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ABSTRACT

The behavioral dynamics of multi-agent systems have a rich and orderly struc-
ture, which can be leveraged to understand these systems, and to improve how
artificial agents learn to operate in them. Here we introduce Relational Forward
Models (RFM) for multi-agent learning, networks that can learn to make accurate
predictions of agents’ future behavior in multi-agent environments. Because these
models operate on the discrete entities and relations present in the environment,
they produce interpretable intermediate representations which offer insights into
what drives agents’ behavior, and what events mediate the intensity and valence of
social interactions. Furthermore, we show that embedding RFM modules inside
agents results in faster learning systems compared to non-augmented baselines. As
more and more of the autonomous systems we develop and interact with become
multi-agent in nature, developing richer analysis tools for characterizing how and
why agents make decisions is increasingly necessary. Moreover, developing artifi-
cial agents that quickly and safely learn to coordinate with one another, and with
humans in shared environments, is crucial.

1 INTRODUCTION

The study of multi-agent systems has received considerable attention in recent years and some of the
most advanced autonomous systems in the world today are multi-agent in nature (e.g. assembly lines
and warehouse management systems). In particular, research in multi-agent reinforcement learning
(MARL), where multiple learning agents perceive and act in a shared environment, has produced
impressive results (Jaderberg et al., 2018; Pachocki et al., 2018; Leibo et al., 2017; Hughes et al.,
2018; Peysakhovich & Lerer, 2017a; Lerer & Peysakhovich, 2017; Bansal et al., 2017; Lanctot et al.,
2017).

One of the outstanding challenges in this domain is how to foster coordinated behavior among
learning agents. In hand-engineered multi-agent systems (e.g. assembly lines), it is possible to obtain
coordination by design, where expert engineers carefully orchestrate each agent’s behavior and role
in the system. This, however, rules out situations where either humans or artificial learning agents are
present in the environment. In learning-based systems, there have been some successes by introducing
a centralized controller (D’Andrea, 2012; Foerster et al., 2016; 2017; Hong et al., 2017; Lowe et al.,
2017). However, these cannot scale to large number of agents or to mixed human-robot ensembles.
There is thus an increasing focus on multi-agent systems that learn how to coordinate on their own
(Jaderberg et al., 2018; Pachocki et al., 2018; Perolat et al., 2017).

Alongside the challenges of learning coordinated behaviors, there are also the challenges of measuring
them. In learning-based systems, the analysis tools currently available to researchers focus on the
functioning of each single agent, and are ill-equipped to characterize systems of diverse agents as a
whole.

Here we address these two challenges by developing Relational Forward Models (RFM) for multi-
agent systems. We build on recent advances in neural networks that effectively perform relational
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Figure 1: (a) The RFM module stacks a GN Encoder, a Graph GRU and a GN Decoder to obtain
a relational reasoning module that holds state information across time steps. (b) Example of an
environment graph representation. Edges connect agents (magenta and orange) to all entities and are
color-coded according to the identity of the receiver. (c) RFM-augmented agents, the output of the
the RFM module is appended to the original observation input to the policy network. The on-board
RFM module is trained with full supervision and alongside the policy network.

reasoning with graph networks (GN) (Battaglia et al., 2018) to construct models that learn to predict
the forward dynamics of multi-agent systems. First, we show that our models can surpass previous
top methods on this task (Kipf et al., 2018; Hoshen, 2017), and, crucially, produce intermediate
representations that support the social analysis of multi-agent systems: our models explain what drives
each agent’s behavior, track how agents influence each other, and what factors in the environment
mediate the presence and valence of social interactions. Second, we embed our models inside agents
and use them to augment the host agent’s observations with predictions of others’ behavior. Our results
show that this leads to agents that learn to coordinate with one another faster than non-augmented
baselines.

1.1 RELATED WORK

Relational reasoning has received considerable attention in recent years and researchers have devel-
oped deep learning models that operate on graphs, rather than vectors or images, and structure their
computations accordingly. These methods have been successfully applied to learning the forward
dynamics of systems comprised of multiple entities and a rich relational structure, like physics
simulation, multi-object scenes, visual question answering and motion-capture data (Battaglia et al.,
2016; Raposo et al., 2017; Santoro et al., 2017; Gilmer et al., 2017; Watters et al., 2017; Kipf et al.,
2018; Zambaldi et al., 2018). Recently, this class of methods have been shown to successfully predict
the forward dynamics of multi-agent systems, like basketball or soccer games, and to some extent, to
provide insights into the relational and social structures present in the data (Hoshen, 2017; Kipf et al.,
2018; Zhan et al., 2018; Zheng et al., 2017).

With the recent renaissance of deep-learning methods in general, and of deep reinforcement learning
(RL) in particular, considerable attention has been devoted to developing analysis tools that allow
researchers to understand what drives agents’ behavior, what are the most common failure modes and
provide insights into the inner workings of learning systems (Zeiler & Fergus, 2013; Yosinski et al.,
2015; Olah et al., 2017; Rabinowitz et al., 2018; Morcos et al., 2018).

Finally, coordination in multi-agent system has been a topic of major interest as of late and some
of the most advanced MARL systems rely on the emergence of coordination among teammates
to complete the task at hand (Jaderberg et al., 2018; Pachocki et al., 2018). Despite these recent
successes, coordination is still considered a hard problem and several attempts have been made to
promote the emergence of coordination by relaxing some assumptions (Foerster et al., 2016; 2017;
Sukhbaatar et al., 2016; Raileanu et al., 2018; He et al., 2016a). Here we show that, by embedding
RFM modules in RL agents, they can learn to coordinate with one another faster than baseline
agents, analogous to imagination-augmented agents in single-agent RL settings (Hamrick et al., 2017;
Pascanu et al., 2017; Weber et al., 2017).
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2 RELATIONAL ANALYSIS OF MARL SYSTEMS

2.1 METHODS

Our RFM is based on graph networks (GN) (Battaglia et al., 2018), and is trained by supervised
learning to predict the dynamics of multi-agent systems. Our model takes as input a semantic
description of the state of the environment, and outputs either an action prediction for each agent,
or a prediction of the cumulative reward each agent will receive until the end of the episode. We
show that our model performs well at these tasks, and crucially, produces interpretable intermediate
representations that are useful both as analysis tools, and as inputs to artificial agents who can exploit
these predictions to improve their decision-making.

2.1.1 RELATIONAL FORWARD MODELS AND BASELINES ARCHITECTURES

A GN is a neural network that operates on graphs. The input to a GN is a directed graph, (u, V,E),
where u ∈ Rdu is a graph-level attribute vector (e.g. the score in a football game), V = {vi}i=1:nv

is
a set of vertices (e.g. the players) with attributes vi ∈ Rdv (e.g the players’ (x,y) coordinates on the
pitch), and E = {(ek, rk, sk)}k=1:ne is a set of directed edges which connect sender vertex, vsk to
receiver vertex vrk and have attribute ek ∈ Rde (e.g. same team or opponent). The output of a GN is
also a graph, with the same connectivity structure as the input graph (i.e. same number of vertices
and edges, as well as same sender and receiver for each edge), but updated global, vertex, and edge
attributes. See Fig. 1b for an example graph.

The sequence of computations in a GN proceed by updating the edge attributes, followed by the
vertex attributes, and finally the global attributes. These computations are implemented via three
“update” functions (the φs) and three “aggregation” functions (the ρs),

e′k = φe (ek, vrk , vsk , u) ,

v′i = φv (ē′i, vi, u) ,

u′ = φu (ē′, v̄′, u) ,

ē′i = ρe→v (E′i) ,

v̄′ = ρv→u (V ′) ,

ē′ = ρe→u (E′)

(1)

where E′i = {(e′k, rk, sk)}rk=i. The edges are updated by φe, as a function of the sender vertex,
receiver vertex, edge, and global attributes. We term the updated edge attribute the “message”, e′k.
Next, each vertex, i, is updated by aggregating the e′k messages for which i = rk, and computing the
updated vertex attribute, v′i, as a function (φv) of these aggregated messages, as well as the current
vertex and global attributes. Finally, the global attributes are updated, by φu, as a function of the
current global attribute and all aggregated e′k and v′i attributes.

Since a GN takes as input a graph and outputs a graph, GN blocks can be composed to form more
complex, and powerful, architectures. These architecture can also be made recurrent in time by
introducing a state graph, and using recurrent neural networks (RNNs) as the φ functions. GN-based
architectures can be optimized with respect to some objective function by gradient descent (using
backpropagation through time for recurrent implementations). Here we focus on supervised learning
using datasets of input-output pairs. See (Battaglia et al., 2018) for further details.

We construct our RFM architecture by arranging three GN blocks as in Fig. 1a. We selected this
specific architecture to allow our model to perform relational reasoning steps both on the raw input
data, before time recurrence is included, and then again on the output of our time recurrent block.
This allows the recurrent block to construct memories of the relations between entities and not simply
of their current state.

Architecture details are as follows: input graphs Gt
in go through a GN encoder block, a basic GN

module whose φv, φe and φu are three separate 64-unit MLPs, with 1 hidden layer, and ReLU
activations and whose ρ functions are summations. The output of the GN encoder block is used, in
conjunction with a state graph Gt−1

hid , in a “GraphGRU”, where each φ function is a Gated Recurrent
Unit (GRU) (Cho et al., 2014) with a hidden state size of 32 for each of vertices, edges and globals.
The GraphGRU’s output is then copied into a state graph and an output graph. The state graph is
used in the following time step, while the output graph is passed through a GN decoder block. This
last block’s structure has an identical to the GN encoder’s, and outputs the model’s predictions (e.g.
the actions of each agent).
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We compared the prediction performance of our RFM module to two state-of-the-art relational
reasoning baselines: Neural Relational Inference networks (Kipf et al., 2018) and Vertex Attention
Interaction Networks (Hoshen, 2017). These architectures are similar to our RFM module. In
particular, NRI models operate on graph structured data and, with the exception that the graph
connectivity map is not given, but rather estimated from trajectories using an auto-encoder architecture,
they are identical to our model. VAIN networks are essentially single feed-forward GN blocks where
the φe and ρe→v functions take particular and restricted form: φe(ek, vrk , vsk , u) = e‖a(vrk )−a(vsk )‖

2

and ρe→v(E′i) = vi
∑

sk
e′k, with a(·) a learnable function.

We also compared our full RFM against ablated variants, which allowed us to measure the importance
of the relational reasoning component, and of time recurrence. In particular we considered a
Feedforward model, which had no GraphGRU block, and a No-relation model, which was a full
fledged RFM module but operated on graphs with only self-connections (i.e. edges where si = ri).
Finally, we included a vector-based MLP + LSTM model among our baselines, so as to highlight the
advantage of using graphs over vector based modules. This last model operated on the concatenation
of the vertex attributes and had a standard Encoder MLP (64-units), LSTM (32-hidden units), Decoder
MLP (2 hidden layers, 32-units each) architecture.

2.1.2 MARL ENVIRONMENTS AND AGENT ARCHITECTURE

We considered three multi-agent environments for our study: Cooperative Navigation (Lowe et al.,
2017), Coin Game (Raileanu et al., 2018) and Stag Hunt (Peysakhovich & Lerer, 2017b).

Cooperative Navigation (Lowe et al., 2017). Two agents navigate an empty 6 × 6 arena to cover
two tiles. A reward of +1 is given to both agents whenever both tiles are covered, i.e., when each
agent is on a tile of its own. Episodes are of fixed length (20 environment steps), to encourage a
swift resolution of the underlying assignment problem. The positions of both tiles and the starting
positions of each agent are randomized at the start of each episode.

Coin Game (Raileanu et al., 2018). Two agents roam an 8× 8 arena populated with 12 coins, 4 of
each of 3 colors, for 10 environment steps. Agents can collect coins by stepping on them; out of the
3 coin colors, two colors carried a reward and one a punishment. Crucially, each of the two agents
only has access to information about 1 good color. The short episode duration incentivizes agents
to quickly infer what the unknown good color is by observing their teammate actions, so that all
good coins can be collected. At the end of each episode both agents are rewarded according to how
many good coins have been collected by either agent. Conversely, they are penalized according to
the number of bad coins collected, again by either agent. The role of each color, coin positions, and
starting coordinates for the agents are randomized in each episode.

Stag Hunt (Peysakhovich & Lerer, 2017b). We implemented a Markov version of the classic Stag
Hunt game where two (or four) agents navigate an arena populated with 3 red Stags (each of which is
static, and occupies a 2× 2 tile) and 12 green apples, for 32 environment steps. Agents can collect
apples by themselves for a reward of +5 or, by both stepping on the same stag, capture it for a reward
of +10. Collected apples and captured stags became unavailable for some time (denoted by dimmed
colors), and at each time step have a small probability of becoming available again. All entities’
locations are randomized at the start of each episode.

We trained populations of RL agents to convergence on these three tasks using a multi-agent im-
plementation of importance-weighted actor-learner (Jaderberg et al., 2018; Espeholt et al., 2018), a
batched advantage actor-critic (A2C) algorithm. For each episode, a group of agents were randomly
sampled, with replacement, from a population of 4 learners; at each time step agents received an
ego-centric, top-down view of the environment which was large enough to contain the entire arena,
and, in the Coin Game, one of the 2 good colors. Agents then selected one of 5 actions to be
performed (move left, move right, move up, move down, and stay). Within each agent, the input
image was parsed by a single convolutional layer (3× 3-filters, 6 output channels) whose output was
fed to a 256-unit single-layer MLP. The MLP output vector was concatenated with each player’s last
reward, and one-hot encoded last action, as well as, for the Coin Game, one of the two coin colors
that carried a positive reward. The resulting vector served as input to a 256-hidden-units LSTM
whose output was fed into a single-layer policy network. Throughout the learning process, there was
no sharing of weights, gradients or any communication channel between the agents, consistent with
standard MARL settings.
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Figure 2: Action prediction peformance of our RFM module and baseline models. The reported
quantity is the mean number of environment steps for which the predicted actions matched the
ground truth exactly, for all agents. Mean across 128 episodes, bars indicate standard deviation across
episodes.

2.1.3 OFFLINE TRAJECTORIES COLLECTION AND MODEL TRAINING

To train the forward RFM model, we collected 500,000 episodes of behavioral trajectories of trained
agents acting in their respective environments. At each time step, we collected a semantic description
of the state of the environment, as well as the action taken by each agent and the reward they received.
These descriptions were compiled into a graph, where agents and static entities (i.e. apples, stags,
coins, and tiles) were represented by vertices whose attributes, vi, were: the entity’s position in the
arena; the one-hot encoded type of the entity (e.g. agent, apple, etc.); (when applicable) the entity’s
state (e.g. available / collected); and (when applicable) the last action taken. When attributes were
not applicable (e.g. the last action of an apple), we padded the corresponding attribute features with
zeros. Edges connected all non-agent entities to all agents as well as agents to each other. Input
edges contained no attributes and were characterized by senders and receivers only (see Fig. 1b for
an example environment graph). In order to understand our analysis contributions, it is crucial to
note that while the input graph to our RFM module contained no edge attributes, and edges were
simply characterized by their sender and receiver vertices, the edges of a RFM’s output graph did
contain attributes. These attributes were computed by the network itself and amounted to distributed
representations of the effect the sender entity had on the receiver agent.

We also collected 2,500 further episode trajectories for performance reporting and analysis. Training
of both RFM and baseline models was conducted using gradient descent to minimize the cross-entropy
loss between predicted and ground-truth actions. The training procedure was halted after one million
steps, during each of which the gradient was estimated using a batch of 128 episodes. Results are
presented in Sec. 2.2.1.

2.2 RESULTS

2.2.1 ACTION PREDICTION PERFORMANCE

We trained our RFM modules and baseline models to predict the actions of each agent in each of the
three games we considered. Models were given a graph representation of the state of the environment,
and produced an action prediction for each agent. After training (see Sec. 2.1.3), we used held-out
episodes to assess the performance of each model in terms of mean length of perfect roll-out: the
mean number of steps during which prediction and ground truth do not diverge.

Results are shown in Fig. 2. As expected, all models achieve similar scores on the Coop Nav game,
which is a rather simple environment. Our RFM module outperforms the NRI baseline by a substantial
margin on the Coin Game and Stag Hunt environments. Since the two models are identical, except
for the initial graph structure inference step, this result suggests that when the importance of some
relations is revealed over time, rather than obvious from the start, the graph structure inference step
proposed in NRI might not be appropriate. Our RFM consistently outperforms the VAIN model,
and on Stag Hunt our Feedforward model does as well. This indicates that, for this particular
task, distributed interaction representations are superior to simple attention weights. Finally, the
MLP+LSTM and No-relation models performed worst across the board, which suggests that relations
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between entities, rather than the state of the entities themselves, carry most of the predictive power in
these environments.

These results reproduce and advance the conclusion that relational models can be trained to perform
action prediction for multi-agent systems, and are superior to non-relational models for this task
(Kipf et al., 2018; Hoshen, 2017).

2.2.2 RELATIONAL ANALYSIS OF THE STAG HUNT GAME: ACTIONS

Here we introduce our relational analysis tools and use the Stag Hunt game as a case study. While we
illustrate our findings on a simple game, these intuitions can be easily transferred to more complex
domains.

A key finding is that the Euclidean norm of a message vector (i.e., ‖e′k‖) is indicative of the influence
a sender entity, vsk , has on a receiver, vrk . This is supported by Fig. 3 (top row), where we show that
the edge norm between a sender entity (either a stag or an apple) and a receiver agent is predictive of
which entity the agent will move towards, or away from, at the next time step.

This intuition can be developed to discover the events that qualitatively change agents’ behavior, as
well as the factors that mediate how agents interact with one another. Fig. 3 (middle row), for example,
shows how the norm of an edge between a stag and an agent changes over time. The importance of
the relation is modulated by the prey’s state: when a stag becomes available, the edge norm rises
substantially; when a stag is consumed, the edge norm drops. Remarkably, the presence or absence
of a stag also influences the edge norm between the two teammates, as shown in Fig. 3 (bottom row):
in the time step immediately before they consume a stag, the edge between the two teammates is
higher than immediately afterwards. In contrast, this effect does not occur with apples, which do not
require coordination between teammates to consume. Finally, as shown in Fig. 3 (bottom row), we
find that agents’ influence on each other’s behavior is higher when there is a scarcity of apples (as
agents compete for this resource).

Taken as a whole, these findings highlight how the norm of the edge messages, computed by a
RFM which is trained to predict the future actions in a multi-agent system, contain intepretable and
quantifiable information about when and how certain entities and relations influence agents’ behavior,
and about which entities and situations mediate the social influence between agents.

2.2.3 RELATIONAL ANALYSIS OF THE STAG HUNT GAME: RETURN

A second key finding is that beyond measuring the intensity of a social influence relation, RFM
modules can also be used to quantify their valence. We trained a RFM model to predict the return
received by each agent (until the end of the episode), rather than their future action. We used this
model to measure the marginal utility of the actual social context, i.e. to ask: what would happen to
agent 1’s return if we didn’t know the exact state of agent 2?

The proposed approach is to effectively compare two estimators for agent 1’s return:

R̂a1

Full graph = M(Ra1 |sa1 , sa2 , z)

R̂a1

Pruned graph = M(Ra1
|sa1

, z)

≈
∫
M(Ra1

|sa1
, sa2

, z)p(sa2
|sa1

, z)dsa2

(2)

where R̂a1

Full graph is the model M ’s estimate of the return received by agent 1, given the state of both
agents 1 and 2, and all other environment variables, z, whereas R̂a1

Pruned graph is that same estimate,
without knowledge of the state of agent 2 (i.e. marginalizing out sa2

). In practice, this latter estimate
can be obtained by removing the edge connecting the two agents from the input graph1.

If we find that, in certain situations, the predicted return decreases when removing information about
agent 2 (i.e. R̂a1

Full graph > R̂a1

Pruned graph), we would conclude that the actual state of agent 2 results in a
better-than-expected return for agent 1, that is, agent 2 is helping agent 1. Conversely, if the predicted
return increases we would conclude that agent 2 is hindering agent 1.

1It is worth highlighting that even though the edge from agent 2 is removed, the estimator R̂a1
Pruned graph can

implicitly take advantage of sa1 and z to effectively form a posterior over sa2 before marginalizing it out. For
this reason, we include p(sa2 |sa1 , z) rather than p(sa2) in equation 2.
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(a) Edge activation magnitude is predictive of future behavior.

(b) Edge activation magnitude reveals changes in what drives agents behavior over time.

(c) Edge activation magnitude discovers situations that alter agents’ social influence.

Figure 3: Edge analysis. Top-row: the norm of output edge activations is predictive of future
behavior. On the y-axis we plot the average relative displacement between the agent (receiver) and
an entity (sender), we order the plot by the rank of the edge activation magnitude; predictive power
declines sharply with rank. Middle-row: edge activations discover what agents care about and how
this changes over time, here we have time series plots (left and right) of an edge activation norm
when a stag becomes available and unavailable, and averages over all time steps grouped by stag
state (middle). Bottom row: when stags become available, agents care about each other more than
just before that happens, (p < 0.05) (middle). Apples becoming available has no effect (p = 0.27)
(middle). The norm of the edge connecting the two agents is also modulated by scarcity (right), agents
compete for apple consumption and the fewer apple there are, the more the two agents influence each
other behavior (r = −0.39, p < 0.05).

We ran this experiment using a set-up identical to the one we used for action prediction, except for
three modifications: the target variable (1) and loss function (2) were changed, from cross-entropy
between predicted and ground-truth actions, to mean squared error between predicted and true return;
(3) and the training set contained an equal proportion of environment graphs with, and without edges
between teammates. The latter modification ensured that the estimation with a pruned graph did not
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Figure 4: Return analysis: we trained our RFM model to predict the return (until the end of the episode)
received by each agent. We trained our model on graphs with and without edges connecting the two
agents. (Left) ground truth and predicted return (using both graphs) for a sample episode. (Middle)
R̂a1

Full graph − R̂
a1

Pruned Graph around the time a stag is captured. Positive value indicates that the model
estimates that the social influence has a positive marginal utility. (Right) R̂a1

Full graph − R̂
a1

Pruned Graph
right before and right after a stag is captured: agents’ influence are most beneficial for each other
when they a capture a stag.

land out of distribution for our model. The ground truth and predicted return (using both the full and
pruned graph) for a sample episode are shown in Fig. 4 (left).

Similar to the edge-norm relational analysis above, we can find the entities and events that mediate
the value of a social interaction. For example, Fig. 4 (middle and right) show the marginal value of a
teammate (i.e. R̂a1

Full graph − R̂
a1

Pruned Graph) over time and around the time of a stag capture. This figure
shows that teammates’ influence on each other during this time is beneficial to their return.

3 RFM-AUGMENTED AGENTS

3.1 METHODS

We have shown that relational reasoning modules capture information about the social dynamics of
multi-agent environments. We now detail how these modules’ predictions can be useful for improving
MARL agents’ speed of learning. We extended the agent architecture (described in Sec. 2.1.2) by
embedding a RFM module in each agent, and augmenting the policy network’s observations with the
RFM’s output. This agent architecture is depicted in Fig. 1c.

Incorporating an on-board RFM module did not provide the agents with any additional information
above and beyond that provided to baseline agents.

All games were fully observable, so the additional inputs (i.e. the true last action, and the environment
graph, which was provided as input to the embedded RFM) did not add any new information to the
original egocentric observations. Similarly, the on-board RFM modules were trained alongside the
policy networks, while the agents were learning to act, so that no additional game structure was given
to the augmented agents. Finally, we highlight that each learning agent in the arena had its own RFM
module and policy networks; there was never any sharing of weights, gradients or communication
between the agents.

Our baseline agent policy network architecture comprised of a CNN that processed the actor’s ego-
centric observation, followed by a MLP+LSTM network that provided action logits (see Sec. 2.1.2
for architecture details). Our augmented agents had an embedded RFM module, which was fed
graph representations of the state of the environment, just as in the offline RFM modules in the
forward modeling experiments. We trained this module to minimize the cross-entropy loss between
its prediction and the last action taken by all fellow agents. We used the prediction output of the
on-board RFM module to augment the observation stream at the input of the original policy network.
Specifically, the output of the RFM module—predicted action logits for fellow agents—was rendered
as image planes whose pixel intensity was proportional to the estimated probability that an agent
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Figure 5: Training curves for A2C agents with and without on-board RFM modules. Allowing agents
to access the output of a RFM module results in agents that learn to coordinate faster than baseline
agents. This also scales to different number of agents. Importantly, the on-board RFM module is
trained alongside the policy network, and there is no sharing of parameters or gradients between the
agents.

would be at a certain location at the next time step2. These image planes were appended to the
ego-centric top-down observation and fed to the original policy network.

3.1.1 RESULTS

Our experimental design was relatively straightforward. First, we trained A2C agents (as described in
Sec. 2.1.2) to play the three games we considered, as well as a four-player variant of the Stag Hunt
game. Second, we paired learning agents with these pre-trained experts: learning agents occupied a
single-player slot in each game, while all their teammates were pre-trained experts. We repeated this
procedure using both RFM-enhanced agents and baseline A2C agents as learners. During training we
recorded the reward received by the singular learning agent in each episode.

Our results show that agents that explicitly model each other using an on-board RFM learn to
coordinate with one another faster than baseline agents (Fig. 5). In Stag Hunt our RFM-augmented
agent achieves a score above 25 after around 600K steps, while baseline agents required around 1M
steps. This effect is even more prominent in the 4-player version of the game where these scores are
achieved around 500K and 1M steps respectively. Similarly in Coop Nav baseline agents required
twice as many steps of experience to consistently score above 25 as our RFM-augmented agents.
Finally, in the Coin Game environment, the faster learning rate of RFM-augmented agents appears to
be due to a superior efficiency in learning to interpret the teammate’s action and infer the negative
coin color in each episode (see Sec. A.1). These results suggest that agents take into account the
on-board RFM’s predictions when planning their next action, and that this results in agents that learn
faster to coordinate with others, and to discover others’ preferences from their actions.

4 CONCLUSIONS

Here we showed that our Relational Forward Model can capture the rich social dynamics of multi-
agent environments, that its intermediate representations contained valuable interpretable information,
and that providing this information to learning agents results in faster learning system.

The analysis tools we introduced allow researchers to answer new questions, which are specifically
tailored to multi-agent systems, such as what entities, relations and social interactions drive agents’
behaviors, and what environment events or behavior patterns mediate these social and non-social
influence signals. Importantly our methods require no access to agents internals, only to behavioral
trajectories, making them amenable to analyzing human behavior, sports and ecological systems.

Providing agents with access the output of RFM modules results in agents that learn to coordinate
with one another faster than non-augmented baselines. We posit that explicit modeling of teammates

2For example, consider a fellow agent at the center of the map, and prediction logits indicating that, at the
next time step, it might move up with a probability of 0.3, and down with a probability of 0.7. The additional
image plane would be zero everywhere, with the exception of the pixel above the center (which would have a
value of 0.3) and the one below the center (which would have an value of 0.7).
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and opponents is an important research direction in multi-agent RL, and one that might alleviate the
need for communication, parameter sharing or centralized controllers to achieve coordination.

Future work will see our methods applied to more complex and varied domains where artificial and
non-artificial agents interact and learn in shared environments. We will focus on identifying entire
patterns of behavior for in-agent modeling, so as to adapt the host agent policy more efficiently.
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A APPENDIX

A.1 COIN COLLECTION ANALYSIS IN THE COIN GAME

Figure 6: Coin collection analysis in the Coin Game.

As described in the main text, RFM-augmented agents learn the Coin Game faster than non-augmented
baseline agents. This appears to result from learning more efficiently to discern their teammate’s
preference. In Fig. 6, the middle panel shows the average number of coins of each color (R: revealed
good, U: unrevealed good, B: bad) collected by our RFM-augmented agent during an episode. The
right panel shows the same quantities for our baseline agent. We find that the gap between the U
curve and the B curve is significantly wider for the RFM-augmented agent than it is for the baseline
agent (see, for example, around 50M steps). This suggests that the learning efficiency difference is
due to a superior ability to discern the teammate’s preferences.

Finally we highlight that our agents, as well as our baselines, vastly outperform previously-published
agents on this game: Separate policy predictor agents (He et al., 2016b) and Self-Other Modeling
agents (see Fig. 3 in Raileanu et al. (2018). This might imply that the original paper where this game
was suggested had poor baseline agents. We suspect this game is not as complex as it may appear,
and that baseline agents are close to optimal; this leaves less room for improvement than other games
explored in this work.
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