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Abstract
Therapies targeting late events in Alzheimer’s disease (AD), including aggregation of amyloid beta (Aβ) and hyperphospho-
rylated tau, have largely failed, probably because they are given after significant neuronal damage has occurred. Biomarkers 
suggest that the earliest event in AD is a decrease of cerebral blood flow (CBF). This is caused by constriction of capillaries 
by contractile pericytes, probably evoked by oligomeric Aβ. CBF is also reduced by neutrophil trapping in capillaries and clot 
formation, perhaps secondary to the capillary constriction. The fall in CBF potentiates neurodegeneration by upregulating 
the BACE1 enzyme that makes Aβ and by promoting tau hyperphosphorylation. Surprisingly, therefore, CBF reduction may 
play a crucial role in driving cognitive decline by initiating the amyloid cascade itself, or being caused by and amplifying 
Aβ production. Here, we review developments in this area that are neglected in current approaches to AD, with the aim of 
promoting novel mechanism-based therapeutic approaches.
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Introduction

Thirty years of research have given us a broad understanding 
of many mechanisms contributing to Alzheimer’s disease 
[99], but over 400 clinical trials of drugs targeting these 
pathways have largely failed to reduce cognitive decline 
[47, 109, 136]. Identification of the amyloid β protein (Aβ) 
as the major component of amyloid plaques, together with 
genetic evidence, initially indicated that dysfunction of the 
processing of amyloid precursor protein (APP) was the cause 
of Aβ plaque deposition and downstream tau tangle forma-
tion and neuronal dysfunction [59]. Subsequent work led to 
the conclusion that the level of soluble Aβ oligomers, and 
of hyperphosphorylation of the cytoskeletal protein tau that 
is induced by Aβ [62, 91], correlated better with cognitive 
decline than did plaque level [7, 57, 89, 123].

There are established mechanisms by which Aβ oligom-
ers and hyperphosphorylated tau can contribute to neuronal 
dysfunction and cognitive decline before synaptic and neu-
ronal damage, and even before Aβ plaque and tau tangle 
deposition (Fig. 1). Aβ oligomers reduce glutamate uptake 
[92, 94, 199]. This raises the extracellular glutamate level 
and increases neuronal excitability [19, 20], which alters 
synaptic plasticity [92, 94] and in extremis may induce exci-
totoxicity [60]. Tau phosphorylation leads to soluble tau 
relocating from axonal microtubules into dendritic spines, 
where it alters postsynaptic glutamate receptor trafficking 
or anchoring (of both AMPA and NMDA receptors) and 
thus suppresses excitatory postsynaptic currents and neu-
ronal activity [21, 67]. These changes may be particularly 
important when they affect the function of interneurons, 
which play a key role in generating oscillatory activity that 
contributes to cognitive function [63, 70, 176].

Preclinical AD has therefore been conceptualised as a 
synaptic disease [157] driven by Aβ and downstream tau 
phosphorylation, with loss of synapses and cells occur-
ring late in the disorder. However, individuals can be 
cognitively normal while having plaque levels as high as 
those in Alzheimer’s dementia patients, and the same is 
true for levels of soluble Aβ oligomers [39]. This could 
reflect the presence of compensating protective mutations 
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or developmental differences in the subjects with high Aβ 
levels. Alternatively, together with the fact that attempts 
to prevent cognitive decline—by blocking Aβ production, 
removing Aβ with antibodies or preventing tau phospho-
rylation—have all failed clinically (with one possible 
exception [68]), these data may suggest that there is some 
other variable that is missing from our understanding of 
the Aβ-tau cascade. Previously it has been suggested that 
the vasculature might provide such a factor, in the form 
of hypertension, impaired blood–brain barrier function, 
decreased Aβ clearance to the blood, vascular oxidative 
stress and inflammatory damage, or reduced neurovascular 
coupling at the arteriolar level [71, 198]. In this review, we 
show that new evidence reveals that a major missing vari-
able is cerebral blood flow—and specifically its control by 
capillary pericytes.

Large decreases of cerebral blood flow occur 
early in AD

Cerebral blood flow and glucose metabolism are reduced, 
and the brain’s vascular resistance is increased, in human 
AD [17, 107, 112, 115, 144, 151, 163, 165, 188] and in 
mice overexpressing amyloid precursor protein (APP) to 
mimic AD [129]. This also occurs in humans and mice 
expressing the ApoE4 protein, which predisposes towards 
AD [111, 148, 162, 163, 172]. The CBF reduction reaches 
over 50% in some brain areas [5], which is expected to 
reduce the activity of the Na/K pump (the main consumer 
of ATP in the CNS: [8]) and all processes dependent on it 
(including maintenance of the resting potential and glu-
tamate uptake). It will also lead to adenosine generation, 
which is known to suppress glutamate release [43], and 

Fig. 1   Current, generally held ideas about the pathology underlying 
Alzheimer’s disease (see main text for details). The transition from 
normal cognition to dementia, over decades, is promoted by the risk 
factors shown above the large red arrow. Aβ is produced from amy-
loid precursor protein (APP) by the action of the γ secretase and β 
secretase (BACE1) as monomers, but these can then form soluble oli-
gomers, which ultimately form extracellular precipitates as amyloid 
plaques. Aβ oligomers inhibit astrocyte glutamate uptake (EAAT), 
thus potentiating the action of synaptically released glutamate (glu). 
This, together with a loss of GABAergic inhibition, leads to some 

neurons becoming hyperexcitable. Meanwhile, Aβ oligomers also 
induce hyperphosphorylation of axonal microtubule-associated tau, 
which leads to tau redistributing partly to dendrites where it disrupts 
trafficking of glutamate receptors and thus depresses excitation and 
neuronal firing. These synaptic effects, and Aβ- and/or tau-induced 
loss of axonal myelin, may induce cognitive dysfunction well before 
synapses are lost and neurons die. The levels of Aβ oligomers and 
hyperphosphorylated tau correlate better with cognitive decline than 
does the level of Aβ plaques
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will produce numerous cell biological changes including 
changes of the balance of protein synthesis and degrada-
tion [173].

Although these changes could simply reflect tissue atro-
phy in AD [30], with a corresponding loss of blood sup-
ply and metabolism, they are associated with hypoxia [114] 
and it has been reported that the decrease of metabolism is 
greater than would be expected for the amount of atrophy 
occurring [165]. Furthermore, the observations of focal con-
strictions in capillaries from human AD brains [83], con-
striction of capillaries near plaques in human AD brains 
[58], and reduced neurovascular coupling and cerebrovas-
cular reactivity in AD mice [48, 174] suggest that blood flow 
may be reduced by decreases in vessel diameter, and not just 
by loss of blood vessels.

Chronic blood flow reductions of 50% are expected to 
cause significant cognitive changes: a sustained reduction in 
CBF beyond 20% in humans leads to loss of ability to sus-
tain attention, while a reduction beyond 30% in rats impairs 
spatial memory [105, 177]. A causal influence of blood flow 
changes on the cognitive changes at the onset of Alzheimer’s 
disease, before synapses or neurons are lost, is suggested 
by the fact that the reduction of cerebral blood flow starts 
early in preclinical AD [107, 180], with a faster onset than 
the deposition of Aβ or tau [76], and the fall of metabolism 
is also an early event [81, 115]. Furthermore, these changes 
correlate with cognitive decline [17, 112, 151].

Cerebral blood flow decreases in AD largely 
reflect pericytes constricting capillaries

The brain is unusual in that most of the resistance in its 
vascular bed is in capillaries (Fig. 2a) rather than in arteri-
oles or venules [49], and cerebral blood flow is controlled 
not only by vascular smooth muscle cells wrapped around 
arterioles, but also by contractile pericytes which enwrap 
at least the first 4 branch orders of capillaries from the pen-
etrating arteriole [9, 56, 82, 84, 143, 152, 187]. Contraction 
of these pericytes produces localised capillary constrictions 
near the pericyte somata (where most of the circumferen-
tial processes of the pericytes are located [133]) and could 
account for the focal capillary constrictions seen anatomi-
cally in capillaries isolated from human AD brains [83].

Despite the award of the Nobel Prize to Krogh [87] for 
his discovery of contractile elements on capillaries which 
act independently of smooth muscle cells on arterioles, there 
has been some controversy in the literature about whether 
pericytes are in fact contractile. However, this debate has 
now largely been resolved. The Zlokovic group [127] 
assessed in vitro, ex vivo and in vivo studies on pericyte 

contractility and found that 37 out of 39 separate papers 
reported that pericytes display contractility (and one of the 2 
remaining papers [65] actually showed pericytes contracting, 
but renamed these cells smooth muscle cells: see [9] for dis-
cussion). Furthermore, whereas contractility had previously 
been demonstrated most clearly for pericytes on the 1st–4th 
branch orders of capillary measured from a penetrating arte-
riole [56, 65] which express the highest levels of α-smooth 
muscle actin, innovations in histochemistry have revealed 
that even higher branch order pericytes express this con-
tractile protein [3] and optogenetic experiments have shown 
that these higher branch order pericytes can also regulate 
capillary diameter and blood flow [www.biorx​iv.org/conte​
nt/10.1101/2020.03.26.00876​3v1].

Functional indications that capillary pericyte-mediated 
control of CBF is disrupted in AD have been provided by 
measurements of the capillary transit time of the blood, 
and its heterogeneity. Magnetic resonance imaging (MRI) 
experiments on humans and optical imaging experiments on 
AD mice have found that AD leads to both a prolongation of 
the capillary transit time and an increase in its heterogeneity, 
as if some capillary pericytes became more constricted than 
others [38, 54]. Furthermore, in humans, these changes cor-
relate with cognitive decline (Fig. 2b), as measured by the 
Brief Cognitive Status Examination [128].

By analysing images of brain biopsies of patients who 
consulted neurologists for dementia of unknown cause 
(Fig. 2c), Nortley et al. [133] demonstrated that patients 
developing AD have capillary blood flow restricted as a 
result of capillary constriction. This was shown to be due 
to pericytes by examining how capillary diameter varied 
as a function of the distance along the capillary from the 
pericyte soma (Fig. 2d). Patients depositing Aβ and tau tan-
gles showed a constriction at the pericyte soma relative to 
positions between pericytes on the capillary. This increased 
rapidly with the amount of Aβ deposited, suggesting a CBF 
reduction mechanism that occurs early in the development 
of the disease (before accumulation of Aβ in and around vas-
cular cells—cerebral amyloid angiopathy—leads to pericyte 
loss), as is also seen in live imaging of CBF in AD patients 
[107]. In contrast, in patients lacking Aβ and tau deposi-
tion, capillaries showed a larger diameter near the pericyte 
soma, perhaps because pericytes normally induce growth 
of the endothelial tube. The difference in the spatial profile 
of capillary diameter between AD and non-AD patients was 
estimated to be able to generate a reduction in CBF of ~ 50%, 
similar to that found in AD patients in vivo [5].

In AD mouse models, live cortex imaging through a cra-
nial window, or reconstructing the hippocampal vasculature 
of fixed brains, also showed a reduction of mean capillary 
diameter compared to normal mice [55, 133, 193], which in 

http://www.biorxiv.org/content/10.1101/2020.03.26.008763v1
http://www.biorxiv.org/content/10.1101/2020.03.26.008763v1
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cortex reflected capillary constriction near pericyte somata 
[133]. Nortley et al. [133] further demonstrated that, in the 
AD model mouse they used, neither arterioles nor venules 

had an altered diameter, implying that the reduction of CBF 
is generated by capillaries (although this still remains to be 
shown for human AD and other AD mouse models).

Fig. 2   The role of pericytes in the physiology and Alzheimer’s-
related pathology of the brain circulation. a Schematic diagram of 
the vascular bed (colour of blood represents oxygenation), indicat-
ing the relative resistance in the capillaries compared to penetrating 
arterioles and venules, for flow from the pial surface down an arte-
riole to layer 4, through the capillary bed, and returning to the pial 
surface through a venule [49]. Capillary diameter can be adjusted 
by a population of pericytes (yellow) that are contractile, which are 
located on at least the first four branch orders (see labels) of the capil-
lary bed [56]. Blood flowing through capillaries with pericytes that 
are contracting to reduce the diameter will flow more slowly and so 
has a longer capillary transit time than blood flowing through capil-
laries with relaxed pericytes, thus generating capillary transit time 

heterogeneity (CTTH). b In patients with AD, CTTH (shown as a % 
change) increases as cognitive power (assessed with the Brief Cogni-
tive Status Examination) declines (from Fig. 5A of [128], reproduced 
courtesy of John Wiley and Sons). c, d Capillary imaged in right 
frontal cortex biopsy from a dementing patient lacking Aβ deposition 
(c) and plot of mean capillary diameter versus distance from pericyte 
somata (d) in similar patients lacking or showing Aβ deposition (from 
Fig. 4A, D of [133]). Patients depositing Aβ show a large constriction 
near the pericyte somata. e Neutrophil (green) occluding a branch (to 
the right) of a capillary in AD mouse cortex (from Fig. 2A of [26], 
reproduced courtesy of Springer Nature). f Reducing clotting with 
dabigatran in WT and AD mice (from Fig.  3B of [25], reproduced 
courtesy of Elsevier Press) increases CBF in AD mice
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Mechanism of CBF decrease

Although the mechanism of the long-term pericyte-medi-
ated constriction of capillaries that occurs in human AD 
brains has not yet been definitively identified, short-term 
application of Aβ oligomers (both Aβ1–42 and Aβ1–40, at 
nanomolar concentrations similar to those present in AD) 
to human or rodent brain slices evoked capillary constric-
tion [133] mediated by reactive oxygen species (ROS) 
generation and activation of endothelin A (ETA) receptors 
(Fig. 3). It is plausible that this signalling pathway is also 
responsible for capillary constriction in the human AD 
brain, since the concentrations of both ROS and endothe-
lin-1 are known to be elevated in human AD [10, 114, 
135]. The locus of ROS generation is debated, with Park 
et al. [141] suggesting it to be perivascular macrophages, 
while Nortley et al. [133] found that ROS are generated 
by microglia and pericytes. ETA receptors are known to 

be expressed on all classes of pericyte [190] and their 
activation in AD is consistent with the elevated level of 
extracellular endothelin-1 (ET) found in post-mortem AD 
brains [113, 135].

Release of inflammatory mediators generated during 
AD may also contribute to the decrease of CBF occurring. 
Interleukin-1β is generated when microglial and astrocyte 
inflammasomes are activated by oligomeric Aβ, and (in 
the context of ischaemia) this cytokine has been shown 
to decrease CBF by releasing ET [125], although it is 
unknown whether this decrease is generated by pericytes. 
Similarly, a mutation in the microglial TREM2 receptor 
(an AD susceptibility gene) that increases the production 
of inflammatory mediators also leads to a decrease of CBF 
[85]. The neuroinflammation occurring in multiple scle-
rosis can also be associated with hypoperfusion that is 
correctable by blocking ETA receptors or voltage-gated 
calcium channels [33, 34].

Fig. 3   Schematic diagram showing how the amyloid beta and tau 
cascades can be initiated from two entry points (red boxes): (i) a 
decrease of cerebral blood flow (CBF) which lowers brain O2 and 
glucose and thus upregulates the enzyme (BACE1) that makes Aβ or 
(ii) an increase in Aβ level due to more production or less clearance 
of Aβ. Aβ oligomers can aggregate into plaques, but also evoke ROS 
production from microglia and pericytes, which triggers the release 
of endothelin-1 (ET-1) from a yet-to-be-determined cell type [133]. 

Activation of ETA receptors on pericytes leads to capillary constric-
tion and a decrease of CBF, lowering the levels of O2 and glucose. 
Both a rise of Aβ oligomer concentration and a fall of blood flow lead 
to hyperphosphorylation of tau, which relocates from axonal micro-
tubules to dendrites, causing synapse dysfunction. Together with 
myelin loss this leads to cognitive decline. The fall of CBF will also 
contribute to impaired cognition
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The role of upstream arteries and arterioles

Constrictions of rodent cerebral arterioles and middle 
cerebral artery, resulting in a decrease of cerebral blood 
flow, have been reported to be evoked by application of 
exogenous Aβ1–40 [130, 169], but interestingly—at least 
in the APPNL−G−F rodent model of AD—the level of Aβ 
that occurs in AD is sufficient only to constrict capillaries 
and not arterioles [133]. Nevertheless, in some AD mice, 
neurovascular coupling is impaired at the arteriole level 
[131]. Furthermore, changes in the properties of arteries 
and arterioles upstream of the brain’s capillary beds, and 
of the downstream venous system, could contribute to the 
onset of AD. Possible contributing changes include ath-
erosclerosis [69, 182] leading to partial occlusion of large 
vessels, an increase in arterial stiffness [69] and hyperten-
sion [45, 72] (discussed below) resulting in microvascular 
damage. It is possible that, rather than directly reducing 
CBF, these changes may promote Aβ generation or reduce 
its clearance [45, 69].

Capillary block by neutrophils and clot 
formation also reduce CBF in AD

The graded constriction of capillaries by pericytes is pre-
dicted to reduce CBF by 50% even in the absence of cells 
in the blood [133]. In addition, two mechanisms that can 
produce complete occlusion of vessels have been reported 
to reduce CBF in AD.

By imaging cell movements in cerebral capillaries, 
Cruz Hernández et al. [26] observed that in AD (APP/
PS1), mice capillaries could become blocked by neu-
trophils (Fig. 2e). In the AD mice 1.8% of capillaries—
predominantly of smaller diameter—became blocked, 
whereas in wild-type mice only 0.4% of capillaries were 
blocked. It will be important to reproduce these results in 
human AD patients. In wild-type mice, capillary block 
increases with ageing and can lead to vessels being pruned 
[159]. Remarkably, although modelling suggested that the 
increased block in AD would lead to a decrease of CBF of 
less than 5%, applying intraperitoneally a high concentra-
tion of an antibody to a neutrophil surface marker (Ly6G) 
led to a relief of capillary block, an increase of blood flow 
by 26–32% and improved memory. This is surprising 
because, at least in conditions of inflammation, antibody 
to Ly6G promotes neutrophil adhesion and aggregation, 
coagulation and decreased blood flow [132]. The large 
effect of the antibody on CBF compared with the model-
ling predictions for relief of capillary block alone may 
indicate either that the modelling is over-simplified or that 

the antibody has effects beyond simply preventing neutro-
phil blocking of capillaries, perhaps on the effective vis-
cosity of the blood (which leukocytes significantly affect 
[2, 16]) or on interactions with platelets and endothelial 
cells [110].

Cortes-Canteli et al. [25] employed long-term antico-
agulation with a direct oral anticoagulant, dabigatran, to 
try to improve outcome in AD mice, based on the observa-
tion that excess fibrin is deposited in the AD brain, indi-
cating an excessively prothrombotic environment. Dabi-
gatran preserved CBF and reduced cognitive decline in AD 
mice (Fig. 2f). While a 15% decrease in CBF was seen at 
40 weeks of age in AD mice (a smaller decrease than occurs 
in affected regions in human AD, possibly because cortical 
CBF was assessed by measuring it relative to thalamic CBF, 
which may itself be decreased [11]), after anticoagulation 
treatment from 2 months of age the CBF was raised above 
normal by 13%. Interestingly in humans receiving oral anti-
coagulants, the risk of dementia is reduced by 29% [44].

Given the profound constriction of cerebral capillaries 
at pericyte somata that is observed in biopsies from human 
patients developing AD, from a diameter of ~ 5 to ~ 2.8 μm 
[133], it is attractive to hypothesize that both the block of 
capillaries by neutrophils and the formation of clots that 
reduce CBF are a consequence of the reduced diameter of 
capillaries near pericyte somata. Neutrophils are larger and 
less distensible than red blood cells and pass through cap-
illaries more slowly [16, 37], and so may tend to become 
lodged at the smallest diameter parts of capillaries. Simi-
larly, although Cortes-Canteli et al. [25] did not image the 
vasculature to define which vessels exhibited coagulation, 
the decreased flow expected through pericyte-constricted 
capillaries would tend to promote clotting, suggesting that 
thrombi forming in the smallest vessels may contribute to 
the reduction of CBF occurring.

Capillary constriction and reduced CBF 
accelerate AD onset

The capillary constriction seen in AD leads to the neural 
tissue becoming hypoxic [133], which presumably contrib-
utes to the decrease in glucose metabolism observed in AD 
(see above). Importantly, ischaemia and hypoxia have been 
shown to upregulate the enzyme (BACE1) responsible for 
generating Aβ [168, 197], as schematised in Fig. 3. This 
leads to more Aβ production [168, 197], which is expected 
to promote neurodegeneration and cognitive decline in 
accordance with the amyloid hypothesis, and indeed this 
was found [168, 197]. While these mechanistic studies were 
all in animals or on cell lines expressing human BACE1, the 
level of BACE1 and its enzymatic activity are increased in 
humans suffering from AD [78], as expected from the fact 
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that the capillary constriction in humans developing AD is 
sufficient to reduce cerebral blood flow by up to 50% [133] 
and the animal work cited above showing that ischaemia and 
hypoxia upregulate BACE1. Furthermore, an upregulation of 
BACE1 has been found to exist in mild cognitive impairment 
patients, and correlates with Aβ plaque number and cogni-
tive decline [23]. The upregulation of BACE1 by ischaemia 
and hypoxia occurs as a result of caspase-3 both increasing 
BACE1 mRNA level and cleaving GGA3, an adaptor protein 
involved in BACE1 trafficking, to decrease BACE1 degrada-
tion [171, 184, 194], and has two conceptual implications.

Firstly, BACE1 upregulation implies that low blood flow 
or hypoxia—caused by a purely vascular defect, brain injury, 
sleep apnoea or genetic predisposition—could initiate the 
production of Aβ. Indeed, bilateral occlusion of the carotid 
arteries leads to Aβ production and a fall of metabolism 
in the amygdala, entorhinal cortex and hippocampus [140]. 
This could explain why subjects with sleep apnoea, or head 
injury that decreases CBF [155, 178], are more likely to 
develop AD [95, 189]. Similarly, hypertension leads to a 
45% decrease of CBF in selected brain regions [27, 72, 124], 
and the resulting upregulation of BACE1 may contribute to 
Aβ accumulation and the increased likelihood of suffering 
from AD that is associated with hypertension [72]. For the 
severe ischaemia produced by stroke, however, it is debated 
[46, 154] whether this evokes Aβ deposition that contrib-
utes to the increased incidence of dementia that occurs post-
stroke [117]. Some genetic variants may act by reducing 
CBF. The ApoE4 variant of ApoE is the main susceptibility 
gene for AD, and has important vascular effects. Expression 
of ApoE4 leads to a lower CBF even in cognitively normal 
subjects [111], which will tend to upregulate BACE1 and 
increase Aβ production (see above). It also promotes accel-
erated loss of pericytes and consequent breakdown of the 
blood–brain barrier, which correlate with cognitive decline 
[119]. Since experimentally reducing CBF also leads to 
pericyte loss [41, 56, 97] and hence BBB breakdown [4, 13, 
97, 118], it is unclear whether the primary effect of ApoE4 
on pericytes is to make them constrict capillaries (ApoE4 
is known to affect the cytoskeleton and so may affect con-
tractility [22]) with the resulting decrease in CBF causing 
pericyte loss and subsequent BBB breakdown, or whether 
the primary effect is the loss of pericytes which somehow 
causes a decrease of CBF.

Secondly, once Aβ production (or an imbalance between 
production and removal by various mechanisms described 
below) has been initiated, the resulting constriction of cap-
illaries by pericytes that it initiates (see above) will reduce 
CBF, causing an upregulation of BACE1 and production of 
more Aβ (Fig. 3). This positive feedback loop will amplify 
the production of Aβ, over an as yet unknown time course, 
resulting in a further imbalance between Aβ production and 
removal.

Capillary constriction as a link between Aβ 
and tau phosphorylation

Downstream of Aβ production, an important driver of cog-
nitive decline is tau hyperphosphorylation [57, 62, 91], 
which leads to tau dissociating from microtubules, aggre-
gating and localising more in dendrites (Fig. 3). Impor-
tantly, ischaemia (or hypoxia), which is evoked by the per-
icyte-mediated capillary constriction that Aβ evokes [133], 
is known to trigger tau phosphorylation [140, 145, 147]. 
This is unlikely to reflect solely the increase in Aβ level 
evoked by ischaemia/hypoxia discussed above, because 
tau phosphorylation occurs in hypertensive rats (which 
are ischaemic and hypoxic) even without Aβ pathology 
[147] and is evoked by unilateral carotid artery occlusion 
in AD mice without a rise in Aβ1–42 level [145].

Major enzymes phosphorylating tau at AD-related sites 
include Cdk5 (cyclin-dependent kinase 5) and GSK3 (gly-
cogen synthase kinase 3) [52, 91, 98]. For the following rea-
sons, these may be activated by capillary constriction which 
evokes ischaemia/hypoxia, and thus inhibits Ca2+ pumping 
out of cells and raises [Ca2+]i. Cdk5 is activated when a 
raised [Ca2+]i activates calpain to cleave Cdk5′s regula-
tory subunit p35 [98, 158]. GSK3 is activated by prolonged 
hypoxia via a decrease in activity of the phosphatidylinositol 
3-kinase/Akt pathway [122, 191] and on a shorter time scale 
by an imipramine-sensitive mechanism [149].

Thus, the Aβ-evoked reduction of CBF, produced by 
pericyte-mediated capillary constriction in AD, could pro-
vide an important link between the rise of extracellular Aβ 
concentration and the hyperphosphorylation that leads to 
tau relocating to dendrites and impairing synaptic function 
(Fig. 3). Consequently, cognitive decline is likely to involve 
a reduction of CBF, whether the cognitive decline is pro-
duced ultimately by Aβ or by tau hyperphosphorylation.

Effect of reduced blood flow on Aβ clearance 
and blood–brain barrier (BBB) in AD

The CNS is presumably exposed mainly to Aβ generated 
within the CNS, rather than Aβ generated peripherally 
and entering across the BBB (although Aβ transfer in this 
direction is possible via the receptor for advanced glyca-
tion end products (RAGE) [32]), Consequently, the rise of 
CNS Aβ concentration that occurs in AD depends not only 
on the rate of Aβ production, but also on the rate at which 
it is enzymatically degraded within and removed from the 
CNS [108]. This raises the question of how Aβ clearance 
will be affected by the up to 50% reductions of CBF that 
occur in affected areas [5].
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Four major clearance routes for Aβ from the CNS have 
been proposed: via efflux across endothelial cells into 
the blood; via bulk extracellular flow into the CSF and 
lymphatic vessels; via movement through the perivascu-
lar spaces of either penetrating arterioles or alternatively 
venules (promoted by cardiac cycle driven pulsation of 
arterioles and, in the case of exit along venules, also water 
flow through astrocytes termed the glymphatic system: see 
below); and via phagocytosis and subsequent degrada-
tion by microglia, astrocytes and other cells. Injections 
of radioactive Aβ into the brain parenchyma have been 
used to try to quantify the relative importance of these 
removal mechanisms [160]. Five hours after injecting 
Aβ1–40, 84.5% of it had been cleared from the CNS and 
15.5% was retained. The retained material might include 
Aβ in the interstitial space and Aβ (or breakdown prod-
ucts) sequestered in microglia, astrocytes and other cells. 
Of the removed Aβ, 12.7% (i.e. 10.7% of the total injected) 
was removed by a process that also occurred for the inert 
tracer inulin, which may include all mechanisms driven by 
interstitial fluid flow. The remaining 87.3% of removed Aβ 
was assumed to have exited the BBB across the endothe-
lial cell layer of capillaries. Similar experiments showed 
that (at 30 min after tracer injection) 30% more Aβ1–42 
than Aβ1–40 was retained in the brain and correspondingly 
less was cleared across the BBB [196]. Clearance across 
the BBB involved PICALM (phosphatidylinositol-binding 
clathrin assembly protein [196]), which is expressed in 
vascular endothelial cells [190], and LRP1 (low density 
lipoprotein receptor-related protein 1; but see [75]), which 
is expressed in perivascular astrocytes and pericytes and to 
a small extent in capillary endothelial cells (as well as neu-
rons, microglia and oligodendrocyte precursor cells [190]). 
A major role for endothelial cell LRP1 in mediating Aβ 
export is shown by knock-out work [167], but astrocyte 
and neuronal LRP1 may also be involved [79, 96]. There is 
evidence for association of PICALM and LRP1 gene vari-
ants with human AD risk (reviewed by [161] and [196]).

The decrease of CBF that occurs early in preclinical 
AD could decrease Aβ removal across endothelial cells, 
thus potentiating Aβ accumulation, by decreasing the 
level of proteins that mediate the removal. For example, 
ischaemia will raise [Ca2+]i which can result in calpain 
cleaving PICALM [150], and indeed PICALM levels are 
lower in human AD, correlating both with an increased 
Aβ level and with cognitive decline as assessed with the 
Mini Mental State Exam [196]. Similarly, ischaemia leads 
to the endopeptidase furin cleaving LRP1 [185]. Addition-
ally, a slowing of capillary blood flow could in principle 
allow Aβ that has exited into the blood to re-enter the brain 
parenchyma by RAGE-mediated entry across endothelial 
cells [32], thus again slowing net removal of Aβ.

The CBF decrease in AD is also expected to alter Aβ 
removal by the other, apparently quantitatively less impor-
tant [66, 160], mechanisms mentioned above. Pulsation of 
penetrating arterioles during the cardiac cycle or spontane-
ous vasomotion has been postulated to power the removal 
of Aβ (in a retrograde direction with respect to CBF) in 
the perivascular spaces of penetrating arterioles [36, 156]. 
Arteriole pulsation is also presumed to promote water flow 
along the paravascular spaces of arterioles and through 
both aquaporin-4-expressing glial cells and the extracel-
lular space of the brain [73, 74]. This flow may reach: (i) 
venules, where it helps to remove Aβ in the perivascular 
spaces of venules (in the same direction as CBF [73]), and 
(ii) the CSF and lymphatic vessels [6, 100, 103, 137]. A 
detailed analysis of these proposals has been provided [66, 
164]. In AD, when CBF decreases, decreased pulsatility of 
the middle cerebral artery has been reported [134] and so, 
if this extends to penetrating arterioles, less Aβ removal by 
pulsation-driven mechanisms would be expected. Indeed, 
removal of Aβ by the CSF, lymphatic and glymphatic sys-
tems decreases in AD [88, 142], possibly with contribut-
ing factors including increased stiffening of the arterioles 
with age [179] and ischaemia-induced changes of other 
key components such as decreased lymphatic function and 
aquaporin 4 localisation away from astrocyte endfeet abut-
ting blood vessels [28, 88, 186].

The CBF decrease induced by capillary constriction 
in AD may also alter microglial and astrocyte removal 
and degradation of Aβ. Ischaemia followed by reperfu-
sion (which may mimic the prolonged decrease of CBF 
occurring in AD) decreases microglial ramification [106, 
121], which could decrease Aβ removal by these cells 
as surveillance of the brain parenchyma will be reduced 
[104]. On the other hand, ischaemia upregulates expres-
sion of triggering receptor expressed on myeloid cells-2 
(TREM2), which is a key molecule by which microglia 
recognise Aβ and remove it [138, 195], as well as other 
phagocytosis-related genes [192], suggesting an enhanced 
ability to remove Aβ by microglia. Similarly ischaemia 
upregulates ABCA1, MEGF10 and GULP1, which are 
components of an astrocytic phagocytosis pathway [120], 
suggesting that the CBF reduction occurring in AD may 
also enhance Aβ removal by astrocytes [www.biorx​iv.org/
conte​nt/10.1101/2020.03.29.00285​7v1].

Although this review focuses on the effects of the 
reduction of CBF that is induced by pericyte-mediated 
capillary constriction in AD, pericytes themselves are very 
sensitive to ischaemia [41, 56]. In AD the reduction of 
CBF, together with intracellular accumulation of Aβ in 
pericytes [181], may eventually lead to pericyte death [41, 
56], which will lead to a loss of BBB function [4, 13, 118, 
126] that promotes neurodegeneration [153].

http://www.biorxiv.org/content/10.1101/2020.03.29.002857v1
http://www.biorxiv.org/content/10.1101/2020.03.29.002857v1
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The role of white matter CBF changes 
in the onset of AD

Although most attention in the AD field focuses on 
changes in the grey matter, the Aβ level also increases in 
the white matter in AD [24], and the CBF decrease early 
in AD occurs in the white matter as well as the grey matter 
[80]. Consequently, the CBF decrease might exert some of 
its effects by generating white matter dysfunction, such as 
slower action potential propagation. White matter tissue is 
lost before grey matter tissue in AD [30], and early in AD 
white matter abnormalities defined by MRI correlate both 
with cognitive decline and with reduced CBF in the deep 
and circumventricular white matter [18, 77, 93]. Surpris-
ingly, however, white matter capillary diameter has been 
reported to increase in AD [61]. These results suggest that 
it will be important to determine whether, in preclinical 
human AD, capillary constriction by pericytes occurs in 
the white matter, as in the grey matter [133], or whether 
CBF decreases as a result of upstream vessel constriction 
in the grey matter [101] (possibly with dilation of white 
matter capillaries as an adaptive response) or for some 
other reason, and to establish precisely which downstream 
mechanisms (such as myelin loss [116]) lead to white mat-
ter dysfunction early in AD.

Implications for therapeutic approaches 
to Alzheimer’s disease

The discoveries that the decrease of CBF in AD occurs 
early in the disease [76], and is caused by impaired capil-
lary regulation of CBF [26, 54, 128, 133], are consist-
ent with the proposal that impaired capillary blood flow 
contributes to the onset of AD [31] made soon after the 
amyloid hypothesis of AD was proposed [59]. These data, 
including the demonstration that Aβ itself can trigger 
pericyte-mediated capillary constriction [133], reconcile 
genetic evidence for the involvement of Aβ in AD with 
the fact that the first change seen in AD is a decrease of 
cerebral blood flow [76], and open up new potential thera-
peutic approaches for this disease. Conceivably, maintain-
ing CBF may prevent cognitive decline if interventions 
are made early enough to avoid neuronal and glial dam-
age. Just as the risk of stroke is now reduced by giving 
blood pressure lowering drugs prophylactically, we expect 
the long-term future of AD therapy to involve—at least 
partly—prophylactic agents that prevent pericyte-mediated 
capillary constriction, and thus prevent both direct effects 
of CBF decreases and the amplification of Aβ produc-
tion and tau phosphorylation that a fall in CBF generates. 

Below, we consider approaches to achieving this and pos-
sible biomarkers to use to decide when prophylaxis should 
be initiated (Fig. 4).

Preventing pericyte‑mediated capillary constriction

The constriction of capillaries by pericytes may be mediated 
by Aβ evoking the generation of ROS that trigger the release 
of endothelin-1 (ET), which activates [Ca2+]i-elevating 
contractile ETA receptors on pericytes [133]. Indeed, in 
short-term experiments, blocking ROS production and ETA 
receptors prevented development of further Aβ-evoked con-
striction [133]. However, long-term block of ROS genera-
tion is undesirable because ROS are used for signalling in 
many contexts, as well as for immune defence mechanisms. 
Furthermore, ETA receptor activation is difficult to reverse 
with blockers [64], and although there is a BBB-permeable 
ETA receptor blocker licenced for clinical use (clazosentan 
for sub-arachnoid haemorrhage), side effects make this drug 
unsuitable for long-term administration [175].

A better approach to preventing capillary constriction 
may therefore be to inhibit the contractile pathways down-
stream of ETA receptors by blocking the release of Ca2+ from 
internal stores and increasing the activity of myosin light 
chain phosphatase to activate relaxation of the contractile 
filaments. These twin aims can be achieved by using an ago-
nist of guanylate cyclase receptors, such as C-type natriu-
retic peptide (CNP, [166]). Indeed, CNP rapidly reverses 
Aβ-evoked constriction of capillaries in brain tissue [133]. 
An alternative approach is to relax pericytes by inhibiting 
their voltage-gated Ca2+ channels (VGCCs). Interestingly, 
comparing different classes of drugs used to reduce hyper-
tension, it has been claimed that only VGCC blockers slow 
the progression to dementia in AD ( [102], see also [183]), 
although not all VGCC blockers used for hypertension cross 
the BBB well and there are numerous mechanisms by which 
they may slow cognitive decline [90]. One BBB-permeable 
VGCC inhibitor, nilvadipine, has been shown to restore the 
CBF of AD mice to normal levels [139]. In human AD, 
although nilvadipine lowers peripheral blood pressure, it 
increases CBF in the hippocampus [29], presumably by 
relaxing pericytes, and shows some slowing of cognitive 
decline in very mild AD patients [1]. Devising ways of tar-
geting VGCC blockers specifically to CNS pericytes might 
enhance the efficacy of this approach. Firstly, it would be 
desirable to avoid inhibiting VGCCs in neurons, which 
might be achievable by using bivalent drugs that also bind to 
proteins expressed relatively specifically by pericytes, such 
as PDGFRβ. Secondly, if it were possible to avoid inhibiting 
VGCCs in pericytes and smooth muscle cells around periph-
eral blood vessels, this would probably avoid the decrease 
in blood pressure that stems from relaxing the vasculature 
all over the body.
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Preventing neutrophils occluding capillaries

As noted above, Cruz Hernández et al. [26] showed that, in 
AD mice, brief application of an antibody to the Ly6G pro-
tein on neutrophils increased CBF by 30% and improved 
memory, although in aged AD mice the cognitive effect 
was absent, presumably because too much synaptic dam-
age had occurred by that stage [15]. The improvement of 
cognition in parallel with the increase in CBF in younger 
AD mice strongly supports the concept of devising inter-
ventions to preserve CBF in AD. However, prolonged 
application of antibody to Ly6G leads to very significant 

neutropenia (a depletion of neutrophils) within hours [26], 
which will engender a heightened risk of infection, and 
thus is not suitable as a long-term therapy (this approach 
has not yet been used in humans). Thus, further research is 
needed to devise an agent which generates the blood flow 
increasing effect of Ly6G (which may be via more than 
one mechanism: see above) without causing neutropenia. 
As with the approach of targeting pericyte-mediated capil-
lary constriction discussed above, it will also be necessary 
to consider the overall effect on blood pressure caused by a 
manipulation that decreases vascular resistance throughout 
the body.

Fig. 4   Interventions to diagnose and reduce cognitive decline at dif-
ferent stages of the transition from normal cognition to dementia in 
AD. Right third of figure: most clinical trials are initiated at relatively 
late stages of the disease, when cognitive decline is already apparent, 
and irreversible synapse or neuron loss may have taken place. This 
may explain why drugs that block the γ or β secretases, antibod-
ies to different forms of Aβ, and a drug that blocks tau aggregation 
(LMTM) have all failed (red crosses) to stop cognitive decline in AD. 
Left third of figure: emerging diagnostic approaches for early detec-
tion of AD include MRI assessment of white matter hyperintensities 
(image from Fig. 1B of [93], reproduced courtesy of Dove Medical 
Press) and capillary transit time heterogeneity (from Fig. 5E of [128], 
reproduced courtesy of John Wiley & Sons), assessment of biomark-

ers in the CSF such as PDGFRβ and neurofilament light chain (NFL), 
and non-invasive capillary imaging in the retina using (e.g.) optical 
coherence tomography angiography (OCTA). Middle third of figure: 
potential therapies to prevent or reverse the CBF decrease arising 
when Ca2+ activates myosin light chain kinase (MLCK) to evoke per-
icyte-mediated capillary constriction. These include blocking pericyte 
voltage-gated calcium channels to block Ca2+-evoked constriction, 
raising pericyte cGMP level (by activating guanylate cyclase recep-
tors, blue membrane protein) to stimulate myosin light chain phos-
phate (MLCP) and thus evoke dilation, disrupting neutrophil surface 
interactions with endothelial cells or other cells using antibodies (if 
this approach can be used without inducing neutropenia), or blocking 
thrombus formation with dabigatran [25, 26, 133]
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Use of anticlotting agents

The prolonged use of anticoagulants to improve cerebral 
blood flow and outcome in patients liable to developing AD 
[25] might lead to an increased risk of intracranial haemor-
rhage. AD often coexists with cerebral amyloid angiopathy 
(CAA), for which asymptomatic micro-bleeds, bleeding 
into the cortical sulci and large symptomatic lobar cerebral 
haemorrhages can be complications. These are thought to 
be due to a breakdown in microvasculature integrity as Aβ 
accumulates along vessel walls and injures them [50]. Cri-
teria exist for diagnosing CAA [51], and detection of intrac-
erebral haemorrhage (including micro-bleeds) has been 
greatly enhanced by T2*-weighted MRI imaging sequences 
with a high sensitivity for bleeding [50]. However, further 
research is required to determine whether there are specific 
CAA-related biomarkers that would help clinicians to rec-
ognise and exclude those patients who would be put at an 
unacceptable risk of serious intracerebral haemorrhage from 
anticoagulation, before it could be adopted as a widespread 
prophylactic treatment for AD.

Relevance of these approaches to other 
neurodegenerative disorders

The Aβ-evoked constriction of capillaries by pericytes may 
involve ROS generation that evokes the release of endothe-
lin-1 [133]. ROS generation also occurs when α-synuclein 
accumulates in Parkinson’s disease (PD) and Lewy body 
dementia (LBD) [12, 14], and may evoke ET release and 
constrict capillaries as for AD. Indeed, PD and LBD are 
associated with decreased cerebral blood flow [42, 170]. 
Accordingly, the therapeutic approaches outlined above may 
also be relevant to these disorders.

Choice of biomarker for initiating treatment

To date, candidate treatments for AD have almost certainly 
been initiated too late, after irreversible damage to the 
brain has occurred, as a result of making treatment deci-
sions based on significant observable cognitive decline. If 
we are to move towards more preventative treatments, they 
will need to be started as soon as the earliest changes occur 
in the disease, raising the question of what biomarkers to 
use to trigger treatment. Assuming that pericyte-mediated 
capillary constriction is indeed a very early event in the 
onset of AD (see Fig. 3) as suggested by Iturria-Medina 
et al. [76] and Nortley et al. [133], it will become essential 
to develop non-invasive tests to detect the onset of capil-
lary constriction near pericytes. Markers of cell damage, 
such as CSF levels of neurofilament light chain which may 
indicate damage to white matter axons [35] or PDGFRβ 
for pericytes [118], while useful for assessing the extent 

of neurologically relevant damage, may only be detectable 
too late for initiating a preventative drug strategy.

Techniques that look directly at deleterious decreases 
of CBF (which may follow a period of adaptive hyper-
perfusion in some brain regions [40, 53, 180]), and its 
capillary control, may therefore be preferable. In human 
patients, MRI can be used to measure CBF. Dynamic sus-
ceptibility contrast MRI with an injected tracer has been 
used to quantify changes of blood capillary transit time 
(and its heterogeneity) in early AD [38, 128], which we 
argue above probably reflect pericyte-mediated constric-
tion of capillaries. If these measurements could be per-
formed using non-invasive (i.e. without an injected tracer) 
arterial spin label MRI, then it would provide a method 
to assess changes in how pericytes control blood flow in 
different capillaries. An alternative, more direct, observa-
tion of pericyte-mediated capillary constriction may be 
possible by imaging retinal capillaries through the intact 
cornea, using optical coherence tomography angiography 
(OCTA), which has been used to detect decreases in neuro-
vascular coupling at the arterial level [146]. OCTA could 
perhaps thus provide a screening method for detecting 
pericyte malfunction early in preclinical AD. Aβ plaques 
are reported to be deposited in the retina before being 
deposited in the brain [86]. Thus, pericyte-mediated cap-
illary constriction evoked by Aβ oligomers should also be 
detectable early on as a focal reduction of capillary diam-
eter around pericytes (cf [133]), although this reduction 
is likely to be close to the limit of resolution of the OCTA 
technique and this approach would require validation with 
post-mortem immunohistochemistry.

Conclusions

With the discoveries that a decrease of cerebral blood flow 
is the earliest change to occur in AD [76], that this is gener-
ated at the capillary level [26, 38, 133] and that changes in 
capillary control of CBF correlate with cognitive decline 
[128], it is becoming impossible to ignore the vascular con-
tribution to Alzheimer’s disease. The reduction of CBF pro-
duced by pericytes constricting capillaries, along with ensu-
ing decreases in CBF as a result of capillary occlusion by 
neutrophils and thrombi, is an important dysfunction in AD 
that potentially opens up new therapeutic approaches and 
new screening possibilities. Initial evidence indicates that 
reversing this reduction of CBF can restore cognitive func-
tion, provided that damage to synapses, neurons and circuits 
has not advanced significantly. Consequently, in addition to 
manipulation of other effects of Aβ and tau, devising screen-
ing tests to allow therapeutic intervention to maintain CBF 
should be a key aim for the future treatment of AD.
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