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Abstract—The ability to predict network dynamics is a chal-
lenging problem for communication providers as this can have
an impact on the performance of the applications running on
top of their infrastructure. In this paper we use a data-driven
approach to investigate whether observing the variation of the
connectivity properties of a network over time can provide
insights onto the occurrence of network topological changes.
In that direction, we propose a methodology to model various
patterns of network dynamics and develop a user-configurable
software tool enabling the collection of network connectivity
metric data for any type of communication network topology
and based on a wide range of dynamics patterns. We use our
tool to constitute a dataset of network connectivity metric samples
based on 126 real network topologies and 15 different types of
dynamics patterns. The analysis performed based on the obtained
dataset shows that identifying how connectivity metrics vary has
potential for characterizing network topological changes.

I. INTRODUCTION

An important operational problem for any communication
or data center network provider is to have in place efficient
mechanisms for predicting the performance of the applications
running on top of their infrastructure. This is a crucial aspect
given that performance indicators directly translate to the
quality of experience for the services offered to customers,
i.e., how satisfy the customer is with his/her experience of a
service, who are likely to unsubscribe in case this does not
meet their expectation.

Application and by extension service performance can be
affected by various factors, either internal (e.g., device mis-
configuration) or external (e.g., unexpected traffic load) to the
network’s owner. A specific aspect linked to performance con-
cerns the dynamics of the network topology over time. While
the topology of a communication network has been regarded
for a long time as being relatively static, the emergence of
scenarios in which the connectivity structure of the network
changes rapidly and autonomously has been challenging this
vision [1][2]. Illustrative examples include virtualized infras-
tructures where new nodes representing virtual machines are
added online to the network topology as resources need to be
scaled in order to sustain emerging workload [3], or mobile
networks where links between nodes change dynamically as
mobile users move. Understanding these network dynamics
is essential as topological changes can directly impact the
performance of an application. The convergence time of the
training process of a large-scale machine learning application
using distributed stochastic gradient descent to compute the

model’s weights can for instance be significantly affected by
erratic node behavior and random communication delays [4].

In this paper we propose a data-driven approach to investi-
gate how the connectivity properties of a network are affected
by the dynamics of its topology over time. We define these
connectivity properties based on a set of metrics traditionally
employed in the network graph literature to characterize net-
work topologies. Our objective is to determine whether the
observation of the variation of these metrics can be used to
identify and hence predict the occurrence of various types
of topological changes. Understanding topology dynamics for
performance prediction has received a lot of attraction in the
mobile and sensor networks domain, e.g., [5][6][7], as well
as in the context of self-managed and self-organized networks
and services, e.g., [9][8]. Building on top of previous efforts
investigating network dynamics, stability and survivability, we
develop a methodology to model different patterns of network
dynamics, taking into account the different types of topological
changes that can alter a network and the frequency at which
these changes can manifest. We use the proposed methodology
to implement an user-configurable software tool for network
dynamics emulation that allows us to collect metric data for a
wide range of real communication network topologies. Based
on our tool, we constitute a dataset of 71,605 metric-per-
topology samples for a total of 126 networks and 15 types
of dynamics patterns. The analysis performed on the obtained
dataset shows that monitoring the set of metrics that are more
likely to be highly influenced by topological changes, as well
as the correlation factors between these metrics, can provide
insights onto the types of changes a topology undergoes.

The rest of the paper is organized as follows. Sect. II
presents the list of graph metrics used to characterize network
topologies. Sect. III describes the methodology to emulate
network dynamics patterns, as well as the software tool
developed to collect network metrics data. Sect. IV analyzes
correlation factors between topological metric changes and
network dynamics. Finally, Sect. V provides some conclusions
and future work directions.

II. NETWORK TOPOLOGY METRICS

The characteristics of a communication network topology
can be described based on the properties of the graph repre-
senting the connectivity of the network, i.e., nodes and edges.
While nodes model various elements of the network, from
physical equipment (e.g., router, server) to virtual functions,



edges represent connection between these elements, e.g., at the
physical layer or IP-layer links. In this section, we present the
list of graph metrics that we use in this work to characterize
network topologies. The metrics were chosen so as to account
for various aspects of a communication network infrastructure.

A. Basic metrics and node degree distribution properties

We use the number of nodes and the number of edges as the
most basic metrics to characterize a network topology [11].

In addition, we use the properties of the distribution of
node degrees, i.e., the distribution of the number of nodes
with a given number of direct neighbours, to characterize the
importance of each node in the network. In particular, we
consider the three following metrics:

• Average node degree: the closer to n − 1 the average
node degree, with n the total number of nodes, the more
connected the network;

• Heterogeneity: variance of node degrees;
• Gini coefficient [12]: used to measure the inequality

of node degrees distribution. Unlike the variance, the
Gini coefficient is computed using the mean absolute
difference between all degree pairs instead of the squared
difference deviating from the mean value.

B. Centrality scores

In addition to node degrees, we use different measures of
node centrality to characterize the “importance” of a node in
the network.

• Closeness centrality: normalized average distance of a
node to any other network node1. The higher the score,
the closer to other nodes [13];

• Betweeness centrality: number of shortest paths passing
through a node. The higher the score, the more shortest
paths the node lie on [14];

• Katz centrality: as opposed to the node degree that
accounts for immediately connected neighbours, the Katz
centrality evaluates the connection of a node to all other
network nodes using a penalty term [15];

• Eigenvector centrality: Eigenvalues of the adjacency ma-
trix representing the graph of the network [16];

• PageRank centrality: variation of the Katz and Eigenvec-
tor centrality [17].

In this paper, we focus more specifically on the influence
of the most important nodes and hence use as primary metrics
the highest value of each centrality score.

C. Clustering properties

Another set of metrics that we consider in this work
concerns the clustering properties of networks, i.e., the ten-
dency for edges to cluster [18]. More specifically, we use the
following three main measures2:

1We use Dijkstra shortest path to compute the path between any pair of
node and hence determine the distance.

2In this work, we use the greedy modularity communities partitioning
method proposed by Clauset et al. in [20] to compute the clusters.

• Clustering coefficients: probability that a length-2 path
is closed (formation of a triangle in the network) [18].
In this work, we use the mean and variance of the
distribution of clustering coefficients.

• Number of clusters;
• Max. cluster size: number of nodes in the largest cluster;

D. Distance and resilience properties

We also consider the properties of a network in terms of
scale and resilience to events affecting connectivity. We use
the diameter, i.e., the longest shortest path between any two
nodes, and the average shortest path length, i.e., the mean
value of the lengths of all shortest paths in the network, to
characterize the scale of the network in terms of distance.

In addition, we use the symmetry ratio [19] and the global
efficiency [21] to quantify resilience properties. While Dekker
and Colbert show in [19] that the symmetry ratio is highly
related to the performance of a network under attack, Latora
and Marchiori suggest in [21] to measure the resistance of a
network to failures on a small scale using its global efficiency
value. We also take into account the algebraic connectivity,
i.e., the value of the second largest eigenvalue of the Laplacian
matrix defined for the graph representing the network [22].

III. NETWORK TOPOLOGY DYNAMICS

Our objective is to investigate how the topological character-
istics of a network is affected by the dynamics of its connectiv-
ity over time. In this section, we present the methodology that
we designed to emulate various patterns of network dynamics,
as well as the software tool that we implemented based on the
proposed methodology in order to collect topological metrics
data based on a wide range of networks.

A. Methodology

The dynamics of a network is driven by the set of changes
affecting its connectivity properties over time. To emulate
various patterns of network dynamics, we take into account
four aspects: (i) the type of events affecting the connectivity
of the network; (ii) the time at which events occur; (iii) the
combination of events occurring at a given time; and (iv) the
sequence of events over time.

Connectivity changes Different events can affect the con-
nectivity properties of a network. In this work, we define four
types of events: (i) the addition of a node and an edge in
the network (ANE)3; (ii) the addition of an edge (AE); (iii)
the removal of a node from the network (RN); and (iv) the
removal of an edge (RE). In practice, these events account for
various changes that can alter the topology of a network, e.g.,
the addition of a new VM in a virtualized infrastructure, the
failure of a physical link between two routers, the creation of
a new virtual path between two virtual network functions. For
each type of events, we define different strategies to decide
how the topology needs to be modified (e.g., which node to
select for removal). These are presented in Table I.

3We consider that all network topologies are connected so that the addition
of a node implies the addition of an edge.



TABLE I
TYPES OF NETWORK CONNECTIVITY CHANGES.

Event ID Event Type Modification Strategy
RN1 Remove Node Random
RN2 Remove Node With Highest degree
RN3 Remove Node With Lowest degree
RN4 Remove Node Based on network SIR epidemic model [23]
RN5 Remove Node Based on Breadth First Search model[24]
RE1 Remove Edge Random
RE2 Remove Edge Connecting highest degree nodes
RE3 Remove Edge Connecting lowest degrees nodes
RE4 Remove Edge Between lowest and highest degrees nodes
AE1 Add Edge Random
AE2 Add Edge Between highest centrality nodes
AE3 Add Edge Between lowest centrality nodes

ANE1 Add Node & Edge Random
ANE2 Add Node & Edge Connect to highest centrality node
ANE3 Add Node & Edge Connect to lowest centrality node

Events occurrence Events can occur at different moments
in time. We model time as a discrete variable t and assume that
events are independent4, i.e., the type of events occurring at
time t is independent from the type of events occurring at time
t+1. In this work, we use two different approaches to model
the occurrence of events: (i) as a periodic process, i.e., events
affecting the connectivity of the network are triggered at every
t+ δ where δ represents the periodicity of the events; and (ii)
as a random process, i.e., events are triggered at random time.

Events combination In this paper, we assume that only one
type of events can occur at any time t. The effect of combined
events can however easily be modelled by setting the value of
the frequency of event occurrence to 0.

Sequence of events We use four different models to emulate
various sequences of events over time: (i) repetitive mode,
i.e., the same event is repeatedly triggered; (ii) mixed mode,
(i.e.,) a random event, selected between all types reported in
Table I, is triggered; (iii) SIR epidemic mode, i.e., events
are triggered according to the SIR epidemic model [25]; and
(iv) the Breadth First Search mode, i.e., events are triggered
according to the Breadth First Search model [24]. While the
repetitive mode enables us to investigate the effect of specific
types of events, we use the mixed mode to emulate the
effect of a random succession of events on the topological
properties of the network. In addition, we use the SIR epidemic
model and the Breadth First Search model as these constitute
reference approaches for the analysis of dynamics in the
complex network literature.

B. Software tool and dataset

We implemented the proposed methodology in a software
tool for network dynamics pattern emulation that we developed
in Python. The functionality of the tool is depicted in Fig. 1.
It involves two main functions: dynamics pattern generator
(DPG) and topological metric computation (TMC). The DPG

4The tool can easily be extended to integrate any type of event dependency
modelling component

Dynamics 
Pattern 

Generator

Topological 
Metric

Computation

Input 
topology

Set of 
modified 

topologies

.json .json

.json

Metrics per 
topology

.json

User-defined pattern
configuration

Fig. 1. Functionality of the network dynamics pattern emulation tool.

function is responsible for computing, based on an input net-
work topology and a set of user-defined pattern configurations,
a sequence of events affecting the connectivity of the network.
Changes are applied sequentially and all resulting modified
topologies are returned in output. These are further passed to
the TMC function responsible for computing for each topology
the values of all metrics described in Section II. In our tool, all
configurations are encoded using the .json format (i.e., network
topologies, dynamics pattern parameters and metrics).

To obtain a dataset of topological metrics, we use a set
of 126 networks extracted from the Internet Topology Zoo
repository [10] as inputs to our tool. The selected networks
vary in size (from 6 to 200 nodes), structure, as well as
types of communication infrastructures they represent (back-
bone, customer and/or transit5). For each network, we ap-
plied 15 different types of dynamics patterns based on the
models described in Section III-A. This gave us a total of
71,605 metric-per-topology samples. The obtained dataset is
available at: https://www.dropbox.com/s/qvc178mawbz78s5/
ConnectivityMetricDataset.zip?dl=0

In the next section, we used the obtained dataset to analyze
the correlation factors between topological metric changes and
network dynamics.

IV. RESULTS ANALYSIS

Correlation factors can be investigated from different per-
spectives, i.e., across topologies, across patterns of network
dynamics and across metrics. In this paper, we focus on how
events affect specific types of metrics and to which extent pairs
of metrics tend be correlated under specific patterns.

Most influenced metrics To quantify the effect of a network
dynamics pattern on a given topological metric, we determine
the normalized changes of the value of the metric across the
sequence of events defining that pattern. We further apply
linear least squares fitting to the resulting profile of changes
and evaluate the absolute value of the coefficient of regression
of the obtained fitting curve.

We define the most influenced metrics (MIMs) for a network
topology as the top five metrics with the largest absolute
coefficient of regression value across all dynamics patterns.
We observe that, for some patterns, the ranking of the MIMs
is not influenced by the network topology, i.e., part or all of
the metrics in the top-five list are shared by the majority of the

5The terminology refers to the one used in [10].



TABLE II
SHARED MOST INFLUENCED METRICS.

Event ID Metrics
RN2 Number of nodes
RN3 Number of nodes & number of edges

ANE1 Heterogeneity
ANE2 Maximum cluster size
ANE3 Average shortest path & number of nodes

input networks. Table II shows the cases in which more than
80% of the networks have shared MIMs. As can be observed,
the type of MIMs that are common between networks is
affected by the type of topological changes.

Highly correlated metric pairs In addition, we analyze for
each network the correlation factor between pairs of metrics as
the network topology undergoes a sequence of changes. The
total number of pairs of metrics is 190. We use the Pearson
correlation coefficient to determine the degree of correlation
between any two metrics m1 and m2 under a series of n
changes. It is expressed as follows:

ρm1,m2
=

n∑
i=1

(m1i −m1)(m2i −m2)√√√√ n∑
i=1

(m1i −m1)
2

n∑
i=1

(m2i −m2)
2

We define as the highly correlated metric pairs (HCMPs)
the pairs of metrics for which the correlation coefficient is
larger than 0.95. To investigate whether network topologies
have commonalities in terms of their HCMPs, we classify
metric pairs in three categories: 1) strongly recurrent HCMPs,
2) recurrent HCMPs, and 3) not strongly recurrent HCMPs.
Category 1 corresponds to the case where more than 80%
of the input networks share the same HCMPs. Category 2
concerns the case where the same HCMPs are shared by 50%
to 79% of the networks, and category 3, when this happens for
less than 50% of the networks. Table III shows the percentage
of HCMPs falling under each category per event type.

In general, only subsets of HCMPs are shared by a majority
of networks, i.e., fall in category 1. The size of the shared
subsets also depends on the type of topological changes. For
instance, no strongly recurrent HCMPs are recorded when
networks depict dynamics patterns based on event types RN4
and RN5 (i.e., SIR Epidemic and Breadth First search mode,
respectively) while more than 8% of HCMPs are recurrent
to the majority of networks when the dynamics follow a
repetitive mode and are driven by AE3 or ANE2 type of
topological changes. In terms of metrics, the global efficiency,
the maximum of the centrality scores, the mean and variance
of the distribution of clustering coefficients, and the mean and
variance of the distribution of node degrees can be noted to
be the main constituents of highly recurrent HCMPs.

MIMs and HCMPs correlation The observations obtained
for both the MIMs and HCMPs show that results differ based
on the patterns of network dynamics (type of events and

TABLE III
PERCENTAGE OF THE HIGHLY CORRELATED METRIC PAIRS IN EACH

RECURRENCE CATEGORY.

Event ID Strongly recurrent Recurrent Not strongly recurrent
RN1 0.52% 2.63% 96.84%
RN2 1.58% 3.16% 95.26%
RN3 0.52% 2.11% 97.37%
RN4 0% 1.05% 98.95%
RN5 0% 1.05% 98.95%
RE1 1.58% 1.05% 97.37%
RE2 0.52% 1.05% 98.42%
RE3 2.63% 2.11% 95.26%
AE1 0.52% 3.68% 95.79%
AE2 1.05% 6.84% 92.11%
AE3 8.64% 5.79% 87.37%

ANE1 2.11% 10.53% 87.37%
ANE2 8.42% 9.47% 82.11%
ANE3 5.79% 6.32% 87.89%

mode). This suggests that the analysis of both components
can provide some insights onto the topological changes un-
dergone by a network. Given that the MIMs and HCMPs both
“measure” the effect of changes on the network properties,
we investigate whether a relationship exists between them. In
particular, we determine for each network, the percentage of
MIMs that are part of HCMPs.

Among all 8,190 most influenced metrics calculated for all
126 input networks and 15 dynamics patterns, 4,787 (58.45%)
of them appear in the highly correlated metric pairs. This
shows that, in general, the MIMs are more likely to be part
of HCMPs. However, a more quantitative hypothesis test is
required to mathematically determine the relationship between
them. This is a direction of future research.

V. CONCLUSIONS

This paper describes a methodology to model patterns of
network dynamics and presents an emulation software tool
to collect network connectivity metric data for any type of
communication network topologies. The analysis of the dataset
collected using our tool for 126 networks and 15 types of
dynamics patterns shows that observing the mostly influenced
metrics and the highly correlated metric pairs can provide
insights onto the types of changes a topology undergoes.
Next step will investigate how to apply Convolutional Neural
Network on network adjacency matrices to predict the mostly
influenced metrics and the highly correlated metric pairs of any
network topology. More generally, our long term objective is
to investigate the dynamics and stability characteristics of a
networking environment within and across dimensions (from
the infrastructure to management tasks and service operations)
and develop novel frameworks for the prediction of network
and service performance.
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