ≤ αH (q0, p0)

}
qL + I

{
u > αH (q0, p0)

}
q0,

where u ∼ Unif(0, 1) and notice that (q0, p0) = Ψ
−◦(L)
ε (qL, pL). Let f ∈ Bb(H). Since we have

assumed that (q0, p0) ∼ Q, we want to show that E [f(q0)] = E [f(q′)]. Taking the expectation w.r.t.
u gives rise to:

E [f(q′)] = E
[
f(qL)αH (q0, p0)

]
− E

[
f(q0)αH (q0, p0)

]
+ E [f(q0)] . (2.68)
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From Proposition 21, we can show that:

E
[
f(qL)αH (q0, p0)

]
= EQL

[
f(qL)αH

(
Ψ−◦(L)
ε (qL, pL)

)]
,

= EQ0

[
f(qL)αH

(
Ψ−◦(L)
ε (qL, pL)

)
exp (H(qL, pL)− H(q0, p0)− Φ(qL))

]
,

= EQ0

[
f(qL) max

{
1, exp

(
∆H

(
Ψ−◦(L)
ε (qL, pL)

))}
exp (−Φ(qL))

]
,

= EQ
[
f(qL) max

{
1, exp

(
∆H

(
Ψ−◦(L)
ε (qL, pL)

))}]
,

= EQ
[
f(qL) max

{
1, exp

(
∆H

(
Ψ−◦(L)
ε (qL,−pL)

))}]
.

Recall that for S in (2.43), we have S ◦ Ψ◦(L)
ε =

(
Ψ
−◦(L)
ε

)
◦ S, and this yields:

∆H
(

Ψ−◦(L)
ε (qL,−pL)

)
= ∆H

(
S ◦ Ψ◦(L)

ε (qL, pL)
)
,

= H (S(qL, pL))− H
(
S ◦ Ψ◦(L)

ε (qL, pL)
)
,

= H (qL, pL)− H
(
Ψ◦(L)
ε (qL, pL)

)
= −∆H (qL, pL) .

where we have defined ∆H (q, p) := H
(
Ψ
◦(L)
ε (qL, pL)

)
− H (q, p), and used S = Ψ

◦(L)
ε ◦ S ◦ Ψ◦(L)

ε and
H ◦ S = H since the kinetic function is 1

2 〈p, Lp〉 i.e., quadratic in p. Hence,

E
[
f(qL)αH (q0, p0)

]
= EQ

[
f(qL) max

{
1, exp

(
∆H

(
Ψ−◦(L)
ε (qL,−pL)

))}]
,

= EQ
[
f(qL)αH (qL, pL)

]
= E

[
f(q0)αH (q0, p0)

]
,

here again notice that we have assumed (q0, p0) ∼ Q, so that the claim follows from (2.68).

Notice that the practical application of Algorithm 6 requires of course to replace H, Π0 and Φ by
finite-dimensional approximations. That is, Algorithm 6 is the d-dimensional proxy of the H valued
HMC on Rd in practice. Beskos et al. (2011) show that the d-dimensional proxy of Algorithm 6
converges to the algorithm on H as d ↑ ∞. Critically, Beskos et al. (2011, Theorem 4.1) also ensure
that, in contrast with the standard HMC (Algorithm 5), the d-dimensional proxy of αH (·, ·) does
not degenerate into 0 as d increases, for fixed time-step ε in the integrator. This property is often
called mesh-free in the sense that, when applying the algorithms on a computer, mixing times do not
deteriorate even though the number of mesh points of the approximation of the infinite-dimensional
increase, see Cotter et al. (2013) for instance.
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3 Sequential Monte Carlo

3.1 Introduction

Let (E, E) be a measurable space. Assume that we are interested in a sequence of targets {πn(x0:n)}
of increasing (w.r.t. n) dimension with each πn(x0:n) is defined on the product space (En, En) :=

(
∏n
p=0Ep, E⊗n). Also, assume that the sequence of target probability densities {πn(x0:n)} is known

up to the normalising constant, that is, we have that:

πn(x0:n) =
γn(x0:n)

Zn
, (3.1)

Zn :=

∫
γn(x0:n)dx0:n, (3.2)

and only γn(x0:n) is known point-wise. Sequential Monte Carlo (SMC) is a general class of Monte
Carlo methods which sample sequentially from such a sequence of targets {πn(x0:n)}. We refer to
Doucet and Johansen (2009); Naesseth et al. (2019); Douc et al. (2014) as a general reference of SMC.
The aim of this section is to provide some basic and detailed results of SMC methods which will appear
implicitly and explicitly in the rest of the thesis. For sake of simplicity, we will assume that, depending
on the situation, (3.1) admits the densities w.r.t. the appropriate reference measure.

3.2 Basics of Sequential Monte Carlo

Roughly speaking, SMC consists of sequential importance sampling and resampling. Instead of
sampling from γn(x0:n) directly, assume that one can obtain samples from the importance density
q(x0:n) which has the following structure:

q(x0:n) = q(x0:n−1)q(xn | x0:n−1),

= q(x0)

n∏
i=1

q(xi | x1:i−1), (3.3)

see Appendix F for a brief explanation of importance sampling. Note that this structure of the
importance density implies that one can sample x(i)

1 ∼ q(x1) at time 1, x(2)
2 ∼ q(x2 | x(i)

1 ) at time 2

and then x(i)
n ∼ q(xn | x(i)

0:n−1) at time n ≥ 3. Also, we require that whenever γn(x0:n) > 0, q(x0:n) > 0

as well. That is, roughly speaking, the law induced by γn(x0:n) has to be absolutely continuous w.r.t.
the one induced by q(x0:n). Then, as the Radon-Nikodym derivative, one can define the unnormalised
weights as follows:

wn(x0:n) :=
γn(x0:n)

q(x0:n)
,

=
γn−1(x0:n−1)

q(x0:n−1)
× γn(x0:n)

q(xn | x0:n−1)γn−1(x0:n−1)
,

= wn−1(x0:n−1)× αn(x0:n), (3.4)
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where we have defined the incremental importance weight function αn(x0:n):

αn(x0:n) :=
γn(x0:n)

q(xn | x0:n−1)γn−1(x0:n−1)
. (3.5)

Then iterating this procedure gives rise to the recursive equation for wn(x0:n) such that:

wn(x0:n) =

n∏
k=0

αk(x0:k). (3.6)

Also, it is clear to see that, for any f ∈ Bb(En), we have that:

Eπ [f(x0:n)] =
Eq [f(x0:n)wn(x0:n)]

Eq [wn(x0:n)]
,

holds for any n. Then Sequential Importance Sampling (SIS) (Kong et al., 1994) at time n might be
done as follows. Assume that one has a set of approximations of γn−1(x0:n−1), say (x

(i)
0:n−1,W

(i)
n−1)Ni=1.

Then, SIS can be implemented: (1) propagate x(i)
n from the importance density q(· | x(i)

0:n−1) and set
x

(i)
0:n := (x

(i)
n , x

(i)
0:n−1)Ni=1. (2) Next, correct the unnormalised weights via the αn(x0:n) in (3.5) then

obtain the normalised weights such as:

W (i)
n :=

wn(x
(i)
0:n)∑N

j=1 wn(x
(j)
0:n)

. (3.7)

The SIS algorithm can be summarised as follows.

Algorithm 7 Sequential Importance Sampling (SIS) (Kong et al., 1994)

Assume that at time n− 1, one has (x
(i)
0:n−1,W

(i)
n−1)Ni=1 targeting πn−1(dx0:n−1) and time n,

i) Propagate particles {x(i)
n }Ni=1 via sampling from q(· | x(i)

0:n−1).

ii) Correct unnormalised weights via wn(x
(i)
0:n) = wn−1(x

(i)
0:n−1)α(x

(i)
0:n) for i = 1, . . . N .

iii) Obtain normalised weights via W (i)
n =

wn(x
(i)
0:n)∑N

j=1 wn(x
(j)
0:n)

for i = 1, . . . N .

iv) Return to the first step.

In the literature, x(i)
0:n simulated from the importance density are often called particles and the col-

lection of (x
(i)
0:n,W

(i)
n )Ni=1 is often called a weighted particle system, and this gives rise to the (weighted)

empirical measure on En as follows:

π̂n(dx0:n) :=

N∑
i=1

W (i)
n δ

x
(i)
0:n

(dx0:n), (3.8)
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where δ
x
(i)
0:n

denotes the Dirac mass located at x(i)
0:n. Also, notice that:

∫
αn(x0:n)πn−1(x0:n−1)q(xn | x0:n−1)dx0:n =

∫
γn(x0:n)πn−1(x0:n−1)q(xn | x0:n−1)

γn−1(x0:n−1)q(xn | x0:n−1)
dx0:n,

=

∫ γn(x0:n)γn−1(x0:n−1)
Zn−1

γn−1(x0:n−1)
dx0:n =

Zn
Zn−1

,

and thus, this gives rise to the estimate of Zn
Zn−1

such that:

Ẑn
Zn−1

:=

N∑
i=1

W
(i)
n−1αn(x

(i)
0:n). (3.9)

Critically, as the by-product of (3.9), we obtain the estimate of Zn:

Ẑn := Ẑ0

n∏
p=1

(
N∑
i=1

W
(i)
p−1αp(x

(i)
0:p)

)
. (3.10)

Apparently, one can do this procedure recursively and thus the cost of SIS is constant, that is O(N),
w.r.t. the time index n. Therefore, SIS itself is an on-line method. Although SIS presented above
is sometimes useful, it has the serious problem that is known as degeneracy of the weights. Roughly
speaking, the conditional variance of w(x0;n) will increase as the time index n increases. Indeed, we
can show that, by using the law of total variance,

V [wn(x0:n) | Fn−1] = V
[
wn−1(x0:n−1)

γn(x0:n)

qn(xn | x0:n−1)γn−1(x0:n−1)
| Fn−1

]
,

= E
[
V
[
wn−1(x0:n−1)

γn(x0:n)

qn(xn | x0:n−1)γn−1(x0:n−1)
| Fn−1

]]
+ V

[
E
[
wn−1(x0:n−1)

γn(x0:n)

qn(xn | x0:n−1)γn−1(x0:n−1)
| Fn−1

]]
,

≥ V
[
wn−1(x0:n−1)E

[
γn(x0:n)

qn(xn | x0:n−1)γn−1(x0:n−1)
| Fn−1

]]
,

= V [wn−1(x0:n−1)] ,

holds for any n ≥ 1, where Fn is the natural filtration generated by a particle system at time n.
This problem would have the effect that all but one of the weights decreases to zero at the end of
the day, and all emphasis is thus put on one of the particles. Also it can be shown that the choice
q(xn | x0:n−1) = πn(xn | x0:n−1) is the best proposal in the sense that this choice minimises the
conditional variance of w(x0:n), that is V[wn(x0:n) | Fn−1] = 0.

Then resampling is a common way to overcome this problem. The idea behind resampling is very
simple and intuitive. Recall that, at the moment, we do not do sampling from πn(dx0:n) but from
qn(dx0:n). Therefore, in order to obtain particles form the target, one can make use of the empirical
measure π̂n(dx0:n) constructed by a particle system (x

(i)
0:n,W

(i)
n )Ni=1.That is, one can just select x(i)

0:n

w.p. W (i)
n and this procedure is equivalent to associate the number of offspring N (i)

n with the i−th
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particles x(i)
0:n based on their weights W (i)

n . Namely, one just needs to draw N samples N (i)
n from

the multinomial distribution with parameter vector (N,W
(i)
n )Ni=1 and this gives rise to a new particle

system (x̃
(i)
0:n,

1
N )Ni=1. This resampling scheme is commonly reoffered as Multinomial Resampling.

However, mathematically speaking, the only requirement for a resampling system is that it has to
be unbiased in the following sense. Let N (i)

n denote the number of offspring which is associated to
the particle x(i)

0:n. Then, for any n, E
[
N

(i)
n | Fn

]
= N has to hold.Then, after resampling, a equally

weighted particle system (x̃
(i)
0:n,

1
N )Ni=1 constructs the unweighted empirical measure:

π̃n(dx0:n) :=

N∑
i=1

N
(i)
n

N
δ
x̃
(i)
0:n

(dx0:n), (3.11)

and this is indeed unbiased.
In practice, Systematic Resampling (Kitagawa, 1996) might be the most popular resampling method

due to its stability and computational efficiency. See Douc and Cappé (2005) for the theoretical com-
parison of various resampling approaches. Critically, resampling will remove less important particles
{x(i)

0:n}Ni=1 measured by weights {W (i)
n }Ni=1 and rejuvenate ones according to their significance.

Algorithm 8 Systematic Resampling (Kitagawa, 1996)

i) Set C = 0 and j = 1. Draw u ∼ U [0, 1].

ii) For i = 1 · · ·N , set C = W
(i)
n . Then while u+j−1

N ≤ C, set x̃(j)
0:n = x

(i)
0:n and j = i+ 1.

Now we are ready to describe a generic SMC algorithm. SMC consists of SIS and resampling, and
which can be decomposed into the following 3 steps, mutation, correction and selection. The mutation
step and the correction steps are same as SIS. After the correction step, one has a weighted particle

system
(
x

(i)
0:n,W

(i)
n

)N
i=1

. Then, at selection step, one obtains an equally particle system
(
x̃

(i)
0:n,

1
N

)N
=1

via

some resampling methods. Note that now
{
x

(i)
0:n

}N
i=1

:=
{
x̃

(i)
0:n−1, x

(i)
n

}N
i=1

is approximately distributed
according to πn−1(x0:n−1)qn(xn | xn−1) so that the corresponding importance weights in this case are
simply equal to α(x

(i)
0:n).

Algorithm 9 Sequential Monte Carlo

Assume that at time n− 1, one has an equally particle system
(
x̃

(i)
0:n−1,

1
N

)N
i=1

of the target π(dx0:n−1).

i) Propagate particles {x(i)
n }Ni=1 via sampling from q(· | x̃(i)

0:n−1) and set x(i)
0:n ← {x

(i)
n , x̃

(i)
0:n−1}Ni=1.

ii) Correct unnormalised weights via wn(x
(i)
0:n) = α(x

(i)
0:n) for i = 1, . . . N .

iii) Obtain normalised weights via W (i)
n =

w(i)
n (x0:n)∑N

j=1 w
(j)
n (x0:n)

for i = 1, . . . N .

iv) Do resampling
{
x

(i)
n

}N
i=1

w.p. W (i)
n to obtain equally weighted particle system (x̃

(i)
0:n,

1
N )Ni=1.

v) Return to the first step.
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At any time n ≥ 0, Algorithm 9 constructs (3.8) and:

π̃n(dx0:n) :=
1

N

N∑
i=1

δ
x̃
(i)
0:n

(dx0:n).

Also, the estimate of Zn in (3.10) becomes:

Ẑn := Ẑ0

n∏
p=1

(
N∑
i=1

W
(i)
p−1αp(x̃

(i)
0:p)

)
,

= Ẑ0

n∏
p=1

(
1

N

N∑
i=1

αp(x̃
(i)
0:p)

)
.

Although resampling has theoretical justification and could improve performance of SMC, as poin-
ted out theoretically (Del Moral et al., 2010) and experimentally (Kantas et al., 2015), such path-space
method (targetting πn(dx0:n)) may suffer from the particle path degeneracy problem which is also well-
known in the SMC literature. Roughly speaking, as n → ∞, resampled particles {x̃(i)

0:n}Ni=1 might
share a common ancestor due to the successive resampling steps. Also, resampling introduces addi-
tional noise. Therefore, resampling should be understood as the price to pay to obtain reasonable
approximations of π(dx0:n) for the long run, at the cost of putting instability for the short run.

Therefore, it would be desirable that one does resampling only when the obtained particle system
(x

(i)
0:n,W

(i)
n )Ni=1 is inefficient in some sense. Then common choice of the quantity to monitor effectiveness

of SMC is the Effective Sample Size (ESS) (Liu and Chen, 1998; Kong, 1992; Kong et al., 1994), which
is defined as follows:

ESS :=
1∑N

i=1(W
(i)
n )2

. (3.12)

Since {W (i)
n }Ni=1 are normalised, the ESS is a positive continuous variable taking values in (1, N).

In the context of importance sampling, the ESS (at time n) can be understood as the number of
independent samples generated directly from the target πn(dx0:n), which yields the same efficiency in
the estimation obtained by an approximation from qn(dx0:n), and thus large values of the ESS can be
understood that the obtained particle system {x(i)

0:n,W
(i)
n }Ni=1 well approximates the target πn(dx0:n)

and vice versa. By using the ESS, the user can specify the threshold in advance, and when ESS is
lower than it, one can do SMC dynamically. A typical threshold is N

2 .
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Algorithm 10 SMC with dynamic resampling

Assume that at time n−1, one has weighted particle system (x̃
(i)
0:n−1, W̃

(i)
n−1)Ni=1 of the target π(dx0:n−1).

i) Propagate particles {x(i)
n }Ni=1 via sampling from qn(· | x̃(i)

0:n−1) and set x(i)
0:n ← {x

(i)
n , x̃

(i)
0:n−1}Ni=1.

ii) Correct unnormalised weights via wn(x
(i)
0:n) = W̃

(i)
n−1 × αn(x

(i)
0:n) for i = 1, . . . N .

iii) Obtain normalised weights via W (i)
n =

w(i)
n∑N

j=1 w
(j)
n

for i = 1, . . . N .

iv) Calculate the ESS, 1∑N
i=1(W

(i)
n )2

.

v) If the obtained ESS is smaller than a threshold, do resampling
{
x

(i)
n

}N
i=1

w.p. W
(i)
n and set

(x̃
(i)
n , W̃

(i)
n )Ni=1 ← (x̃

(i)
n , 1

N )Ni=1 to obtain equally weighted particle system (x̃
(i)
0:n,

1
N )Ni=1.

vi) If it is not, set (x̃
(i)
n , W̃

(i)
n )Ni=1 ← (x

(i)
n ,W

(i)
n )Ni=1 to obtain weighted particle system (x̃

(i)
0:n,

1
N )Ni=1.

vii) Return to the first step.

At any time n ≥ 1, Algorithm 10 provides two empirical measures:π̂n(dx0:n) =
∑N
i=1W

(i)
n δ

x
(i)
0:n

(dx0:n),

π̃n(dx0:n) =
∑N
i=1 W̃

(i)
n δ

x̃
(i)
0:n

(dx0:n),
(3.13)

which are equal if no resampling occurred at time n, and:

Ẑn
Zn−1

=

N∑
i=1

W̃
(i)
n−1αn(x

(i)
0:n). (3.14)

Finally, we end this subsection by noting the useful technique called logsumexp. Recall that the
normalised weight is given by W (i)

n :=
w(i)
n∑N

i=1 w
(i)
n

. As N → ∞, each w(i)
n will take really small values

and this makes numerical instability in W
(i)
n due to the term 1/

∑N
i=1 w

(i)
n . In order to avoid such

instability, one might prefer using logW
(i)
n to W (i)

n , and obtain W (i)
n = exp

(
logW

(i)
n

)
. That is, one

might want to calculate:

logW (i)
n = log

(
w

(i)
n∑N

i=1 w
(i)
n

)
= logw(i)

n − log

(
N∑
l=1

exp(logw(i)
n )

)
,

exp
(

logW (i)
n

)
= exp

(
log

(
w

(i)
n∑N

i=1 w
(i)
n

))
.

Though logw
(i)
n > 0, this expression still might suffer from underflow due to the summation term
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∑N
i=1 exp(logw

(i)
n ). Define logwmin

n := mini logw
(i)
n . Then observe that:

log

(
N∑
i=1

exp(logw(i)
n )

)
= log exp(logwmax

n )

N∑
i=1

exp(logw(i)
n − logwmin

n ),

= log

(
N∑
i=1

exp(logw(i)
n − logwmin

n )

)
+ logwmin

n .

Thus we obtain:

logW (i)
n = logw(i)

n − logwmin
n − log

(
N∑
i=1

exp(logw(i)
n − logwmin

n )

)
,

⇐⇒W (i)
n =

exp
(

logw
(i)
n − logwmin

n

)
∑N
i=1 exp(logw

(i)
n − logwmin

n )
.

This ensures that logw
(i)
n − logwmin

n ∈ [0, logwmax
n − logwmin

n ], and therefore exp
(

logw
(i)
n − logwmin

n

)
might not suffer from underflow. Since this simple technique is quite useful in practice, we summarise
this as follows.

Algorithm 11 Logsumexp for the normalised weights

i) For i = 1, . . . , N , obtain logw
(i)
n .

ii) Calculate logwmin
n := mini logw

(i)
n .

iii) For i = 1, . . . , N , obtain exp
(

logw
(i)
n − logwmin

n

)
.

iv) For i = 1, . . . , N , obtain the normalised weights W (i)
n =

exp(logw(i)
n −logwmin

n )∑N
i=1 exp(logw

(i)
n −logwmin

n )
.

3.3 Sequential Monte Carlo samplers

SMC can be applied to more general settings. That is, SMC can be applied to the targets which
are defined on a common measurable space. Therefore, one can make use of SMC for static problems
for instance. Indeed, Iterated Batch Importance Sampling (IBIS) algorithm (Chopin, 2002) and SMC
samplers (Del Moral et al., 2006) have been widely used for such problem, for instance. Note that both
methods are kind of generalisation of Annealed Importance Sampling (AIS), studied in Neal (2001).
Here we study SMC samplers since this sampler falls under a broader class of SMC methods.

To facilitate the study, we consider the following example. Suppose that now π(dx) ∈ P(E) is such
that:

π(dx) =
L(x)π0(dx)

Z
, (3.15)

where L : E → R is a likelihood function, π0(dx) ∈ P(E) is a prior distribution, and Z :=
∫
E
L(x)π0(dx)

is a marginal likelihood function so that π(dx) corresponds to a posterior distribution. Moreover, sup-
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pose that now (E, E) is a high dimensional space. In this case, as noted in Neal (2001), the tempered
posterior:

πn(dx) :=
L(x)φnπ0(dx)

Zn
(3.16)

might provide a beneficial tempering effect and potential reduction in computational complexity, where
{φn}pn=0 ⊆ [0, 1] is an increasing sequence. As a result, now we have the sequence of probability
distributions {πn(dx)}pn=0 which are defined on a common measurable space. SMC cannot be applied
directly to such a sequence of distributions since it is available for distributions whose dimension is
increasing over time index as we studied.

To make use of SMC for {πn(dx)}pn=0 defined on a common measurable space (E, E), consider the
following sequence of auxiliary distributions on the product spaces of increasing dimensions (Ep, Ep) :=

(
∏p
n=0E

n, E⊗p):

P(dx0:p) := πp(dxp)

p∏
n=1

Bn−1(xn, dxn−1), (3.17)

where the sequence of artificial backward Markov kernels {Bn}p−1
n=0 : E × E → [0, 1] can be in principle

arbitrarily selected. Notice that P(dx0:p) admits marginally πp(dxp). That is, for any appropriate
test function f , we have that

∫
f(xp)P(dx0:p) =

∫
f(xp)πp(dxp). Assume that also we have non-

homogeneous Markov kernels {Kn}pn=1 : E × E → [0, 1] which are chosen to satisfy that Bn−1 ⊗ γn is
absolutely continuous w.r.t. γn−1⊗Kn for any n. Here, γn := L(x)φnπ0(dx). In this case, if we define:

Q(dx0:p) := π0(dx0)

p∏
n=1

Kn(xn−1, dxn), (3.18)

then, as a consequence of the Radon–Nikodým theorem, we have that, for an appropriate test function,
EP[f(xp)] = EQ

[
f(xp)

dP
dQ (x0:p)

]
with:

dP
dQ

(x0:p) ∝
p∏

n=1

γn(dxn)Bn−1(xn, dxn−1)

γn−1(dxn−1)Kn(xn−1, dxn)
. (3.19)

Q(dx0:p) is called the importance distribution, in the literature. Now we can describe a generic SMC
algorithm to sample from (3.17). As we noted, generally, SMC iterates sequentially three steps, that
is mutation, correction and selection. At the mutation step, we simulate {x(i)

n }Ni=1 from Kn(x̃
(i)
n−1, dxn)

for i = 1, 2, · · ·N ∈ Z, and set x(i)
0:n = (x

(i)
n , x̃

(i)
0n−1) for each i. As before, these obtained particles are

then corrected via the following unnormalised importance weights based on (3.19):

w(i)
n (x0:n) :=

n∏
k=1

γk(dx
(i)
k )Bk−1(x

(i)
k , dx

(i)
k−1)

γk−1d(x
(i)
k−1)Kk(x

(i)
k−1, dx

(i)
k )

= w
(i)
n−1(x0:n−1)

Bn−1(x
(i)
n , dx

(i)
n−1)

Kn(x
(i)
n−1, dx

(i)
n )

γn(dx
(i)
n )

γn−1(dx
(i)
n−1)

. (3.20)
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It is straightforward to observe that (3.20) becomes:

w(i)
n (x0:n) =

n∏
k=1

Gk(x
(i)
k−1, x

(i)
k ), (3.21)

Gk(x
(i)
k−1, x

(i)
k ) :=

Bk−1(x
(i)
k , dx

(i)
k−1)

Kk(x
(i)
k−1, dx

(i)
k )

γk(dx
(i)
k )

γk−1(dx
(i)
k−1)

. (3.22)

Given (3.22), next define the normalised weights:

W (i)(x
(i)
n−1, x

(i)
n ) :=

Gn(x
(i)
n−1, x

(i)
n )∑N

j=1Gn(x
(j)
n−1, x

(j)
n )

. (3.23)

After the correction step, obtained particles {x(i)
0:n}Ni=1 will be resampled according to their normalised

weights
{
W

(i)
n

}N
i=1

in (3.23), same as Algorithm 9.

Next we consider a choice of backward Markov kernels {Bn}p−1
n=0. Del Moral et al. (2006, Proposition

1) provide the expression of the sequence of optimal backward Markov kernels {Bn}p−1
n=0 which minimise

the estimator variance, but they are not feasible in general. To approximate the optimal backward
Markov kernels, under the implicit assumption that successive targets are similar ηn ≈ ηn−1 for n ≥ 0,
a common choice of {Kn}pn=1 will be using MCMC kernels which leave πn(dxn) invariant for any n ≥ 1.
Then, we can construct {Bn}p−1

n=0 to satisfy:

πn(dxn)Bn−1(xn, dxn−1) = πn(dxn−1)Kn(xn−1, dxn), (3.24)

for any n. Namely we set:

Bn−1(xn, dxp−1) =
Kn(xn−1, dxn)πn(dxn−1)

πn(dxn)
=
Kn(xn−1, dxn)γn(dxn−1)

γn(dxn)
. (3.25)

Thus, it turns out that such {Bn}p−1
n=0 are the time reversal of the {πn(dxn)}pn=1-invariant MCMC

kernels {Kn}pn=1. Notice that, with this choice of {Bn}p−1
n=0, (3.19) now becomes:

dP
dQ

(x0:p) ∝
p∏

n=1

γn(dxn−1)

γn−1(dxn−1)
=

p∏
n=1

Gn(xn−1). (3.26)

Notice that when πn(dxn) is the form of (3.16), under our specification (3.26), it is straightforward to
observe that (3.22) becomes:

Gn(x
(i)
n−1) =

γn(dxn−1)

γn−1(dxn−1)
= L(x

(i)
n−1)(φn−φn−1). (3.27)

Notice that the expression of (3.26) does not depend on xn at the current time step n. Therefore,
at the time step n, the selection step can be implemented before the mutation step. Indeed, such
mutation after correction and selection yields a better approximation of the target since it gives rise
to a greater number of distinct particles to approximate the target, see, e.g. Doucet and Johansen
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(2009, Section 4.2) and Del Moral et al. (2006, Remark 1). Also, it is clear to see that we do not need
to store an entire path x0:n. Indeed, only (xn−1, xn) are needed at the time step n in practice. We
summarise the discussed algorithm as follows.

Algorithm 12 SMC samplers (Del Moral et al., 2006)

Assume that at the (auxiliary) time step n − 1, one has a weighted particles system
(
x

(i)
n−1,

1
N

)N
i=1

which approximates πn−1(dxn−1).

i) For each i = 1, . . . , N , correct the unnormalised importance weights Gn(x
(i)
n−1) via (3.27).

ii) For each i = 1, . . . , N , obtain the normalized importance weights W (i)
n in (3.23).

iii) Do resampling to obtain the equally weighted particles system
(
x̃

(i)
n−1,

1
N

)N
i=1

.

iv) For each i = 1, . . . , N , mutate particles to obtain x(i)
n via MCMC kernels Kn(x̃

(i)
n−1, dxn).

v) Repeat from step1 to step 5 until n = p.

Example 12. SMC sampler for AR(1).
We simulated AR(1) process in Example 2 with n = 500 and (φ, σ2) = (0.8, 1.0). To carry

out SMC sampler for the tempered posterior, we used 1, 000 particles with 5, 000 MCMC iterations.
Also, we used random walk Metropolis (Example 10) as MCMC kernel with the proposal density
N
(
θ̂i−1; 0, 0.012

)
at MCMC time step i where θ̂i−1 denotes estimates of the parameters at MCMC

time step i − 1. As for priors, we used T N [−1,1]

(
0, 0.52

)
for φ and the inverse gamma distribution

with parameters (3, 3) for σ where T N [a,b]

(
µ, σ2

)
denotes the truncated Gaussian distribution with

mean µ, standard deviation σ in the interval [a, b]. To select a schedule of {φn}pn=0, we applied the
adaptive method provided in Beskos et al. (2016). The results are plotted in Figure 1.
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Figure 1: The results of SMC sampler for φ (top) and σ2 (bottom). We used N = 1, 000 particles with
5, 000 MCMC iterations. The horizontal dash lines indicate the true parameter values in each case.

3.4 Feynman-Kac formulae

Following Del Moral (2004, 2013) closely, this section provides a unified framework to study SMC. As
we will see, SMC methods can be understood as a mean field approximation of Feynman-Kac models.

3.4.1 Notations

Let (En, En) be a sequence of measurable spaces, and Gn : En → [0,∞) be a sequence of measurable
potential functions. Let (xn) be a non-homogenous Markov chain on a sequence of state-spaces En
with Markov kernels Mn. For fn ∈ Bb(En), µn ∈ P (En), and a Markov kernel Mn, we define the
integral µn(fn) :=

∫
fn(xn)µ(dxn), the function Mn(fn) :=

∫
fn(xn)Mn(xn−1, dxn) ∈ Bb(En) and the

probability measure µnMn+1(dxn+1) :=
∫
µn(dxn)Mn+1(xn, dxn+1) ∈ P(En). Then for fn ∈ Bb(En),

we have that E [fn(xn) | xn−1] =
∫
fn(xn)Mn(xn−1, dxn) = Mn(fn). Also, for µn ∈ P(En), it can

be observed that µn(dxn) =
∫
µn−1(dxn−1)Mn(xn−1, dxn) = µn−1Mn(dxn). Also we write for fn ∈

Bb(En), µn−1Mn(fn) =
∫ ∫

µn−1(dxn−1)Mn(xn−1, dxn)fn(xn).

3.4.2 Basics

Given an initial distribution µ0 ∈ P(E0), we write the law of the Markov chain on path space En :=∏n
p=0Ep, equipped with the product En :=

∏n
p=0 E⊗p, as:

P(dx0:n) := µ0(dx0)

n∏
p=1

Mp(xp−1, dxp). (3.28)
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Given (3.28), we can define the Feynman-Kac models associated with the pair (Gn,Mn) as follows.

Definition 26. (Feynman-Kac models)
Given the pair (Gn,Mn) and the initial distribution µ, the Feynman-Kac prediction and updated

path models are the sequence of path measure defined respectively:

Q(dx0:n) := Z−1
n

n−1∏
p=0

Gp(xp)P(dx0:n), (3.29)

Q̂(dx0:n) := Ẑ−1
n

n∏
p=0

Gp(xp)P(dx0:n), (3.30)

for any n ∈ N, where

Zn := EP

[
n−1∏
p=0

Gp(xp)

]
.

Ẑn := Zn+1.

For further analysis, we introduce the flow of the time marginals of (3.29) and (3.30).

Definition 27. (Time marginals of Feynman-Kac models)
For fn ∈ Bb(En), we define the following sequence of positive signed measures:

γn(fn) := EP

[
fn(xn)

n−1∏
p=0

Gp(xp)

]
, (3.31)

γ̂n(fn) := EP

[
fn(xn)

n∏
p=0

Gp(xp)

]
. (3.32)

(3.31) and (3.32) are known as the unnormalised and updated Feynman-Kac model respectively.
We can also define the normalised version of (3.31) and (3.32) as follows, for fn ∈ Bb(En),

ηn(fn) := γn(fn)/γn(1), η̂n(fn) := γ̂n(fn)/γ̂n(1). (3.33)

Notice that ηn ∈ P(En). First, observe that:

ηn(Gn) =
γn(Gn)

γn(1)
=
γn+1(1)

γn(1)
,

⇐⇒ γn+1(1)=ηn(Gn)× γn(1),

and this implies:

γn(1) = ηn−1(Gn−1)γn−1(1),

= ηn−1(Gn−1)ηn−2(Gn−2)γn−2(1),
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and so on. Thus we have:

γn+1(1) =
∏

0≤p≤n

ηp(Gp), (3.34)

where γn+1(1) = Zn+1 = Ẑn. Next, for any fn ∈ Bb(En), we have that:

γn(fn ×Gn) = EP

[
fn(xn)Gn(xn)

n−1∏
p=0

Gp(xp)

]
= γ̂n(fn). (3.35)

Therefore, by the definition in (3.33), we have that:

η̂n(fn) =
γn(fn ×Gn)

γn(Gn)
=
γn(fn ×Gn)/γn(1)

γn(Gn)γn(1)
=
ηn(fn ×Gn)

ηn(Gn)
.

This observation leads to the following the Boltzmann-Gibbs transformation.

Definition 28. The Boltzmann-Gibbs transformation is the mapping ΨGn : P(En)→ P(En), defined
for all µn ∈ P(En) by the following measure:

ΨGn(µn)(dxn) :=
Gn(xn)µn(dxn)

µn(Gn)
. (3.36)

Using (3.36), we can re-write η̂n as follows, for any fn ∈ Bb(En):

η̂n(fn) = ΨGn(ηn(fn)). (3.37)

Next, due to the Markovian property, for any fn ∈ Bb(En), we have that:

γn(fn) = EP

[
fn(xn)

n−1∏
p=0

Gp(xp)

]
= EP

[
EP

[
fn(xn)

n−1∏
p=0

Gp(xp) | x0:n−1

]]

= EP

[
EP [f(xn) | xn−1]

n−1∏
p=0

Gp(xp)

]
= EP

[
Mn(fn)×

n−1∏
p=0

Gp(xp)

]
.

That is, we have that:

γn(fn) = γ̂n−1Mn(fn). (3.38)

Recall that ηn(fn) := γn(fn)/γn(1). So, (3.37) and (3.38) give rise to:

ηn(fn) =
γ̂n−1Mn(fn)

γ̂n−1 (1)
= η̂n−1Mn(fn). (3.39)

We are now ready to derive the following basic recursions.

84



Proposition 23. For any fn ∈ Bb(En), we have that:

γn(fn) = ηn(fn)

n−1∏
p=0

ηp(Gp),

γ̂n(fn) = η̂n(fn)

n∏
p=0

ηp(Gp),

ηn(fn) = ΨGn−1
(ηn−1)Mn(fn),

η̂n(fn) = ΨGn(η̂n−1Mn(fn)).

Proof. ηn(fn)γn(1) = γn(fn) and γn+1(1) =
∏

0≤p≤n ηp(Gp) by (3.34), thus we have γn(fn) =

ηn(fn)
∏n−1
p=0 ηp(Gp). Also, notice that η̂n(fn)γ̂n(1) = γ̂n(fn) and γ̂n(1) = γn+1(1), thus γ̂n(fn) =

η̂n(fn)
∏n
p=0 ηp(Gp). From (3.39) and (3.37), we have that ηn(fn) =η̂n−1Mn(fn) = ΨGn−1

(ηn−1)Mn(fn).
In the same manner, we have that η̂n(fn) = ΨGn(ηn(fn)) = ΨGn (η̂n−1Mn(fn)).

3.4.3 Feynman-Kac semigroup models

Recall that for any fn ∈ Bb(En), γn(fn) = γ̂n−1Mn(fn) holds. Also recall that, for any fn ∈ Bb(En),
γ̂n(fn) = γn(Gn × fn). Then, for any n, define the kernel Qn+1 from (En, En) into (En+1, En+1) such
that, given for any xn ∈ En by:

Qn+1(xn, dxn+1) := Gn(xn)×Mn(xn, dxn+1). (3.40)

Clearly, we can show that for any fn ∈ Bn(En):

γn(fn) = γn−1Qn(fn),

holds. Therefore, we have proven that, for any fn ∈ Bb(En):

γn(fn) = γn−1Qn(fn) = γn−2Qn−1Qn(fn) = · · ·

= γpQp:n(fn), (3.41)

where the linear semigroup is defined as Qp:n := Qp+1 · · ·Qn for p < n with Qn:n = I, here I is the
identity operator. Notice that for fn ∈ Bb(En),

Qp:n(fn) = EP(xp:n)

[
f(xn)

n−1∏
q=p

Gq(xq)

]
.

Next, from Proposition 23, we know that ηn(fn) = ΨGn(ηn−1)Mn(fn), and define the mapping Φn :

P(En−1) 7−→ P(En):

Φn(ηn−1) := ΨGn(ηn−1)Mn, (3.42)
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that is, we have that, for fn ∈ Bn(En):

ηn(fn) = Φn(ηn−1)(fn). (3.43)

Given this, we can obtain the nonlinear semigroup associated to the normalised Feynman-Kac measures
{ηn} such that:

Φp:n := Φn ◦ Φn−1 ◦ · · · ◦ Φp+1, (3.44)

for any 0 ≤ p ≤ n with Φn:n = I. Using the semigroup, we can write:

ηn(fn) = Φp:n(ηp)(fn).

Indeed, from the definition of ηn, Proposition 23, (3.40) and (3.42), we can show that, for any fn ∈
Bn(En):

ηn(fn) :=
γn(fn)

γn(1)
=
γpQp:n(fn)

γpQp:n(1)
=
γpQp:n(fn)/γp(1)

γpQp:n(1)/γp(1)
=
ηpQp:n(fn)

ηpQp:n(1)
,

= Φp:n(ηp)(fn). (3.45)

All in all, now we are ready to state the following proposition.

Proposition 24. For any fn ∈ Bb(En) and 0 ≤ p ≤ n, we have that:

Φp:n(ηp)(fn) =
ηpQp:n(fn)

ηpQp:n(1)
.

We end this section by noting that this nonlinear semigroup is also associated to:

Pp:n :=
Qp:n

ηpQp:n(1)
=
γp(1)

γn
Qp:n, (3.46)

and this implies ηn = ηpPp:n.

3.4.4 Change of measures

This subsection gives a brief explanation of some change of measure techniques used in SMC methods.
Assume the one has another collection of Markov kernels M̄n(xn−1, dxn) from En−1 into En such that
for any xn−1 ∈ En−1, Mn(xn−1, dxn) is absolutely continuous w.r.t. M̄n(xn−1, dxn). Also assume that
corresponding initial distributions µ0 and µ̄0 are so. Define the law of the Markov chain on a path
space En :=

∏n
p=0Ep, equipped with the product En :=

∏n
p=0 Ep, as:

P̄(dx0:n) := µ̄0(dx0)

n∏
p=1

M̄p(xp−1, dxp), (3.47)
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Since P� P̄ by construction, via the Radon–Nikodym theorem, we have that:

dP
dP̄

(x0:n) =
µ0(dx0)

µ̄0(dx0)

n∏
p=1

dMp(xp−1, ·)
dM̄p(xp−1, ·)

(xp). (3.48)

Let Q be the Feynman-Kac path measure induced by P. Given this, we can obtain the following
positive bounded functions for any p ≥ 1:

Ḡp(xp−1, xp) :=
Q(dx0:p)

Q(dx0:p−1)× M̄p(xp−1, dxp)
=
dQp(xp−1, ·)
dM̄p(xp−1, ·)

(xp), (3.49)

with Ḡ0 := G0(x0)µ0(dx0)
µ̄0(dx0) , where Qp(xp−1, dxp) is given in (3.40). Given the pair (Ḡn, M̄n) and the

initial distribution µ̄, we can define the new Feynman-Kac path measure:

Q̄(dx0:n) := Z̄−1
n

n−1∏
p=0

Ḡp(xp−1, xp)P̄(dx0:n), (3.50)

Z̄n:=EP̄

[
n−1∏
p=0

Ḡp(xp−1, xp)

]
.

Critically, for any fn ∈ Bb(En), it can be shown that:

Q̄(fn) = Z̄−1
n

∫
fn(x0:n)

n−1∏
p=0

Ḡp(xp−1, xp)

n∏
p=0

M̄p(xp−1, dxp),

= Z−1
n

∫
fn(x0:n)

n−1∏
p=0

Gp(xp)

n∏
p=0

Mp(xp−1, dxp),

= Q(fn),

and the same thing holds for updated path model Q̂(dx0:n). From these observations, we have proven
the following preposition.

Proposition 25. The Feynman-Kac prediction and updated path models associated (Gn,Mn) and
(Ḡn, M̄n) coincide. Also, their time marginals coincide.

Example 13. SMC samplers.
Let π(dx) = Z−1π̄(dx) ∈ P(E) be a target distribution from which one wishes to sample. Consider

the following tempered distributions:

πn(dx) := π̄n(dx)Z−1
n ,

π̄n(dx) := µ(dx)

(
dπ̄

dµ
(x)

)φn
,

where π � µ ∈ P(E), Zn =
∫
π̄n(xn)dxn and 0 = φ0 < φ1 < · · · < φp = 1. Clearly, πp(dx) = π(dx)

and π0(dx) = µ(dx). Then one has a sequence of distributions {πn(dx)}pn=0 ∈ P(E) defined on
the same the measurable space (E, E), thus SMC cannot be directly applied. Consider the following
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artificial extended target distribution on (Ep, Ep):

Q(dx0:p) = πp(dxp)

p∏
n=1

Bn−1(xn, dxn−1),

where {Bn} is a is a sequence of Markov kernels from En into En−1. Also, let {Kn} be a collec-
tions of Markov chains from En−1 into En and assume that, for all n, π̄n(dxn)Bn−1(xn, dxn−1) �
π̄n−1(dxn−1)Kn(xn−1, dxn) holds. As before, we define:

P̄(dx0:p) = π0(dx0)

p∏
n=1

Kn(xn−1, dxn).

Moreover, we define the appropriate potential function Ḡn(xn−1, xn) : E × E → [0,∞) such as:

Ḡn(xn−1, xn) =
π̄n(dxn)Bn−1(xn, dxn−1)

π̄n−1(dxn−1)Kn(xn−1, dxn)
,

for any n ≥ 1 with Ḡ0(x0) = 1. If we admit the corresponding densities, we have that:

Ḡn(xn−1, xn) =
π̄n(xn)Bn−1(xn, xn−1)

π̄n−1(xn−1)Kn(xn−1, xn)
.

With these ingredients, set:

Q̄(dx0:p) = Z̄−1
p

p∏
n=0

Ḡn(xn−1, xn)P̄(dx0:p),

Z̄n := EP̄

[
p∏

n=0

Ḡn(xn−1, xn)

]
.

Then, for any fn ∈ Bb(En), observe that:

Q̄(fn) = Z̄−1
n

∫
fn(x0:n)Ḡ0(x0)

n∏
p=1

π̄p(xp)Lp−1(xp, xp−1)

π̄p−1(xp−1)Kp(xp−1, xp)
π0(x0)Kp(xp−1, xp)dx0:p,

=
∫
fn(x0:n)πn(xn)

n∏
p=1

Lp−1(xp, xp−1)dx0:p,

= Q(fn),

thus the pair (Ḡn(xn−1, xn),Kn) recovers the Feynman-Kac path measure Q(dx0:n), and thus SMC
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can be applied. As for time marginals, for any fn ∈ Bb(En), it can be shown that:

γ̂n(fn) = EP̄

[
fn(xn)

n∏
p=0

Ḡp(xp−1, xp)

]
,

=

∫
fn(xn)Ḡ0

n∏
p=1

π̄p(xp)Lp−1(xp, xp−1)

π̄p−1(xp−1)Kp(xp−1, xp)
π0(x0)Kp(xp−1, xp)dx0:p,

=

∫
fn(xn)π̄n(xn)

n∏
p=1

Lp−1(xp, xp−1)dx0:p,

=

∫
fn(xn)π̄n(xn)dxn,

and γ̂n(1) =
∫
π̄n(xn)dxn = Zn, and thus η̂n(fn) =

∫
fn(xn)πn(xn)dxn in the case of SMC samplers.

That is, time marginal (updated) normalised Feynman-Kac models in (3.33) act as the sequence of the
tempered distributions {πn(dx)}. Assume that {Kn} are MCMC kernels which leave πn(x) invariant,
and one can set:

Ln−1(xn, xn−1) =
πn(xn−1)Kn(xn−1, xn)

πn(xn)
,

that is, {Ln} are time reversal Markov kernels in the sense:

πn(dxn)Ln−1(xn, dxn−1) = πn(dxn−1)Kn(xn−1, dxn).

In this case, we have that:

Ḡn(xn−1, xn) =
π̄n(xn)Ln−1(xn, xn−1)

π̄n−1(xn−1)Kn(xn−1, xn)
=

π̄n(xn)πn(xn−1)Kn(xn−1, xn)

π̄n−1(xn−1)πn(xn)Kn(xn−1, xn)
,

=
π̄n(xn)π̄n(xn−1)/Zn
π̄n−1(xn−1)π̄n(xn)/Zn

=
π̄n(xn−1)

π̄n−1(xn−1)
.

3.5 Mean field interacting particle models

3.5.1 Mckean interpretation

In this section we design a non-linear Markov interpretation of the flow of Feynman-Kac models with
associated with a pair of (Gn,Mn). Without loss of generality, we assume that for any n, ‖Gn‖∞ <∞.
First we define the following new Markov kernel from (En, En) into (En, En) itself as follows:

Sn,η(xn, dyn) := εnGn(xn)δxn(dyn) + (1− εnGn(xn))ΨGn(η)(dyn), (3.51)

where εn is a non-negative constant such that εnGn(xn) ≤ 1 for all xn ∈ En. Clearly, we can show
that, for any fn ∈ Bb(En):

Sn,η(fn) = εnGn(xn)× fn(xn) + (1− εnGn(xn))ΨGn(ηn)(fn),
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from which we have that:

ηnSn,ηn(fn) = εηn(Gn(xn)× fn(xn)) + (1− εnηn(Gn(xn)))ΨGn(ηn)(fn),

= εηn(Gn(xn)× fn(xn)) + ΨGn(ηn)(fn)− εnηn(Gn(xn))
ηn(fn ×Gn(xn))

ηn(Gn(xn))
,

= εηn(Gn(xn)× fn(xn)) + ΨGn(ηn)(fn)− εnηn(fn ×Gn(xn)) = ΨGn(ηn)(fn).

Therefore, Sn,η(xn, dyn) can be considered as an alternative interpretation of ΨGn(η). Using (3.51),
we have that, for any fn+1 ∈ Bb(En+1):

ηn+1(fn+1) = ηnKn+1,ηn(fn+1), (3.52)

where Kn+1,η is a collection of Markov kernels from (En, En) into (En+1, En+1) such that:

Kn+1,η := Sn,ηMn+1, (3.53)

(3.52) is true since ηn+1(fn+1) = ΨGn(ηn)Mn+1(fn+1) holds (Proposition 23), ηnSn,ηn = ΨGn(ηn)

and thus ηn+1(fn+1) = Sn,ηMn+1(fn+1). Notice that (3.53) can be decomposed into two separate
transitions:

ηn
Sn,ηn−→ η̂n = ηnSn,ηn = ΨGn(ηn)

Mn+1−→ ηn+1 = η̂nMn+1 = ΨGn(ηn)Mn+1 (3.54)

Definition 29. (The Mckean measure)
The Mckeam measure associated with a collection of the Mckean-Markov kernels (Kn+1,η)η∈P(En)

with the initial distribution η0 ∈ P(E0) is a probability measure such that:

Kn(dx0:n) := η0(dx0)

n∏
p=1

Kn+1,ηn(xn−1, dxn), (3.55)

where ηn ∈ P(En) is the solution of the equation:

ηn+1 = ηnKn+1,ηn

Let (x̄n) be a Markov chain on En with initial distribution η0 = Law(X0), and elementary Markov
kernels given by:

P(x̄n ∈ dx | x̄n−1) = Kn+1,ηn(x̄n−1, dx),

with Law(x̄n) = ηn. Then any fn ∈ Bb(En), we have that:

EK [fn(x̄n)] =

∫
fn(x̄n)η0(dx0)

n∏
p=1

Kn+1,ηn(x̄n−1, dxn),

=

∫
fn(x̄n)ηn−1Kn+1,ηn(x̄n−1, dxn) = ηn(fn),
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thus we conclude that ηn is the law of x̄n under K. Recall that ηn+1 = Φn+1(ηn) := ΨGn+1
(ηn)Mn+1,

and thus Φn+1(ηn) = ηnKn+1,ηn . In the literature, such interpretation of Feynman-Kac models is
called Mckean interpretation. Under K, the motion of {x̄n} can be understood as follows. Given the
position and the distribution of x̄n at time n, w.p. εnGn(x̄n), x̄n remains the same position, and we
can set x̃n = x̄n. In the same manner, w.p. (1 − εnGn(xn)), x̄n jumps to the new position which is
randomly selected according to the Boltzmann-Gibbs transformation x̃n = ΨGn(ηn)(dxn), and we can
also set x̃n = x̄n. Then, x̄n evolves to a new site x̄n+1 via Mn+1(x̃n, ·). Notice if one sets εn = 0 for
any n, then {x̄n} always jump to a new place, since Sn,η(xn, dyn) = ΨGn(η)(dyn) in this case.

3.5.2 Interacting particle systems

In general, we can rarely compute explicitly the law ηn of interest, and this motivates us to consider
how to approximate ηn and associated Feynman-Kac models. We adopt Mckean interpretation of
Feynman-Kac models. Let N be a positive integer, and define (ENn , ENn ) :=

(∏N
p=1E

p
n,
∏N
p=1 Epn

)
.

Then given Mckeam-Markov kernels (Kn+1,η)η∈P(En) and the initial distribution η0 ∈ P(EN0 ), define
a sequence of nonhomologous Markov chains taking values at each time n ∈ N in the product space
ENn such that:

ξn := (ξ(1)
n , · · · ξ(N)

n )n≥0,

with the elementary transitions from ENn−1 into ENn defined as:

P(ξn ∈ xn | ξn−1) :=

N∏
p=1

Kn,ηNn−1(ξn−1)(ξn−1, dxn), (3.56)

where we have defined xn := (x1
n, · · ·xNn ) and ηNn (ξn) := 1

N

∑N
i=1 δξ(i)n

(dξn). Replacing ηn with its
empirical measure, we find that:

Kn+1,ηNn
:= Sn,ηNnMn+1,

Sn,ηNn (ξ(i)
n , ·) := εnGn(ξ(i)

n )δ
ξ
(i)
n

+ (1− εnGn(ξ(i)
n ))ΨGn(ηNn (ξn)), (3.57)

where the corresponding Boltzmann-Gibbs transformation is given by:

ΨGn(ηNn (ξn)) :=

N∑
i=1

Gn(ξ
(i)
n )∑N

j=1Gn(ξ
(j)
n )

δ
ξ
(i)
n
. (3.58)

If we set εn = 0 for any n ∈ N, we can alternatively write (3.56) as:

Kn(ξn−1, dξn) :=

N∏
p=1

N∑
i=1

Gn−1(ξ
(i)
n−1)∑N

k=1Gn−1(ξ
(k)
n−1)

Mn(ξ
(i)
n−1, dξ

(p)
n ). (3.59)
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We call {ξn}n≥0 ∈ ENn particles. Then (3.54) can be replaced with the evolution of {ξn} as follows:

ξn ∈ ENn
selection−→ ξ̂n ∈ ENn

mutation−→ ξn+1 ∈ ENn+1.

At the selection stage, only depends of the potential function Gn, each particle ξ(i)
n is remained at the

same position w.p. εnGn(ξ
(i)
n ), and we set ξ̂(i)

n = ξ
(i)
n . Or, w.p. εnGn(ξ

(i)
n ), we select randomly ξ̃(i)

n

with distribution
∑N
i=1

Gn(ξ(i)n )∑N
j=1Gn(ξ

(j)
n )

δ
ξ
(i)
n
, and set ξ̂(i)

n = ξ̃
(i)
n . Notice that the selection stage depends

on only εn and the current potential function Gn. Given {ξ̂(i)
n }Ni=1, each selected particle ξ̂(i)

n evolves
independently, randomly according to the Markov kernel Mn+1(ξ̂

(i)
n , ·). This stage is called mutation

in the literature, and only depends on the Markov kernel Mn+1. All in all, the genetic type evolution
of the interacting particle systems is summarised by the following:



ξ
(1)
n

...
ξ

(i)
n

...
ξ

(N)
n


∈ ENn

Sn,ηNn
(ξ(i)n ,·)
−→



ξ̂
(1)
n

Mn+1−→ ξ
(1)
n+1

...
...

ξ̂
(i)
n

Mn+1−→ ξ
(i)
n+1

...
...

ξ̂
(N)
n

Mn+1−→ ξ
(N)
n+1

∈ ENn+1


In the further study of this paper, we are mainly concerned with the convergence analysis of

the n−time marginal measures ηNn . From Proposition 23, we can develop the following mean field
approximations of time marginals of Feynman-Kac models as follows, for any fn ∈ Bb(En):

ηNn (fn) :=
1

N

N∑
i=1

fn(ξ(i)
n ), (3.60)

γNn (fn) := ηNn (fn)×
n−1∏
p=0

ηNn (Gn), (3.61)

note that (3.61) follows from γn(1) =
∏

0≤p≤n−1 ηp(Gp) in (3.34) and the definition ηn(fn) :=

γn(fn)/γn(1). As in (3.52), we can write:

ηNn+1 = ηNn Kn+1,ηNn
. (3.62)

Then, flow of {ηNn } can be also described as:

ηNn
selection/resampling−→ η̂Nn = ηNn Sn,ηNn = ΨGn(ηNn )

mutaiton−→ ηNn+1 = η̂Nn Mn+1 = ΨGn(ηNn )Mn+1 (3.63)

and we algorithmically summarise the discussion. We note that the following algorithm is essentially
same as SMC (Algorithm 9).
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Algorithm 13 Interacting mean field approximation of the time marginals of Feynman-Kac models

i) Initialization: At time n = 0, sample N independent random variables ξ0 from η0 ∈ P(EN0 ).

ii) Selection: At time n ≥ 1, given
{
ξ

(i)
n

}N
i=1

, set ξ̂(i)
n = ξ

(i)
n w.p. εnGn(ξ

(i)
n ) for each i. Otherwise,

select randomly ξ̃(i)
n with distribution

∑N
i=1

Gn(ξ(i)n )∑N
j=1Gn(ξ

(j)
n )

δ
ξ
(i)
n
, and set ξ̂(i)

n = ξ̃
(i)
n for each i.

iii) Mutation: At time n ≥ 1, given
{
ξ̂

(i)
n

}N
i=1

, sample conditionally independently ξ(i)
n+1 from the

Markov kernel for each i.

iv) Repeat selection step and mutation step.

3.6 Analysis

This section provides the convergence results of the interacting particle systems (Algorithm 13) fol-
lowing closely Del Moral (2004, 2013); Vergé et al. (2015). To do so, without loss of generality, we
assume that εn = 0 for any n in (Algorithm 13) throughout the rest of the section. Again, this means
that we do resampling every time.

3.6.1 Unbiasdness

Theorem 17. For any fn ∈ Bb(En), we have that:

E[ηNn (fn)] = ηn(fn),

E[γNn (fn)] = γn(fn).

Proof. It suffices to prove that E[γNn (fn)] = γn(fn). Let FNn be the filtration generated by particles at
n. Then, by construction, we have that, for any fp ∈ Bb(Ep):

E
[
ηNp (fp) | FNp−1

]
=

1

N

N∑
i=1

E
[
fp(ξ

(i)
p ) | FNp−1

]
= E

[
fp(ξ

1
p) | FNp−1

]
,

=
Gp−1(ξ

(i)
p−1)∑N

k=1Gp−1(ξ
(k)
p−1)

Mp(fp(ξ
(i)
p−1)) =

ηNp−1(Qp(fp))

ηNp−1(Gp−1)
.

Then, the tower property and the definition of γNn give rise to:

E[γNn (fn)] = E

[
ηNn (fn)×

n−1∏
p=0

ηNn (Gn) | FNn−1

]
= E

[
ηNn−1(Qn(fn))

ηNn−1(Gn−1)

n−1∏
p=0

ηNn (Gn)

]
,

= E

[
ηNn−1(Qn(fn))

n−2∏
p=0

ηNn (Gn)

]
= E

[
ηNn−2(Qn−1:n(fn))

ηNn−2(Gn−2)

n−2∏
p=0

ηNn (Gn)

]
,
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and so on. This gives rise to:

E[γNn (fn)] = E
[
ηN0 (Q0:n(fn))

]
= E

[
Q0:n(fn(ξ

(1)
0 ))

]
,

= γ0Q0:n(fn) = γn(fn).

3.6.2 L2−bound

For any µ, ν ∈ P(E) and f ∈ Bb(E), we first define the following distance (Rebeschini and Van Handel,
2015):

d (µ, ν) := sup
‖f‖∞≤1

√
E
[
(µ(f)− ν(f))

2
]
, (3.64)

where the supremum is taken over test functions satisfying ‖f‖∞ := supx∈E =| f(x) |≤ 1. Recall that
we can write interacting particle systems at every time step:

ηNn+1 = ΨGn(ηNn )Mn+1,

with ΨGn(ηNn (ξn)):=
∑N
i=1

Gn(ξ(i)n )∑N
j=1Gn(ξ

(j)
n )

δ
ξ
(i)
n

and an initial distribution η̂N0 = η0.

Lemma 9. For any Markov kernel M on (E, E), any µ, ν ∈ P(E) and any f ∈ Bb(E), we have that:

d (µM, νM) ≤ d (µ, ν) .

Proof. Notice that for ‖f‖∞ ≤ 1:

|M(f) | =
∣∣∣∣∫ M(x′, dx)f(x)

∣∣∣∣ ≤ ∫ M(x′, dx) | f(x) |,

≤
∫
M(x′, dx) ‖f‖∞ = ‖f‖∞ ≤ 1,

holds by Jensen’s inequality, and this implies that ‖M(f)‖∞ ≤ 1. Then we have that:

d (µM, νM) = sup
‖f‖∞≤1

√
E
[
(µM(f)− νM(f))

2
]
,

≤ sup
‖f‖∞≤1

√
E
[
(µ(f)− ν(f))

2
]
,

= d (µ, ν) .

Lemma 10. Assume that there exists c ∈ (0, 1) such that c ≤ G(x) ≤ c−1 for all x ∈ E. Then for any
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µ, ν ∈ P(E) and any f ∈ Bb(E), we have that:

d (ΨG(µ),ΨG(ν)) ≤ 2c−2d (µ, ν) .

Proof. For f ∈ Bb(E), we have that:

ΨG(µ)(f)−ΨG(ν)(f) =
µ (fG)

µ(G)
− ν(fG)

ν(G)
,

=
µ(fG)− ν(fG)

µ(G)
+
ν(fG)

µ(G)
− ν(fG)

ν(G)
,

=
‖G‖∞
µ(G)

[
µ

(
fG

‖G‖∞

)
− ν

(
fG

‖G‖∞

)]
+
ν(fG) ‖G‖∞
µ(G)ν(G)

[
ν

(
G

‖G‖∞

)
− µ

(
G

‖G‖∞

)]
.

Notice that µ(G)−1 ≤ c−1 and µ(fG)
µ(G) ≤ 1 for any µ ∈ P(E) since the potential function G is positive.

Therefore, we have:

ΨG(µ)(f)−ΨG(ν)(f) ≤ c−2 [µ (cfG)− ν (cfG)] + c−2 [ν (cG)− µ (cG)] .

For ‖f‖∞ ≤ 1, we have that ‖cfG‖∞ ≤ ‖f‖∞ ‖G‖∞ ≤ ‖G‖∞ ≤ 1, and then triangle inequality implies:

E
[
|ΨG(µ)(f)−ΨG(ν)(f)|2

]
≤ sup
‖f‖∞≤1

E
[∣∣c−2 [µ (cfG)− ν (cfG)]

∣∣2]+ sup
‖f‖∞≤1

E
[∣∣c−2 [ν (cG)− µ (cG)]

∣∣2] ,
≤ 2c−4 sup

‖f‖∞≤1

E
[
|[µ (f)− ν (f)]|2

]
.

The claim follows immediately.

Theorem 18. Assume that there exists c ∈ (0, 1) such that c ≤ G(x) ≤ c−1 for all x ∈ E and εn = 0

for any n in Algorithm 13. Then for any f ∈ Bb(En), we have that:

d
(
ηNn , ηn

)
≤ Cn√

N
,

where the constant Cn does not depend on N but on n.

Proof. Assume that the statement holds at time n− 1. Then, as we mentioned, we can write ηNn − ηn
as:

ηNn − ηn =
[
ηNn − Φn(ηNn−1)

]
+
[
Φn(ηNn−1)− Φn(ηn−1)

]
=
[
ηNn − Φn(ηNn−1)

]
+
[
ΨGn−1(ηNn−1)Mn −ΨGn−1(ηn−1)Mn

]
.

From Lemma 9 and Lemma 10, we first obtain:

sup
‖f‖∞≤1

∥∥ΨGn−1
(ηNn−1)Mn(fn)−ΨGn−1

(ηn−1)Mn(fn)
∥∥

2
≤ 2c−2 sup

‖f‖∞≤1

∥∥ηNn−1Mn(fn)− ηn−1Mn(fn)
∥∥

2
,

≤ 2c−2 sup
‖f‖∞≤1

∥∥ηNn−1(fn)− ηn−1(fn)
∥∥

2
,
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so that d
(
ΨGn−1

(ηNn−1)Mn,ΨGn−1
(ηn−1)Mn

)
≤ 2c−2d

(
ηNn−1, ηn−1

)
.

By construction, we have E
[
ηNn (f) | FNn−1

]
= Φn(ηNn−1) so that E

[√
N
(
ηNn (f)− Φn(ηNn−1)(f)

)]
=

E
[
E
[√

N
(
ηNn (f)− Φn(ηNn−1)(f)

)
| FNn−1

]]
= 0 holds. Then, conditioned on FNn−1, the Marcinkiewicz-

Zygmund inequality yields that there exists a positive constant c′ such that

d
(
ηNn ,Φn(ηNn−1)

)
≤ c′√

N
,

Collecting our estimates, we have:

d
(
ηNn , ηn

)
≤ c′√

N
+ 2c−2d

(
ηNn−1, ηn−1

)
.

At time n = 0, we have that:

sup
‖f‖∞≤1

∥∥ηN0 (f0)− η0(f0)
∥∥

2
≤ 1√

N
,

see Appendix E. Thus the result follows by induction.

3.6.3 Central limit theorem

We first analyse the local sampling errors associated with the interacting particle systems. Recall that
using the semigroup Qp:n in (3.41), we can write γn = γpQp:n for p < n. Therefore we can decompose
γNn − γn as:

γNn − γn =

n∑
p=1

[
γNp Qp:n − γp−1Qp−1:n

]
+ γN0 Q0:n − γn. (3.65)

Also, for any p ≥ 1, (3.43) gives rise to:

γNp−1Qpηn(fn) = γNp−1(1)ηNp−1Qp = γNp−1(1)ηNp−1(Gp−1)Φn(ηNn−1),

= γNp−1(1)
γNp−1(Gp−1)

γNp−1(1)
Φn(ηNn−1) = γNp−1(Gp−1)Φn(ηNn−1) = γNp (1)Φn(ηNn−1).

Using this we have that:

γNp Qp:n − γp−1Qp−1:n = γNp Qp:n − γp−1QpQp:n = γNp Qp:n − γNp (1)Φn(ηNn−1)Qp:n,

= γNp (1)
(
ηNp − Φn(ηNn−1)

)
Qp:n.

As a result, we obtain:

W γ,N
n :=

√
N
(
γNn − γn

)
=

n∑
p=0

γNp (1)WN
p Qp:n, (3.66)
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where we have defined
(
WN
p

)
p≥0

with WN
0 :=

√
N
(
ηNp − η0

)
as follows, for p ≥ 1:

WN
p :=

√
N
(
ηNp − Φn(ηNn−1)

)
. (3.67)

Notice that Φn(ηNn−1) = Kn,ηNn−1
under the assumption εn = 0 for any n. We then have the following.

Lemma 11. (Del Moral, 2004, Corollary 9.3.1)
Assume that εn = 0 for any n in Algorithm 13. Then for any fn ∈ Bb(En) and fixed n ≥ 0, the

process
{
WN
n

}
n≥0

converges in law as N →∞ to a sequence of independent centered Gaussian random
fields {Wn}n≥0 such that:

E
[
Wn(fn)2

]
= ηn

[
fn − ηn(fn)2

]
.

Next we consider the process
{
W η,N
n

}
n≥0

such that for any fn ∈ Bb(En),W η,N
n (fn) :=

√
N
[
ηNn − ηn

]
(fn).

Also notice that γn (fn − ηn(fn)) = 0 holds from the law of total expectation. Therefore, we have that:

W η,N
n (fn) :=

√
N
[
ηNn − ηn

]
(fn) =

√
N
γNn (fn − ηn(fn))

γNn (1)
,

=
√
N

(
γNn − γn

)
(fn − ηn(fn))

γNn (1)
=
W γ,N
n (fn − ηn(fn))

γNn (1)
. (3.68)

Using these decompositions and Lemma 11 we can show the following.

Theorem 19. Assume that εn = 0 for any n in Algorithm 13. Then for any fn ∈ Bb(En) and fixed
n ≥ 0, the process

{
W γ,N
n

}
n≥0

and
{
W η,N
n

}
n≥0

converge in law as N →∞ to a sequence of Gaussian
random fields {W γ

n }n≥0 and {W η
n}n≥0 which are defined respectively as:

W γ
n (fn) := γn(1)

n∑
p=0

Wp (Pp:n (fn)) ,

W η
n (fn) :=

n∑
p=0

Wp (Pp:n (fn − ηn(fn))) .

Proof. From the strong law of large numbers, we have that γNn (1) → γn(1) w.p.1 as N → ∞. Then
Lemma 11 and Slutsky’s theorem imply W γ

n (fn)→
∑n
p=0 γp(1)Wp (Qp:n(fn)) in distribution as N →

∞. Then the result follows from Qp:n = γn(1)
γp(1)Pp:n (3.46). The rest of the claim follows immediately.

Theorem 20. Assume that εn = 0 for any n in Algorithm 13. Then for any fn ∈ Bb(En) and fixed
n ≥ 0, we have that:

lim
N→∞

NE
[
ηNn (fn)− ηn(fn)

]
= −

n∑
p=0

ηp (Pp:n(1)Pp:n (fn − ηn(fn))) ,

lim
N→∞

NV
[
ηNn (fn)− ηn(fn)

]
=

n∑
p=0

ηp

(
Pp:n (fn − ηn(fn))

2
)
.

Proof. Recall that W η,N
n (fn) can be expressed as W η,N

n (fn) :=
√
N
[
ηNn − ηn

]
(fn) =

Wγ,N
n (fn−ηn(fn))

γNn (1)
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so that:

N
(
ηNn (fn)− ηn(fn)

)
=
√
N
γn(1)

γNn (1)
W γ,N
n

(
fn − ηn(fn)

γn(1)

)
=
√
N

[
γn(1)

γNn (1)
− 1

]
W γ,N
n

(
fn − ηn(fn)

γn(1)

)
+
√
NW γ,N

n

(
fn − ηn(fn)

γn(1)

)
.

From Theorem 17, E
[
W η,N
n

]
= 0 holds, and this implies E

[√
NW η,N

n

(
fn−ηn(fn)
γn(1)

)]
= 0. Notice that

W γ,N
n :=

√
N
(
γNn − γn

)
and:[

γn(1)

γNn (1)
− 1

]
= − 1

γNn (1)

[
γNn (1)− γn(1)

]
= − 1√

N

W γ,N
n (1)

γNn (1)
.

As a result, we obtain:

NE
[
ηNn (fn)− ηn(fn)

]
= −E

[
W γ,N
n (1)

γNn (1)
W γ,N
n

(
fn − ηn(fn)

γn(1)

)]
,

= − 1

γn(1)
E
[
W γ,N
n (1)W η,N

n (fn)
]
.

here we again used Theorem 17. From Slutsky’s theorem, dominated convergence theorem and The-
orem 19, we can show that:

lim
N→∞

NE
[
ηNn (fn)− ηn(fn)

]
= −

n∑
p=0

E [Wp (Pp:n (1))Wp (Pp:n (fn − ηn(fn)))] ,

= −
n∑
p=0

ηp (Pp:n (1)Pp:n (fn − ηn(fn))) ,

here we used Lemma 11. From basic decomposition of the variance, we have:

V
[
ηNn (fn)− ηn(fn)

]
= E

[(
ηNn (fn)− ηn(fn)

)2]− (E [ηNn (fn)− ηn(fn)
])2

.

We already know that
(
E
[
ηNn (fn)− ηn(fn)

])
= O

(
N−2

)
thus can be ignored. We also obtain

E
[(
ηNn (fn)− ηn(fn)

)2]
= 1

NE
[(
W η,N
n (fn)

)2]
. Therefore, again from Slutsky’s theorem, dominated

convergence theorem and Theorem 19, we have:

lim
N→∞

NV
[
ηNn (fn)− ηn(fn)

]
=

n∑
p=0

E

[
n∑
p=0

Wp (Pp:n (fn − ηn(fn)))
2

]
,

=

n∑
p=0

ηp (Pp:n (fn − ηn(fn)))
2
,

here again we used Lemma 11.
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4 Hidden Markov Models and Particle Filters

4.1 Introduction

Owing to their rich structure, hidden Markov models (HMMs) are being routinely used in such diverse
disciplines as finance (Mamon and Elliott, 2007), speech recognition (Gales and Young, 2008), epi-
demiology (Green and Richardson, 2002), biology (Yoon, 2009), and signal processing (Crouse et al.,
1998). This section provides some basic and detailed results of HMMs. Since HMMs involve intractable
densities with unknown parameters in general, approximation methods and statistical inference based
on SMC for HMMs are documented.

4.2 Basics of Hidden Markov Models

Let (Ω,F ,P) be a probability space on which we have defined two stochastic processes {xn;n ∈ N}
and {yn;n ∈ N}. The process {xn} is a latent Markov process which takes values in X. Also, let B(X)

be the Borel σ-algebra on X. Then the probability transition kernel fθ : X× B(X) → [0, 1] of {xn} is
such that:

P(xn ∈ A | xn−1) =

∫
A

fθ(dxn | xn−1), A ∈ B(X), (4.1)

Similarly, let {yn} be an observation process which is conditionally independent of xn = x over n ≥ 0

and have the marginal distribution gθ : X× B(Y)→ [0, 1] such that:

P(yn ∈ B | xn) =

∫
B

gθ(dyn | xn), B ∈ B(Y). (4.2)

Then Hidden Markov Models (HMMs) (also known as State Space Models) are defined as the bivariate
stochastic process (xn, yn)n∈N. That is, HMMs are (X× Y,B(X)⊗ B(Y))-measurable Markov chains.
We adopt a parametric setting with θ ∈ Θ ⊆ Rd, for some d ∈ N. Assume that fθ(dxn | xn−1) and
gθ(dyn | xn) admit densities w.r.t. the dominating measures denoted as dx and dy, with abuse of
notation. That is:

P(xn ∈ dxn | xn−1) = fθ(xn | xn−1)dxn, (4.3)

P(yn ∈ dyn | xn−1) = gθ(yn | xn)dyn. (4.4)

In the context of HMMs, such models are often called fully dominated models (Cappé et al., 2005;
Douc et al., 2014). Then for any A ∈ B(X), one can define the joint Markov density kθ w.r.t. the
product measure (dx⊗ dy) such as:

kθ(xn, yn | xn−1) := fθ(xn | xn−1)gθ(yn | xn), (4.5)

for xn, xn+1 ∈ X × X and yn ∈ Y. Following closely Doucet and Johansen (2009), we provide several
examples of HMMs to facilitate our study.

Example 14. Stochastic Volatility model.
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Stochastic Volatility (SV) models, first studied in Taylor (1982), might be the most used class
among HMMs. See Shephard and Andersen (2009) and Durbin and Koopman (2012, section 9) for
details of SV models and their extension.

Let {yn} denote the first difference of a particular series of asset log prices. Such prices might be
of stocks, bonds, foreign currencies. A common specification of {yn} will be given by:

yn = β exp(xn/2)wn,

where wn
i.i.d.∼ N (0, 1). The latent process {xn} can be thought of as the unobserved log−volatility.

A standard assumption on {xn} will be that {xn} follows a first order autoregression:

xn = αxn−1 + vn,

where | α |< 1 and vn
i.i.d.∼ N (0, σ2

x). First, we note that such SV models can be understood as a natural
discrete time analogue of the continuous models, such as models studied by Hull and White (1987).
Also, it should be emphasised that although SV models are Gaussian, they are not linear models.
Therefore, one has to resort to some sophisticated methods to approximate important quantities such
as likelihood and posterior of SV models. We give a simulation of the SV model with n = 1000 and
(α, σx, β) = (0.9,

√
0.1, 0.8) in the following Figure 2.

Figure 2: A simulation of the stochastic volatility model described in Example 14 with parameters
(α, σx, β) = (0.9,

√
0.1, 0.8).

Example 15. Partially observed SDEs with error.
We consider a d-dimensional diffusion model. Suppose that stochastic process X = {Xt; 0 ≤ t ≤ T}
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is obtained by the solution to the following time-homogeneous stochastic differential equation (SDE):

dXt = bθ(Xt)dt+ σθ(Xt)dWt, X0 = x0 ∈ Rp, t ∈ [0, T ]

driven by the Brownian motion {Wt; 0 ≤ t ≤ T}, where b : Rd 7→ Rd and σ : Rd 7→ Rd×d, that might
depend on also some parameter θ ∈ Θ ⊆ Rp to be estimated. We make the assumptions (linear growth
and Lipschitz continuity) to guarantee uniqueness of a weak solution, see, for instance Øksendal (2003).

We assume that the process can be observed at only discrete time instances 1 ≤ m ≤ n, 0 ≤
t1 < t2 < · · · tn with error yn | xn = gθ(dyn | xn).This class of models have been particularly used
in finance and financial econometrics to capture market microstructure noise. See Aït-Sahalia et al.
(2005); Ait-Sahalia and Yu (2008); Hansen and Lunde (2006) for instance. For convenience, we also
write xm = Xtm , 0 ≤ m ≤ n. Note the setting above can be still seen as a special case of HHMs, but
time is continuous. Again, to facilitate our study, we heuristically write the distribution of xn given
xn−1 as fθ(dxn | xn−1) and assume that it has the density w.r.t. some dominating measure denoted
generically as dx. Also we assume that gθ(dy | x) admit densities w.r.t. some dominating measure
denoted dy.

Note that, as for SDEs case, fθ(xn | xn−1) is itself intractable in general, and this yields some
unique difficulties compared with basic HMMs. Then, common choice of gθ(yn | xn) will be Gaussian,
that is yn = xn + εn where εn

i.i.d.∼ N (0, σ2). We give a simulation of the such 1−dimensional SDEs
with error model with the specification to illustrate features of such models :

dXt = 0.5(0.7−Xt)dt+ 0.5dWt,

yn = xn + εn, εn
i.i.d.∼ N (0, 1),

in the following Figure 3.
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Figure 3: A simulation of Partially observed 1−dimensional SDEs with error model described in
Example 15 with bθ = 0.5(0.7−Xt), σθ = 0.5 and yn = xn + εn, εn

i.i.d.∼ N (0, 1).

Henceforth we make use of the notation ai:j := (ai, · · · , aj), for integers i ≤ j, for a given sequence
{am}. Then estimation problems for HHMs involve the posterior distribution of {xn} given y0:k. That
is, we are interested in computing the conditional distributions:

P(xk ∈ dxk | y0:n). (4.6)

When n = k, (4.6) becomes the filtering distribution, when 0 ≤ k < n it corresponds to smoothing
distribution, when k > n it is called prediction distribution. Note that the following development will
be done under the assumption that the parameter θ is known. Therefore, we will drop θ from the
expressions, that is, we will write f(xn | xn−1) instead of fθ(xn | xn−1) for instance.

Definition 30. (Joint smoothing, Filtering, Smoothing, Prediction densities)

i) Joint smoothing density: p(x0:n | y0:n) for n ≥ 0.

ii) Smoothing density: p(xk | y0:n) for 0 ≤ k ≤ n.

iii) Filtering density: p(xn | y0:n) for n ≥ 0.

iv) Prediction density: p(xn+1 | y0:n) for n ≥ 0.

Due to Markovian structure of HMMs and the Bayes’ theorem, one can easily derive recursions for
such posterior densities. We first begin with the recursion for the joint smoothing density (JSD). Since
we have considered fully dominated HMMs, Markov property gives rise to:

p(x0:n, y0:n) = p(x0:n−1, y0:n−1)f(xn | xn−1)g(yn | xn), (4.7)
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where p(x0:n, y0:n) denotes the joint density of (x0:n, y0:n) for all n ≥ 1. Then, from the Bayes’ theorem,
we obtain:

p(x0:n | y0:n) = p(x0:n−1 | y0:n−1)
f(xn | xn−1)g(yn | xn)

p(yn | y0:n−1)
, (4.8)

p(yn | y0:n−1) =

∫
p(x0:n−1 | y0:n−1)f(xn | xn−1)g(yn | xn)dxn−1:n. (4.9)

As for the filtering density p(xn | y0:n), one can also derive the recursion in the same manner:

p(xn | y0:n) =
p(yn | y0:n−1, xn)p(xn | y0:n−1)

p(yn | y0:n−1)
,

=
g(yn | xn)p(xn | y0:n−1)

p(yn | y0:n−1)
, (4.10)

where p(yn | y0:n−1) =
∫
g(yn | xn)p(xn | y0:n−1)dxn. Again, we have used Markovian structure of

HMMs and the Bayes’ theorem. Notice that the prediction density appears in the filtering recursion
(4.10), and the prediction recursion can be obtained as:

p(xn | y0:n−1) =

∫
p(xn, xn−1 | y0:n−1)dxn−1,

=

∫
f(xn | xn−1)p(xn−1 | y0:n−1)dxn−1. (4.11)

Again notice that the filtering appears in the prediction recursion (4.11). Using (4.11), alternatively,
(4.10) becomes:

p(xn | y0:n) =
g(yn | xn)

∫
f(xn | xn−1)p(xn−1 | y0:n−1)dxn−1∫

g(yn | xn)f(xn | xn−1)p(xn−1 | y0:n−1)dxn−1:n
. (4.12)

Again notice that In the context of the optimal filtering problem, the recursion (4.11) is known as the
prediction step and (4.12) is known as filtering step. Then it is clear to see that one can calculate the
filtering density p(xn | y0:n) for any n by iterating the prediction step and the filtering step.

One of the interesting facts about HMMs is that, given y0:n, the process {xk}nk=0 is inhomogeneous
Markov process. Under weak assumptions on a space (X,B(X)) (it has to be Polish space), the same
holds true for the time-reversed chains. That is, for A ∈ B(X), define the backward kernel:

B(xt ∈ A | xt+1) := P (xt ∈ A | xt+1, y0:n) , (4.13)

then (4.13) is the time-reversed Markov kernel (Cappé et al., 2005, Proposition 3.3.6). Critically,
since we have assumed that HMMs being considered are fully dominated, one can obtain an explicit
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expression for the backward kernel:

p(xk | xk+1, y0:n) = p(xk | xk+1, y0:k),

=
p(xk+1 | xk, y0:k)p(xk | y0:k)∫
p(xk+1 | xk, y0:k)p(xk | y0:k)dxk

,

=
f(xk+1 | xk)p(xk | y0:k)∫
f(xk+1 | xk)p(xk | y0:k)dxk

, (4.14)

where we used the conditional independence such that p(xk | xk+1, y0:n) = p(xk | xk+1, y0:k) holds for
n ≥ k. Also, notice that, for 0 ≤ k ≤ n,

p(xk | y0:n) =

∫
p(xk | xk+1, y0:n)p(xk+1 | y0:n)dxk+1,

=

∫
p(xk | xk+1, y0:k))p(xk+1 | y0:n)dxk+1. (4.15)

Then combining (4.14) and (4.15) yields:

p(xk | y0:n) = p(xk | y0:k)

∫
f(xk+1 | xk)

p(xk+1 | y0:k)
p(xk+1 | y0:n)dxk+1, (4.16)

p(xk+1 | y0:k) =

∫
f(xk+1 | xk)p(xk | y0:k)dxk. (4.17)

(4.16) implies that, to compute {p(xk | y0:n)}, first one has to do the filtering forward and then compute
p(xk | y0:n) backward. Thus, (4.16) is often called Forward-Backward recursion.

Although we have derived the recursions to obtain the posterior densities, except some simple
models (such linear Gaussian models), it is not possible to compute these densities in closed-form.
This difficulty motivates us to resort to some approximation methods. Sequential Monte Carlo (SMC)
methods have been considered state of the art for tackling this kind of problems.

4.3 Hidden Markov Models and the Feynman-Kac Models

Recall that given the pair of a potential function and a Markov kernel (Gn,Mn), the Feynman-Kac
prediction path models on the path space En :=

∏n
p=0Ep equipped with the product En :=

∏n
p=0 Ep

is given by Q(dx0:n) := Z−1
n

∏n−1
p=0 Gp(xp)P(dx0:n) where P(dx0:n) := µ0(dx0)

∏n
p=1Mp(xp−1, dxp) and

Zn := EP

[∏n−1
p=0 Gp(xp)

]
.

To see the connection between the Feynman-Kac prediction path models and HMMs, take, for
all n ≥ 0, En = X and En = B(X). For A ∈ B(X), set Mn(xn−1, A) =

∫
A
f(xn | xn−1)dxn and

P(Yn ∈ B | Xn) =
∫
B
g(yn | xn)dyn for B ∈ B(Y). For hn ∈ Bb(Xn), the prediction path model
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becomes:

Q(hn) = Z−1
n

∫
hn(x0:n)

n−1∏
p=0

g(yp | xp)
n∏
k=0

f(xk | xk−1)dx0:k,

= p(y0:n−1)

∫
hn(x0:n)p(x0:n, y0:n−1)dx0:n,

=

∫
hn(x0:n)p(x0:n | y0:n−1)dx0:n.

Thus, in the context of HMMs, Q(dx0:n) is the (joint) predictive distribution p(dx0:n | y0:n−1). In the
same manner, it can be easily seen that, for hn ∈ Bb(Xn), Q̂(hn) =

∫
hn(x0:n)p(x0:n | y0:n)dx0:n where

Q̂(dx0:n) is the Feynman-Kac updated path model. Thus Q̂(dx0:n) corresponds to the joint smoothing
distribution p(dx0:n | y0:n).

Next consider the flow of the time marginals of the Feynman-Kac models. That is, for hn ∈ Bb(En),
consider the following sequence of positive signed measures γn(hn) := EP

[
hn(xn)

∏n−1
p=0 Gp(xp)

]
and

γ̂n(hn) := EP

[
hn(xn)

∏n
p=0Gp(xp)

]
. In the case of HMMs, again, take, for all n ≥ 0, En = X and

En = B(X). For A ∈ B(X), set Mn(xn−1, A) =
∫
A
f(xn | xn−1)dxn and P(Yn ∈ B | Xn) =

∫
B
g(yn |

xn)dyn for B ∈ B(Y). For hn ∈ Bb(X), γn(hn) becomes:

γn(hn) =

∫
hn(xn)

n−1∏
p=0

g(yp | xp)
n∏
k=0

f(xk | xk−1)dx0:k,

=

∫
hn(xn)p(x0:n, y0:n−1)dx0:n,

= p(y0:n−1)

∫
hn(xn)p(x0:n | y0:n−1)dx0:n,

=

∫
hn(xn)p(xn, y0:n−1)dxn.

Thus, in the context of HMMs, γn(hn) is related to the joint distribution of (xn, y0:n−1). In the same
manner, one can easily find that γ̂n(hn) is related to the joint distribution of (xn, y0:n). Therefore,
the normalised version of time marginals of the Feynman-Kac models ηn(hn) := γn(hn)/γn(1) and
η̂n(hn) := γ̂n(hn)/γ̂n(1) for hn ∈ Bb(En) correspond to the predictive distribution p(xn | y0:n−1) and
the filtering distribution p(xn | y0:n) with En = X. Also it is clear to see that γn(1) = p(y0:n−1) and
γ̂n(1) = p(y0:n).

In addition, recall that the Boltzmann-Gibbs transformation is the mapping ΨGn : P(En)→ P(En),
defined for all µn ∈ P(En) by:

ΨGn(µn)(dxn) :=
Gn(xn)µn(dxn)

µn(Gn)
.

To see the meaning of the Boltzmann-Gibbs transformation in the context of HMMs setting, recall
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that ηn(hn) =
∫
hn(xn)p(xn | y0:n−1)dxn. Then the Boltzmann-Gibbs transformation becomes:

ΨGn(ηn)(dxn) =
g(yn | xn)p(xn | y0:n−1)dxn∫
g(yn | xn)p(xn | y0:n−1)dxn

,

= p(dxn | y0:n).

So, it is clear to see that the Boltzmann-Gibbs transformation = Bayes theorem, that is we have
that Ψgn(ηn)(hn) =

∫
hn(xn)p(xn | y0:n)dxn = η̂n(hn). Using the transformation, we have that for

hn ∈ Bb(X) :∫
hn(xn)p(xn | y0:n) =

∫
hn(xn)g(yn | xn)p(xn | y0:n−1)dxn∫

g(yn | xn)p(xn | y0:n−1)dxn

=

∫
hn(xn)g(yn | xn)

∫
f(xn | xn−1)p(xn−1 | y0:n−1)dxn−1dxn∫

g(yn | xn)
∫
f(xn | xn−1)p(xn−1 | y0:n−1)dxn−1dxn

,

=

∫
hn(xn)g(yn | xn)η̂n−1f(dxn)∫

g(yn | xn)η̂n−1f(dxn)
= Ψgn (η̂n−1f(hn)) .

In the same manner, we have that ηn(hn) =
∫
hn(xn)p(xn | y0:n−1)dxn. Then, observe that:∫

hn(xn)p(xn | y0:n−1)dxn =

∫
hn(xn)

∫
f(xn | xn−1)p(xn−1 | y0:n−1)dxn−1dxn,

=

∫
hn(xn)

∫
f(xn | xn−1)g(yn−1 | xn−1)p(xn−1 | y0:n−2)dxn−1dxn∫

g(yn−1 | xn−1)p(xn−1 | y0:n−2)dxn−1
,

= Ψgn−1
(ηn−1)fn(hn).

Therefore, in the context of HMMs, the flow of the time marginals of the Feynman-Kac model can be
considered as:

ηn
Filtering/Bayes′ rule−→ η̂n = Ψgn(ηn)

prediction−→ ηn+1 = η̂nfn+1.

We end this section by studying change of measures for HMMs. Again, take, for all n ≥ 0, En = X
and En = B(X). For A ∈ B(X), set Mn(xn−1, A) =

∫
A
f(dxn | xn−1) and P(Yn ∈ B | Xn) =

∫
B
g(yn |

xn)dyn for B ∈ B(Y). Define the law on (Xn,B(Xn)) such that:

H(dx0:n) = µ(dx0)

n∏
p=1

f(dxp | xp−1),

and set Gn = g(yn | xn) for any n ≥ 0. Then we have the Feynman-Kac path measure:

Q(dx0:n) = p(y0:n−1)−1
n−1∏
p=0

g(yp | xp)H(dx0:n),

p(y0:n−1)=EH

[
n−1∏
p=0

g(yp | xp)

]
.
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Consider another collection of Markov chains q(dxn | xn−1) such that for any xn−1 ∈ X, f(dxn |
xn−1)� q(dxn | xn−1). Given this, as observed, we have:

P̄(dx0:n) = µ̄0(dx0)

n∏
p=1

q(dxp | xp−1),

Ḡp(xp−1, xp) = g(yp | xp)×
df(· | xp−1)

dq(· | xp−1)
(xp),

where H � P̄. Then, as we will see later, most SMC algorithms for HMMs can be considered as a
special case of this framework. That is, given P and gn(· | ·) (and thus Q), one can select arbitrary P̄
as long as H� P̄ holds.

4.4 Particle Filter

In this section, we study how to approximate the filtering density p(xn | y0:n) or the joint smoothing
density p(x0:n | y0:n) of HMMs via SMC. Applying SMC to the filtering problem of HMMs is commonly
called the particle filter. As we studied, HMMs can be understood as a special case of Feynman-Kac
models. To be precise, the potential functionGn is g(yn | xn) and the Markov kernelMn is f(xn | xn−1)

in the context of HMMs. Therefore, applying particle approximation to HMMs immediately gives rise
to an online procedure to approximate p(xn | y0:n) and p(x0:n | y0:n) for any n.

4.4.1 Bootstrap Filter

First, assume that our target is the joint smoothing density p(x0:n | y0:n). In the context of HMMs,
the Bootstrap Filter presented in Gordon et al. (1993) has been intensively used. In this case, one just
needs to set γn(x0:n) = p(x0:n, y0:n) so that we also have Zn :=

∫
γn(x0:n)dx0:n =

∫
p(x0:n, y0:n)dx0:n =

p(y0:n), and πn(x0:n) := γn(x0:n)
Zn

= p(x0:n | y0:n). In the bootstrap filter, the importance density q(xn |

x0:n−1) is set as f(xn | xn−1). Given unweighted particle system
{
x̃

(i)
0:n−1,

1
N

}N
i=1

for p(x0:n−1 | y0:n−1),

new particles {x(i)
n }Ni=1 are sampled from f(xn | x̃(i)

n−1) and set x(i)
0:n =

(
x

(i)
n , x̃

(i)
0:n−1

)
. Notice that:

an(x0:n) :=
γn(x0:n)

γn−1(x0:n−1)q(xn | x0:n−1)
=

p(x0:n, y0:n)

p(x0:n−1, y0:n−1)f(xn | xn−1)
,

= g(yn | xn). (4.18)

Also, x(i)
0:n =

(
x

(i)
n , x̃

(i)
0:n−1

)
is approximately distributed according to p(x0:n−1 | y0:n−1)f(xn | xn−1)

due to the resampling at time n− 1. Therefore, the unnormalised weight is now given by:

wn(x0:n) = an(x0:n) = g(yn | xn). (4.19)

Next we calculate normalised weights as:

W (i)
n :=

wn(x
(i)
0:n)∑N

j=1 wn(x
(j)
0:n)

=
g(yn | x(i)

n )∑N
j=1 g(yn | x(j)

n )
. (4.20)
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Their weighted empirical distribution:

p̂(x0:n | y0:n) :=
1

N

N∑
i=1

W (i)
n δ

x
(i)
0:n

(dx0:n), (4.21)

p̂(yn | y0:n−1) :=

N∑
i=1

W
(i)
n−1g(yn | x(i)

n ), (4.22)

are then approximations of p(x0:n | y0:n) and p(yn | y0:n−1). After correction step, one can resample

particles
{
x

(i)
0:n

}N
i=1

to obtain N new equally weighted particles
{
x̃

(i)
0:n,

1
N

}N
i=1

which construct the

associated unweighted empirical distribution 1
N

∑N
i=1 δx̃(i)

0:n
(dx0:n) of p(x0:n | y0:n).

As we mentioned, applying the bootstrap filter (SMC) to p(x0:n | y0:n) may suffer from the particle
path degeneracy problem. Therefore, in general, the bootstrap filter has been mainly applied to
approximate the filtering density p(xn | y0:n). In this case, one can derive the algorithm more intuitively
by mimicking prediction/filtering recursions of HMMs. Suppose that one has unweighted particle

system
{
x̃

(i)
n−1,

1
N

}N
i=1

for p(xn−1 | yn−1). Then new particles {x(i)
n }Ni=1 are sampled from f(xn | x̃(i)

n−1)

which are distributed approximately according to p(xn | y0:n−1), from (4.11). That is, their unweighted
empirical distribution:

π̂n|n−1(dxn) :=
1

N

N∑
i=1

δ
x
(i)
n

(dxn), (4.23)

is approximation of p(xn | y0:n−1). Then plugging this measure into the recursion (4.10) gives rise to
the following empirical distribution of p(xn | y0:n):

π̂n|n(dxn) :=
g(yn | xn)π̂n|n−1(dxn)∫
g(yn | xn)π̂n|n−1(dxn)

,

=

∑N
i=1 g(yn | x(i)

n )δ
x
(i)
n

(dxn)∑N
i=1 g(yn | x(i)

n )
. (4.24)

As before, if we set the normalised weights:

W (i)
n :=

g(yn | x(i)
n )∑N

j=1 g(yn | x(j)
n )

, (4.25)

then (4.24) becomes:

π̂n|n(dxn) =

N∑
i=1

W (i)
n δ

x
(i)
n

(dxn). (4.26)

To obtain the “unweighted” empirical distribution as before, we then apply resampling. A resampling
procedure associates a number of offspring N (i)

n ∈ N with each particle {x(i)
n }Ni=1 with

∑N
i=1N

(i)
n = N .
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After resampling, one obtains new particles {x̃(i)
n }Ni=1 with associated empirical distribution:

π̃n|n(dxn) :=
1

N

N∑
i=1

δ
x̃
(i)
n

(dxn), (4.27)

and resulting particles are approximately also distributed according to p(xn | y0:n). Next notice that
the likelihood function p(y0:n) can be decomposed into:

p(y0:n) = p(y0)

n∏
i=1

p(yi | y0:i−1), (4.28)

where p(yi | y0:i−1) is given by p(yi | y0:i−1) =
∫
g(yi | xi)p(xi | y0:i−1)dxi. Therefore, the estimator of

the likelihood can then be estimated via the decomposition (4.28) and inserting the empirical predictive
distribution (4.27) into

∫
g(yi | xi)p(xi | y0:i−1)dxi:

p̂(y0:n) :=

n∏
t=0

[
1

N

N∑
i=1

wn(x(i)
n )

]
, (4.29)

where wn(x
(i)
n ) := g(yt | x(i)

t ). We algorithmically summarise the above as follows.

Algorithm 14 Bootstrap Filter (Gordon et al., 1993).

Assume that at time n − 1, one has an equally weighted particle system
(
x̃

(i)
n−1,

1
N

)N
i=1

of the target
p(xn−1 | y0:n−1).

i) Propagate particles {x(i)
n }Ni=1 via sampling from f(· | x̃(i)

n−1).

ii) Correct unnormalised weights via wn(x
(i)
n ) = g(yn | x(i)

n ) for i = 1, · · ·N .

iii) Obtain p̂(y0:n) =
∏n
t=0

[
1
N

∑N
i=1 g(yt | x(i)

t )
]
.

iv) Obtain normalised weights via W (i)
n =

wn(x(i)
n )∑N

j=1 wn(x
(j)
n )

for i = 1, · · ·N .

v) Do resampling
{
x

(i)
n

}N
i=1

w.p. W (i)
n to obtain equally weighted particle system (x̃

(i)
n , 1

N )Ni=1.

vi) Return to the first step.

Example 16. Bootstrap filter for SV model
Here we apply the bootstrap filter (Algorithm 14) to SV model (Example 14). In this case, we

have f(x′ | x) = N (x′;αx, σ2
x) and g(y | x) = N (y; 0, β2 exp(x)). As before we set n = 1000 and

(α, σx, β) = (0.9,
√

0.1, 0.8). We used N = 1024 particles, and did resampling when the effective
sample size was less than 512. The results are plotted in Figure 4.
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Figure 4: The bootstrap filter (Algorithm 14) estimates for the SV model (Example 14) and the
effective sample size. The top figure shows the result of the particle filtering of SV model with
the choice (α, σ, β) = (0.9,

√
0.1, 0.8) and N = 1024 particles. The thick blue line is the estimated

posterior mean, area plot is estimated +/−1 S.D. and the orange line is the true volatility, that is
{xn}. The bottom figure shows the effective sample size, we did resampling when the ESS was lower
than 1024/2 = 512.

Next consider the bootstrap filter as a mean field approximation. Again, we want to approx-
imate the sequence of probability measures (ηn)n∈N which correspond to p(dxn | y0:n−1). Define
(XN ,B(X)N ) :=

(∏N
p=1 Xp,

∏N
p=1 B(X)p

)
. We define the Markov kernel Kn(xn−1, dxn) from XN into

XN as follows: for any xn ∈
(
x

(1)
n , · · · , x(N)

n

)
, we set:

Kn(xn−1, dxn) :=

N∏
p=1

N∑
i=1

gn(yn−1 | x(i)
n−1)∑N

k=1 gn(yn−1 | x(k)
n−1)

fn(dx(p)
n | x

(i)
n−1). (4.30)

That is, in order to approximate p(xn | y0:n), one can select xn−1 with probabilities proportional

to
{
gn(yn−1 | x(i)

n−1)
}N
i=1

. Given this, one can mutate the selected vector xn−1 conditionally inde-
pendently to new positions using the Markov kernel Kn(xn−1, dxn). Define the empirical measure
ηNn := 1

N

∑N
i=1 δx(i)

n
on XN and recall that γn+1(1) =

∏
0≤p≤n ηp(Gp) holds. Therefore, we have that

γNn+1(1) =
∏n
p=0

[
1
N

∑N
i=1 g(yp | x(i)

p )
]
. Therefore, the asymptotic results we studied for interacting

mean field approximation can be directly applied to the bootstrap filter, see also Crisan and Doucet
(2002) for an in-depth treatment of analysis of the particle filter targetting p(xn | y:n) from a different
approach.
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4.4.2 Twisting/Auxiliary Particle Filter

Another important class of particle filter is Twisting/Auxiliary particle filter. Assume the now our
target is the joint smoothing density p(x0:n | y0:n) at the final time n only. The optimal (in terms of the
conditional variance) choice of the importance density q?(xn | x0:n−1) is given by p(xn | xn−1, yn) =
f(xn|xn−1)g(yn|xn)

p(yn|xn−1) but this is not tractable due to the the predictive likelihood p(yn | xn−1) in general.
However, this observation implies that a good importance density would take into account information
from future observations at the current step. The Auxiliary Particle Filter (APF) is a look ahead
method in the sense that at time n the algorithm tries to include information from time n + 1, first
studied in Pitt and Shephard (1999) and then generalised in Johansen and Doucet (2008). We follow
the later approach. Then the APF can be understood as a standard particle filter applied to the
following target distributions:

γn(x0:n) = p̂(x0:n, y0:n+1) := p(x0:n, y0:n)p̂(yn+1 | xn), (4.31)

where p̂(yn+1 | xn) is an approximation of the predictive likelihood p(yn+1 | xn) =
∫
f(xn+1 |

xn)g(yn+1 | xn+1)dxn+1. Thus now our target π(x0:n) is:

π(x0:n) = p̂(x0:n | y0:n+1) :=
p(x0:n, y0:n)p̂(yn+1 | xn)∫
p(x0:n, y0:n)p̂(yn+1 | xn)dxn

. (4.32)

Also we set q(xn | x0:n−1) = q(xn | xn−1, yn) in general. In this setting, the incremental weight is
given by:

an(x0:n) :=
γn(x0:n)

γn−1(x0:n−1)q(xn | x0:n−1)
=

p(x0:n, y0:n)p̂(yn+1 | xn)

p(x0:n−1, y0:n−1)p̂(yn | xn−1)q(xn | xn−1, yn)
,

=
f(xn | xn−1)g(yn | xn)p̂(yn+1 | xn)

p̂(yn | xn−1)q(xn | xn−1, yn)
. (4.33)

Therefore, we can define the associated unnormalised weights:

wAPFn (x
(i)
n−1:n) := an(x0:n) =

f(xn | xn−1)g(yn | xn)p̂(yn+1 | xn)

p̂(yn | xn−1)q(xn | xn−1, yn)
. (4.34)

Before we summarise, we note that the APF approximates the distributions {p̂(x0:n | y0:n+1)} not
p(x0:n | y0:n). To obtain an empirical representation of p(x0:n | y0:n), first notice that:

p(x0:n | y0:n) = p(x0:n−1 | y0:n)p(xn | xn−1, yn).

Therefore one can use importance sampling with:

q̂(x0:n | y0:n) := p̂(x0:n−1 | y0:n)q(xn | xn−1, yn). (4.35)
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as the importance density. Indeed, we can show that for h ∈ Bb(X(n+1)):

Ep(x0:n|y0:n) [h(x0:n)] = Eq̂(x0:n|y0:n)

[
h(x0:n)

p(x0:n | y0:n)

q̂(x0:n | y0:n)

]
,

= Eq̂(x0:n|y0:n)

[
h(x0:n)

p(x0:n−1 | y0:n)p(xn | xn−1, yn)

p̂(x0:n−1 | y0:n)q(xn | xn−1, yn)

]
,

∝ Eq̂(x0:n|y0:n)

[
h(x0:n)

p(x0:n−1 | y0:n)f(xn | xn−1)g(yn | xn)

p(x0:n−1 | y0:n−1)p̂(yn+1 | xn)q(xn | xn−1, yn)

]
,

= Eq̂(x0:n|y0:n)

[
h(x0:n)

f(xn | xn−1)g(yn | xn)

p̂(yn | xn−1)q(xn | xn−1, yn)

]
. (4.36)

Thus, from (4.36), we define the associated unnormalised importance weight:

w̃n(x
(i)
n−1:n) :=

f(xn | xn−1)g(yn | xn)

p̂(yn | xn−1)q(xn | xn−1, yn)
. (4.37)

For the sake of simplicity, we assume that resampling is performed every time steps so that the
associated normalised weight is:

W̃ (i)
n :=

w̃n(x
(i)
n−1:n)∑N

j=1 w̃n(x
(j)
n−1:n)

. (4.38)

As a result, we can construct the following empirical distribution of p(x0:n | y0:n):

p̂(x0:n | y0:n) =

N∑
i=1

W̃ (i)
n δ

x
(i)
0:n

(dx0:n), (4.39)

and estimator of p(yn | y0:n−1) is thus:

p̂(yn | y0:n−1) =

(
1

N

N∑
i=1

w̃n(x
(i)
n−1:n)

)(
W̃

(i)
n−1p̂(yn | x

(i)
n−1)

)
. (4.40)

If it is possible to choose q(xn | xn−1, yn) = p(xn | xn−1, yn) and p̂(yn | xn−1) = p(yn | xn−1), then
the algorithm is called perfect adaptation. In this case, the APF takes the simple form as an(x0:n) =

p(yn | xn−1) and wAPFn (xn−1:n) = 1. The APF now can be summarised as follows. Notice that the
importance density q̂(x0:n | y0:n) in (4.36) is what is exactly obtained after the propagation step in
Algorithm 15 but before the correction step.
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Algorithm 15 Auxiliary Particle Filter (Pitt and Shephard, 1999; Johansen and Doucet, 2008).

Assume that at time n− 1, one has an equally particle system
(
x̃

(i)
0:n−1,

1
N

)N
i=1

of the target p̂(x0:n−1 |
y0:n).

i) Propagate particles {x(i)
n }Ni=1 via sampling from q(· | x̃(i)

n−1, yn) and x(i)
0:n ← {x

(i)
n , x̃

(i)
0:n−1}Ni=1.

ii) Correct unnormalised weights via wAPFn (x
(i)
n−1:n) =

f(x(i)
n |x

(i)
n−1)g(yn|x(i)

n )p̂(yn+1|x(i)
n )

p̂(yn|x(i)
n−1)q(x

(i)
n |x(i)

n−1,yn)
for i = 1, · · ·N .

iii) Obtain normalised weights via WAPF (i)
n :=

wAPFn (x
(i)
n−1:n)∑N

j=1 w
APF
n (x

(j)
n−1:n)

for i = 1, · · ·N .

iv) Do resampling
{
x

(i)
n

}N
i=1

w.p. WAPF (i)
n to obtain equally weighted particle system (x̃

(i)
0:n,

1
N )Ni=1.

v) Return to the first step.

The main idea of the APF is that one can design target distributions to maximise the accuracy of
an approximation of the final target distribution p(x0:n | y0:n) by changing intermediate target distri-
butions {p(x0:k | y0:k)}1≤k<n to take into account information from future observations. In particular,
assume that now we are now mainly interested in the likelihood function p(y1:n). Given HMMs, then
Guarniero et al. (2017) introduce the twisted hidden Markov models. First we introduce a sequence
of real-valued, bounded, continuous and positive functions Ψ := (ψ1, ψ2, · · ·ψn). Then we define
f(x, ψ) :=

∫
ψ(x′)f(x′ | x)dx′ and ψ̃k(xk) := f(xk, ψk+1) for k ∈ {1, · · ·n− 1} with ψ̃n := 1 and

ψ̃0 :=
∫
η(x1)ψ(x1)dx1 where η(x1) is an initial density. Using these, we can define the twisted model

as follows: η
ψ1

1 (x1) := η(x1)ψ(x1)

ψ̃0
,

fψk (xk | xk−1) := f(xk|xk−1)ψk(xk)

ψ̃k−1(xk−1)
,

(4.41)

for k ∈ {1, · · ·n− 1}. Also, we define:g
ψ
1 (x1) := g(x1 | y1) ψ̃1(x1)

ψ1(x1) ψ̃0(x0),

gψk (xk) := g(xk | yk) ψ̃k(xk)
ψk(xk) ,

(4.42)

for k ∈ {1, · · ·n− 1}. Critically, one can show that Zϕ :=
∫
ηψ1

1 (x1)gψ1 (x1)
∏n
k=2 f

ψ
k (xk | xk−1)gψk (xk)dx1:k =

p(y1:n). To derive the optimal choice of Ψ , consider Ψ? := (ψ?1 , ψ
?
2 , · · ·ψ?n) such that:

ψ?k(xk) := g(xk | yk)E

 n∏
p=k+1

g(xp | yp) | xp

 , (4.43)

k ∈ {1, · · ·n− 1}. Then it can be shown that particle approximation of Zϕ? , say ZNϕ? is equal to the
likelihood function p(y1:n) w.p.1, see Guarniero et al. (2017, Proposition 2). Also notice that setting
ψ(xk) = g(yk | xk) for k ∈ {1, · · ·n− 1} gives rise to the fully adapted APF.

In practice, one cannot use the optimal sequence Ψ?. To evaluate f(x, ψ) and ψ̃(x) pointwise, one
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needs to impose some restrictions on them. First, the initial distribution of HMMs is a a mixture of
Gaussians, and the transition densities are of the form:

f(· | x) =

N∑
k=1

ckN (·; ak(x), bk(x)), (4.44)

where
∑N
k=1 ck = 1, ak(x) and bk(x) are sequences of mean and covariance functions. Also Ψ defines

the class of functions of the form:

ψ(x) = C +

N∑
k=1

ckN (x; ak, bk), (4.45)

where C ∈ R+. Under this setting, both f(x, ψ) and ψ̃(x) can be computed analytically, and fψk (xk |
xk−1) is a mixture of normal distributions whose component means and covariance matrices can also
be computed analytically for k ∈ {1, · · ·n− 1}. Then to approximate Ψ? recursively, Guarniero et al.
(2017) consider the following procedure. First observe that Ψ? satisfies ψ?n(xn) = g(yn | xn) and:

ψ?k(xk) = g(yk | xk)f(xk, ψ
?
k+1), (4.46)

for k ∈ {1, · · ·n− 1} holds, see Guarniero et al. (2017, Proposition 4). In particular, Guarniero et al.
(2017) consider the following iterative refinement scheme to tune the parameters (4.46):(âk, b̂k, λ̂k) = arg min(a,b,λ)

∑N
i=1

[
N (x

(i)
n ; a, b)− λψ(i)

k

]2
,

ψk(xk) := N
(
xk; âk, b̂k

)
+ c

(
N, âk, b̂k

)
,

(4.47)

k ∈ {1, · · ·n− 1} with ψ?n(xn) = g(yn | xn) where c is a positive real-valued function, see Guarniero
et al. (2017, Section 5.1) for details. We write ρ := (a, b, λ) in (4.47). Given the updated set of tuning
parameters, we then run again particle filter and repeat the update procedure (4.47).

tar

Algorithm 16 Iterated Auxiliary Particle Filter (Guarniero et al., 2017).

i) Initialise ρ0 :=
(
ρ0

1, ρ
0
2, · · · ρ0

n

)
.

ii) Given the updated set of tuning parameters ρl, run Algorithm 14 for the twisted HMM specified
in (4.41), (4.42).

iii) Update tuning parameters ρl+1 using (4.47).

iv) Set l← l + 1 and back to the second step until user specified threshold is satisfied.

v) Run Algorithm 14 for the twisted HMM again and obtain particle approximation of the likelihood
function.

Remark 5. Algorithm 16 involves a stopping criteria. Guarniero et al. (2017) propose a stopping
criteria based on the asymptotic variance of the estimate of the likelihood function.
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4.5 Parameter Inference for HMMs via Particle Filter

In this section, we briefly present statistical inference for HMMs. First we consider a frequentist
parameter estimation problem, which relies on the (log) likelihood function:

pθ(y0:n) :=

∫
ηθ(x0)gθ(y0 | x0)

n∏
k=1

gθ(yk | xk)fθ(xk | xk−1)dx0:n, (4.48)

`θ(y0:n) := log pθ(y0:n) =

n∑
k=0

log pθ(yk | y0:k−1). (4.49)

Then, from a frequentist point of view, the most popular estimator is the maximum likelihood estimator
(MLE) which is defined as:

θ̂n := arg max
θ∈Θ

`θ(y0:n). (4.50)

In HMMs context, asymptotic properties such as strong consistency, asymptotic normality of the MLE
have been well studied under different conditions. We refer to Douc et al. (2004, 2011b); Douc and
Moulines (2012) and Douc et al. (2014, Chapter 13) for this direction. It should be emphasised that,
although such analytical results have rather important and insightful meanings, the likelihood function
is not analytically available.

In addition to frequentist parameter estimation, we also consider Bayesian inference for HMMs. In
a Bayesian framework, one first needs to specify a prior distribution π(θ) on the parameter space Θ.
For the sake of simplicity, we assume π(θ) has the density w.r.t. the reference measure dθ and that is
not improper. Then Bayesian inference involves the posterior distribution:

Π(θ | y0:n) :=
pθ(y0:n)π(θ)∫
pθ(y0:n)π(θ)dθ

. (4.51)

In a Bayesian framework, one can make use of the posterior mean and the mode of the posterior
distribution as point estimates, defined respectively as:

θ̂PMn :=

∫
Θ

θΠ(θ | y0:n)dθ, (4.52)

θ̂MAP
n := arg max

θ∈Θ
pθ(y0:n)π(θ), (4.53)

for instance. The posterior consistency implies that as n → ∞, the posterior Π(θ | y0:n) converges
to δθ? w.p.1, where θ? denotes the true parameter and δθ? denotes the Dirac mass located at the
true parameter. This convergence also holds for HMMs (Douc et al., 2016a; Gassiat and Rousseau,
2014). Also well-known Bernstein–von Mises theorem is available for HMMs (De Gunst and Shcherb-
akova, 2008). Therefore, in this sense, frequentist inference and Bayesian inference are asymptotically
equivalent even for HMMs from a frequentist point of view. Again, the posterior distribution is not
analytically available for most HMMs.

To overcome the difficulties arising from the intractability, we will resort to particle filter to estimate
parameters from both frequentist and Bayesian perspective. In an off-line framework, one infers θ using
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fixed observations (batch data) y0:n. Thus the computational complexity will increase as n increases. In
contrast, on-line methods update the parameter estimate sequentially as observations {yn}n≥0 become
available. Generally, frequentist methods can be reduced to an online setting, and Bayesian ones are
off-line since they typically involve MCMC within particle filter.

4.5.1 Frequentist Methods

We tackle the MLE estimation problem for HMMs via particle filter. In particular, following Del Moral
et al. (2010) closely, we will focus on two popular computational methods to obtain the MLE, that is
the gradient ascent (descent) and Expectation-Maximization (EM) algorithm (Dempster et al., 1977).
As for the gradient ascent, one might need to compute the score function ∇ log pθ(y0:n). Under mild
conditions (Cappé et al., 2005), Fisher’s identity enables us to express the score function as:

∇ log pθ(y0:n) =

n∑
k=1

Eθ [∇ log fθ(xk | xk−1) | y0:n] +

n∑
k=1

Eθ [∇ log gθ(yk | xk−1) | y0:n] . (4.54)

As for the the EM algorithm, the objective function at iteration at i+ 1 (E-step):

Q(θi, θ) :=

∫
log pθ(x0:n, y0:n)pθ̂i(x0:n | y0:n)dx0:n

=

n∑
k=1

Eθi [log fθ(xk | xk−1)] +

n∑
k=0

Eθi [log gθ(yk | xk) | y0:n] (4.55)

would be calculated and then maximized. New sequence of parameter estimates θ̂i+1 is obtained as
such maximizing argument. Therefore, it turns out that E-step of the EM algorithm and obtaining
the score function can be reduced to computation the joint smoothing distribution pθ(x0:n | y0:n).

Let sk : X×X→ R and set Sn : Xn → R as Sn :=
∑n
k=1 sk(xk−1, xk). Critically, observe that both

(4.54) and (4.55) can be expressed as:

Sθ,n := Eθ [Sn(x0:n) | y0:n] . (4.56)

To be precise, sk(xk−1, xk) = ∇ log fθ(xk | xk−1) + ∇ log gθ(yk | xk−1) for (4.54) and log fθ(xk |
xk−1) + log gθ(yk | xk) for (4.55). Thus, both EM and gradient ascent can be studied as (joint)
smoothing problem for additive functional sk.

Again, in the context of HMMs, estimating such an intractable distribution is generally done by
making use of particle filter. We will consider an online version of smoothing via SMC to approximate
(4.56), and make it useful for an online version of gradient ascent and EM algorithm for HMMs.

In order to construct the particle approximations of pθ(x0:n | y0:n), one of straightforward methods
would be the path-space method, studied in Cappe (2009); Dahlhaus and Neddermeyer (2010) for
instance. This method can be done as follows. Let (x

(i)
0:n,W

(i)
n )Ni=1 be particle approximations of

pθ(x0:n | y0:n) in the sense that:

p̂θ(dx0:n | y0:n) :=
1

N

N∑
i=1

W (i)
n δ

x
(i)
0:n

(dx0:n),

N∑
i=1

W (i)
n = 1, (4.57)
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This approximation can be easily obtained by the bootstrap filter. Then substituting (4.57) into (4.56)
might yield estimates of Sθn. Although the method is online and the computational cost is O(N), as
pointed out theoretically (Del Moral et al., 2010) and experimentally (Kantas et al., 2015), such path-
space method may suffer from the particle path degeneracy problem which is well-known in the SMC
literature. Roughly speaking, as n → ∞, the particle approximations of pθ(x0:n | y0:n) obtained by
the path-space method may end up with the same ancestral particle due to the successive resampling
steps. Therefore, such approximations may collapse as n→∞.

To overcome this drawback, one of promising alternative would be the Forward Filtering and
Backward Smoothing (FFBS) (Doucet et al., 2000).The FFBS relies on the following basic recursion,
which is backward in time (Kitagawa, 1987), for n ≥ k:

pθ(xk | y0:n) =

∫
pθ(xk, xk+1 | y0:k)dxk+1,

=

∫
pθ(xk | xk+1, y0:k)pθ(xk+1 | y0:n)dxk+1, (4.58)

where the backward Markov density pθ(xk | xk+1, y0:k) is given by:

pθ(xk | xk+1, y0:k) =
fθ(xk+1 | xk)pθ(xk | y0:k)∫
fθ(xk+1 | xk)pθ(xk | y0:k)dxk

. (4.59)

We emphasise that (4.59) essentially depends on the assumption that fθ(dxk+1 | xk) admits the density
since the backward kernel is time inhomogeneous, hence its expression is still unclear in our setting.
Thus, given the particle approximations (x

(i)
k ,W

(i)
k )Ni=1 of the filtering density pθ(xk | y0:k), the particle

approximations of (4.59) is given by:

p̂θ(dxk | xk+1, y0:k) =

N∑
i=1

fθ(xk+1 | x(i)
k )W

(i)
k∑N

l=1 fθ(xk+1 | x(l)
k )W

(l)
k

δk(dxk). (4.60)

Now assume that one has the particle approximations (x
(i)
k ,W

(i)
k+1|n)Ni=1 of the marginal smoothing

density pθ(xk+1 | y0:n). Plugging such approximations and (4.60) into (4.58) results in:

p̂θ(dxk | y0:n) =

N∑
j=1

W
(j)
k+1|n

N∑
i=1

fθ(x
(j)
k+1 | x

(i)
k )W

(i)
k∑N

l=1 fθ(x
(j)
k+1 | x

(l)
k )W

(l)
k

δk(dxk). (4.61)

Then the fact that pθ(x0:n | y0:n) = pθ(xn | y0:n)
∏n−1
t=0 pθ(xt | xt+1:t, y0:t) and (4.61) will yield the

FFBS approximation of (4.56). Apparently this approximation is not online. Also, we note that the
computational cost of the FFBS approximation of the for general test functions is O(N t) so it is not
practical. However, as we will study, the cost of the FFBS can be reduced for the additive functional
case.

To reduce an online version of the FFBS for the additive functional, we first define:

Tθ,n(xn) :=

∫
Sn(x0:n)pθ(x0:n−1 | y0:n−1, xn)dx0:n−1. (4.62)
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Then it is straightforward to observe that:

Sθ,n =

∫ ∫
Sn(x0:n)pθ(x0:n−1 | y0:n−1, xn)dx0:n−1pθ(xn | y0:n)dxn,

=

∫
Tθ,n(xn)pθ(xn | y0:n)dxn. (4.63)

Critically, for any n ≥ k,

Tθ,n(xn) =

∫
[Tθ,n−1(xn−1) + sn(xn−1, xn)] pθ(xn−1 | y0:n−1, xn)dxn−1, (4.64)

holds, see Del Moral et al. (2010, Proposition 2.1). Hence, (4.64) and (4.63) give rise to the following
online recursion:

Sθ,n =

∫ (∫
[Tθ,n−1(xn−1) + sn(xn−1, xn)] pθ(xn−1 | y0:n−1, xn)dxn−1

)
pθ(xn | y0:n)dxn, (4.65)

where the expression of pθ(xn−1 | y0:n−1, xn) is in (4.59). Therefore, plugging the particle approxima-
tions of the backward transition density given in (4.61) and of the filtering density pθ(xn | y0:n) which
is easily obtained via the bootstrap filter, for instance, into (4.65) will give the following forward only
implementation of the FFBS for (4.56) with the computational cost O(N2).

Algorithm 17 Forward only particle smoothing for HMMs with the additive functionals (Del Moral
et al., 2010).

i) Assume that at time n − 1, one has the particle approximations (x
(i)
n−1,W

(i)
n−1)Ni=1 of pθ(xn−1 |

y0:n−1) and
{
T̂θ,n−1(x

(i)
n−1)

}N
i=1

of Tθ,n−1(xn−1).

ii) At time n, sample x(i)
n for i · · ·N from the mixture density (Gordon et al., 1993):

x(i)
n ∼

∑n
j=1 fθ(xn | x

(j)
n−1)gθ(yn−1 | x(j)

n−1)∑n
j=1 gθ(yn−1 | x(j)

n−1)
. (4.66)

iii) Then set, for i · · ·N :

T̂θ,n(x(i)
n ) =

∑N
j=1W

(j)
n−1fθ(x

(i)
n | x(j)

n )∑N
l=1W

(l)
n−1fθ(x

(i)
n | x(l)

n )

[
T̂θ,n−1(x

(j)
n−1) + sn(x

(j)
n−1, x

(i)
n )
]
. (4.67)

iv) Obtain estimate of Sθ,n as:

Ŝθ,n =

N∑
i=1

W (i)
n T̂θ,n(x(i)

n ). (4.68)

Poyiadjis et al. (2011) use the score function estimation methodology to propose an online gradient
ascent algorithm for obtaining an MLE-type parameter estimate, following ideas in LeGland and Mevel
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(1997). In more detail, the method is based on the following Robbins–Monro type of recursion:

θn+1 = θn + γn+1∇ log pθn(yn | y0:n−1), (4.69)

where {γk}k is a positive decreasing sequence with:

∞∑
k=1

γk =∞,
∞∑
k=1

γ2
k <∞.

See LeGland and Mevel (1997); Tadic and Doucet (2018) for analytical studies on the convergence prop-
erties of the algorithm. In particular, under strict conditions, and cases or trivial models, the algorithm
is shown to converge to θ?. Note that ∇ log pθn(yn | y0:n−1) = ∇ log pθn(y0:n) − ∇ log pθn−1

(y0:n−1).
Therefore, the following online gradient ascent would be directly established by combining (4.69) with
the forward particle smoothing we have presented.

Algorithm 18 Online gradient ascent for HMMs via forward particle smoothing (Poyiadjis et al.,
2011).

i) Assume that at time n− 1, one has the particle approximations (x
(i)
n−1,W

(i)
n−1)Ni=1 of pθ̂n−1

(xn−1 |

y0:n−1) and
{
T̂θ̂n−1,n−1(x

(i)
n−1)

}N
i=1

of Tθ̂n−1,n−1(xn−1).

ii) Update via:

θ̂n = θ̂n−1 + γn

(
Ŝθ̂n−1,n−1 − Ŝθ̂n−2,n−2

)
.

iii) At time n, sample x(i)
n for i = 1 · · ·N from the mixture density:

x(i)
n ∼

∑n
j=1 fθ̂n(x

(i)
n | x(j)

n−1)gθ̂n(yn−1 | x(j)
n−1)∑n

j=1 gθ̂n(yn−1 | x(j)
n−1)

.

iv) Then set:

T̂θ̂n,n(x(i)
n ) =

∑N
j=1W

(j)
n−1fθ̂n(x

(i)
n | x(j)

n−1)∑N
l=1W

(l)
n−1fθ̂n(x

(i)
n | x(l)

n−1)

[
∇ log gθ̂n(yn|x(i)

n ) +∇ log fθ̂n(x(i)
n | x

(j)
n−1) + Tθ̂n−1,n−1(x

(j)
n−1)

]
.

v) Obtain estimate of the score function ∇ log pθ̂n(y0:n) as:

Ŝθ̂n,n =

N∑
i=1

W (i)
n T̂θ̂n,n(x(i)

n ).

Example 17. Online gradient ascent via forward particle smoothing for SV model
Again consider SV model (Example 14). We simulated the data with n = 50, 000 and (α, σx, β) =

(0.9,
√

0.1, 0.8) as the true parameters. We then applied Algorithm 18 to the simulated data with
N = 150 particles. The results are plotted in Figure 5.
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Figure 5: Online estimation of α (top), σx (middle) and β (bottom) for the data set simulated according
to SV model. We set (0.1, 1.0, 0.1) as the initial values for (α, σx, β) respectively with N = 150 particles
in Algorithm 18. The horizontal dash lines indicate the true parameter values in each case.

Next, assume that pθ(x0:n, y0:n) belongs to the exponential family. Let s(l) : X × X × Y → R,
l = 1, 2, . . .m be a collection of functions with corresponding additive functional:

S(l)
n (x0:n) :=

n∑
k=1

s(l)(xk−1, xk, yk), 1 ≤ l ≤ m.

In this setting, (4.56) for l may become:

S(l)
n,θ =

∫
S(l)
n (x0:n)pθ(x0:n, y0:n)dx0:n. (4.70)

Assume that now one has the estimate θi of the parameter θ at the iteration step i. Under the
assumption that pθ(x0:n, y0:n) belongs to the exponential family, M -step of the EM algorithm then
may be reduced to the following simple iteration:

θi+1 = Λ(n−1Sn(θi)),

where Λ : Rm → Θ is a suitable function and Sn,θ is a vector whose l-th component is S(l)
n,θ. To reduce

a online EM algorithm via particle smoothing, consider the following average of the sufficient statistic:

S
(l)
n+1(x0:n+1) = γn+1S

(l)
n+1(xn, xn+1, yn+1) + (1− γn)S(l)

n (x0:n),
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where {γk}∞k=1 is again a positive decreasing sequence with:

∞∑
k=1

γk =∞,
∞∑
k=1

γ2
k <∞.

When γn = n−1, important choices are (Del Moral et al., 2010):

γn = n−α, 0.5 < α ≤ 1.

Example 18. The summary statistics for SV model
Consider SV model (Example 14). The model parameters (α, σ2

x, β) ∈ (−1, 1)×(0,∞)×(0,∞) then
are to be estimated. Set s(1)(xn−1, xn, yn) = xn−1xn, s(2)(xn−1, xn, yn) = x2

n−1, s(3)(xn−1, xn, yn) =

x3
n and s(4)(xn−1, xn, yn) = y2

n exp(−xn). Then M -step of the EM algorithm is characterised by the
function such that Λ(z1, z2, z3, z4) =

(
z1
z2
, z3 − z21

z2
, z4

)
, see Del Moral et al. (2010) for the details.

Algorithm 19 Online EM for HMMs via forward particle smoothing (Del Moral et al., 2010).

i) Assume that at time n − 1, one has the particle approximates (x
(i)
n−1,W

(i)
n−1)Ni=1 of pθ̂n−1

(xn−1 |

y0:n−1) and
{
T̂θ̂n−1,n−1(x

(i)
n−1)

}N
i=1

of Tθ̂n−1,n−1(xn−1).

ii) Update via:

θ̂n = Λ(Ŝn−1,θ̂n−1
).

iii) At time n, sample x(i)
n for i = 1 · · ·N from the mixture density:

x(i)
n ∼

∑n
j=1 fθ̂n(x

(i)
n | x(j)

n−1)gθ̂n(yn−1 | x(j)
n−1)∑n

j=1 gθ̂n(yn−1 | x(j)
n−1)

.

iv) Then set:

T̂θ̂n,n(x(i)
n ) =

∑N
j=1W

(j)
n−1fθ̂n(x

(i)
n | x(j)

n−1)∑N
l=1W

(l)
n−1fθθ̂n (x

(i)
n | x(l)

n−1)

[
(1− γn)T̂θ̂n−1,n−1(x

(j)
n−1) + γns(x

(j)
n−1, x

(i)
n )
]
.

v) Obtain estimate of Sn,θ as:

Ŝθ̂n,n =

N∑
i=1

W (i)
n T̂θ̂n,n(x(i)

n ).

4.5.2 Bayesian Methods

As for Bayesian inference via SMC, We will introduce two particle based methods, particle MCMC
(PMCMC) (Andrieu et al., 2010) and SMC2 (Chopin et al., 2013). First, it should be emphasised that
both methods are based fully or partly on the pseudo-marginal MCMC approach Andrieu and Roberts
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(2009). To complete Bayesian inference, one has to specify a prior distribution π(dθ) on the parameter
space Θ. Without loss of generality, we assume that π(dθ) has the density w.r.t. the Lebesgue measure
denoted by dθ and which is also well defined (not improper prior). In this case, the target will be:

pθ(x0:n | y0:n) = p(θ, x0:n | y0:n).

A popular way to estimate such a posterior will be to use MCMC within particle filter. Note that
MCMC algorithms often struggle to update the path x0:n if a model has a strong dependency. Also, a
strong correlation between θ and x0:n will deteriorate the speed of mixing. These imply that inference
based on the joint posterior p(θ, x0:n | y0:n) will end up with poor mixing. Therefore, it might be
desirable if one could do sampling from:

Π(θ | y0:n) ∝ p(y0:n | θ)π(θ)

∝ π(θ)

∫
p(x0:n | θ)p(y0:n | x0:n, θ)dx0:n, (4.71)

that is, instead of sampling on the joint space X(n+1) × Θ, we want to do it only on the parameter
space Θ but again this integral cannot be evaluated analytically in the case of HMMs, in general. All
in all, we would like to integrate out x0:n and do sampling from the marginal distribution Π(θ | y0:n).

To facilitate study, assume that one can obtain Π(θ | y0:n) analytically. Here, we will focus on
Metropolis-Hastings algorithm. Let q(θ′ | θ) denote the proposal density for the parameter θ. Then,
at time n, a proposed new value θ′ will be accepted according to:

αMH(θ, θ′) := min

{
1,
q(θ | θ′)π(θ′)pθ′(y0:n)

q(θ′ | θ)π(θ)pθ(y0:n)

}
. (4.72)

Then the Markov chain generated in such way leaves Π(θ | y0:n) invariant as we studied. Then the
critical observation is that, as we studied, a by-product of the particle filter output (4.29):

p̂θ(y0:n) =

n∏
t=0

[
1

N

N∑
i=1

g(yt | x(i)
t )

]
,

is an unbiased estimate of pθ(y0:n), see also Del Moral (2004, Proposition 7.4.1) for instance. There-
fore π(θ)p̂θ(y0:n) is a point-wise unbiased estimate of p(θ, y0:n). Then again Andrieu and Roberts
(2009) show that if one replaces pθ(y0:n) by its unbiased estimate p̂θ(y0:n), MCMC outputs still leaves
marginally the target distribution invariant. That is, one can replace the ratio by:

αPMH(θ, θ′) := min

{
1,
q(θ | θ′)π(θ′)p̂θ′(y0:n)

q(θ′ | θ)π(θ)p̂θ(y0:n)

}
. (4.73)

Indeed, let u ∈ U denote the random variable used in the particle filter to construct p̂θ(y0:n | u), here
we use u to emphasise the dependency of a particle estimate of pθ(y0:n) on u. Indeed, the particle
filter is a deterministic given u. Therefore, the random variables u are equivalent to an estimate of the
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filtering distribution in the context. Then we can define the extended target on (Θ,U) as:

p̂(θ, u | y0:n) ∝ p̂θ(y0:n | u)p(u | θ)π(θ). (4.74)

It is clear to see that Eu [p̂(θ, u | y0:n)] ∝ π(θ)
∫
p̂θ(y0:n | u)p(u | θ)du = π(θ)pθ(y0:n) ∝ p(θ | y0:n) as

required, since p̂θ(y0:n | u) is unbiased. Also, we have that p̂(θ, u | y0:n)q(θ′ | θ)p(u′ | θ′)αPMH(θ, θ′) =

p(u | θ)p(u′ | θ′) ×min {q(θ′ | θ)p̂θ(y0:n | u)π(θ), q(θ | θ′)p̂θ′(y0:n | u′)π(θ′)}, so detailed balance holds
w.r.t. the extended target p̂(θ, u | y0:n) since this is symmetric. Thus, this observation leads to the
following algorithm, called Particle marginal Metropolis-Hastings (PMMH).

In practice, one does not need to save u for each iteration, but it suffices to save the scalar value for
estimate p̂(θ, u | y0:n). Note that Andrieu et al. (2010) find that there is a lot more flexibility to use
particle filter within MCMC, such as particle Gibbs (conditional particle filter), and develop a number
of Particle MCMC (PMCMC) algorithms. PMMH is one of PMCMC algorithms. Again, this method
is not an on-line method, but an off-line (batch) one. Also, PMCMC methods do not provide tools for
sequential analysis.

Algorithm 20 Particle marginal Metropolis-Hastings (PMMH) (Andrieu et al., 2010)

Assume that at the iteration step i− 1, one has θ̂i−1. Then iterate the followings for i = 1...M .

i) Draw θ′ from q(· | θ̂i−1).

ii) Given θ′, run particle filter to obtain p̂θ′(y0:n).

iii) Draw a from Unif(0, 1).

iv) Calculate the ratio αPMH(θ̂i−1, θ
′) = min

{
1, q(θ̂i−1|θ′)π(θ′)p̂θ′ (y0:n)

q(θ′|θ̂i−1)π(θ̂i−1)p̂θ̂i−1
(y0:n)

}
.

v) If a ≤ αi, accept θ′ and p̂θ′(y0:n) and set θ̂i = θ′, p̂θ̂i(y0:n) = p̂θ′(y0:n). Otherwise, set θ̂i = θ̂i−1,
p̂θ̂i(y0:n) = p̂θ̂i−1

(y0:n).

vi) Return to the first step.

Remark 6. It is also possible to update jointly path x0:n and parameters θ if one is also interested in
the joint posterior p(θ, x0:n | y0:n). In this case, one also needs to sample a single path x

′

0:n, which
is also constructed by u ∈ U , by running the particle filter. Then accept x

′

0:n, θ′ and p̂θ′(y0:n) w.p.
αPMH(θ̂i−1, θ

′) in Algorithm 20.

Example 19. PIHM for SV model.
In this example, we apply PMHM (Algorithm 20) to SV model (Example 14). First we simulated

data with n = 250 and (α, σx, β) = (0.9,
√

0.1, 0.8). We used N = 1024 particles and M = 10000

MCMC iterations. As for priors, we used T N [−1,1]

(
0.95, 0.052

)
for α, T N [0,1]

(
0.3, 0.052

)
for σx and

T N [0,1]

(
0.85, 0.052

)
for β where T N [a,b]

(
µ, σ2

)
denotes the truncated Gaussian distribution with

mean µ, standard deviation σ in the interval [a, b]. The results are plotted in Figure 6 and Figure 7.
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Figure 6: The state of the Markov chain at 1000 iterations after the burn-in for SV model with
(α, σx, β) = (0.9,

√
0.1, 0.8). We used N = 1024 particles and M = 10, 000 MCMC iterations. The

blue lines stands for α, the green one stands for σx and the orange one stands for β.

Figure 7: The estimated autocorrelation function of the Markov chain at 1, 000 iterations after the
burn-in for SV model with (α, σx, β) = (0.9,

√
0.1, 0.8). We used N = 1024 particles and M = 10, 000

MCMC iterations. The blue lines stands for α, the green one stands for σx and the orange one stands
for β.
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One of the drawbacks of PMCMC is that, as we mentioned, it cannot be used for sequential analysis.
That is, PMCMC does not provide quantities such as p̂θ̂(yn | y0:n−1). Alternatively, SMC2 (Chopin
et al., 2013) provides ways to analyse HMMs sequentially. In particular, SMC2 is quite useful for
model evaluation of HMMs, from a Bayesian point of view. SMC2 can be understood as a natural
amalgamation of particle filter and Iterated Batch Importance Sampling (IBIS) (Chopin, 2002), and
thus we first begin with a brief explanation of IBIS which is a generalisation of AIS (Neal, 2001).

Assume that now one is interested in a partial posterior Π(θ | y0:t) t < n and, critically, the
predictive likelihood function pθ(yt | y0:t−1) is, for any t, analytically available. Assume also that now
new k observations are available, and Π(θ | y0:t) and Π(θ | y0:t+k) are likely to be similar. Then the
incremental weights α(θ) might be given by αt:k(θ) ∝ Π(θ|y0:t+k)

Π(θ|y0:t) ∝
pθ(y0:t+k)
pθ(y0:t)

= pθ(yt+1:t+k | y0:t). To
propagate θ, IBIS involves a Markov kernel Kt+k(θ, dθ′) which leaves Π(θ | y0:t+k) invariant. As a
special case, we can do sequential analysis by setting k = 1 so that we have αt(θ) ∝ pθ(yt | y0:t−1).
IBIS is then a special case of the particle filter whose target is a partial posterior Π(θ | y0:t) with the
incremental weights pθ(yt | y0:t−1) and the importance distribution Kt(θ, dθ′). We summarise IBIS for
sequential analysis as follows, here we assume that resampling occurs each time step. Also, notice that
one can construct a consistent estimator of the predictive densities Lt :=

∫
pθ(yt | y0:t−1)π(θ)dθ.

Algorithm 21 Iterated Batch Importance Sampling (IBIS) (Chopin, 2002)

At time t = 0, draw {θ̃(i)}Nθi=1 from a prior distribution π(dθ) and set {ω0,θ̃(i)}
Nθ
i=1 = 1. Then for

t = 1, · · ·n, iterate followings.

i) Propagate {θ(i)}Nθi=1 according to Π(θ | y0:t)−invariant Markov kernel Kt(θ̃(i), ·).

ii) Correct unnormalised weights via ωt,θ(i) := pθ(i)(yt | y0:t−1) for i = 1, · · ·Nθ.

iii) Obtain consistent estimate of the predictive density as L̂t := 1
N

∑N
i=1 wt,θ(i) .

iv) Obtain normalised weights via Ω
(i)
t :=

ω
t,θ(i)∑N

j=1 ωt,θ(j)
for i = 1, · · ·Nθ.

v) Do resampling
{
θ(i)
}Nθ
i=1

w.p. Ω
(i)
t to obtain equally weighted particle system (θ̃(i), 1

Nθ
)Nθi=1.

vi) Return to the first step.

As for general HMMs, one cannot evaluate pθ(yt | y0:t−1) again, and the particle filter provides
estimates of it. To be precise, SMC2 associates Nx x−particles to each of the Nθ θ−particles. Also, in
order to rejuvenate θ−particles, PMCMC steps are required. We note that whilst PMCMC replaces the
likelihood pθ(y0:n) by particle filter estimates, SMC2 replaces the incremental likelihood pθ(yn | y0:n−1)

by particle estimates, and thus SMC2 can sample from (x0:t, θ | y0:t) for any t ∈ [0, n] sequentially.
Although Chopin et al. (2013) argue that particle filter estimates of pθ(yn | y0:n−1) are unbiased, this is
not true. The by-product of the SMC outputs is unbiased, as we mentioned. Also, SMC2 provides the
model evidence p(y0:n) =

∑n
t=0

∫
pθ(yt | y0:t−1)π(θ)dθ which is of particular importance in a Bayesian

model selection. We summarise SMC2 as follows, again we assume that resampling occurs each time
step.
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Algorithm 22 SMC2 (Chopin et al., 2013)

At time t = 0, draw {θ(i)}Nθi=1 from a prior distribution π(dθ) and set {wt,θ(i)(xt)}Nθi=1 = 1. Then for
t = 1, · · ·n, iterate followings.

i) For each {θ(i)}Nθi=1, run the particle filter with Nx−particles and obtain
{
x

(i,j)
0:t ,

1
Nx

}Nx
j=1

for i =

1, · · ·Nθ.

ii) Compute particle estimates of pθ(i)(yt | y0:t−1) via wt,θ(i)(xt) := 1
Nx

∑Nx
j=1 gθ(i)(yt | x

(i,j)
t ) for

i = 1, · · ·Nθ.

iii) Obtain consistent estimate of the predictive density as L̂t := 1
N

∑N
i=1 wt,θ(i)(xt).

iv) Do sampling
{
θ̃(i), x̃

(i,1:Nx)
0:t

}Nθ
i=1

via PMCMC and set (θ(i), x
(i,1:Nx)
0:t )Nθi=1 = (θ̃(i), x̃

(i,1:Nx)
0:t )Nθi=1.

v) Return to the first step.

Remark 7. On-line methods require certain iterations to be converged. Since the number of iterations
is equal to the one of the data in on-line settings, such on-line methods will need relatively a large
sample size. In contrast, the convergence property of the off-line methods which we introduced does
not depend on sample size, whilst they are computationally expensive compared with on-line methods.
Therefore, on-line methods should be applied to a case where one would be able to access a large sample
size. Otherwise, off-line methods might be desirable.
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5 Asymptotic Analysis of Model Selection Criteria for General

Hidden Markov Models

5.1 Introduction

The section obtains analytical results for the asymptotic properties of Model Selection Criteria –
widely used in practice – for a general family of hidden Markov models (HMMs), thereby substantially
extending the related theory beyond typical ‘i.i.d.-like’ model structures and filling in an important
gap in the relevant literature. In particular, we look at the Bayesian and Akaike Information Criteria
(BIC and AIC) and the model evidence. In the setting of nested classes of models, we prove that BIC
and the evidence are strongly consistent for HMMs (under regularity conditions), whereas AIC is not
weakly consistent. Numerical experiments support our theoretical results.

Model Selection has been one of the most well studied topics in Statistics. BIC (Schwarz, 1978) or
AIC (Akaike, 1974) - as well as their generalisations (Konishi and Kitagawa, 1996) -, and the evidence,
are used in a wide range of contexts, including time series analysis (Shibata, 1976), regression (Hurvich
and Tsai, 1989), bias correction (Hurvich and Tsai, 1990), composite likelihoods (Varin and Vidoni,
2005). For a comprehensive treatment of the subject of Model Selection, see e.g. Claeskens and Hjort
(2008).

There has been relatively limited research on Model Selection for general classes of HMMs used in
practice. A fundamental aspect of a Model Selection Criterion is that of consistency (analytically
defined later on in the paper). In the HMMs context, Csiszár and Shields (2000) proves strong
consistency of BIC for discrete-time, finite-alphabet Markov chains. Gassiat and Boucheron (2003)
also considers discrete-time, finite-alphabet HMMs and provides asymptotic and finite-sample analysis
of code-based and penalised maximum likelihood estimators (MLEs) using tools from Information
Theory and Stein’s Lemma. With regards to the Bayesian approach to model selection, this typically
involves the marginal likelihood of the data (or evidence) (Jeffreys, 1998; Kass and Raftery, 1995).
Shao et al. (2018) show numerically that the evidence can be consistent for HMMs. However, this has
yet to be proven analytically.

The work in this paper makes a number of contributions, relevant for HMMs on general state spaces
– thus of wide practical significance and such that cover an important gap in the theory of HMMs
established in the existing literature. We remark that our analysis assumes smoothness conditions
of involved functions w.r.t.~the parameter of interest, thus is intrinsically not relevant for interest-
ing problems of discrete nature, an example being the identification of the number of states of the
underlying Markov chain. Our main results can be summarised as follows:

i) We establish sharp asymptotic results (in the sense of obtaining lim supnfor the quantity of
interest) for the log-likelihood function for HMMs evaluated at the MLE, in w.p.1 sense. A lot
of the initial developments are borrowed from Douc et al. (2014) (see also citations therein for
more work son asymptotic properties of the MLE for HMMs). Moving from the study of the
MLE to that of Model Selection Criteria is non-trivial, involving for instance use of the Law of
Iterated Logarithm (LIL) for, carefully developed, martingales (Stout, 1970).

ii) We show that BIC and the evidence are strongly consistent in the context of nested HMMs,
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whereas AIC is not consistent. To the best of our knowledge, this is the first time that such
statements are proven in the literature for general HMMs. For AIC, we show that, w.p. 1, this
criterion will occasionally choose the wrong model even under an infinite amount of information.

The rest of the paper is organised as follows. In subsection 5.2, we give basics of some information
criteria. Then briefly review some asymptotic results for the log-likelihood function and the MLE
without assuming model correctness in subsection 5.3. An important departure from the i.i.d. settings
that the log-likelihood function itself does not make up a stationary time-series process even if the
data are assumed to be derived from one. subsection 5.4 begins with some asymptotic results for
the MLE and the log-likelihood under model correctness. Later on, we move beyond the established
literature and, by calling upon LIL for martingales, we establish a number of fundamental asymptotic
results, relevant for Model Selection Criteria. In subsection 5.5, we study the derivation of BIC (and its
connection with the evidence) and AIC for general HMMs. In particular, an explicit result binding BIC
and evidence will later on be used to show that the two criteria share similar consistency properties.
subsection 5.6 contains our main results. We prove strong consistency of BIC and the evidence and non-
consistency of AIC for a class of nested HMMs. subsection 5.7 reviews (for completeness) an algorithm
borrowed from the literature, based on Sequential Monte Carlo, for approximating AIC and BIC. We
use this algorithm to present some numerical results that agree with our theory in subsection 5.8. We
then conclude in subsection 5.9.

5.2 Basics of information criteria

We first provide a brief explanation of information criteria. Although so many information criteria and
their variants have been proposed (see Claeskens and Hjort (2008) for instance), motivated by Gelman
et al. (2014), we focus on Akaike information criterion (Akaike, 1974), Bayesian information criterion
Schwarz (1978), Deviance information criterion (Spiegelhalter et al., 2002), Watanabe-Akaike inform-
ation criterion (Watanabe, 2010) and Widely applicable Bayesian information criterion (Watanabe,
2013). Before we proceed to the presentation of these information criteria, we explain the ethos be-
hind them. Roughly speaking, we have chosen to classify the criteria as follows broadly: Frequentist or
Bayesian and whether they focus on Kullback–Leibler divergence or model evidence. The first differ-
ence comes from the construction of a predictive model. AIC and BIC adopt a frequentist predictive
model. In contrast, DIC, WAIC and WBIC use a Bayesian predictive model. We label the first class
of information criteria as Frequentist and the later ones as Bayesian.

The second difference comes from the quantity which an information criterion looks at. Heuristic-
ally, let p̂θ(dy0:n−1) be some predictive model which may or may not depend on the parameter θ. Also
let p?(dy0:n−1) denote the distribution of the data-generating process. Then one might wish to know
how close p̂θ(y0:n−1) is to p?(y0:n−1) in some sense. We assume that both p̂θ(dy0:n−1) and p?(dy0:n−1)

admit the densities p̂θ(y0:n−1), p?(y0:n−1) w.r.t. dy. In this case, one of natural discrepancy between
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p̂θ(y0:n−1) and p?(y0:n−1) would be the Kullback–Leibler divergence:

KL(θ) :=

∫
p?(y0:n−1) log

p?(y0:n−1)

p̂θ(y0:n−1)
dy0:n−1,

=

∫
p?(y0:n−1) log p?(y0:n−1)dy0:n−1 −

∫
p?(y0:n−1) log p̂θ(y0:n−1)dy0:n−1. (5.1)

Critically, the Kullback–Leibler divergence has the desired property such that KL(θ) = 0 if and only if
p̂θ(y0:n−1) = p?(y0:n−1). Therefore KL(θ) can been seen as the goodness of fit of a model p̂θ(dy0:n−1).
Notice that minimising (5.1) is equivalent to maximising:

R(θ) := −
∫
p?(y0:n−1) log p̂θ(y0:n−1)dy0:n−1, (5.2)

and hence (5.2) can been seen as a predictive loss function. Notice that due to p?(y0:n−1), one can
not calculate (5.2). Therefore if one can construct a proper estimator of (5.2), then this estimator
can be understood as an information criterion. As we will present in sequel, AIC, DIC and WAIC are
obtained as an estimator of (5.2). We label this class of information criteria as KL.

Next, assume that one has two candidate models, say M1 and M2. Then Bayesian model com-
parison can be done via comparing the Bayes factor (Jeffreys, 1998; Kass and Raftery, 1995) between
modelsM1 andM2 is given by:

BF12 :=

∫
Θ1
π1(θ) exp(`θ1(y0:n−1))dθ1∫

Θ2
π2(θ) exp(`θ2(y0:n−1))dθ2

,

where Θi and θi denote the parameter space and the parameter for the model i = 1, 2. From the
definition above, it is clear that the key quantity of Bayesian model comparison is the model evidence
(Jeffreys, 1998):

m(y0:n−1) :=

∫
Θ

π(θ) exp(`θ(y0:n−1))dθ. (5.3)

In general, the Bayes factor has the consistency property. That is if one selects the model via the
Bayes factor, then, as n→∞, the selected model is the true one, w.p.1. See Chib and Kuffner (2016)
for a general treatment of the consistency of the Bayes factor. However, as one can see, calculating
(5.3) involves integrating out θ, and this constrains the application of the model evidence. This is
because, in general, such integral cannot be analytically computable and thus (5.3) is computationally
expensive, especially for the large d case. Obviously, HMMs are no exception to this problem and
would be more problematic due to the expression of the likelihood function in (4.48). To overcome
these computational difficulties, BIC and WBIC have been proposed to approximate the log-evidence.
We label this class of information criteria as Evidence. We summarise our classification in Table 1.

Table 1: Classification of information criteria.
Frequentist Bayesian

KL AIC(5.5) DIC(5.9),WAIC(5.12)
Evidence BIC(5.7) WBIC(5.14)
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Akaike information criterion (AIC) Akaike information criterion is proposed by Akaike (1974)
initially for model selection methods for i.i.d. models and Gaussian models of ARMA type. The essence
of AIC is to construct the naive estimator of Rn(θ) in (5.2) and correct its bias up to the larger order
term (of size o(1/n)). Because of asymptotic properties of θ̂MLE , it might be expected that KL(θ̂MLE)

is asymptotically minimised. Thus Akaike (1974) adopts 1
n`θ̂MLE (y0:n−1) as the the naive estimator

of Rn(θ). Therefore, AIC can be categorised as a KL − Frequentist type of information criterion.
In order to reduce the bias and appropriately adjust this naive estimator, one would be required an
appropriate central limit theorem and thus regular conditions should be satisfied.

Note that AIC does not necessarily require that the parametric model contains the true data
distribution. In this case, AIC would turn out to be Takeuchi Information Criterion (TIC), first
proposed in Takeuchi (1976). However, in order to derive TIC, the central limit theorem for misspecified
models (such as White (1982); Huber (1967)) are typically required.

By making use of asymptotic properties of the MLE, one might obtain the following relation:

E
[

1

n
`θ̂MLE −Rn(θ̂MLE)

]
=
d

n
+ o(n−1), (5.4)

where d denotes the number of parameters which the model contain, and this observation implies that
the following quantity is the appropriately adjusted naive estimator of Rn(θ) :

AIC :=− 2`θ̂MLE (y0:n−1) + 2d, (5.5)

here we multiplied `θ̂MLE − d by −2 to follow the original definition in Akaike (1974). Therefore,
the model which has the minimum AIC value can be considered as the best model among candidate
models.

As we shall explain later, it is well known that AIC tends to select an over-fitting model. That
is, AIC does not necessarily select the true model. To overcome this problem, some author proposes
high-order bias correction methods. However, these modified types of AIC are rarely used in practice.
In the context of HMMs, see Bengtsson and Cavanaugh (2006) for instance. We do not cover this
direction in this study.

Bayesian information criterion (BIC) In general, evaluating evidence involves computational
techniques since one has to do integrating out parameters from the joint density of (θ, y0:n−1). This
is also the case for HMMs. See, for instance, Zhou et al. (2016) for making use of Sequential Monte
Carlo samplers, Chib (1995) for MCMC approach and Gelman and Meng (1998) for via importance,
bridge and path sampling methods. In contrast with such computational methods, Schwarz (1978)
makes directly use of the Laplace approximation to logm(y0:n−1) and this leads Bayesian information
criterion (BIC).

Note that using Laplace approximation requires some additional conditions on the likelihood and
the prior density and the models satisfying such conditions be often called Laplace-regular models, see
Kass et al. (1990) for details. Roughly speaking, Laplace-regular requires (1) high-order continuity
and differentiability of the log-likelihood function and prior density, (2) uniform bound for derivatives
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of the log-likelihood function, (3) uniform convergence of the log-likelihood function and (4) uniform
convergence of the observed Fisher information matrix. After some careful calculations, one will end
up with the following expression:

m(y0:n−1)

pθ̂MLE (y0:n−1)
= (2π)d/2nd/2

[
det

(
− 1

n
∇θ∇>θ `θ̂MLE (y0:n−1)

)]−1/2

π(θ̂MLE)(1 +O(n−1)). (5.6)

Under the assumptions, one can show that
[
det
(
− 1
n∇θ∇θ`θ̂n(y0:n−1)

)]−1/2

, and π(θ̂MLE) are O(1).

Ignoring these O(1) terms implies that logm(y0:n−1) can be approximated by `θ̂MLE (y0:n−1) − d logn
2

and this gives rise to BIC:

BIC := −2`θ̂MLE (y0:n−1) + d log n, (5.7)

here we multiplied `θ̂MLE (y0:n−1)− d logn
2 by −2 so as to be comparable with AIC. From above present-

ation and definition of BIC, it is obvious that BIC can be categorised as a Evidence− Frequentist

type of information criterion. Also, it is clear that BIC is not Bayesian type of information criterion,
and has a bit misleading name (Gelman et al., 2014), even though ’B’ in BIC is for Bayesian.

Although the only difference between BIC and AIC is the penalty term, that is, d log n for BIC
and 2d for AIC, in contrast with AIC, it is also well known that the BIC is strongly consistent in i.i.d.
settings and some particular non-i.i.d. ones, e.g. Claeskens and Hjort (2008); Nishii (1988).

Deviance information criterion (DIC) As we will observe later, Deviance information criterion
(DIC), first studied in Spiegelhalter et al. (2002), may be understood as a Bayesian version of AIC in
(5.5).

In contrast with Akaike (1974), Spiegelhalter et al. (2002) work on the log-likelihood evaluated at
the posterior mean in (4.52) (the posterior mode in (4.53) can be also available), that is `θ̄n(y0:n−1).
Then they define the deviance D(y0:n−1, θ) := −2`θ(y0:n−1) and consider the difference of the deviance
between the posterior mean and the parameter, that is:

DD(y0:n−1, θ, θ̄n) := D(y0:n−1, θ)−D(y0:n−1, θ̄n),

= 2
(
−`θ(y0:n−1) + `θ̄n(y0:n−1)

)
,

here θ is a random variable drawing from a prior π(θ). To evaluate complexity of a model, Spiegelhalter
et al. (2002) propose the following measure as the effective number of parameters:

pDIC := EΠ

[
DD(y0:n−1, θ, θ̄n)

]
,

= 2`θ̄n(y0:n−1)− 2

∫
Θ

`θ(y0:n−1)Π(θ | y0:n−1)dθ, (5.8)

and then DIC is defined by:

DIC := D(y0:n−1, θ̂PM ) + 2pDIC .
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Note that −2
∫

Θ
`θ(y0:n−1)Π(θ | y0:n−1)dθ + pDIC = 2`θ̄n(y0:n−1) − 4

∫
Θ
`θ(y0:n−1)Π(θ | y0:n−1)dθ.

Thus, DIC can alternatively be defined as:

DIC := −2

∫
Θ

`θ(y0:n−1)Π(θ | y0:n−1)dθ + pDIC . (5.9)

Derivation of DIC in Spiegelhalter et al. (2002) is somewhat heuristic, however, as Ando (2007) points
out, it can been seen that Spiegelhalter et al. (2002) implicitly obtain DIC as the maximisation of the
posterior mean of the expected log-likelihood, that is EΠ[Rn(θ̄n)]. Therefore, DIC would be understood
as a Bayesian variant of AIC and thus, categorised as a KL−Bayesian type of information criterion.

Although DIC seems to lack of the theoretical meaning, it has been widely used in Bayesian data
analysis due to its flexibility and computational efficiency. As for HMMs, Berg et al. (2004) use DIC
for comparing the performance of a variety of stochastic volatility models and Yu and Meyer (2006)
compare multivariate stochastic volatility models using DIC. Critically, same as AIC, DIC is known
to be lack of the consistency property. Although Spiegelhalter et al. (2002) provides only heuristic
analysis, it can be seen that DIC has the same asymptotic behaviour as AIC as a consequence of the
Bernstein–von Mises type theorem. Hence, DIC and AIC would be in agreement, and this leads to
the deficiency of consistency property. In the case of HMMs, this asymptotic equivalence has yet to
been proven. Another problem concerning DIC is instability of pDIC in (5.8) in the sense that DIC in
(5.9) ends up with a negative value of pDIC . As pointed out in Brooks et al. (2002), this shortcoming
would remarkably appear in the model with latent variables such as mixture models and, of course,
HMMs. From a theoretical point of view, this phenomenon comes from the identifiability problem and
this task appears to be notoriously challenging in the case of HMMs, see Allman et al. (2009); Douc
et al. (2014) and references therein.

Watanabe-Akaike information criterion (WAIC) Recall that deriving AIC (also BIC) involves
the asymptotic normality of the MLE. In general, such asymptotic result requires (1) convergence of
the score function and (2) convergence of the observed Fisher information. Then the later convergence
result typically accompanies the assumption such that the observed Fisher information is non-singular.
In HMMs context, although the rigorous proof and the derivation are rather technical, this type of the
limit theorem has been established and well studied (Douc et al., 2004, 2014).

The key contribution of WAIC, presented in Watanabe (2010), is that one does not need to assume
that the observed Fisher information is non-singular. That is, WAIC works even for singular models.
This is the desirable property of WAIC since checking non-singularity of the observed Fisher inform-
ation is a somewhat a priori assumption, and it might not be possible to do in advance, in general.
Also as Watanabe (2010) pointed out, such singularity might arise potentially in latent variable models
such as mixture models, neural networks, hierarchical models and, critically, HMMs.

Critically, Watanabe (2010) argues that if the observed Fisher information is singular, then AIC is
not asymptotically an unbiased estimator of (5.2) in the i.i.d. setting. Instead of the plug-in predictive
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density, WAIC first considers:

p̂(yn | y0:n−1) :=

∫
pθ(yn | y0:n−1)Π(θ | y0:n−1)dθ (5.10)

as the point-wise Bayesian predictive density. Also, instead of (5.2), WAIC works with:

Gn(θ) := −
∫
p?(y0:n−1) log p̂(y0:n−1)dy0:n−1, (5.11)

as a loss function, here p̂(y0:n−1) :=
∏n−1
k=1 p̂(yk | y0:k−1). That is, Watanabe (2010) considers the

Kullback–Leibler divergence between p?(y0:n−1) and p̂(y0:n−1), and hence (5.11) can been seen as a
predictive loss function from a fully Bayesian view. Then, by making use of some techniques from
algebraic geometry, the following might be an asymptotically unbiased estimator of (5.11), even if
models are singular:

WAIC := −2

n−1∑
t=0

logEθ [pθ(yt | y0:t−1) | y0:n−1] + 2

n−1∑
t=0

Vθ[log pθ(yt | y0:t−1) | y0:n−1]. (5.12)

We note that our definition of WAIC in (5.12) is different from the one in Watanabe (2010). In
Watanabe (2010), the definition of WAIC is given by:

−2

n−1∑
t=0

logE [pθ(yt) | y0:n−1] + 2

n−1∑
t=1

V [log pθ(yt) | y0:n−1] .

That is, WAIC partitions the data into n pieces and this is one of the critical difficulties to make
use of WAIC (Gelman et al., 2014). In particular, one cannot define WAIC in such way for HMMs
because of dependency of data. Hence, we have heuristically defined WAIC for HMMs as in (5.12).
From discussion above, one can see that WAIC can be understood as a fully Bayesian generalisation of
AIC, hence can be classed as a KL−Bayesian type of information criterion. Note that, same as AIC,
deriving WAIC for HMMs itself would be rather challenging. Our presentation here is to facilitate
study and heuristic. Rigorous derivation has to be done. Interestingly, Watanabe (2010) points out
that if the models being considered are not singular one, then the averages of WAIC, AIC and DIC
have the same asymptotic behaviour, but such result has yet to been proven in the context of HMMs.
Note that here we have defined WAIC as −2n times the original definition in Watanabe (2010) so as
to have the same scale in AIC and DIC.

Widely applicable Bayesian information criterion (WBIC) The presentation in this section
follows closely Friel et al. (2017). WBIC (Watanabe, 2013) shares the same motivation as in Watanabe
(2010). Recall that BIC is obtained as the Laplace approximation of log-evidence, and, critically, the
Laplace approximation needs models that are Laplace-regular. If these conditions fail, log-evidence may
not be asymptotically approximated by BIC and such approximation is known to be poor (Chickering
and Heckerman, 1997). That is, BIC may not be a decent approximation of log-evidence for singular
models, and WBIC is designed to address this issue. As the sample size n → ∞, Watanabe (2013)
shows that, in the i.i.d. setting, WBIC converges to the log-evidence even if the models being considered
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are singular.
Let {φn} be a sequence of the inverse temperatures such that 0 < φn < φn−1 < · · ·φ0 = 1. Then,

as in annealed importance sampling (Neal, 2001), Watanabe (2013) considers the annealed posterior
density such that:

Π(θ | y0:n−1)φn :=
pθ(y0:n−1)φnπ(θ).∫

Θ
pθ(y0:n−1)φnπ(θ)dθ

. (5.13)

Clearly, Π(θ | y0:n−1)φ0 = Π(θ | y0:n−1) holds. Then one can show that there exists the optimal
schedule {φ∗n} in the sense that logm(y0:n−1) = EΠφ

∗
n [`θ(y0:n−1)] holds for any n, where EΠφ

∗
n [·]

denotes the expectation w.r.t. the the annealed posterior density in (5.13). Although identifying this
optimal schedule {φ∗n} is a challenging task, Watanabe (2013) shows that the choice φn = 1/ log n is
asymptotically equivalent to φ∗n for singular models. Hence this observation leads to WBIC:

WBIC :=

∫
Θ
`θ(y0:n−1)pθ(y0:n−1)1/ lognπ(θ)dθ∫

Θ
pθ(y0:n−1)1/ lognπ(θ)dθ

. (5.14)

In other words, WBIC is defined as the annealed posterior mean of the log-likelihood with the choice
φn = 1/ log n. First notice that, given φWBIC

n , one can estimate logm(y0:n−1) via one simulation done
by, for instance, MCMC. Hence, WBIC successfully reduces computational cost. Although Watanabe
(2013) does not show it, WBIC might have the consistent property since it might be shown that WBIC
and BIC are asymptotically equivalent for non-singular models. Also, as pointed by Friel et al. (2017),
there has been limited (numerical) exploration of this criterion, see Mononen (2015) for a Gaussian
process regression, Friel et al. (2017) for some simple tractable models. In Watanabe (2013), it is
numerically presented that WBIC works better than BIC for a reduced rank regression model. Again,
our presentation here is heuristic. Although we have not tried to derive WBIC for HMMs, as this would
make this part of the text appear overly cumbersome, the rigorous derivation of WBIC for HMMs is
itself rather important. From the discussion above, we categorise WBIC as a Evidence−Bayesian

type of information criterion.

Remark 8. Critically, KL and Evidence apparently have different goals. As we presented, KL tries
to estimate (5.1) whereas Evidence tries to estimate the (log) evidence in (5.3). To be precise, KL

type criteria evaluate models from the viewpoint of prediction and Evidence type criteria focus on the
posterior probabilities of models. Therefore, theoretically speaking, we recognise that comparing KL

type criteria and Evidence type ones is somewhat misleading. However, in practice, we think that it
would be desirable that one compare the values of these different criteria and selects a model based on
them if it is possible.

5.3 Asymptotics under no-model-correctness

We briefly summarise some asymptotic results for general HMMs needed in later sections. The develop-
ment follows closely Douc et al. (2014, Chapter 13) Again, an HMM is a bivariate process {xk, zk}k≥0

such that state component {xk}k≥0 is an unobservable Markov chain with initial law x0 ∼ η and
transition kernel Qθ(· | x), with values in the measurable space (X,X ). We have adopted a parametric
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setting with θ ∈ Θ ⊆ Rd, for some d ≥ 1. Conditionally on {xk}k≥0, the distribution of the observation
process instance zk = z depends only on xk = x, independently over k ≥ 0, and is given by the kernel
Gθ(· | x)defined on (Y,Y). We assume that X and Y are Polish spaces and X , Y the corresponding
Boreal-algebras. The notation{yk}k≥0 is reserved for the true data generating process, which may or
may not belong in the parametric family of HMMs we specified above – meant to be distinguished
from {zk}k≥0 which is the process driven by the model dynamics. In particular, in this section we
work under no-model correctness, i.e. we do not have to assume the existence of a correct parameter
value for the prescribed model that delivers the distribution of the data generating process.

Throughout the article, we assume that the following hold.

Assumption 1. The data generating process {yk}k=0 is strictly stationary and ergodic.

Assumption 2. i) There exists a probability measure µ on (X,X ) which dominates the kernel
Qθ(· | x) for any (x, θ) ∈ X×Θ with density qθ(x′ | x) := (dQθ(· | x)/dµ) (x′).

ii) There exists a probability measure ν on (Y,Y) which dominates the kernel Gθ(· | x) for any
(x, θ) ∈ X×Θ with density gθ(y | x) := (dGθ(· | x)/dν) (y).

iii) The parameter space Θ is a compact subset of Rd; w.p.1, pθ(y0:n−1) > 0 for all θ ∈ Θ, for all n,
where pθ(·) denotes here the density of the distribution of the observations under the model (for
given θ and size n).

iv) The initial distribution η(dx0) has the density, denoted η(x0), w.r.t. µ; it also has finite first
moment.

Without loss of generality, we have assumed that η(dx0) does not depend on θ. Probability state-
ments -as in Assumption 2 (iii)- and expectations throughout the paper are to be understood w.r.t. the
law of the data generating process {yk}. Henceforth we make use of the notation ai:j = (ai, · · · , aj),
for integers i ≤ j, for a given sequence {ak}. We need the following technical assumptions.

Assumption 3. There exists σ−, σ+ ∈ (0,∞) such that

σ− ≤ qθ(x′ | x) ≤ σ+

for any x, x′ ∈ X and any θ ∈ Θ.

Assumption 3 is the ‘strong mixing condition’ typically used in this context (Cappé et al., 2005;
Del Moral, 2004), providing a Dobrushin coefficient of 1− σ−

σ+ for the hidden Markov chain; it is critical
for most of the results reviewed or developed in the sequel. Assumption 3 implies, for instance, that
for any x ∈ X, A ∈ X, Qθ(A | x) ≥ σ−µ(A), that is, for any θ ∈ Θ , X is a 1-small set for process
{xk}k≥0. Thus, the chain has the unique invariant measure πXθ and is uniformly ergodic, so for any
x ∈ X, n ≥ 0,

∥∥Qnθ (· | x)− πXθ
∥∥
TV
≤
(

1− σ−

σ+

)n
with ‖·‖TV denoting the total variation norm.
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We calculate the likelihood and log-likelihood functions:

pθ(y0:n−1) :=

∫
ηθ(x0)gθ(y0 | x0)

n−1∏
k=1

gθ(yk | xk)qθ(xk | xk−1)µ⊗n(dx0:n−1), (5.15)

`θ(y0:n−1) := log pθ(y0:n−1) =

n−1∑
k=0

log pθ(yk | y0:k−1). (5.16)

Though {yk}k≥0 is stationary and ergodic, the terms {log pθ(yk | y0:k−1)}k≥0 do not form a strictly sta-
tionary process (in general). To obtain (strictly) stationary and ergodic log-likelihood terms, following
Douc et al. (2004, 2014); Cappé et al. (2005), we work with the standard extension of the y−process
onto the whole of integers, and write {yk}∞k=−∞. One can then define the variable log pθ(yk | y−∞:k−1)

as the w.p.1 limit of the Cauchy sequence (uniformly in θ) log pθ(yk | y−t:k−1), found as in (5.15) for
initial law x−t ∼ η as t→∞; see Douc et al. (2014, Chapter 13) for more details. We can now define
the modified, stationary version of the log-likelihood:

`sθ(y−∞:n−1) :=

n−1∑
k=0

log pθ(yk | y−∞:k−1), (5.17)

where superscript s stands for stationary. We will need the following assumption.

Assumption 4. We have that b+ := supθ supx,y gθ(y | x) <∞ and:

E
[∣∣log b−(y0)

∣∣] <∞,
where b−(y) := infθ

∫
X
gθ(y | x)µ(dx).

The finite-moment part implies that E [log pθ(y0 | y−∞:−1)] < ∞, thus Birkhoff’s ergodic theorem
can be applied for averages deduced from (5.17).

Proposition 26. Under Assumption 1 to Assumption 4,

sup
θ∈Θ

∣∣∣∣ 1n`θ(y0:n−1)− 1

n
`sθ(y−∞:n−1)

∣∣∣∣ ≤ C

n
,

for a constant C > 0.

Proof. This is Proposition 13.5 of Douc et al. (2014); the upper bound C/n is implied from the proof
of that proposition.

We consider the maximum likelihood estimator defined as the set:

θ̂n := arg max
θ∈Θ

`θ(y0:n−1). (5.18)

We make the following assumption.

Assumption 5. For all (x, x
′
) ∈ X×X and y ∈ Y, the mappings θ 7→ qθ(x

′ | x) and θ 7→ gθ(y | x) are
continuous.
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Such conditions imply continuity for the log-likelihood mapping θ 7→ 1
n`θ(y0:n−1) and its limit θ 7→

E [log pθ(y0 | y−∞:−1)], which, together with with other conditions, provide convergence of the MLE to
the maximiser of the limiting function. For sets A,B ⊆ Θ , we define d(A,B) := infa∈A, b∈B |a− b| .

Proposition 27. Under Assumption 1 to Assumption 5, we have the followings.

i) Let `(θ) := E [log pθ(y0 | y−∞:−1)]. The function θ 7→ `(θ) is continuous, and we have that:

lim
n→∞

sup
θ∈Θ

∣∣∣∣ 1n`θ(y0:n−1)− `(θ)
∣∣∣∣ = 0, w.p.1.

ii) We have limn→∞ d(θ̂n, θ?), w.p.1, where

θ? := arg max
θ∈Θ

`(θ)

is the set of global maxima of `(θ).

Proof. This follows from Proposition 13.7 of Douc et al. (2014). The proof of the first statement is based
on working with the stationary version of the log-likelihood in (5.17), permitted due to Proposition 27,
and using Birkhoff’s ergodic theorem.

One can see Proposition 27 as a generalisation of the Shannon-McMillan-Breiman theorem. Recall
that θ? need not be thought of as the correct parameter value here, as no assumption of the class of
HMMs containing the correct data-generating model is made in this section. To avoid identifiability
issues, we make the following assumption on the HMM model. We refer the reader to Theorem 13.14
in Douc et al. (2014) and discussions therein.

Assumption 6. θ? is a singleton.

This implies immediately the following.

Corollary 1. The set of maxima θ̂n is a singleton for all large enough n. Therefore, we obtain
limn→∞ θ̂n = θ? w.p.1.

5.4 Asymptotics under model-correctness

To examine the asymptotic behaviour of the AIC or BIC, one has to investigate the behaviour of the
log-likelihood evaluated at the MLE, `θ̂n(y0:n−1), for increasing sample size n. Following closely Douc
et al. (2004, 2014), we first pose the following assumption, with θ? ∈ Rd as determined in Proposition 27
and Assumption 6. Here and in the sequel, all gradients and Hessians - represented by ∇ and ∇∇>

respectively adopting an ‘applied mathematics’ notation - are w.r.t. the model parameter(s) θ.

Assumption 7. θ∗ is in the interior of Θ, and exist ε > 0 and an open neighbourhood Bε(θ?) := {θ ∈
Θ :| θ − θ? |< ε} of θ? such that the following hold.

i) For any (x, x′) in X× X and y ∈ Y, θ 7→ qθ(x
′ | x) and θ 7→ gθ(y | x) are twice differentiable on

Bε(θ?).
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ii) supθ∈Bε(θ∗) supx,x′∈X2

{
‖∇ log qθ(x

′ | x)‖+
∥∥∇∇> log qθ(x

′ | x)
∥∥} <∞.

iii) For some δ > 0,

E

[
sup

θ∈Bε(θ?)

sup
x∈X

{
‖∇ log gθ(y0 | x)‖2+δ +∇∇> log gθ(y0 | x)

}]
<∞.

|·| denotes the Euclidean norm for vector input or one of the standard equivalent matrix norms
for matrix input. Assumption 7 can be seen as a natural extension of regular conditions to prove
asymptotic normality of the MLE in the case of HMMs. That is, for any fixed n, the log-likelihood
function is twice continuously differentiable in Bε(θ?) (standard use of dominated convergence theorem
from (1) of Assumption 7). Also, the score function has finite (2 + δ)−moment and the Hessian finite
first moment, for any θ ∈ Bε(θ?); the proof requires use of Fisher’s identity (used later on) and parts
(2), (3) of Assumption 7 involving the gradient for the score function and Louis’ identity for the Hessian
together with the stated conditions for the matrices of second derivatives. We avoid further details.

We start off with a standard Taylor expansion (see Appendix A):

`θ̂n(y0:n−1) = `θ?(y0:n−1) +
1√
n
∇`θ?(y0:n−1)

√
n
(
θ̂n − θ?

)
+

1

2

√
n
(
θ̂n − θ?

)> [∫ 1

0

∇∇>`sθ̂n+(1−s)θ?(y0:n−1)ds

n
s

]
√
n
(
θ̂n − θ?

)
, (5.19)

together with a corresponding one for the score function,

0 ≡ 1√
n
∇`θ̂n(y0:n−1) =

1√
n
∇`θ?(y0:n−1)

+

[∫ 1

0

∇∇>`sθ̂n+(1−s)θ?(y0:n−1)ds

n

]
√
n
(
θ̂n − θ?

)
. (5.20)

We will look at the asymptotic properties of the score function terms and the integral involving the
Hessian, i.e. of,

1√
n
`θ?(y0:n−1),

∫ 1

0

1

n
∇∇>`sθ̂n+(1−s)θ?(y0:n−1)ds (5.21)

starting from the former.
We will sometimes need to work under the assumption of model-correctness and we shall be clear

when that is the case.

Assumption 8. The dynamics of the data generating process {yk}k≥0 corresponds to those of the
HMM with initial distribution x0 ∼ η(·) = πXθ?(·), transition kernel Qθ?(· | x) and kernel Gθ?(· | x).

For results that do no refer to Assumption 8, still makes sense as per its definition in Proposition 27.
Using Jensen’s inequality, and for θ? corresponding to the true parameter, one can easily check that
`(θ) ≤ `(θ?), so indeed the true parameter coincides with θ? given in Proposition 26.

138



Following Douc et al. (2014, Chapter 13), we proceed with the following 4 steps.
Step 1. Re-write the score function evaluated at θ = θ? as:

∇`θ?(y0:n−1) =

n−1∑
i=0

[∇`θ?(y0:i)−∇`θ?(y0:i−1)] , (5.22)

under the convention ∇`θ?(y0:−1) ≡ 0. The above differences will be shown to converge - for increasing
sample size n, in an appropriate sense - to stationary (and ergodic) martingale increments.

Step 2. Using the Fisher’s identity, one has, for y0:k ∈ Yk+1, k ≥ 0:

∇`θ?(y0:k) =

∫
Xk+1

∇pθ? (x0:k, y0:k) pθ? (x0:k | y0:k)µ⊗(k+1)(dx0:k),

=

k∑
j=0

∫
X2

dθ? (xj−1, xj , yj) pθ? (xj−1:j | y0:k)µ⊗2(dxj−1:j), j ≥ 0, (5.23)

where we have defined as:

dθ? (xj−1, xj , yj) := ∇ log [qθ?(xj | xj−1)gθ?(yj | xj)] ,

with the conventions:

dθ?(x−1, x0, y0) ≡ dθ?(x0, y0) ≡ ∇ log [η(x0)gθ? (y0 | x0)] ,

and the one: ∫
X2

dθ?(x−1, x0, y0)pθ? (x−1:0 | y0:k)µ⊗2(dx−1:0)

≡
∫
X2

dθ?(x0, y0)pθ∗ (x0 | y0:k)µ(dx0).

Thus, we have for i ≥ 0,

hθ?(y0:i) := ∇`θ?(y0:i)−∇`θ?(y0:i−1),

=

∫
x2
dθ? (xi−1,xi, yi) pθ? (xi−1:i | y0:i)µ

⊗2(dxi−1:i)

+

i−1∑
j=0

[∫
x2
dθ? (xj−1, xj , yj) pθ? (xj−1:j | y0:i)µ

⊗2(dxj−1:j)∫
x2
dθ? (xj−1, xj , yj) pθ∗ (xj−1:j | y0:i−1)µ⊗2(dxj−1:j)

]
. (5.24)

Note that since we have assumed that {yk}k≥0 is strictly stationary and ergodic, this leads one to
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extend, for any integers i ≥ 1 and m ≥ 0, hθ?(y0:i) to:

hθ?(y−m:i) =

∫
x2
dθ? (xi−1,xi, yi) pθ? (xi−1:iy−m:i)µ

⊗2(dxi−1:i)

+

i−1∑
j=−m+1

[∫
x2
dθ? (xj−1, xj , yj) pθ? (xj−1:j | y−m:i)µ

⊗2(dxj−1:j)∫
x2
dθ? (xj−1, xj , yj) pθ? (xj−1:j | y−m:i−1)µ⊗2(dxj−1:j)

]
. (5.25)

Following Douc et al. (2014, Proposition 13.20), integrals involving infinitely long data sequences of
the form

∫
x2
dθ? (xj−1, xj , yj) pθ? (xj−1:j | y−∞:i)µ

⊗2(dxj−1:j), j ≤ i, i > 0 can be defined as w.p.1or
L2−limits of the random variables

∫
x2
dθ? (xj−1, xj , yj) pθ? (xj−1:j | y−m:i)µ

⊗2(dxj−1:j) with m→∞,
under Assumption 1 to Assumption 7.

Step 3. Then letting m→∞, we have the limit as:∫
x2
dθ? (xj−1, xj , yj) pθ? (xj−1:j | y−∞:i)µ

⊗2(dxj−1:j).

Thus now we can define the limit of hθ?(y−∞:i) as follows:

hθ∗(y−∞:i) :=

∫
x2
dθ? (xi−1,xi, yi) pθ? (xi−1:i | y−∞:i)µ

⊗2(dxi−1:i)

+

i−1∑
j=−∞+1

[∫
x2
dθ? (xj−1, xj , yj) pθ? (xj−1:j | y−∞:i)µ

⊗2(dxj−1:j)∫
x2
dθ? (xj−1, xj , yj) pθ? (xj−1:j | y−∞:i−1)µ⊗2(dxj−1:j)

]
. (5.26)

A small modification of the derivations in Douc et al. (2014, Lemma 13.21), (they look at the second
moment) gives that, under Assumption 1-Assumption 7 and for the constant δ > 0 as defined in (3)
of Assumption 7, for i ≥ 0,

‖hθ?(y0:i)− hθ∗(y−∞:i)‖2+δ ≤ 12

E

[
sup

x, x′∈X
dθ?(x, x′, y)

]2+δ
 1

2+δ

ρi/2−1

1− ρ
, (5.27)

where we have defined ρ := 1 − σ−

σ+ . (The expectation in the upper bound is finite due to (2), (3)

of Assumption 7). Let quantity ‖·‖a, a ≥ 1 denote the La norm of the variable under consideration.
From triangle inequality we have:∥∥∥∥∥ 1√

n

n−1∑
i=0

{hθ?(y0:i)− hθ?(y−∞:i)}

∥∥∥∥∥
2+δ

≤ 1√
n

n−1∑
i=0

‖hθ?(y0:i)− hθ?(y−∞:i)‖2+δ .

Recall that ∇`θ?(y0:n−1) =
∑n−1
i=0 hθ?(y0:i). Therefore recalling equation (5.22) and the definition
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(5.24), the bound (5.27) implies:

∇θ`θ?(y0:n−1)√
n

=
1√
n

n−1∑
i=0

hθ?(y−∞:i) +OL2+δ

(
n−1/2

)
. (5.28)

For a ≥ 1 and a sequence of positive reals {bk}, OLa denotes a sequence of random variables with La

norm being O(bn). Then we define the matrix as follows:

Jθ? := E
[
hθ?(y−∞:0)hθ?(y−∞:0)>

]
. (5.29)

Step 4. At this point we need to make use of the model-correctness Assumption 8. Define the
filtration Fi := σ(yj ;−∞ < j ≤ i). Then one can show that {hθ?(y−∞:i)}i≥0 is strictly stationary,
ergodic and square integrable martingale difference sequence as follows. Apparently {hθ?(y−∞:i)}i≥0

is adopted w.r.t. Fi and integrable by the assumptions. Then we consider the conditional expectation
of hθ?(y−∞:i) given Fi−1, that is:

E [hθ?(y−∞:i) | Fi−1] = E [E [dθ? (xi−1,xi, yi) | Fi] | Fi−1]

+

i−1∑
j=−∞

E [{E [dθ? (xj−1,xj , yj) | Fi]

− E [dθ∗ (xj−1,xj , yj) | Fi−1]} | Fi−1] .

Each term in the sum is trivially 0 by the Lebesgue’s dominated convergence theorem . For the first
term, we have:

E [dθ? (xi−1,xi, yi) | Fi−1] = E [dθ∗ (xi−1,xi, yi) | xi−1,Fi−1]

≡ 0.

Therefore, we conclude that E [hθ?(y−∞:i) | Fi−1] = 0. Note that since {yk}k≥k is strictly stationary
and ergodic by Assumption 1, {hθ∗(y−∞:i)}i≥0 is also. Also we have indeed used the model correctness
assumption to obtain the latter result. So, terms hθ?(y−∞:i) make up a strictly stationary, ergodic
martingale increment sequence, of finite second moment, under the filtration generated by the data.
We define:

Mn,j :=

n−1∑
i=1

(hθ?(y−∞:i))j , 1 ≤ j ≤ d.

Subscript j indicates the j-th component of the d-dimensional vectors. Then 1√
n
Mn ⇒ Nd(0,J (θ∗))

follows from the martingale difference central limit theorem (see McLeish (1974) for instance) where
the convergence is in distribution.

We now turn to the second term in (5.21).
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Proposition 28. Under Assumption 1 to Assumption 7, we have that, w.p.1,

lim
δ→0

lim
n→∞

sup
θ∈Bδ(θ?)

∣∣(−∇∇>`θ(y0:n−1)/n)− Jθ?
∣∣ = 0.

Proof. This is Douc et al. (2014, Theorem 13.24).

Proposition 29. Under Assumption 1 to Assumption 7, we have that, w.p1.

Jθ?(y0:n−1) := −
∫ 1

0

1

n
∇∇>`sθ̂n+(1−s)θ?(y0:n−1)ds→ Jθ? .

Proof. This is implied immediately from Proposition 28 and (2) of Proposition 27.

Notice that this result does not require the assumption of model correctness. We do make the
following assumption on the HMM model under consideration.

Assumption 9. The matrix Jθ? ∈ Rd×d is non-singular.

Thus, assuming n is big enough to permit inversion, a combination of equations (5.19) and (5.20)gives:

`θ̂n(y0:n−1) = `θ?(y0:n−1) +
1

2

∇>`θ?(y0:n−1)√
n

Jθ?(y0:n−1)−1∇`θ?(y0:n−1)√
n

.

We summarise the results in this part with the following proposition.

Proposition 30. i) Under Assumption 1 to Assumption 7 and Assumption 9, we have that:

`θ̂n(y0:n−1) = `θ?(y0:n−1) +
1

2

∇>`θ?(y0:n−1)√
n

Jθ∗(y0:n−1)−1∇`θ?(y0:n−1)√
n

,

whenever the inverse exists. Moreover Jθ?(y0:n−1)→ Jθ? , w.p.1, for the non-singular matrix Jθ?
defined in (5.29).

ii) Under Assumption 1 to Assumption 7 and Assumption 9, we have that:

1√
n
∇`θ?(y0:n−1) =

1√
n

n−1∑
i=1

hθ?(y−∞:i) +
1√
n
Rn,

where ‖hθ∗(y−∞:i)‖2+δ + ‖Rn‖2+δ ≤ C, for δ > 0 as determined in (3) of Assumption 7 and a
constant C > 0.

iii) Under Assumption 1 to Assumption 9. we obtain:

∇`θ?(y0:n−1)/
√
n⇒ Nd (0,Jθ?) .

Proof. Parts (1) and (2) are simply rewritings of earlier calculations. (3) follows from combining
the L2-bound and the martingale difference central limit theorem, see Douc et al. (2014, Theorem
13.23).
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Theorem 21. Suppose that Assumption 1 to Assumption 9 hold. Then we have that:

i) lim supn→∞
|∇`θ? (y0:n−1)|√

2n log logn
= E

[
(hθ?(y−∞:i))

2
j

]1/2
, 1 ≤ j ≤ d.

ii) `θ̂n(y0:n−1) = `θ?(y0:n−1) +O (log log n) w.p.1.

Proof. Proposition 30 implies that ∇`θ?(y0:n−1) can be decomposed into:

∇`θ?(y0:n−1) =

n−1∑
i=1

hθ?(y−∞:i) +Rn,

where ‖hθ∗(y−∞:i)‖2+δ +‖Rn‖2+δ ≤ C, for δ > 0 as determined in (3) of Assumption 7 and a constant
C > 0. Recall that hθ?(y−∞:i) is strictly stationary, ergodic martingale increment sequence, of finite
second moment, w.r.t. the filtration Fi := σ(yj ,−∞ < j ≤ i). To obtain the result, it is sufficient to
show that for any ε > 0 and 1 ≤ j ≤ d, P (lim supn→∞ | Rn,j |≥ ε

√
n) = 0. Using Markov inequality,

we have that:

P
(
|Rn,j | ≥ ε

√
n
)

= P
(
|Rn,j |2+δ ≥ ε2+δn1+δ/2

)
≤

E
[
| Rn,j |2+δ

]
ε2+δn1+δ/2

,

≤ C

ε2+δn1+δ/2
.

Define the set An := {| Rn,j |≥ ε
√
n}. Then above evaluation implies that

∑∞
n=0 P(An) <∞ and this

gives rise to P (lim supn→∞ | Rn,j |≥ ε
√
n) = 0 by the Borel–Cantelli lemma. Then the LIL for the

martingales (Stout, 1970) implies that:

lim sup
n→∞

| ∇θ`θ?(y0:n−1) |√
2n log log n

= E
[
(hθ?(y−∞:i))

2
j

]1/2
, 1 ≤ j ≤ d.

The mean value theorem gives:

0 ≡ 1

n
∇`θ̂n(y0:n−1) =

1

n
∇`θ?(y0:n−1)− Jθ?(y0:n−1)

(
θ̂n − θ?

)
.

Above result implies that ∇`θ?(y0:n−1) = O
(√
n log log n

)
w.p.1. In addition, Proposition 29 gives rise

to Jθ∗(y0:n−1) = O(1) w.p.1. Therefore, Solving for
(
θ̂n − θ∗

)
gives:

θ̂n − θ? = Jθ?(y0:n−1)−1

(
1

n
∇`θ?(y0:n−1)

)
,

= O
(√

n−1 log log n
)
,

holds w.p.1. In the same manner, applying the mean value theorem to `θ̂n(y0:n−1) gives rise to, w.p.1,

`θ̂n(y0:n−1)− `θ?(y0:n−1) =
(
θ̂n − θ?

)>
∇`θ?(y0:n−1)

+
1

2

√
n
(
θ̂n − θ?

)>
Jθ?(y0:n−1)

√
n
(
θ̂n − θ?

)
,

= O (log log n) .
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5.5 Model selection criteria for HMMs

We provide a brief illustration for the derivation of AIC and BIC, with focus on HMMs. Results
obtained that explicitly connect BIC and the evidence will allow for deriving consistency properties
for the evidence directly after studying the BIC criterion later in the paper.

5.5.1 BIC and evidence for HMMs

We consider the derivation of BIC for general HMMs. BIC is proposed by Schwarz (1978) and can be
obtained by applying the Laplace approximation to the marginal likelihood (or evidence) of the model
under consideration. Consideration of the sequence of log-likelihood functions over the sample size n
(see e.g. Kass et al. (1990) for the concept of ‘Laplace-regular’ models) provide sufficient analytical
conditions for controlling the difference between the evidence and BIC. We briefly review the Taylor
expansions underlying the derivation of BIC and provide the regularity conditions that control its
difference from the evidence in the context of HMMs. Compared with Kass et al. (1990), weaker
conditions are required here, as BIC derives from an O

(
n−1

)
approximation of the evidence (rather

than O
(
n−2

)
expansions looked at in the Laplace-regular framework).

Let π(θ) be the prior density w.r.t. an appropriate reference measure (e.g. the Lebesgue measure
on Rd ) dθ for the parameter θ. Then the evidence m(y0:n−1) is given by:

m(y0:n−1) =

∫
Θ

π(θ) exp {`θ(y0:n−1)} dθ. (5.30)

We define:

Jθ̂n(y0:n−1) := − 1

n
∇∇>`θ̂n(y0:n−1).

We will be explicit on regularity conditions in the statement of the Proposition that follows. Following
similar steps as in Schervish (2012); Kass et al. (1990), we apply a fourth-order Taylor expansion
around the MLE θn that gives, for u :=

√
n(θ − θ̂n):

`θ(y0:n−1) = `θ̂n(y0:n−1)− 1

2
u>Jθ̂n(y0:n−1)u

+
1

6
n−1/2

d∑
i,j,k=1

uiujuk
∂θi∂θj∂θk`θ̂n(y0:n−1)

n
+R1,n, (5.31)

for the residual term R1,n involving fourth-order derivatives of the log-likelihood θ 7→ `θ(y0:n−1) eval-
uated at ξ := aθ̂n + (1 − a)θ for some a ∈ [0, 1], fourth order polynomials of u, and a factor of n−1,
see e.g. Lang (2012, Chapter 14) and Appendix A for details on such expansions. Notice that we have
used ∇`θ̂n(y0:n−1) = 0. For the prior density, we have:

π(θ) = π(θ̂n) + n−1/2∇>π(θ̂n)u+R2,n,
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for the residual R2,n with second-order derivatives of π(θ), second-order polynomial of u and a factor
of n−1. Using a second order expansion for x 7→ ex, only for the the terms beyond the quadratic in u
in (5.31), we obtain:

m(y0:n−1)

pθ̂n(y0:n−1)
=

∫
Θ

e−
1
2u
>Jθ̂(y0:n−1)u×{

π(θ̂n) + n−1/2H(u, y0:n−1) +Rn

}
dθ, (5.32)

where we have separated the term (later on removed as having zero mean under a Gaussian integrator
Schervish (2012)):

H(u, y0:n−1) :=
1

6
n−1/2

d∑
i,j,k=1

uiujuk
∂θi∂θj∂θk`θ̂n(y0:n−1)

n
+∇>π(θ̂n)u;

the residual term Rn can be deduced from the calculations.

Remark 9. The Laplace-regular setting of Kass et al. (1990) provides concrete conditions for the above
derivations to be valid and for controlling the deduced residual terms. Apart from the standard assump-
tions on the existence of derivatives and a bound on fourth order derivative of close to θ∗ - the latter
being defined in Proposition 27 as the limit of θ̂n - the following are also required :

i) For any δ > 0, w.p.1:

lim sup
n→∞

sup
θ∈Θ\Bδ(θ∗)

{
1

n
(`θ(y0:n−1)− `θ∗(y0:n−1))

}
< 0;

ii) For any ε > 0, Bε(θ∗) ⊆ Θ, and w.p.1:

lim sup
n→∞

sup
θ∈Bε(θ∗)

{
1

n
det
(
∇∇>`θ(y0:n−1)

)}
< 0.

Note that (1) is implied by Proposition 27 and identifiability Assumption 6. Also, Proposition 28
implies (2).

Here, det(·) denotes the determinant of a square matrix. Following the above remark, the Laplace-
regular setting of Kass et al. (1990) translate into the following assumption and proposition.

Assumption 10. i) (The log-likelihood function θ 7→ `θ(y0:n−1) is four-times continuously differ-
entiable in θ w.p.1. Also the prior θ 7→ π(θ) is two-times continuously differentiable w.p.1.

ii) For some ε > 0, Bε(θ∗) ⊆ Θ and w.p.1, for all 1 ≤ j1 · · · ≤ jk ≤ d, with 0 ≤ k ≤ 4, ,

lim sup
n→∞

sup
θ∈Bε(θ∗)

{
1

n

∣∣∣∣∂j1···jk`θ(y0:n−1)

∂θj1 · · · ∂θjk

∣∣∣∣} <∞,

holds w.p.1.
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Proposition 31. Under Assumption 1 to Assumption 7, Assumption 9 and Assumption 10, we have
that, w.p.1:

m(y0:n−1)

pθ̂n(y0:n−1)
= (2π)

d/2
n−d/2

[
det
(
Jθ̂n(y0:n−1)

)]−1/2

π(θ̂n)
(
1 +O

(
n−1

))
.

Proof. Under the assumptions, Tadic and Doucet (2018, Theorem 2.1) ensure that the the log-
likelihood θ 7→ `θ(y0:n−1) is four-times continuously differentiable. Recall from Proposition 27 that
limn→∞ supθ∈Θ

∣∣ 1
n`θ(y0:n−1)− `(θ)

∣∣ = 0 w.p.1 and θ̂n → θ∗ w.p.1. Note that θ∗ is the unique maxim-
iser of `(·), under Assumption 6. Then we choose sufficiently small δ > 0 (in (1) of Remark 1) and
γ > 0 such that for large enough n, Bδ(θ∗) ⊆ Bγ(θ̂n) ⊆ Bmin{ε1ε2}(θ∗) with ε = ε1 and ε = ε2 in (2) of
Assumption 10 and (2) of Remark 9 respectively. As a result, we have that:

m(y0:n−1)

pθ̂n(y0:n−1)
=

∫
Θ\Bγ(θ̂n)

π(θ) exp

(
n× 1

n

{
`θ(y0:n−1)− `θ̂n(y0:n−1)

})
dθ

+

∫
Bγ(θ̂n)

π(θ) exp
({
`θ(y0:n−1)− `θ̂n(y0:n−1)

})
dθ

≤ exp(−cn) +

∫
Bγ(θ̂n)

π(θ) exp
({
`θ(y0:n−1)− `θ̂n(y0:n−1)

})
dθ,

for some constant c > 0, where we used (1) of Remark 9 to obtain the inequality. It remains to treat
the integral on Bγ(θ̂n). Application of the Taylor expansions as we have described and continuing from
(5.32), with the domain of integration now being Bγ(θ̂n), will yield, w.p.1,

In :=

∫
Bγ(θ̂n)

π(θ) exp
({
`θ(y0:n−1)− `θ̂n(y0:n−1)

})
dθ

=

∫
Bγ(θ̂n)

exp

(
−1

2
u>Jθ̂n(y0:n−1)

){
π(θ̂n) + n−1/2H(u, y0:n−1) +Rn

}
dθ. (5.33)

A careful, but otherwise straightforward, consideration of the structure of the residual Rn, gives that,
w.p.1:

1

(2π)d/2
{

det
(
Jθ̂n(y0:n−1)

)}−1/2

∫
Bγ(θ̂n)

exp

(
−1

2
u>Jθ̂n(y0:n−1)

)
| Rn | dθ

= O(n−1),

where we used Remark 1 and (2) of Assumption 9. Therefore, continuing from (5.33), the change of
variables u =

√
n(θ − θ̂n) implies that, for f(·; Ω) denoting the pdf of a centred Gaussian distribution
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with precision matrix Ω,

In = (2π)d/2
{

det
(
Jθ̂n(y0:n−1)

)}−1/2

×
∫
Bγ√n(0)

f(u; Jθ̂n(y0:n−1))
{
π(θ̂n) + n−1/2H(u, y0:n−1)

}
du

× (1 +O(n−1)),

w.p.1. The final result follows from the fact, that using (1) of Assumption 10, the integral appearing
above is O(exp(−c′n)) apart from the same integral over the whole Rd, for some constant c′ > 0.

Therefore, Proposition 31 implies that:

m(y0:n−1) = exp

(
n

1

n
`θ̂n(y0:n−1)

)
(2π)

d/2
π(θ̂n)

nd/2
[
det
(
Jθ̂n(y0:n−1)

)]
×
(
1 +O(n−1)

)
,

w.p1. Then taking logarithm of both sides gives rise to:

−2 logm(y0:n−1) = −2`θ̂n(y0:n−1)− 2 log π
(
θ̂n

)
− d log 2π + d log n

+ log det
(
Jθ̂n(y0:n−1)

)
+O(n−1), w.p.1.

Note that π(θ̂n)→ π(θ∗) as n→∞ holds w.p.1 by the assumption, so this term will be O (1). Also (2)
of Proposition 30 implies that Jθ̂n(y0:n−1) = O (1), w.p.1, thus, the continuous mapping theorem gives

rises to log det
(
Jθ̂n(y0:n−1)

)
= O(1), w.p.1. As a consequence, ignoring O(1) terms w.r.t. n yields:

−2 logm(y0:n−1) ≈ −2`θ̂n(y0:n−1) + d log n, w.p.1.

Thus, working with the Laplace approximation to the marginal likelihood , one can derive BIC:

BIC :=− 2`θ̂n(y0:n−1) + d log n. (5.34)

Remark 10. The above results provide a significant conceptual reassurance. Admitting the evidence
as the core principle under which model comparison is carried out, if amongst a family of parametric
HMM models one has the largest evidence for any big enough n w.p.1, then BIC is guaranteed to select
that model as the optimal one eventually since they are asymptotically equivalent.

Remark 11. There is considerable work in the literature regarding consistency properties of the evidence
(or Bayes Factor) for classes of models beyond the i.i.d. setting, see e.g. Chatterjee et al. (2020)
and the references therein. In our approach, we have brought together results in the literature to
deliver assumptions that – whilst being fairly general – were produced with HMMs in mind (and the
connection between AIC and the evidence) and are relatively straightforward to be verified, indeed, for
HMMs. Alternative approaches typically provide higher-level conditions (see e.g. above reference) in
an attempt to preserve generality
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5.5.2 AIC for HMMs

AIC is developed in Akaike (1974) where its derivation is discussed for i.i.d. data and Gaussian models
of ARMA type. Following more recent expositions (see e.g. Claeskens and Hjort (2008)), AIC is
based on the use of the Kullback-Leibler (KL) divergence for quantifying the distance between the
true data-generating distribution and the probability model; an effort to reduce the bias of a ‘naive’
estimator of the KL divergence leads to the formula for AIC. The case that one does not assume that
the parametric model contains the true data distribution corresponds to a generalised version of AIC
often called the Takeuchi Information Criterion (TIC), first proposed in Takeuchi (1976). The above
ideas are easy to be demonstrated in simple settings (e.g. Claeskens and Hjort (2008) consider i.i.d.
and linear regression models).

The framework connecting KL with AIC, in the context of HMMs, can be developed as follows.
Let p?(dy0:n−1) denote the true data-generating distribution, n ≥ 1. A model is suggested in the form
of a family of distributions {pθ(dy0:n−1); θ ∈ Θ}. We assume that p?(dy0:n−1) and pθ(dy0:n−1) admit
the densities p?(y0:n−1), pθ(y0:n−1) w.r.t. ν⊗n, n ≥ 1. We work with the KL distance:

KLn(θ) :=
1

n

∫
p?(dz0:n−1) log

p?(z0:n−1)

pθ(z0:n−1)
, (5.35)

=
1

n

∫
p?(dz0:n−1) log p?(z0:n−1)− 1

n

∫
p?(dz0:n−1) log pθ(y0:n−1).

Therefore, minimizing KLn(θ) is equivalent to maximizing:

Rn(θ) :=
1

n

∫
p?(dy0:n−1) log pθ(y0:n−1).

Following standard ideas from cases models (e.g. i.i.d. models), one is interested in the quantity
Rn(θ̂n), but, in practice, only has access to the naive estimator 1

n`θ̂n(y0:n−1), the latter tending to
have positive bias versus Rn(θ̂n) due to the use of both the data and the data-induced MLE in its
expression. AIC is then derived by finding the larger order term (of size O(1/n)) in the discrepancy of
the expectation and appropriately adjusting the naive estimator. We make the following assumptions.

Assumption 11. i) There exists constant C > 0, such that w.p.1,

sup
n≥1

sup
θ∈Θ

{
1

n
| ∇∇>`θ(y0:n−1) |

}
< C.

ii) There is some n0 > 1 such that w.p.1, matrix J−1
θ∗

(y0:n−1) defined in Proposition 29, is well-posed
for all n > n0, and there is a constant C ′ > 0, such that w.p.1,

sup
n>n0

| J−1
θ∗

(y0:n−1) | < C ′.

These are high-level assumptions, especially (2) of Assumption 11, and a more analytical study
is required for them to be of immediate practical use (or weakening them); but such a study would
considerably deviate from the main purposes of this work. Our contribution is contained in the
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following Proposition.

Proposition 32. Under Assumption 1 to Assumption 9 and Assumption 11, we have that:

E
[

1

n
`θ̂n(y0:n−1)−Rn(θ̂n)

]
=
d

n
+ o(n−1).

Proof. Applying a second order Taylor expansion around θ? yields:

1

n
`θ̂n(y0:n−1)−Rn(θ̂n)

=
1

n
`θ?(y0:n−1)− 1

n

∫
`θ?(z0:n−1)p?(dz0:n−1)

+
1

n

∇>`θ?(y0:n−1)√
n

√
n(θ̂n − θ?)−

{∫
∇>`θ?(z0:n−1)p?(dz0:n−1)

}
(θ̂n − θ?)

+
1

2n

√
n(θ̂n − θ?)>

{∫
Eθ?(y0:n−1, z0:n−1)p?(dz0:n−1)

}√
n(θ̂n − θ?), (5.36)

where we have set:

Eθ?(y0:n−1, z0:n−1) :=

∫ 1

0

∇∇>`sθ̂n+(1−s)θ?(y0:n−1)ds−∇∇>`sθ̂n+(1−s)θ?(z0:n−1)

n
ds.

Taking expectations in (5.36), notice that: 1) the expectation of the first difference on the right-hand-
side is trivially 0; 2) the integral appearing in the second difference in identically zero, since we are
working under the correct model Assumption 8. It remains to consider the expectation of the terms:

ζn :=
1

n

∇>`θ?(y0:n−1)√
n

√
n(θ̂n − θ?),

ζ
′

n :=
1

2n

√
n(θ̂n − θ?)>

{∫
Eθ?(y0:n−1, z0:n−1)p?(dz0:n−1)

}√
n(θ̂n − θ?). (5.37)

First, ζn can be expressed as:

ζn =
1

n
× ∇

>`θ?(y0:n−1)√
n

Jθ?(y0:n−1)−1∇`θ?(y0:n−1)√
n

.

Thus, Proposition 30 and Slutsky’s theorem give that:

nζn ⇒ Z>J−1
θ?
Z; Z ∼ N (0,Jθ?),

where ⇒ denotes weak convergence. For weak convergence to imply convergence in expectation, we
require uniform integrability. (2) of Assumption 11 takes care of the difficult term Jθ?(y0:n−1)−1, see
Appendix D . Then, Proposition 30 and the Marcinkiewicz-Zygmund inequality can be applied for
martingales Ibragimov and Sharakhmetov (1999), give that:

sup
n

∥∥∥∥∇`θ?(y0:n−1)√
n

∥∥∥∥
2

<∞.
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Thus, from Cauchy-Schwarz, we have:

sup ‖nζn‖2 <∞,

which implies uniform integrability for {nζn}n. So, we have shown that:

E [nζn]→ E
[
Z>J−1

θ?
Z
]
≡ d. (5.38)

We proceed to term ζ
′

n in (5.37). Define Aθ?(y0:n−1) := ∇>`θ?(y0:n−1)/
√
n×J−1

θ?
(y0:n−1), and we have

that:

2nζ
′

n = Aθ?(y0:n−1)

{∫
Eθ?(y0:n−1, z0:n−1)p?(dz0:n−1)

}
A>θ?(y0:n−1).

Clearly, we can write:

E
[
2nζ

′

n

]
=

∫ {
Aθ?(y0:n−1)Eθ?(y0:n−1, z0:n−1)p?(dz0:n−1)A>θ?(y0:n−1)

}
(ν ⊗ ν)(dy0:n−1, dz0:n−1).

From Proposition 28 we obtain that (ν⊗ν)(dy0:n−1, dz0:n−1)-w.p.1, we have that limn→∞ Eθ?(y0:n−1, z0:n−1) =

Jθ?−Jθ? = 0. This implies the weak convergence ofAθ?(y0:n−1)Eθ?(y0:n−1, z0:n−1)p?(dz0:n−1)A>θ?(y0:n−1)⇒
0. Assumption 11, and arguments similar to the ones used for nζn, imply uniform integrability for
nζ
′

n. We thus have E
[
nζ
′

n

]
→ 0. This latter result together with (5.38) completes the proof.

Proposition 32 provides the underlying principle for use of the standard AIC:

AIC :=− 2`θ̂n(y0:n−1) + 2d. (5.39)

Remark 12. We note that the only difference between BIC and AIC is the penalty term, that is, d log n

for BIC and 2d for AIC. The penalty term for BIC grows to infinity as n→∞ in contrast with one
of AIC which does not depend on the sample size n. More precisely, for all n ≥ 8, BIC more heavily
penalises a model with many parameters. As we will confirm in Section 5, this difference makes the
significant difference regarding the consistency of model selection.

5.6 BIC, evidence, AIC consistency properties

We will now use the results we have developed to examine the asymptotic properties of BIC, the
evidence and AIC in the context of HMMs. We define the notions of strong and weak consistency in
model selection in a nested setting as follows.

Definition 31. (Consistency of Model Selection Criterion).Assume a sequence of nested para-
metric models

M1 ⊂ · · ·Mk ⊂ · · ·Mp, k ≥ 1,

specified via a sequence of corresponding parameter spaces Θ1 ⊆ Rd1 , and Θk+1 = Θk ×∆Θk, ∆Θk ⊆
Rdk+1, k ≥ 1 with dk < dl for k < l. LetMk? , for some k? ≥ 1, be the smallest model containing the
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’correct’ one the latter corresponding to the parameter value θk
?

(= θ?) ∈ Θk? .
Let Mk̂n

, for index k̂n based on data y0:n−1 ∈ Yn, n = 1 be the model selected via optimising a
Model Selection Criterion. If it holds that k̂n → k? as n → ∞, w.p1, then the the Model Selection
Criterion is called strongly consistent. If it holds that k̂n → k? as n → ∞, in probability, then the
Model Selection Criterion is said to be weakly consistent.

Assumption 12. Assumption 1 to Assumption 6 hold for all parametric models Mk, for index 1 ≤
k < k?; Assumption 1 to Assumption 9 hold for all parametric modelsMk, for index k? ≤ k ≤ p.

We henceforth assume that for each 1 ≤ k ≤ p,Mk corresponds to a parametric HMM as defined
in Section 2. Also we will use the notation dk to denote the dimension of a modelMk. The particular
model under consideration will be implied by the corresponding parameter appearing in an expression;
i.e., a quantity involving θk will refer to model Mk. E.g., θk? ∈ Θk is the a.s. limit of the MLE, θ̂kn,
for the modelMk, and such a limit has been shown to exist under Assumption 1 to Assumption 6 for
model modelMk.

Remark 13. For a model Mk that contains Mk? (k > k?) for all of Assumption 2 to Assumption 9
to hold, it is necessary that the parametrisation of the larger modelMk is such that non-identifiability
issues are avoided. In a trivial example, for Mk? corresponding to i.i.d. data from N (θ1, 1), a larger
model of the form would satisfy Assumption 2 and Assumption 9 (the main ones the relate to the
shape, in the limit, of the log-likelihood and, consequently identifiability) –one can check this – whereas
model N (θ1 + θ2, 1) would not. In practice, for a given application with nested models, one can most
times easily deduce whether identifiability issues are taken care of, thus Assumption 2 to Assumption 9
correspond to reasonable requirements over the larger models. In general, only ‘atypical’ parameterisa-
tions can produce non-identifyibility issues, thus, also abnormal behavior of the log-likelihood function
, for the case of the larger model.

Proposition 33. Define λn := `θ̂kn
(y0:n−1)− `θ̂k?n (y0:n−1), for k 6= k?. Assume that Assumption 1 to

Assumption 9 and Assumption 12 hold. Then we have:

i) IfMk ⊂Mk? , then limn→∞ n−1λn → `(θk?)− `(θk?? ) < 0, w.p1.

ii) IfMk ⊃Mk? then λn > 0 and λn = O(log log n), w.p.1.

Proof. From (1) of the Proposition 27 we have, w.p.1:

n−1
(
`θ̂kn

(y0:n−1)− `θ̂k?n (y0:n−1)
)
→ `(θk?)− `(θk

?

? ),

≡ E
[
log pθk? (y0 | y−∞:−1)

]
− E

[
log pθk?? (y0 | y−∞:−1)

]
.

Using Jensen’s inequality and simple calculations, one obtains that:

E
[
log pθk? (y0 | y−∞:−1)

]
− E

[
log pθk?? (y0 | y−∞:−1)

]
≤ log

∫
pθk? (y0 | y−∞:−1)

pθk?? (y0 | y−∞:−1)
pθk?? (y−∞:0)dy−∞:0 ≡ log 1.
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For strict inequality, Assumption 6 and Assumption 12 imply that mapping θ 7→ `(θk
?

? ) has the unique
maximum θk

?

? ∈ Θk? . Thus, we cannot have `(θk?) = `(θk
?

? ), as this would give (from the nested model
structure) `(θk

?

? ) = `(θk, θ0) for some θ0 ∈
∏k?

l=k+1 ∆Θl,with (θk, θ0)> 6= θk
?

? (otherwise the definition
of correct model class would be violated).

Having λn ≥ 0 is a consequence of the log-likelihood for modelMk being maximised over a larger
parameter domain than Mk? . Then, notice that the limiting matrix Jθ? in Proposition 29 (for the
notation used therein) is positive-definite: it is non-negative-definite following its definition; then,
non-singularity Assumption 9 provides the positive-definiteness. From Proposition 30, the difference
in the definition of λn equals the difference of two quadratic forms, as the constants in the expression
for the log-likelihood provided by Proposition 30 are equal for models Mk? and Mk cancel out. As
λn ≥ 0, and both quadratic forms are non-negative, it suffices to consider the one for modelMk. The
a.s. convergence of the positive-definite matrix in the quadratic form implies a.s. convergence of its
eigenvalues and eigenvectors. Thus, using Theorem 21, overall one has that λn = O(

∑d
i=1 log log n) =

O(log log n).

5.6.1 Asymptotic properties of BIC and evidence

BIC in known to be strongly consistent in i.i.d. settings and some particular non-i.i.d. ones, e.g.
Claeskens and Hjort (2008). In the case of HMMs, Gassiat and Boucheron (2003) shows the strong
consistency of BIC when the observations take a finite set of values. We prove the strong consistency
of BIC and evidence for general HMMs. The key tool to obtain strong consistency of BIC in a general
HMM is LIL we have obtained. Nishii (1988) also uses LIL for the i.i.d. setting to prove strong (and
weak) consistency of BIC.

Recall that k? denotes the index of the correct model.

Proposition 34. i) Let k̂n be the index of the model selected via minimizing BIC in (5.34) and k∗

be the true one. Then, under Assumption 1 to Assumption 8 and Assumption 10, we have that
k̂n → k∗, w.p.1.

ii) If k̂n denotes the index obtained via maximising the evidence in (5.30), then Assumption 1 to
Assumption 10 imply that k̂n → k∗, w.p.1.

Proof. (1) We make use of Proposition 33. Notice that, since the model k̂n attains the minimum BIC,
BICn

(
Mk̂

)
≤ BICn (Mk∗) holds for large enough n. Fix the modelMk. In the case thatMk ⊃Mk∗ ,

by (2) of Proposition 33 we have:

BICn (Mk)−BICn (Mk∗) = (dk − dk∗) log n

−
{
`θ̂kn

(y0:n−1)− `θ̂k∗n (y0:n−1)
}
,

= (dk − dk∗) log n−O(log log n),

= log log n

{
(dk − dk∗) log n

log log n
−O(1)

}
,

→ +∞w.p.1,

152



since by the assumption dk − dk∗ > 0 and thus (dk−dk∗ ) logn
log logn → ∞. Therefore, w.p.1, for all large

enough n, we have BICn (Mk) > BICn (Mk∗) > ck > 0 for a some constant ck. Therefore, we have
that lim supn→∞ k̂n ≤ k∗ w.p.1. In contrast, ifMk ⊂Mk∗, then we have that:

BICn (Mk)−BICn (Mk∗) = n

{
1

n
`θ̂k∗n

(y0:n−1)− 1

n
`θ̂kn

(y0:n−1)

− (dk − dk∗) log n

n

}
,

→ +∞w.p.1,

since n→∞, limn→∞
1
n`θ̂k∗n

(y0:n−1)− 1
n`θ̂kn

(y0:n−1) > 0 by (1) of Proposition 33 and (dk−dk∗ ) logn
n → 0

holds. Therefore lim infn→∞ k̂n ≥ k∗ w.p.1.
(2) Without loss of generality, we consider logarithm of evidence logm(y0;n−1). Then the claim

follows directly from Proposition 31 and part (1) of this proposition.

Therefore, BIC is strongly consistent for a general class of HMMs in the nested model setting we
are considering here - with a model assumed to be a correctly specified one.

5.6.2 Asymptotic properties of AIC

We can be quite explicit about the behaviour of AIC. Making use of Proposition 30 gives rise to:

`θ̂kn
(y0:n−1)− `θ̂k?n (y0:n−1)

=
1

2

∇>`θk? (y0:n−1)
√
n

J−1
θk?

∇`θk? (y0:n−1)
√
n

− 1

2

∇>`θk?? (y0:n−1)
√
n

J−1
θk∗

∇`θk?? (y0:n−1)
√
n

+ ε, (5.40)

where ε = o (log log n), w.p1. Due to working with nested models, we have (immediately from the
definition of Jθk? and Jθ?):

J := Jθk? =

(
J11 J12

J21 J22

)
∈ Rdk×dk ,

where J11 := Jθ? , and J12, J21 = J>12 are deduced from Jθ? . Similarly, ∇θ`θ?(y0:n−1) forms the upper
dk?−dimensional part of ∇`θk? (y0:n−1). We will use of the matrix equations implied by

JJ−1 = Idk ⇐⇒(
J11 J12

J21 J22

)(
J−1

11 J−1
12

J−1
21 J−1

22

)
=

(
Idk? 0dk?×(dk−dk? )

0(dk−dk? )×dk? I(dk−dk? )

)
.
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Given the above nesting considerations, some cumbersome but otherwise straightforward calculations
give:

∇>`θk∗ (y0:n−1)
√
n

J
(
θk?
)−1 ∇`θk? (y0:n−1)

√
n

−
∇>`θk?? (y0:n−1)

√
n

J
(
θk
∗

∗

)−1 ∇`θk?? (y0:n−1)
√
n

≡
{
M∇>`θk? (y0:n−1)

}>
√
n

D

{
M∇>`θk? (y0:n−1)

}
√
n

, (5.41)

where we have set:

M :=
(

(J−1)21

{
(J−1)22

}−1
)
∈ R(dk−dk? )×dk? ,

D :=
{

(J−1)22

}
∈ R(dk−dk? )×(dk−dk? ).

Consider the standard decomposition of the symmetric positive-definite D:

D = PΛP>,

for orthonormal P ∈ R(dk−dk? )×(dk−dk? ) and diagonal Λ ∈ R(dk−dk? )×(dk−dk? ).

Assumption 13. Define the martingale increments in Rdk−dk? , k > k?:

h̃θkθ (y−∞:0) :=
(√

ΛP>M
)
hθ?∗ (y−∞:0).

We have that E
[(
h̃θk? (y−∞:0)

)2
]
> 0.

Proposition 35. Under Assumption 1 to Assumption 9 and Assumption 11 to Assumption 13, we
have that, for k > k∗,

P (AICn (Mk) < AICn (Mk∗) , infinitely often inn ≥ 1) = 1.

Proof. Continuing from (5.40) and (5.41), the use of LIL for martingale increments will give that,
w.p.1;

lim sup
n→∞

√
2
{
`θ̂kn

(y0:n−1)− `θ̂k?n (y0:n−1)
}

log log n

≥ sup
1≤j≤dk−dk∗

E
[(
h̃θk? (y−∞:0)

)2
]
> 0.

As the difference `θ̂kn(y0:n−1) − `θ̂k?n (y0:n−1) is size of Θ (log log n) − o (log log n) infinitely often, the
result follows immediately. (The notation Θ(an) for a positive sequence {an} means that the sequence
of interest is upper and lower bounded by can and c

′
an respectively for constants 0 < c < c

′
).

This result implies that AIC might pick up a model that has more parameters than the true one
has. In other words, as the sample size n → ∞, with a positive probability, AIC will not necessarily
select the correct index k?. If the additional assumption holds, then we can be more explicit, and prove
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the following result for the behaviour of the AIC for increasing sample size. Indeed, we can show that
AIC will overshoot in the sense that it will not select infinitely often the true model but a bigger one.
Therefore, as n→∞, AIC will pick an over-fitted model infinitely often and is not a consistent Model
Selection Criterion - in contrast with BIC, it is well known that AIC has desirable properties, e.g. with
regards to prediction error (in many cases the model chosen by AIC attains the minimum maximum
error in terms of prediction among models being considered), or its minimax optimality. Barron et al.
(1999) is a comprehensive article on this topic and shows that minimax optimality of AIC holds in
many cases, including the i.i.d., some non-linear models and for density estimation. For works on the
efficiency of AIC terms of prediction see Shibata (1980, 1981); Shao (1997). AIC is equivalent to LOO
cross-validation Stone (1977) for i.i.d.-type model structures. We refer to Ding et al. (2017, 2018)
for a comprehensive review of AIC and BIC. Note that Yang (2005) shows that consistency of model
selection and minimax optimality do not necessarily hold simultaneously. Our main focus in this work
is asymptotic behaviour of criteria from a model selection viewpoint, so we will not further examine
the prediction perspective. It also should be emphasised that even in the case of i.i.d. setting, the
result such as Proposition 35 has yet to been proven (Claeskens and Hjort, 2008; Nishii, 1988).

5.6.3 A General Result

Following Sin and White (1996), one can generalise the above results for arbitrary penalty functions.
Assume that we consider Information Criterion (IC) of the form:

ICn (Mk) = −`θ̂kn(y0:n−1) + penn(k), (5.42)

for a penalty function penn(k) ∈ R, (strictly) increasing in k ≥ 1. For BIC, penn(k) = dk log n and
for AIC, penn(k) = 2dk.

Proposition 36. i) For k′ > k ≥ 1, if penn(k) satisfies:

lim
n→∞

penn(k′)− penn(k)

n
= 0,

lim
n→∞

penn(k′)− penn(k)

log log n
= +∞,

under Assumption 1 to Assumption 9 and Assumption 12, the information criterion in (5.42) is
strongly consistent.

ii) For k′ > k ≥ 1, if penn(k) satisfies:

lim
n→∞

penn(k′)− penn(k)

n
= 0,

lim
n→∞

penn(k′)− penn(k) =∞,

then the information criterion in (5.42) is weakly consistent under underAssumption 1 to As-
sumption 9 and Assumption 12.
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Proof. (1) It is an immediate generalisation of the proof of Proposition 34.

(2) Since ICn
(
Mk̂

)
≤ ICn (Mk) always holds for large enough n by the assumption, it suffices to

show that for any ε > 0 and fixed model k,

lim
n→∞

P (ICn (Mk)− ICn (Mk?) > ε) = 1.

First, let us consider the case whenMk ⊂Mk? . Then, for any ε > 0, we have that:

P (ICn (Mk)− ICn (Mk?) > ε)

= P
(
`θ̂k?n

(y0:n−1)− `θ̂kn(y0:n−1) ≥ (penn(k) > penn(k?))
)
→ 1.

The limit follows from (1) of Proposition 33, as the random variable on the left side of the inequality
above diverges to +∞ w.p1. and this convergence implies convergence in probability. This result
implies directly limn→∞ P

(
k̂n ≥ k?

)
= 1. Next we consider the case whereMk? ⊂Mk. We obtain:

P (ICn (Mk) ≤ ICn (Mk∗)) ≤P
(

2
{
`k
θ̂kn

(y0:n−1)− `k
?

θ̂k?n
(y0:n−1)

}
≥ (penn(k) > penn(k?))

)
. (5.43)

As we have already shown, 2
{
`k
θ̂kn

(y0:n−1)− `k?
θ̂k?n

(y0:n−1)
}
⇒ Z>Jθk?

−1Z − Z>1:dk?
Jθk?
−1Z1:dk? =: Z0.

Continuing from (5.43), since | Z0 |< ∞, w.p1. for any ε > 0 we can have some n0 so that for all
n1 ≥ n0, P (Z0 ≥ (penn(k) > penn(k?))) < ε. Thus, for all n large enough, we have that:

P (ICn (Mk) ≤ ICn (Mk?))

≤ P
(

2
{
`k
θ̂kn

(y0:n−1)− `k
?

θ̂k?n
(y0:n−1)

}
≥ (penn1(k) > pen1(k?))

)
→ P (Z0 ≥ (penn(k) > penn(k?))) < ε.

Thus, we conclude that limn→∞ P (ICn (Mk) ≤ ICn (Mk∗)) = 0 and the claim follows.

The above results indicate that to have strong or weak consistency, a penalty function should
depend on the sample size and grow to infinity at a specific rate. Thus the criterion whose penalty
function does not depend on the sample size will not be necessarily consistent in terms of both strong
and weak sense. Besides, log n is not the slowest rate which attains strong consistency almost surely.
This observation implies that another criterion which has a slower penalty function might be strongly
consistent. For instance, Hannan and Quinn (1979) proposes the criterion whose penalty function is
given by −2c log log d where c is a constant such that c > 1. Although we do not study this criterion
in this article, it might possess strong consistency for HMMs.

5.7 Particle approximation of AIC and BIC

BIC and AIC can be used for model selection for HMMs but are typically impossible to calculate
analytically due to the intractability of the likelihood function for general HMMs. Thus, an approx-
imation technique is required. We adopt the computational approach of Poyiadjis et al. (2011) which,
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for completeness, we briefly review in this Section. See also subsubsection 4.5.1. It involves a particle
filtering algorithm coupled with a recursive construction for an integral approximation.

The description follows closely Poyiadjis et al. (2011). The marginal Fisher identity gives,

∇`θ(y0:n) =

∫
X

∇ log pθ(xn, y0:n)pθ(xn|y0:n)µ(dxn).

At step n, let (x
(i)
n ,W

(i)
n )Ni=1 be a particle approximation of pθ(dxn | y1:n), with standardised weights,

i.e.
∑
iW

(i)
n = 1, obtained via some particle filtering algorithm (see Doucet and Johansen (2009) for

instance), so that,

∇`θ(y0:n−1) '
N∑
i=1

W (i)
n ∇ log pθ(x

(i)
n , y1:n). (5.44)

We explore the unknown quantity ∇θ log pθ(xn, y0:n). First, observe that:

pθ(xn, y0:n) = gθ(yn | xn)pθ(y0:n−1)

∫
X

qθ(xn | xn−1)pθ(xn−1 | y0:n−1)µ(dxn−1). (5.45)

This implies that:

∇pθ(xn, y0:n) = pθ(y1:n−1)gθ(yn | xn)

∫
X

qθ(xn | xn−1)pθ(xn−1 | y0:n−1)×

{∇ log gθ(yn | xn) +∇ log qθ(xn | xn−1) +∇pθ(xn−1, y0:n−1)}µ(dxn−1). (5.46)

At step n− 1, let (x
(i)
n−1, w

(i)
n−1)Ni=1 be a particle approximation of the filtering distribution pθ(dxn−1 |

y1:n−1) and
{
α

(i)
n−1

}N
i=1

be a sequence of approximations to
(
∇ log pθ(x

(i)
n−1, y0:n)

)N
i=1

. Equations

(5.45), (5.46) suggest the following recursive approximation of ∇θ log pθ(x
(i)
n , y0:n), for 1 ≤ i ≤ N,

α(i)
n =

∑N
j=1W

(j)
n−1qθ(x

(i)
n | x(j)

n−1)∑N
k=1W

(k)
n−1qθ(x

(i)
n | x(k)

n−1)

×
{
∇ log gθ(yn | x(i)

n ) +∇ log qθ(x
(i)
n | x

(j)
n−1) + α

(j
n−1

}
. (5.47)

Thus, from (5.44), one obtains an estimate of the score function at step n, as:

∇`θ(y0:n−1) '
N∑
i=1

W (i)
n α(i)

n . (5.48)

The calculation in (5.47), and the adjoining particle filtering algorithm, can be applied recursively to
provide the approximation of the score function in (5.48) for n = 0, 1, · · · . Note that the computational
cost is O(N2), but is robust for increasing n as it is based on the approximation of the filtering
distributions rather than the smoothing ones, see results and comments on this point in Poyiadjis
et al. (2011); Del Moral et al. (2015).

Moreover, Poyiadjis et al. (2011) uses the score function estimation methodology to propose an
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online gradient ascent algorithm for obtaining an MLE-type parameter estimate. In more detail, note
that ∇ log pθ(yn|y0:n−1) = ∇`θ(y0:n)−∇`θ(y0:n−1). Then one obtains the following recursion:

θn+1 = θn + γn+1 log pθ(yn | y0:n−1)θ=θn

= γn+1

∫
X

∇θ log pθ(xn, y0:n)|θ=θnpθ(xn | y0:n)θ=θnµ(dxn)

− γn+1

∫
X

∇θ log pθ(xn−1, y0:n−1)|θ=θn−1pθ(xn−1|y0:n−1)θ=θn−1µ(dxn−1), (5.49)

where {γk}k≥1 is a real-valued decreasing sequence with:

∞∑
k=1

γk =∞,
∞∑
k=1

γ2
k <∞.

To deduce an online algorithm, following ideas in Le Gland and Mevel (1997), intermediate quantities
involved in the recursions in (5.44)-(5.47) are calculated at different, consecutive parameter values. See
Poyiadjis et al. (2011) for more details, and Le Gland and Mevel (1997); Tadic (2010) for analytical
studies on the convergence properties of the algorithm. In particular, under strict conditions, and
cases or trivial models, the algorithm is shown to converge to the maximiser θ∗ of the limiting function
of θ 7→ `n(θ)/n, as n→∞.

Remark 14. In our setting, we want to use numerical studies to illustrate the theoretical results obtained
for AIC and BIC, so we will use the outcome of the online recursion as a proxy for the MLE. Then,
the AIC and BIC will be approximated by running a particle filter for the chosen MLE value to obtain
an approximation of the log-likelihood of the data at this parameter value.

5.8 Empirical Study

Motivated by the numerics in Pitt et al. (2014), we consider the following stochastic volatility model
(labelled as SV):

SV :

Xt = φXt−1 +Wt,

Yt = exp(Xt/2)Vt, t ≥ 0

and the one with jumps (labelled as SVJ ):

SVJ :

Xt = φXt−1 +Wt,

Yt = exp(Xt/2)Vt + qtJt, t ≥ 0

where Wt ∼ N (0, σ2
X), Vt ∼ N (0, 1), Jt ∼ N (0, σ2

J) and qt ∼ Bernoulli(p), all variables assumed
independent over the time index t ≥ 1. In both cases, X0 = 0. Here Bernoulli(p) stands for the
Bernoulli distribution with parameter p. ?? shows two sets of 104 simulated observations, one from
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SV and one from SVJ , under the the corresponding true parameter values:

(φ, σX) = (0.9,
√

0.3),

(φ, σX , σJ , p) = (0.9,
√

0.3,
√

0.6, 0.6).

These simulated data will be used in the experiments that follow. Scenario 1 (resp. Scenario 2)
corresponds to the case when the true model is SVJ (resp. SV). We will compare the two classes of
models, using AIC and BIC, in both Scenarios. The estimated parameter values for SV and SVJ ,
and then estimates for AIC and BIC using a particle filter, via the method of Poyiadjis et al. (2011),
reviewed in subsection 5.7. Note that, as we have established in this work, BIC is expected to be
consistent for both Scenarios, whereas AIC only for the first Scenario.

Figure 8 shows estimated parameter values for SV, SVJ , for both simulated sample size, sequen-
tially in the data size, using the online version of the method of Section 6, with N = 200 particles.
(We also tried a larger number of particles, with similar results.) To further investigate the stability of
the algorithm we summarise in Figure 9 and Figure 10 estimates of AIC and BIC for the two models
from R = 200 replications of the same algorithm, for different sample sizes. Figure 9 corresponds
to Scenario 1 and Figure 10 to Scenario 2. All results obtained seem to indicate that the numerical
algorithm used for approximating AIC and BIC is fairly robust in all cases. Also, it appears that in
the challenging Scenario 2, even withn = 104 observations, the box plots do not seem to provide any
strong evidence in favour of true model SV.

Table 2 shows results from the same R = 200 replications for the estimation of AIC and BIC for
each of the two models and two simulated datasets. In agreement with our theory, BIC appears more
robust (than AIC) at choosing the correct model for the dataset simulated from SV. Figure 11 plots
differences in AIC and BIC in Scenario 2, sequentially in the sample size, more accurately, a proxy of
the differences, see Remark 14. To be precise, the blue line denotes the ‘path’ of AIC(SV)−AIC(SVJ ),
and the red line denotes the one of BIC(SV)−BIC(SVJ ). Since model SV is true in this case, the
difference should be lower than zero for large enough n if the used IC were consistent. As one can see,
the difference in BIC is always negative after a large enough sample size n. In contrast, and agreement
with our theory, the difference in AIC never has such property. For instance, sometime after n = 104,
the difference increased and exceeded the zero line. This is a clear empirical manifestation of Proposi-
tion 35; so, whereas in the previous plots the deficiency of AIC was difficult to showcase when looking
at fixed sample sizes, such deficiency became clear when we look at the evolution of AIC as a function
of sample size.
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Figure 8: Estimated parameters for the SV(to panel) and SVJ (bottom panel) models as obtained -
sequentially in time - via the data simulated from the SV(top panel) and SVJ (bottom panel) models
respectively and the algorithm reviewed in Section 6 with N = 200 particles. The horizontal lines
indicate the true parameter values in each case.

Figure 9: Boxplots for Scenario 1 (SV J is true) from R = 200 estimates of AIC and BIC and various
observation sizes. Blue: AIC(SV), Orange: AIC(SVJ ), Green: BIC(SV), Purple: BIC(SVJ ).
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Figure 10: Boxplots for Scenario 2 (SV is true) from R = 200 estimates of IC and various observation
sizes. Blue: AIC(SV), Orange: AIC(SVJ ), Green: BIC(SV), Purple: BIC(SVJ ).

n 2, 500 5, 000 7, 500 10, 000

AIC(SV) 32
200

4
200

0
200

0
200

AIC(SVJ) 168
200

196
200

200
200

200
200

BIC(SV) 51
200

5
200

0
200

0
200

BIC(SVJ ) 149
200

195
200

200
200

200
200

n 2, 500 5, 000 7, 500 10, 000

AIC(SV) 154
200

161
200

153
200

158
200

AIC(SVJ ) 46
200

39
200

37
200

42
200

BIC(SV) 179
200

173
200

184
200

192
200

BIC(SVJ ) 25
200

27
200

16
200

8
200

Table 2: Results after R = 200 replications of the approximation algorithm with N = 200 particles.
The 1st (resp. 2nd) row in the table shows the fraction of the replications where the estimated AIC is
smaller for the SV model (resp. SVJ model) for different number of sample sizes; rows 3 and 4 show
similar results for BIC. The left (resp. right) side of the table shows results for the data simulated
from SVJ (resp. SV).
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Figure 11: The path of differences in AIC and BIC in Scenario 2 (SV is the true model). That is, the
blue line show the approximated value of AIC(SV)−AIC(SVJ ) as a function of data size, and the red
line the corresponding function for BIC(SV)−BIC(SVJ ).

5.9 Conclusion and remarks

We have investigated the asymptotic behaviour of BIC, the evidence and AIC for nested HMMs, and
have derived new results concerning their consistency properties. Our work shows that BIC – and
the evidence – are strongly consistent for a general class of HMMs. In contrast, for a similarly posed
Model Selection problem, AIC is not even weakly consistent. Our study focuses on asymptotics for
increasing data size, so we do not investigate finite sample-size results for BIC, evidence and AIC, such
as optimality properties. It is well-known that AIC is minimax-rate optimal but BIC is not in many
cases, see e.g. Barron et al. (1999). We conjecture this might also be the case for general HMMs.

The technique of constructing stationary, ergodic processes by introducing a backward infinite
extension of the observations (see subsection 5.4) has been used in many other studies, even beyond
HMMs. For instance, Douc et al. (2020) use this approach to study posterior consistency for a class of
partially observed Markov models, Lehéricy (2018) uses it to investigate non-asymptotic behaviour of
MLE for (finite state space) HMMs, Le Corff et al. (2013) apply the technique within an online EM
setting for HMMs in a no-model-correctness setting, Diel et al. (2020) consider more general classes of
latent variable models.

We note that asymptotic results about the MLE for HMMs have recently been obtained under
weaker conditions. See, e.g., Douc et al. (2011b, 2016b) for developments that go beyond compact
spaces. Here, we have worked with strict assumptions on the state space (see Assumption 3), so that
we obtain an important first set of illustrative results for Model Selection Criteria, avoiding at the same
time an overload of technicalities. Future investigations are expected to further weaken the conditions
we have used here.

Our results are obtained in the context of nested models, where a model is assumed to be the true
data-generating one. There are challenges when trying to move beyond the Model-Correctness setting.
As we have described in the first parts of the paper, Douc and Moulines (2012) show that the MLE
converges a.s. even for misspecified models under mild assumptions. However, a CLT for the MLE
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in the context of general state-space misspecified HMMs has yet to been proven.To the best of our
knowledge, only Pouzo et al. (2016) obtain such a result for a finite state-space X. Thus, extending our
results to non-nested settings or/and ones where one does not assume correctness of a model, is a non-
trivial undertaking that requires extensive further research. Also, we note that AIC is asymptotically
prediction efficient in some misspecified models whilst BIC is not. The above discussion suggests that
investigating asymptotic behaviour of model selection criteria under No-Model-Correctness for general
HMM models is an important open problem that requires further research.

One can use alternative numerical algorithms instead of the one we have used here, and describe in
subsection 5.8, see e.g. the approach in Olsson and Alenlöv (2020). Note that the numerical algorithm
used in the paper is mostly a tool for illustrating our theoretical findings, which is the main focus of our
work. The numerical study shown in the paper already delivers the points stemming from the theory,
so we have refrained from describing/implementing further methods to avoid diverting attention from
our main findings

From a practitioner point of view, our results and numerical study indicate that AIC can wrongly
select the more complex model due to ineffective penalty term. Critically, this can be difficult to
assess using standard experiments. Our study has shown that one needs to investigate the evolution
of AIC against data size to clearly highlight its deficiency in the context of a numerical study. We
stress here that in the numerical experiment we have knowingly used models for which several of the
stated Assumptions will not hold (maybe most notably, the strong mixing Assumption 3). The aim is
to illustrate at least numerically, that while our assumptions are standard in the literature, they serve
for simplifying the path to otherwise too technical derivations and provide results that are expected
to hold in much more general settings.
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6 Online Smoothing for Diffusion Processes Observed with Noise

6.1 Introduction

We introduce a methodology for online estimation of smoothing expectations for a class of additive
functionals, in the context of a rich family of diffusion processes (that may include jumps), observed
at discrete-time instances. We overcome the unavailability of the transition density of the underly-
ing SDE by working on the augmented pathspace. The new method can be applied, for instance,
to carry out online parameter inference for the designated class of models. Algorithms defined on
the infinite-dimensional pathspace have been developed in the last years mainly in the context of
MCMC techniques. The main benefit is the achievement of mesh-free mixing times for the practical
time-discretised algorithm used on a PC. Our own methodology sets up the framework for infinite-
dimensional online filtering, an important positive practical consequence is the construct of estimates
with variance that does not increase with decreasing mesh-size. Besides regularity conditions, our
method is, in principle, applicable under the weak assumption, relatively to restrictive conditions of-
ten required in the MCMC or filtering literature of methods defined on pathspace -- that the SDE
covariance matrix is invertible.

Research in Hidden Markov Models (HMMs) has, thus far, provided effective online algorithms for
the estimation of expectations of the smoothing distribution for the case of a class of additive functionals
of the underlying signal. Such methods necessitate knowledge of the transition density of the Markovian
part of the model between observation times. We carry out a related exploration for the (common
in applications) case when the signal corresponds to a diffusion process, thus we are faced with the
challenge that such transition densities are typically unavailable. Standard data augmentation schemes
that work with the multivariate density of a large enough number of imputed points of the continuous-
time signal will lead to ineffective algorithms. The latter will have the abnormal characteristic that,
for given Monte-Carlo iterates, the variability of the produced estimates will increase rapidly as the
resolution of the imputation becomes finer. One of the ideas underpinning the work in this paper is
that development of effective algorithms instead requires respecting the structural properties of the
diffusion process, thus we build up imputation schemes on the infinite-dimensional diffusion pathspace
itself. As a consequence, the time-discretised algorithm used in practice on a PC will be stable under
mesh-refinement.

We consider continuous-time jump-diffusion models observed at discrete-time instances. The
dx−dimensional process, X = {Xt; t ≥ 0}, dx ≥ 1 is defined via the following time-homogeneous
stochastic differential equation (SDE), with Xt− := lims↑tXt:

dXt = bζ(Xt−)dt+ σζ(Xt−)dWt + dJt, (6.1)

with X0 ∼ π(dx), t ≥ 0. The solution X is driven by the dw−dimensional Brownian motion, {Wt; t ≥
0}, dw ≥ 1, the compound Poisson process, {Jt; t ≥ 0} and the initial distribution π0. The SDE
involves a drift function bζ : Rdx 7→ R and coefficient matrix σζ : Rdx 7→ Rdx×dw with parameter
ζ ∈ Rp. Let {Nt; t ≥ 0} be a Poisson process with intensity function λν(·), and {ξk}k≥1 an i.i.d.
sequence of random variables each with pdf hµ(·); the cadlag process J is determined as Jt =

∑Nt
i=1 ξi
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for parameters η := (ν, µ), ν ∈ Rq, µ ∈ Rr q, r ≥ 1. We set:

θ := (ζ, η). (6.2)

We work under standard assumptions (e.g. linear growth, Lipschitz continuity for bζ , σζ) that guarantee
a unique global solution of (6.1), in a weak sense, see e.g. Øksendal and Sulem (2007).

SDE (6.1) is observed with noise at discrete-time instances 0 = t0 < t1 < t2 < · · · < tn, n ≥ 1.
Without loss of generality, we assume equidistant observation times, with ∆ := t1 − t0.We consider
data Yt0 , · · ·Ytn and for simplicity we set:

xi := Xti , yi := Yti ,

F0 = σ(X0), Fi := σ ({Xs; s ∈ [ti−1, ti]}) ,

for 0 ≤ i ≤ n. We also assume:

[
Yti | {Ytj ; j < i}, Xs; s ∈ [0, ti]

]
∼ gθ(dYti | Yti−1

,Fi), (6.3)

for conditional distribution gθ(· | Yti−1
,Fi) on Rdy , dy ≥ 1 under the convention Yt−1

= y−1 = Ø for
0 ≤ i ≤ n. We write:

[xi | xi−1] ∼ fθ(dxi | xi−1), (6.4)

where fθ(· | xi−1) is the transition distribution of the driving SDE process (6.1). We assume existence
of density functions for gθ(dyi | yi−1,Fi)and fθ(dxi | xi−1), and, with some abuse of notation, we
write gθ(dyi | yi−1,Fi) = gθ(yi | yi−1,Fi) and fθ(dxi | xi−1) = fθ(xi | xi−1) where dyi, dxi denote the
relevant Lebesgue measures.

Our work is relevant under the following regime.

Assumption 14. For any 0 ≤ i ≤ n, the transition density fθ(xi | xi−1) is intractable and the
likelihood density gθ(yi | yi−1,Fi) is analytically available.

The intractability of the transition density fθ(x′ | x) will pose challenges in the main inferential
problems that this paper aims to address.

Models defined via (6.1)-(6.4) are extensively used, e.g., in finance and econometrics, for instance
for capturing the market microstructure noise, see Aït-Sahalia et al. (2005); Hansen and Lunde (2006).
The above setting belongs in the general class of hidden Markov models (HHMs), with a signal defined
in continuous-time. See Cappé et al. (2005); Douc et al. (2014) and subsection 4.3 for a general
treatment of HMMs fully specified in discrete-time.

A number of methods have been suggested in the literature for approximating the transition density
– mainly in the case of no-jump component – including: asymptotic expansion techniques (Ait-Sahalia
and Yu, 2008; Kessler, 1997; Aït-Sahalia et al., 2005; Aït-Sahalia, 2002); martingale estimating func-
tions Kessler and Sørensen (1999); generalized method of moments (Hansen and Scheinkman, 1993);
Monte-Carlo approaches (Wagner, 1989; Durham, 2003; Beskos et al., 2006). See, e.g., Kessler et al.
(2012) and references therein for a detailed review.
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For a given sequence {am}m≥0, we use the notation ai:j := (ai, · · · aj), for integers i ≤ h. Let
pθ(y0:n) denote the joint density of y0:n. Throughout the paper, pθ(·) is used generically to represent
probability distributions or densities of random variables appearing as arguments in pθ(·) . Consider
the maximum likelihood estimator (MLE):

θ̂n := arg max
θ∈Θ

log pθ(y0:n). (6.5)

Except for limited cases, one cannot obtain the MLE analytically for HMMs (even for discrete-time sig-
nal) due to the intractability of pθ(y0:n).We have set up the modelling context for this work. The main
contributions of this section in this setting – several of which relate with overcoming the intractability
of the transition density of the SDE – will be as follows:

i) We present an online algorithm that delivers Monte-Carlo estimators of smoothing expectations:

Sθ,n :=

∫
Sθ(x0:n)pθ(dx0:n | y0:n), n ≥ 1, (6.6)

on the class of additive functionals Sθ(·) of the structure:

Sθ(x0:n) :=

n∑
k=0

sθ,k(xk−1,xk), (6.7)

(under the conventions x−1 = Ø, x0 = x0). This is seen as the means to solve some particular
problem. The definition of {xk}k≥0 will be provided in the main text; for now we stress that xk
is a pathspace-valued element that corresponds to an 1–1transform of {Xs; s ∈ [ti−1, ti]}.

ii) We take advantage of the new approach to show numerical applications, with emphasis on car-
rying out online parameter inference for the designated class of models via a gradient-ascent
approach (in a Robbins-Monro stochastic gradient framework). A critical aspect of this particu-
lar online algorithm (partly likelihood based, when concerned with parameter estimation; partly
Bayesian, with regards to identification of filtering/smoothing expectations) is that it delivers
estimates of the evolving score function, of the model parameters, together with particle repres-
entations of the filtering distributions, through a single passage of the data. This is a unique
favourable algorithmic characteristic, when constrasted with alternative algorithms with similar
objectives, such as, e.g., Particle MCMC Andrieu et al. (2010), or SMC2 Chopin et al. (2013).

iii) In this work, we will not characterise analytically the size of the time-discretisation bias relevant
to the SDE models at hand, and are content that: (1) the bias can be decreased by increasing
the resolution of the numerical scheme (typically an Eyler-Maruyama (1.48) one, or some other
Taylor scheme, see e.g. Kloeden and Platen (2013); (2) critically, the algorithms are developed in
a manner that their performance is stable when increasing the resolution of the time-discretisation
method, as the reader will notice that the algorithms are (purposely) first defined on the infinite-
dimensional pathspace, and SDE paths are only discretised when implementing the algorithm on
a PC (to allow for finite computations).

iv) Our method draws inspiration from earlier works, in the context of online filtering for discrete-
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time HMMs and infinite-dimensional pathspace MCMC methods. The complete construct is
novel; one consequence of this is that it is applicable, in principle, for a wide class of SDEs,
under the following weak assumption (relatively to restrictive conditions often imposed in the
literature of infinite-dimensional MCMC methods).

Assumption 15. The diffusion covariance matrix function:

Σζ(x) := σζ(x)σ>ζ (x) ∈ Rdx×dx (6.8)

is invertible, for all relevant x, ζ.

Thus, the methodology does not apply as demonstrated here only for the class of hypoelliptic SDEs.
An elegant solution to the problem posed above, for the case of a standard HMM with discrete-time

signal of known transition density fθ(x′ | x), is given in Del Moral et al. (2010); Poyiadjis et al. (2011)
as we studied. Our own work overcomes the unavailability of the transition density in the continuous-
time scenario by following closely Poyiadjis et al. (2011) but augmenting the hidden state with the
complete continuous-time SDE path. Related augmentation approaches in this setting – though for
different inferential objectives – have appeared in Fearnhead et al. (2008); Ströjby and Olsson (2009);
Gloaguen et al. (2018) where the augmented variables are derived via the Poisson estimator of transition
densities for SDEs (without jumps), introduced in Beskos et al. (2006), and in Särkkä and Sottinen
(2008) where the augmentation involves indeed the continuous-time path (the objective therein is to
solve the filtering problem and the method is applicable for SDEs without jumps and additive Wiener
noise).

A Motivationg Example. Figure 12 shows estimates of the score function, evaluated at the true
parameter value θ?, for parameters θ3 of the Ornstein Uhlenbeck (OU) process, dXt = θ1(θ2−Xt)dt+

θ3dWt, X0 = 0.0, for n = 10 observations yi = xi + εi, εi
i.i.d.∼ N (0, 0.12). Data were simulated from

θ?(0.5, 0.0, 0.4) with an Euler-Maruyama scheme of M = 10 grid points per unit of time. Figure 12
illustrates the ‘abnormal’ effect of a standard data-augmentation scheme, where for N = 100 particles,
the Monte-Carlo method (see later sections for details) produces estimates of increasing variability as
algorithmic resolution increases with M = 10, 50, 150, 200, i.e., as it approaches the ‘true’ resolution
used for the data generation.
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Figure 12: Boxplots of estimated score functions of θ3 for OU process over R = 50 experiment replic-
ations. N = 100 particles were used in all cases, for the same n = 10 data-points.

The rest of the paper is organised as follows. In subsection 6.2 we give basics of inference for dis-
cretely observed diffusions. Then we briefly review the forward only particle smoothing method when
the transition density fθ(x′ | x) is tractable in subsection 6.3. Then subsection 6.4 is devoted to provid-
ing our approach to overcome the intractability of the transition density fθ(x′ | x). We first develop a
technique for SDEs without jumps, then we generalise the result to SDEs with jumps. Our methods
are based on introducing an appropriate bridge process. Using such technique, we formulate the prob-
lem on on diffusion pathspace, then develop forward only particle smoothing for discretely observed
SDEs in subsection 6.5. By merging forward only particle smoothing and the Robbins–Monro, we
develop an online gradient-ascent for partially observed SDEs in subsection 6.6. We use the algorithm
to present some numerical results to quantify its numerical stability and performance in subsection 6.7,
then conclude in subsection 6.8

6.2 Basics of inference for discretely observed diffusions

When it comes to parameter inference for discretely observed diffusions, the common problem for both
frequentist and Bayesian approach is intractability of the law of [Xt; 0 ≤ t ≤ T | X0 = x,XT = x′]. We
review several attempts to overcome this problem, in particular, we focus on the methods based on
the factorisation of the dominating measure following Fuchs (2013) closely.

For the sake of simplicity, consider the following 1−dimensional SDE:

dXt = bζ(Xt)dt+ σζ(Xt)dWt, (6.9)

with discrete observations without error so that Xti = Yti , and X0 = x. This setting can be considered
as a missing data problem in the sense that we observe X0 = x and XT = x′ but we cannot observe
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the path between the two points so that we need to impute the missing path between the two. Write
the measure induced by (6.9) with the conditions X0 = x, X ′ = x by Pζ,x,x′ . Also write Wζ to denote
the law induced by dXt = σζ(Xt)dWt on [0, T ], and Pζ be the law of (6.9) without conditions. Then
Bayes’ theorem gives rise to:

dPζ,x,x′
dWζ,x,x′

(X) =
Pζ(XT = x′ | X)Pζ(dX)/Pζ(XT ∈ dx′)

Wζ(XT = x′ | X)Wζ(dX)/Wζ(XT ∈ dx′)
, (6.10)

where we omit the reference to the initial position X0 = x and Wζ,x,x′ denotes the law Wζ with
X0 = x, XT = x′. From the Girsanov theorem (Theorem 6), we know the expression G(X) :=

Pζ(dX)
Wζ(dX) ,

and the ratio Pζ(XT=x′|X)
Wζ(XT=x′|X) = 1 by definition. As a result, we have that:

dPζ,x,x′
dWζx,x′

(X) = G(X)
Wζ(XT ∈ dx′ | X0 = x)

Pζ(XT ∈ dx′ | X0 = x)
. (6.11)

Assume that Pζ(XT ∈ dx′ | X0 = x) and Wζ(XT ∈ dx′ | X0 = x) admit the transition densities
fθ(x

′ | x) and qθ(x′ | x) respectively. Then (6.11) becomes:

dPζ,x,x′
dWζx,x′

(X) = G(X)
qθ(x

′ | x)

fθ(x′ | x)
. (6.12)

Although we have obtained a general expression of the problem, the expression in (6.12) is not really
useful since it is not possible to obtain samples from it due to intractable densities in general. Also, as
argued in Roberts and Stramer (2001), for any ζ 6= ζ ′, Wζ and Wζ′ are mutually singular measures so
that they have disjoint support. Since Pζ and Wζ are equivalent, such singularity implies that, for any
ζ 6= ζ ′, Pζ and Pζ′ are mutually singular measures as well. Therefore, we need to find the expression
which is equivalent to (6.12) with parameter-free reference measure, that is a reference measure that
should not depend on the parameters.

WriteXmis for the path ofX excluding the observationsXobs := {Xti ; 1 ≤ i ≤ N} = {Yti ; 1 ≤ i ≤ N}
thus X = Xmis ∪ Xobs. It turns out that (6.12) can be used to simulate Xmis given Xobs. We then
introduce a Brownian bridge. Let Wt be a standard Brownian motion. Then Wt conditioned on
Ws = x and Wu = y is called a Brownian (s, x, u, y)−bridge. Then one can simulate a Brownian
(s, x, u, y)−bridge with the following three steps.

i) Let s = t0 < t1 < · · · tn = u, and set W0 = 0. Given σ, obtain samples according to Wi+1 ∼
N (Wi, σ

2∆i) for i = 0, · · ·n− 1 with ∆i := ti+1 − ti.

ii) Obtain a Brownian (s, 0, u, 0)−bridge according to Ŵi = Wi − ti−s
u−sWi for i = 0, · · ·n.

iii) Then construct a Brownian (s, x, u, y)−bridge W̄ as follows: W̄i = Ŵi + u−ti
u−s x + ti−s

u−s y for
i = 0, · · ·n.

Assume that σζ(Xt) = σ, that is σζ(Xt) is known and independent from Xt. This can be possible via
the Lamperti transform (Proposition 9) for instance. Roberts and Stramer (2001) suggest the following
reparameterisation, but with different motivation of ours, based on the above procedure to factoriseWζ

as the product of a Brownian bridge. First we simulate a Brownian (0, 0, T, 0)−bridge with unit σ = 1,
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and simulate x′ fromWζ conditional on initial point x. Then transform the Brownian (0, 0, T, 0)−bridge
to obtain a Brownian (0, x, T, x′)−bridge with parameter σ as we described. Critically, the final
transform can be considered as a mapW 7→ W̄ := Fζ(W ;x, x′), whereW denotes a standard Brownian
motion, and W̄ denotes a Brownian (0, x, T, x′)−bridge. This implies that Wζ can be factorised as:

Wζ

(
W[0,T ), x

′) =
(
W(0,x,T,x′)
ζ ⊗Wζ

)(
F−1
ζ

(
W̄ ;x, x′

)
, x′
)
, (6.13)

where W(0,x,T,x′)
ζ denotes the law induce by a Brownian (0, x, T, x′)−bridge. Based on (6.13), Roberts

and Stramer (2001) study the following practical decomposition of Pζ . First consider the following
transformations: X̂t := F

(1)
ζ (Xt) = 1

σXt,

X̄t := F
(2)
ζ (X̂t, x, x

′) = X̂t − (T−t)ẋ+tẋ′

T ,
(6.14)

where ẋ = x/σ, ẋ′ = x′/σ. From Ito’s lemma, we have that:

dX̂t =
bζ(X̂t)

σ
dt+ dWt, (6.15)

with X̂0 = x0

σ so that F (1)
ζ (·) acts as the Lamperti transform. It can be easily seen that X̄0 = 0 and

X̄T = 0 hold, thus F (2)
ζ (·) transforms X̂t to start and finish at zero, that is now X̄t is a Brownian

(0, 0, T, 0)−bridge. Clearly F (1)
ζ (·) and F (2)

ζ (·) have the same role in (6.13), therefore we have that:

W̄ = Fζ(W ;x, x′) = F
(2)
ζ

(
F

(1)
ζ (W );F

(1)
ζ (x), F

(1)
ζ (x′)

)
,

and this gives rise to:

dPζ
dWζ

(Xmis | x, x′) =
dP̄ζ

dW(0,0,T,0)
(X̄mis | x, x′), (6.16)

sot that the reference measure can be written independently of σ given x′, where P̄ζ denotes the law of
the process X̄t and W(0,0,T,0) denotes the one of a Brownian (0, 0, T, 0)−bridge. Besides, from (6.16),
we have that:

dPζ
dWζ

(Xmis | x, x′) =
dP̂ζ

dW(0,x̄,T,x̄′)
(X̂mis | x̄, x̄′),

= Gζ
(
X̂[0,t]

)
, (6.17)

where P̂ζ denotes the law of the process X̂t in (6.15) so that the Girsanov term Gζ
(
X̂[0,t]

)
does not

depend on σ. We note that this approach is, in general, only applicable to 1−dimensional SDEs since
it is well known that the transform F

(1)
ζ (·) does generally not exist, see Ait-Sahalia (2008).

Kalogeropoulos et al. (2010) study a different approach based on a random time change technique
(Øksendal, 2003, Chapter 8.2). Again consider (6.9) with general σζ(Xt) where t ∈ [0, 1]. Then
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consider the following random time change function:

β(t) =

∫ t

0

c(s)ds, (6.18)

for t ∈ [0, 1], where c : [0, 1] → R+ is called time change rate. In particular, we set c(s) = σ2 so that
s := β1(t) = σ2t. Using this, define:

Us =

Xβ−1
1 (t), 0 ≤ σ2 ≤ s,

Mβ−1
1 (t), s > σ2,

where dMt = σdWt so that Uσ2 = X1 = x′. Applying Ito’s lemma provides

dUt =


bθ(Us)
σ2 ds+ dWs, 0 ≤ σ2 ≤ s,

dWs, , s > σ2.

Let U and WU
ζ denote the measure induced by Ut and σθ(Ut)dt+ dWt. From the Girsanov’s theorem

(Theorem 6), we have:

dU

d
(
WU
ζ ⊗ Leb

) (Umis, x, x
′) = exp

(∫ σ2

0

bθ(Ut)

σ2
dUt −

1

2

∫ σ2

0

bθ(Ut)
2

σ4
dt

)
fζ(x

′ | x),

where the reference measure WU
ζ ⊗ Leb still depends on σ so that WU

ζ ⊗ Leb is not still appropriate.
This leads us to introduce a second time change transformation:

u = β2(s) =
s

σ2(σ2 − s)
,

←→ s = β−1
2 (u) =

σ4u

1 + σ2u
.

for s ∈ [0, σ2), and define a new process Z:

Us = (σ2 − s)Zβ2(s) +
(

1− s

σ2

)
x+

s

σ2
x′,

←→ Zu =
1

(σ2 − s)

(
Us −

(
1− s

σ2

)
x+

s

σ2
x′
)
,

for u ∈ [0,∞). Set x = x′ = 0, then Zu becomes:

Zu =
1 + uσ2

σ2
Uβ−1

2 (u).

Applying Ito’s lemma and the time change formula Øksendal (2003, Theorem 8.5.6) to Zu gives rise
to:

dZu =

bζ
(
σ2Zu

1+uσ2

)
+ σ2Zu

1 + uσ2

 du+ dWu,
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for u ∈ [0,∞). This operation essentially transforms to a diffusion that runs from 0 to ∞ preserving
the unit volatility. Let Z denote the law of Z and WZ denote the corresponding law of a unit diffusion
process. Then we have that:

dZ
d (WZ × Leb)

(
Z[0,∞), x, x

′) ∝ Gζ (Z[0,∞)

)
(6.19)

Critically, Kalogeropoulos et al. (2010, Corollary 3.1) show that the process Z is standard Brownian
motion under WZ . It turns out that the reference measure WZ × Leb does not depend on σ so that
one can do inference for Z based on the expression in (6.19) via MCMC for instance. We note that
the approach described in Kalogeropoulos et al. (2010) cannot be applied to multidimensional SDEs
in general although they have generalised for some multidimensional stochastic volatility models.

Remark 15. Another drawback of the methods described in Roberts and Stramer (2001); Kalogeropoulos
et al. (2010) is that they have shown equivalent expressions to (6.12) which are known up to the norm-
alising constant because they focus on Bayesian inference via MCMC. Thus it is not straightforward to
apply their methods to our problem since we need to an (equivalent) analytical expression of fθ(x′ | x).

6.3 Forward-only smoothing

For convenience, here we again introduce Del Moral et al. (2010), see also subsubsection 4.5.1. The
bootstrap filter Gordon et al. (1993) is immediately applicable in the continuous-time setting, as it only
requires forward sampling of the underlying signal X = {Xt; t ≥ 0}; this is trivially possible – under
numerous approaches – and is typically associated with the introduction of some time-discretisation
bias. However, the transition density is still required for the smoothing problem we have posed in
the Introduction. In this section, we assume a standard discrete-time HMM, with transition density
fθ(x

′ | x), and potential function gθ(y | x), for appropriate x, x′ ∈ Rdx , y ∈ Ry, and review an online
algorithm in Del Moral et al. (2010) for this setting.

Implementation of the bootstrap filter (Algorithm 14) provides an immediate approximation of the
smoothing distribution pθ(dx0:n | y0:n) by following the genealogy of the particles. This method is
studied,e.g., in Cappe (2009); Dahlhaus and Neddermeyer (2010). Let {x(i)

0:n,W
(i
n }Ni=1, N ≥ 1, be a

particle approximation of the smoothing distribution pθ(dx0:n | y0:n), in the sense that we have the
estimate: p̂θ(dx0:n | y0:n) :=

∑N
i=1W

(i)
n δ

x
(i)
0:n

(dx0:n),∑N
i=1W

(i)
n = 1,

(6.20)

where δ
x
(i)
0:n

(dx0:n) is the Dirac measure with an atom at x(i)
0:n. Then, replacing pθ(dx0:n | y0:n) with

its estimate
∑N
i=1W

(i)
n δ

x
(i)
0:n

(dx0:n) provide consistent estimators of the quantity of interest Sθ,n in
(Algorithm 14).Though the method is online and the computational cost is O(N), it typically suffers
from the well-documented path degeneracy problem – as illustrated via theoretical results or numer-
ically (Del Moral et al., 2010; Kantas et al., 2015). That is, as n increases, the particles representing
pθ(dx0:n | y0:n) obtained by the above method will eventually all share the same ancestral particle due
to the resampling steps, thus the approximation collapses as n→∞.
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An approach overcoming path-degeneracy is the Forward Filtering Backward Smoothing (FFBS)
algorithm of Doucet et al. (2000). We briefly review the method here, following closely the notation
and development in Del Moral et al. (2010) . In the forward direction, assume that a filtering algorithm
(e.g. bootstrap) has provided a particle approximation of the filtering distribution pθ(dxk−1 | y0:k−1),
assuming a relevant k:

p̂θ(dxk−1 | y0:k−1) =

N∑
i=1

W (i)
n δ

x
(i)
k−1

(dx0k−1), (6.21)

or weighted particles {x(i)
k−1,W

(i)
k }Ni=1. In the backward direction, assume that one is given the particle

approximation of the marginal smoothing distribution pθ(dxk | y0:n):

p̂θ(dxk | y0:n) =

N∑
i=1

W
(i)
k|nδx(i)

k

(dxk). (6.22)

Then one has that (Kitagawa, 1987):

pθ(xk−1:k | y0:n) = pθ(dxk | y0:n)⊗ pθ(dxk−1 | xk, y0:k−1),

= pθ(dxk | y0:n)⊗ pθ(dxk−1 | y0:k−1)
fθ(xk | xk−1)∫

fθ(xk | xk−1)pθ(xk−1 | y0:k−1)dxk−1
. (6.23)

Using (6.21) , (6.22) and (6.23), we obtain the approximation:

p̂θ(dxk−1:k | y0:n) =

N∑
j=1

W
(j)
k|n

N∑
i=1

fθ(x
(j)
k | x

(i)
k−1)W

(i)
k−1∑N

l=1 fθ(x
(j)
k | x

(l)
k−1)W

(l)
k−1

δ
(x

(i)
k−1,x

(j)
k )
dxk−1:k. (6.24)

Recalling the expectation of additive functionals in (6.6)-(6.7), the above calculations give rise to the
following estimator of the target quantity Sθ,n in (Algorithm 14):

Ŝθ,n =

n∑
k=0

∫
sθ,k(xk−1, xk)p̂θ(dxk−1:k | y0:n).

To be able to apply the above method, the marginal smoothing approximation in (6.22) is obtained
via a backward recursive approach. In particular, starting from k = n (where the approximations
provided by the standard forward particle filter), one proceeds as follows. Given k, the quantity for
k − 1 is directly obtained by integrating out xk in (6.24) thus we have:

p̂θ(dxk−1 | y0:n) =

N∑
i=1

W
(i)
k−1|nδx(i)

k−1

(dxk−1),

for the normalised weights:

W
(i)
k−1|n ∝

N∑
j=1

W
(j)
k|n

fθ(x
(j)
k | x

(i)
k−1)W

(i)
k−1∑N

l=1 fθ(x
(j)
k | x

(l)
k−1)W

(l)
k−1

.
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Notice that – in this version of FFBS – the same particles {x(i)
k }Ni=1 are used in both directions (the

ones before resampling at the forward filter), but with different weights.
An important development made in Del Moral et al. (2010) is transforming the above offline al-

gorithm into an online one. This is achieved by consideration of the sequence of instrumental func-
tionals:

Tθ,0(x0) := sθ,0(x0), Tθ,n(xn) :=

∫
Sθ,n(x0:n)pθ(dx0:n−1 | y0:n−1, xn), (6.25)

for n ≥ 1. Notice that

Sθ,n =

∫
Tθ,n(x0:n)pθ(dxn | y0:n).

Then Del Moral et al. (2010, Proposition 2.1) show that:

Tθ,n(xn) =

∫
[Tθ,n−1(x0:n−1) + sθ,n(xn−1, xn)] pθ(dxn−1 | y0:n−1, xn),

=

∫
[Tθ,n−1(x0:n−1) + sθ,n(xn−1, xn)] fθ(xn | xn−1)p(dxn−1 | y0:n−1)∫

fθ(xn | xn−1)p(dxn−1 | y0:n−1)
. (6.26)

This recursion provides an online – forward-only – advancement of FFBS for estimating the smoothing
expectation of additive functionals. The complete method is summarised in Algorithm 17: the key
ingredients that, during the recursion, values of the functional Tθ,n(xn) are only required at the discrete
positions x(i)

n determined by the forward particle filter.
In the SDE context, under Assumption 14, the transition density fθ(x′ | x) is considered intractable,

thus Algorithm 17, apart from serving as a review of the method in Del Moral et al. (2010), does not
appear to be practical in the continuous-time case.

6.4 Data augmentation on diffusion pathspace

To overcome the intractability of the transition density fθ(x′ | x) of the SDE, we will work with an
algorithm that is defined in continuous-time and makes use of the complete SDE path-particles in its
development. The new method has connections with earlier attempts in the literature Särkkä and
Sottinen (2008) focus on the filtering problem for a class of models related to (6.1)-(6.1) and come
up with an approach that requires the complete SDE path, for a limited class of SDEs with additive
noise and no jumps. Fearnhead et al. (2008) also deal with the filtering problem, and – equipped
with an unbiased estimator of the unknown transition density – recast the problem as one of filtering
over an augmented space that incorporates the randomness for the unbiased estimate. Unfortunately,
the method is accompanied by strict conditions on the drift and diffusion coefficient (the SDE – no
jumps – can be transformed into one of unit diffusion coefficient and a drift that has a gradient form).
Our contribution requires, in principle, solely the diffusion coefficient invertibility Assumption 15;
arguably, the weakened condition we require is due to the fact that our approach appears as the
relatively most natural extension (compared to alternative methods) of the ‘standard’ discrete-time
algorithm of Del Moral et al. (2010).

The latter discrete-time method requires the density fθ(x′ | x) = fθ(dx
′ | x)/dx′. In continuous-
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time, we obtain an analytically available Radon-Nikodym derivative of pθ(dx′ | x), for a properly
defined variate x′ that involves information about the continuous-time path for moving from x to x′

within time ∆. We will give the complete algorithm. In this section, we prepare the ground via carefully
determining x′ given x, and calculating the relevant densities to be plugged in into the method.

6.4.1 SDEs with continuous paths

We work first with the process with continuous sample-paths, i.e. of dynamics:

dXt = bζ(Xt)dt+ σζ(Xt)dWt. (6.27)

We adopt an approach motivated by techniques used for MCMC algorithms (Golightly and Wilkinson,
2008; Roberts and Stramer, 2001; Chib et al., 2004). Assume we are given starting point x ∈ RdX ,
ending point point x′, and the complete continuous-time path for the signal process in (6.27) on [0, T ],
for some T ≥ 0. That is, we now work with the path process:

[{Xt; 0 ≤ t ≤ T} | X0 = x,XT = x′] . (6.28)

Let Pζ,x,x′ denote the law of path space-valued variable in (6.28). We consider the bridge process
X̃ = {X̃t; 0 ≤ t ≤ T} defined as:

dX̃t =

{
bζ(X̃t) +

x′ − X̃t

T − t

}
dt+ σζ(Xt)dWt, (6.29)

with X̃0 = x for t ∈ [0, T ]. We denote the law of X̃ by Qζ,x,x′ . Critically, a path of X̃ starts at point
x and finishes at x′, w.p.1. Under regularity conditions, Delyon and Hu (2006) prove that probability
measures Pζ,x,x′ , Qζ,x,x′ are absolutely continuous w.r.t. each other.

We treat the auxiliary SDE (6.29) as a mapping from the driving noise to the solution, whence
a sample path, X, of the process X̃ = {X̃t; 0 ≤ t ≤ T}, is produced by a mapping – determined by
(6.29) – of a corresponding sample path, say Z, of the Wiener process. That is, we have defined a
map, and – under Assumption 15 – its inverse:

Z 7→ X := Fζ(Z;x, x′), Z = F−1
ζ (X;x, x′). (6.30)

More analytically, F−1
ζ is is defined via the transform:

dZt = σζ(Xt)
−1

{
dXt − bζ(Xt)dt−

x′ −Xt

T − t
dt

}
. (6.31)

In this case, we define:

x′ := (x′, Z),
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and the probability measure of interest is:

pθ(dx
′ | x) := fθ(dx

′ | x)⊗ pθ(dZ | x′, x). (6.32)

Then, we have the following results.

Lemma 12. Let Zζx,x′ be the law of Z when X ∼ Pζ,x,x′ . Let W be the standard Wiener measure on
[0, T ]. Then we have that Zζx,x′ is absolutely continuous w.r.t. W.

Proof. Theorem 6 of Delyon and Hu (2006) shows that Pζ,x,x′ and Qζ,x,x′ are equivalent, and both X
and Z are constructed via the map Fζ(·) in (6.30). This implies that if X ∼ Qζ,x,x′ then Z ∼W thus
the result follows.

Lemma 13. The process Fζ
(
F−1
ζ (X;x, x′)

)
hits the end points x′ w.p.1 for X ∼ Pζ,x,x′ .

Proof. Lemma 12 ensures that Zζx,x′ is absolutely continuous w.r.t. W so that the measure induced by
Fζ(Z;x, x′) is also absolutely continuous w.r.t. the measure Qζ,x,x′ which is induced by Fζ(W ;x, x′)

where W is a Wiener process on [0, T ]. The result follows from that the diffusion process hits the
desired end point x′ w.p.1 under Qζ,x,x′ .

Again, let W be the standard Wiener measure on [0, T ]. Since we have:

pθ(dZ | x′, x)

W(dZ)
=
dPζ,x,x′
dQζ,x,x′

(Fζ(Z;x, x′)) ,

remains to obtain the density dPζ,x,x′
dQζ,x,x′

. Such a Radom-Nikodym derivative has been object of interest
in many works. Delyon and Hu (2006) provide detailed conditions and a proof, but (seemingly) omit
an expression for the normalising constant which is important in our case, as it involves the parameter
θ, in our applications later in the paper, we aim to infer about θ. Papaspiliopoulos and Roberts
(2009); Papaspiliopoulos et al. (2013) provide an expression based on a conditioning argument for the
projection of the probability measures on [0, t), t ≤ T and passage to the limit t ↑ T . The derivations
in Delyon and Hu (2006) are extremely rigorous, so we will make use the expressions in that paper.
Following carefully the proofs of some of their main results (Theorem 5, together with Lemmas 7, 8)
one can indeed retrieve the constant in the deduced density. In particular, Delyon and Hu (2006) a
impose the following conditions.

Assumption 16. i) v 7→ σζ(v) is twice continuously differentiable and bounded, with bounded first
and second derivatives, and it is invertible, with bounded inverse.

ii) v 7→ bζ(v) is locally Lipschitz, locally bounded.

iii) SDE (6.27) admits a strong solution.

Proposition 37. Under Assumption 16 we have that:

dPζ,x,x′
dQζ,x,x′

(Fζ(Z;x, x′)) =
| Σζ(x′) |1/2

| Σζ(x) |1/2
× N (x′;x, TΣζ(x))

fθ(x′ | x)
× G(X;x, x′),
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where G(X;x, x′) is defined as:

log G(X;x, x′) :=

∫ T

0

〈
bζ(Xt),Σ

−1
ζ (Xt)dXt

〉
− 1

2

∫ T

0

〈
bζ(Xt),Σ

−1
ζ (Xt)bζ(Xt)dt

〉
−1

2

∫ T

0

〈
(x′ −Xt), dΣ−1

ζ (Xt)(x
′ −Xt)

〉
T − t

− 1

2

∑dx
i,j=1 d

[
Σ−1
ζ,i,j , (x

′
i −Xt,i)(x

′
j −Xt,j)

]
T − t

, (6.33)

here [·, ·] denotes the quadratic variation process for semi-martingales.

We note that different transforms to (6.31) have been proposed in the literature (Dellaportas et al.,
2006; Kalogeropoulos et al., 2010) to achieve the same effect of obtaining an 1−1 mapping of the latent
path that has a density w.r.t. a measure that does not depend on x, x′ or ζ. However, such methods
are typically applicable for scalar diffusions, see e.g. Ait-Sahalia (2008). Auxiliary variables involving
a random, finite selection of points of the latent path, based on the (generalised) Poisson estimator of
Fearnhead et al. (2008) are similarly restrictive. In contrast to other attempts, our methodology may
be applied for a more general class of SDEs, as determined by Assumption 15, and further regularity
conditions, as in Assumption 16.

As a consequence of Proposition 37, we have obtained that:

pθ(dx
′ | x)(

Leb⊗dx ⊗W
)

(dx′)
= G(X;x.x′)×N (x′;x, TΣζ(x))× | Σζ(x

′) |1/2

| Σζ(x) |1/2
=: pθ(x

′ | x). (6.34)

Remark 16. A critical point here is that the above density is analytically tractable, thus by working on
pathspace we have overcome the unavailability of the transition density fθ(x′ | x).

6.4.2 SDEs with jumps

We extend the above developments to the more general case of the dx−dimensional jump diffusion
model given in (6.1), which we re-write here for convenience:

dXt = bζ(Xt−)dt+ σζ(Xt−)dWt + dJt, (6.35)

with X0 = x, t ∈ [0, T ].
Recall that J = {Jt} denotes a compound Poisson process with jump intensity λν(·) and jump-size

density hµ(·); also η = (ν, µ) and θ = (ζ, η). Let Fθ,x denote the law of the unconditional process
(6.35) and Lη the law of the involved compound Poisson process. We write J = ((τ1, b1), · · · (τκ, bκ))

to denote the jump process, where {τi} are the times of events, {bi} are the jump-sizes and κ > 0 is
the total number of events. In addition, we consider the reference measure L, corresponding to unit
rate Poisson process measure on [0, T ] multiplied with ⊗κ+1

i=1 Leb⊗dx .

Construct One We consider the random variate:

x′ =
(
J, {xτi−}κ+1

i=1 , {Z(i)}κ+1
i=1

)
,

177



under the conventions xτ0− := x, xτκ+1
:= x′, where we have defined:

Z(i) := F−1
ζ

(
X(i);xτi−1

, xτi−
)
, X(i) :=

{
Xt;xτi−1

≤ t ≤ xτi
}
,

for 1 ≤ i ≤ κ+ 1. We have that:

pθ(dx
′ | x) := Lη(dJ)⊗

[
⊗κ+1
i=1

{
fθ(dxτi− | xτi−1)⊗ pθ(dZ(i) | xτi−1 , xτi−)

}]
.

Using the results about SDEs without jumps in subsubsection 6.4.1 upon defiining:

x′(i) := (xτi− , Z(i)),

we have that:

fθ(dxτi− | xτi−1)⊗ pθ(dZ(i) | xτi−1 , xτi−)

Leb⊗dx(dxτi−)⊗W(dZ(i))
= pθ(x

′ | xτi− ; τi − τi−1).

Thus, the density of pθ(dx′ | x) w.r.t. the reference measure:

µ(dx′) := L(dJ)⊗
[
⊗κ+1
i=1

{
Leb⊗dx(dxτi−)⊗W(dZ(i))

}]
,

is equal to:

pθ(dx
′ | x)

µ(dx′)
=
e−

∫−1
0

λν(t)dt

e−1
×

κ∏
i=1

{λν(τi)hµ(bi)}

×
κ+1∏
i=1

pθ(x
′ | xτi− ; τi − τi−1). (6.36)

Construct Two We adopt an idea used – for a very different problem – in Gonçalves and Roberts
(2014). Given x, x′ ∈ Rdx , we define an auxiliary process X̃t as follows:

dX̃t =

{
bζ(X̃t) +

x′ − JT − X̃t + Jt
T − t

}
dt+ σζ(X̃t)dWt + dJt, (6.37)

with X0 = x so that X̃T = x′ w.p.1. As before, we view (6.37) as a transform, projecting a path, Z of
the Wiener process and the compound process, J , onto a path, X, of the jump process. That is, we
consider the map:

(J, Z) 7→ X =: Fζ(J, Z;x, x′), (J, Z) = F−1
ζ (X;x, x′). (6.38)

Notice that for the inverse transform, the J−part is obtained immediately, whereas for the Z− part
one uses the expression – well-defined due to Assumption 15:

dZt = σζ(Xt)
−1

{
dXt − dJt − bζ(Xt)dt−

x′ − JT −Xt + Jt
T − t

dt

}
. (6.39)

178



We denote by P̄ζ,x,x′ the law of the original process in (6.35) conditionally on hitting x′ at time T .
Also, we denote the distribution on pathspace induced by (6.39) as Q̄ζ,x,x′ . Now consider the variate:

x′ = (x′, J, Z),

so that:

pθ(dx
′ | x) := fθ(dx

′ | x)⊗ pθ (d(J, Z) | x, x′) .

Lemma 14. Let Zζ,x,x′ be the law of (J, Z) = F−1
ζ (X;x, x′) for X ∼ P̄θ,x,x′ and Lη ⊗W be the law

of the involved compound Poisson process and a Wiener process. Then Zζ,x,x′ is absolutely continuous
w.r.t. Lη ⊗W.

Proof. The assumptions on Jt and Delyon and Hu (2006, Theorem 1) ensure that P̄ζ,x,x′ and Q̄ζ,x,x′
are equivalent. X and (J, Z) are constructed via the map Fζ(·) in (6.38). Then the results follows
from the same line in Lemma 12.

Lemma 15. The process Fζ
(
F−1
ζ (X;x, x′)

)
hits the end points x′ w.p.1 for X ∼ P̄ζ,x,x′ .

Proof. This can be proven by the same argument in Lemma 13.

Therefore, due to the employed 1− 1 transforms, we have that:

pθ(dx
′ | x)(

Leb⊗dx ⊗ Lη ⊗W
)

(dx′)
= fθ(dx

′ | x)⊗ dP̄ζ,x,x′
dQ̄ζ,x,x′

(Fζ(J, Z;x, x′)) .

Thus, using the parameter-free reference measure:

µ(dx′) := Leb⊗dx ⊗ L⊗W,

one obtains that:

pθ(dx
′ | x)

µ(dx′)
= fθ(x

′ | x)× e−
∫ T
0
λν(t)dt

e−TTκ
×

κ∏
i=1

hµ(bi)

× dP̄ζ,x,x
′

dQ̄ζ,x,x′
(Fζ(J, Z;x, x′)) . (6.40)

Remark 17. Delyon and Hu (2006) obtained the Radon-Nikodym derivative after a great amount of
rigorous analysis. A similar development for the case of conditioned jump diffusions does not follow
from their work, and can only be subject of dedicated research at the scale of a separate paper. This
is beyond the scope of our work. In practice, one can proceed as follows. For grid size M ≥ 1,
and δ = T/M , let P̄Mθ,x,x′

(
Xδ, . . . , X(M−1)δ | X0 = x,XMδ = x′

)
denote the time-discretised Lebesgue

density of the M − 1-positions of the conditioned diffusion with law P̄θx,x′ . Once (6.40) is obtained, a
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time-discretisation approach will give:

P̄Mθ,x,x′
(
Xδ, . . . , X(M−1)δ | X0 = x,XMδ = x′

)
=

P̄Mθ,x,x′
(
Xδ, . . . , X(M−1)δ, XMδ = x′ | X0 = x

)
P̄Mθ,x,x′ (, XMδ = x′ | X0 = x)

.

In this time-discretised setting, fθ(x′ | x) will be replaced by P̄Mθ,x,x′ (XMδ = x′ | X0 = x). Thus, the
intractable transition density over the complete time period will cancel out, and one is left with an
explicit expression to use on a PC. Compared to the method in SDEs with continuous paths, and the
Construct One in the current section, we do not have explicit theoretical evidence of a density on the
pathspace. Yet, all numerical experiments we tried showed that the deduced algorithm was stable under
mesh-refinement. We thus adopt the approach (or, conjecture) that the density in (6.40) exists, under
assumptions, and can be obtained pending future research.

6.5 Forward-only smoothing for SDEs

6.5.1 Pathspace algorithm

We are ready to develop a forward-only particle smoothing method, under the scenario in (6.6)-(6.7)
on the pathspace setting. We will work with the pairs of random elements:

(xk−1,xk), 1 ≤ k ≤ n, (6.41)

with xk as defined in (subsection 6.4), i.e. containing pathspace elements. with xk given by an
1-1 transform of {Xs; s ∈ [tk−1, tk]}, such that we can obtain a density for pθ(xk | xk−1) w.r.t. a
reference measure that does not involve θ. Recall that pθ(xk | xk−1) denotes the probability law for
the augmented variable xk given xk−1. We also write the corresponding density as:

pθ(xk | xk−1) :=
pθ(dxk | xk−1)

µ(dxk)
.

The quantity of interest is now:

Sθ,n(x0:n) =

∫
Sθ(x0:n)pθ(dx0:n | y0:n), (6.42)

with n ≥ 1 for the class of additive functionals S(·) of the structure:

Sθ(x0:n) =

n∑
k=0

sθ,k(xk−1,xk), (6.43)

under the convention that x−1 := Ø. Notice that we now allow sk(·, ·) to be a function of xk−1 and
xk; thus, sk(·, ·) can potentially correspond to integrals, or other pathspace functionals. We will work
with a transition density on the enlarged space of xk.
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Similarly to the discrete-time case in Section 2, we define the functional:

Tθ,n(xn) :=

∫
Sθ(x0:n)pθ(dx0:n−1 | y0:n−1,xn).

Proposition 38. We have that:

Sθ,n(x0:n) =

∫
Tθ,n(xn)pθ(dxn | y0:n).

Proof. We have the integral:∫
Tθ,n(xn)pθ(dxn | y0:n) =

∫
Sθ(x0:n)pθ(dx0:n−1 | y0:n−1,xn)pθ(dxn | y0:n).

Also, simple calculations give rise to:

pθ(x0:n−1 | y0:n−1,xn) = pθ(dx0:n−1 | y0:n,xn),

=
pθ(x0:n | y0:n)

pθ(xn | y0:n)
.

Using this expression integral completes the proof.

Critically, we obtain the following recursion. (We provide a proof for completeness.)

Proposition 39. For any n ≥ 1, we have that:

Tθ,n(xn) =

∫
[Tθ,n−1(xn−1) + sθ,n(xn−1,xn)] pθ(dx0:n−1 | y0:n−1,xn),

=

∫
[Tθ,n−1(xn−1) + sθ,n(xn−1,xn] pθ(xn | xn−1)pθ(dxn−1 | y0:n−1)∫

pθ(xn | xn−1)pθ(dxn−1 | y0:n−1).

Proof. Simply note that:

pθ(dx0:n−2 | y0:n−2,xn−1)pθ(dxn−1 | y0:n−1,xn)

= pθ(dx0:n−2 | xn−1, y0:n−1,xn)pθ(dxn−1 | y0:n−1,xn)

= pθ(dx0:n−1 | y0:n−1,xn).

Replacing the probability measure on the left side of the above equality with its equal on the right side,
and using the latter in the integral above completes the proof for the first equation in the statement
of the proposition. The second equation follows from trivial use of Bayes rule.

Proposition 39 gives rise to a Monte-Carlo methodology for a forward-only, online approximation
of the smoothing expectation of interest. This is given in Algorithm 23
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Algorithm 23 Online Forward-Only Particle Smoothing on Pathspace

i) Initialise particles
{
x

(i)
0 ,W

(i)
0

}N
i=1

, with x(i)
0

i.i.d.∼ µθ(dx0), W (i)
0 = gθ(y

(i)
0 | x(i)

0 ), and functionals

T̂θ,0(x
(i)
0 ) = sθ,0(x

(i)
0 ), for 1 ≤ i ≤ N .

ii) Assume that at time n − 1, one has a particle approximation
{
x

(i)
n−1,W

(i)
n−1

}N
i=1

of the filtering

law pθ(dxn−1 | y0:n−1) and estimators T̂θ,n−1(x
(i)
n−1) of Tθ,n−1(xn−1), for 1 ≤ i ≤ N .

iii) As time n, sample x
(i)
n , for 1 ≤ i ≤ N , from:

x(i)
n ∼ p̂θ(dxn | y0:n−1) =

N∑
j=1

W
(j)
n−1pθ(dxn | x

(j)
n−1),

and assign particle weights W (i)
n ∝ gθ(yn | yn−1,F (i)

n ), 1 ≤ i ≤ N .

iv) Then, set, for 1 ≤ i ≤ N :

T̂θ,n(x(i)
n ) =

∑N
j=1W

(j)
n−1pθ(x

(i)
n | x(j)

n−1)∑N
l=1W

(l)
n−1pθ(x

(i)
n | x(l)

n−1)

[
T̂θ,n−1(x

(j)
n−1) + sθ,n(x

(j)
n−1,x

(i)
n )
]
.

v) Obtain an estimate of Sθ,n as:

Ŝθ,n =

N∑
i=1

W (i)
n T̂θ,n(x(i)

n ).

Remark 18. Although we have used the multinomial resampling, this should be understood as notational
convenience. Indeed, other resampling methods such as the systematic resampling (Carpenter et al.,
1999) and the stratified resampling (Kitagawa, 1996) can be directly used at the resampling step in
Algorithm 23. We refer to Douc and Cappé (2005) for theoretical analysis of resampling methods in
the context of SMC. Also notice that, our methodology can be applied to the auxiliary particle filter (Pitt
and Shephard, 1999; Johansen and Doucet, 2008). Therefore, our developments are general enough to
cover a broad range of SMC methods.

6.5.2 Pathspace versus finite-dimensional construct

One can attempt to define an algorithm without reference to the underlying pathspace. That is,
in the case of no jumps (for simplicity) an alternative approach can involve working with a regular
grid on the period [0, T ], say {sj = jδ}Mj=0, with δ = T/M for chosen size M ≥ 1. Then, defining
x′ = (xδ, x2δ, . . . , xMδ), and using, e.g., an Euler-Maruyama time-discretisation scheme to obtain the
joint density of such an x′ given x = x0, a Radon-Nikodym derivative, pMθ (x′|x) on RM×dx , can be
obtained with respect to the Lebesgue reference measure Leb⊗(dx×M), as a product ofM conditionally
Gaussian densities. As shown e.g.~in the motivating example in the Introduction, such an approach
would lead to estimates with variability that increases rapidly with M , for fixed Monte-Carlo particles
N . A central argument in this work is that one should develop the algorithm in a manner that respects
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the probabilistic properties of the SDE pathspace, before applying (necessarily) a time-discretisation
for implementation on a PC. This procedure is not followed for purposes of mathematical rigour, but
it has practical effects on algorithmic performance.

6.5.3 Consistency

For completeness, we provide the following stability result of Algorithm 23. Consider the following
assumptions.

Assumption 17. Let X and X denote the state spaces of x and x respectively.

i) For any relevant y′, y, F and x, gθ(y′ | y,F) = gθ(y | x) is a positive function such that
supx∈X | gθ(y | x) |<∞.

ii) supx′∈X,x∈X |pθ(x′ | x)| <∞.

Proposition 40. i) Under Assumption 17, for any n ≥ 0, there exist constants bn, cn > 0 such
that for any ε > 0:

P
(∣∣∣Sθ,n − Ŝθ,n∣∣∣ > ε

)
≤ bne−cnNε

2

.

ii) For any n ≥ 0, Ŝθ,n → Sθ,n w.p.1 as the number of particles N →∞.

Proof. The first part follows by the same arguments as Olsson and Westerborn (2017, Corollary 2).
Assume that the first statement holds at time n − 1. Define αn := N−1

∑N
i=1 g(yn | x(i)

n )(TNn (x
(i)
n ) −

Sn(θ)) and βn := N−1
∑N
i=1 g(yn | x(i)

n ) so that αn
βn

= Sθ,n − Ŝθ,n. From the assumption, | βn |≤|
gθ(yn | x) |∞ holds so that:

P
(
| βn − E

[
βn | FNn−1

]
|> ε

)
≤ 2e−cnNε

2

, (6.44)

holds by Azuma (1967), where FNn−1 denotes σ−algebra generated by Algorithm 23 at time n − 1.
By the construction, we obtain E

[
βn | FNn−1

]
=
∑N
i=1W

(i)
n−1

∫
gθ(yn | xn)pθ(dxn | x(i)

n−1). From the
induction assumption, we thus have that:

P
(∣∣∣∣E [βn | FNn−1

]
−
∫ [∫

gθ(yn | xn)pθ(dxn | xn−1)

]
pθ(dxn−1 | y0:n−1)

∣∣∣∣ > ε

)
≤ bne−cnNε

2

. (6.45)

Also by the assumption, we have
∣∣∣gθ(yn | x(i)

n )
(
T̂θ,n(x

(i)
n )− Sθ,n

)∣∣∣ ≤ 2 | gθ(yn | x) |∞| Sθ(x0:n) |∞.
Thus:

P
(
| αn − E

[
αn | FNn−1

]
|> ε

)
≤ 2e−cnNε

2

,

follows from Azuma (1967). Then, again by the construction, we can show that E
[
αn | FNn−1

]
=∑N

i=1W
(i)
n−1

∫
pθ(dxn | x(i)

n−1)gθ(yn | xn)
[
T̂θ,n−1(x

(i)
n−1) + sθ,n(x

(i)
n−1,xn)− Sθ,n

]
and:

∫ [∫
pθ(dxn | xn−1)gθ(yn | xn) [Tθ,n−1(xn−1) + sθ,n(xn−1,xn)− Sθ,n]

]
pθ(dxn−1 | y0:n−1) = 0.

183



Thus, the induction assumption gives rise to:

P
(∣∣E [αn | FNn−1

]∣∣ > ε
)
≤ bne−cnNε

2

,

so that:

P (| αn |> ε) ≤ bne−cnNε
2

. (6.46)

At time n = 0, we immediately have:

P
(∣∣∣Sθ,0 − Ŝθ,0∣∣∣ > ε

)
≤ b0e−c0Nε

2

, (6.47)

since Ŝθ,0 is simply an importance sampling estimator and thus the standard Hoeffding’s inequality
can be applied. From (6.44)-(6.47), the first claim follows from Douc et al. (2011a, Lemma 4)).

Given n ≥ 0, define AN (1/j) := {| Sθ,n − ŜNθ,n |> 1
j }, here we have used N to emphasise the

dependency of a particle estimate ŜNθ,n on N . Then we have:

P
(

lim
N→∞

ŜNθ,n = Sθ,n
)

= 1− P
(
∪∞j=1 lim sup

N→∞
AN (1/j)

)
≥ 1−

∞∑
j=1

P
(

lim sup
N→∞

AN (1/j)

)
.

From this we have that P (AN (1/j)) ≤ bne
−cnN( 1

j )
2

so that we obtain
∑∞
N=1 P (AN (1/j)) < ∞.

Therefore, P (lim supN→∞AN (1/j)) = 0 follows from the Borel–Cantelli lemma, and this gives rise
to P

(
limN→∞ ŜNθ,n = Sθ,n

)
= 1.

6.6 Online parameter/state estimation for SDEs

In this section, we derive an online gradient-ascent for partially observed SDEs. Following closely
Poyiadjis et al. (2011); Del Moral et al. (2010), we focus on a computational method to estimate the
MLE, that is, a gradient-ascent.

Poyiadjis et al. (2011) use the score function estimation methodology to propose an online gradient-
ascent algorithm for obtaining an MLE-type parameter estimate, following ideas in Le Gland and Mevel
(1997). In more detail, the method is based on the Robbins-Monro-type of recursion:

θn+1 = θn + γn+1∇ log pθ0:n(yn | y0:n−1)

= θn + γn+1

{
∇ log pθ0:n(y0:n)−∇ log pθ0:n−1(y0:n−1)

}
, (6.48)

where {γn}n≥1 is a positive decreasing sequence with:

∞∑
n=1

γn =∞,
∞∑
n=1

γ2
n <∞.
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The meaning of quantity ∇ log pθ0:n(y0:n) is that – given a recursive method (in n) for the estimation
of θ 7→ ∇ log pθ0:n(y0:n) as we describe below and based on the methodology of Algorithm 23– one
uses θn−1 when incorporating yn−1, then θn for yn, and similarly for k > n. See LeGland and Mevel
(1997); Tadic and Doucet (2018) for analytical studies of the convergence properties of the deduced
algorithm, where under strong conditions the recursion is shown to converge to the ‘true’ parameter
value, say θ?, as n→∞.

Observe that, from Fisher’s identity (see Poyiadjis et al. (2011); Cappé et al. (2005)) we have that:

∇ log pθ(y0:n) =

∫
∇ log pθ(x0:n, y0:n)pθ(dx0:n | y0:n). (6.49)

Thus, in the context of Algorithm 23, estimation of the score function corresponds to the choice:sθ,k(xk,xk−1) = ∇ log pθ(xk, yk | xk−1),

Sθ(x0:n) = ∇ log pθ(x0:n, y0:n) =
∑n
k=0∇ log pθ(xk, yk | xk−1).

Combination of the Robins-Morno recursion (6.48) with the one in Algorithm 23, delivers Algorithm
3, which we have presented here in some detail for clarity.
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Algorithm 24 Online gradient-ascent for SDEs via forward-only smoothing

i) Assume that at time n ≥ 0, one has a particle approximation
{
x

(i)
n ,W

(i)
n

}N
i=1

of the filtering

law pθ̂0:n(dxn | y0:n) and estimators T̂θ̂0:n,n(x
(i)
n ) of Tθ̂0:n,n(xn−1), for 1 ≤ i ≤ N , and current

parameter estimate θ̂n

ii) Apply the iteration:

θ̂n+1 = θ̂nγn+1

{
̂∇ log pθ̂0:n(y0:n)− ̂∇ log pθ̂0:n−1

(y0:n−1)
}
.

iii) As time n+ 1, sample x
(i)
n+1, for 1 ≤ i ≤ N , from:

x
(i)
n+1 ∼ p̂θ̂n+1

(dxn+1 | y0:n) =

N∑
j=1

W (j)
n pθ̂n+1

(dxn+1 | x(j)
n ),

and assign particle weights W (i)
n+1 ∝ gθ̂n+1

(yn+1 | yn,F (i)
n+1), 1 ≤ i ≤ N .

iv) Then, set, for 1 ≤ i ≤ N :

T̂θ̂0:n+1,n+1(x
(i)
n+1) =

∑N
j=1W

(j)
n pθ̂(x

(i)
n+1 | x

(j)
n )∑N

l=1W
(l)
n pθ̂(x

(i)
n+1 | x

(l)
n )

[
T̂θ̂0:n,n(x(j)

n ) + sθ,n(x(j)
n ,x

(i)
n+1)

]
,

where, on the right-hand-side we use the parameter θ = θ̂n+1.

v) Obtain an estimate as:

Ŝθn+1,n+1 =

N∑
i=1

W
(i)
n+1T̂θ̂0:n+1,n+1(x

(i)
n+1).

Remark 19. When the joint density of (x0:n, y0:n) is in the exponential family, an online EM algorithm
can also be developed; see Del Moral et al. (2010) for the discrete-time case.

6.7 Numerical Applications

When running the algorithms detailed below on a PC, we discretised the pathspace using the Euler-
Maruyama scheme with M = 10 time points per unit of time; the cost of the algorithms scales linearly
with M . To select the schedule of the tuning parameter {γk} in (6.48), we adopt the well-known
adaptive method developed in Kingma and Ba (2014) termed Adam to stabilise the unnecessary
numerical instability due to the choice of {γk}. Let cn := −

(
∇ log pθ̂0:n(y0:n)−∇ log pθ̂0:n−1

(y0:n−1)
)
.
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Then, Adam involves the following iterative steps:

mn = mn−1β1 + (1− β1)cn

vn = vn−1β2 + (1− β2)c2n

m̂n = mn/(1− βn1 ),

v̂n = vn/(1− βn2 ),

θ̂n+1 = θ̂n − αm̂n/
(√
v̂n + ε

)
,

(6.50)

where (β1, β2, α, ε) are the tuning parameters. Theoretical and empirical convergence properties of
Adam have been widely studied, see Goodfellow et al. (2016); Kingma and Ba (2014); Reddi et al.
(2019) for instance. Following Kingma and Ba (2014), we set (β1, β2, α, ε) = (0.9, 0.999, 0.001, 10−8)

throughout the rest of the paper.

6.7.1 Ornstein-Uhlenbeck SDE

We consider the following model:

dXt = −θ1Xt + θ2dWt, (6.51)

where we set (θ1, θ2) = (0.4, 0.5), with observations yi = xi + εi, εi
i.i.d.∼ N (0, 0.12), ∆ = 1. Notice

that one can calculate the score function of (6.51) analytically. To see the numerical stability of the
algorithm we have developed, we simulated the data sets for n = 2500, 5000, 7500 and 10, 000. Then
we applied Algorithm 23 to approximate the score function with the number of particles N = 50, 100,
and 150, each of these approximation experiments was replicated 50 times.

The results are plotted in Figure 13. The figure gives boxplots of the estimated score function values
of θ1, with the black dashed lines indicating the true values score function of. As one can see, the
algorithm estimates the score function at the true parameter value quite accurately for large enough
N . Based on the results, one can reasonably suggest that the asymptotic variance of the estimators
is bounded uniformly over n, in agreement with Proposition 39 and Del Moral et al. (2015, Theorem
3.1).

We add an extra parameter, and work with the model:

dXt = θ1(θ2 −Xt)dt+ θ3dWt + dJθt , (6.52)

where again data consist of noisy observations, yi = Xi + εi for i = 1, 2, · · ·n where εi
i.i.d.∼ N (0, 0.12)

and Jθt =
∑Nt
i=1 ξi is a compound Poisson process that Nt is a Poisson process with intensity θ4t and

ξi
i.i.d.∼ U (−θ5, θ5). We set the true parameter (θ?1 , θ

?
2 , θ

?
3 , θ

?
4 , θ

?
5) = (0.3, 0.0, 0.2, 0.5, 0.5) for (6.52) with

jumps and (θ?1 , θ
?
2 , θ

?
3 , θ

?
4 , θ

?
5) = (0.2, 0.0, 0.2, 0.0, 0.0) (6.52) without jumps, and simulate n = 20, 000

for both models. We then applied Algorithm 24 to these models given (θ?4 , θ
?
5) with N = 100 particles.

The results are plotted in Figure 14.
To compare the efficiency of the construction 1 and construction 2, we applied Algorithm 23 based

on each construction to approximate the score function with N = 50, 100, 150, 200 particles for the
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data simulated according to (6.52) of size n = 10. Each experiment was replicated R = 50times with
the parameter (θ?1 , θ

?
2 , θ

?
3 , θ

?
4 , θ

?
5) = (0.3, 0.0, 0.2, 0.5, 0.5). The results are plotted in Figure 15. We also

note that the computational cost of the construction 2 is much cheaper than that of the construction
1.

Figure 13: The boxplots of the estimated score function of θ1 of the model in (6.51). We set (θ1, θ2) =

(0.4, 0.5) with observations yi = xi + εi, εi
i.i.d.∼ N (0, 0.12). The blue, orange and green box plots

stand for the cases N = 50, 100 and 150 respectively. The black dash lines are the true values
(−33.1, 24.7,−154.2,−48.7) for n = 2500, 5000, 7500 and 10, 000 respectively.
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Figure 14: Trajectories from the online estimation of θ obtained from application of Algorithm 24
with N = 100 particles and initial value (1.0, 1.0, 1.0) for (θ1, θ2, θ3) respectively. Left panel shows the
results for (6.52) with jumps, and the right one shows (6.52) without jumps. The horizontal dashed
lines in the plots show the true parameter values (θ?1 , θ

?
2 , θ

?
3) = (0.2, 0.0, 0.2). We set (θ?4 , θ

?
5) = (0.5, 0.5)

for the jump model.

Figure 15: Boxplots of estimated score functions of θ1 over R = 50 experiment repetitions, for model
(6.52) with true parameter (θ?1 , θ

?
2 , θ

?
3 , θ

?
4 , θ

?
5) = (0.3, 0.0, 0.2, 0.5, 0.5) with n = 10. Each orange boxplot

corresponds to the construction 1 and blue one corresponds to the construction 2.
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6.7.2 Periodic Drift SDE

Consider the following non-liner model:

dXt = sin (Xt − θ1) dt+ θ2dWt, (6.53)

where 0 ≤ ζ1 ≤ 2π and the data consist of noisy observations, yi = Xti + εi where εi
i.i.d.∼ N (0, 0.12).

We set (θ?1 , θ
?
2) = (π/4, 0.9) as the true parameter. (M,N, n, τ) = (10, 100, 10000, 0.1) with the initial

values (θ0
1, θ

0
2) = (0.1, 2). To simulate (6.53), we applied the Euler–Maruyama with the mesh δ = 1/M .

The results are plotted in Figure 16.

Figure 16: (Left) Data set simulated according to the sine diffusion observed with error with para-
meter values (θ1, θ2) = (π/4, 0.9) in (6.53). The blue solid line indicates the values of state Xi. The
observations were obtained with errors which were distributed according to N (0, 0.12). (Right) Online
estimation of θ1 (top) and θ2 (bottom) for the data set. We set (0.1, 2) as the initial values for (θ1, θ2)
respectively with 100 particles in Algorithm 24. The horizontal dash lines indicate the true parameter
values in each case.

6.7.3 Heston model

Following Heston (1993), suppose that the dynamics of the underlying asset’s price St is given dSt =

θ4Stdt +
√
XtStdW

U
t where Xt is CIR process. Define log-prices Ut = log(St), and then Itô’s lemma

gives rise to: dUt =
(
θ4 − Xt

2

)
dt+

√
Xt

{(
1− θ2

5

)1/2
dWt + θ5dBt

}
,

dXt = θ1(θ2 −Xt)dt+ θ3

√
XtdBt,

(6.54)
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where Wt and Bt are Brownian motions, 2θ1θ2 > θ2
3 and −1 ≤ θ5 ≤ 1. We assume that Ut can be

observed discretely so that yi = Uti for i = 1, 2, · · ·n. Under this setting, the likelihood function of
observations yi given yi−1, Xt∈[ti−1,ti], θ is:

yi | yi−1, Xt∈[ti−1,ti], θ ∼ N (yi;µi,Σi),

where: µi = yi−1 +
∫ ti
ti−1

{
θ4 − 1

2Xt

}
dt+ θ5

∫ ti
ti−1

√
XtdBt,

Σi =
(
1− θ2

5

) ∫ ti
ti−1

Xtdt.
(6.55)

We set (θ?1 , θ
?
2 , θ

?
3 , θ

?
4 , θ

?
5) = (0.1, 1.0, 0.2, 0.45, 0.0) as the true parameter. We estimated the parameters

via Algorithm 24 with the initial values (θ0
1, θ

0
2, θ

0
3, θ

0
4, θ

0
5) = (0.005, 0.1, 0.4, 0.3) and fixed θ5 as we

conformed that estimating this parameter was difficult. We also set (M,N, n, τ) = (10, 100, 10000, 0.1).
The results are given in Figure 17.

Figure 17: Online estimation of θ1 (top), θ2 (second top) , θ3(second bottom) and θ4 (bottom) for the
data set simulated according to (6.54). We set (0.005, 0.1, 0.4, 0.3) as the initial values for (θ1, θ2, θ3, θ4)
respectively with 100 particles in Algorithm 24. The horizontal dash lines indicate the true parameter
values in each case.

6.7.4 Applications to real data with sequential model selection

We apply the method we have developed to real data with focus on model selection, motivated by
Eraker et al. (2003); Johannes et al. (2009). Suppose that now one has a set of candidate models
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{Mk}k∈K. Then Bayesian Information Criterion (BIC) Schwarz (1978) of the modelMk is given by:

BIC(Mk) := −2`θ̂kn
(y0:n−1) + dim(θk) log n, (6.56)

here θ̂kn stands for the MLE of the model Mk, and one selects the model minimising (6.56) as the
best model among the models being considered. BIC can be obtained as the 1−st order Laplace
approximation of the log marginal likelihood (or evidence), and thus the difference:

BIC(Ml,k) := −2
(
`θ̂ln

(y0:n−1) + `θ̂kn
(y0:n−1)

)
+ log n (dim(θl)− dim(θk)) , (6.57)

could be considered an approximation of the negative log Bayes factor (Kass and Raftery, 1995).
Since the (log) Bayes factor is strongly consistent in many cases (Chib and Kuffner, 2016), BIC is
also (Nishii, 1988; Sin and White, 1996). Critically, this is also the case in the context of discrete
time HMMs (Yonekura et al., 2018) so that it may be also true for our setting since the model being
considered is essentially continuous time HMM. To be precise, assume that the models being considered
are nested in the sense that a sequence of nested parametric modelsM1 ⊂ · · ·Mk ⊂ · · ·Mp is specified
via a sequence of corresponding parameter spaces Θ1 ⊆ Rd1 , and Θk+1 = Θk ×∆Θk, ∆Θk ⊆ Rdk+1,
k ≥ 1 with dim(θk) < dim(θl). In this case, if the modelMl is the true one, then BIC(Ml,k)→ −∞
as n → ∞ w.p.1. Or, if the modelMk is the true one, then BIC(Ml,k) → ∞ as n → ∞ w.p.1. See
also Eguchi and Masuda (2018) for a rigorous analysis of BIC for diffusion-type models. Hereafter we
always assume that dim(θk) < dim(θl) for BIC(Ml,k) where k < l.

It is worth noting that although Johannes et al. (2009) use the sequential likelihood ratio for such
model comparison, this quantity might be overshooting. That is, the likelihood ratio might tend to
choose a large model. Therefore, due to the penalty term, using the ratio of BICs might be more
sensible than using the likelihood ratio for the sake of identifying a model. Also, they use fixed
calibrated parameters so that they do not make statistical inference. Besides, Eraker et al. (2003) use
the Bayes factor for model selection. Since they use MCMC to estimate parameters, their approach
is not sequential. In contrast, the method we have studied allows us to estimate sequentially (also
online) parameters. Therefore, our approach might be understood as a generalization of Johannes
et al. (2009); Eraker et al. (2003).

Remark 20. In our setting, we want to use the numerical studies inspired by the problems in finance to
illustrate empirical performance and availability of the algorithm for real data so that we will use the
outcome of the online recursion as a proxy for the MLE. Then BIC will be approximated by running
our method for the chosen MLE value to obtain an approximation of the log-likelihood of the data at
this parameter value. Therefore, obtained BIC has to be understood as a proxy of (6.56).

Short-term interest rates We consider the following models for short-term interest rates:

dXt = b
(i)
θ (Xt) + θ4

√
XtdWt, (6.58)
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where: 
M1 : b

(1)
θ (Xt) = θ0 + θ1Xt,

M2 : b
(2)
θ (Xt) = θ0 + θ1Xt + θ2

2X
2
t ,

M3 : b
(3)
θ (Xt) = θ0 + θ1Xt + θ2

2X
2
t + θ3

Xt
.

(6.59)

This class of model has been used routinely to study non-linearity of drift in the short-term interest
rates, we refer to Jones (2003); Durham (2003); Ait-Sahalia (1996); ? and references therein for a
more in-depth treatment. Motivated by Dellaportas et al. (2006); Stanton (1997), we applied our
method to the 3-month treasury bill rates which can be obtained from FRED, Federal Reserve Bank
of St.Louis; https://fred.stlouisfed.org/series/TB3MS. We studied daily data from January 2

1970 to December 29, 2000 which consist of 7739 observations. The data set is plotted in Figure 18.
To obtain reasonable results, we first estimated the parameters with some arbitrary initial values,

and calculated the mean of the estimates after a burn-in period of 1000 time steps for each parameter.
Then we again estimated each parameter using the obtained mean as the initial values for estimating
the parameters. Also, we used the mean of the data 6.62 for the initial value X0 of the algorithm. We
did the same procedure for each model.

The estimated result are given in Figure 19, Figure 20 and Figure 21 forM1,M2 andM3 respect-
ively.

Figure 22 shows BIC difference in (6.57) for each pair. Recall that, for dim(θk) < dim(θl) where
k < l, if the model Ml is the true model, then BIC(Ml,k) → −∞ as n → ∞ and vice versa. First
of all, the result implies that the model M2 did not the fit the data among the models during the
period. Next, the modelM3 might be appropriate one especially after 1994 but the modelM1 might
also adequately fit the date before 1994. These results imply that, on average, models with a non-liner
drift function might be better to use to model the daily data of 3-month treasury bill rates, but the
evidence is not that strong in agreement with the empirical studies in Chapman and Pearson (2000);
Durham (2003); Dellaportas et al. (2006).
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Figure 18: The daily data of the 3-month Treasury Bill rates from January 2, 1970 to December 29,
2000.

approcash

Figure 19: Online estimation o the model M1 for the data set in Figure 18. We set
(0.243,−0.136, 0.0153) as the initial values for (θ0, θ1, θ4) respectively with 100 particles in Al-
gorithm 24.
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Figure 20: Online estimation of the model M2 for the data set in Figure 18. We set
(0.259,−0.0064,−0.079, 0.017) as the initial values for (θ0, θ1, θ2, θ4) respectively with 100 particles
in Algorithm 24.

Figure 21: Online estimation of the model M3 for the data set in Figure 18. We set
(0.21,−0.036,−0.067, 0.011, 0.016) as the initial values for (θ0, θ1, θ2, θ3, θ4) respectively with 100
particles in Algorithm 24.
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Figure 22: Online estimation of BIC difference defined in (6.57) for each model. The green solid line
stands for BIC(M32), the orange dash line stands for BIC(M31), and the light blue dot stands for
BIC(M21).

6.8 Conclusion and remarks

We have introduced an online particle smoothing methodology for discretely observed (jump) diffusions
with intractable transition densities. Our approach overcomes such intractability by formulating the
problem on pathspace, thus delivering an algorithm that -- besides regulatory conditions -- requires
only the weak invertibility Assumption (Assumption 15). Thus, we have covered a rich family of SDE
models, when related literature imposes strong restrictions. Combining our online smoothing algorithm
with a Robbins-Monro-type approach of Recursive Maximum-Likelihood, we set up an online stochastic
gradient-ascent for the likelihood function of the SDEs under consideration. The algorithm provides
a wealth of interesting output, that can provide a lot of useful insights in statistical applications. The
numerical examples show a lot of promise for the performance of the methodology. Our framework
opens up a number of routes for insights and future research, including the ones described below.

i) In the case of SDEs of jumps, we have focused on jump dynamics driven by compound Poisson
processes. There is great scope for generalisation here, and one can extend the algorithm to
different cases of jump processes, also characterised by more complex dependencies between the
jumps and the paths of the solution of the SDE, X = {Xt}. Extensions to time-inhomogeneous
cases are immediate; we have chosen the time-homogeneous models only for purposes of present-
ation simplicity. The method can also be easily adopted to models with continuous-time data,
once such information is separated in blocks of time intervals of T = O(1) length, notice that
the incremental score function splits into a signal component (where all the pathspace construct
will be applied) and a component involving the data given the signal, that, in principle, can be
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of any form without effect on the derivation of the algorithm.

ii) Since the seminal work of Delyon and Hu (2006), more ‘tuned’ auxiliary bridge processes have
appeared in the literature, see e.g. the works of Schauer et al. (2017); van der Meulen and
Schauer (2017). Indicatively, the work in Schauer et al. (2017) considers bridges of the form (in
one of the many options they consider) dX̃t =

{
b(X̃t) + Σ−1(x′)Σ(X̃)x

′−X̃t
T−t

}
dt + σ(X̃t)dWt.

Auxiliary bridge processes that are closer in dynamics to the diffusion bridges of the given signal
are expected to reduce the variability of Monte-Carlo algorithm, thus progress along the above
direction can be immediately incorporated in our methodology and improve its performance.
For instance, as noted in Schauer et al. (2017), use of the auxiliary bridge processes will give
a Radon-Nikodym derivative where stochastic integrals cancel out. Such a setting is known to
considerably reduce the variability of Monte-Carlo methods, see e.g.~the numerical examples in
Durham and Gallant (2002) and the discussion in Papaspiliopoulos and Roberts (2009, Section
4).

iii) The exact specification of the recursion used for the online estimation of unknown parameters
is in itself an problem of intensive research in the field of stochastic optimisation. One would
ideally aim for the recursion procedure to provide parameter estimates which are as close to the
unknown parameter as the data (considered thus far) permit. In our case, we have used a fairly
‘vanilla’ recursion, maybe with the exception of the Adam variation. E.g., recent works in the
Machine Learning community have pointed at the use of ‘velocity’ components in the recursion
to speed up convergence, see, e.g., Sutskever et al. (2013); Yuan et al. (2016).

iv) We have mentioned through the main text several modifications that can improve algorithmic
performance: dynamic resampling, stratified resampling, non-blind proposals in the filtering
steps, choice of auxiliary processes. Parallelisation and use of HPC are obvious additions in this
list.

v) Finally, we stress that the algorithm involves a filtering step, and a step that approximates the
values of the instrumental function. These two procedures should be thought of separately. A
reason of including two approaches in the case of jump diffusions (Constructs 1 and 2) is indeed
to highlight this point. The two Constructs are identical in terms of the filtering part. Construct
1 incorporates in x′ the location of the path at all times of jumps; thus, when the algorithm
‘mixes’ all pairs of {x(j)

k−1}, {x
(i)
k }, at the update of the instrumental function (see Step (iv)

of Algorithm 23), many of such pairs can be incompatible. Such an effect is event stronger in
the case of the standard algorithm applied in the motivating example in the Introduction, and
partially explains the inefficiency of that algorithm. In contrast, in Construct 2, x′ contains less
information about the underlying paths, thus improving the compatibility of pairs selected from
particle populations {x(j)

k−1}, {x
(i)
k }, thus, not surprisingly, Construct 2 seems more effective than

Construct 1.
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7 Adaptive Bayesian Model Selection for Diffusion Models

7.1 Introduction

This section studies MCMC methods for Bayesian model selection on high dimensional spaces. In par-
ticular, we focus on diffusion models potentially driven by fractional Brownian motion. Our approach
is well defined on the diffusion path space so that the mixing rate of the algorithm might not depend
on the mesh of discretization. Also, our new approach can avoid successfully a problem arising from
the nature of trans-dimensional MCMC methods, as a consequence of the exact approximation of the
posterior model probability. Critically, we propose the usage of MCMC methods on high dimensional
spaces within sequential Monte Carlo samplers to learn adaptively some tuning parameters of the
algorithm.

Let (E, E) be a mesurable space, and P(E) denote the set of all probability measures on this space.
Suppose that we are interested in sampling from η(dx) ∈ P(E) such that:

η(dx) :=
L(x)π0(dx)

Z
, (7.1)

where L : E → R is a likelihood function, π0(dx) ∈ P(E) is a prior distribution, and Z :=∫
E
L(x)π0(dx) is a marginal likelihood function so that η(dx) corresponds to a posterior distribu-

tion. The main objective of this study is to develope a Markov chain Monte Carlo method to estimate
Z on a high dimensional space.
Z is also called the evidence (Jeffreys, 1998) of the model in the context of the Bayesian model

selection due to the followings. Assume that one has two candidate models, sayM1 andM2, and wants
to compare them based on the posterior probability ofMi given data Y , say Π(Mi | Y ). Let p(Mi) be
a prior distribution over the models. Then Bayesian model selection will be done via comparing the
posterior model probability (Kass and Raftery, 1995) between modelsM1 andM2, which is given by:

π(M1 | Y )

π(M2 | Y )
=
p(M1)

∫
Θ1
p(θ1 | M1)p(Y | M1, θ1)dθ1

p(M2)
∫

Θ2
p(θ2 | M2)p(Y | M2, θ2)dθ2

=
p(M1)

p(M2)
BF12 (7.2)

where Θi and θi denote the parameter space and the parameter for the model i = 1, 2 and:

BF12 :=

∫
Θ1
p(θ1 | M1)p(Y | M1, θ1)dθ1∫

Θ2
p(θ2 | M2)p(Y | M2, θ2)dθ2

, (7.3)

is called the Bayes factor (Kass and Raftery, 1995). From the definition above, it is clear to see of great
importance of the evidence

∫
Θi
p(θi | Mi)p(Y | Mi, θi)dθi. In general, the posterior model probability

has the consistency property. That is if we select the model via the posterior model probability (the
Bayes factor), then, as n → ∞, the probability that selects the true model goes to 1. See Chib and
Kuffner (2016) for general treatment of the consistency of the posterior model probability, for instance.

Suppose that stochastic process X := {Xt; 0 ≤ t ≤ T} is obtained by the solution to the following
time-homogeneous stochastic differential equation (SDE):

dXt = bζ(Xt)dt+ σζ(Xt)dB
H
t , (7.4)
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where BH = (BHt ; 0 ≤ t ≤ T ) is a fractional Brownian motion (fBm) which is a centered Gaussian
process characterised by its Hurst parameter H ∈ (0, 1), and has the covariance:

Cov
(
BHt , B

H
s

)
=

1

2

(
| t |2H + | s |2H − | t− s |2H

)
. (7.5)

For H > 1
2 , B

H exhibits long-range dependence in the sense that the autocorrelation function of fBm
is not summable, and increments are positively correlated. In contrast, for H < 1

2 , increments of fBm
are negatively correlated with rougher paths. That is, the its autocorrelation function is summable
but decays slowly characterizing short-range dependence. When H = 1

2 , fBm becomes the well-known
Brownian motion. Therefore, fBm can be thought of as a generalization of the Brownian motion
allowing for memory in its increments.

Since the pioneering work of Mandelbrot and Van Ness (1968), owing to their rich structure re-
garding memory, models driven by fractional noise are being routinely used in such diverse disciplines,
we refer to Kou (2008) for various applications of such models in science. In particular, due to the
stylized facts suggesting the existence of the long memory property of the volatility process (Andersen
and Bollerslev, 1997; Andersen et al., 2001; Ding et al., 1993; Cont, 2001; Lobato and Savin, 1998;
Lobato and Velasco, 2000; Bollerslev and Jubinski, 1999), introducing a long memory in continuous
time stochastic volatility models has been an object of research in finance and financial econometrics
(Comte and Renault, 1996, 1998; Corsi, 2009; Chronopoulou and Viens, 2012; Guennoun et al., 2018;
Comte et al., 2012). After decades, introducing a short-range dependence in continuous time stochastic
volatility models also has been steadily gaining attention (Gatheral et al., 2018; Bayer et al., 2016;
El Euch and Rosenbaum, 2018, 2019; Forde and Zhang, 2017; Fukasawa, 2017; Alòs et al., 2007).

In this study, as studied in Gloter and Hoffmann (2007); Xiao et al. (2011); Rao (2011), we assume
that the process X can be observed at only discrete time instances Y0, Y1, . . . Yn, 0 ≤ m ≤ n, 0 ≤ t1 <
t2 < · · · tn possibly with random errors parametrized by the parameter denoted by λ. Also we write
the parameters θ := (ζ,H, λ) ∈ Rd and the likelihood of Y := (Y0, Y1, . . . Yn) as:

p(Y | θ) =

∫
p(Y | θ,X)p(dX | θ). (7.6)

Throughout this study, we assume that the likelihood function of Y given BH , say p(Y | BH), is
analytically tractable but we cannot marginalize the model onto finite dimensions. Let p(dθ) denotes
the prior distribution over parameters θ. Then Bayes’ theorem yields:

p(θ | Y ) =
p(θ)p(Y | θ)

p(Y )
, (7.7)

where:

p(Y ) =

∫
Θ

p(dθ)p(Y | θ), (7.8)

The main objective of our study is to estimate the evidence in (7.8) for SDE models driven by
fractional noise in (7.4) and make use of it for Bayesian model selection via the posterior model
probability in (7.2). Model selection for models based on (7.4) is of particularly important since it will
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enable us to shed light on the econometric debate on the short-range or long-range nature dependence
in volatility (Cont, 2001). In particular we will develop a proper Markov chain Monte Carlo (MCMC)
algorithm tailored to the structure of the models of interest. However, several challenging problems
will arise in our setting.

The first problem is the intractability of the likelihood function in (7.6). To adders this problem,
we adopt a data-augmentation approach from a Bayesian perspective. That is, we try to sample from
the joint posterior density of (X, θ):

Π(X, θ | Y ) ∝ p(Y | X, θ)p(X | θ)p(θ). (7.9)

However, sampling from (7.9) will end up with slow mixing due to the high correlation between BH

and H which yields the high correlation between X and H. When H = 1
2 , due to the Markovian

property, decoupling such dependency is well documented (Kalogeropoulos et al., 2010; Roberts and
Stramer, 2001; Golightly and Wilkinson, 2008), and also MCMC within particle methods can be
straightforwardly applied (Andrieu et al., 2010; Chopin et al., 2013). Since we allow H to take values
in (0, 1), such techniques based on the Markovian property cannot be applied to our setting. In fact,
when H 6= 1

2 , the parameters θ can be fully identified by a continuous path of X, and thus the joint
posterior (7.7) will be degenerated, with p(X | H) being a Dirac measure, see Rao (2011) for instance.
In addition, most critically, estimating the evidence with an intractable likelihood in high-dimensional
spaces is itself one of the most important challenges to computational methodology (Everitt et al.,
2017; Lyne et al., 2015; Carlin and Chib, 1995; Chib, 1995; Gelfand and Smith, 1990). This problem
will be of particular concern for our setting since a path of SDE is defined on an infinite-dimensional
space with involving an intractable likelihood.

In this study, these challenging issues are addressed in order to develop a scalable, robust and
adaptive MCMC algorithm. In particular, we resort to a class of Hamiltonian Monte Carlo (Duane
et al., 1987) defined on an infinite-dimensional space within Sequential Monte Carlo (SMC) samplers
studied in Del Moral et al. (2006). Compared with literature, the main contributions of the paper in
this setting – and they do relate with overcoming the difficulties – will be as follows:

i) Following closely Beskos et al. (2015), we present a scalable method to simulate realizations of BH

with the O(N logN) computational cost first studied in Davies and Harte (1987). This method
also decouples the dependency between BH and X, and thus gives rise to a-priori independent
structure. Since this algorithm is well-defined for any H ∈ (0, 1), we do not need to assume the
particular range of values of H to do statistical inference, in contrast with the literature typically
assumingH ≥ 1

2 such as Neuenkirch and Tindel (2014); Xiao and Yu (2019); Belfadli et al. (2011);
Hu and Nualart (2010); Xiao et al. (2011). This ad hoc restriction is not really favourable since
some empirical studies show that the Hurst parameter will be less than 1

2 (Gatheral et al., 2018;
Beskos et al., 2015; Cont, 2001; Bayer et al., 2016).

ii) The convergence property of our MCMC algorithm is mesh-free in the sense that its mixing
time does not deteriorate as the dimension of the state space increases. This property is of
particular important since, in practice, one has to discretize the continuous models in (7.4)
via some numerical approximation methods, and this gives rise to an N−dimensional proxy of
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the target which is theoretically defined on the corresponding infinite-dimensional space. What
the mesh-free property says is that the convergence property will not deteriorate upon refine-
ment of the approximation of the inherently infinite-dimensional diffusion paths of X by the
finite N−dimensional proxy ones used in practice when applying the algorithms on a computer.
Therefore, our algorithm is robust over the dimension of the models being considered.

iii) As we will see later, our algorithm involves some user-specified tuning parameters (hyper para-
meters) in advance, and the performance of the algorithm will be affected significantly by such
parameters in practice. In this paper, we present a class of Hamiltonian Monte Carlo within
sequential Monte Carlo samplers. This approach allows, given some initials, the tune parameters
to be adaptively learned within the algorithm according to the information on the models and
data by using the outputs generated by sequential Monte Carlo. In addition, as a result of the
usage of sequential Monte Carlo samplers, we can construct an unbiased and consistent estimator
of the evidence in (7.8), and thus the Bayes factor in (7.3) as well.

iv) We also develop MCMC for Bayesian model selection. Our algorithm can be considered as an
exact approximation of the posterior model probability. Compared with other trans-dimensionl
MCMC methods, our method can avoid finding a dimension-match transformation. Also, our
model selection method could be well defined on the diffusion pathspace a consequence of the
mesh-free property.

The rest of the paper is organised as follows. In subsection 7.2 we review basics of Bayesian model se-
lection and its computational strategies. We then develop our methods for Bayesian model selection on
high dimensional spaces in subsection 7.3. subsection 7.4 is devoted to providing our approach to over-
come high correlation between BH and H. We first develop efficient technique for simulating fractional
Brownian motion, then we study joint inference for (X, θ) based on the advanced Hamiltonian Monte
Carlo. The advanced Hamiltonian Monte Carlo involves some user specified tuning parameters. Thus
we study how to make use of SMC samplers to learn adaptively tuning parameters in subsection 7.5,
then conclude in subsection 7.6.

7.2 Basics of Bayesian model selection and computational strategies

Consider a countable set of parametric models, denoted by M = {Mk}k∈K, and let Y = y0:n be the
data observed according to a likelihood function L(Y | θk,Mk) with corresponding parameter spaces
θk ∈ Θk. In the framework of Bayesian model selection, one needs to specify a prior distribution
must be specified over the parameter given the model and a model, we write p (θk | Mk) and p(Mk)

respectively. Then Bayes’ theorem gives rise to the the posterior distribution of the parameters and
the model given Y on the product space ∪k∈K {Mk} ×Θk:

Π (θk,Mk | Y ) =
L(Y | θk,Mk)p (θk | Mk) p(Mk)

p(Y )
, (7.10)
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where:

p(Y ) :=
∑
k∈K

p(Y | Mk)p(Mk), (7.11)

p(Y | Mk) :=

∫
L(Y | θk,Mk)p (θk | Mk) dθk. (7.12)

In the context of Bayesian model selection, Π (θk,Mk | Y ) is often called the full posterior. Within
the model, one obtains:

Π (θk | Y,Mk) =
L(Y | θk,Mk)p (θk | Mk)

p(Y | Mk)
, (7.13)

where p(Y | Mk) is again called the evidence or the marginal likelihood. It turns out that the posterior
model probability of the modelMk is given by θk−marginal of Π(θk,Mk | Y ):

Π (Mk | Y ) =

∫
L(Y | θk,Mk)p (θk | Mk) p(Mk)dθk∑

l∈K p(Ml)
∫
L(Y | θl,Ml)p (θl | Ml) dθl

. (7.14)

Now assume that one has two models, sayM1 andM2. Then the ratio of Π (M1 | Y ) and Π (M2 | Y )

is given by:

Π (M1 | Y )

Π (M2 | Y )
=
p(M1)

∫
L(Y | θ1,M1)p (θ1 | M1) dθ1

p(M2)
∫
L(Y | θ2,M2)p (θ2 | M2) dθ2

, (7.15)

=
p(M1)

p(M2)
B12,

where B12 is again called the Bayes factor given in (7.3). In other words, the posterior odds equal to
the Bayes factor times the prior odds. Also notice that if one uses a uniform prior for p(Mk) for k ∈ K

then (7.15) becomes just the Bayes factor so that it can be understood as the evidence provided by
the data in favour ofM1 against modelM2 so that the Bayes factor is the principle tool for Bayesian
model model selection. In particular, Kass and Raftery (1995); Jeffreys (1998) suggest the following
interpretation of the the Bayes factor B12.

log10B12 B12 the evidence provided by the data in favour ofM1 against modelM2

0 to 2 1 to 3.2 Not worth more than a bare mention
2 to 6 3.2 to 10 Substantial
6 to 10 10 to 100 Strong
10 > 0 100 > 0 Decisive

Table 3: The interpretation of the Bayes factor in Kass and Raftery (1995); Jeffreys (1998).

Zhou et al. (2016) point out the following three fundamentally different approaches.

i) Calculate the posterior model probability Π (Mk | Y ) directly.

ii) Calculate the evidence p(Y | Mk) of each model.
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iii) Calculate pairwise evidence ratios, that is the Bayes factor Bk,l for modelMk andMl directly.

We then review several classical computational ways for the three approaches.

The first approach One of the straightforward ways could be using reversible jump MCMC Green
(1995), see also Algorithm 2. Namely, one can explore the full posterior Π (θk,Mk | Y ) ∝ L(Y |
θk,Mk)p (θk | Mk) p(Mk) defined on the product space ∪k∈K {Mk}×Θk via reversible jump MCMC,
and then integrate out w.r.t. θk. We again note that reversible jump MCMC requires a dimension
matching transformation, and establishing such a transformation is itself a difficult problem.

The second approach One of the easiest ways to calculate p(Y | Mk), if one uses a uniform prior
for p(Mk), might be calculating BIC of each model. As we studied, this strategy might work if the
models satisfy the Laplace regular condition (Kass et al., 1991). Alternatively, let {θ̂(i)}Ni=1 be MCMC
outputs targetting Π (θk | Y,Mk). Since p(Y | Mk) :=

∫
L(Y | θk,Mk)p (θk | Mk) dθk, the harmonic

mean (Newton and Raftery, 1994):

p̂(Y | Mk) :=

(
1

N

N∑
i=1

L(Y | θ̂(i)
k ,Mk)

)−1

, (7.16)

can be used as an approximation of p(Y | Mk) but it is well known that this estimator does not always
have a finite variance (Kass and Raftery, 1995).

The third approach Consider a path of distributions such that c = γλ(x)/Zλ where λ ∈ [0, 1] and
Zλ =

∫
γλ(x)dx. Then we are interested in the logarithm of the ratio of their normalising constants,

that is r01 := log(Z1/Z0). Clearly, this could be equal to the logarithm of the Bayes factor. In practice,
one could set γλ(x) = (1− λ)γ0(x) + λγ1(x) for λ ∈ [0, 1]. Under some assumptions, it can be shown
that:

∇ logZλ =
∇Zλ
Zλ

=
∇
[∫
γλ(x)dx

]
Zλ

=

∫
∇ log γλ(x)ηλ(x)dx = Eηλ [∇ log γλ] . (7.17)

Integrating (7.17), from 0 to 1 gives the log of the ratio of the normalising constants:

r01 = log

(
Z1

Z0

)
=

∫ 1

0

Eηλ [∇ log γλ] dλ. (7.18)

If one considers λ as a random variable with a uniform distribution on [0, 1], one could see (7.18) as
the expectation of ∇ log γλ w.r.t. the joint distribution of (x, λ). Introducing a prior density p(λ) for
λ ∈ [0, 1] gives rise to the path sampling identity :

r01 =

∫ 1

0

Eηλ [∇ log γλ]

p(λ)
p(λ)dλ. (7.19)

Using (7.19), Gelman and Meng (1998) introduce the followings. First one discretises λ as L points
on [0, 1], say 0 = λ(1) < . . . < λ(L) = 1. Then for each l ∈ {1, · · · , L} with λ = λ(l), obtain Nl MCMC

203



samples leaving ηλ(x) invariant. Then one could estimate Eηλ [∇ log γλ] by such MCMC outputs so
that r01 could be obtained by numerical integration w.r.t. λ.

Zhou et al. (2016) argue that these three methods admit natural SMC samplers (Algorithm 12)
based strategy, and each one has pros and cons. In this study, we will follow the first approach. As we
mentioned, one of the main drawbacks of this approach is that requires a non-trivial transformation.
To overcome this problem, we will use pseudo-marginal MCMC (see subsection 2.4) to approximate
Π (θk,Mk | Y ) exactly. Also, we will tackle a problem arising from high-dimensional nature of diffusion
models by using the advanced HMC (see subsection 2.7) within SMC sampler.

7.3 Estimating the evidence

We propose SMC sampler to estimate the evidence in subsubsection 7.3.1. A critical point is that one
can construct an unbiased estimator of the evidence. Using such an estimator, we makes use of pseudo-
marginal MCMC to approximate the posterior model probability. To overcome high-dimensional nature
of the latent path driven by diffusion models, we then construct a MCMC kernel based on the advanced
HMC whose mixing behaviour does not depend on the dimensionality.

7.3.1 Tempering and sequential Monte carlo sampler

First, we introduce the tempered posterior distributions:

ηn(dx) :=
γn(dx)

Zn
, (7.20)

where γn(dx) := L(x)φnπ0(dx), Zn :=
∫
γn(dx) and 0 = φ0 < φ1 < · · ·φn < · · ·φp = 1, thus

ηp(dx) = η(dx) and η0(dx) = π0(dx). The sequence {φn}pn=0 is commonly called inverse temperature.
Note that the index n is auxiliary. As noted by Chopin (2002); Del Moral et al. (2006); Neal (2001);
Zhou et al. (2016), such a tempering approach might provide potential stability and reduction in
computational complexity in a high-dimensional setting. The sequence of the tempered distributions
can be also understood as a sequence of the bridging distributions in the sense that they gradually
evolve from the tractable prior π0(dx) = η0(dx) to the complex the posterior η(dx) = ηp(dx). As a
consequence, now we have a sequence of probability distributions {η̂n(dx)}pn=0 which are defined on a
common measurable space. SMC cannot be applied directly to such a sequence of distributions since it
is available for distributions whose dimension is increasing over time index. See Doucet and Johansen
(2009) and references therein, and section 3 for a more in-depth treatment of SMC.

As we studied in subsection 3.3, we make use of SMC sampler (Algorithm 12). As before, define a
sequence of distributions defined on product spaces (Ep, Ep) := (

∏p
n=0E

n, E⊗p):

η̃n(x1:n) := ηn(xn)

n−1∏
k=1

Bk(xk+1, xk), (7.21)

where Bk is a transition density from Ek+1 to Ek. Also let {Kk}n−1
k=1 : E×E → [0, 1] be ηk(dx)−reversible

MCMC kernels which are chosen to satisfy that Bk−1 ⊗ γk is absolutely continuous w.r.t. γk−1 ⊗ Kk
for any k. Then it is given by Bk(xk+1, xk) = ηk(dxk−1)Kk(θk−1,θk)

ηk(dxk) so that we have unnormalised
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incremental weight:

wk :=
Bk−1(xk, xk−1)

Kk(xk−1, xk)

γk(xk−1)

γk−1(xk−1)
= L(xk−1)(φk−φk−1). (7.22)

Critically, notice that:∫
wkηk−1(xk−1)Kk(xk−1, xk)dxk−1:k =

∫
Bk−1(xn, xk−1)

γk(xk)

Zk−1
dxk−1:k =

Zk
Zk−1

,

and thus, this gives rise to the estimate of the ratio of normalising constant Zk
Zk−1

as follows:


Ẑk
Zk−1

=
∑N
i=1W

(i)
k−1w

(i)
k ,

W
(i)
k :=

w
(i)
k∑N

j=1 w
(j)
k

.
(7.23)

Thus, by-product of (7.23), we can obtain the estimate of Zn: for n ≥ 1:

Ẑn = Ẑ0

n∏
k=1

(
N∑
i=1

W
(i)
k−1w

(i)
k

)
. (7.24)

For the sake of completeness, we include the following proposition.

Proposition 41.

i) For any N,n ≥ 0, E
[
Ẑn
]

= Zn holds.

ii) For any N,n ≥ 0, Ẑn ≥ 0.

iii) Assume that for any x ∈ E, there exists c ∈ (0, 1) such that c ≤ L(x)∆φn ≤ c−1 where ∆φn :=

φn − φn−1 for n ≥ 1. Then we have that for any n ≥ 0,

√
E
[(
Ẑn −Zn

)2
]
→ 0 as N →∞.

Proof. Set the potential function asG(xn−1, xn) := γn(xn−1)
γn−1(xn−1) , and defineQ(dx1:n) := ηn(dxn)

∏n−1
k=1 Bk(xk+1, xk).

Then, as we studied in Example 13, the pair (G(xn−1, xn),Kn) recovers the Feynman-Kac path measure
Q(dx1:n). Indeed, it can be shown that, for f ∈ Bb(E),

∫
f(xn)

∏n−1
p=1 G(xp−1, xp)Kp(xp−1, xp)dx0:p =∫

f(xn)γn(xn)dxn =: γn(f), and thus ηn(f) = γn(f)
γn(1) holds. Therefore, the claims follow from The-

orem 17 and Theorem 18 respectively.

7.3.2 MCMC for the Bayesian model selection

Suppose that now one has a countable set of candidate models, denoted by M := {Mk}k∈K with
corresponding parameter spaces θk ∈ Θk ⊆ Rdk . Then we have the tempered full posterior density on
the space ∪k∈K {Mk} ×Θk such that:

ηn(θk,Mk | Y ) =
L(Y | θk,Mk)φnπ0(θk)p(Mk)∑

k∈K Zn(Y | Mk)p(Mk)
, (7.25)
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where again Y denotes data, p(Mk) is a discrete prior distribution overMk and:

Zn(Y | Mk) :=

∫
Θk

L(Y | θk,Mk)φnπ0(θk)dθk. (7.26)

From (7.25), again, it is clear to see that the posterior probability of the model Mk is given by
θk−marginal of η(θk,Mk | Y ):

ηn(Mk | Y ) =
p(Mk)

∫
Θk
L(Y | θk,Mk)φnπ0(θk)dθk∑

l∈K p(Ml)Zn(Y | Ml)
=

p(Mk)Zn(Y | Mk)∑
l∈K p(Ml)Zn(Y | Ml)

, (7.27)

which has been considered as the core principle within the Bayesian model comparison problem, see e.g.
Chipman et al. (2001); Robert (2007); Kass and Raftery (1995). In order to carry out Bayesian model
selection, we want to establish a MCMC for (7.27) on the space ∪k∈K {Mk}×Θk. Let qM(Mk′ | Mk)

be a some known proposal. Then the ideal MCMC can be algorithmically described as:

i) Propose a candidateMk′ via qM(Mk′ | Mk)

ii) AcceptMk′ w.p. min
{

1, qM(Mk|Mk′ )η(Mk′ |Y )
qM(Mk′ |Mk)η(Mk|Y )

}
= min

{
1, qM(Mk|Mk′ )p(Mk′ )Z(Y |Mk′ )

qM(Mk′ |Mk)p(Mk)Z(Y |Mk)

}
.

The reason why above algorithm is the ideal one is that, as we mentioned, intractability of the model
evidence Z(Y | Mk) in (7.26). Therefore, Bayesian model selection directly based on the posterior
probability (7.27) cannot be implemented in practice. To adders this problem, we propose the following
procedure which is an application of pseudo-marginal MCMC (Andrieu and Roberts, 2009), and a
similar idea can be found in Karagiannis and Andrieu (2013).

The main idea is that whilst Z(Y | Mk) is intractable, we can construct an estimator of it via
Algorithm 12, that is, (7.24) given Mk. This estimator is indeed unbiased due to Proposition 41.
Then this leads us to replace the target η(Mk | Y ) by the extended exact approximation based on the
unbiased estimator, which marginally admits the target. We note that both the ideal method and the
one which we will introduce can be considered as a Gibbs type method in the sense that we first run a
simulation only on Θk givenMk instead of sampling jointly from (7.25) on the space ∪k∈K {Mk}×Θk.

To sample from (7.27), we first run Algorithm 12 until n = p, and write all random variables
generated by Algorithm 12 as Uk ∈ Uk so that now we can construct the extended approximate target
η̂(Mk,Uk | Y ) on the extended product spaceMk × Uk. To be precise, we have that:

η̂(Mk,Uk | Y ) ∝ p(Uk)p(Mk)L̂(Y | Mk,Uk), (7.28)

where L̂(Y | Mk,Uk) is given in (7.24) at auxiliary time n = p, p(Uk) denotes the density of Uk, and
we have assumed thatMk and Uk are a-priori independent for any k ∈ K. Note that here we use Uk
to emphasise the dependency of a particle estimate of Z(Y | Mk) on Uk. In this case, a joint proposal
density of (Mk,Uk) is given by:

q(Mk′ ,Uk′ | Mk,Uk) = qM(Mk′ | Mk,Uk)qU (Uk′ | Uk), (7.29)
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which is the product of the two proposals that we set as:

qM(Mk′ | Mk,Uk) = qM(Mk′ | Mk), qU (Uk′ | Uk) = p(Uk′). (7.30)

Finally, we acceptMk′ and Uk′ w.p.

α ((Mk,Uk), (Mk′ ,Uk′)) := min

{
1,
q(Mk,Uk | Mk′ ,Uk′)η̂(Mk′ ,Uk′ | Y )

q(Mk′ ,Uk′ | Mk,Uk)η̂(Mk,Uk | Y )

}
,

= min

{
1,
qM(Mk | Mk′)L̂(Y | Mk′ ,Uk′)p(Mk′)

qM(Mk′ | Mk)L̂(Y | Mk,Uk)p(Mk)

}
, (7.31)

then these developments lead us to have the followings.

Proposition 42. GivenMk and Uk, consider the following procedure.

i) Propose a move from the modelMk to the modelMk′ via proposal density qM(Mk′ | Mk).

ii) GivenMk′ , run Algorithm 12 untill auxiliary time n = p , and obtain L̂(Y | Mk′ ,Uk′).

iii) Accept (Mk′ ,Uk′) according to (7.31).

Then we have that:

i)
∫
η̂(Mk,Uk | Y )dUk = η(Mk | Y ) for any k ∈ K.

ii) The Markov chain (Mk,Uk) 7→ (Mk′ ,Uk′) induced by above has η̂(Mk′ ,Uk′ | Y ) as an invariant
distribution for any k′ ∈ K.

iii) The Markov chain (Mk,Uk) 7→ (Mk′ ,Uk′) induced by above is uniformly ergodic for any k′ ∈ K.

Proof. Since L̂(Y | Mk,Uk) is unbiased (Proposition 41), we have that:∫
L̂(Y | Mk,Uk)p(Uk)dUk = L(Y | Mk).

As a consequence, we obtain:

p(Mk)

∫
L̂(Y | Mk,Uk)p(Uk)dUk ∝ η(Mk | Y ),

as required. Also, we have that:

L̂(Y | Mk,Uk))qM(Mk′ | Mk)p(Uk′)α ((Mk,Uk), (Mk′ ,Uk′)) ∝ p(Uk)p(Uk′)×

min
{
p(Mk)L̂(Y | Mk,Uk)qM(Mk′ | Mk), p(Mk′)L̂(Y | Mk′ ,Uk′)qM(Mk | Mk′)

}
which is clearly symmetric w.r.t. (Mk′ ,Uk′)↔ (Mk,Uk) so that the detailed balance condition w.r.t.
η̂(Mk,Uk | Y ) holds. The final claim of the proposition follows from the fact that the ideal MCMC
is obviously uniformly ergodic since its state space K is finite, and thus Andrieu and Roberts (2009,
Theorem 8) can be applied.

207



Remark 21. In the implementation, the result
∫
η̂(Mk,Uk | Y )dUk = η(Mk | Y ) means that Uk can be

simply disregarded so that we will not store them in the subsequent implementations but only save the
scalar value of estimate L̂(Y | Mk,Uk).

Above method can be considered as an exact approximation of the target η(Mk | Y ), and therefore
our approach has several advantages. First of all, we can avoid potential problems arising from trans-
dimensional MCMC methods which aim to sample directly from the full posterior density (7.25). For
instance, reversible jump MCMC (Green, 1995) has been routinely used in the context of Bayesian
model selection. The reversible jump MCMC involves so-called dimension matching mapping due to
joint inference on on the space ∪k∈K {Mk} × Θk , which is rather hard to be established in general
(Brooks et al., 2003), also it depends strongly on the models being considered. See also subsection 2.3.
This is particularly problematic in a high-dimensional setting, and constructing such dimension match-
ing mapping is less clear. Our approach does not require such a dimension matching mapping since
it exactly approximates the idealised algorithm, and thus might outperform reversible jump MCMC
whose mixing speed is typically poor unless one can find a good choice of the dimension matching map-
ping (Zhou et al., 2016; Karagiannis and Andrieu, 2013). Also, our method is an all in one approach
(Zhou et al., 2016) in the sense that model selection and parameter estimates are simultaneously done.
Therefore, one does not need to run a separate simulation for each model so that it might reduce the
computational cost.

7.3.3 Constructing MCMC kernels on high dimensional spaces

Performance of SMC sampler (Algorithm 12) critically depends on a choice of MCMC kernels {Kk}n−1
k=1 .

Assume that (E, E) = (RN ,B(RN )). Then the standard Hamiltonian Monte Carlo (HMC), first
presented in Duane et al. (1987), involves extending the state space via introducing the auxiliary
random variable called velocity v ∈ RN . Let x ∈ RN . x can be thought of as location and the phase
space is defined as the product space of x and v, that is R2N . We refer to Neal (2011); Bou-Rabee and
Sanz-Serna (2018) for a general reference of the HMC. See also subsection 2.6.

Unfortunately, HMC provides an inappropriate proposal x? for increasing N . Indeed, the results
in Beskos et al. (2013b) imply that one has to decrease the step size ε in a numerical integrator to
O
(
N−1/4

)
in order to control the acceptance probability for increasing N . Otherwise, critically, the

acceptance probability will degenerate into 0 as N → ∞ given ε. This difficultiy motivates us to
use the advanced Hamiltonian Monte Carlo (Beskos et al., 2011, 2013a) which successfully avoids this
degeneracy problem by employing a modified leapfrog integrator which yields better performance in
high dimensions. That is, as we will study later, the advanced HMC has the important mesh-free
property in the sense that the speed of mixing of the Markov chain does not deteriorate as N →∞. In
other words, we have the fixed leapfrog step size ε = O(1) even when N →∞. Clearly, this mesh-free
property is particularly desirable for our setting.

To derive the algorithm, we first need to make the following assumption on the tempered target
distribution ηn(dx) in (7.20). First we define the potential function:

Φn(x) := − logL(x)φn − log π0(x). (7.32)
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Assumption 18. Let Π0 be a centred Gaussian distiribution N (0, C). Then ηn(dx) can be expressed
as change of measure from Gaussian law:

dηn
dΠ0

(x) ∝ exp (−Φn(x)) .

Cleary, Assumption 18 implies that now the density of ηn(dx) is given by:

ηn(x) ∝ exp

(
−Φn(x)− 1

2
〈x, Lx〉

)
, (7.33)

where L := C−1. Then, the corresponding separating the Hamiltonian function on RN × RN is given
by:

H(x, v) = Φn(x) +
1

2
〈x, Lx〉+

1

2
〈v,Mv〉 , (7.34)

where 1
2v
>Mv is called the kinetic function with a user-specified positive-definite mass matrix M .

Following Beskos et al. (2011), we set M = L so that C−1 = M = L. Then (7.34) can be decomposed
into the two parts:

H(x, v) = H1 + H2, H1 := Φ(x) H2 := +
1

2
〈x,Mx〉+

1

2
〈v,Mv〉 (7.35)

It turns out that the corresponding Hamiltonian equations also can be split into:dx
dτ = M−1 ∂H1

∂v = 0, dv
dτ = −∂H1

∂x = −M−1∇Φ(x),

dx
dτ = M−1 ∂H2

∂v = v, dv
dτ = −∂H2

∂x = −x.
(7.36)

Notice that the system of the ordinary differential equations (7.36) can be solved analytically. That
is, we can define the solution operators Ξ̃1

τ , Ξ̃
2
τ : RN × RN → R2N analytically:

Ξ̃1
τ :=

(
x, v − τM−1∇Φ(x)

)
, (7.37)

Ξ̃2
τ := (cos(τ)x+ sin(τ)v,− sin(τ)x+ cos(τ)v) . (7.38)

respectively. Then, we can construct a discrete dynamical system corresponding to (7.36) as follows:

Ψ(1)
ε := Ξ̃1

ε/2 ◦ Ξ̃2
ε? ◦ Ξ̃1

ε/2, (7.39)

for k ∈ {0, · · · , L − 1}. It can be shown that Ψε is indeed volume preserving and time reversible.
Moreover, if we set cos(ε?) = 1−ε2/4

1+ε2/4 , then the integrator can be equivalently expressed as:

vk+1/2 = vk −
ε

2
∇Φ(xk),

xk+1 = ξk + εM−1vk+1/2, (7.40)

vk+1 = vk+1/2 −
ε

2
∇Φ(xk),
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so that the exact flow induced by (7.35) can be approximated by the following L iterative steps:

Ψ◦(k+1)
ε := Ψ◦(k)

ε ◦Ψ◦(1)
ε , (7.41)

k ∈ {0, · · · , L− 1} , that is, we have that xL = projx ◦Ψ
◦(L)
ε (x0, v0). Then the acceptance probability

has the same expression as for the standard HMC but with different notations, that is:

αH := min {1, exp (H(x0, vn0)− H(x?,−v?))} , (7.42)

see Algorithm 6. Also recall that Markov kernel induced by the advanced HMC leaves the target ηn(x)

invariant under Assumption 18, see Proposition 22.

7.4 Simulating fractional Brownian motion and joint inference

Following Beskos et al. (2015) closely, we study an efficient and exact method to simulate increments of
the fractional Brownian motion. Critically, this method gives rise to the mapping which transforms 2N

independent standard Gaussian variables into fractional Gaussian noise at N discrete time instances.
Using such a mapping, we then develop the advanced HMC for joint inference for (X, θ).

7.4.1 The Davies and Harte method and Decoupling dependency

We first study a method to decouple the dependency. As we mentioned, in practice, the algorithm
has to be done with driving noise

{
BHt ; 0 ≤ t ≤ T

}
on a grid of discrete times. Define tj = jT/N

for j = 0, 1, · · ·N with the mesh size δ := T
N . Typically, we set T = 1. We write tj = j for the

sake of simplicity. Since fBm is self-similar and its increments are stationary (Rao, 2011), it is enough
to simulate realisations {BHi }Ni=1 and multiply them by δH . To simulate the such values, define the
increments:

GHj := BHj −BHj−1, 1 ≤ j ≤ N, (7.43)

with GH1 = BH1 . Then it turns out that, due to (7.5), the random variables {GHj }Nj=1 are stationary
standard Gaussian variables with the (auto) covariance, for j ≥ 1:

γ(j) := E
[
GH1 G

H
j+1

]
=

1

2

(
(j + 1)

2H
+ (j − 1)2H − 2j2H

)
, (7.44)

this is so-called fractional Gaussian noise (fGn). Then a direct way to generate realisations of the fBm
might be making use of the Cholesky decomposition. We begin with this approach to facilitate our
study. Let Σ denote the N × N covariance matrix of the random vector GH :=

{
GHj ; 1 ≤ j ≤ N

}
,
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that is:

Σ :=



1 γ(1) γ(2) · · · γ(N − 2) γ(N − 1)

γ(1) 1 γ(1) · · · γ(N − 3) γ(N − 2)

γ(2) γ(1) 1 · · · γ(N − 4) γ(N − 3)
...

...
...

. . .
...

...
γ(N − 2) γ(N − 3) γ(N − 4) · · · 1 γ(1)

γ(N − 1) γ(N − 2) γ(N − 3) · · · γ(1) 1


. (7.45)

Then Cholesky method gives rise to the decomposition such that Σ = ΓΓ>. Given u ∼ N (0, IN ) where
IN denotes the N × N identity matrix, one can easily simulate such realisations by setting v = uΓ.
However, performing the Cholesky decomposition involves the computational cost O(N3), and thus it
is not feasible, in practice.

Following Wood and Chan (1994), we resort to the Davies-Harte method (Davies and Harte, 1987)
to simulate fBm exactly. The Davies-Harte method relies upon the Toeplitz (or Diagonal-Constant)
structure of Σ and the fast Fourier transform (FFT). Critically, the computational cost of the Davies-
Harte methods is O(N logN) and, to the best of our knowledge, this method is the fastest exact
algorithm to simulate increments of BH . Assume that N = 2g for g ∈ N. In addition to Σ, we
introduce the auxiliary matrix as follows:

Σf :=


0 γ(N − 1) · · · γ(2) γ(1)

γ(N − 1) 0 · · · γ(3) γ(2)
...

... · · ·
...

...
γ(1) γ(2) · · · γ(N − 1) 0

 . (7.46)

Then, critically, one can embed the Toeplitz matrix Σ into the following 2N × 2N = 2g+1 × 2g+1

circular matrix:

C :=



1 γ(1) · · · γ(N − 1) 0 γ(N − 1) γ(N − 2) · · · γ(2) γ(1)

γ(1) 1 · · · γ(N − 2) γ(N − 1) 0 γ(N − 1) · · · γ(3) γ(2)
...

...
. . .

...
...

...
...

. . .
...

...
γ(N − 1) γ(N − 2) · · · 1 γ(1) γ(2) γ(3) · · · γ(N − 1) 0

0 γ(N − 1) · · · γ(1) 1 γ(1) γ(2) · · · γ(N − 2) γ(N − 1)

γ(N − 1) 0 · · · γ(2) γ(1) 1 γ(1) · · · γ(N − 3) γ(N − 2)
...

...
. . .

...
...

...
...

. . .
...

...
γ(1) γ(2) · · · 0 γ(N − 1) γ(N − 2) γ(N − 3) · · · γ(1) 1


,

=

[
Σ Σf

Σf Σ

]
. (7.47)

Since C is circular, this allows a tractable eigen-expansion based on the FFT for C. Let P denotes
the 2N × 2N unitary matrix whose elements are given by Pjk = (2N)−1/2 exp (−πijk/N) for j, k =

0, · · · 2N − 1 where i2 = −1. Let P ∗ be the Hermitian transpose of P . We also define the diagonal
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matrix ΛH := diag (λ0, λ1 · · · , λ2N−1) with the following eigenvalues, for j, k = 0, · · · 2N − 1:

λk :=

2N−1∑
k=0

cj exp (−πijk/N) , (7.48)

where {cj} are the components of the first row of the circular matrix C. Then C can be decomposed
into:

C = PΛHP
∗. (7.49)

Using the FFT, one can calculate the components of ΛH in O(N logN) operations, see Golub and
Van Loan (2012) for instance. Given this decomposition, the square root of C can be obtained in
O(N) operations:

S := C1/2 = PΛ
1/2
H P ∗, (7.50)

which satisfies SS∗ = SS> = C. Then this observation immediately gives rise to the followings.
First one simulates Z from N (0, I2N ) and obtain S. Then, given Z and S, the first N values of
SZ = PΛ

1/2
H P ∗Z exactly provide the required fBm sample. Moreover, proposition 3 of Wood and Chan

(1994) implies that the O(N logN) computational costs of obtaining P ∗Z can be further reduce to
the constant O(N) computational costs. Again, given Z ∼ N(0, I2N ), it can be shown that computing
P ∗Z is equivalent to finding the matrix Q such that:

PΛ
1/2
H QZ, (7.51)

where Q is the 2N × 2N sparse matrix such that:

Q :=

[
Q11 Q12

Q21 Q22

]
, (7.52)

which has the N ×N sub-matrices defined as the following way:

• Q11 := diag
{

1, 1/
√

2, 1/
√

2, · · · , 1/
√

2
}
,

• Q12 := {qi,j}, with qi,i−1 = 1/
√

2 for 1 ≤ i ≤ N − 1 and qi,j = 0 otherwise,

• Q21 := {qi,j}, with qi,N−1 = 1/
√

2 for 1 ≤ i ≤ N − 1 and qi,j = 0 otherwise,

• Q22 := diaginv
{

1,−i/
√

2,−i/
√

2, · · · − i/
√

2
}
.

All in all, the Davies-Harte algorithm to simulate the increments of BH can be summarised as follows.
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Algorithm 25 The Davies-Harte algorithm (Wood and Chan, 1994).

i) Sample Z ∼ N (0, I2N ).

ii) Calculate Z ′ = Λ
1/2
H QZ where Q is defined in (7.52) with the O(N) computational costs.

iii) Calculate Z ′′ = PZ ′ with the O(N logN) computational costs.

iv) The first N elements of δHZ ′′ which gives GH defined in (7.43).

Remark 22. Perrin et al. (2002) prove that the circular matrix (7.47) is always non-negative definite
for any H ∈ (0, 1), so {λk}2N−1

k=0 ≥ 0 for any H ∈ (0, 1). Thus Algorithm 25 is well-defined for any
H ∈ (0, 1). See also Craigmile (2003).

Now we are ready to decouple dependency between BH and H, indeed the Davies-Hartle algorithm
(Algorithm 25) gives rise to the linear mapping which transforms 2N independent standard Gaussian
variables into fGN at N discrete time instances. That is, we have that:

BH = F (Z,H). (7.53)

Therefore, instead of using directly X, we can treat and use Z as a latent variable, and now Z and
H are a-priori independent. As a result, the full dependency between X and H is now decoupled.
We summarise the dependencies among the involved variables in the models being studied as the
hierarchical graph in Figure 23.

Y
↑ ↖
V λ

↗ ↑
BH ζ
↑
H

F−1(BH)
=⇒

Y
↑ ↖
V λ

↗ ↑ ↖
ζ H Z

Figure 23: Dependency structures of the model. The left hierarchical graph shows the dependency
structure of the model before we apply the transform F−1() in (7.53) and the right one shows the
dependency structure of the model after we apply such a transform. The notation A → B should be
understood as the variable B depends on the variable A.

We end this section by noting about an interpretation of the solution of (7.4) and corresponding
numerical scheme. As shown by Sussmann (1978), for scalar BH , one can obtain solutions for (7.4)
in the sense that, given any fixed t 7→ BHt (ω), one can define solutions for (7.4) any continuously
differentiable paths in a a small neighbourhood of BHt (ω) for any H ∈ (0, 1), and then one can define
the solution of (7.4) as the limit of such solutions as the neighbourhood gets tighter. This interpretation
is often called the Doss-Sussmann interpretation in the literature. We note that when H = 1

2 , the
Doss-Sussmann interpretation coincides with the classical Stratonovich interpretation.

As for numerical solutions corresponding the Doss-Sussmann interpretation, special care is needed.
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Recall that we have defined tj = jT/N for j = 0, 1, · · ·N with the simplified index tj = j. Given
simulated path of BH by Algorithm 25, we apply the Euler-Maruyama scheme to discretize (7.4), for
j = 0, 1, · · ·N :

Vj = Vj−1 + bζ(Vj−1)∆t+ σζ(Vj−1)(BHj −BHj−1), (7.54)

where ∆t := tj − tj−1 and V0 = 0 . As shown in Lysy and Pillai (2013), such Euler-Maruyama scheme
applied to BH -driven multiplicative stochastic integrals will diverge to infinity when H < 1/2. Indeed,
it can be shown that the quadratic variation of fBm explodes when H < 1/2 (Lysy and Pillai, 2013).
Therefore, to discretize (7.4) by the Euler-Maruyama scheme, we may need to restrict our attention to
a particular family of models, and remove σζ(·) from models, as suggested by Lysy and Pillai (2013).
Critically, under the Doss-Sussmann interpretation, standard stochastic calculus rules can be applied
for any H ∈ (0, 1). That is, we can pick a sufficiently smooth mapping h and for the process h(Xt),
we can apply the standard change of variables rule under the Doss-Sussmann interpretation:

h(Vt) = V0 +

∫ t

0

∇xh(Vs)bζ(Vs)ds+

∫ t

0

∇xh(Vs)σζ(Vs)dB
H
s , (7.55)

this is consistent with the change of variable formula for Stratonovich integrals. In particular, consider
the following process:

At = h(Vt) :=

∫ Vt

v0

1

σζ(u)
du, (7.56)

this transformation is can be understood as a version of the Lamperti transformation. Then applying
the standard Ito’s lemma gives rise to:

dAt = bAζ (At)dt+ dBHt , (7.57)

where we have defined bVζ (At) :=
bζ(h−1(At))
σζ(h−1(At))

. Equivalently, we can write (7.57) as dAt =
(
bζ(Vt)
σζ(Vt)

)
dt+

dBHt . The standard Euler-Maruyama scheme for the transformed process in (7.57) will then converge
to the analytical solution in an appropriate mode, under regularity conditions. Thus now we can apply
the standard Euler-Maruyama scheme, and which is summarised as follows.

Algorithm 26 The standard Euler-Maruyama scheme for (7.4)

i) Simulate the increments of BH by Algorithm 25.

ii) For i = 1, · · ·N , calculate:

Ai = Ai−1 + bAζ (Ai−1)∆t+ (BHi −BHi−1),

with A0 = 0, where bAζ (At) :=
bζ(h−1(Xt))
σζ(h−1(Xt))

and the transformation h(·) is defined in (7.56).

iii) Return Vi = h−1(Ai) for j = 0, 1, · · ·N with V0 = v0.
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Remark 23. Although the Doss-Sussmann interpretation can be used also for multi-dimensional SDEs,
Algorithm 26 can in principal be followed for general models with a scalar scalar differential equation
and BH . For multi-dimensional models, one cannot avoid multiplicative stochastic integrals. For
H < 1/2, one can use other interpretations for solving SDEs with corresponding numerical schemes
such as a Milstein-type scheme, see Deya et al. (2012); Neuenkirch et al. (2010) for instance

7.4.2 Validity of Advanced HMC for fBM models.

Let Leb⊗d denote the d−dimensional Lebesgue measure. Then the joint posterior density of (Z, θ) of
interest w.r.t. the reference measure ⊗2N

i=1N(0, 1)⊗ Leb is given by:

dΠN

d
(
⊗2N
i=1N(0, 1)⊗ Leb⊗d

) (Z, θ | Y ) ∝ pN (Y | Z, θ)π0(θ). (7.58)

That is, one can define the target of interest as a change of measure from a Gaussian law. Here N
superscript is used to emphasise the fact that the joint posterior density in (7.58) is obtained as an
N−dimensional proxy for the infinite-dimensional path V via Algorithm 26. Then, the target density
can be now expressed as (again notice that Z is the 2N−dimensional standard Gaussian vector):

ηNn (Z, θ | Y ) ∝ exp

(
−1

2
〈Z,Z〉 − Φn(Z, θ)

)
, (7.59)

where we have defined:

Φn(Z, θ) := − log π0(θ)− log pN (Y | Z, θ)φn , (7.60)

so that Assumption 18 holds. This lead us to apply Algorithm 6 to to update jointly (Z, θ). We
note that the advanced HMC sampler that jointly updates (Z, θ) cannot be derived directly from the
advanced HMC algorithm. We set x = (z, θ), and now the corresponding Hamiltonian equations also
can be split into: dx

dτ = ∂H1

∂v = 0, dv
dτ = −∂H1

∂x = −M−1∇Φn(x).

dx
dτ = ∂H2

∂v = v, dv
dτ = −∂H2

∂x = −(z, 0)>.
(7.61)

Therefore, we can also define the corresponding solution operators Ξ̃1
τ and Ξ̃2

τ analytically:

Ξ̃1
τ :=

(
x, v − τM−1∇Φn(x)

)
, (7.62)

Ξ̃2
τ := ((cos(τ)z + sin(τ)vz, θ + τvθ) , (− sin(τz + cos(τ)vz, vθ)) . (7.63)

respectively. As a result, now we can carry out Algorithm 6 based on the L iterative steps in (7.41) as
before.

To see its validity, recall that we have an N−dimensional proxy (7.59) of the true target posterior
(3.1) defined on an infinite-dimensional space. Therefore, it is critically important to see that Al-
gorithm 6 is a well-defined algorithm in the limit N →∞. To be precise, we want Algorithm 6 to leave
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the target (3.1) invariant, and has mesh-free mixing with increasing N given fixed (ε, T ). To check
such properties following closely Beskos et al. (2015, 2013a), now we treat z as an infinite-dimensional
i.i.d. standard Gaussian random vector, that is z ∈ R∞, and we also have the parameters θ ∈ Rd.
Then, the target distribution (3.1) corresponding to z, θ and Y can be assumed to be defined on the
infinite-dimensional space H := R∞ × Rd via the following change of measure:

dΠn

d {⊗∞i=1N (0, 1)× Leb⊗d}
(Z, θ | Y ) ∝ exp (−Φn(Z, θ)) , (7.64)

for the function Φ : H 7→ R defined in (7.60), where again Leb stands for the the Lebesgue measure. We
also need the infnite-dimensional vector of partial derivatives (Fréchet sense) ∇Φ : H 7→ H. Then, we
have the corresponding velocity v = (vz, vθ) ∈ H. In addition, letM be the corresponding generalisa-
tion of the mass matrixM in Algorithm 5 whose upper-left block is now an infinite-dimensional identity
matrix I∞ instead of I2N . That is,M : H 7→ H is the linear operator (z, θ)> 7→ M(z, θ)> = (z,Aθ)

>.
Notice that we also have corresponding Ξ̃1

τ , Ξ̃2
τ , Ψε : H×H 7→ H×H.

Consider the joint law on (x, v) denoted by Q(dx, dv) := Πn(dx) ⊗ N (0,M−1)(dv). The key
observation of the following proposition is that the leapfrog mapping Ψε projects (x0, v0) ∼ Q(dx, dv)

to (xε, vε) which has a distribution that is absolutely continuous w.r.t. Q(dx, dv). This property implies
the existence of a non-zero acceptance probability even when N = ∞ corresponding to the current
infinite-dimensional set-up. This is clear for Ξ̃2

ε since it just performs a rotation on (z, vz) which
is invariant for ⊗∞i=1N (0, 1) × ⊗∞i=1N (0, 1), see Neal (2011) for instance. Therefore, the mapping
Ξ̃2
ε preserves the absolute continuity property of Q(dx, dv) . To ensure that also the mapping Ξ̃1

ε/2

preserves the absolute continuity property of v−marginal of Q(dx, dv), we need to assume that the
the gradient ∇zΦ(z, θ) should be in the Cameron-Martin space of ⊗∞i=1N (0, 1) for the translation
v 7→ v − ε

2M
−1∇zΦ(x). This Cameron–Martin space is the one of squared summable infinite vectors,

which we denote by `2, see Da Prato (2006, Chapter 1) for instance. Thus, we make the following
assumption.

Assumption 19. Let `2 be the Cameron-Martin space of ⊗∞i=1N (0, 1) which is the space of squared
summable infinite vectors. Then ∇zΦ(z, θ) ∈ `2 for all ξ ∈ H w.p.1 under ⊗∞i=1N (0, 1)× p(dθ).

For a further study, we define the following reference measure on (x, v):

Q0 = Q0(dx, dv) :=
{
⊗∞i=1N (0, 1)× Leb⊗d

}
(dx)⊗N (0,M−1)(dv), (7.65)

so that the joint target distribution is expressed as Q(dx, dv) ∝ exp (−Φn(x))Q0(dx, dθ). Then we
consider the sequence of probability measures Q(k) = Q ◦ Ψ

−◦(k)
ε for 1 ≤ k ≤ L. This Q(k) can

be understood as the push-forward projection flow of the target measure Q(dx, dv) via the leapfrog
steps. For H(x, v), we define the difference as ∆H(x0, v0) := H(x0, v0) − H(xL, vL) with the straight-
forward extension to R∞of the inner product involved. Note that even if H(x0, v0) =∞, the difference
∆H(x0, v0) does not explode (Beskos et al., 2015). Assuming stationarity, so that (x0, v0) ∼ Q. Recall
that (xL, vL) = Ψ

◦(L)
ε (x0, v0). Then, we can write for the next position x? of the Markov chain induced
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by Algorithm 6:

x? = I
{
u ≤ αH

(
Ψ−◦(L)
ε (xT , vT )

)}
xT + I {u > αH (x0, v0)}x0, (7.66)

where u ∼ Unif [0, 1], I denotes the indicator function.

Proposition 43. Assume that Assumption 19 holds.Then we have that:

i) Q(L) is is absolutely continuous w.r.t.Q0 with the density dQ(L)

dQ0
(xL, vL) = exp (∆H(x0, v0)− Φn(xL)) .

ii) The Markov chain in (7.66) has the invariant distribution Πn(x) defined in (7.64).

Proof. Following Proposition 21, Beskos et al. (2015, Proposition 1) show that Q(L) is absolutely
continuous w.r.t. Q0 in (7.65) with the probability density dQ(L)

dQ0
(xL, vL) = exp (∆H(x0, v0)− Φn(xL))

by making use of the Cameron-Martin formula, see e.g Da Prato (2006, Theorem 2.8) and Lemma 7.
Using this, it can be shown that, for any bounded and continuous test function f : H 7→ R, E [f(ξ?)] =

E [f(ξ0)] holds from Proposition 22.

Remark 24. Proposition 43 implies that the advanced HMC algorithm for joint inference (Z, θ) still
possesses the mesh-free property, that is mixing properties do not deteriorate as N increases and ε

remains fixed.

7.4.3 Calculation of derivatives

Recall that Algorithm 6 involves the derivative∇Φ(Z, θ). We note that Algorithm 25 and Algorithm 26
give rise to the composition Z 7→ GH 7→ A := {A1, · · ·AN}. Assume that one can easily obtain the
derivative ∇θ log π0(θ). Then we have that:

∇Z log pN (Y | Z, θ)φn = ∇A log pN (Y | A, θ)φm
(
dA

dGH

)>(
dGH

dZ

)>
, (7.67)

∇ζ log pN (Y | Z, θ)φn = ∇ζ log pN (Y | A, θ)φn +∇A log pN (Y | A, θ)φn
(
dA

dζ

)>
, (7.68)

∇λ log pN (Y | Z, θ)φn = ∇λ log pN (Y | A, θ)φn , (7.69)

∂H log pN (Y | Z, θ)φn = ∇A log pN (Y | A, θ)φn
(
dA

dGH

)>(
dGH

dH

)>
, (7.70)

where we have set:

dGH

dA
:=

{
∂GHi
∂Aj

}
i,j

∈ RN×N ,
dGH

dZ
:=

{
∂GHi
∂Zj

}
i,j

∈ RN×2N ,

dA

dζ
:=

{
∂Ai
∂ζj

}
i,j

∈ RN×d,
dGH

dH
:=

{
dGHi
dH

}
i

∈ RN .

Again recall that Algorithm 26 gives rise to Ai = Ai−1 + bAζ (Ai−1)∆t+GHi for i = 1, · · · , N. Then we
set for i = 2, · · · , N :

ai = −1−∇AbAζ (Ai−1)∆t,
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as a consequence, we have that:

dGH

dA
=



1 0 0 · · · 0 0

a2 1 0 · · · 0 0

0 a3 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · aN 1


. (7.71)

Next, from Algorithm 25, we directly obtain:

dGH

dZ
= proj1:N,1:2N ◦ δHPΛ1/2Q, (7.72)

where proj1:N,1:2N denotes the projection of the 2N × 2N−dimensional input matrix to its first N
rows. Then we consider dA

dζ which can be obtained recursively via starting from:

∇ζA1 = bAζ (A0)∆t,

and for i = 2, · · · , N :

∇ζAi = ∇ζAi−1 ×
(
1 +∇AbAζ (Ai−1)∆t

)
+ bAζ (Ai−1)∆t. (7.73)

Following the Davies and Harte method (Algorithm 25), we have that:

dGH

dH
= δHproj1:N ◦ P

dΛ1/2

dH
QZ + δH log (δ) proj1:N ◦ PΛ1/2QZ. (7.74)

From the analytic expression of {λk}2N−1
k=0 the diagonal matrix Λ1/2 in (7.48), we get:

dλ
1/2
k

dH
=

1

2λ
1/2
k

2N−1∑
j=0

dcj
dH

exp

(
−2πi

jk

2N

)
,

where {cj}2N−1
j=0 are defined as the components of the first row of the circular matrix C in (7.47).

Notice that dcj
dH can be easily obtained via the derivative of the lagged autocovariances of fBm w.r.t.

H, dγ(j)
dH . where γ(j) is defined as (7.44). From there, we have that:

dγ(j)

dH
=


0, j = 0,

log(2)22H , j = 1,

(j + 1)2H log(j + 1) + (j − 1)2H log(j − 1)− 2 log(j)j2H , j ≥ 2.

(7.75)

The expressions of ∇ζ log pN (Y | A, θ)φn , ∇λ log pN (Y | A, θ)φn and ∇A log pN (Y | A, θ)φn depend on
specification of a model so we will derive them upon a model specification in the sequel.
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7.5 Adaptive tuning strategies

The main advantage of using advanced HMC within SMC sampler is that one can calibrate adaptively
the tuning parameters of the advanced HMC. Namely, after the resampling step in Algorithm 12, we

have the equally weighted particles system
(
x̃

(i)
n−1,

1
N

)N
i=1

which approximates η̂n(dxn) by construction.
Recall that Algorithm 12 involves:

i) The mass matrixM of the proposal distribution N (0,M−1) for the velocity v = (vz, vθ) ∈ R2N+d

in Algorithm 6.

ii) The sequence of temperatures {φ}pn=0 for the the tempered posterior in (7.20).

iii) The number of steps L and the step size ε for the leapfrog integrator Ψτ in Algorithm 6.

7.5.1 The mass matrix M

Recall that for x = (z, θ), the mass matrix M has the form of:

M =

(
I2N 0

0 B

)
,

here the identity sub-matrix I2N is for vz, and the sub-matrix B = diag(b1, · · · bd) is for vθ. Since

we have the resampled particles
(
x̃

(i)
n−1,

1
N

)N
i=1

before we mutate x̃(i)
n−1 via the advanced HMC kernel

K(x̃
(i)
n−1, dx

(i)), we can estimate the posterior mean and the variance of η̂n(dxn) respectively as follows:

µ̂θ(n) :=

N∑
i=1

W (i)
n x̃

(i)
n−1, Σ̂θ(n) :=

N∑
i=1

W (i)
n

(
x̃

(i)
n−1 − µ̂θ(n)

)(
x̃

(i)
n−1 − µ̂θ(n)

)>
. (7.76)

Namely,
(
x̃

(i)
n−1,

1
N

)N
i=1

can be used to learn features of the target. Therefore, we use the following
adaptive mass matrix at iteration n :

Mn :=

(
I2N 0

0 diag
(

Σ̂θ(n)
) ) . (7.77)

This aprroach has been used also by Chopin (2002); Chopin et al. (2013); Jasra et al. (2011) in
the context of an independent Metropolis-Hastings, particle markov chain monte carlo methods and
inference for Lévy-driven stochastic volatility models for instance.

7.5.2 The sequence of temperature {φn}pn=0

We follow the ideas in Beskos et al. (2016); Del Moral et al. (2012); Jasra et al. (2011). Given β ∈ (0, 1),
consider the following recursive equation:

φn = inf {φn−1 < φ ≤ 1 : ESS(φn−1)− βN = 0} , (7.78)

219



with φ0 = 0, where:

ESS(φn) :=
1∑N

i=1

(
W

(i)
n

)2 (7.79)

is the effective sample size (ESS) and α ∈ (0, 1) is user specified value. The ESS has been commonly
used to monitor the performance of SMC in the literature (Kong et al., 1994; Doucet and Johansen,
2009), and a common choice of β will be 0.5. Notice that the ESS takes a value between 1 and N

since {W (i)
n }Ni=1 are normalized. For completeness, we use the convention that inf Ø = 1. Under mild

conditions, Beskos et al. (2016) show that a particle approximation of η̂n(dxn) with the sequence of
temparatures solving (7.78) is still consistent, and the sequence {φn}pn=0 solving (7.78) monotonically
converges to 1. Notice that (7.78) can be easily computed by the bisection method, see e.g. Jasra
et al. (2011); Beskos et al. (2016).

Algorithm 27 Adaptive learning of {φn}pn=0

i) At the artificial time step n− 1, calculate the ESS in (7.79).

ii) Choose the next inverse temperature φn by solving (7.78) via the bisection method.

7.5.3 The leapfrog integrator parameters (ε, L)

In practice, the performance of (advanced) HMC sensitively depends on a choice of (ε, L). Too large
step size ε will yield low acceptance rates, as studied in Beskos et al. (2011). In contrast, too small
step size will increase the computational cost. As for the number of the leap-frog L, too large L will
give rise to the Hamiltonian trajectory which turns back towards its starting point, thus, wasting
computational computational resource again. Also, too small L will induce random walk behaviour
and the induced Markov chain might not be ergodic, as claimed in Neal (2011). To overcome these
problems, Neal (2011) suggests that (ε, L) to be randomly sampled.

To do so, consider the following the expected Mahalanobis square jumping distance:

M(xn−1, xn) := (xn−1 − xn)
>
M−1
n (xn−1 − xn) , (7.80)

whereMn is defined in (7.77). This distance can be understood as the lag-1 integrated autocorrelation
time and has been commonly used in the adaptive MCMC literature, see e.g. Andrieu and Thoms
(2008); Sherlock and Roberts (2009). Let h := (ε, L). Then using (7.80), Fearnhead and Taylor (2013)
propose that parameter h is to be chosen to maximise the following criterion:

gn(h) :=

∫
η̂n−1(dx̃n−1)Kn(x̃n−1, dxn)M(x̃n−1, xn), (7.81)

which is equivalent to minimising the average of the lag-1 integrated autocorrelation time. Notice that

since after the selection step in Algorithm 12 one has the particle system
(
x̃

(i)
n−1,

1
N

)N
i=1

, h can be

assigned to different particles at every time step n, and thus we can write
(
h

(i)
n

)N
i=1

. The main idea of
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Fearnhead and Taylor (2013) is that one can sample
(
h

(i)
n

)N
i=1

from some distribution, say Rn(h
(i)
n−1)

which is independent from particles, and they are also weighted according to (7.80). As in Fearnhead
and Taylor (2013), we use the following estimator of (7.81):

M̂(x
(i)
n−1, x

(i)
n ) :=

1√
L

(i)
n−1

M(x̃
(i)
n−1, x̂

(i)
n )× α(i)

H , (7.82)

where
{
x̂

(i)
n

}Nξ
i=1

are proposed particles based on the leapfrog integrator Ψε and α
(i)
H is defined in

(7.41). We note that since
(
x̃

(i)
n−1,

1
N

)N
i=1

approximates η̂n(dxn) by construction and
{
x̂

(i)
n

}N
i=1

are

accepted w.p. α(i)
H , (7.82) can be understood as an unbiased estimate of (7.81). Then, as suggested

by Fearnhead and Taylor (2013); Buchholz et al. (2018), we sample
(
h

(i)
n

)Nξ
i=1

from:

πn(h) ∝
Nξ∑
i=1

M̂(x
(i)
n−1, x

(i)
n )Rn(h

(i)
n−1), (7.83)

Rn(h
(i)
n−1) := T N (ε; , ε

(i)
n−1, 0.0152)⊗

(
1

3
I
{
L

(i)
n−1 − 1

}
+

1

3
I
{
L

(i)
n−1

}
+

1

3
I
{
L

(i)
n−1 + 1

})
, (7.84)

where T N (a; , b, c) denotes a Gaussian distribution evaluated at a with mean b and the variance c

truncated to positive real R+. That is,
(
h

(i)
n

)Nξ
i=1

are sampled by first resampling
(
h

(i)
n−1

)Nξ
i=1

w.p.
(7.82) and next drawing from (7.84). Under some technical conditions, Theorem 4.1 of Fearnhead and
Taylor (2013) proves that (7.83) converge in distribution to the Dirac mass measure centred on the

point which attains the maximiser of (7.81) as n → ∞. Therefore, sampling
(
h

(i)
n

)N
i=1

from (7.83)
might guarantee sequential improvement of MCMC mixing with respect to n.

Algorithm 28 Adaptive sampling (ε, L)

i) After the mutation step in Algorithm 12 at the artificial time step n − 1, calculate (7.82) for
i = 1, · · · , N .

ii) Resample ε(i)n−1 and L(i)
n−1 w.p. (7.82) for i = 1, · · · , N .

iii) Sample ε(i)n and L(i)
n from (7.84) for i = 1, · · · , N .
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Algorithm 29 Adaptive SMC sampler with the advanced HMC.

i) At time n = 0, set φ0 = 0 and draw z0 ∼ ⊗2N
i=1N (0, 1) and θ0 ∼ π0(θ).

ii) Calculate the inverse temperature φn via Algorithm 27.

iii) Do from the step 1 to the step 4 of Algorithm 12.

iv) Calculate mass matrix Mn in (7.77).

v) Do the step 5 of Algorithm 12 based on Mn.

vi) Obtain (εn+1, Ln+1) via Algorithm 28.

vii) Set n→ n+ 1 and repeat from the step 2 to the step 7 until φn=1.

7.6 Conclusion and remarks

Our main contribution of this section is that we have developed the novel MCMC based algorithm
for a Bayesian model selection in the context of SDE models driven by fractional noise. Critically,
compared with literature, our method can avoid successfully problems such as constructing a non-
trivial transformation and the slow mixing by making use of pseudo marginal MCMC and HMC on
a Hilbert space within SMC samplers. Besides, we have shown that how one can select adaptively
tuning parameters using outputs from SMC samplers.

At the time of writing the thesis this section had not been completed. The first missing step we
need to fulfil is to explore a way to correct the bias arising from adaptive sampling since an unbiased
estimate of the evidence is the key to approximate exactly the posterior model probability. This could
be done by running the algorithm twice. Namely, one could run the adaptive algorithm with arbitrary
tuning parameters and then save all adaptively estimated. Then one could rerun the static algorithm
with estimated tuning parameters. It could be shown that the difference between the first run and the
second run indeed gives rise to an unbiased estimate. Beside, some numerical studies are also needed.
For instance, comparing SV model with/without Hurst parameter would be interesting. Also, model
selection for fractional SV and fractional GARCH would be interesting as well.
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8 Summary and future directions

8.1 Summary of research

8.1.1 Asymptotic Analysis of Model Selection Criteria for General Hidden Markov Mod-
els

i) The paper obtains analytical results for the asymptotic properties of Model Selection Criteria
for a general family of state space models (SSMs).

ii) We first derive AIC and BIC rigorously for SSMs. To the best of our knowledge, this is the first
time to obtain such results.

iii) Next, we show that BIC is still strongly consistent for nested SSMs under conventional assump-
tions. Also, we show that AIC cannot be consistent for such models.

iv) Finally, we check our theoretical results through the empirical study. We confirm that our
empirical study is consistent with the implication of theoretical results.

8.1.2 Online Smoothing for Diffusion Processes Observed with Noise

i) We introduce a novel particle algorithm for online estimation of smoothing expectations for a
class of additive functionals, in the context of a rich family of diffusion processes with jumps.

ii) Our methodology is based on online particle smoothing on diffusion path space, and can be
applied under the mild condition compared with the literature.

iii) We overcome the unavailability of the transition density of the underlying SDE by working on
the augmented path space.

iv) Finally, we apply our methods to online parameter inference and model selection for the real
data and the problems motivated by the finance literature.

8.1.3 Adaptive Bayesian Model Selection for Diffusion Models

i) We introduce a general framework of Bayesian model selection based on Sequential Monte Carlo
sampler and Hamiltonian Monte Carlo on high dimensional spaces.

ii) The proposed algorithm is well-defined on a functional space so that the speed of mixing does
not depend on the dimension of the models being considered.

iii) Our methodology can be considered as an exact approximation of the posterior model probability
therefore is has several advantages. For instance we can avoid potential problems arising from
trans-dimensional MCMC methods.

iv) At the time of writing the thesis section this had not been completed. We will apply our methods
to fractional stochastic volatility models has become popular to model derivative securities, such
as options.
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8.2 Future directions

8.2.1 Robust adaptive sequential Monte Carlo methods for non-Markovian state space
models

There has recently been an interesting line of research when it comes to merging deep learning archi-
tectures with stochastic models (Louizos et al., 2017; Rangapuram et al., 2018). Importantly, some of
these models can be understood as (Gaussian) non-Markovian state space models. Sequential Monte
Carlo (SMC) is a particularly useful sequential (and online in many cases) method to approximate
intractable functions and estimate parameters of SSMs, but the Markovian structure of a target model
is often critical. To make SMC applicable for non-Markovian state space models, one needs to make a
proposal or a target itself taking into account global information of the target distribution. In particu-
lar, I am interested in the latter approach based on the robust divergences, for instance, β−divergence
(Basu et al., 1998). Considering β is a sequence such that β0 = ∞ > β1 · · · > βn = 0 gives rise
to the tempered sequence of distributions, say {ηt(dθ)}nt=0, on a common measurable space. SMC
samplers (Del Moral et al., 2006) allows offline Bayesian inference to be conducted for such distribu-
tions. Upon developing an adaptive way to find a reasonable value of {βt}nt=0, this approach will help
robust adaptive approximate Bayesian inference for such non-Markovian models.

8.2.2 Deep learning with general Bayesian principles

Applying Bayesian inference to deep learning has been recently becoming a centre of interest in a
machine learning community (Gal, 2016) to quantify uncertainty. Bayesian inference is an optimal
updating procedure as long as a statistical model is correctly specified, or no connection between
any data and parameters. Interestingly, Bissiri et al. (2016) argue that the posterior minimising the
expected loss criteria π(x | θ) ∝ exp(−ω`θ(x))π(dθ) is still valid and optimal updating procedure even
if model is misspecified, where ω is weight, `θ(x) is a loss function (not necessary log likelihood) and
π(dθ) is a prior distribution. It is important that the weight ω is calibrated carefully, and Holmes
and Walker (2017) study how to select ω when the model is the exponential family. It turns out that
merging such a general Bayesian inference with VOGN (Khan et al., 2018), for instance, will give rise
to an online variational method for deep learning with robustness over model misspecification. Also,
using a robust divergence in a loss function `θ(x) will make deep learning stable against outliers.

8.2.3 Speeding up MCMC with intractable likelihood functions

One of the main difficulties of MCMC comes from its computational cost. For instance, implementing
the Metropolis-Hastings algorithm involves evaluation of the likelihood ratio, which is too costly an
operation, especially for big data so that speeding up MCMC is a critical problem. Several techniques
are available towards accelerating MCMC based on subsampling and control variates (Bardenet et al.,
2017; Quiroz et al., 2019) to reduce the cost. However, they cannot be directly applied to models with
intractable likelihood functions since the methods require the analytical expression of them. Merging
approximate Bayesian inference with MCMC is called noisy MCMC (Alquier et al., 2016), and this
will be an effective way to sample from such models. In particular, inspired by the literature, I am
interested in establishing concentration inequalities between noisy likelihood functions and exact ones.
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Also, developing an algorithm to construct an efficient proxy of the noisy likelihood ratio might be
needed to control the variance of the ratio. Such inequalities and proxy will provide ways to speed up
noisy MCMC.

8.2.4 The No-U-Turn sampler on functional spaces

Hamiltonian Monte Carlo (HMC) is a particular class of Markov chain Monte Carlo methods, which is
based on the Hamiltonian dynamics to sample from a target distribution. In practice, HMC involves
a numerical integrator to approximate the Hamiltonian dynamics so that some tuning parameters
are also required. Hoffman and Gelman (2014) introduce the No-U-Turn sampler which adaptively
selects the tuning parameters of HMC, and has become a de facto standard of HMC. Critically, many
interesting models can be expressed as a change of Gaussian measure on a functional space. Therefore,
developing a well-defined No-U-Turn sampler on functional spaces will help us to sample efficiently
from a target defined on a high dimensional space such as diffusion models, Bayesian non-parametric
models and deep neural networks. This is because the mixing speed of such well-defined HMC will not
depend on the dimension of targets (Beskos et al., 2011; Cotter et al., 2013).

8.2.5 Asymptotic analysis of the Monte Carlo MLE for SSMs with SMC outputs

In general, the likelihood function of SSMs is not analytically available so that it should be approx-
imated by, for instance, SMC. Therefore, what we can obtain is the Monte Carlo MLE (Geyer, 1994).
The main difficulty comes from the fact that SMC outputs are not continuous w.r.t. inputs due to
resampling so that one can only obtain point-wise convergence results. To obtain strong consistency
and asymptotic normality of the MLE, one needs to show that some uniform convergence results. It
turns out, although asymptotic analytical results are available (Douc et al., 2004), these results cannot
be directly applied to the problem. Therefore, establishing such results is quite important and chal-
lenging. To do so, one first needs to develop SMC for SSMs with a continuous likelihood, for instance,
based on Malik and Pitt (2011). Then one needs to show that the Monte Carlo MLE converges to
the true MLE and identify the optimal choice of SMC iterations. Compared with the literature, e.g.
Beskos et al. (2009), such analysis will be harder since the resampling step of SMC creates dependency.
Strong law of large numbers in a separable Banach space might be useful, see Appendix C and Beskos
et al. (2009).
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A Taylor’s theorem with the exact integral form of the re-

mainder

Taylor’s theorem may be one of the most useful tools for not only analysis but also statistics. For
instance, in the context of statistics, one might often want to expand the log-likelihood evaluated at
an estimate θ̂n around the true parameter, say θ?. Let X be a open subset of Rp with p ≥ 1. Also let
f : X → Rq with q ≥ 1 be continuously differentiable with p× q derivative matrix ∇f . As Feng et al.
(2014) pointed out, for a, b ∈ X, there does not in general exist a θ on the line segment between a and
b such that:

f(b) = f(a) +∇f(θ)(b− a).

Then the following Taylor’s theorem with the exact integral form of the remainder (Lang, 2012, Sec-
tion14) may be useful.

Theorem 22. Let U be open in E and f : U → F be of class Cp, that is first p derivatives all exist
and are continuous. Let x ∈ U and y ∈ E such that the segment x+ ty, 0 ≤ t ≤ 1, is contained in U.
Denote y(k) by the k-tuple (y, y, · · · , y). Then we have that:

f(x+ y) = f(x) +Df(x)y + · · ·+ Dp−1f(x)y(p−1)

(p− 1)!
Rn,

Rn =

∫ 1

0

(1− t)p−1

(p− 1)!
Dpf(x+ ty)y(p)dt,

where Df : U → L(E,F ) is the differential operator acts on the set of linear mappings defined over U
and taking values in F , see Lang (2012, Section 14) for details.

As an example, consider the MLE θ̂n and the the score function ∇`n(θ). Again, let θ? be the true
parameter. Take x = θ̂n and y = θ̂n − θ? in Theorem 22. Then, the first order expansion of ∇`n(θ̂n)

around θ? with the exact integral form of the remainder is given by:

0 = ∇`n(θ̂n) = ∇`n(θ?) + (θ̂n − θ?)>
∫ 1

0

∇`n(θ? + t(θ̂n − θ?))dt.

B Some asymptotic results for the class of estimators

Let {yn}n≥0 be a strongly stationary and ergodic process which is parametrized by θ ∈ Θ. In many
cases, the parameter θ is estimated as the solution to:

θ̂En := arg max
θ∈Θ

Qn(θ). (B.1)

This class of estimators is often called extreme estimator, see e.g., Van der Vaart (2000). For instance,
the MLE, the M-estimator and the method of moments estimator are extreme estimators. Let θ? be
the true parameter. The the following conditions are known as the sufficient conditions for θ̂En → θ?

in probability.
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Theorem 23. Let Bδ(θ?) := {θ ∈ Θ : |θ? − θ| < δ}. Assume that there exist a non-stochastic function
Q(θ) and θ? ∈ Θ such that:

i) For any δ > 0, supθ∈Θ\Bδ(θ?)Q(θ) < Q(θ?) .

ii) lim
n→∞

sup
θ∈Θ
|Qn(θ)−Q(θ)| = 0 in probability.

Then θ̂En → θ∗ in probability.

Proof. Let θ̂En ∈ Θ \ Bδ(θ?). Then there exists ε > 0 such that Q(θ?)−Q(θ̂En ) ≥ ε. Thus we have that
for any δ > 0, P

(
θ̂En ∈ Θ \ Bδ(θ?)

)
≤ P

(
Q(θ?)−Q(θ̂En ) ≥ ε

)
, and:

P
(
Q(θ?)−Q(θ̂En ) > ε

)
= P

(
Q(θ?)−Qn(θ?) +Qn(θ?)−Qn(θ̂En ) +Qn(θ̂En )−Q(θ̂En ) ≥ ε

)
≤ P

(
sup
θ∈Θ
|Q(θ)−Qn(θ)|+ 0 + sup

θ∈Θ
|Q(θ)−Qn(θ)| ≥ ε

)
= P

(
2sup
θ∈Θ
|Q(θ)−Qn(θ)| ≥ ε

)
.

Then by the assumption, we have that lim
n→∞

P
(

2sup
θ∈Θ
|Q(θ)−Qn(θ)| ≥ ε

)
= 0.

Lemma 16. Under the following assumptions:

i) Q(θ) is uniquely maximized at θ?.

ii) Q(θ) is continuous on Θ.

iii) Θ is a compact set.

Then for any δ > 0, we have that supθ∈Θ\Bδ(θ?)Q(θ) < Q(θ?) .

Proof. Assume that supθ∈Θ\Bδ(θ?)Q(θ) = Q(θ?). The there exists a sequence {θn} such that θn ∈
Θ \ Bδ(θ?) for any n and limn→∞Q(θn) = Q(θ?). Since Θ is a compact set, we can always find a
subsequence {θni} converging to a limit θ∗ ∈ Θ \ Bδ(θ?) as i→∞. Since Q(θ) is continuous on Θ, we
have that limi→∞Q(θni) = Q(θ∗), and this implies that Q(θ?) = Q(θ∗). This is a contradiction since
θ∗ ∈ Θ \ Bδ(θ?) and Q(θ) is uniquely maximised at θ? by the assumption.

Consider the M-estimator. In this case, Qn(θ) is often of the form 1
n

∑n
i=1m(yi, θ) and Q(θ) =

E [m(yi, θ)] with some known function m(yi, θ). Then the following might be useful.

Lemma 17. Suppose that, w.p.1, θ 7→ m(yi, θ) is continuous for any yi and E
[
sup
θ∈Θ
|m(yi, θ)|

]
< ∞.

Then E [m(yi, θ)] is continuous on Θ w.p.1.

Proof. By the assumptions, we have that limθ′→θm(yi, θ
′) w.p.1. and |m(yi, θ)| ≤ sup

θ∈Θ
|m(yi, θ)|, the

results follow from the dominated convergence theorem.
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C Strong law of large numbers in a separable Banach space

Let θEn be an extreme estimator. To prove θEn → θ? w.p.1, the following will be needed:

w.p.1. lim
n→∞

sup
θ∈Θ
|Qn(θ)−Q(θ)| = 0. (C.1)

For instance, letXi be i.i.d. random variables, and takeQn(θ) = 1
N

∑N
i=1Xi(θ) such that E

[
1
N

∑N
i=1Xi(θ)−Q(θ)

]
=

0 for any θ ∈ Θ. Then Alamogordo’s Strong Law of Large Numbers implies that for any θ ∈ Θ,
1
N

∑N
i=1Xi(θ)→ Q(θ) w.p.1 holds. Also assume that the MLE θ̂n → θ? w.p.1. Then we have that:∣∣∣∣∣ 1

N

N∑
i=1

Xi(θ)−Q(θ?)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

N∑
i=1

Xi(θ)−Q(θ̂n)

∣∣∣∣∣+
∣∣∣Q(θ̂n)−Q(θ?)

∣∣∣
≤ sup
θ∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

Xi(θ)−Q(θ̂n)

∣∣∣∣∣+
∣∣∣Q(θ̂n)−Q(θ?)

∣∣∣ .
If θ 7→ Q(θ) is continuous, then lim

n→∞
sup
θ∈Θ

∣∣∣ 1
N

∑N
i=1Xi(θ)−Q(θ̂n)

∣∣∣ = 0 w.p.1 implies 1
N

∑N
i=1Xi(θ̂n)→

Q(θ?) w.p.1.
To prove (C.1), strong law of large numbers on a separable Banach space might be useful. Let

(B, ‖‖) be a real separable Banach space and Xi are independent B-valued random variables . Then
we have the following.

Theorem 24. Azlarov and Volodin (1982); Mourier (1953); Hoffmann-Jorgensen and Pisier (1976).
Let (B, ‖‖) be a real separable Banach space and Xi are independent B-valued random variables . Then
we have that:

w.p.1. lim
N→∞

∥∥∥∥∥ 1

N

N∑
i=1

Xi

∥∥∥∥∥ = 0,

under the following assumptions:

i) E [‖Xi‖] <∞.

ii) E [Xi] = 0.

Proposition 44. Consider Qn(θ) is constructed by some independent random variables Xn. Assume
that:

i) The parameter space Θ is compact.

ii) θ 7→ Q(θ) is continuous.

iii) For any θ ∈ Θ, E [Qi(θ,Xi)] = Q(θ).

iv) W.p.1, θ 7→ Qi(θ,Xi) is continuous.
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v) W.p.1, supθ∈Θ | Qi(θ,Xi) |<∞.

Then w.p.1. lim
n→∞

sup
θ∈Θ
|Qn(θ)−Q(θ)| = 0 holds.

Proof. Take B be the space of continuous real functions on the compact Θ and ‖‖ be the uniform norm,
that is ‖f‖ = supθ∈Θ | f(θ) |. Then such (B, ‖‖) is a real separable Banach space. By the assumptions,
Q(θ) ∈ B and Qn(·, Xi) takes values in B, also E [‖Qn(θ,Xi)‖] < ∞ and E [Qn(·, Xi)−Q(θ)] = 0.

Then applying Theorem 24 to Qn(·, Xi)−Q(θ) gives rise to the claim.

Theorem 24 might hold for a martingale difference sequence (Hoffmann-Jorgensen and Pisier, 1976)
and a stationary (not necessarily ergodic) stochastic process (Cuny, 2015; Dedecker and Merlevède,
2008).

D Convergence of moments and uniform integrability

Suppose that a random variable Xn converges to X in distribution, e.g. Xn ⇒ X. In general,
convergence in distribution does not imply convergence in moments, that is Xn ⇒ X does not mean
E [Xn] → E [X]. However, if Xn are uniformly integrable, then convergence in distribution implies
convergence in moments. We refer to Billingsley (2008) for instance.

Definition 32. The sequence Xn is said to be uniformly integrable if for any ε > 0 there exists a con-
stant C <∞ such that E [| Xn | I {| Xn |> C}] < ε for any n. Or, equivalently, limC→∞ supn E [| Xn | I {| Xn |> C}] =

0.

Proposition 45. If Xn ⇒ X and Xn are uniformly integrable. Then X is integrable and E [Xn] →
E [X].

Proof. Since Xn ⇒ X , we can find random variables Yn and Y defined on ((0, 1),B((0, 1)),Leb((0, 1)))

such that Yn has the same distribution as Xn, Y has the same distribution as X and Yn → Y

w.p.1. due to Skorokhod’s representation theorem. Then applying Fatou’s lemma to Yn gives rise to
E [| Y |] = E [lim infn | Yn |] ≤ lim infn E [| Yn |]. Since | Yn | and | Xn | have the same distribution, we
have that E [| Yn |] = E [| Xn |]. Since Xn is uniformly integrable, we have:

E [| Xn |] = E [| Xn | I {| Xn |> C}] + E [| Xn | I {| Xn |≤ C}]

≤ 1 + C.

This implies that X is integrable since E [| Y |] = E [| X |] ≤ E [| Xn |]. The rest of the claim follows
from theorem 25.12 of Billingsley (2008).

The next claim known as the sufficient condition of Proposition 45.

Lemma 18. Suppose that there exists δ > 0 such that supn E
[
| Xn |1+δ

]
<∞. Then Xn are uniformly

integrable.
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Proof. We have that:

sup
n

E [| Xn | I {| Xn |> C}] ≤ sup
n

E
[
| Xn |1+δ

Cδ
I {| Xn |> C}

]
≤ sup

n
E
[
| Xn |1+δ

Cδ

]
→ 0, as C →∞.

E L2−bound for Monte Carlo estimates

Proposition 46. Assume the x(i) i.i.d.∼ µ ∈ P(E). Then, for any f ∈ Bb(E), we have that:

sup
‖f‖∞≤1

∥∥∥∥∥
∫
f(x)µ(dx)− 1

N

N∑
i=1

f(x(i))

∥∥∥∥∥
2

≤ 1√
N
.

Proof. Let FN be the σ−algebra generated by {x(i)}Ni=1 and µ(f) :=
∫
f(x)µ(dx). Notice that µ(f2) =

‖f‖22. Then we have that:

E

(∫ f(x)µ(dx)− 1

N

N∑
i=1

f(x(i))

)2

| FN
 = E

µ(f)2 − 2

N
µ(f)

N∑
i=1

f(x(i)) +
1

N2

(
N∑
i=1

f(x(i))

)2

| FN
 ,

=
1

N2

N∑
i=1

E
[(
f(x(i))

)2

| FN
]
− µ(f)2,

=
1

N
µ(f2) +

(
N(N − 1)

N2
− 1

)
µ(f)2,

=
1

N

(
µ(f2)− µ(f)2

)
≤ 1

N
‖f‖2∞ <∞,

since µ(f)2 ≥ 0. Note that given FN , we have that E
[
f(x(i))f(x(j)) | FN

]
= E

[
f(x(i))

]
E
[
f(x(j))

]
for any i < j. Then the result follows from a property of the conditional expectation:

sup
‖f‖∞≤1

∥∥∥∥∥
∫
f(x)µ(dx)− 1

N

N∑
i=1

f(x(i))

∥∥∥∥∥
2

2

= sup
‖f‖∞≤1

E

E
(∫ f(x)µ(dx)− 1

N

N∑
i=1

f(x(i))

)2

| FN
 ,

= sup
‖f‖∞≤1

1

N
‖f‖2∞ ≤

1

N
.

F Importance Sampling

Assume that one needs to obtain sample from µ(dx) ∈ P(E). Let q(dx) ∈ P(E) such that µ is
absolutely continuous w.r.t. q, and assume that µ and q have densities w.r.t. dx, also denoted by µ
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and q. Then the Radon–Nikodym ensures that the following can be well defined:

w(x) :=
p(x)

q(x)
.

Then for f ∈ Bb(E), we have:

I :=

∫
E

f(x)p(x)dx =

∫
E

f(x)w(x)dx.

Therefore, to evaluate
∫
E
f(x)p(x)dx, one needs to obtain sample x(i) i.i.d.∼ q(x), and I can be approx-

imated as follows:

ÎN :=

N∑
i=1

f(x(i))w(x(i)).

Indeed, it is clear to see that Eq
[
În

]
= I and ÎN → I w.p.1. as N → ∞ by the strong law of large

numbers, see Geweke (1989) for a detailed asymptotic analysis. Then the variance of ÎN is given by
V[ÎN ] = 1

N

(∫
E
f(x)2w(x)2q(x)dx− I2

)
. The following characterises the optimal choice of q in terms

of V[ÎN ].

Proposition 47. Geweke (1989, Theorem 3) The choice q(x) = |f(x)|p(x)∫
E
|f(x)|p(x)dx

minimises V[ÎN ].

Proof. First recall that the Radon–Nikodym ensures that w(x) is always non negative, since p and q
are both finite measures. Then the Cauchy–Schwarz inequality gives rise to

∫
E
|f(x)|w(x)q(x)dx ≤(∫

E
f(x)2w(x)2q(x)dx

)1/2
. Thus we have that

∫
E
|f(x)| p(x)dx ≤

(∫
E
f(x)2w(x)2q(x)dx

)1/2
. Define

σ2 :=
∫
E
f(x)2w(x)2q(x)dx− I2 so that

(∫
E
f(x)2w(x)2q(x)dx

)1/2
=
(
σ2 + I2

)1/2
, and as a result we

obtain: (∫
E

|f(x)| p(x)dx

)2

− I2 ≤ σ2.

It is clear to see that if there exists a constant c > 0 such that cq(x) = |f(x)| p(x) then the above
inequality becomes equality. Since

∫
E
q(x)dx = 1 by the definition, we obtain c =

∫
E
|f(x)| p(x)dx.
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