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Abstract
The compatibility conditions for generalised continua are studied in the framework of differential geometry, in particular
Riemann–Cartan geometry. We show that Vallée’s compatibility condition in linear elasticity theory is equivalent to
the vanishing of the three-dimensional Einstein tensor. Moreover, we show that the compatibility condition satisfied by
Nye’s tensor also arises from the three-dimensional Einstein tensor, which appears to play a pivotal role in continuum
mechanics not mentioned before. We discuss further compatibility conditions that can be obtained using our geometrical
approach and apply it to the microcontinuum theories.
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1. Introduction
Compatibility conditions in continuum mechanics form a set of partial differential equations that are not com-
pletely independent of each other. They may impose certain conditions among the unknown functions, which
are often derived by applying higher-order mixed partial derivatives to the given system of equations. They are
closely related to integrability conditions.

In 1992, Vallée [1] showed that the standard Saint-Venant compatibility condition of linear elasticity, known
since the mid-nineteenth century, can be written in the convenient form

Curl � + Cof � = 0 , (1)

where � is the 3 × 3 matrix given by

� = 1

det U

[
U(Curl U)TU − 1

2
tr

[
(Curl U)TU

]
U

]
. (2)

This formulation was based on Riemannian geometry, where the metric tensor was written as gμν = Ua
μUb

ν δab.
Here, U is the right stretch tensor of the polar decomposition of the deformation gradient tensor F = R U and
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R is an orthogonal matrix, which is the polar part. The quantities Curl and Cof in equation (1) are defined by

(Curl U)ij = εjmn∂mUin and (Cof U)ij = 1

2
εimsεjntUmnUst , (3)

and εijk is the totally skew-symmetric Levi–Civita symbol.
Equation (1) was derived by finding the integrability condition of the system for the right Cauchy–Green

deformation tensor C, which is defined by

C = (∇�)T(∇�) . (4)

The deformation of the continuum is expressed by a diffeomorphism � : M → R
3 such that x = X + u, with

u being the displacement vector. Hence, the tensor C assumes the role of a metric tensor in the given smooth
manifold M. Later [2], the existence of such an immersion � was proved that maps an open subset of R

3 into
R

3 in which the metric tensor field defined by C resides, given by U in the polar decomposition ∇� = RU .
Equation (1) was shown to be equivalent to the vanishing of the Riemann curvature tensor in this setting.

Much earlier, in 1953, Nye [3] showed that there exists a curvature related rank-two tensor � of the form

� = 1

2
tr

(
RT Curl R

)
�− (RT Curl R)T , (5)

satisfying the compatibility condition

Curl � + Cof � = 0 . (6)

The object � is often called Nye’s tensor and is written in terms of the dislocation density tensor K = RT Curl R,
which only depends on the orthogonal matrix R.

In this paper, we would like to show that these two compatibility conditions, seemingly arising from different
and incomparable settings, are in fact special cases of a much broader compatibility condition, which can be
formulated in Riemann–Cartan geometry.

Riemann–Cartan geometry provides a suitable background when one brings the concepts of curvature and
torsion to the given manifold, using the method of differential geometry in describing the intrinsic nature of
defects and its classifications. Pioneering works using this mathematical framework were explored in [4–8] and
many attempts to understand the theory of defects within the framework of the Einstein–Cartan theory were
made [9–13]. Curvature and torsion can be regarded as the sources for disclination and dislocation densities,
respectively, in the theory of defects. The rotational symmetries are broken by the disclination and the transla-
tional symmetries are broken by the dislocation [7, 14–16] in Bravais lattices, the approximation of crystals into
a continuum.

It is worth noting that these geometries are commonly used in Einstein–Cartan theory [17–19], teleparallel
gravity [20], gauge theories of gravity [21–23] and condensed matter systems [24–26]. Links between micro-
rotations and torsion were explored in [11, 27–30]. Recent developments in incorporating elasticity theory and
spin particles using the tetrad formalism can be found in [31, 32].

Our paper is organised as follows. In Section 2, after introducing frame bases and co-frame bases (also called
tangent and co-tangent bases) together with its polar decompositions, we define various quantities, including
a general connection, spin connection and torsion. We will see that the Riemann tensor can be expressed in
various ways using the mentioned tensors. We introduce the Einstein tensor. Then we will decompose those
tensors into two parts, one that is torsion-free and one that contains torsion.

In Section 3, using the tools introduced, we will derive compatibility conditions in various physical set-
tings using a universal process. Firstly, Vallée’s result is rederived, followed by Nye’s condition. We carefully
explain the connection between these two compatibility conditions and the vanishing of the Einstein tensor.
Furthermore, we will show that Nye’s result is also closely linked to Skyrme theory and thus to microcontinuum
theories. We briefly remark on the homotopic classification of the compatibility conditions.

Section 4 derives general compatibility conditions based on our geometric approach. This section is followed
by conclusions and discussions in the final section.
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2. Tools of differential geometry

2.1. Frame fields

Let us begin with a three-dimensional Riemannian manifold M with coordinates x and let us introduce a set of
basis co-vectors (or 1-forms) for the co-tangent space at some point x ∈ M

{e1
μ, e2

μ, e3
μ} =: ea

μ(x) , (7)

where the Latin indices a, b, . . . are tangent space indices and Greek letters μ, ν, . . . denote coordinate indices.
This basis is often called a (co-)tetrad. The frame field consists of three orthogonal vector fields, given by

{Eμ

1 , Eμ

2 , Eμ

3 } =: Eμ

b (x) . (8)

These are dual basis, satisfying the following orthogonality relations

ea
μEν

a = δν
μ and ea

νEν
b = δa

b . (9)

Here, δν
μ and δa

b are the Kronecker deltas in their respective spaces. We emphasise that, for a given manifold,
we can find these tangent bases locally so that we can relate different sets of tangent bases in different points by
simple transformations. However, it is impossible to find a single frame field that is nowhere vanishing globally,
unless the manifold is parallelisable. For example, the hair ball problem illustrates that we cannot comb the hair
on the 2-sphere S2 embedded in three dimensions smoothly everywhere. Hence, the use of the locally defined
diffeomorphism as the immersion of � : M → R

3 used in equation (4).
In the frame of tetrad formalism the metric tensor emerges as a secondary quantity defined in terms of ea

μ.
We have

gμν = ea
μeb

νδab , (10)

and recall that in Riemannian geometry this metric gives rise to an inner product between two vectors

A · B := gμνAμBν , (11)

which then naturally leads to a normed vector space.
This means that we can use the co-tangent basis ea

μ to describe the deformation from the locally flat space
δab given by the metric tensor gμν written in the coordinate basis. As a result, the metric tensor gμν is obtained
from the flat Euclidean metric δab by a set of deformations, governed by ea

μ at each point x ∈ M. Since any
deformation can be regarded as a combination of rotation, shear and compression, we can apply the polar
decomposition to ea

μ as follows:

ea
μ = Ra

bUb
μ . (12)

Here, Ra
b is an orthogonal matrix (a pure tangent space object) while the field Ub

μ is a symmetric and positive-
definite matrix. Whenever we need to distinguish the microdeformations from the macrodeformations, we will
put a bar over the corresponding tensor. And in what follows we will often regard the matrix Ra

b to be associated
with microrotations, so that Ub

μ in the co-tangent basis can be thought of as the first Cosserat deformation tensor

[33]. This means that U = R
T
F. Hence, the co-tangent basis is associated with the deformation gradient.

When this decomposition is applied to equation (10), one arrives at

gμν = Ra
cRadUc

μUd
ν = δcdUc

μUd
ν , (13)

which shows that the metric is independent of Ra
b and only depends on Ub

μ. This is a well-known result in
differential geometry; namely, the metric is independent of tangent space rotations. The polar decomposition
for the inverse frame is

Eμ
a = Ra

bUμ

b , (14)

so that Uμ

b is the inverse of Ua
μ, both of which are symmetric.
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Consequently, the co-tangent basis (equation (7)) given a specific metric tensor (equation (13)) is not
uniquely determined. Any two (co-)tetrads ẽa

μ and ea
μ will yield the same metric, provided they are related

by a rotation
ẽa
μ = Qa

beb
μ , Qa

b ∈ SO(3) . (15)

A metric compatible covariant derivative is introduced in differential geometry through the condition
∇αgμν = 0. This introduces the Christoffel symbol components �λ

μν as the general connection. From equa-
tion (13), it is natural to assume that ∇αea

ν = 0 in the frame formalism. This, in turn, will uniquely determine
the spin connection coefficients ωμ

a
b,

0 = ∇μea
ν = ∂μea

ν − �λ
μνea

λ + ωμ
a

beb
ν ⇒ ωμ

a
b = ea

λ�
λ
μνEν

b + ea
ν∂μEν

b . (16)

Note that the spin connection is invariant under global rotations but not under local rotations. The derivative
terms will pick up additional terms; this is, of course, expected when working with connections.

The covariant derivative for a general vector Vμ is defined by

∇λVμ = ∂νVμ + �
μ

λνV ν , (17)

where �
μ

λν is a general affine connection and the lower indices in this connection are not necessarily symmetric.
Being equipped with the frame (and co-frame) field, we might introduce V a = ea

μVμ (with inverse relation
Vμ = Eμ

a V a), which denotes the tangent space components of the vector.
Naturally, the covariant derivative of V a can be described using the spin connection, in view of equation

(16). This gives
∇μV a = ∂μV a + ωμ

a
bV b , (18)

and can be extended to higher-rank objects in the same way.
For completeness, we state the inverse of equation (16), so that the general affine connection is expressed in

terms of the spin connection
�λ

μν = Eλ
aωμ

a
beb

ν + Eλ
a∂μea

ν . (19)

Equations (16) and (19) together with the (co-)frame allow us to express geometric identities in either the tangent
space or the coordinate space. In general, the non-coordinate bases Ea = Eμ

a ∂μ do not commute [Ea, Eb] :=
EaEb − EbEa �= 0 and one introduces the object of an-holonomity as follows. Let u be a smooth function; then
a direct and straightforward calculation gives

[Ea, Eb] u = Eμ
a Eν

b(∂νec
μ − ∂μec

ν)Ecu . (20)

This must be valid for the arbitrary u, so we can write

[Ea, Eb] = f c
abEc , (21)

where the f c
ab are the so-called structure constants, which are given by

f c
ab = Eμ

a Eν
b(∂νec

μ − ∂μec
ν) . (22)

2.2. Torsion and curvature

Given an affine connection, the torsion tensor is defined by

Tλ
μν := �λ

μν − �λ
νμ , (23)

which is the skew-symmetric part of the connection.
Throughout this paper, we will use the ‘decomposition’ of the various tensor quantities into torsion-free

parts and a separate torsion part. We will use the notation ‘ ◦ ’ to indicate specifically the torsion-free quantities
or, equivalently, the quantities written in terms of the metric compatible connection, which is generally referred
to as the Christoffel symbol.
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First, we decompose the connection

�ρ
νσ = ◦

�ρ
νσ + Kρ

νσ , (24)

which introduces the contortion tensor Kρ
νσ . Using the definition of torsion (equation (23)), we immediately

have
Tλ

μν = Kλ
μν − Kλ

νμ , (25)

which one can also solve for the contortion tensor. This yields

Kλ
μν = 1

2

(
Tλ

μν + Tν
λ
μ − Tμν

λ
)

, (26)

which in turn implies the skew-symmetric property Kλ
μν = −Kνμ

λ. Using the frame fields, we can introduce
those tensors with mixed components (coordinate space and tangent space indices), which will turn out to be
useful for our subsequent discussion. For example, using equation (19), we can write the torsion tensor in the
following equivalent way. Beginning with Ta

μν = ea
λTλ

μν , one arrives at

Ta
μν = ∂μea

ν − ∂νea
μ + ωμ

a
beb

ν − ων
a

beb
μ . (27)

The Riemann curvature tensor is defined as

Rρ
σμν := ∂μ�ρ

νσ − ∂ν�
ρ
μσ + �

ρ
μλ�

λ
νσ − �

ρ
νλ�

λ
μσ . (28)

Using equation (19), we can rewrite the Riemann tensor with mixed indices

Ra
bμν = ea

ρRρ
σμνEσ

b , (29)

where the Riemann tensor is now expressed in terms of the spin connections only:

Ra
bμν = ∂μων

a
b − ∂νωμ

a
b + ωμ

a
eων

e
b − ων

a
eωμ

e
b . (30)

In addition to the skew-symmetry in the last two indices in the Riemann tensor, this satisfies

Rabμν = −Rbaμν . (31)

As a consequence of equation (24), we apply the same concept to the spin connection to write the
decomposition

ωμ
a

b = ◦
ωμ

a
b + Ka

μb , (32)

where we used Ka
μb = ea

νKν
μσ Eσ

b . At first sight, the choice of index positions appears odd but ensures
agreement with equation (25).

Inserting equation (24) into equation (28) gives rise to the decomposition of the Riemann tensor,

Rρ
σμν = ◦

Rρ
σμν +

[ ◦∇μKρ
νσ − ◦∇νKρ

μσ + Kρ
μλKλ

νσ − Kρ
νλKλ

μσ

]
, (33)

where the Riemann tensor
◦
Rρ

σμν is computed using the connection
◦
�ρ

μν entirely.
We note that, for a general vector V ρ , in the coordinate basis, the covariant derivative can be rewritten using

equation (24), such that

∇μV ρ = ◦∇μV ρ + Kρ
μνV ν . (34)

This relates the general covariant derivative ∇μ and the torsion-free, metric compatible covariant derivative
◦∇μ used in equation (33). In addition to equations (24) and (32), we can regard the contortion tensor on the

right-hand side as the connection between these two covariant derivatives.
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2.3. Einstein tensor in three-dimensional space

We define a rank 2 quantity based on the spin connection by

�cμ := −1

2
εabcωμ

ab , (35)

which is equivalent to writing
ωμ

ab = −εabc�cμ . (36)

We would like to note that this construction is tied to R
3. The Levi–Civita symbol in n dimensions maps the

spin connection from a rank 3 object to a rank n−1 object, namely εabc...nωμ
ab. Only in three dimensions would

one arrive at a rank 2 object. In the following, it will turn out that �cμ plays a crucial role in establishing our
compatibility conditions. The same approach was applied to the torsion tensor in [27], where the setting was
also R

3.
We substitute equation (36) into the Riemann tensor (equation (30)) and find

Ra
bμν = εsa

b(−∂μ�sν + ∂ν�sμ) + εsa
eε

te
b(�sμ�tν − �sν�tμ) . (37)

Next, we define the following rank 2 tensor, constructed from the Riemann tensor

Gσc = −1

4
εabcRabμνε

μνσ , (38)

where we recall that the Riemann curvature tensor is skew-symmetric in the first and second pairs of indices.
Let us emphasise again that this construction is only possible in three dimensions; otherwise, we would need to
introduce a different rank in the Levi–Civita symbol.

Inserting equation (37) into equation (38) using the formulae εabcεsab = 2δc
s and εsaeε

abcεte
b = −εtc

s, we
obtain

Gσc = εμνσ∂μ�c
ν + 1

2
εcstεσμν�sμ�tν , (39)

which can be written in the convenient form

Gσc = (Curl �)cσ + (Cof �)cσ . (40)

The quantity Gσc is, in fact, the Einstein tensor in three-dimensional space. This can be shown using equations
(38) and (29) explicitly to obtain

Gτλ = Rτλ − 1

2
δτλR . (41)

Here, Rτλ is the Ricci tensor defined by Rτλ = Rσ
τσλ and the trace of Ricci tensor is the Ricci scalar R. It is

well known that in three dimensions, the Riemann tensor, the Ricci tensor and the Einstein tensor have the same
number of independent components, namely nine, provided torsion is included. One can readily verify that

Ra
bμν = 0 ⇔ Rτλ = 0 ⇔ Gτλ = 0 . (42)

In other words, the vanishing curvature means that there is a vanishing Einstein tensor in three dimensions.
Let us emphasise here that the particular representation of the Einstein tensor given in equation (40) will be of
importance for what follows.

3. Compatibility conditions

3.1. Vallée’s classical result

We consider the torsion-free spin connection
◦
�cμ = − 1

2εabc
◦
ωμ

ab with the metric tensor (equation (10)). The
affine connection in torsion-free spaces is conventionally expressed by the metric compatible Levi–Civita
connection:

◦
�α

βγ = 1

2
gασ

(
∂γ gσβ + ∂βgγ σ − ∂σ gβγ

)
. (43)
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The torsion-free spin connection in terms of the Levi–Civita connection is simply

◦
ωμ

a
b = ea

λ

◦
�λ

μνEν
b + ea

ν∂μEν
b

= 1

2
ea
λgλτ

(
∂νgτμ + ∂μgτν − ∂τ gμν

)
Eν

b + ea
ν∂μEν

b ,

where we used equation (16). Inserting the explicit expression for the metric tensor (equation (10)) will give,
after a lengthy but simple calculation,

◦
ωμ

a
b = 1

2
Eσ

b

(
∂σ ea

μ − ∂μea
σ

) − 1

2
δadδfbEσ

d

(
∂σ ef

μ − ∂μef
σ

) + 1

2
δadgμσ

(
∂dEσ

b − ∂bEσ
d

)
. (44)

Here, we used the notation ∂a = Eσ
a ∂σ . Furthermore, we can write the spin connection in terms of polar decom-

position of the co-frame field basis ea
μ = Ra

bUb
μ to write

◦
ωμ

ab entirely in terms of Ra
b and Ub

μ and its derivatives.
The resulting expression will be further simplified if we consider the cases Ra

b = δa
b and Ud

ν = δd
ν separately, to

see whether these will lead to the desired compatibility conditions.
First, when Ra

b = δa
b after multiplying both sides of equation (44) by εabc, we have

εabc
◦
ωμ

ab = εabcεσμνUaν(Curl U)bσ − 1

2
εabcεστρUaρUbσ (Curl U)f

τ Uf
μ . (45)

We can extract the determinant of U from the first and the second terms in the right-hand side of this,

εabcεσμνUaν(Curl U)bσ = 6

det U

[
U(Curl U)T

]
cμ

εabcεστρUaρUbσ (Curl U)f
τ Uf

μ = 6

det U
Ucμ tr

[
(Curl U)TU

]
.

(46)

Therefore, we find
◦
�cμ = −3 · 1

det U

[
U(Curl U)TU − 1

2
tr

[
(Curl U)TU

]
U

]
cμ

. (47)

The vanishing Riemann tensor in three-dimensional space ensures the vanishing Ricci tensor, hence the
vanishing of the Einstein tensor

◦
Gμc = 0, as stated in equation (42). This leads to the compatibility condition in

the torsion-free space of vanishing Riemann curvature, with the help of equation (40),

Curl
◦
� + Cof

◦
� = 0 . (48)

We can rescale − 1
3

◦
� = �U to match Vallée’s result [1] exactly:

�U = 1

det U

[
U(Curl U)TU − 1

2
tr

[
(Curl U)TU

]
U

]
, (49)

which reads
Curl �U + Cof �U = 0 . (50)

The elastic deformation is nothing but the diffeomorphism described by a metric tensor with associated
metric compatible connection

◦
�α

βγ as the fundamental measure of the deformation. Then, the prescription of
elastic deformations requires vanishing curvature and torsion, hence the compatibility conditions (equation
(48)).

We should also note the results of Edelen [34], where compatibility conditions were derived using Poincaré’s
lemma. This resulted in the vanishing Riemann curvature 2-form, equation (3.3) in [34], while assuming a metric
compatible connection, equation (3.4) in [34]. These conditions explicitly contained torsion, owing to the affine
connection being non-trivial but curvature free.
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3.2. Nye’s tensor and its compatibility condition

In the following, we set Uc
μ = δc

μ but assume a non-trivial rotation matrix Ra
b; this is the opposite of the previous

case. The compatibility condition from equation (44) becomes

Curl �R + Cof �R = 0 , (51)

where the quantity �R is given by

�R = R(Curl R)TR − 1

2
tr

[
(Curl R)TR

]
R . (52)

This is formally identical to replacing Uc
μ with Ra

b in equation (49) and using det Ra
b = +1.

It turns out that the quantity �R is (up to a minus sign) Nye’s tensor �, which is known to satisfy the
compatibility condition (equation (51)). This is quite a remarkable result, which follows immediately from our
geometrical approach to the problem.

We emphasise that the metric tensor is independent of the rotations, which implies that Uc
μ = δc

μ yields a

vanishing (torsion-free) Levi–Civita connection
◦
�α

βγ . Consequently, the Levi–Civita part of the curvature tensor

vanishes identically,
◦
Rρ

σμν = 0. Nonetheless, the non-trivial rotational part of the frame contributes to the
curvature tensor Rρ

σμν in equation (33) through the contortion tensor, since the general connection �ρ
μν does

not vanish in this case. The compatibility condition simply ensures that the micropolar deformations do not
induce curvature into the deformed body. Most importantly, torsion is not assumed to vanish and the rotation
matrices Ra

b become dynamic and non-trivial.
Let us note that, in the space where

◦
�λ

μν = 0, or equivalently Uc
μ = δc

μ and non-vanishing torsion, the general
connection becomes the contortion. Moreover, by setting ωμ

a
b = 0 in equation (19), this yields

�λ
μν = (Ra

bδλ
b )∂μ(Ra

cδ
c
ν) = δλ

bδc
ν(Ra

b∂μRa
c) = δλ

bδc
νδ

d
μ(Ra

b∂dRa
c) . (53)

The final term in the brackets is recognised to be the second Cosserat tensor when written in index-free notation,
RT Grad R, see, for instance, [33]. This tensor is sometimes denoted by K; to avoid confusion with our contortion
tensor, we shall refrain from using this notation.

In the following, we will briefly discuss how the compatibility condition for Nye’s tensor can also be derived
directly without referring to the general result (equation (40)). To have a completely vanishing curvature tensor
(equation (33)) with Uc

μ = δc
μ, we note:

1. The Levi–Civita connection
◦
�ρ

μν = 0 and
◦
Rρ

σμν = 0 in equation (33).
2. The connection and contortion tensors becomes identical using equation (24), as in the case of equation

(53).
3. We can replace

◦∇μ with ∂μ in equation (33).

Under these circumstances, the Riemann tensor (equation (33)) reduces to

Rρ
σμν = ∂μKρ

νσ − ∂νKρ
μσ + Kρ

μλKλ
νσ − Kρ

νλKλ
μσ . (54)

We introduce, similar to equation (35), the dislocation density tensor

Kλσ := εσ
μνKλμν , (55)

which, for our explicit choice of contortion in equation (53), we can write as

Kλσ = εσ
μνδλbRa

b∂μRa
cδ

c
ν = (

RT Curl R
)
λσ

. (56)

For Nye’s tensor, we contract the first and third index of the contortion tensor:

�λν := −1

2
ελ

ρσ Kρνσ . (57)
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In turn, the relation between Nye’s tensor and contortion becomes �λνε
λ
αβ = −Kανβ . From this, the contortions

can be substituted into equation (54) to write the Riemann curvature in terms of Nye’s tensor. This immediately
yields

εδ
ρσ ∂ρ�ασ + 1

2
ετη

αε
δ
ρσ�τρ�ησ = 0 , (58)

⇔ (Curl �)αδ + (Cof �)αδ = 0 . (59)

This is our second compatibility condition written in terms of Nye’s tensor, for the vanishing curvature and
non-zero torsion space.

We note that combining equations (56) and (57) leads to the usual expression of Nye’s tensor:

�λν = 1

2
tr

(
RT Curl R

)
δλν − (RT Curl R)T

λν . (60)

3.3. Skyrme’s theory with compatibility condition

In a series of papers [35–37], Skyrme introduced a non-linear field theory for describing strongly interacting
particles. This work has motivated many subsequent studies and noted some interesting links between baryon
numbers, the sum of the proton and neutron numbers and topological invariants in field theory. Following
Skyrme’s notation, the key variable is the field

Bα
μ = −1

4
εαβγ gβδ ∂

∂xμ

gγ δ , (61)

where g denotes an orthogonal matrix. Now, using Ra
b to denote the orthogonal matrix instead, we note that

the field Bα
μ is related to RT∂μR, which is generally referred to as the second Cosserat tensor [33], so that we

immediately note a close similarity between Skyrme’s non-linear field theory and Cosserat elasticity. It was
noted in [37] that the ‘covariant curl of’ B vanishes identically

∂νBα
μ − ∂μBα

ν − 2εαβγ Bβ
μBγ

ν = 0 . (62)

If we now contract this equations with εμνσ , we will recognise the final product as the cofactor matrix of B,
while the first becomes the matrix Curl. Therefore, the ‘covariant curl’ (equation (62)) is equivalent to

Curl B + Cof B = 0 . (63)

Perhaps unsurprisingly, at this point, a direct calculation shows that Skyrme’s field is in fact Nye’s tensor. Using
our notation, we have

Baj = −1

2
εai

s�i
js = −1

2
εai

s
( ◦
�i

js + Ki
js

)
= −1

2
εai

sKi
js = �aj . (64)

In the third step, we used the condition Uc
μ = δc

μ, hence
◦
�ρ

μν = 0. As in the previous subsection, we can derive
this equation explicitly by requiring the complete Riemann curvature tensor (equation (28)) to vanish. Together
with the assumption of a trivial metric tensor with non-trivial frame field, this is equivalent to satisfying equation
(54). Consequently, Skyrme’s condition (equation (62)) is in fact equation (51), or equivalently equation (59).

Since Skyrme’s variable is in fact Nye’s tensor in three dimensions, it becomes clear that it must also have
a relation to a topological invariant. In the context of Cosserat elasticity, this connection has been noted in [38,
39], where it is shown that the winding number can be written as the integration of the determinant of the Nye’s
tensor over all space defined in the given manifold M:

n = − 1

(4π )2

∫
M

det � d3x , n ∈ Z . (65)

The factor of 2π 2 is due to the surface area of S3. This can be understood by recalling that a unit vector v̂ ∈ R
4

has three independent components, hence v̂ ∈ S3, which in turn allows one to define orthogonal matrices through
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v̂. The determinant of the Nye tensor is simply related to the determinant of the induced metric of S3 and thus
related to its volume. Notably, in [28] the form of integration using contortion one-forms gives

n = 1

96π2

∫
M

tr (K ∧ K ∧ K) , n ∈ Z , (66)

which can be derived from a Chern–Simons type action in terms of contortion, seen as gauge fields,

S = 1

4π

∫
M

tr(K ∧ dK + 2

3
K ∧ K ∧ K) . (67)

The two integrations (equations (65) and (66)) can be shown to be identical using equation (57). The agreement
of the compatibility conditions for Skyrme’s field and Nye’s tensor is by no means accidental. In particular, by
varying the action (equation (67)) with respect to contortion, one arrives at the equation of motion

dK + K ∧ K = 0 , (68)

which agrees with equation (54), the vanishing Riemann tensor with non-zero torsion, see again [34].
One might get the impression from equation (54) that non-vanishing curvature is induced by the non-

vanishing contortion or torsion. However, this is not the case. As indicated in equation (68), contortion is of
Maurer–Cartan form K = RTdR, which satisfies the Maurer–Cartan equation dK = −K ∧ K. In our setting, we
considered two kinds of compatibility condition so far; namely, we have

Uc
μ = δc

μ ⇒ ◦
�λ

μν = ◦
�cμ = ◦

ωμ
a

b = 0 ⇒ ◦
Rρ

σμν = 0 and Rρ
σμν = 0 , (69)

Ra
b = δa

b ⇒ Kλν = �λν = Kανβ = 0 ⇒ Tλ
μν = 0 . (70)

The converse is not true in general, as will be shown in Section 4, when deriving the general form of the
compatibility conditions.

Finally, we note that there has also been some mathematical interests in this topic, see, for instance, [40,
41] where Skyrme’s model was studied using a variational approach. The key challenge was to find minimisers
subject to appropriate boundary conditions that yield soliton solutions. Discrete topological sectors according
to these solutions will lead to the topological number in accordance with the distinct homotopy classifications.
These topological invariants can be found in diverse physical systems with order parameters describing the
‘defects’ of distinct nature, such as monopoles, vortices and domain walls [42, 43]. Certain ‘optimal’ properties
of orthogonal matrices in the context of Cosserat elasticity were studied in [44–47].

3.4. Eringen’s compatibility conditions

Generalised continua are characterised by replacing the idealised material point with an object with additional
microstructure. The inner structure is described by directors, which can undergo deformations such as rotation,
shear and compression, introducing nine additional degrees of freedom. The first ideas along those lines go
back to the Cosserat brothers who, in 1909, first considered such theories [48]. A comprehensive account of
microcontinuum theories can be found in [49]. In particular, micropolar theory describes the rigid microrotation
for the microelement deformation. Non-linear problems in generalised continua were studied rigorously, for
instance in [50–55].

Let us begin by briefly recalling the basic notation used in [49]. First, we introduce strain measures

CKL = ∂xk

∂XK
XLk , CKL = χkKχkL = CLK , (71)

�KLM = XKk
∂χkL

∂XM
, �KL = 1

2
εKMN�NML . (72)

The tensors χkK = ∂ξk/∂�K and XKk = ∂�K/∂ξk are called microdeformation tensors and inverse microdefor-
mation tensors with the directors �K and ξk in material coordinate XK and spatial coordinate xk , respectively.
These satisfy orthogonal relations χkKXKl = δkl and XKlχlL = δKL.
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Now, these microdeformation tensors can be decomposed into rotation and stretch parts, again the polar
decomposition, as we did in bases ea

μ and Eν
a . For example, after changing indices in accordance with our

convention, we can rewrite

χa
c = R̄a

bŪb
c , Xa

c = R̄a
bŪc

b , (73)

Cμ
a = Xa

cFc
μ = R̄a

bŪc
bRc

dUμ

d , (74)

Cbc = χa
bχac = R̄a

cŪ
c
b R̄adŪd

c , (75)

�klm = χa
k∂mχal = R̄a

bŪb
k ∂m(R̄acŪ

c
l ) , (76)

in which we used bars over the the microdeformations and used definition for the (macro)deformation gradient
tensor F with its polar decomposition into macrorotation and macrostretch.

The compatibility conditions for the micromorphic body [49] are given by

εKPQ

(
∂QCPL + CPR�LRQ

) = 0 , (77)

εKPQ

(
∂Q�LMP + �LRQ�RMP

) = 0 , (78)

∂MCKL − (�PKMCLP + �PLMCKP) = 0 , (79)

where ∂M = ∂/∂XM . It is evident from equation (76) that the wryness tensor �KLM can be viewed as the contor-
tion tensors in differential geometry, so we can make a replacement �PKM → KP

MK ; hence, the compatibility
condition (equation (79)) now becomes

∂MCKL − KP
MKCPL − KP

MLCKP = 0 . (80)

Using the decomposition (equation (24)) with
◦
�P

MK = 0, this will further reduce to

∇MCKL = 0 . (81)

This condition is now equivalent to assuming a metric compatible covariant derivative, see equation (15), one
of our central assumptions of the geometrical approach.

Next, we consider equation (78). We have

∂QKL
PM − ∂PKL

QM + KL
QRKR

PM − KL
PRKR

QM = 0 . (82)

The left-hand side of this is in the form of the Riemann curvature tensor (equation (54)), hence this condition is
equivalent to RL

MQP = 0. This is our second geometrical condition that led to the compatibility conditions.
Lastly, for equation (77) one writes

εKPQ

(
∂QCPL + KL

QRCPR

) = 0 , (83)

which is known as the compatibility condition for the disclination density tensor. After some algebraic
manipulation this final condition can be written as

∇QCL
P − ∇PCL

Q + TR
PQCL

R = 0 , (84)

and can be seen as the defining equation for torsion on the manifold.
This shows that the setting of Riemann–Cartan geometry appears to be very well suited to the study of a

micromorphic continuum.

3.5. Homotopy for the compatibility condition

In [56], it is shown that the existence of the metric tensor field (equation (4)) for a given immersion � : � → E
3

requires the condition Rρ
σμν = 0 in � ⊂ R

3 and � to be simply connected. It is further shown to be necessary
and sufficient.
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If the subset of the given manifold is just a connected subset, then � is unique up to isometry of Euclidean
space E

3 to ensure the existence of the metric field

C = (∇�̃)T (∇�̃) , (85)

where � = Q�̃ + T for Q ∈ SO(3) and T is translation.
Now, we might wish to establish how many compatibility conditions or, more precisely, how many classifi-

cations of such compatibility conditions are derivable from the condition Rρ
σμν = 0? One possible approach to

answer this question would be the consideration of the homotopy classification πn(M), where n is the dimension
of the n-sphere Sn, the probe of the defects in the space M in which the order parameter is defined. In our case,
we can put the order parameter to be simply the tetrad field ea

μ, so that M = SO(3).
It is well known that the dislocation or, equivalently, the torsion can be measured by following a small closed

path in the crystal lattice structure, and the curvature can be computed in a similar manner. We can put n = 1 to
consider the fundamental group for SO(3), which is a homotopy group for the line defects in three dimensions

π1(SO(3)) ∼= Z2 . (86)

This suggests that we can have two distinct classifications for the compatibility conditions under Rρ
σμν = 0. One

of them is to the trivial class, the elastic regime, so that all elastic deformations belong to the same compatible
condition. And the non-trivial classification is for the microstructure description, where one is only dealing with
microdeformations. Similar analyses can be found in [15, 57, 58].

Interestingly, in some simplified Skyrme models [59], the homotopy class π4(SO(3)) is identified with
π1(SO(3)). Since SO(3) is not simply connected, it is straightforward to see that its fundamental group is
isomorphic to Z2. Further, using J-homomorphism, we can state

π4(SO(3)) ∼= π1(SO(3)) ∼= Z2 . (87)

This characterises the equivalent classes of the compatibility conditions; hence, the possible solutions for the
system in describing the deformations, as:

{0} : Configurations that can be continuously deformed uniformly via diffeomorphism.
{1} : Configurations that cannot be continuously deformed in a way of {0}.

The elastic compatibility condition including Vallée’s result (equation (1)) falls into the classification {0}: van-
ishing curvature and torsion. The conditions by Nye (equation (6)), the Skyrme field (equation (63)) and the
micropolar case (equation (78)) belong to {1}: vanishing curvature and non-zero torsion.

One might ask why the different compatibility conditions, which apply to distinct spaces, have the same
mathematical form. The following section will contain the full geometrical treatment with curvature and torsion.
It will not be too difficult to see (mathematically) that the transition between the two spaces is provided by the
expression of the spin connection (equation (32)). On the one hand, we can have the situation where the Levi–
Civita connection vanishes, while on the other it is the spin connection that vanishes. This difference is captured
by the frame fields and their first derivatives, which in turn are related to our key geometrical quantities.

4. Geometrical compatibility conditions

4.1. Geometrical identities

The geometrical starting point for all compatibility conditions is the Bianchi identity, which is satisfied by the
curvature tensor and is given by

∇ρRab
μν + ∇νRab

ρμ + ∇μRab
νρ = Rab

τνT τ
μρ + Rab

τμT τ
ρν + Rab

τρT τ
νμ , (88)

see, for instance, [60]. For completeness, we also state the well-known identity

Rρ
σμν + Rρ

μνσ + Rρ
νσμ = ∇σ Tρ

μν + ∇μTρ
νσ + ∇νTρ

σμ − Tρ
σλTλ

μν − Tρ
μλTλ

νσ − Tρ
νλTλ

σμ , (89)
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for the Riemann curvature tensor, which will also be required. Using Rab
μν = Rλσ

μνea
λeb

σ and contracting twice
over indices λ and ρ, and σ and ν, gives the well-known twice-contracted Bianchi identity

∇ρ

(
Rρ

μ − 1

2
δρ
μR

)
= Rλ

τ T τ
μλ + 1

2
Rλσ

τμT τ
λσ . (90)

The term in the first bracket is the Einstein tensor, so the most general compatibility condition can be written as

∇ρGρ
μ = Rρ

τ T τ
μρ + 1

2
Rρσ

τμT τ
ρσ . (91)

Equations (88) and (89) can be seen as a compatibility or integrability condition in the following sense. One
cannot choose the curvature tensor and the torsion tensor fully independently, as these equations need to be
satisfied for a consistent geometrical approach.

Let us now recall equation (40), the Einstein tensor in terms of �, which was G = Curl � + Cof �. Next,
we use the decomposition of the spin connection (equation (32)) into equation (35) to obtain

�cμ = −1

2
ωμ

abεabc = −1

2

( ◦
ωμ

ab + Ka
μ

b
)
εabc = ◦

�cμ + �cμ . (92)

When this decomposition is put into the explicit Einstein tensor equation, a slightly lengthy calculation yields

Gλc = (Curl �)cλ + (Cof �)cλ = Curl(
◦
� + �)cλ + Cof(

◦
� + �)cλ

= (Curl
◦
�)cλ + (Curl �)cλ + 1

2
εcabελμν

( ◦
�aμ + �aμ

)( ◦
�bν + �bν

)

=
{

(Curl
◦
�)cλ + (Cof

◦
�)cλ

}
+

{
(Curl �)cλ + (Cof �)cλ

}
+ εcabελμν

◦
�aμ�bν . (93)

Let us note that the final term on the right-hand side can be written as

◦
�aμ�bν = −1

2
◦
ωμ

p
qεap

q�bν = −1

2
εap

q
(

ep
ρ

◦
�ρ

μσ Eσ
q + ep

σ ∂μEσ
q

)
�bν , (94)

where we used equation (16) together with equation (35). We are now ready to present a complete description
of compatibility conditions encountered so far, following a unified approach using equations (91) and (93).

Before doing so, let us note the key property of the Einstein tensor decomposition (equation (93)). The final
term is a cross-term, which mixes the curvature and the torsion parts of the connection. Without this term, one
of the compatibility conditions would necessarily imply the other; it is precisely the presence of this term that
gives the general condition a much richer structure.

4.2. Compatibility conditions

4.2.1. No curvature and no torsion. Let us set Rρ
σμν = 0 and Tλ

μν = 0 in equation (93). Then we must also have
Kbν = �bν = 0, by the definitions, and we find the compatibility condition

◦
Gλc = (Curl

◦
�)cλ + (Cof

◦
�)cλ = 0 , (95)

which is Vallée’s result (equation (48)), discussed earlier.

4.2.2. No curvature but torsion. Let us set Rρ
σμν = 0 and Tλ

μν �= 0 in equation (93), which becomes

Gλc =
{

(Curl �)cλ + (Cof �)cλ
}

+ εcabελμν
◦
�aμ�bν = 0 . (96)

Furthermore, if we impose the condition Ua
μ = δa

μ , then as observed in equation (69),
◦
�aμ = 0, the

compatibility condition reduces to

Gλc = (Curl �)cλ + (Cof �)cλ = 0 . (97)

In this case, we have Nye’s result (equation (59)), which is equivalent to Skyrme’s condition (equation (63)).
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4.2.3. No torsion but curvature. Using Rρ
σμν �= 0 and Tλ

μν = 0 in equation (91), we have the compatibility
condition ◦∇μ

◦
Gμσ = 0 , (98)

where
◦
Gμσ is now a symmetric tensor. These equations are well known in the context of general relativity (in

this case, one works on a four-dimensional Lorentzian manifold), where they imply the energy–momentum
conservation equations.

4.2.4. Curvature and torsion. Let us now consider the general case, where neither curvature nor torsion are assumed
to vanish. In this case, there are no ‘compatibility’ equations, as such, to satisfy. However, one should read
equations (88) and (89) as integrability or consistency conditions in the following sense: one cannot prescribe
an arbitrary curvature tensor and an arbitrary torsion tensor at the same time, these tensors need to satisfy
equations (88) and (89), as already said.

4.3. An application to axisymmetric problems

The compatibility conditions for an axisymmetric three-dimensional continuum were reconsidered recently in
[61]. Using our geometrical approach shows, once more, the role played by geometrical objects in continuum
mechanics. To study an axisymmetric material, we choose the line element with cylindrical coordinate X μ =
{r, θ , z} to be

ds2 = (1 + εrr)dr2 + r2(1 + εθθ )dθ2 + (1 + εzz)dz2 + 2εrzdrdz , (99)

where the strain components εμν are functions of r and z only. Next, following from this, one now computes
the Einstein tensor components Gτλ while assuming that εμν � 1. It turns out that the incompatibility tensor S
used in [61] is identical to the three-dimensional Einstein tensor. This means that we have

◦
Gτλ = Sτλ = [∇ × (∇ × ε)

]
τλ

= 0 . (100)

The square brackets here indicate that we are referring to the components of the enclosed object. Furthermore,
the Einstein tensor must satisfy equation (98), which means we find the neat relation

◦∇τ
◦
Gτλ = [∇ · S

]
λ

= 0 . (101)

The condition ∇ · S = 0 is valid for classical elasticity and does not necessarily apply to other more general
settings. Conversely, the identity

◦∇τ
◦
Gτλ = 0 crucially depends on the vanishing of the right-hand side of

equation (91) and therefore on the specific model being considered.
The equivalence of both results is expected, as they follow from Bianchi-type identities in geometry. It was

then observed in [61] that the four non-vanishing components of S, or equivalently Gτλ, are not independent
and that it should be possible to reduce this system further; this is then demonstrated. The three-dimensional
Einstein tensor hence plays an important role in continuum mechanics. Further applications of the compatibility
condition in solving non-linear systems with non-trivial dislocations and disclinations in both classical and
micropolar theories can be found in [62–66].

5. Conclusions and discussions
The starting point of this work was the use of geometrical tools for the study of compatibility conditions in
elasticity. It is well known that the vanishing of the Riemann curvature tensor of the deformed body yields
compatibility conditions equivalent to the Saint-Venant compatibility conditions [67–72], which are otherwise
derived by considering higher-order partial derivatives, which necessarily have to commute. Since the Riemann
curvature tensor satisfies various geometrical identities, it is expected that these identities also play a role in
continuum mechanics. After revisiting these basic results, we were able to show that Vallée’s compatibility
condition, which was also derived using tools of differential geometry, is in fact equivalent to the vanishing
of the three-dimensional Einstein tensor. Our first key result was thus equation (40), which is also of interest
in its own right, as the representation of the Einstein tensor in this form appears to be new. The underlying
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geometrical space contained curvature and torsion, which made it possible to apply our result to Nye’s tensor
and show the link to Skyrme’s model, which is very well known in particle physics. Given that the determinant
of the Nye tensor is related to a topological quantity, it is interesting to speculate about other links between
topology and quantities used in continuum mechanics. A geometrical formulation, as much as is possible, will
be key in understanding this.

As a small application, we applied our results to a recent study of the compatibility conditions for an axisym-
metric problem, where we showed that the (linearised) Einstein tensor naturally appears and can be expressed as
the double curl of the strain tensor (equation (100)). This was our second representation of the Einstein tensor
in an unusual way. It naturally led to additional identities that needed to be satisfied, which then further reduced
the number of compatibility equations.

Our study can be extended further by dropping our assumption of vanishing non-metricity and introducing
the non-metricity tensor Qαμν := ∇αgμν . The polar decomposition of the tetrad will not be affected by this; how-
ever, the connection and spin connection components will change. For instance, the decomposition (equation
(24)) will contain a third piece, owing to non-metricity, which hence enters the Riemann curvature tensor. Its
identities, in turn, will involve additional terms [60] and it would be interesting to understand the compatibility
conditions in this extended framework. In [73] a geometry of this type, with non-vanishing non-metricity, was
considered, to study a distribution of point defects. The space in question was torsion-free and did not contain
curvature. It is not clear, at the moment, whether or not the Einstein tensor will play an important role in this
setting as well and how non-metricity would affect the various conditions that were studied.
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