
BioStructures.jl: read, write and manipulate macromolecular 

structures in Julia 
 

Joe G Greener1, Joel Selvaraj2, Ben J Ward3 

 
1Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK 
2School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India 
3The Earlham Institute, Norwich Research Park, Norwich, UK 

 

 

Abstract 

 

Summary: Robust, flexible and fast software to read, write and manipulate macromolecular 

structures is a prerequisite for productively doing structural bioinformatics. We present 

BioStructures.jl, the first dedicated package in the Julia programming language for dealing with 

macromolecular structures and the Protein Data Bank. BioStructures.jl builds on the lessons 

learned with similar packages to provide a large feature set, a flexible object representation and 

high performance. 

Availability and implementation: BioStructures.jl is freely available under the MIT license. 

Source code and documentation are available at https://github.com/BioJulia/BioStructures.jl. 

BioStructures.jl is compatible with Julia versions 0.6 and later and is system-independent. 

Contact: j.greener@ucl.ac.uk 

 

 

Introduction 

 

Open source software packages to parse files from the Protein Data Bank (PDB) (Berman et al. 

2000) and manipulate macromolecular structures exist in many languages (Hamelryck and 

Manderick 2003; Grant et al. 2006; Stajich et al. 2002; Goto et al. 2010; Loriot, Cazals, and 

Bernauer 2010; Lafita et al. 2019). Such packages must strike a balance between a powerful 

and useful representation of molecules, fast performance, easy integration with other tools and 

tolerance to the ambiguities in PDB data. 

 

Julia is a high-performance, dynamically-typed, open source programming language (Bezanson 

et al. 2017). Since its first release in 2012 it has grown rapidly in popularity, particularly in the 

scientific computing community, with version 1.0 being released in 2018. To date it has over 13 

million downloads and over 3,000 packages registered for community use. In particular the 

ability to write performant code in a high-level language means that Julia can solve the “two-

language problem” of having to prototype code in one language and then write a performant 

version in another language. BioStructures.jl is a Julia package to read, write and manipulate 

macromolecular structures. Whilst other Julia packages have provided functionality related to 

structural bioinformatics (Zea et al. 2017; Greener, Filippis, and Sternberg 2017), 

BioStructures.jl is the first dedicated package and contains all the main features that structural 

bioinformaticians need to be productive in Julia. It is designed to be used for standard structural 

https://github.com/BioJulia/BioStructures.jl
mailto:j.greener@ucl.ac.uk
https://paperpile.com/c/QxoEXq/wrMx
https://paperpile.com/c/QxoEXq/wrMx
https://paperpile.com/c/QxoEXq/ujeH+1l5A+G6gB+0iYl+JwMJ+VKHk
https://paperpile.com/c/QxoEXq/ujeH+1l5A+G6gB+0iYl+JwMJ+VKHk
https://paperpile.com/c/QxoEXq/ujeH+1l5A+G6gB+0iYl+JwMJ+VKHk
https://paperpile.com/c/QxoEXq/se2z
https://paperpile.com/c/QxoEXq/se2z
https://paperpile.com/c/QxoEXq/89TO+10Z6


analysis tasks, interactive data analysis, and to act as a platform on which others can build to 

create more specific tools. BioStructures.jl is part of BioJulia, an organisation that provides 

bioinformatics infrastructure for the Julia language. 

 

 

Features 

 

BioStructures.jl has the following features: 

 

● Read in PDB, mmCIF and MMTF (Bradley et al. 2017) files into a hierarchical 

representation of structure. The parsers have been tested on the whole PDB, only 

throwing errors on a small number of known ambiguous cases. 

● Write out PDB, mmCIF and MMTF files. The ability to read and write freely between 

these file formats is not available in many similar packages. 

● Read mmCIF and MMTF files into a dictionary, e.g. allowing access to header 

information. MMTF files are decoded with the related package MMTF.jl. 

● Iterate over structures at various levels, e.g. iterate over atoms in a residue or residues 

in a chain. 

● Select various structural elements using pre-defined or custom selectors, e.g. collect all 

Cβ atoms (Cɑ in the case of glycine) from standard residues. 

● Retrieve amino acid sequences and integrate with the broader BioJulia ecosystem, for 

example allowing fast sequence alignments. 

● Spatial calculations including distances, bond angles, dihedral angles, contact maps and 

distance maps. Contact and distance maps can be plotted. 

● Superimposition of structures and calculation of the RMSD. 

● Download files and data from the RCSB PDB including functions to maintain a local copy 

of the PDB. 

● Interoperability with the broader Julia ecosystem, e.g. exporting to a data frame or 

creating a graph of contacting residues. 

● Visualisation of molecular structures in a pop-up window or Jupyter notebook using the 

related package Bio3DView.jl (https://github.com/jgreener64/Bio3DView.jl), which is a 

wrapper around 3Dmol.js (Rego and Koes 2015). 

● Easy installation with Julia’s package manager. 

● Comprehensive test suite, continuous integration build testing and a benchmark suite to 

test for performance regressions. 

https://paperpile.com/c/QxoEXq/rYQd
https://github.com/jgreener64/Bio3DView.jl
https://paperpile.com/c/QxoEXq/qiki


● Thorough online documentation and in-code docstrings. 

● Fully open source with a permissive MIT license. 

● Faster than similar packages at most tasks. Our benchmarks, summarised in Figure 1 

and described further at https://github.com/jgreener64/pdb-benchmarks, indicate that the 

package has competitive or superior performance to 14 other commonly used packages 

from both interpreted and compiled languages. For example, parsing the small PDB 

entry 1CRN takes 0.76 ms/1.9 ms/1.1 ms in the PDB/mmCIF/MMTF formats after just-in-

time (JIT) compilation on a standard desktop computer. It does this whilst using a 

hierarchical structure representation, allowing variation between models in a structure, 

and accounting for alternative locations at the atom and residue levels (see below). 

These features take time to execute but increase the utility and flexibility of the package. 

 

Design considerations 

 

BioStructures.jl is heavily influenced by the Bio.PDB module of Biopython (Hamelryck and 

Manderick 2003), the design of which has proved effective. The structure object has a 

hierarchical type system of the form ProteinStructure - Model - Chain - AbstractResidue - 

AbstractAtom. Atoms with alternative locations are stored in a DisorderedAtom container and 

residues with alternative locations (i.e. point mutations with different residue names) are stored 

in a DisorderedResidue container. Function calls fall back to the default atom or residue, so 

alternative locations can be ignored if the user is not interested in them, but building alternative 

locations into the type system allows correct representation of many more aspects of the PDB. 

Whilst BioStructures.jl retains the flexibility of Bio.PDB, its implementation in Julia allows it to 

have superior speed. 

 

 

 

 

https://github.com/jgreener64/pdb-benchmarks
https://paperpile.com/c/QxoEXq/ujeH
https://paperpile.com/c/QxoEXq/ujeH


 
Figure 1 Performance of structural bioinformatics tasks in 15 packages (Zea et al. 2017; Loriot, 

Cazals, and Bernauer 2010; Bakan, Meireles, and Bahar 2011; Kunzmann and Hamacher 2018; 

Gowers et al. 2016; Ireland and Martin 2020; Lafita et al. 2019; Hirsh et al. 2015; Hamelryck and 

Manderick 2003; Grant et al. 2006; Goto et al. 2010; Stajich et al. 2002) covering 7 

programming languages. Comparison should be treated with caution since each package does 

something slightly different and may use a different object representation or do less error 

checking. MIToS, for example, does not read files into a hierarchical representation of structure. 

The tasks are reading a small (1CRN) and a large (1HTQ) PDB entry (Gajda 2013) in the PDB, 

mmCIF and MMTF formats; counting the number of alanine residues in adenylate kinase 

(1AKE); calculating the distance between residues 50 and 60 of chain A in adenylate kinase; 

and calculating the Ramachandran ɸ/ѱ angles in adenylate kinase. In each case the mean time 

of the fastest implementation for each software that makes use of the provided API is given. 

Tasks are not implemented in packages where there is no obvious API for implementation. 

Times for Julia packages are measured after JIT compilation. Packages are ordered by 

increasing time to parse PDB 1CRN, with BioStructures first. See 

https://github.com/jgreener64/pdb-benchmarks for more details. The version of the benchmarks 

presented here is archived at Zenodo with DOI 10.5281/zenodo.3753016. 

 

 

 

 

https://paperpile.com/c/QxoEXq/89TO+JwMJ+exID+BvL7+xtMg+536s+VKHk+fufy+ujeH+1l5A+0iYl+G6gB
https://paperpile.com/c/QxoEXq/89TO+JwMJ+exID+BvL7+xtMg+536s+VKHk+fufy+ujeH+1l5A+0iYl+G6gB
https://paperpile.com/c/QxoEXq/89TO+JwMJ+exID+BvL7+xtMg+536s+VKHk+fufy+ujeH+1l5A+0iYl+G6gB
https://paperpile.com/c/QxoEXq/89TO+JwMJ+exID+BvL7+xtMg+536s+VKHk+fufy+ujeH+1l5A+0iYl+G6gB
https://paperpile.com/c/QxoEXq/GfuJ
https://github.com/jgreener64/pdb-benchmarks


Acknowledgements 

 

We would like to thank the BioJulia, Julia and Biopython communities for discussion, assistance 

and support. 

 

Conflict of Interest: none declared. 

 

 

References 

Bakan, A., L. M. Meireles, and I. Bahar. 2011. “ProDy: Protein Dynamics Inferred from Theory and 
Experiments.” Bioinformatics  27 (11): 1575–77. 

Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. 
Bourne. 2000. “The Protein Data Bank.” Nucleic Acids Research 28 (1): 235–42. 

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah. 2017. “Julia: A Fresh Approach to Numerical 
Computing.” SIAM Review 59 (1): 65–98. 

Bradley, A. R., A. S. Rose, A. Pavelka, Y. Valasatava, J. M. Duarte, A. Prlić, and P. W. Rose. 2017. 
“MMTF - An Efficient File Format for the Transmission, Visualization, and Analysis of Macromolecular 
Structures.” PLoS Comput. Biol. 13 (6): e1005575. 

Gajda, M. J. 2013. “hPDB – Haskell Library for Processing Atomic Biomolecular Structures in Protein 
Data Bank Format.” BMC Research Notes 6 (1). 

Goto, N., P. Prins, M. Nakao, R. Bonnal, J. Aerts, and T. Katayama. 2010. “BioRuby: Bioinformatics 
Software for the Ruby Programming Language.” Bioinformatics 26 (20): 2617–19. 

Gowers, R., M. Linke, J. Barnoud, T. Reddy, M. Melo, S. Seyler, J. Domański, et al. 2016. “MDAnalysis: A 
Python Package for the Rapid Analysis of Molecular Dynamics Simulations.” Proceedings of the 15th 
Python in Science Conference, 98–105. 

Grant, B. J., A. P. C. Rodrigues, K. M. ElSawy, J. A. McCammon, and L. S. D. Caves. 2006. “Bio3d: An R 
Package for the Comparative Analysis of Protein Structures.” Bioinformatics 22 (21): 2695–96. 

Greener, J. G., I. Filippis, and M. J. E. Sternberg. 2017. “Predicting Protein Dynamics and Allostery Using 
Multi-Protein Atomic Distance Constraints.” Structure 25 (3): 546–58. 

Hamelryck, T., and B. Manderick. 2003. “PDB File Parser and Structure Class Implemented in Python.” 
Bioinformatics 19 (17): 2308–10. 

Hirsh, L., D. Piovesan, M. Giollo, C. Ferrari, and S. C. E. Tosatto. 2015. “The Victor C Library for Protein 
Representation and Advanced Manipulation.” Bioinformatics 31 (7): 1138–40. 

Ireland, S. M., and A. C. R. Martin. 2020. “Atomium - A Python Structure Parser.” Bioinformatics . 
Kunzmann, P., and K. Hamacher. 2018. “Biotite: A Unifying Open Source Computational Biology 

Framework in Python.” BMC Bioinformatics 19 (1): 346. 
Lafita, A., S. Bliven, A. Prlić, D. Guzenko, P. W. Rose, A. Bradley, P. Pavan, et al. 2019. “BioJava 5: A 

Community Driven Open-Source Bioinformatics Library.” PLoS Comput. Biol. 15 (2): e1006791. 
Loriot, S., F. Cazals, and J. Bernauer. 2010. “ESBTL: Efficient PDB Parser and Data Structure for the 

Structural and Geometric Analysis of Biological Macromolecules.” Bioinformatics 26 (8): 1127–28. 
Rego, N., and D. Koes. 2015. “3Dmol.js: Molecular Visualization with WebGL.” Bioinformatics 31 (8): 

1322–24. 
Stajich, J. E., D. Block, K. Boulez, S. E. Brenner, S. A. Chervitz, C. Dagdigian, G. Fuellen, et al. 2002. 

“The Bioperl Toolkit: Perl Modules for the Life Sciences.” Genome Res. 12 (10): 1611–18. 
Zea, D. J., D. Anfossi, M. Nielsen, and C. Marino-Buslje. 2017. “MIToS.jl: Mutual Information Tools for 

Protein Sequence Analysis in the Julia Language.” Bioinformatics 33 (4): 564–65. 

 

http://paperpile.com/b/QxoEXq/exID
http://paperpile.com/b/QxoEXq/exID
http://paperpile.com/b/QxoEXq/exID
http://paperpile.com/b/QxoEXq/exID
http://paperpile.com/b/QxoEXq/wrMx
http://paperpile.com/b/QxoEXq/wrMx
http://paperpile.com/b/QxoEXq/wrMx
http://paperpile.com/b/QxoEXq/wrMx
http://paperpile.com/b/QxoEXq/se2z
http://paperpile.com/b/QxoEXq/se2z
http://paperpile.com/b/QxoEXq/se2z
http://paperpile.com/b/QxoEXq/se2z
http://paperpile.com/b/QxoEXq/rYQd
http://paperpile.com/b/QxoEXq/rYQd
http://paperpile.com/b/QxoEXq/rYQd
http://paperpile.com/b/QxoEXq/rYQd
http://paperpile.com/b/QxoEXq/rYQd
http://paperpile.com/b/QxoEXq/GfuJ
http://paperpile.com/b/QxoEXq/GfuJ
http://paperpile.com/b/QxoEXq/GfuJ
http://paperpile.com/b/QxoEXq/GfuJ
http://paperpile.com/b/QxoEXq/0iYl
http://paperpile.com/b/QxoEXq/0iYl
http://paperpile.com/b/QxoEXq/0iYl
http://paperpile.com/b/QxoEXq/0iYl
http://paperpile.com/b/QxoEXq/xtMg
http://paperpile.com/b/QxoEXq/xtMg
http://paperpile.com/b/QxoEXq/xtMg
http://paperpile.com/b/QxoEXq/xtMg
http://paperpile.com/b/QxoEXq/xtMg
http://paperpile.com/b/QxoEXq/1l5A
http://paperpile.com/b/QxoEXq/1l5A
http://paperpile.com/b/QxoEXq/1l5A
http://paperpile.com/b/QxoEXq/1l5A
http://paperpile.com/b/QxoEXq/10Z6
http://paperpile.com/b/QxoEXq/10Z6
http://paperpile.com/b/QxoEXq/10Z6
http://paperpile.com/b/QxoEXq/10Z6
http://paperpile.com/b/QxoEXq/ujeH
http://paperpile.com/b/QxoEXq/ujeH
http://paperpile.com/b/QxoEXq/ujeH
http://paperpile.com/b/QxoEXq/ujeH
http://paperpile.com/b/QxoEXq/fufy
http://paperpile.com/b/QxoEXq/fufy
http://paperpile.com/b/QxoEXq/fufy
http://paperpile.com/b/QxoEXq/fufy
http://paperpile.com/b/QxoEXq/536s
http://paperpile.com/b/QxoEXq/536s
http://paperpile.com/b/QxoEXq/536s
http://paperpile.com/b/QxoEXq/BvL7
http://paperpile.com/b/QxoEXq/BvL7
http://paperpile.com/b/QxoEXq/BvL7
http://paperpile.com/b/QxoEXq/BvL7
http://paperpile.com/b/QxoEXq/VKHk
http://paperpile.com/b/QxoEXq/VKHk
http://paperpile.com/b/QxoEXq/VKHk
http://paperpile.com/b/QxoEXq/VKHk
http://paperpile.com/b/QxoEXq/JwMJ
http://paperpile.com/b/QxoEXq/JwMJ
http://paperpile.com/b/QxoEXq/JwMJ
http://paperpile.com/b/QxoEXq/JwMJ
http://paperpile.com/b/QxoEXq/qiki
http://paperpile.com/b/QxoEXq/qiki
http://paperpile.com/b/QxoEXq/qiki
http://paperpile.com/b/QxoEXq/qiki
http://paperpile.com/b/QxoEXq/G6gB
http://paperpile.com/b/QxoEXq/G6gB
http://paperpile.com/b/QxoEXq/G6gB
http://paperpile.com/b/QxoEXq/G6gB
http://paperpile.com/b/QxoEXq/89TO
http://paperpile.com/b/QxoEXq/89TO
http://paperpile.com/b/QxoEXq/89TO
http://paperpile.com/b/QxoEXq/89TO

