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Abstract

The work in this thesis is an investigation of the geometric structures arising

on S1 and T2 quotients of manifolds endowed with G2 and Spin(7)-structures. This

was motivated by the work of Apostolov and Salamon who studied the circle reduc-

tion of G2 manifolds and showed that imposing that the quotient is Kähler leads to

a rich geometry. We shall consider the following problems:

1. The S1 quotient of Spin(7)-structures

2. The Kähler reduction of Spin(7) manifolds with T2 actions

3. The S1-invariant G2 Laplacian flow

4. The SU(2)2×U(1)-invariant G2 Laplacian flow on S3×R4

Our key results include expressions relating the intrinsic torsion of S1-invariant

Spin(7)-structures to that of the quotient G2-structures, a new expression for the

Ricci curvature of Spin(7)-structures only in terms of the intrinsic torsion, infinitely

many new examples of (incomplete) Spin(7) metrics arising as T2 bundles over

Kähler manifolds with trivial canonical bundle, the first example of an inhomoge-

neous shrinking gradient G2 Laplacian soliton and a local classification of closed

SU(2)2×U(1)-invariant G2-structures on S3×R4.



Impact Statement

This thesis is concerned with the study of geometric objects called G2 and

Spin(7) manifolds arising in the field of exceptional geometry. These are higher

dimensional examples of Ricci-flat and hence Einstein manifolds. Despite being a

relatively young area of geometry; only a few decades old, it has already witnessed

significant development. A few areas of mathematics it has had profound impact

on include Gauge theory, Calibrated geometry and Geometric flows. For instance

it has led to the definition of higher dimensional analogue of Donaldson-Thomas

invariants and to new ideas in Seiberg-Witten theory. Its contribution is however

not limited to just mathematics. The link between these objects and theoretical

physics was first pointed out by Fields medalist Edward Witten in 1996. G2 and

Spin(7) manifolds are fundamental building blocks for M- and F-theory, which are

generalised versions of string theories. This has brought about many interactions

between the mathematics and physics community, including the foundation of the

Simons Collaboration on Special holonomy in Geometry, Analysis and Physics in

2016. Just as for Calabi-Yau manifolds mirror symmetry type phenomenons are

predicted to exist for them as well. In this thesis we find infinitely many new exam-

ples of Spin(7) metrics and provide a mathematical framework for some examples

which have already appeared in the physics literature. We hope that our results will

lead to a better understanding of the underlying features, both from a mathemat-

ics and physics perspective. Our construction provides a link between exceptional

geometry and Kähler geometry, thereby allowing us to use tools from toric geome-

try. We also find a new solution to the Laplacian flow; a geometric flow, analogous

to Hamilton’s Ricci flow, introduced by Robert Bryant as the gradient flow to the
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Hitchin’s functional in hope of finding new examples of G2 manifolds. We expect

our example to lead to a more in depth study of the flow on new classes of manifolds,

aside from homogeneous ones which have been the main focus of most research in

the area so far.
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Chapter 1

Introduction

This thesis is concerned with the study of some problems in exceptional holon-

omy which admit circle or torus symmetry.

What is exceptional holonomy? The holonomy of a Riemannian manifold

(Mn,g) is by definition the group generated by parallel transporting a basis of the

tangent space at a point around closed loops using the Levi-Civita connection. In

his thesis Berger classified the possible holonomy groups in a surprisingly short

list [13], excluding symmetric spaces, which were already classified cf. [14], and

Riemannian products, as their holonomy is simply the product of the holonomy of

each individual components. The list included the groups G2 and Spin(7) for n = 7

and 8 respectively, and whose study are today known as exceptional geometry. It

turns out that the geometry of G2 and Spin(7) manifolds can be fully encoded in a

3-form ϕ and 4-form Φ respectively, rather than the metric which gives their study

an algebro-differential flavour.

Why symmetry? G2 and Spin(7) holonomy manifolds are in many ways anal-

ogous to Calabi-Yau manifolds and many examples have been constructed by ex-

ploiting these links [26, 60, 59]. One key difference is however the inexistence of an

analogue of Yau’s theorem of the Calabi conjecture. The closest analogue currently

available is Joyce’s theorem, which roughly states that if one can construct forms

approximating ϕ and Φ in suitable Banach spaces then one can deform them to gen-

uine solutions. These analytic hypotheses are in general hard to satisfy, by contrast

to the topological one in Yau’s theorem. An easier way of finding examples is to
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impose symmetry, and this is indeed how the first examples were found [18, 21].

As compact Ricci flat manifolds cannot admit continuous symmetry we are led to

consider non-compact ones. The downside is that one cannot use standard elliptic

theory for compact manifolds but on the upside one can find explicit solutions in

several cases [17, 28, 29].

The ‘simplest’ type of symmetry to impose are circles and tori. The proto-

type for most of our work here is the Gibbons-Hawking ansatz, which gives an

elementary way of writing down infinitely many circle invariant Calabi-Yau met-

rics in dimension 4 starting from only a positive harmonic function on the quotient

3-manifold. This idea was applied in the context of G2 manifolds by Apostolov

and Salamon in [3] and they were able to write down many explicit examples of G2

metrics starting suitable data on a 6-manifold. Both the Gibbons-Hawking ansatz

and the Apostolov-Salamon construction only give incomplete metrics, though in

the former it is well-known how to find completions by the addition of fixed points.

In the case of the Gibbons-Hawking ansatz the quotient 3-manifold is an open

set in R3 endowed with the flat Euclidean structure and thus, the structure group

reduces from SU(2) to the trivial group. The S1 quotient of a G2 manifold instead

inherits an SU(3)-structure, consisting of a symplectic form ω and a 3-form Ω+

defining an almost complex structure J. Owing to this rich structure Apostolov-

Salamon found that if J is a complex structure then the quotient admits a further

Kähler reduction to a 4-manifold. Inverting this construction led to the discovery

of new type of G2 metrics. Motivated by this observation, the work in this thesis

is a quest to finding ‘interesting geometric structures’ on quotients of manifolds

admitting G2 and Spin(7)-structures.

Brief overview

Chapter 2. We cover basic facts about the geometry of G2, Spin(7) and SU(3)-

structures and describe the Gibbons-Hawking ansatz. This chapter also serves the

purpose of setting up the notation and conventions for the rest of the thesis.

Chapter 3. We consider the S1 reduction of Spin(7)-structures in the case that
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they are torsion free, locally conformally parallel and balanced. We derive a new

formula for the Ricci curvature of Spin(7)-structures only in terms of the torsion

forms. Finally we study the quotient explicitly in the case when the manifold is the

spinor bundle of S4 endowed with the Bryant-Salamon Spin(7)-structure and R8

with the flat Spin(7)-structure. This chapter is based on our work in [44]

Chapter 4. We consider the T2 reduction of a Spin(7) manifold under the as-

sumption that the quotient 6-manifold is Kähler. Inverting this construction leads

us to discover many new examples of Spin(7) metrics. This is a generalisation of

the aforementioned Apostolov-Salamon construction. This chapter is based on our

work in [45].

Chapter 5. The Laplacian flow is a geometric flow introduced by Bryant as a way

of finding torsion free G2-structures starting from a closed one. If the flow is S1-

invariant then it descends to a flow of SU(3)-structure. We derive expressions for

these evolution equations. In our search for examples we discover the first example

of an inhomogeneous shrinking soliton. This chapter is based of our work in [43]

Chapter 6. We consider the Laplacian flow on S3×R4 and search for cohomo-

geneity one solitons with SU(2)2×U(1) symmetry. We rule out conical solitons on

S3× S3×R+ and complete ones on S3×R4. The search for complete ‘neck-type’

solitons on S3×S3×R is an ongoing project.



Chapter 2

Background

The goal of this chapter is to give a quick introduction to the rudimentary

of exceptional geometry and some closely related topics that we shall need in the

subsequent chapters. This will also serve the purpose of setting up the notation for

the rest of this thesis.

In section 2.1 and 2.2 we cover the basics of G2 and Spin(7) geometry. The

material is classical and proofs can be found in the standard references [18, 61,

74]. In section 2.3 we give a quick overview of SU(3)-structures which will play

a crucial role throughout this thesis. Excellent references for this material include

[12, 24, 54]. In the last section we describe the Gibbons-Hawking ansatz, which

has been a key motivation for most of the work undertaken here.

2.1 Preliminary on G2-structures
Definition 2.1.1. A G2-structure on a 7-manifold L7 is given by a 3-form ϕ that can

be identified at each point p ∈ L7 with the standard one on R7:

ϕ0 = dx123 +dx145 +dx167 +dx246−dx257−dx347−dx356, (2.1.1)

where x1, . . . ,x7 denote the coordinates on R7 and dxi jk is shorthand for dxi∧dx j∧

dxk.

Equivalently, but more abstractly, a G2-structure can be defined as a reduction

of the structure group of the frame bundle of L7 from GL(7,R) to G2. By abuse of
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language we also refer to ϕ or the pair (L7,ϕ) as the G2-structure. The reason for

this nomenclature stems from the fact that the subgroup of GL(7,R) which stabilises

ϕ0 is isomorphic to the Lie group G2. Since G2 is a subgroup of SO(7) [18, 74]

it follows that ϕ defines a Riemannian metric gϕ and volume form volϕ on L7.

Explicitly these are given by

1
6

ιX ϕ ∧ ιY ϕ ∧ϕ = gϕ(X ,Y )volϕ ,

where X ,Y are vector fields on L7. In particular, ϕ defines a Hodge star operator ∗ϕ .

It is known that a 7-manifold admits a G2-structure if and only if its first and second

Stiefel-Whitney classes vanish [66] so there is a plethora of examples. Moreover

the space of G2-structures is an open set i.e. if ‖ϕ̃−ϕ‖ϕ < ε for ε > 0 sufficiently

small then ϕ̃ is also a G2-structure. We denote this set by Ω3
+(L

7).

One of the main motivations for studying this structure is that if ϕ is parallel

with respect to the Levi-Civita connection ∇gϕ (which is a first order condition)

then it has holonomy contained in G2 and the metric is Ricci-flat. If the holonomy

is equal to G2 then (L7,ϕ) is called a G2-manifold and if the holonomy is only

contained in G2 then it is referred to as a torsion free G2-structure, although some

authors use these terminologies interchangeably. Note that in contrast the Ricci-

flat system of differential equations are second order. The fact that ϕ is parallel

implies the reduction of the holonomy group of gϕ from SO(7) to (a subgroup of)

G2 and conversely, a holonomy G2 metric implies the existence of such a 3-form.

An alternative way to verify the parallel condition is given by the following theorem.

Theorem 2.1.2 ([36]). ∇gϕ ϕ = 0 if and only if dϕ = 0 and d ∗ϕ ϕ = 0.

The failure of the reduction of the holonomy group to G2 is measured by the

intrinsic torsion. Abstractly, given a general H-structure for a subgroup H ⊂ O(n)

the intrinsic torsion is defined as a section of the associated bundle to Rn ⊗ h⊥

where so(n) = h⊕ h⊥ and ⊥ denotes the orthogonal complement with respect to

the Killing form. We shall only give a brief description here but more details can

be found in [19, 74]. The space of differential forms on L7 can be decomposed as
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G2-modules as follows:

Λ
1 = Λ

1
7, (2.1.2)

Λ
2 = Λ

2
7⊕Λ

2
14, (2.1.3)

Λ
3 = Λ

3
1⊕Λ

3
7⊕Λ

3
27, (2.1.4)

where the subscript denotes the dimension of the irreducible module. Using the

Hodge star operator we get the corresponding splitting for Λ4, Λ5 and Λ6. A more

concrete description of these modules is given by:

Λ
2
7 = {α ∈ Λ

2 | ∗ϕ (α ∧ϕ) = 2α} (2.1.5)

= {∗ϕ(α ∧∗ϕϕ) | α ∈ Λ
1
7} (2.1.6)

Λ
2
14 = {α ∈ Λ

2 | ∗ϕ (α ∧ϕ) =−α} (2.1.7)

= {α ∈ Λ
2 | α ∧∗ϕϕ = 0} (2.1.8)

Λ
3
1 = {λϕ | λ ∈ R} (2.1.9)

Λ
3
7 = {∗ϕ(α ∧ϕ) | α ∈ Λ

1
7} (2.1.10)

Λ
3
27 = {α ∈ Λ

3 | α ∧ϕ = 0 and α ∧∗ϕϕ = 0} (2.1.11)

There is also an isomorphism of G2 modules Λ3
1⊕Λ3

27
∼= 〈gϕ〉⊕ S2

0, where S2
0 de-

notes the space of traceless symmetric (0,2)-tensors. Explicitly this map is defined

by

j : Λ
3→ S2

j(γ)(X ,Y ) = ∗ϕ(ιX ϕ ∧ ιY ϕ ∧ γ). (2.1.12)

From characterisation (2.1.10) it is straightforward to verify that Λ3
7 is the kernel of

j.

Before describing the intrinsic torsion of a G2-structure we first explain the

general case following [74]. Given a group G ⊂ O(n), consider the G-equivariant



2.1. Preliminary on G2-structures 15

homomorphism given by

δ : (Rn)∗⊗g ↪→ (Rn)∗⊗ (Rn)∗⊗Rn→ Λ
2((Rn)∗)⊗Rn

where the first map is simply inclusion and the second is skew-symmetrisation on

the first two factors. Suppose now that a manifold Mn is endowed with a G-structure

then the difference of any 2 connections on this G-bundle defines a section of the

associated bundle to (Rn)∗⊗ g. The image under δ (interpreted as a bundle ho-

momorphism via the associated bundle construction) of this difference is, up to a

constant factor, the difference of the torsion of the two connections. Thus, the tor-

sion of any connection defines the same element in the associated bundle to the

G-module
Λ2((Rn)∗)⊗Rn

δ ((Rn)∗⊗g)
∼= (Rn)∗⊗g⊥

where we use the Riemannian metric for the identification. This element, which is

independent of the choice of connection, is called the intrinsic torsion and vanishes

if and only if the G-structure admits a torsion free connection. In practice one

can often identify the intrinsic torsion with the exterior derivative of some suitable

differential form(s).

In the G2 case the intrinsic torsion is given by dim(R7⊗ g⊥2 ) = 49 equations

and can be described using the equations

dϕ = τ0 ∗ϕ ϕ +3 τ1∧ϕ +∗ϕτ3 (2.1.13)

d ∗ϕ ϕ = 4 τ1∧∗ϕϕ + τ2∧ϕ (2.1.14)

where τ0 ∈ Ω0, τ1 ∈ Ω1
7, τ2 ∈ Ω2

14 and τ3 ∈ Ω4
27. Here we are denoting by Ωi

j the

space of smooth sections of Λi
j. The fact that τ1 arises in both equations can be

proved using the following lemma.

Lemma 2.1.3 ([19]). Given α ∈ Λ1
7(M) and β ∈ Λ2

7(M) we have

1. 2∗ϕ (β ∧∗ϕϕ)∧∗ϕϕ = 3β ∧ϕ

2. ∗ϕα =−1
4 ∗ϕ (α ∧ϕ)∧ϕ = 1

3 ∗ϕ (α ∧∗ϕϕ)∧∗ϕϕ.
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Manifolds with holonomy equal to G2 are very hard to construct and the first

examples only appeared in the late 80s cf. [18, 21]. The search for examples is still

one of the most active area of research in the field and this has led to the study of

weaker notions:

Definition 2.1.4. A G2-structure (L7,ϕ) is called

1. closed or calibrated if dϕ = 0,

2. coclosed or cocalibrated if d ∗ϕ ϕ = 0,

3. nearly parallel or weakly G2 if dϕ = λ ∗ϕ ϕ for λ ∈ R−{0}.

Note that nearly parallel G2 manifolds are Einstein with positive scalar curva-

ture and their cones have holonomy contained in Spin(7), which is precisely what

we describe next.

2.2 Preliminary on Spin(7)-structures
Definition 2.2.1. A Spin(7)-structure on an 8-manifold N8 is given by a 4-form Φ

that can be identified at each point q ∈ N8 with the standard one on R8:

Φ0 = dx0∧ϕ0 +∗ϕ0ϕ0 (2.2.1)

= dx0123 +dx0145 +dx0167 +dx0246−dx0257−dx0347−dx0356

+dx2345 +dx2367 +dx4567−dx1247−dx1256−dx1346 +dx1357, (2.2.2)

where we have augmented the G2 module R7 by R with coordinate x0.

The subgroup of GL(8,R) which stabilises Φ0 is isomorphic to Spin(7) cf.

[21, 74]. From (2.2.1) it is clear that G2 is a subgroup of Spin(7). Since Spin(7) is

a subgroup of SO(8) it follows that Φ defines a metric gΦ, volume form volΦ and

Hodge star ∗Φ. Explicitly the volume form is given by

volΦ =
1

14
Φ∧Φ.
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The expression for gΦ is more complicated than in the G2 case cf. [62, section 4.3],

but fortunately we will not need it. An 8-manifold admits a Spin(7)-structure if and

only, if in addition to having zero first and second Stiefel-Whitney classes, either of

the following holds

p1(N)2−4p2(N)±8χ(N) = 0

cf. [51, 66], noting that the ‘8’ factor is accidentally omitted in the former. An

important distinction with the G2 case is that Spin(7) 4-forms do not form an open

set in Ω4(N8). If Φ is parallel with respect to the Levi-Civita connection ∇gΦ then

the metric gΦ has holonomy contained in Spin(7) and the metric is Ricci-flat. A

manifold with holonomy equal to Spin(7) is called a Spin(7)-manifold. Just as in

the G2 situation we have the following alternative formulation of the torsion free

condition.

Theorem 2.2.2 ([33]). ∇gΦΦ = 0 if and only if dΦ = 0.

The space of differential forms on N8 can be decomposed as Spin(7)-modules

as follows:

Λ
1 = Λ

1
8 (2.2.3)

Λ
2 = Λ

2
7⊕Λ

2
21 (2.2.4)

Λ
3 = Λ

3
8⊕Λ

3
48 (2.2.5)

Λ
4 = Λ

4
1⊕Λ

4
7⊕Λ

4
27⊕Λ

4
35. (2.2.6)

As in the G2 case, the Hodge star defines an isomorphism Λk
l
∼= Λ

8−k
l . A more

explicit description of these modules is given by:

Λ
2
7 = {α ∈ Λ

2 | ∗Φ (α ∧Φ) = 3α} (2.2.7)

Λ
2
21 = {α ∈ Λ

2 | ∗Φ (α ∧Φ) =−α} (2.2.8)

Λ
3
8 = {∗Φ(α ∧Φ) | α ∈ Λ

1
8} (2.2.9)

Λ
3
48 = {α ∈ Λ

3 | α ∧Φ = 0} (2.2.10)

Λ
4
1 = {λΦ | λ ∈ R} (2.2.11)
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Λ
4
35 = {α ∈ Λ

4 | ∗Φ α =−α} (2.2.12)

The space Λ4
7 is the span of the action of Λ2

7 ↪→ Λ2 ∼= so(8) on Φ. The first 3

summands of (2.2.6) are the self-dual 4-forms Λ4
+ (i.e. have eigenvalue +1 under

∗Φ) and Λ4
27 can be defined as the orthogonal complement of Λ4

1⊕Λ4
7 ↪→Λ4

+ . There

is also an injection map ι : S2 ↪→ Λ4 which restricts to an isomorphism of Spin(7)-

modules

i : 〈gΦ〉⊕S2
0→ Λ

4
1⊕Λ

4
35

a◦b 7→ a∧∗Φ(b∧Φ)+b∧∗Φ(a∧Φ),

Note that i(gΦ) = 8Φ. We denote by j the inverse map extended to Λ4 as the zero

map on Λ4
7⊕Λ4

27. The intrinsic torsion is given by dim(R8⊗ spin(7)⊥) = 56 equa-

tions and is completely determined by the exterior derivative of Φ in view of Theo-

rem 2.2.2. This can be written as

dΦ = T 1
8 ∧Φ+T 5

48, (2.2.13)

where T 1
8 ∈ Λ1

8 and T 5
48 ∈ Λ5

48. Of relevance for us will be the following classes of

Spin(7)-structures.

Definition 2.2.3.

1. If T 1
8 vanishes the Spin(7)-structure Φ is called balanced,

2. if T 5
48 vanishes it is called locally conformally parallel, and

3. if both are vanish then it is called torsion free.

2.3 Preliminary on SU(3)-structures
Definition 2.3.1. An SU(3)-structure on a 6-manifold P6 is given by a non-

degenerate 2-form ω , a Riemannian metric gω , an almost complex structure J and
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a (3,0)-form Ω := Ω++ iΩ− satisfying the two conditions

ω ∧Ω
± = 0, (2.3.1)

2
3

ω
3 = Ω

+∧Ω
−. (2.3.2)

Although an SU(3)-structure consists of the data (gω ,ω,J,Ω+ + iΩ−) it is

in fact sufficient to specify the pair (ω,Ω+) satisfying (2.3.1) and (2.3.2). This

observation is due to Hitchin in [54] where he shows that Ω+ (or Ω−) determines

J. Abstractly this follows from the fact that the stabiliser of Ω+ in GL+(6,R) is

congruent to SL(3,C)⊂ GL(3,C). The metric is then determined by

ω(·, ·) := gω(J·, ·), (2.3.3)

and Ω− := J(Ω+) = ∗ωΩ+, where ∗ω is the Hodge star operator determined by gω

and the volume form

volω :=
1
6

ω
3 =

1
4

Ω
+∧Ω

−.

We say (P6,ω,Ω+) is a Calabi-Yau 3-fold if both ω and Ω+ are covariantly constant

with respect to ∇gω , and hence so are J and Ω−. This condition can be equivalently

formulated as:

Theorem 2.3.2 ([12, 24]). ∇gω ω = 0 and ∇gω Ω+ = 0 if and only if dω = 0 and

dΩ+ = dΩ− = 0.

Note that Calabi-Yau 3-folds have holonomy contained in SU(3). Recall that

since J2 =−1 we can decompose the complexified space of 1-forms into +i and−i

J-eigenspaces denoted by Λ1,0 and Λ0,1 respectively. Writing Λp,q for the space of

complex (p+ q) forms spanned by wedging p elements of Λ1,0 and q elements of

Λ0,1 we have

Λ
k⊗C=

⊕
0≤i≤k

Λ
i,k−i.
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Hence as SU(3)-modules the space of differential forms split as follows:

Λ
1 = Λ

1
6 = [[Λ1,0]] (2.3.4)

Λ
2 = Λ

2
1⊕Λ

2
6⊕Λ

2
8 (2.3.5)

= 〈ω〉⊕ [[Λ2,0]]⊕ [Λ1,1
0 ]

Λ
3 = Λ

3+
1 ⊕Λ

3−
1 ⊕Λ

3
6⊕Λ

3
12 (2.3.6)

∼= 〈Ω+〉⊕〈Ω−〉⊕ [[Λ1,0]]⊕ [Λ2,1
0 ].

Here the [[Λp,q]] and [Λp,p] notation, introduced in [74], refers to taking the corre-

sponding real underlying vector space i.e.

[[Λp,q]]⊗C= Λ
p,q⊕Λ

q,p and [Λp,p]⊗C= Λ
p,p.

The above is a refinement of the Gray-Hervalla decomposition in dimension 6 cf.

[52]. A more explicit description of these irreducible modules is given by

Λ
2
6 = {α ∈ Λ

2 | ∗ω (α ∧ω) = α} (2.3.7)

= {∗ω(α ∧Ω
+) | α ∈ Λ

1
6} (2.3.8)

Λ
2
8 = {α ∈ Λ

2 | ∗ω (α ∧ω) =−α} (2.3.9)

Λ
3
6 = {α ∧ω | α ∈ Λ

1
6} (2.3.10)

Λ
3
12 = {α ∈ Λ

3 | α ∧ω = 0, α ∧Ω
± = 0} (2.3.11)

Note that as SU(3) modules the spaces Λ•6 are all isomorphic; this is the standard

representation SU(3) ⊂ SO(6). In computations we will often need to interchange

between these spaces and to do so we use the following lemma.

Lemma 2.3.3. Given 1-form α ∈ Λ1
6, let β := ∗ω(α ∧Ω−) then the following hold

1. J(α)∧Ω+ = α ∧Ω− = β ∧ω

2. β ∧Ω− = 2∗ω (α) =−(Jα)∧ω2

3. β ∧Ω+ = 2∗ω (Jα) = α ∧ω2
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Proof. Since this is an algebraic statement it is sufficient to prove the above hold on

R6. With coordinates x2, . . . ,x7 on R6 we can express

ω = dx23 +dx45 +dx67,

Ω
+ = dx246−dx257−dx347−dx356,

Ω
− = dx256 +dx247 +dx346−dx357.

Furthermore, since SU(3) acts transitively on S5 it suffices to verify the above hold

for α = dx2.

In view of theorem 2.3.2 and the above characterisation of Λk
l , the intrinsic

torsion of an SU(3)-structure is determined by

dω =−3
2

σ0 Ω
++

3
2

π0 Ω
−+ν1∧ω +ν3, (2.3.12)

dΩ
+ = π0 ω

2 +π1∧Ω
+−π2∧ω, (2.3.13)

dΩ
− = σ0 ω

2 +(Jπ1)∧Ω
+−σ2∧ω, (2.3.14)

where σ0,π0 ∈ Ω0, ν1,π1 ∈ Ω1
6, π2,σ2 ∈ Ω2

8 and ν3 ∈ Ω3
12, cf. [12]. Many well

known geometric structures can be redefined using this formulation.

Definition 2.3.4. The SU(3)-structure (P6,ω,Ω+) is said to be

1. nearly Kähler if σ0 =−2 and all other torsion forms vanish,

2. Kähler if all torsion forms aside from π1 vanish,

3. complex if π0 = σ0 = 0 and π2 = σ2 = 0,

4. half-flat if π0 = 0, π1 = ν1 = 0 and π2 = 0.

On notations and conventions

Throughout this thesis we shall often use the suggestive notation β l
m for an l-

form to mean that β l
m ∈ Ωl

m or write (β )l
m for the Ωl

m-component of an l-form β .

We will specify the underlying space N8, L7 or P6 if there is any risk of ambiguity.
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d∗ := (−1)n(k−1)+1 ∗d∗ will denote the codifferential on k-forms on an n-manifold.

The inner product on decomposable k-forms is defined by

g(α1∧·· ·∧αk,β1∧·· ·∧βk) = det(g(αi,β j)),

which might differ from other conventions in the literature by a ‘k!’ factor, and the

Hodge star is defined by

α ∧∗β = g(α,β )vol,

for k-forms α and β .

2.4 The Gibbons-Hawking ansatz
This thesis is mainly concerned with the study of (free) circle and torus actions

on manifolds with G2- and Spin(7)-structures. The prototype for this construction

is the so-called Gibbons-Hawking ansatz [48]. This is an elementary, yet powerful,

way of constructing infinitely many (local) examples of hyperKähler 4-manifolds

with triholomorphic Killing circle actions. Before describing this construction we

first introduce some notions from Kähler geometry.

Definition 2.4.1. A Riemannian manifold (M4n,gHK) is said to be hyperKähler if

there exists a triple of complex structures I,J,K compatible with the metric which

are parallel with respect to the Levi-Civita connection ∇gHK and satisfy K = IJ =

−JI.

HyperKähler manifolds have holonomy contained in Sp(n). To each of the

complex structures we associate real (1,1)-forms ωI , ωJ , ωK using (2.3.3). By

analogy to Theorems 2.1.2, 2.2.2 and 2.3.2 we give the following alternative char-

acterisation of the parallel condition on I,J,K.

Theorem 2.4.2 ([6]). The complex structures I,J,K are parallel if and only if

dωI = dωJ = dωK = 0.

We can now describe the Gibbons-Hawking ansatz. Given an open set B⊂ R3
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with the Euclidean metric and coordinates (x,y,z), together with a positive harmonic

function V : B→ R+ satisfying the ‘integrality’ condition [−∗dV ] ∈ H2(B,Z) (ig-

noring a factor of 2π), then we can define a hyperKähler triple on the total space

π : M4→ B of the circle bundle by

ωI = θ ∧dx+V dy∧dz,

ωJ = θ ∧dy+V dz∧dx,

ωK = θ ∧dz+V dx∧dy,

where θ is a connection 1-form satisfying dθ = −π∗(∗dV ). The closedness of ωi

is immediate by construction and the hyperKähler metric is given by

gHK =V−1
θ

2 +V (dx2 +dy2 +dz2).

Thus, the Gibbons-Hawking ansatz reduces the problem of constructing S1-

invariant hyperKähler metrics to simply choosing a positive harmonic function V .

Of course given V , we still have the freedom of varying the connection form by the

addition of a flat connection.

In this thesis we study some generalised G2 and Spin(7) versions of this con-

struction. A fundamental work in this direction was carried out by Apostolov and

Salamon in [3] where the authors studied free circle actions on G2 manifolds whose

quotients are Kähler. Related works have also appeared previously in the physics

literature cf. [27, 64, 63].



Chapter 3

S1-quotient of Spin(7)-structures

3.1 Overview of chapter

In this chapter we investigate the quotient of Spin(7)-structures under free cir-

cle actions. The case when N8 is a Spin(7) manifold has also been studied by

Foscolo in [39]. One motivation for studying the non-torsion free cases lies in

the fact that they also have interesting geometric properties, for instance, balanced

Spin(7)-structures admit harmonic spinors [57] and compact locally conformally

parallel ones are fibred by nearly parallel G2 manifolds [58]. A further motivation

is that Spin(7)-structures have only two torsion classes, see (2.2.13), and thus have

only four types whereas G2-structures have four classes, see (2.1.13) and (2.1.14),

thus allowing for a more refined decomposition of the Spin(7) torsion classes. The

outline for the rest of this chapter is as follows.

In section 3.2 we describe the quotient of Spin(7)-structures which are invari-

ant under a free circle action. The foundational result is proposition 3.2.2, which

gives explicit expressions relating the torsion of the Spin(7)-structure on the 8-

manifold N8 to the torsion of the quotient G2-structure on L7 together with a posi-

tive function s and the curvature of the S1 bundle. The key observation is that this

construction is reversible. In the subsequent subsections we specialise to the three

cases when the Spin(7)-structure is torsion free, locally conformally parallel and

balanced. In the torsion free situation we show that quotient manifold cannot have

holonomy equal to G2 unless N is a Calabi-Yau 4-fold and L7 is the Riemannian
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product of a Calabi-Yau 3-fold and a circle. We also give explicit expressions for

the SU(4)-structure in terms of the data on the quotient manifold, see Theorem

3.2.7. In the locally conformally parallel situation, we show that L has vanishing

Λ3
27 torsion component and furthermore, if the Λ3

1 torsion component is non-zero

then N8 = L7×S1, see Theorem 3.2.8. In the balanced situation, we show that the

existence of an invariant Spin(7)-structure is equivalent to the existence of a suit-

able section of Λ2
14 of the quotient space, see Theorem 3.2.10. We provide several

examples to illustrate each case.

In section 3.3 we derive formulae for the Ricci and scalar curvatures of

Spin(7)-structures in terms of the torsion forms à la Bryant cf. [19], see Propo-

sition 3.3.1. As a corollary, under our free S1 action hypothesis, we show that the

Λ2
7 component of the curvature form corresponds to the mean curvature vector of

the circle fibres.

In the last two sections we demonstrate how our construction can be applied

to the Bryant-Salamon Spin(7)-structure on the (negative) spinor bundle of S4 and

on the flat Spin(7)-structure on R8. In the former case the quotient space is the

anti-self-dual bundle of S4 and in the latter it is the cone on CP3. We interpret the

quotient of the spinor bundle as a fibrewise (reverse) Gibbons-Hawking ansatz and

give an explicit expression for the quotient (non-torsion free) G2-structure. In both

case we compare the SU(3)-structure on the link CP3.

3.2 The quotient construction
Given an 8-manifold N8 endowed with a Spin(7)-structure Φ which is invariant

under a free circle action generated by a vector field X the quotient manifold L7

inherits a natural G2-structure ϕ := ιX Φ. We can write the Spin(7) form as

Φ = η ∧ϕ + s4/3 ∗ϕ ϕ, (3.2.1)

where s := ‖X‖−1
Φ

and η(·) := s2gΦ(X , ·). For the sake of visual clarity we will

identify basic (i.e. invariant and horizontal) tensors on N8 with the corresponding

tensors on L7 omitting any pullback signs. The proof that Φ can be expressed as
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(3.2.1) with the scaling factor s4/3 in front of ∗ϕϕ is analogous to that of lemma

3.2.1 below. The assumption that the action is free i.e. X is nowhere vanishing

implies that s is a well-defined strictly positive function. Moreover s is invariant

under X , since LX gΦ = 0, and hence descends to L7. The metrics and volume

forms of (L7,ϕ) and (N8,Φ) are related by

gΦ = s−2
η

2 + s2/3gϕ , (3.2.2)

volΦ = s4/3
η ∧ volϕ . (3.2.3)

In this setup η can be viewed as a connection 1-form on the S1-bundle N8 over L7

and dη is its curvature, which by Chern-Weil theory defines an element in H2(L,Z).

We denote by (dη)2
7 and (dη)2

14 the curvature components in view of decomposition

(2.1.3). Under the inclusion G2 ↪→ Spin(7) we may decompose the torsion forms

of (2.2.13) further as

T 1
8 = f ·η +T 1

7 , (3.2.4)

T 5
48 = T 5

7 +T 5
14 +η ∧ (T 4

7 +T 4
27), (3.2.5)

where f is (the pullback of) a function on L7 and all the differential forms on the

right hand side, aside from η , are basic. Note that 56 = 8+ 48 = (1+ 7)+ (7+

14+ 27) = 49+ 7 where 56 and 49 are respectively the dimensions of the space

of intrinsic torsions of Spin(7) and G2 structures. This simple dimension count

confirms the absence of any T 4
1 ∈ Λ4

1(L
7) term in T 5

48. More explicitly, since Φ∧

∗ΦT 5
48 = 0 we have that

T 4
1 ∧ϕ = 0

i.e. T 4
1 = 0. So this says that the intrinsic torsion of Φ is determined by that of ϕ

together with a section of a rank 7 vector bundle. In order to relate the intrinsic

torsion of the Spin(7)-structure to that of the G2-structure we first need to relate

their Hodge star operators.

Lemma 3.2.1. Given α ∈ Λ2
7(L), β ∈ Λ2

14(L), γ ∈ Λ1
7(L) and using the same nota-
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tion for their pullbacks to N8 we have

1. ∗Φ(α ∧ϕ) =−2s−2η ∧α

2. ∗Φ(β ∧ϕ) = s−2η ∧β

3. ∗Φγ =−s2/3η ∧∗ϕγ

4. ∗Φη = s10/3 volϕ

5. ∗Φ(η ∧α) = 1
2s2α ∧ϕ

6. ∗Φ(η ∧β ) =−s2β ∧ϕ

7. ∗Φ(η ∧ γ) = s8/3 ∗ϕ γ

Proof. This is a straightforward computation using (3.2.2), (3.2.3) and the charac-

terisation of Λ2
7 and Λ2

14 as having eigenvalues +2 and −1 under wedging with ϕ

and taking the Hodge star cf. (2.1.5) and (2.1.7). We prove (1) as an example. Since

we only need to show the above formula holds at each point we may pick coordi-

nates at a point q ∈ N such that Φ is identified with Φ0, η = s ·dx0 and ϕ = s−1 ·ϕ0.

Then for any given ϑ ∈Ω2(L) we see easily that

∗Φ(ϑ ∧ϕ) =−s−2
η ∧∗ϕ(ϑ ∧ϕ).

If ϑ = α we have ∗ϕ(α ∧ϕ) = 2α , which completes the proof of (1).

Proposition 3.2.2. The intrinsic torsion of the Spin(7)-structure and G2-structure

are related by

1. f =−s−4/3τ0

2. 7T 1
7 = 24τ1 +3s−4/3d(s4/3)+2s−4/3 ∗ϕ ((dη)2

7∧∗ϕϕ)

3. 7T 5
7 = 4(dη)2

7∧ϕ +4d(s4/3)∧∗ϕϕ +4s4/3τ1∧∗ϕϕ

4. T 5
14 = (dη)2

14∧ϕ + s4/3τ2∧ϕ

5. T 4
27 =−∗ϕ τ3
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6. T 4
7 and T 5

7 are G2-equivalent up to a factor of s−4/3; explicitly, the composi-

tion

F : Λ
5
7
∗−→ Λ

2
7
∧∗ϕ−−→ Λ

6
7
∗−→ Λ

1
7
∧ϕ−−→ Λ

4
7

is a bundle isomorphism and F (7T 5
7 ) = 4s−4/3T 4

7 .

Moreover the occurrence of τ1 in both (2) and (3) shows that

T 5
7 −

1
6

s4/3T 1
7 ∧∗ϕϕ =

1
2
(d(s4/3)∧∗ϕϕ +(dη)2

7∧ϕ) (3.2.6)

and

3τ1∧∗ϕϕ = T 1
7 ∧∗ϕϕ− 3

4
s−4/3T 5

7 , (3.2.7)

in other words given the data (s,(dη)2
7) on L7 any of the 7-dimensional torsion

components τ1,T 1
7 ,T

4
7 ,T

5
7 determine the other three.

Proof. Using lemmas 2.1.3 and 3.2.1 we compute

∗ΦdΦ = s−2
η ∧ (dη)2

14−2s−2
η ∧ (dη)2

7−3s2/3 ∗ϕ (τ1∧ϕ)− τ0 s2/3
ϕ− s2/3

τ3

− s−2 ∗ϕ (d(s4/3)∧∗ϕϕ)∧η + s−2/3
τ2∧η−4s−2/3

η ∧∗ϕ(τ
1∧∗ϕϕ).

It now suffices to use the identity 7∗Φ T 1
8 = ∗Φ(dΦ)∧Φ and compare terms in the

different G2 modules. We demonstrate this for (1). From (2.2.13) we have

∗ΦdΦ = ∗ΦT 5
48 +∗Φ(T 1

7 ∧Φ)+∗Φ( f η ∧Φ).

The last term can be expressed as

∗Φ( f η ∧Φ) = f s2
ϕ

and thus comparing with the above expression we see that f = −s−4/3τ0. This

proves (1). The proofs of the rest are analogous.

Remark 3.2.3. Note that the above construction can also be extended to non-free

S1 actions by working on the complement of the fixed point locus. The fixed point
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locus then corresponds to the region where s blows up. We shall in fact see an

example of this below when we look at the Bryant-Salamon Spin(7) metric.

Equipped with above proposition we can now proceed to studying the quotient

of different types of Spin(7)-structures.

3.2.1 The torsion free quotient

Theorem 3.2.4 (Gibbons-Hawking ansatz for Spin(7) manifolds). Assuming

(N8,Φ) is a Spin(7)-manifold, the quotient G2-structure ϕ is calibrated and the

curvature of the connection form η defined above is determined by

(dη)2
7∧∗ϕϕ =−3

2
∗ϕ d(s4/3) (3.2.8)

and

(dη)2
14 = s4/3

τ2, (3.2.9)

or equivalently by

2dη = ∗ϕ(d∗ϕ (s4/3
ϕ)∧ϕ)−d∗ϕ (s4/3

ϕ). (3.2.10)

Proof. This follows directly from proposition 3.2.2. From (1), (3.2.7) and (5) we

see that τ0, τ1 and τ3 must vanish. The curvature equations follow from (3.2.6) and

(4).

The above equations have also been studied by Foscolo in [39], where the

author studies ‘adiabatic limits’ of the equations to produce new complete non-

compact Spin(7) manifolds. The pair (3.2.8) and (3.2.9) generally constitute a com-

plicated system of PDEs. A strategy to solving this system and hence constructing

Spin(7) metrics on the total space involves taking a formal limit of the equations

as the size of the circle fibres tend to zero and thus, allowing for the system to de-

generate to the torsion free G2 equations. One then employs analytical techniques

to perturb the latter equations to construct solutions to the original system. This

limiting procedure of shrinking the fibres is referred to as the ‘adiabatic limit’. In
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the G2 setting a similar, but substantially harder, strategy was outlined in [30] to

construct K3-fibred G2 manifolds.

Remark 3.2.5.

1. First we note that if (N,Φ) has holonomy equal to Spin(7) then it is necessar-

ily non-compact. If N was compact then from the Bochner formula and the

fact that gΦ is Ricci-flat we know that every Killing vector field is parallel cf.

[14, Theorem 1.84]. Thus, the holonomy group must be a strict subgroup of

Spin(7).

2. If the size of the circle orbits are constant i.e. s is constant then τ2 is propor-

tional to dη so in particular τ2 is closed. But from equation (4.35) of [19]

dτ2 =
1
7
‖τ2‖2

ϕ +(dτ2)
3
27

and hence τ2 = 0 i.e. dη = 0 and N8 = S1×L7 (up to a finite quotient).

If we now further demand that (L7,ϕ) is also torsion free then from Theo-

rem 3.2.1 this forces the connection to be a G2-anti-instanton i.e. dη ∈ Λ2
7. More

generally:

Definition 3.2.6. A G2 instanton on a principal G-bundle Q over a G2 manifold

(L7,ϕ) is a connection A whose curvature form FA ∈ Γ(L7,ad(Q)⊗Λ2) satisfies

(FA)
2
7 = 0. A is called a G2 anti-instanton if instead (FA)

2
14 = 0.

In our situation G =U(1). Since ds is closed, ∇ds ∈ S2(T ∗L)∼= Ω3
1⊕Ω3

27 (cf.

2.1.12) but we also have

dη ∧∗ϕϕ =−3
2
∗ϕ d(s4/3).

As dη and d(s4/3) are related by a G2-equivariant map it follows that the two com-

ponents of ∇ds ∈ 〈gϕ〉⊕S2
0(L

7) are completely determined by the Λ3
1 and Λ3

27 com-

ponents of ddη = 0 ∈ Λ3. Hence ds is a covariantly constant 1-form and as such



3.2. The quotient construction 31

hol ( G2 [21, Theorem 4]. If s is constant then dη = 0 and (N8,Φ) is the Rieman-

nian product of manifold (L7,ϕ) with holonomy contained in G2 and a circle. If s

is not constant then from Berger’s classification of holonomy groups the universal

cover of L7 endowed with the pullback metric must have holonomy contained in

SU(3). Thus, we have proven the following.

Theorem 3.2.7. If (N8,Φ) is a torsion free Spin(7)-structure which is invariant

under a free S1 action generated by a non-constant vector field such that the quotient

structure has holonomy contained in G2 then L7 = P6×R+, where (P6,gω ,ω,Ω :=

Ω++ iΩ−) is a Calabi-Yau 3-fold. Furthermore (N8,Φ) is a Calabi-Yau 4-fold and

is given by Φ = 1
2ω̂2 +Re(Ω̂) where

ω̂ = s2/3
ω +η ∧d(s2/3), (3.2.11)

Ω̂ = Ω∧ (−η− i
2
3

s5/3ds), (3.2.12)

gω̂ = s2/3gω + s−2
η

2 +(
2
3

s2/3 ds)2, (3.2.13)

defines the SU(4)-structure and s is the coordinate on the R+ factor. The cur-

vature form is dη = −ω , corresponding to a G2-anti-instanton, and the product

G2-structure is given by

ϕ =
2
3

s1/3ds∧ω +Ω
+,

∗ϕϕ =
1
2

ω
2− 2

3
s1/3ds∧Ω

−.

Moreover this construction is reversible i.e. starting from a CY 3-fold (P6,gω ,ω,Ω)

with [−ω] ∈ H2(P6,Z), we can choose a connection form η satisfying dη = −ω

on the S1 bundle defined by [−ω] together with a positive function s and thus define

an irreducible CY 4-fold (N8,gω̂ , ω̂,Ω̂) by (3.2.11) ,(3.2.12) and (3.2.13).

Proof. Observe that it suffices to verify that ω̂ and Ω̂ defined by (3.2.11) and

(3.2.12) are indeed closed. Firstly

dω̃ = d(s2/3)∧ω +dη ∧d(s2/3) = 0,
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where the last equality follows from the curvature assumption, and secondly

dΩ̃ =−Ω∧ (−dη) = 0

from (2.3.1).

The above theorem in fact recovers the so-called Calabi model space. More

precisely, given a CY manifold P together with an ample line bundle LP, the Calabi

ansatz [23] gives a way of defining a new CY metric on an open set of LP (this holds

in all dimensions). Although incomplete, the Calabi model space provides a good

approximation for the asymptotic behaviour of the complete Tian-Yau metrics [78]

and has recently been employed in [53] to study new degenerations of hyperKäh-

ler metrics on K3 surfaces. Note that the Tian-Yau metrics are constructed on the

complement of an anti-canonical divisor P in a (compact) Fano manifold and the

normal bundle of divisor is then precisely LP. The Tian-Yau metrics on the comple-

ment approximate the Calabi model space given above near infinity. We refer the

reader to [53, Section 3] for a more precise statement.

Observe that taking (P6,gω) to be the Riemannian product of a hyperKäh-

ler metric obtained by the Gibbons-Hawking ansatz and a flat torus T2 we get in-

finitely many holomomy SU(4) metrics. We give a simple example to illustrate

this construction. The metric below has also been described in [46] as a solution

to the Hitchin flow starting from a 7-nilmanifold endowed with a cocalibrated G2-

structure.

Example. Consider T6, with coordinates θi ∈ [0,2π), endowed with the flat CY-

structure

ω = e12 + e34 + e56,

Ω = (e1 + ie2)∧ (e3 + ie4)∧ (e5 + ie6),

where ei = dθi. [−ω] ∈ H2(T6,Z) defines a non-trivial S1- bundle diffeomorphic

to the nilmanifold Q7 with nilpotent Lie algebra (0,0,0,0,0,0,12+34+56) where
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we are using Salamon’s notation cf. [75]. The connection form is locally given by

η = dθ7 +θ2e1 +θ4e3 +θ6e5,

where θ7 denotes the coordinate of the S1 fibre. Writing s = r3 the CY metric on

Q7×R+ can be written as

gω̂ = r2gT6 + r−6(dθ7 +θ2e1 +θ4e3 +θ6e5)2 +4r8dr2.

Using MAPLE we have been able to verify that indeed the matrix of curvature 2-

form has rank 15 everywhere, confirming that the holonomy is equal to SU(4). If

we set ρ = 2
5r5 then the metric can be written as

gω̂ =
(5

2
ρ
)2/5gT6 +

(5
2

ρ
)−6/5

(dθ7 +θ2e1 +θ4e3 +θ6e5)2 +dρ
2

and in this form we can easily show that the volume growth∼ ρ8/5 and the curvature

tensor |Rm| ∼ ρ−2 as ρ → ∞. This metric is in fact incomplete at the end ρ → 0

and complete at the end ρ → ∞. By way of comparing with the approach in [46],

the SU(4) holonomy metric can also be obtained by evolving the cocalibrated G2-

structure on P determined by

ϕ = η ∧ω +Re(Ω),

in the notation of Theorem 3.2.7. Our approach however avoids the problem of

having to solve the Hitchin flow evolution equations and moreover, it explains why

one only obtains SU(4) holonomy metrics rather than Spin(7) ones. As we have

just seen one cannot obtain a holonomy G2 metric from a Spin(7) manifold via this

construction. This suggests to study instead the geometric structure of the quotient

calibrated G2-structure. We shall do so in detail for the Bryant-Salamon Spin(7)-

metric in section 3.4.2.
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3.2.2 The locally conformally parallel quotient

Theorem 3.2.8. If (N8,Φ) is a locally conformally parallel Spin(7)-structure which

is S1-invariant then at least one of the following holds:

1. N8 ' L7×S1 and the G2-structure on L has τ3 = 0 in the notation of (2.1.13),

or

2. (L7,ϕ) is locally conformally calibrated i.e. τ0 and τ3 are both zero, and

hence τ1 is closed.

Proof. Since T 5
48 = 0 we know that T 5

7 , T 5
14,T 4

7 and T 4
27 all vanish. From Proposition

3.2.2 it follows that τ0 =−s4/3 f , τ1 =−s−4/3(d(s4/3)+ 2
3 ∗ϕ ((dη)2

7∧∗ϕϕ)), τ2 =

−s−4/3(dη)2
14 and τ3 = 0. From Proposition 3.2.2 we also get

T 1
7 =−3s−4/3d(s4/3)−2s−4/3 ∗ϕ ((dη)2

7∧∗ϕϕ)

Furthermore, differentiating dΦ = T 1
8 ∧Φ we have

dT 1
8 ∧Φ = 0.

As wedging with Φ defines an isomorphism of Λ2 and Λ6 it follows that T 1
8 is

closed. Since LX Φ = 0 we have

d(ιX dΦ) = 0

and this shows that

LX T 1
8 ∧Φ = d(ιX dΦ) = 0.

Thus f = T 1
8 (X) is constant and if non-zero then from (3.2.4) we have

dη =−1
f

dT 1
7 .

Since the latter is exact, the Chern class is zero and the bundle is topologically trivial

i.e. N8 ' L7×S1. Otherwise if f = 0 then τ0 = 0.
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In [58, Theorem B] Ivanov et al. prove that any compact locally conformally

parallel Spin(7)-structure fibres over an S1 and each fibre is endowed with a nearly

parallel G2-structure i.e. the only non-zero torsion form is τ0. Thus, it follows from

Proposition 3.2.2 that one can construct many such examples by taking N8 = L7×S1

where L7 is a nearly parallel G2-manifold and endow N8 with the product Spin(7)-

structure. In particular these examples cover case (1) above where the S1 is only

acting on the second factor. We also point out that aside from the fact that the cone

metric on a nearly parallel G2 manifold has holonomy contained in Spin(7), there

exists another Einstein metric, with instead positive scalar curvature, on (0,π)×L7

given by the sine-cone construction:

gsc := dt2 + sin(t)2gL7 .

The latter metric however does not seem to have been studied in detail in the liter-

ature. The fact that gsc is Einstein is easily deduced since its Riemannian cone is

Ricci-flat. Let us now show how situation (2) can arise. The reader might find it

helpful to compare the following example with section 3.5.

Example. As above let N8 = S7× S1, where S7 is given the nearly parallel G2-

structure induced by restricting Φ0 to S7 ↪→ R8. The induced G2-structure ϕS7 sat-

isfies

dϕS7 = 4 ∗S7 ϕS7

and defines the standard round metric on S7. Consider any free S1 action, generated

by a unit vector field X (say given by multiplication by an imaginary octonion), on

S7 preserving ϕS7 . We can then write

ϕS7 = η ∧ω +Ω
+ and ∗S7 ϕS7 =

1
2

ω ∧ω−η ∧Ω
−

cf. [3]. The intrinsic torsion of the quotient G2-structure on L7 = CP3× S1, with

coordinate θ on the circle, is then given by

dϕ = 3(−4
3

dθ)∧ϕ,
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d ∗ϕ ϕ = 4(−4
3

dθ)∧∗ϕϕ− (
2
3

ω +dη)∧ϕ,

confirming that indeed τ0 and τ3 vanish but τ1 and τ2 do not, cf. (2.1.13) and

(2.1.14).

3.2.3 The balanced quotient

Since T 1
8 = 0, from (1) of proposition 3.2.2 we have τ0 = 0 and (2) gives

τ1 =−
1

24
(3s−4/3d(s4/3)+2s−4/3 ∗ϕ ((dη)2

7∧∗ϕϕ)). (3.2.14)

Remark 3.2.9. Differentiating the balanced condition ∗Φ(dΦ)∧Φ = 0 we get

‖dΦ‖2
ΦvolΦ =−(d ∗Φ dΦ)∧Φ = (∆ΦΦ)∧Φ.

In particular this shows that dΦ = 0 i.e. Φ is torsion free iff

∆ΦΦ∧Φ = 0.

It is well-known that a Spin(7)-structure can be equivalently characterised by

the existence of a non-vanishing spinor ψ , instead of the 4-form Φ. Following

Theorem 4.3.4, the induced metric has holonomy contained in Spin(7) if and only

if the spinor is parallel. From this perspective the action of the Dirac operator

/D on the spinor was shown to be completely determined by the torsion form T 1
8

cf. [57, (7.21)]. As a consequence, it follows that balanced Spin(7)-structures are

characterised by the fact that they admit harmonic spinors i.e. /Dψ = 0.

In [10] the authors construct many such examples on nilmanifolds by adopting

a spinorial point of view. We instead here describe, via a few simple examples,

a construction of balanced Spin(7)-structures starting from suitable G2-structures.

Henceforth we shall restrict to the case when s = 1 so that (3.2.14) can be equiva-

lently written as

(dη)2
7 =−4∗ϕ (τ1∧∗ϕϕ). (3.2.15)

Theorem 3.2.10. (N8,Φ) is a free S1-invariant balanced Spin(7)-structure if and
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only if the G2-structure (L7,ϕ) has τ0 = 0 and admits a section β ∈Ω2
14 such that

[β −4∗ϕ (τ1∧∗ϕϕ)] ∈ H2(M,Z)

or equivalently,

{κ +4∗ϕ (τ1∧∗ϕϕ) | [κ] ∈ H2(M,Z)}∩Ω
2
14 6= /0. (3.2.16)

Moreover, the Spin(7)-structure on the total space can be written as

Φ = η ∧ϕ +∗ϕϕ (3.2.17)

where the connection form η satisfies dη = β −4∗ϕ (τ1∧∗ϕϕ) i.e.

(dη)2
7 =−4∗ϕ (τ1∧∗ϕϕ) and (dη)2

14 = β .

Proof. The if statement is clear since given β we can always choose a connection

η with dη = β −4∗ϕ (τ1∧∗ϕϕ). Then define Φ by (3.2.17). The only if statement

follows by setting β = (dη)2
14.

The reader might find such a theorem of little practical use in general. How-

ever, as we shall illustrate below via concrete examples, when L7 is a nilmani-

fold Theorem 3.2.10 provides a systematic way of constructing balanced Spin(7)-

structures.

Example. Let L7 = Q5×T2, where Q is a nilmanifold with an orthonormal cofram-

ing given by ei for i = 0, ...,4 and satisfying

dei = 0, for i 6= 4

de4 = e02 + e31,

and for the flat T2 by e6 and e7. The G2-structure defined by

ϕ = e137 + e104 + e162 + e306 + e324− e702− e746.
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has τ0 = 0. Hence from (3.2.15), to construct a balanced Spin(7)-structure we need

to find a connection η whose Λ2
7-curvature component satisfies

(dη)2
7 =−4∗ϕ (τ1∧∗ϕϕ)

=
2
3
(e03 + e12− e47).

Choosing (dη)2
14 to be either of following 2-forms in Ω2

14:

1
3
(e03 + e12 +2e47),

2
3
(2e12− e03 + e47)

gives connections with curvature forms e03 + e12 and 2e12 respectively, and thus

we obtain two distinct balanced Spin(7)-structures. Denoting η by e5 the Spin(7)

form can once again be written in the standard form (2.2.1). This construction

shows that given a balanced Spin(7)-structure on an S1-bundle we can modify the

Λ2
14-component of the curvature form while keeping its Λ2

7-component, already de-

termined by τ1, unchanged to construct a new balanced structure.

Suppose that we have fixed dη = de5 = 2e12. We can now take the S1-quotient

with respect to the Killing vector field e4. In other words, the total space can be

viewed as a different circle bundle with the new connection form η̃ := e4. We can

repeat the above procedure with the new G2-structure ϕ̃ := e4yΦ, explicitly given

by

ϕ̃ = e501 + e523 + e567 + e026 + e073− e127− e136,

which of course has τ̃0 = 0. Once again to construct a balanced Spin(7)-structure

we need a connection 1-form ξ satisfying

(dξ )2
7 = (dη̃)2

7

=
2
3
(e02 + e31− e57).
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If we choose

(dξ )2
14 = (dη̃)2

14 + e51 +2e26 + e37

then dξ = e02 +e31 +e51 +2e26 +e37 indeed defines an element in H2(L̃,Z). Thus

this gives yet another balanced Spin(7)-structure. These three examples were found

in [10] denoted by N6,22, N6,23 and N6,24, by instead using the spinorial approach

described above and computing the Dirac operator.

The above examples in fact illustrate a new procedure for constructing bal-

anced Spin(7)-structures on nilmanifolds: Starting from an S1-invariant balanced

Spin(7)-structure on a nilmanifold we know that the quotient G2-structure ϕ has

τ0 = 0. Given that the de Rham complex of the quotient nilmanifold Ľ7 is com-

pletely determined by the Chevalley-Eilenberg complex of the associated nilpo-

tent Lie algebra, it is relatively straightforward to compute the set (3.2.16), via

say MAPLE. Thus, by choosing distinct β s we can classify all invariant bal-

anced Spin(7)-structures on different nilmanifolds which arise as circle bundles

over (Ľ7,ϕ). A general classification however appears to be quite hard. Closed

G2-structures on nilpotent Lie algebras, hence with τ0 = 0, were classified in [25].

Although a classification of 7-dimensional nilpotent Lie algebras is known cf. [50],

those admitting G2-structures with only vanishing τ0 is not known.

Having encountered several examples of Spin(7)-structures it seems worth

making a brief digression from our main example and derive some curvature formu-

lae of Spin(7)-structures in terms of the torsion forms, rather than the metric, that

the reader might find quite practical in specific examples.

3.3 Ricci and Scalar curvatures
In this section we derive formulae for the Ricci and scalar curvatures of

Spin(7)-structures in terms of the torsion forms.

Formulae for the Ricci and scalar curvatures of G2-structures in terms of the

torsion forms seem to have first appeared in [19, (4.28),(4.30)] and for the Spin(7)

case in [57, (1.5),(7.20)]. The approach taken in each paper to derive the curvature

formulae differ greatly. While Ivanov uses the equivalent description of Spin(7)-
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structures as corresponding to the existence of certain parallel spinors, Bryant uses

a representational theoretic argument. In [57], however, it is not obvious from the

Ricci formula that it is a symmetric tensor and moreover the presence of a term

involving the covariant derivative of the torsion form makes explicit computations

quite hard. We instead adapt the technique outline in [19, Remark 10] to the Spin(7)

setting and derive an alternative formula.

Proposition 3.3.1. The Ricci and scalar curvatures of a Spin(7)-structure (N,Φ)

are given by

Ric(gΦ) =

(
5
8

δT 1
8 +

3
8
‖T 1

8 ‖2
Φ−

2
7
‖T 5

48‖2
Φ

)
gΦ

+ j
(
−3 δ (T 1

8 ∧Φ)+4 δT 5
48−2 (T 1

8 ∧∗ΦT 5
48)−

9
4
∗Φ (T 1

8 ∧Φ)∧T 1
8 )

)
+

1
2

gΦ(· y ∗Φ T 5
48, · y ∗Φ T 5

48),

Scal(gΦ) =
7
2

δT 1
8 +

21
8
‖T 1

8 ‖2
Φ−

1
2
‖T 5

48‖2
Φ,

where δ =−∗Φ d∗Φ is the codifferential and j : Λ4→ S2 is defined in section 2.2.

Proof. Following Bryant’s argument in [19] for the G2 case, we first define the two

Spin(7)-modules V1 and V2 by

(gl(8,R)/so(7))⊗Sk(R8) =Vk⊕ (R8⊗Sk+1(R8)),

where Sk(R8) denotes the kth symmetric power. Note that for any vector space

V and k ≥ 2 we have S2(V )⊗ Sk(V ) = V ⊗ Sk+1(V )⊕ S(k,2)(V ), where the last

summand is the Weyl module cf. [47, Chapter 6]. In particular, this shows that

Vk = S(k,2)(R8)⊕so(7)⊥⊗Sk(R8) for k≥ 2. We shall refer to these modules to also

mean the corresponding associated vector bundles on N. Representing irreducible

Spin(7)-modules by the highest weight vector we have the following decomposi-

tion:

V1 =V0,0,1⊕V1,0,1,
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V2 =V0,0,0⊕V1,0,0⊕V0,1,0⊕V1,1,0⊕V2,0,0⊕V0,2,0⊕2V0,0,2⊕V1,0,2,

S2(V1) = 2V0,0,0⊕V1,0,0⊕V0,1,0⊕2V1,1,0⊕2V2,0,0⊕V0,2,0⊕4V0,0,2⊕2V1,0,2⊕V2,0,2.

It is known that the second order term of the scalar curvature (i.e. terms involving

two derivatives of Φ or equivalently one derivative of the intrinsic torsion) values

in the trivial component of V2 of which there is only one cf. [19, Remark 10].

This is spanned by δT 1
8 . The first order terms are at most quadratic in sections of

V1 of which there are only two components. These are just the norm squared of the

torsion forms: ‖T 1
8 ‖2

Φ
and ‖T 5

48‖2
Φ

. So the scalar curvature can be expressed in terms

of these three terms and to determine the coefficients it suffices to test it on a few

examples. A similar argument applies for the traceless part of the Ricci tensor. The

second order terms correspond to sections of the module V0,0,2 ∼= S2
0(R8) in V2 and

there are exactly two of those. These are spanned by the projections of δ (T 1
8 ∧Φ)

and δT 5
48. For the first order terms, they are given by sections of the module V0,0,2

in S2(V1). There are in fact four of those; one quadratic in T 1
8 , two quadratic in T 5

48

and one mixed term. All but one quadratic term in T 5
48 appear in the Ricci formula.

Again to determine the coefficients it suffices to test the formula on a few examples.

This can be done quite easily using MAPLE.

From the results of section 3.2 we have the following lemma.

Lemma 3.3.2. In the S1-invariant setting, δT 1
8 , ‖T 1

8 ‖2
Φ

and ‖T 5
48‖2

Φ
are given in

terms of the data (L7,ϕ,η ,s) by

δT 1
8 =

1
7

s−4/3
δϕ(24s2/3

τ1 +4s−1/3ds+2s−2/3 ∗ϕ ((dη)2
7∧∗ϕϕ))) (3.3.1)

‖T 1
8 ‖2

Φ = s−2/3
τ

2
0 +

1
49

s−2/3‖24τ1 +4s−1ds+2s−4/3 ∗ϕ ((dη)2
7∧∗ϕϕ)‖2

ϕ (3.3.2)

‖T 5
48‖2

Φ =s−2/3‖τ3‖2
ϕ + s−4/3‖s−1(dη)2

14 + s1/3
τ2‖2

ϕ (3.3.3)

+ s−10/3‖8
7
(dη)2

7 +
4
7
∗ϕ (d(s4/3)∧∗ϕϕ)+

4
7

s4/3 ∗ϕ (τ1∧∗ϕϕ)‖2
ϕ

+4‖3
7

s2/3
τ1 +

2
7

s−2/3 ∗ϕ ((dη)2
7∧∗ϕϕ)+

3
7

s−2/3d(s4/3)‖2
ϕ
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where δϕ is the codifferential of ϕ acting on k-forms by δϕ = (−1)k ∗ϕ d ∗ϕ .

Proof. This is a straightforward albeit long computation using the expressions for

the torsion forms of the Spin(7)-structure from Proposition 3.2.2.

Of course these formulae are far from practical to compute the scalar curvature

but nonetheless in the case of Riemannian submersions they do simplify consider-

ably.

Corollary 3.3.3. In the case of a Riemannian submersion i.e. s = 1,

Scal(gΦ) = Scal(gϕ)−
1
2
‖dη‖2

ϕ .

Proof. Combining the above lemma with our formula for scalar curvature and the

one in the G2 case from [19, (4.28)] we find that

Scal(gΦ) = Scal(gϕ)−
1
2
‖dη‖2

ϕ −gϕ((dη)2
14,τ2)+δϕ(∗ϕ((dη)2

7∧∗ϕϕ))

+4gϕ(∗ϕτ1,(dη)2
7∧∗ϕϕ).

On the other hand we also have that

δϕ(∗ϕ((dη)2
7∧∗ϕϕ)) =−∗ϕ (dη ∧d(∗ϕϕ))

= ∗ϕ((dη)2
14∧∗ϕτ2)−∗ϕ((dη)2

7∧∗ϕϕ ∧4τ1)

= gϕ(τ2,(dη)2
14)−4gϕ(∗ϕτ1,(dη)2

7∧∗ϕϕ),

where we used the fact that (dη)2
14∧∗ϕϕ = 0 for the first equality. Combining the

two expressions gives the result.

Remark 3.3.4. Corollary 3.3.3 gives another way of showing that (L7,ϕ) and

(N8,Φ) cannot both be Ricci-flat unless the S1 bundle is (locally) trivial. The curva-

ture form dη measures the obstruction to integrability of the horizontal distribution

and is a special case of the O’Neil formula [14, (9.37)].

We now turn to our main example namely the S1 quotient of the Bryant-

Salamon Spin(7) metric.
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3.4 S1-quotient of Bryant-Salamon cone metric on

squashed S7

Let us first outline our general strategy to performing the quotient construction.

In what follows we shall interpret the cone on S7 as the spinor bundle of S4 without

the zero section. Recall that the fibres of the spinor bundle of S4 are diffeomorphic

to R4 ' C2. We shall consider the action of the diagonal U(1) in SU(2) on the

fibres. This fibrewise quotient can be interpreted as a reverse Gibbons-Hawking

(GH) ansatz as described in section 2.4. Since we will be working with the anti-

self dual bundle of S4 we use a slight variant of the usual GH ansatz so that the

hyperKähler triples are anti-self dual rather than self-dual i.e. we consider

ω1 = η ∧dx1−hdx2∧dx3,

ω2 = η ∧dx2−hdx3∧dx1,

ω3 = η ∧dx3−hdx1∧dx2,

and the positive harmonic function h on B⊂ R3 satisfies ∗dh = dη . We shall illus-

trate this construction in detail for the Hopf map by viewing our quotient construc-

tion as a fibrewise Hopf fibration in subsection 3.4.1.

Extending this to the total space we obtain the quotient G2-structure on the anti-

self dual bundle of S4, see subsection 3.4.2. From the results of section 3.2.1 we

know that the quotient G2-structure cannot be torsion free but on the other hand, it

is well-known that the anti-self dual bundle of S4 also admits a holonomy G2 metric

cf. [21]. Motivated by the fact that both of these G2-structures are asymptotic to

a cone metric on CP3 we study the induced SU(3)-structures. In subsection 3.4.3

we give explicit formulae for the SU(3)-structures on the link and show that in both

cases the induced almost complex structure corresponds to the nearly-Kähler one.

3.4.1 S1-quotient of a fixed fibre of the spinor bundle

We begin by reminding the reader of the construction of the Bryant-Salamon

Spin(7) manifold. Given S4 with the standard round metric and orientation, we
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denote by P ' SO(5) the total space of the SO(4)-structure. Since H2(S4,Z) = 0,

in particular the second Stiefel-Whitney class vanishes hence it is a spin manifold

so we can lift P to its double cover P̃ ' Sp(2). The spin group can be described

explicitly via the well-known isomorphism

Spin(4)∼= Sp(1)+×Sp(1)− ∼= SU(2)+×SU(2)−

where the ± subscripts distinguish the two copies of SU(2). Taking the standard

representation of SU(2)− on C2
−, we construct the (negative) spinor bundle V− :=

P̃×SU(2)− C
2
− as an associated bundle.

There is also an action of SU(2) on the fibres of V− which can be described as

follows. If we ignore the complex structure the fibres of V− are simply R4 and its

complexification is isomorphic to C2
−⊗C2. The desired SU(2) action is the standard

action on C2 and is well-defined on the realification of V−⊗C. In the description of

the Bryant-Salamon construction in [21], this action on the fibre can also be viewed

as a global Sp(1) action (acting on the right) on H in

P̃×H /Sp(1)−−−−−−→V−,

thus commuting with the left action of Sp(1)− and hence passes to the quotient.

Having now justified the existence of this SU(2) action, we fix a point, p ∈ S4

and describe the action of an S1 ↪→ SU(2) on the fibre of V−. This will enable us

to describe a fibrewise HK quotient and then reconstruct the R4 fibre using the

Gibbons-Hawking ansatz with harmonic function h = 1/2R where R denotes the

radius in R3−{0} as described in the previous section. Note that topologically the

base manifold is just the anti-self dual bundle of S4 which we denote by Λ2
−S4. This

is due to the fact that the quotient construction reduces the Sp(1)− action on the

R4
− fibre to an action of SO(3)− on R3 = R4/S1, as we shall see below, and the

associated bundle construction for this representation is Λ2
−S4 cf. [74].

Let (x1,x2,x3,x4) denote the coordinates on the fibre, so that we may write the
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fibre metric as

g =
4

∑
i=1

dxi⊗dxi

i.e. g denotes the restriction of the Bryant-Salamon metric gΦ to the vertical space.

Denoting by r the radius function in the fibre, i.e. r2 = ∑
4
i=1 x2

i , we have rdr =

∑
4
i=1 xidxi. We make the identifications R4 ∼= C2 ∼=H by

(x1,x2,x3,x4) = (x1 + ix2,x3 + ix4) = x1 + ix2 + jx3− kx4

Consider now the U(1) action on R4 ∼= C2 given by

eiθ (z1,z2) = (e−iθ z1,e+iθ z2)

or equivalently by left multiplication by −i on H. Note that this S1 is just the

diagonal torus of SU(2). The Killing vector field X generating this action is given

by

X = x2
∂

∂x1
− x1

∂

∂x2
− x4

∂

∂x3
+ x3

∂

∂x4
.

and thus ‖X‖g = r. We also endow the fibre with a HK structure given by the triple

γ1 = dx1∧dx2−dx3∧ (−dx4)

γ2 = dx1∧dx3− (−dx4)∧dx2

γ3 = dx1∧ (−dx4)−dx2∧dx3

They can be extended to a local orthonormal basis of the bundle Λ2
−S4 but the

resulting forms will not be closed. The spin bundle does have a global HK struc-

ture, but arising from SU(2)+ and since we have already fixed one of its complex

structures, this HK structure is not relevant. In view of our quotient construction,

we define

η := r−2gΦ(X , ·) = r−2(x2dx1− x1dx2− x4dx3 + x3dx4)
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i.e. η is a connection 1-form on V−. The map

µ : R4→ R3

(x1,x2,x3,x4) 7→ (µ1,µ2,µ3),

where
µ1 = 1

2(x
2
1 + x2

2− x2
3− x2

4),

µ2 = x1x4 + x2x3,

µ3 = x1x3− x2x4

is the HK moment map for the U(1) action. By identifying R3 with Im(H), µ can

also be expressed using quaternions as:

µ(q) =
1
2

qiq, q = x1 + x2i+ x3 j− x4k,

making the S1-invariance clear. Thus µ induces a diffeomorphism

R4/U(1)' R3.

Note that strictly speaking this action is not free but nonetheless the construction

can be carried out on R4−{0} and can be extended smoothly to the origin. A direct

computation gives

γ3 = dx32 +dx41

= r−2
(
(x2dx1− x1dx2− x4dx3 + x3dx4)∧ (x1dx3 + x3dx1− x2dx4− x4dx2)

− (x1dx1 + x2dx2 + x3dx3 + x4dx4)∧ (x1dx4 + x4dx1 + x2dx3 + x3dx2)
)

= η ∧dµ3−hdµ1∧dµ2,

where h = 1
2R and R =

√
µ2

1 +µ2
3 +µ2

3 is the radius on R3. Similarly we obtain

γ1 = η ∧dµ1−hdµ2∧dµ3

γ2 = η ∧dµ2−hdµ3∧dµ1
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This confirms that η is the connection form that features in the Gibbons-Hawking

ansatz with

gR4 = h−1
η⊗η +hπ

∗gU ,

where gU = dµ2
1 + dµ2

2 + dµ2
3 is the Euclidean metric on R3 with volume form

volR3 = dµ123. Using R2 = ∑
3
i=1 µ2

i = 1
4r4 we can directly verify that

∗R3dh = dη .

Having described the GH ansatz for the Euclidean space we proceed to our main

example.

3.4.2 S1-quotient of the Bryant-Salamon cone metric

We shall now take the quotient of Bryant-Salamon cone metric by applying the

above construction to each R4−{0} fibre. The conical Bryant-Salamon Spin(7) 4-

form is given (pointwise) in our notation by

Φ = 16r−8/5dx1234 +20r2/5
∑γi∧ εi +25r12/5dvolS4,

where {εi} is a local basis of ASD forms on S4 and dvolS4 is the (pullback of) the

volume form. The Spin(7) metric is then given by

gΦ = 4r−4/5
4

∑
i=1

dxi
2 +5r6/5gs4,

and so the 1-forms dµi (or rather, π∗dµi = d(µi ◦π)) have norm

‖dµi‖2
Φ =

1
4

r14/5.

On the other hand, from (3.2.1) we compute

s−2 = gΦ(X ,X) = 4r6/5,
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so s = r−3/5. We know that the G2 metric gϕ satisfies

gϕ = s−2/3(gΦ− s−2
η

2) = r2/5(gΦ−4r6/5
η

2).

Considering the volume form of the fibre of the quotient we have

−r−2dµ123 = −x3dx123− x4dx124 + x1dx134 + x2dx234

= Xydx1234.

Defining dνi = ιX γi we have that dν123 =−dµ123. Putting all together we have

XyΦ = Xy 16r−8/5dx1234 +20r2/5
∑(Xy γi)∧ εi

= 211/5(R−9/5dν123 +5R1/5
∑

3
i=1 dνi∧ εi).

We can now extend this pointwise construction to the whole of V−. From our con-

struction, the induced G2-structure on the quotient is given (after rescaling) by

ϕGH =
1
6

R−9/5
β +5R1/5 dτ.

We are here using the globally well-defined forms defined in [74, pg 94] (see also

the appendix below) where τ is tautological 2-form on the ASD bundle and 1
6β is

the volume form of the fibre which was pointwise denoted by dx1234. By contrast

the holonomy G2 form is given by

ϕBS =
1
6

R−3/2
β +2R1/2 dτ.

Since the Bryant-Salamon metric on R+×CP3 is just the cone metric on CP3 en-

dowed with its nearly-Kähler (NK) metric we may also write it as

gBS = dt2 + t2 (
1
2

gS4 +
1
4

ĝS2),

where t denotes the coordinate of R+ and gNK := 1
2gS4 + 1

4 ĝS2is the NK metric (up

to homothety). Here we are interpreting gNK as a metric on the twistor space of
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S4 where gS4 denotes the pullback of the round metric and ĝS2 the metric on the S2

fibres (see the appendix for more details). Comparing ϕBS with ϕGH and using our

expression for gBS we can perform a pointwise computation as above and show that

gGH = dt2 +
8
5

t2 (
1
2

gS4 +
1

10
ĝS2).

The quotient metric is thus the cone metric on the twistor space of S4 but with

“smaller” S2 fibres. In order to gain better understanding of the geometric structure

on the CP3 we look at the induced SU(3)-structure.

3.4.3 Remarks on the induced SU(3)-structure on CP3

Note that an oriented hypersurface in a 7-manifold with a G2-structure natu-

rally inherit an SU(3)-structure. If n denotes the unit normal to a hypersurface P6

then the defining forms are given by:

ω = nyϕ
∣∣
P6,

Ω
+ = ϕ

∣∣
P6 and Ω

− =−ny ∗ϕ ϕ
∣∣
P6.

From definition 2.3.4 (1), we know that the NK structure on CP3 satisfies

dωNK = 3 Ω
+
NK and dΩ

−
NK =−2 ω

2
NK. (3.4.1)

In contrast the SU(3)-structure (ωGH ,Ω
+
GH ,Ω

−
GH) on the link (for t = 1) of the quo-

tient G2-structure satisfies

dωGH = 3 Ω
+
GH

dΩ
−
GH =−2 ω

2
GH−

1
5
(
1
5

σ − τ)∧ωGH

The proof is a straightforward computation using the formulae in the appendix. Two

things worth noting are that Ω
+
GH = 32

25 Ω
+
NK = 8

25 dτ so in particular both define the

same almost complex structure and the extra-torsion component 1
5σ − τ lives in

Λ2
8. Using the formulae from [12, Thm 3.4-3.6] we can confirm directly that this
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metric is not Einstein which is consistent with the canonical variation approach [14,

pg. 258] which asserts that there are only two Einstein metrics in this family, the

Fubini-Study metric and the NK one. Moreover it was conjectured in [40], based on

numerical evidence, that in fact there are no other cohomogeneity one NK structure

on CP3. Nonetheless the scalar curvature of gGH is still constant and positive:

Scal(gGH) = 30− 1
2
· ‖1

5
(
1
5

σ − τ)‖2
gGH

=
477
16

> 0.

It is also worth pointing out that this SU(3)-structure is half-flat, see definition 2.3.4

(4), and as such can be evolved by the Hitchin flow (for SU(3)-structures):

∂

∂ t
Ω

+ = dω, (3.4.2)

∂

∂ t
(ω2) =−2dΩ

−, (3.4.3)

to construct a torsion free G2-structure. The resulting metric belongs to the general

class of metrics of the form

g = dt2 +a(t)2ĝS2 +b(t)2gS4,

which were considered in [28, Sect. 5B]. It was also shown, after suitable normali-

sations, that the Bryant-Salamon metrics are the only solutions to this system.

Remark 3.4.1. Observe that, as in the GH ansatz for the Hopf map, this construc-

tion extends to the smooth Bryant-Salamon Spin(7) metric with the same circle

action but which now has as fixed point locus an S4 corresponding to the zero sec-

tion of the spinor bundle. Extending the above construction to the smooth metric

simply amounts to replacing R by R+1 in the expressions ϕBS and ϕGH . Thus, we

obtain a closed G2-structure on all of Λ2
−S4.
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3.5 S1-quotient of flat Spin(7) metric

We now consider a simpler situation: that of the S1-reduction of the flat Spin(7)

structure Φ0 =
1
8(−dα2

1 +dα2
2 +dα2

3 ) on R8 where

α1 =−x1dx0 + x0dx1 + x3dx2− x2dx3− x5dx4 + x5dx4 + x7dx6− x6dx7,

α2 =−x2dx0 + x0dx2 + x1dx3− x3dx1− x6dx4 + x4dx6 + x5dx7− x7dx5,

α3 =−x3dx0 + x0dx3 + x2dx1− x1dx2− x7dx4 + x4dx7 + x6dx5− x5dx6.

This explicit construction was motivated by the work of Acharya, Bryant and

Salamon [2] where they investigate the S1-reduction of the conical G2 metric

on R+ ×CP3. We can identify R8 with coordinates (x0,x1, ...,x7) with H2 by

(x0+ ix1+ jx2+kx3,x4+ ix5+ jx6+kx7). There are natural actions given by Sp(2)

acting by left multiplication and Sp(1) acting by multiplication on the right. The

1-forms αi are simply the dual of the S1 actions given by right multiplication by the

imaginary quaternions. We consider the S1 action generated by the vector field

X =−x1∂0 + x0∂1− x3∂2 + x2∂3− x5∂4 + x4∂5− x7∂6 + x6∂7

given by a diagonal U(1)⊂ Sp(2). A simple computation shows that

d(Xydαi∧dαi) = 0 for i = 1,2,3

from which it follows that LX Φ0 = 0. Thus we get a closed G2-structure on the

quotient space R+×CP3 given by ϕ = ιX Φ from (3.2.1). Noting that Φ0 is also

invariant by the right S1 action generated by the vector field

Y =−x1∂0 + x0∂1 + x3∂2− x2∂3− x5∂4 + x4∂5 + x7∂6− x6∂7

i.e LY Φ0 = 0 and that both S1 actions commute, we can take the (topological) T2

reduction to the 6-manifold R3⊕R3−{0}. More concretely, we can split R8 =R4⊕

R4 with coordinates x0,x1,x4,x5 on the first factor and x2,x3,x6,x7 on the second
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and we consider the equivalent T2 action given by the vector fields 1
2(X +Y ) and

1
2(X −Y ), each acting non-trivially on only one R4 factor. Using the HK moment

maps as in the previous section we get coordinates ui and vi on R3⊕R3−{0} given

by

u1 = x2
0 + x2

1− x2
4− x2

5, v1 = x2
2 + x2

3− x2
6− x2

7,

u2 = 2 (x0x4 + x1x5), v2 = 2 (x2x6 + x3x7),

u3 = 2 (x0x5− x1x4), v3 = 2 (x2x7− x3x6).

These coordinates can now be pulled back to R+×CP3 and will allow us to give

an explicit expression for ϕ . From this point of view we have the S1-bundle:

R+×CP3 /S1

−−→ R3⊕R3−{0}.

Following the Apostolov-Salamon construction [3] we can write

ϕ = ξ ∧ω +H3/2
Ω

+ (3.5.1)

∗ϕϕ =
1
2

H2
ω

2−ξ ∧H1/2
Ω
−, (3.5.2)

where H := ‖Y‖−1
ϕ , ξ is the connection 1-form defined by

ξ (·) := H2 gϕ(Y, ·)

and (ω,Ω+,Ω−) is the SU(3)-structure induced on R3⊕R3−{0}. We now give

coordinate expressions for the aforementioned differential forms.

Proposition 3.5.1. In the above notation the closed G2-structure on R+ ×CP3

given by ϕ = ιX Φ0 can be expressed as

ϕ = ξ ∧ 1
2

3

∑
i=1

dvi∧dui +
1
8

(
1
u

(
du123−{dv,du,du}

)
+

1
v

(
dv123−{dv,dv,du}

))
,
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where {dv,dv,du} denotes

dv1∧dv2∧du3 +dv2∧dv3∧du1 +dv3∧dv1∧du2,

similarly for {dv,du,du}. Moreover we have

H
1
2 Ω
− =

1

4R
2
3

(
{dv,dv,du}−{du,du,dv}+ u

v
dv123−

v
u

du123

)
,

H =
R2/3

2 u1/2 v1/2 ,

where R2 := x2
0+ · · ·+x2

7, u2 := u2
1+u2

2+u2
3 = (x2

0+x2
1+x2

4+x2
5)

2 and likewise for

v. The curvature of the S1-bundle over R3⊕R3−{0} is given by

dξ =− {v,dv,dv}
4(v2

1 + v2
2 + v2

3)
3/2 +

{u,du,du}
4(u2

1 +u2
2 +u2

3)
3/2 ,

where {v,dv,dv} denotes

v1dv2∧dv3 + v2dv3∧dv1 + v3dv1∧dv2,

and likewise for {u,du,du}.

The proof is a long computation which was carried out with the help of

MAPLE. One can directly verify the above formulae hold using the definitions of ui,

vi and expressing them in terms of xi. The reader might find it interesting to com-

pare our expressions to those in [2] for the torsion free G2 quotient. In [54] Hitchin

shows that an SU(3)-structure is completely determined by the pair (ω,Ω+). Note

that here Ω+ can easily be read off from the expressions for ϕ and H in Proposition

3.5.1 and formula (3.5.1). Thus, we can explicitly compute the induced complex

structure and metric on R3⊕R3−{0}.

Proposition 3.5.2. The metric induced by (ω,Ω+) on R3⊕R3−{0} is given by

gω =
1
2

(
v1/2

u1/2 (du2
1 +du2

2 +du2
3)+

u1/2

v1/2 (dv2
1 +dv2

2 +dv2
3)

)



3.5. S1-quotient of flat Spin(7) metric 54

and the almost complex structure J by

J(u1/2
∂ui) = v1/2

∂vi, for i = 1,2,3.

Note that since ϕ is closed from (2.1.14) we have that

d ∗ϕ ϕ = τ2∧ϕ.

We shall now derive an explicit expression for the torsion of the G2-structure ϕ.

Under the inclusion SU(3) ↪→ G2 we can write the torsion form as

τ2 = ξ ∧ τv + τh

where τv and τh are basic 1-form and 2-form respectively i.e. they are (pullback

of) forms on R3⊕R3−{0}. It is not hard to show that τh ∈ Λ2
6⊕Λ2

8 and that the

Λ2
6-component of τh is SU(3)-equivalent to τv (the proof is differed to Chapter 5).

We compute τh and τv as

τh · (3uv ·R8/3) =−u · (1
2
({u,dv,dv}+{v,dv,dv})+ 3u

2v
{v,dv,dv})

− v · (1
2
({v,du,du}+{u,du,du})+ 3v

2u
{u,du,du})

− 1
2
(u{v,dv,du}+ v{u,dv,du})

− 1
2
(v{u,du,dv}+u{v,du,dv})

and

τv · (
3
2
·R8/3) =

3

∑
i=1

(
1
v
(vui−3uvi) dvi−

1
u
(uvi−3vui) dui

)
=

(
u ·dv− v ·du−3(udv− vdu)

)

where u ·dv denotes ∑
3
i=1 uidvi and likewise for v ·du. From these expressions one

can show that the Λ2
8-component of τh is non zero and hence J is non-integrable.



3.5. S1-quotient of flat Spin(7) metric 55

Remark 3.5.3. Another way of viewing the above quotient construction is as fol-

lows. If we restrict the Spin(7) 4-form Φ0 on R8 to S7 we get a G2 4-form ∗S7ϕS7

and the flat metric restricts to give the standard round metric. Since the cone metric

is just the flat metric again, this means that this cocalibrated G2 structure is induc-

ing the round metric. We can now take the S1-quotient with respect to any free S1

action (say generated by multiplication by an imaginary octonion) preserving the

round nearly parallel G2-structure. Since this quotient is also a Riemannian sub-

mersion (as the size of the circle orbits are constant) the quotient metric is just the

Fubini-Study metric. However by contracting the 4-form with the vector field gen-

erated by the S1 we get the (negative) imaginary part of a (3,0) form on the CP3.

The latter induces an almost complex structure compatible with the Fubini-Study

metric but which definitely cannot be the integrable one, otherwise this contradicts

the fact that the canonical bundle of CP3 with the standard complex structure is

non-trivial. From this perspective we see that the metric by the above closed G2-

structure is in fact the cone metric on CP3 endowed with the Fubini-Study metric.

More explicitly, we can write the flat metric on R8 as

gR8 = dR2 +R2(η2 +gFS) = R2
η

2 +R−2/3gϕ

where η is just the connection form of the S1 action for the Fubini-Study quotient

S1 ↪→ S7→ CP3 as above and s := ‖X‖−1
Φ

= R−1. Thus, the metrics of proposition

3.5.1 can be equivalently expressed as

gϕ = R2/3 ·dR2 +R8/3gFS = dr2 +
16
9

r2gFS,

gω = 2(u · v)1/2 (dR2 +R2 gFS−
4 u · v

R2 ξ
2),

in terms of more standard metrics. Note that by construction, the latter metric is

invariant under the vector field Y and thus, passes to the quotient (R+×CP3)/S1.

The above construction shows that the T2 reduction of R8 with its torsion free

Spin(7)-structure has a rich underlying geometry. This motivates us to study the
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quotient of more general Spin(7) manifolds, which is precisely the purpose of the

next chapter.



Chapter 4

Kähler reduction of Spin(7) metrics

4.1 Overview of chapter

In this chapter we study the Kähler reduction of torsion free Spin(7)-structures.

More specifically we consider an eight-manifold N8 endowed with a torsion free

Spin(7)-structure which is invariant under the free action of a certain two-torus.

In general the quotient six-manifold P6 is only almost Kähler. Under the further

assumption that the almost complex structure is integrable i.e. P6 is Kähler, we

discover that it inherits naturally either a C× or (C×)2-action. This allows us to

perform a Kähler reduction, in the sense that this is both a symplectic and holomor-

phic quotient, to a complex surface M4 or a complex curve Σ2. Our main result is

that one can reverse this construction i.e. starting from a Kähler manifold M4 or Σ2

with some additional data we can construct a Spin(7) holonomy metric. By solving

these equations in special cases we give many new explicit, though incomplete,

examples of Spin(7) metrics. The precise statements of our main results are given

in Corollary 4.4.4 and Theorem 4.10.1.

Our construction, in the C× action case recovers the results of Apostolov and

Salamon [3] in the special situation when N8 is the product of a G2 manifold L7

and a circle. The key point of our construction relies on the fact that the Kähler

assumption on P6 implies that M4 is endowed with a holomorphic symplectic form

ω2 + iω3. The T2 bundle (up to finite covers) is then determined by the cohomol-
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ogy classes [ω2], [ω3] ∈ H2(M,Z), ignoring factors of 2π . In the simplest instance,

our construction can be viewed an as extension of the Gibbons-Hawking ansatz to

Spin(7) metrics, see Corollary 4.6.2 and 4.7.1. Thus, this gives an elementary way

of constructing local Spin(7) metrics starting from just a harmonic function on an

open set of R3. Another interesting aspect of our construction is that it can also be

viewed as a special case of the T3 reduction of Spin(7) metrics via multi-moments

as described by Madsen in [70]. This T3 action is obtained in our setting by con-

sidering, in addition to the original T2 action, the horizontal lift of the S1 ⊂ C×.

The multi-moment map turns out to be the actual symplectic moment map for the

Kähler reduction from P6 to M4. This shows that the name multi-moment map is

indeed befitting.

In the case of (C×)2 action, we show that a similar theory holds. We show that

the general problem of constructing a Spin(7) metric can be reduced to choosing

a positive harmonic function and solving a single PDE on a (real) 2-dimensional

surface Σ2 with trivial first Chern class. From this we are able to construct explicit

examples of Spin(7) metrics starting from just an elliptic curve and the punctured

complex plane. In contrast to the previous situation, the horizontal lift of the T2 ⊂

(C×)2 action on P6 does not preserve the Spin(7)-structure. Thus, our examples

correspond to torus bundles over torus bundles; which we aptly call ‘nilbundles’. In

particular, our examples differ from those discovered by Madsen and Swann in the

context of toric Spin(7) manifolds [72] which instead have T4 symmetry.

Outline. In section 4.2 we carry out the T2 reduction of a torsion free Spin(7)-

structure and describe the intrinsic torsion of the induced SU(3)-structure on the

quotient 6-manifold. In section 4.3 we impose that the SU(3)-structure is Kähler

i.e. that the almost complex structure is in fact integrable. We show that the quotient

manifold is naturally equipped with Hamiltonian vector fields U and W which also

preserve the complex structure. These vector fields can either span a line or a 2-

plane in T N. We consider the two cases separately. In the former case, we carry out

a Kähler reduction to a four-manifold M4 endowed with a holomorphic symplectic

form. We then explain how this procedure may be inverted in exactly two cases;
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one corresponding to the situation when one of the circle bundle is trivial (which

corresponds to the Apostolov-Salamon construction) and the second one when both

circle bundles are non-trivial, see Theorem 4.3.4 and Corollary 4.4.4. We also

explain how this reduces the local problem of finding Spin(7) metrics to solving a

single second order PDE (for a 1-parameter family of Kähler potentials) on an open

set of M4×R. After stating a general existence result in the case when we have

real analytic initial data on M4, we then proceed to describe the simplest examples

that can arise from our construction starting from hyperKähler four-manifolds. In

section 4.6 we describe the examples of Gibbons et al. in our setup and in section

4.7 we give a new example of a Spin(7) metric. In section 4.8 we explain how

the simplest examples may also be obtained from the Hitchin flow of cocalibrated

G2-structures on certain nilmanifolds. In section 4.9 we show that one can perturb

the (Kähler potential of the) examples of section 4.5 to construct more complicated

ones, which are no longer of cohomogeneity one type. We illustrate this construc-

tion by giving an explicit example of a Spin(7) metric by perturbing the GLPS

example. In section 4.10 we address the situation when the commuting vector fields

U and W are orthogonal. We carry out once again a Kähler reduction but now to

a complex curve Σ2. In this case we reduce the local problem of constructing a

Spin(7)-metric to choosing a positive harmonic function on Σ2 and solving a single

PDE on an open set of Σ2×R. By inverting this construction we construct more

examples of Spin(7) metrics in sections 4.11 and 4.12.

4.2 T2-reduction of torsion free Spin(7)-structures

4.2.1 The general setup

We consider the problem of taking the quotient of a torsion free Spin(7)-

structure (N8,Φ) under the free action of a 2-torus generated by 2 orthogonal vector

fields (this hypothesis will be assumed throughout this chapter). Since (N8,Φ) is

Ricci-flat, the hypothesis that the action is free and preserves Φ implies that if N8 is

compact then it is locally the Riemannian product of the flat T2 and a six-manifold
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with holonomy contained in SU(3) cf. remark 3.2.5 (1). Thus, we shall assume that

N8 is non-compact, although our calculations are always valid in a small neighbour-

hood where such an action is free.

Denoting a pair of perpendicular1 commuting vector fields generating this

torus action by X and Y , our hypothesis is that

LX Φ = LY Φ = 0.

The quotient six-manifold P6 then inherits an SU(3)-structure. From a linear alge-

bra point of view this follows from the fact that

Spin(7)
G2

= S7 and
G2

SU(3)
= S6,

whereby the 2-plane in the tangent space of N8 invariant under the SU(3) action is

generated by the span 〈X ,Y 〉. Denoting by (ω,Ω = Ω++ iΩ−) the induced SU(3)-

structure on P6, these relate to the Spin(7) form Φ by

Φ = η ∧ (ξ ∧ω +H3/2
Ω

+)+ s4/3(
1
2

H2
ω ∧ω−H1/2

ξ ∧Ω
−),

where η and ξ denote the connection 1-forms defined by

η(·) := s2gΦ(X , ·),

ξ (·) := H2gϕ(Y, ·),

with s := ‖X‖−1
Φ

and H := ‖Y‖−1
ϕ , and where ϕ := ιX Φ is denoting (the pullback of)

the G2-structure on the seven-manifold L7 obtained from quotienting by the circle

action generated by X ;

(N8,Φ,gΦ)
/S1

X−−→ (L7,ϕ,gϕ)
/S1

Y−−→ (P6,ω,gω ,Ω).

1In appendix B we give the general expressions for the Spin(7) and SU(3)-structures without
this hypothesis on the vector fields
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Note that ω and Ω+ can equivalently be expressed as

ω = Yy Xy Φ and Ω
+ = H−3/2(Xy Φ−ξ ∧ω).

Remark 4.2.1. A priori the reader might find it unnatural that we are distinguishing

the vector fields X and Y , since rather than performing a direct T2 reduction we

are instead performing two circle quotients in succession. The advantage of this

procedure of going through the intermediate G2 quotient is that it makes it easier to

reconcile our construction with the Kähler reduction of G2 metrics [3].

The positive functions s and H are T2-invariant and as such are pullbacks of

functions on P6, which by abuse of notation we also denote by s and H. The asso-

ciated metrics are then related by:

gΦ = s−2
η

2 + s2/3H−2
ξ

2 + s2/3Hgω (4.2.1)

A direct computation shows that the condition dΦ = 0 is equivalent to dω = 0

together with the system

dΩ
+ =−3

2
d(lnH)∧Ω

+−H−3/2dξ ∧ω, (4.2.2)

dΩ
− =−(4

3
dc(lns)+

1
2

dc(lnH))∧Ω
+− s−4/3H−1/2dη ∧ω, (4.2.3)

H3/2dη ∧Ω
++

1
2

d(H2s4/3)∧ω
2− s4/3H1/3dξ ∧Ω

− = 0, (4.2.4)

where dc := J ◦ d. Here we follow the convention that J acts on a 1-form β by

Jβ (·) = β (J·), which differs from the convention in [3] by a minus sign.

From the results of the previous chapter we know that ϕ is closed. Moreover,

from Theorem 3.2.7 we also know that ϕ is also coclosed, hence torsion free, if and

only if gΦ has holonomy contained in SU(4).

From equations (4.2.2) and (4.2.3) it follows that dη and dξ have no ω-

component. Thus, dη ,dξ ∈ Λ2
6⊕Λ2

8 and we may write

dη ∧ω = αη ∧Ω
++(dη)2

8∧ω,
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dξ ∧ω = αξ ∧Ω
++(dξ )2

8∧ω,

for 1-forms αη and αξ on P6 from (2.3.8). Condition (4.2.4) can then equivalently

be expressed as

J(αη)− s4/3H−1
αξ =

1
2

H−3/2d(H2s4/3).

In view of (2.3.12), (2.3.13), (2.3.14), we can decompose the system (4.2.2), (4.2.3)

into irreducible SU(3)-modules. The fact that the torsion form π1 arises in both

(2.3.13) and (2.3.14) allows us to express the 1-forms αξ and αη only in terms of s

and H. The result of this calculation is summed up in the following lemma:

Lemma 4.2.2. The condition dΦ = 0 is equivalent to dω = 0 and the system

dΩ
+ = d(ln(H−1/2s−1/3))∧Ω

+−H−3/2(dξ )2
8∧ω,

dΩ
− = dc(ln(H−1/2s−1/3))∧Ω

+− s−4/3H−1/2(dη)2
8∧ω,

with

J(αη) = H1/2s1/3ds and αξ =−H1/2dH +
1
3

H3/2s−1ds.

We shall be primarily interested in the case when the SU(3)-structure is Kähler,

but before proceeding ahead we make the following important observation.

Proposition 4.2.3. If s is constant then (L7,ϕ) has holonomy contained in G2 and

(N8,Φ) is the Riemannian product of L7 and S1. If furthermore, H is also constant

then (P6,ω,Ω) has holonomy contained in SU(3) and (N8,Φ) is the Riemannian

product of P6 and a flat 2-torus. Hence ξ and η cannot both be Hermitian Yang-

Mills connections if (N8,Φ) has holonomy Spin(7).

Proof. The argument is analogous to remark 3.2.5 (2). If s is constant then dη ∈Λ2
8.

By differentiating the relation

dη ∧Ω
− = 0

we get that ‖dη‖ω = 0. It follows that [dη ] defines a trivial class in H2(L,Z) and
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this proves the first claim. If H is also constant we can apply the same argument to

dξ . The last assertion now follows directly from Lemma 4.2.2.

Remark 4.2.4. Our construction also includes the T2 quotient of hyperKähler eight-

manifolds and CY 4-folds under the group inclusions: Sp(2) ⊂ SU(4) ⊂ Spin(7).

As differential forms these can be expressed as

Φ =
1
2
(ωI ∧ωI +ωJ ∧ωJ−ωK ∧ωK)

=
1
2
(ω̂ ∧ ω̂)+Re(Ω̂),

where (ωI,ωJ,ωK) defines the hyperKähler triple and (ω̂,Ω̂) denotes the SU(4)-

structure of the CY 4-fold. Note that from the results of section 3.5 we know that

even if N8 is a hyperKähler manifold it is not generally the case that the quotient

SU(3)-structure is torsion free.

4.3 The Kähler reduction

4.3.1 The first reduction

We shall now impose that J is an integrable almost complex structure so that

(P6,ω,J) is a Kähler manifold. This implies that dη ,dξ ∈ Λ2
6 (see 2.3.4) and thus

we have

dΩ
+ = d(ln(H−1/2s−1/3))∧Ω

+ (4.3.1)

dΩ
− = dc(ln(H−1/2s−1/3))∧Ω

+ (4.3.2)

with

J(αη) = H1/2s1/3ds and αξ =−H1/2dH +
1
3

H3/2s−1ds

satisfying

[∗ω(αη ∧Ω
+)], [∗ω(αξ ∧Ω

+)] ∈ H2(P6,Z).

Note that the latter requirement is the natural higher dimensional analogue of the

‘integrality’ condition that figures in the Gibbons-Hawking ansatz, see section 2.4
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for comparison.

Remark 4.3.1. Since

d(H1/2s1/3
Ω) = 0

i.e. it is a holomorphic (3,0)-form, it follows that the Ricci form of (P6,ω,Ω) is

given by

ρ = i∂ ∂̄ (ln(Hs2/3))

= i∂ ∂̄ (lnH)+
2
3

i∂ ∂̄ (lns).

and the scalar curvature is

S =−d∗ω d(ln(Hs2/3)),

where d∗ω denotes the codifferential on P6, cf. [65, Pg. 158].

Proposition 4.3.2. The intrinsic torsion τ2 of the closed G2-structure ϕ is given by

τ2 = ∗ω(
1
3

H1/2s−1dcs∧Ω
+)− 2

3
H−1s−1

ξ ∧dcs

=−1
3

s−4/3dη− 2
3

H−1s−1
ξ ∧dcs.

Thus, it follows that Apostolov-Salamon construction [3], which considers the Käh-

ler S1 reduction of torsion free G2-structures, corresponds to the case when the first

circle bundle is just a trivial bundle i.e. αη = 0, or equivalently dη = 0 or s is con-

stant (which by rescaling we can assume is 1). In our notation their result can be

stated as follows:

Proposition 4.3.3. Given a Kähler 6-manifold (P6,ω,J) with an SU(3)-structure

determined by the (3,0)-form Ω = Ω++ iΩ− and a positive function H such that

d(H1/2
Ω

+) = 0
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and

[−∗ω (
2
3

d(H3/2)∧Ω
+)] ∈ H2(P,Z), (4.3.3)

then

ϕ := ξ ∧ω +H3/2
Ω

+

defines a torsion free G2-structure on the S1-bundle determined by (4.3.3), where ξ

is a connection 1-form on the circle bundle satisfying

dξ =−∗ω (
2
3

d(H3/2)∧Ω
+).

Moreover, the Hamiltonian vector field corresponding to−H also preserves Ω, and

hence J, and thus one can perform a Kähler reduction to a four-manifold endowed

with a holomorphic symplectic structure.

Since we shall give explicit examples corresponding to the case when s = H3/4

in sections 4.6 and 4.7, it is worth stating the corresponding proposition in this

situation.

Proposition 4.3.4. Given a Kähler 6-manifold (P6,ω,J) with an SU(3)-structure

determined by the (3,0)-form Ω = Ω++ iΩ− and a positive function H such that

d(H3/4
Ω

+) = 0

and

[−∗ω (
1
2

d(H3/2)∧Ω
+)], [−∗ω (

1
2

dc(H3/2)∧Ω
+)] ∈ H2(P,Z), (4.3.4)

then

Φ := η ∧ξ ∧ω +H3/2
η ∧Ω

++
1
2

H3
ω

2−H3/2
ξ ∧Ω

−

defines a torsion free Spin(7) structure on the T2-bundle determined by (4.3.4),

where η and ξ are connection 1-forms on the torus bundle satisfying

dξ =−∗ω (
1
2

d(H3/2)∧Ω
+),



4.3. The Kähler reduction 66

dη =−∗ω (
1
2

dc(H3/2)∧Ω
+).

Proof. The proof is simply a matter of setting s = H3/4 in (4.3.1) and (4.3.2), and

using the expressions for αη and αξ . Unwinding the definitions of dξ , dη and Φ

from the previous section gives the result.

4.3.2 A second reduction

In order to perform a further reduction, we define, in hindsight, two Hamilto-

nian vector fields U and W by

ω(U, ·) =−d(Hs−1/3)

and

ω(W, ·) = ds.

Using these vector fields together with expressions (4.3.1), (4.3.2) and lemma 2.3.3,

the curvature 2-forms of η and ξ can be equivalently expressed as

dξ =−Uy (H1/2s1/3
Ω

+), (4.3.5)

dη =−JWy (H1/2s1/3
Ω

+). (4.3.6)

Thus, by differentiating these equations and using (4.3.1) and (4.3.2) it follows that

U and W , in addition to being Hamiltonian, also preserve the complex structure J.

In other words, they define an infinitesimal symmetry of the (torsion free) U(3)-

structure determined by (P,ω,J,gω).

Remark 4.3.5. Recall from section 2.3 that stab(Ω+)∼= SL(3,C) and since

SL(3,C) ↪→ GL(3,C)

it follows that changing Ω+ by a positive factor leaves the induced complex struc-

ture J unchanged.

Indeed it is not generally true that U and W preserve the whole SU(3)-
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structure. In fact, we have that

LU Ω
+ = LW Ω

+ = 0 if and only if LU s = 0.

We shall henceforth assume that this is indeed the case. The idea is now to perform

a Kähler reduction using the action generated by these vector fields. In particular

we shall investigate the following two situations:

1. s = s(H) i.e. s is a function of H

2. s and y := Hs−1/3 are independent functions, and the vector fields U and W

are orthogonal i.e.

gω(U,W ) = ω(W,JU) = 0.

Let us explain the geometry of these hypotheses. We shall always be working on

an open set where U and W don’t vanish. The assumption that s is invariant by U

implies that W and JU are orthogonal. The two possibilities are either that W lies

in the complex span of U and hence, W and U are equal up to some non-vanishing

function, or that W has a non-trivial component orthogonal to the span 〈U,JU〉. So

geometrically condition (1) is saying that the vector fields U and W define the same

line field on P6, whereas condition (2) means that we are assuming that the complex

planes defined by 〈U,JU〉 and 〈W,JW 〉 are in fact orthogonal to each other.

We shall consider these two cases separately, though our general strategy will

the same in both cases. We first focus on situation (1) and defer the study of case

(2) to section 4.10.

4.4 Further reduction I

4.4.1 S1 Kähler reduction

Working under the assumption that s = s(H) we can perform a Kähler reduc-

tion, with respect to the vector field U , to a four-manifold M4. The reader will

find the general theory of Kähler reduction elaborated in [56, Sect. 3C]. We shall

describe this construction in our context in more detail.
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First we introduce a connection 1-form α on P6 by

α(·) := u gω(U, ·),

where u := ‖U‖−2
ω , so that α(U) = 1. From the definition of U , we can express α

and ω as

α = ug(H)s−1/3dcH, (4.4.1)

ω = ω̃1(H)+ s−1/3g(H)α ∧dH, (4.4.2)

where g(H) := −1+ 1
3Hs−1s′ and ′ denotes the derivative with respect to H. We

define a holomorphic (2,0)-form ω2 + iω3, invariant under the complexified U(1)

action generated by the vector field U on M4, by

H1/2s1/3
Ω = (ω2 + iω3)∧ (α− iJα). (4.4.3)

The symplectic form on the Marsden-Weinstein quotient M4 of (P,ω), with moment

map−Hs−1/3, can then be identified with ω̃1. On the other hand, viewed as a GIT or

holomorphic quotient a compatible complex structure J1 on the quotient is defined

by ω2(·, ·) = ω3(J1·, ·), cf. [74, Sect. 8]. We are assuming here that the quotient

is carried out for regular values of the moment map or equivalently that this is the

stable GIT quotient.

The final step of our construction is to impose the Kähler constraint on (ω,Ω)

and to express it solely in terms of u, α , ω̃1, ω2 and ω3. In other words, we formulate

the Kähler condition on P6 purely in terms of the data on M4.

Denoting by dM and dP the exterior differential on M4 and P6 respectively, and

defining dc
M := J1 ◦dM, we find that the condition dω = 0 implies that

ω̃
′
1 =−s−1/3g(H)dMα
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and d(H1/2s1/3Ω) = 0 implies that

α
′ =−g(H)s−1/3dc

Mu

and dMα ∧ω2 = dMα ∧ω3 = 0. The result of combining these two equations is

(4.4.5) whereas the normalisation condition (2.3.2) leads to the algebraic constraint

(4.4.4).

The fact that this construction is reversible follows by noting that given initial

data on M4 satisfying the above constraint we can define N8 as the product of R+
H

and the bundle determined by the cohomology classes [dα], [dξ ] and [dη ]. The

result of this construction can be summed up in the following theorem.

Theorem 4.4.1. Let (M4,J1) be a complex four-manifold endowed with a 1-

parameter family of Kähler forms ω̃1(H), a 1-parameter family of positive functions

u(H) and a holomorphic (2,0)-form given by ω2+iω3 satisfying the two conditions:

1
2

u(ω2 + iω3)∧ (ω2− iω3) = Hs2/3
ω̃1∧ ω̃1, (4.4.4)

dMdc
Mu = s2/3g−2

ω̃
′′
1 +

1
2
(s2/3g−2)′ω̃ ′1. (4.4.5)

Then

ϕ = ξ ∧ (ω̃1 + s−1/3g α ∧dH)+Hs−1/3
ω2∧α−uHs−2/3g ω3∧dH

defines a closed G2-structure on L7; the T2
α,ξ bundle determined by the integral

cohomology classes [dξ ] and [dα] on M4×R+
H , where

dξ =−ω2,

dα = s−1/3g dc
Mu∧dH− s1/3g−1

ω̃
′
1.

If we further assume that

[∗ω(H1/2s1/3dcs∧Ω
+)] ∈ H2(P6,Z) (4.4.6)
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so that there is another connection 1-form η satisfying

dη =−∗ω (H1/2s1/3dc
Ps∧Ω

+),

then the 4-form

Φ = η ∧ϕ + s4/3 ∗ϕ ϕ

defines a torsion free Spin(7)-structure on N8; the total space of the S1 bundle on

(L7,ϕ) defined by [dη ] ∈ H2(P6,Z), and the induced metric is given by

gΦ = s−2
η

2 +(s2/3H−2)ξ 2 +(s2/3Hu−1)α2 +(g2Hu)dH2 +(s2/3H)gω̃1. (4.4.7)

Remark 4.4.2. For generic data on M4, satisfying the hypothesis of the theorem,

the holonomy of Φ is not a subgroup of G2. If the holonomy is contained in G2

then there exists a non-trivial parallel vector field, which also commutes with X ,Y

and U as they preserve Φ cf. [21, Theorem 4]. Since the curvature forms of η

and α are non-trivial unless s is constant or dMu = 0 and ω̃ ′1 = 0, this vector field

does not lie in the span of 〈X ,Y,U〉 in general. Assuming this is the case, it must

therefore descend to an infinitesimal symmetry of the Kähler structure on M4 and

u(H). Thus, if we further assume that the data (M4,ω1(H),ω2 + iω3,u(H)) has

no infinitesimal symmetry then the holonomy must be either Spin(7), SU(4) or

Sp(2) (at least locally). Note however that this is only a sufficient but not necessary

condition as the horizontal lift of an infinitesimal symmetry of the data on M4 will

not preserve Φ in general. Although generically our construction should produce

either Spin(7), SU(4) or Sp(2) holonomy metrics, so far we have only been able

find Spin(7) metrics. Eliminating SU(4) and Sp(2) holonomy amounts to showing

the inexistence of any parallel 2-form ω , which we have not been able to prove or

disprove yet.

Proposition 4.4.3. The Ricci form of (M4, ω̃1,J1,gω̃1) is given by

ρM =
1
2

dMdc
M(lnu).
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Proof. This follows immediately from the fact that

‖ω2 + iω3‖ω̃1 = c0 ·u−1/2H1/2s1/3,

where c0 is some positive constant, and that H and s are constants on M4.

Thus, the induced metric on M4 is Ricci-flat if and only if lnu is a harmonic function

on M4, for each value of H. In particular, if M4 is compact then this means that u is

only a function of H i.e. it is constant on M4.

To sum up, what we have shown so far is that if a Spin(7) manifold admits a

T2-invariant 4-form Φ with s = s(H) and that the resulting quotient six-manifold is

Kähler then in fact there exists a third S1 action preserving the Spin(7)-structure.

To be more precise, the horizontal lift of the vector field U to N8, still denoted by

U by abuse of notation, also preserves Φ since

LU η = LU ξ = 0,

and commutes with X and Y . In fact, our construction fits into the more gen-

eral framework investigated by Madsen in the context of multi-moment maps on

Spin(7)-manifolds with T3 symmetry [70]. In our present situation the multi-

moment map ν : N8→ R, defined by

dν = Φ(X ,Y,U, · ),

corresponds to the Hamiltonian function−Hs−1/3 and the four-manifold M4 can be

identified with the “multi-moment Spin(7) reduction”. Our perspective has however

the advantage of inheriting a richer structure owing to the Kähler condition which

we shall exploit in the next sections.

Note that one can generally solve equations (4.4.4) and (4.4.5) for many differ-

ent choices of the function s and thus construct many closed G2-structures. How-

ever, it is condition (4.4.6) that determines when we can lift such a G2-structure to

a torsion free Spin(7)-structure. This is precisely what we investigate next i.e. we
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shall solve equation (4.4.6) and thus determine for which function s(H) we get a

torsion free Spin(7) structure.

4.4.2 The Spin(7) condition

From equations (4.3.5) and (4.3.6) the curvature forms can be expressed as:

dξ =−s1/3H1/2(Uy Ω
+),

dη =
H1/2s1/3s′

s−1/3− 1
3Hs−4/3s′

(JUy Ω
+).

We also recall that the holomorphic (2,0)-form defined by

ω2 + iω3 =
1
2
(U− iJU)y (H1/2s1/3)(Ω++ iΩ−)

= H1/2s1/3((Uy Ω
+)+ i(−JUy Ω

+))

is closed, since d(H1/2s1/3Ω) = 0, and by definition is invariant on the leaves of

the foliation generated by holomorphic vector field U − iJU and thus passes to the

Kähler quotient M4. It is now easy to see that the curvature forms are equivalently

given by

dξ =−ω2 and dη =−
( s′

s−1/3− 1
3Hs−4/3s′

)
ω3.

Remark on integrality and anti-instantons. Although ω2 and ω3 do not generally

define integral classes in H2(M,R) this is nonetheless always true locally (say on a

small ball since it is contractible) . In what follows we shall assume that the classes

are indeed integral and the reader is welcome to interpret the results as always valid

in a suitable open set. In the situation when M4 is compact then, from Kodaira’s

classification of complex surfaces, M4 is either a torus T4 or a K3 surface with

[H0,2⊕H2,0]∩H2(M,Z) = 〈[ω2], [ω3]〉Z.
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The latter condition implies that the K3 surface has maximal Picard rank cf. [5,

(2.15)] and [8, Pg. 325]. These have been classified by Shioda and Inose in [77].

In particular, our assumption implies that the connection forms ξ and η are abelian

anti-instantons i.e. their curvature lies in Λ2
1⊕Λ2

6
∼= su(3)⊥.

Thus, condition (4.4.6) now becomes equivalent to solving the non-linear

ODE:

s′ = A · (s−1/3− 1
3

Hs−4/3s′),

for A ∈ Z. The solution is implicitly given by

AH = s1/3(s+ c), (4.4.8)

where c is a constant of integration. If A = 0 then the positivity assumption on s

forces c to be negative, and by rescaling s we can assume c =−1. Thus, s = 1 and

Proposition 4.3.2 implies that Theorem 4.4.1 reduces to [3, Theorem 1]. In other

words, setting A = 0 truncates the Spin(7) equations to the G2 equations considered

in [3]. In what follows it will be more convenient to use s as the independent

variable, rather than H.

Corollary 4.4.4. Suppose that constants A 6= 0 and c are chosen such that s is

positive in (4.4.8). Given a four-manifold M4 with the data (ω̃1,ω2,ω3,J1,u) as in

Theorem 4.4.1 and satisfying the two conditions:

1
2

u(ω2 + iω3)∧ (ω2− iω3) = A−1s(s+ c) ω̃1∧ ω̃1, (4.4.9)

dMdc
Mu = A2 ∂ 2

∂ s2 (ω̃1) (4.4.10)

Then the 4-form

Φ = η ∧ϕ + s4/3 ∗ϕ ϕ

defines a torsion free Spin(7)-structure on N8; the total space of the T3
α,ξ ,η

bundle

on M4×R+
H defined by

dξ =−ω2,
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dη =−A ·ω3,

dα =−A−1dc
Mu∧ds+A

∂

∂ s
(ω̃1)

and the induced metric is given by

gΦ = s−2
η

2 +
A2

(s+ c)2 ξ
2 +

s(s+ c)
A ·u

α
2 +

s(s+ c)u
A3 ds2 +

s(s+ c)
A

gω̃1 .

Here the calibrated G2-structure ϕ on L7 is given by

ϕ = ξ ∧ (ω̃1 +
1
A

ds∧α)+
(s+ c

A

)
ω2∧α +

u(s+ c)
A2 ω3∧ds.

Before proceeding to the construction of explicit examples, we first give a general

existence result and for simplicity we shall set A = 1.

4.4.3 A general local existence result

Since ω̃1 is a 1-parameter family of Kähler forms there exists, on each suitably

small open set B ⊂ M4, a Kähler potential f : B→ R, depending on s in a small

interval, such that

ω̃1 = dMdc
M f .

Thus, we may always solve equation (4.4.10) by setting

u = f̈ + r̈(s),

where ˙ refers to derivative with respect to s and r̈ is a non-negative function of

s only, chosen to ensure that u is positive. Picking complex Darboux coordinates

(z1,z2) on B, we can express the (2,0)-form as

ω2 + iω3 = dz1∧dz2.
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Defining F := f + r, equation (4.4.9) can now be expressed in these coordinates as

( 1
s(s+ c)

)
F̈ = 4det

(
∂ 2

∂ zi∂ z̄ j
F
)

1≤i, j≤2
, (4.4.11)

where ∂

∂ z j
:= 1

2(
∂

∂x j
+ i ∂

∂y j
) for j = 1,2. Under the assumption that we are given real

analytic initial data to (4.4.11), we may then appeal to the Cauchy-Kovalevskaya

theorem for the general existence and uniqueness of a real analytic solution.

Corollary 4.4.5. Given a real analytic Kähler potential F0 on (an open set of) a

complex surface (M4,J1,ω2+ iω3) and an additional real analytic function F1, then

there exists a unique real analytic solution F(s), for s is a small interval, to (4.4.11)

with F(0) = F0 and Ḟ(0) = F1, and hence by Corollary 4.4.4 a torsion free Spin(7)-

structure.

Remark 4.4.6. Thus, we have abstractly proven that there exists a large class of

Spin(7) metrics admitting Kähler reduction. Our general solution is determined by

2 functions, namely the two initial conditions to (4.4.11), of 4 variables. By con-

trast, Bryant shows using Cartan-Kähler theory that an arbitrary Spin(7) metric is

determined by 12 functions of 7 variables cf. [18]. This difference is essentially due

to the fact that the Kähler condition has allowed us to reduce the general problem

to a single second order PDE involving a family of Kähler potentials.

For the sake of concreteness, we shall now investigate special cases when the

pair (4.4.9) and (4.4.10), or equivalently (4.4.11), can be solved explicitly.

4.5 Constant solutions I
We first consider the simplest case in Corollary 4.4.4 when u is only a function

of H i.e. dMu = 0. Solving equation (4.4.10) we get

ω̃1 = sω̌0 + ω̂0,

where ω̌0 and ω̂0 are closed 2-forms on M4, independent of s. It is well-known that

the wedge product on Λ2 := Λ2(T M) defines a non-degenerate symmetric bilinear



4.5. Constant solutions I 76

form B of signature (3,3) given by

S2(Λ2)→ Λ
4 ∼= R

(β1,β2) 7→ B(β1,β2)θ ,

where θ := 1
2ω2 ∧ω2 = 1

2ω3 ∧ω3. The orientation form θ on M4 allows for a

splitting

Λ
2 = Λ

2
+⊕Λ

2
−,

with B positive definite on Λ2
+ and negative definite on Λ2

−. Restricting B to the

2-plane in Λ2 spanned by 〈ω̌0, ω̂0〉 it follows from the theory of four-manifolds,

cf. [74, Chap. 7], together with the fact that ω̃1 is of type (1,1) and ω2 + iω3 of

type (2,0) that there exist (1,1)-forms ω0 and ω1 spanning 〈ω̌0, ω̂0〉 and functions

a,b, p,q on M4 such that

ω̃1 = (a+bs)ω0 +(p+qs)ω1, (4.5.1)

where,

1
2

ω0∧ω0 =−θ ,
1
2

ω1∧ω1 = θ , ω0∧ω1 = 0.

The fact that dMω̃1 = 0 becomes equivalent to

dM(a ·ω0 + p ·ω1) = dM(b ·ω0 +q ·ω1) = 0.

We consider for simplicity the case when a,b, p,q are only constants. The fact

that ω̃1 defines a positive definite metric implies that we need

p+qs > |a+bs|. (4.5.2)

Hence it follows that the triple (ω1,ω2,ω3) define a hyperKähler structure on M4,

while ω0 is a closed anti-self-dual 2-form. Finally from equation (4.4.9) we have
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that

u =
s(s+ c)

A
· ((p+qs)2− (a+bs)2). (4.5.3)

The T3
α,ξ ,η

bundle on M4 is then determined by

(dα,dξ ,dη) = (A · (bω0 +qω1),−ω2,−A ·ω3). (4.5.4)

A trichotomy of the total space of the T3 bundle arises from whether b > q, b = q

or b < q. In summary we have

Theorem 4.5.1. Given a hyperKähler manifold (M4,gHK,ω1,ω2,ω3) with an al-

most Kähler form ω0 compatible with gHK but with the opposite orientation and

suppose that (a,b, p,q) and u satisfy (4.5.2) and (4.5.3) respectively, then

Φ = η ∧
(

ξ ∧ (ω̃1 +
1
A

ds∧α)+
(s+ c)

A
(ω2∧α)+

u · (s+ c)
A2 (ω3∧ds)

)
+

s2(s+ c)2

A2

(1
2

ω̃
2
1 +

1
A
(ω̃1∧ds∧α)

)
− s ·ξ ∧ (ω3∧α−ω2∧

u
A

ds)

defines a torsion free Spin(7)-structure on the product of the T3 bundle determined

by (4.5.4) and R+
s . If a = b = 0 then one can set ω0 = 0.

When M4 = T4 these T3 bundles correspond to certain 2-step nilmanifolds. In

the next two sections we give explicit examples which arise from our construction

when we take M4 = T4 with its flat hyperKähler structure.

4.6 Examples with holonomy Spin(7), G2, SU(3) and

SU(4).
Our aim in this section is to describe certain special holonomy metrics admit-

ting Kähler reductions. We shall explain how all these metrics can be obtained via

a generalised version of the Calabi ansatz.

4.6.1 The GLPS examples

The Spin(7) example we describe here was first discovered by Gibbons, Lü,

Pope and Stelle (GLPS) in [49]. This is a special case of the constant solution when
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M = T4 with c = 0, A = 1 and (a,b, p,q) = (0,0,0,1). Choosing different integers

A corresponds to pulling back their Spin(7) 4-form Φ to covers of the circle bundle

determined by dη . The induced Spin(7) metric is then rescaled by a factor A1/2 on

the covering space. The G2 example has also appeared in [3, 24]. An interesting

feature in the following examples is that the symplectic form on P6 is always the

same but the complex structure (on the fibre) changes. Put differently, this means

that each example below corresponds to a different integrable section of the associ-

ated bundle on (P6,ω) with fibre Sp(6,R)
SU(3) .

Spin(7): Let P6 = Q5×Rt , where Q5 is a nilmanifold whose Lie algebra is given

by

(0,0,0,0,13+42).

Recall that this means that we can choose a coframing ei on Q5 satisfying

de5 = e13 + e42,

dei = 0, for i = 1,2,3,4.

We define a Kähler SU(3)-structure on P6 by

ω = d(t · e5),

Ω = t(σ3 + iσ1)∧ (−t−2e5 + it2dt),

where σ1 := e12 +e34, σ2 := e13 +e42 and σ3 := e14 +e23 denote the standard self-

dual 2-forms on T4. The torsion forms, cf. Lemma 4.2.2, are then given by

dΩ
+ =−t−1dt ∧Ω

+,

dΩ
− = t−5e5∧Ω

+.

Taking H = t4/3 and s = t, we have dξ = σ3 and dη = σ1. Hence from Proposition

4.3.4 it follows that Φ is torsion free. In fact one can verify that the holonomy group
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is equal to Spin(7), using MAPLE for instance. This can be done by verifying that

the dimension of the holonomy algebra, or equivalently by the Ambrose-Singer

Theorem the rank of the curvature operator, is equal to 21. A curious observation is

that the G2 torsion form on L7, given by

τ2 =−
1
3

t−4/3
σ1−

2
3

t−19/3e5∧ e6

has as stabiliser U(2)− ↪→ G2 acting by the adjoint representation on Λ2
14
∼= g2.

By contrast a generic element of g2 only has T2 (the maximal abelian subgroup of

G2) as the identity component of the stabiliser group [19]. There are in fact two

distinguished copies of U(2) in G2; denoted by U(2)+ and U(2)−, in the notation

introduced by Ball in [7].

G2: If we keep ω unchanged but modify the complex structure so that

Ω = t(σ3 + iσ1)∧ (−t−3/2e5 + it3/2dt)

and take H = t and s = 1, then from Proposition 4.3.3 we see that ϕ is torsion free.

Here dξ is again defined as in the Spin(7) example. One can once again verify that

the holonomy group is equal to G2 cf. [3, 49].

Remark 4.6.1. A natural question one might ask is whether there exist any ex-

tremally Ricci-pinched (ERP) closed G2-structures cf. [19] on the S1 bundle deter-

mined by [σ3] ∈ H2(P,Z) given by

ϕ := ξ ∧ω +H3/2
Ω

+

in the family of Kähler SU(3)-structures defined by

ω = d(t · e5),

Ω = t(σ3 + iσ1)∧ (− f e5 + i f−1dt),



4.6. Examples with holonomy Spin(7), G2, SU(3) and SU(4). 80

for a suitable function f (t). By definition an ERP G2-structure satisfies

dτ2 =
1
6
(‖τ2‖2

ϕ ϕ +∗ϕ(τ2∧ τ2)).

However, the answer turns out to be negative; the only ERP solution in this family

is the torsion free one described above.

CY: Following the same strategy, it is easy to see that we obtain a torsion free

SU(3)-structure by keeping ω unchanged and taking

Ω = t(σ3 + iσ1)∧ (−t−1e5 + it1dt).

Note that from Theorem 3.2.1, we can also construct a metric with holonomy SU(4)

from this Calabi-Yau 3-fold. The SU(4)-structure on N̂8 is given by

ω̂ = s2/3
ω + η̂ ∧d(s2/3),

Ω̂ = Ω∧ (−η̂− i
2
3

s5/3ds),

with dη̂ =−ω . Topologically N̂8 = L̂7×R+
s , where L̂7 is the S1 bundle determined

by [−ω] ∈ H2(P6,Z). This gives an example of a cohomogeneity two Einstein

metric. Explicitly it is given by

ĝ = s2/3(t2dt2 + t−2(e5)2 + tgT4)+ s−2
η̂

2 +(
2
3

s2/3ds)2.

By analogy to our construction, this can also be viewed as an ‘inversion’ of the

Kähler reduction, from a CY 3-fold to a CY 4-fold, with the moment map is s2/3.

4.6.2 Spin(7) metrics from Gibbons-Hawking ansatz

It is clear that one can replace T4 by any hyperKähler manifold M4 in the

above example. Although it is not generally true that the triple of hyperKähler

forms define integral cohomology classes this is nonetheless always true locally.

Thus, combined with the Gibbons-Hawking ansatz this gives infinitely many local

examples of Spin(7) metrics starting from just a positive harmonic function on an
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open set in R3 cf. section 2.4.

Corollary 4.6.2. Given a hyperKähler four-manifold (M4,gHK,ω1,ω2,ω3) such

that [ω1], [−ω2], [−ω3] ∈ H2(M,Z), let K7 denote the total space of this T3 bundle.

Then we can define a metric with holonomy contained in Spin(7) on K7×R+
s by

gΦ = s−2
η

2 +(s+ c)−2
ξ

2 +(s+ p)−2
α

2 (4.6.1)

+ s2(s+ c)2(s+ p)2 ds2 + s(s+ c)(s+ p)gHK,

where c, p ∈ [0,+∞) and the connection 1-forms α , η , ξ satisfy

(dα,dξ ,dη) = (ω1,−ω2,−ω3).

Moreover, if M4 admits a triholomorphic S1 action then we can locally write

gHK =V−1
θ

2 +V (dx2 +dy2 +dz2)

via the Gibbons-Hawking ansatz and hence gΦ is completely determined by V .

The metric (4.6.1) corresponds to the constant solution with A = 1, (a,b,q) =

(0,0,1) and is defined for s ∈ (0,+∞). This metric is incomplete at s = 0 since

the circle fibre corresponding to the connection form η always blows up while the

length of the other two circles fibres converge to c−1 and p−1 as s→ 0. It is not

hard to see that gΦ is complete as s→ ∞. The family of metrics given by (4.6.1),

especially in the case when M4 is T4 or a suitable K3 surface, might be useful in

future gluing problems as in the hyperKähler case recently investigated in [53].

A remark on the ‘generalised Calabi ansatz.’ The SU(3) and SU(4) holonomy

metrics appearing in this section in fact arise from a special case of the Calabi ansatz

[23]. In our setting this can be neatly described as follows: given a Calabi-Yau n-

fold N̂2n with symplectic form σ and holomorphic volume form Ψ we define a



4.7. More examples 82

connection 1-form γ on the line bundle LN̂ with Chern class determined by

dγ =−σ .

We then obtain a torsion free SU(n+1)-structure on an open set of the total space

LN̂ given by

σ̂ =−d(r2
γ),

Ψ̂ = Ψ∧ (γ + i
2

n+2
d(rn+2)),

where r denotes a radial coordinate from the zero section. The examples above

can thus be interpreted as a ‘generalised Calabi ansatz’ for exceptional holonomy

metrics, whereby one uses the hyperKähler forms ω1,ω2 and ω3 in succession to

construct SU(3), G2 and Spin(7) holonomy metrics. The relations between the

Einstein manifolds described above can be expressed in the diagram below.

(N8,Φ)

(P6,ω,Ω) (L7,ϕ)

(M4,ω1,ω2,ω3)

S1T2

T3×R+

C∗ T2×R+

The submersions of P6 and L7 with their Ricci flat metric to M4 correspond to the

Calabi ansatz and Apostolov-Salamon construction, respectively.

By contrast to the above examples, where all the circle bundles were deter-

mined by the hyperKähler forms (since we had dα = σ2), in the next section we

give examples corresponding to the case when b 6= 0.

4.7 More examples
The G2 example we describe in this section has also appeared in [3, 24] but the

Spin(7) metric does not seem to have been mentioned in the literature.
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Let P6 = Q5×Rt , where Q5 is a nilmanifold whose Lie algebra is given by

(0,0,0,0,24).

So Q5 is again topologically a circle bundle over T4. We define a Kähler SU(3)-

structure on P6 by

ω = e13−d(t2e5),

Ω = t(−σ1 + iσ3)∧ (−2t3dt + it−2e5),

where σi denote the standard self-dual 2-forms as before. The torsion forms are

given by

dΩ
+ =−t−1dt ∧Ω

+,

dΩ
− =−1

2
t−6e5∧Ω

+.

Taking H = t2 so that dξ = −σ3, one can verify directly that the hypothesis of

Proposition 4.3.3 are satisfied. We thus get a holonomy G2 metric as described in

[3]. This was also shown to arise from the Hitchin flow of half-flat SU(3)-structures

in [24]. As before we keep ω unchanged and consider

Ω = t(−σ1 + iσ3)∧ (−2t4dt + it−3e5).

Taking H = t8/3 we see that the hypothesis of Proposition 4.3.4 are satisfied, with

dη = −σ1 and dξ = −σ3. Thus we get a metric with holonomy equal to Spin(7)

explicitly given by

gΦ = (t2e1)2+(t3e2)2+(t2e3)2+(t3e4)2+(t−1e5)2+(t−2
η)2+(t−2

ξ )2+4t12dt2.

Of course, we can also construct holonomy SU(3) and SU(4) metrics by carrying

out an analogous argument as in the previous section.
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4.7.1 Spin(7) metrics from Tod’s ansatz

As in section 4.6 there is a natural way of obtaining many local examples

using the so-called Tod’s ansatz cf. [4, Prop. 3.1]. The idea is again to apply the

Gibbons-Hawking ansatz but choosing the harmonic function to depend on only

two variables.

In the notation of section 2.4, if we choose V : B→ R+, independent of say

coordinate x, then in addition to the Gibbons-Hawking hyperKähler triple, we can

also define an almost Kähler form by

ω0 = θ ∧dx−V dy∧dz.

Thus, we can again appeal to the result of section 4.5 to construct Spin(7) metrics.

In particular, for A = 1 and (a,b,q) = (0,1,1) we have:

Corollary 4.7.1. Given a hyperKähler four-manifold (M4,gHK,ω1,ω2,ω3) to-

gether with an almost Kähler form ω0 compatible with the opposite orientation

such that [ω0 +ω1], [−ω2], [−ω3] ∈ H2(M,Z), let K7 denote the total space of this

T3 bundle. Then we can define a metric with holonomy contained in Spin(7) on

K7×R+
s by

gΦ = s−2
η

2 +(s+ c)−2
ξ

2 + p−1(2s+ p)−1
α

2

+ ps2(s+ c)2(2s+ p) ds2 + s(s+ c)gω̃1,

where c, p ∈ (0,+∞), gω̃1 is defined by (4.5.1) and the connection 1-forms α , η , ξ

satisfy

(dα,dξ ,dη) = (ω0 +ω1,−ω2,−ω3).

Moreover, if M4 admits a triholomorphic S1 action then gΦ is completely determined

by the harmonic function V (y,z), as in Tod’s ansatz.
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4.8 Hypersurfaces and Hitchin’s flow
In this section we explain how the aforementioned metrics may also be ob-

tained by evolving suitable cocalibrated G2-structures. It is well-known that an

oriented hypersurface L̃ in a Spin(7) manifold (N8,Φ) inherits a cocalibrated G2-

structure defined by

φ = ny Φ
∣∣
L̃,

where n denotes the unit normal vector field. As a converse Hitchin shows that

given a cocalibrated G2-structure φ0 on a compact seven-manifold L̃ one can define

a torsion free Spin(7)-structure on N = L̃× (0,T ) by solving the system

dL̃(∗φt φt) = 0, (4.8.1)

∂

∂ t
(∗φt φt) = dL̃φt , (4.8.2)

where t ∈ (0,T ), [55, Theorem 7]. Furthermore, Bryant shows that if φ0 is real

analytic then there always exists a local solution to (4.8.1) and (4.8.2), cf. [20,

Theorem 7]. The resulting Spin(7) form on N8 is then given by

Φ = dt ∧φt +∗φt φt .

Recall that we introduced the analogous Hitchin’s flow of SU(3)-structures in sec-

tion 3.4.3. In fact the G2 holonomy metrics appearing in the last two sections have

been described via this technique in [24]. We shall now explain how the Spin(7)

examples corresponding to constant solutions may also be obtained via the Hitchin

flow (of G2-structures). From the definition of α and the expression relating the

metrics gΦ and gω , it is straightforward to compute

‖dH‖gΦ
=

A
u1/2H1/2s1/3s′

.

Thus we can define a geodesic coordinate t on N8 by

t =
1

A3/2

∫
s(s+ c)((p+qs)2− (a+bs)2)1/2ds.
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The hypersurfaces L̃t in N8 corresponding to level sets of t are the T3
α,ξ ,η

bundles

over M4 defined by (4.5.4) and are endowed with cocalibrated G2-structures φt .

From our expression for Φ we have that

∗φt φt = η ∧ξ ∧ ω̃1 +
(s+ c

A

)
η ∧α ∧ω2 +

s2(s+ c)2

2A2 ω̃1∧ ω̃1 + sα ∧ξ ∧ω3.

It is easy to see, from the expressions of the curvature forms (4.5.4), that (4.8.1)

holds. It is straightforward to verify that (4.8.2) is also satisfied.

For instance, in the GLPS Spin(7) example we find that 4t = H3 = s4 and an

orthonormal coframing for φt is given by

s3/2e1, s3/2e2, s3/2e3, s3/2e4, s−1
η , s−1

ξ , s−1
α.

Remark 4.8.1. Although there are many cocalibrated G2-structures on nilmani-

folds, the scarcity of finding explicit metrics with holonomy equal to Spin(7) stems

from the fact that the Hitchin flow is generally hard to solve and moreover, it often

leads to SU(4) holonomy metrics rather than Spin(7) cf. [46] and theorem 3.2.1.

4.9 Perturbation of constant solutions
In this section we describe explicit solutions to Corollary 4.4.4 which vary on

M4 i.e. with dMu 6= 0. Our solutions are obtained by perturbing the Kähler potential

of the constant solution examples. We shall again assume that (M4,ω1,ω2,ω3)

is a hyperKähler manifold together with an anti-self-dual 2-form ω0 as defined in

section 4.5. We look for solutions to (4.4.9) and (4.4.10) with ω̃1 of the form

ω̃1 = (a+bs)ω0 +(p+qs)ω1 +dMdc
MG.

When G= 0 we recover the constant solution metrics. We also know from the global

ddc lemma that any Kähler form in the same cohomology class can be expressed in

this form for some function G. Equation (4.4.10) can now be written as

dMdc
M(u−A2G̈) = 0, (4.9.1)
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and condition (4.4.9) becomes

u ·ω2
1 =

s(s+ c)
A

(
(
(p+qs)2− (a+bs)2 +(p+qs)∆MG

)
·ω2

1 (4.9.2)

+2(a+bs)(dMdc
MG)∧ω0 +(dMdc

MG)2),

where ∆M denotes the Hodge Laplacian on (M4,gω1,J1). Note that we can also

express the last term as

(dMdc
MG)2 = (

1
4
(∆MG)2− 1

2
‖(dMdc

MG)0‖2
gω1

) ·ω2
1 ,

where (dMdc
MG)0 denotes the traceless component of dMdc

MG or equivalently its

projection in Λ2
−. The system (4.9.2) and (4.9.1) is still quite hard to solve in full

generality, so we shall make some further simplifying assumptions.

From [11, Theorem 2.4, 3.2] we know that a smooth real function F on M4

satisfies

(dMdc
MF)2 = 0

if and only if M4 admits a foliation by complex submanifolds, with the leaves cor-

responding to the integral (complex) curves of the ideal generated by dMdc
MF . In

this case we may assume there exists locally a fibration π : M4→ Σ2, where Σ2 is

a complex curve and that F descends to a function on Σ2. Under this hypothesis on

G, for each s, we can eliminate the quadratic term in (4.9.2) .

We shall now illustrate how one can construct metrics with holonomy equal to

Spin(7) under these assumptions by perturbing the GLPS example.

Example. As before, consider M =T4 with local coordinates (x1,x2,x3,x4) and en-

dowed with the standard flat hyperKähler structure. We set (a,b, p,q) = (0,0,0,1),

A = 1 and consider G of the form:

G(s,x1,x2) = v(s) ·F(x1,x2)+
1

12
s4.
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Σ2 here is the elliptic curve T2 with coordinates (x1,x2). Defining u by

u = G̈

automatically solves (4.9.1), and (4.9.2) becomes equivalent to the pair;

∆MF = µF,

v̈ = µs2v,

where µ is a constant. The reader might recognise that the second equation is the

well-known Weber equation. With µ = 1, a simple solution is given by

F = sin(x1),

v =U(0,
√

2s),

with U(a, t) denoting the parabolic cylinder function, see [1, Chapter 19] for a pre-

cise definition in terms of hypergeometric functions. From Corollary 4.4.4 we find

that the connection form α is can be expressed as

α = dx5− v̇cos(x1)dx2,

where x5 denotes the angular coordinate on the S1 fibre. One can verify that gΦ,

well-defined for {s | U(0,
√

2s) < 1}, has holonomy equal to Spin(7). Thus this

gives a Spin(7) perturbation of the GLPS metric.

Setting f (x1,s) = 1+ sin(x1)v(s) and denoting by (x6,x7) the coordinates on

the T2 fibres, we can express the connection forms as

ξ = dx6− x3dx1− x2dx4,

η = dx7− x4dx1− x3dx2.
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and hence, the perturbed metric can be expressed in local coordinates as

gΦ = s2( f (dx2
1 +dx2

2)+dx2
3 +dx2

4)+ f−1
α

2 + s−2(ξ 2 +η
2)+ s4 f ds2.

One can get other similar examples by choosing µ =−1 and allowing F to depend

on both x1 and x2 for instance.

Remark 4.9.1. Another source of compact examples fitting in the above construc-

tion are elliptic K3 surfaces. These examples however require more sophisticated

tools to study as the metrics are no longer explicit.

We conclude our study of the S1 Kähler reduction and now proceed to the T2 case.

4.10 Further reduction II

4.10.1 T2 Kähler reduction

Recall from subsection 4.3.2 that there are two natural constraints to impose

on the function s. The first is that s is a function of H, and the second that s and

y := Hs−1/3 are independent functions on P6 with U and W orthogonal. Having

investigated the former situation, we shall now study the latter case and give yet

more examples of Spin(7) metrics.

We follow the same strategy as in the proof of Theorem 4.4.1. We first define

connection 1-forms α and κ on P by

α(·) = gω(U, · )u, (4.10.1)

κ(·) = gω(W, · )w, (4.10.2)

where u := ‖U‖−2
ω and w := ‖W‖−2

ω . From our assumptions on U and W , it is easy

to see that they commute and that they are infinitesimal symmetries of the SU(3)-

structure. Hence they define a (C×)2 action on P6 and we can once again carry out

a Kähler reduction:

(P6,ω,Ω,J)
//T2

−−→ (Σ2, ω̃,ϒ, J̃).



4.10. Further reduction II 90

The holomorphic (1,0)-form ϒ on Σ2 is defined by

ϒ1− iϒ2 :=
1
4
(W − iJW )y(U− iJU)y(H1/2s1/3

Ω)

and the quotient symplectic form ω̃(s,y) is given by

ω =−α ∧dy+κ ∧ds+ ω̃(s,y). (4.10.3)

Note that if Σ2 is compact then it must be an elliptic curve, since it has trivial first

Chern class. Unlike in the previous case however the horizontal lifts of U and W do

not preserve the Spin(7)-structure as

LU η = ϒ2 and LW ξ =−ϒ1.

One easily shows the above using expressions (4.3.5), (4.3.6) for the curvature

forms and expression (4.10.6) below for Ω. Hence, for each fixed s and H, the six

dimensional hypersurface in N8 corresponds to a T2 bundle over a T2 bundle over

the surface Σ2. In the case when Σ = T2, this hypersurface is just a nilmanifold.

Thus, we shall generally refer to these hypersurfaces as ‘nilbundles’.

From (4.3.5) and (4.3.6) we can equivalently write α and κ as

α =−udcy, (4.10.4)

κ = wdcs. (4.10.5)

As in subsection 4.4.1, we can once again express the data (P6,ω,Ω,α,κ)

purely in terms of (Σ2, ω̃,ϒ,u(s,y),w(s,y)), and thus provide a way to invert the

Kähler reduction. More precisely imposing that the (3,0) form given by

y1/2s1/2
Ω = (α− iudy)∧ (κ + iwds)∧ (ϒ1− iϒ2) (4.10.6)

and ω , given by (4.10.3), are both closed leads to the system (4.10.8)-(4.10.10)
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while the normalisation condition (2.3.2) leads to (4.10.7). For instance from dω =

0, we have
∂ω̃

∂ s
=−dΣκ,

while using the closedness of (4.10.6) and the fact that β ∧ϒ1 = J(β )∧ϒ2 for a

1-form β on Σ we have
∂κ

∂ s
=−dc

Σw,

combining both equations give (4.10.9). The proof for the rest is completely analo-

gous and the result is summed up as follows:

Theorem 4.10.1. Given a complex curve (Σ2, J̃) with a holomorphic (1,0)-form

ϒ1− iϒ2, a 1-parameter family of positive functions u = u(y) and w = w(s), and a

family of Kähler forms ω̃(s,y) satisfying

−(s · y) ω̃ = (u ·w)ϒ1∧ϒ2, (4.10.7)

∂ 2ω̃

∂y2 = dΣdc
Σu, (4.10.8)

∂ 2ω̃

∂ s2 = dΣdc
Σw, (4.10.9)

∂ 2ω̃

∂y∂ s
= 0, (4.10.10)

where dΣ denotes the exterior differential on Σ2 and dc
Σ

:= J̃ ◦dΣ. Then there exists,

on the ‘nilbundle’ over Σ2×R+
s ×R+

y , defined by the curvature 2-forms:

dα =−dc
Σu∧dy+

∂ω̃

∂y
,

dκ = dc
Σw∧ds− ∂ω̃

∂ s
,

dξ = ϒ1∧κ +ϒ2∧w ds,

dη = α ∧ϒ2 +u dy∧ϒ1,

a torsion free Spin(7)-structure Φ inducing the metric:

gΦ = s−2
η

2 + y−2
ξ

2 + y · s (u−1
α

2 +u dy2 +w−1
κ

2 +w ds2 +gω̃), (4.10.11)
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where gω̃ denotes the Kähler metric on (Σ2, J̃) determined by ω̃.

4.10.2 A general existence result

Before constructing explicit examples we first describe how to find a general

solution to Theorem 4.10.1.

We pick complex coordinate z = x1+ ix2 on Σ2 so that we can write ϒ = dx1+

idx2 and the Kähler form is given by

ω̃ = F(y,s) dx1∧dx2,

where F is a positive function on Σ2 depending on y and s. From equation (4.10.10)

we have that

F(s,y) = F1(y)+F2(s).

Thus, equations (4.10.8) and (4.10.9) are equivalent to the pair:

∂ 2F1

∂y2 =−(ux1,x1 +ux2,x2), (4.10.12)

∂ 2F2

∂ s2 =−(wx1,x1 +wx2,x2), (4.10.13)

while equation (4.10.7) reduces to

s · y (F1(y)+F2(s)) = u(y) ·w(s). (4.10.14)

It follows, without loss of generality, that either F1 or F2 must be zero and hence,

that either u(y) or w(s) is a 1-parameter family of harmonic functions on Σ2. In

particular if Σ = T2 then either u or w is constant.

Assuming that F2 = 0, (4.10.13) and (4.10.14) implies that

F1(y) =
(

u(y)
y

)
·G(x1,x2) and w(s) = s ·G(x1,x2),

for a positive harmonic function G : Σ→ R+, independent of s and y. Therefore,
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solving the general system of Theorem 4.10.1 amounts to solving the single PDE

G · ∂ 2

∂y2 (ũ(y)) = y ·∆Σũ(y), (4.10.15)

where ũ(y) := u(y)
y and ∆Σ denotes the Hodge Laplacian on Σ2. Given real analytic

initial data we can once again appeal to the Cauchy-Kovalevskaya theorem for the

existence and uniqueness of a real analytic solution.

Corollary 4.10.2. Given real analytic functions u0 and u1 on (an open set of) a

complex curve (Σ2,J1,ϒ1− iϒ2) with u0 > 0, then there exists a unique real analytic

solution ũ(y), for y in a small interval, to (4.10.15) with ũ(0) = u0 and ∂ ũ
∂y (0) = u1,

and hence by Theorem 4.10.1 a torsion free Spin(7)-structure.

Remark 4.10.3. If we look for separable solutions ũ = A(y) · B(x1,x2), then

(4.10.15) becomes equivalent to the pair

∂ 2

∂y2 A(y) = µ · y ·A(y), (4.10.16)

∆ΣB = µ ·G ·B, (4.10.17)

where µ is a constant and equation (4.10.16) is the well-known Airy equation for

µ 6= 0.

In summary, we have reduced the problem of finding Spin(7) metrics admitting

Kähler reduction with T2 symmetry to choosing a positive harmonic function G and

solving (4.10.15). We now proceed to describe some explicit examples.

4.11 Constant solutions II
In this section we describe the simplest solutions which arise when u and w are

both constants on Σ2. Without loss of generality, this corresponds to setting µ = 0,

B = 1 and G = c is a positive constant, in (4.10.16) and (4.10.17). The general

solution is then given by

w(s) = cs,
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u(y) = y(p+qy),

ω̃ = c(p+qy) dx12,

where p,q∈R and the positivity condition on u implies that the solution is valid for

p+qy > 0.

Denoting the coordinates on the fibres by (x3,x4,x5,x6), we can express the

connection 1-forms as

α = cqx1dx2 +dx3,

κ = dx4,

ξ = dx5 + x1dx4− csx2ds,

η = dx6 + x2dx3− yx1(p+qy)dy.

If we fix y and s, then we have that

(dα,dκ,dξ ,dη) = (cqdx12,0,dx14,dx23).

Thus, it follows that if Σ = T2 then these codimension 2 submanifolds are diffeo-

morphic to nilmanifolds with nilpotent Lie algebra isomorphic to either

(0,0,0,0,12,34) or (0,0,0,12,13,24),

depending on whether q is zero or not. The former corresponds to the 2-step nilpo-

tent Lie algebra of the product of two real Heisenberg groups while the latter corre-

sponds to an indecomposable 3-step nilpotent Lie algebra. By computing the rank

of the associated curvature operator we find:

Theorem 4.11.1. The metrics determined by expression (4.10.11) when Σ = T2

endowed the flat metric, explicitly given by

gΦ = s−2
η

2 + y−2
ξ

2 + s(p+qs)−1
α

2 + c−1yκ
2

+ y2s(p+qs)dy2 + cys2ds2 + csy(p+qy)(dx2
1 +dx2

2),
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have holonomy equal to Spin(7).

Thus, this classifies the constant solution examples. We shall now consider

some non-constant solutions.

4.12 Examples of non-constant solutions
In this section we give explicit examples of Spin(7) metrics which vary on

Σ2. To illustrate the different cases that can arise from our construction, in the first

example we consider a non-compact surface so that we may choose non-constant

harmonic functions on Σ2 and in the second example we consider a separable so-

lution with µ = 1 on T2. As in the previous section we shall denote the fibre

coordinates by (x3,x4,x5,x6).

Example 1. We take Σ = C−B1(0), where B1(0) denotes the unit ball centred

at the origin, with the holomorphic form ϒ = dx1 + idx2 as before. Following the

strategy outline in subsection 4.10.2 we find that a solution is given by choosing

F1(y) = y ln(r), F2(s) = 0, w(s) = s ln(r) and u(y) = y2, where r := x2
1 + x2

2. The

connection 1-forms are given in local coordinates by:

α = dx3 +(x1 ln(r)−2x1 +2x2 arctan
(x1

x2

)
)dx2,

κ = dx4−
1
2

s2dc
Σ ln(r),

ξ = dx5 + x1dx4 +
1
2

s2 ln(r)dx2

η = dx6 + x2dx3− x1y2dy.

One can again check that the induced metric has holonomy equal to Spin(7).

Example 2. We now take Σ = T2 endowed with the standard flat Kähler structure.

With µ = 1 the general solution to (4.10.16) is the Airy function Ai(y). Thus,

picking F1(y) = Ai(y)sin(x1), F2(s) = 0, w(s) = s and u(y) = yAi(y)sin(x1), we
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obtain another solution. The connection 1-forms are now given by:

α = dx3−Ai′(y)cos(x1)dx2,

κ = dx4,

ξ = dx5 + x1dx4− sx2ds,

η = dx6 + x2dx3 + yAi(y)cos(x1)dy.

The resulting Spin(7) metric is well-defined on the set where u > 0. By taking

Σ = C and µ = −1 instead we find yet more examples of Spin(7) holonomy met-

rics.

Concluding Remarks. In this chapter we investigated the T2-reduction of torsion

free Spin(7) structures under the assumption that the quotient is Kähler. However as

shown in section 4.2 the quotient SU(3)-structure is generally only almost Kähler.

Thus, it would interesting to investigate if other distinct types of SU(3)-structures,

aside from the Kähler case considered here, can arise as well. From our results, it

follows that, even locally, such a quotient cannot be a Calabi-Yau 3-fold unless N8 is

the Riemannian product P6×T2. Furthermore, we have been able to prove that the

quotient cannot be a special generalised CY 3-fold (defined by dω=0 and dΩ+=0)

as well. This still leaves plenty other cases to study. By contrast, in the G2 case it is

not hard to see that only two types of SU(3)-structures can arise, namely the Kähler

one or the generic one i.e. with neither π1 nor π2 zero. Another interesting problem

would be to investigate if one can find smooth completions to our Spin(7) metrics.

This will likely necessitate the study of non-free T2 actions.



Chapter 5

S1-invariant closed G2-structure and

the Laplacian flow

5.1 Overview of chapter
In this chapter we study S1-invariant closed G2-structures (L7,ϕ) evolving un-

der the Laplacian flow. Let us first give some motivation for our work.

Motivation. The interest in closed G2-structures is mainly due to the fundamental

works of Joyce and Bryant-Hitchin. Joyce’s theorem roughly states that a closed

G2-structure on a compact 7-manifold with sufficiently small torsion can be de-

formed to a torsion free one cf. [61, Theorem 11.3.4]. This theorem underpins all

the currently known constructions of compact G2 manifolds. Although compact G2

manifolds cannot admit continuous symmetry closed ones can, which makes them

much easier to construct, see for instance [25] for the classification of closed G2-

structures on nilmanifolds. Of more relevance for us here is the G2 Laplacian flow,

which was introduced by Bryant in [19] as a way of deforming a closed G2-structure

within its cohomology class to a torsion free one. In [54] Hitchin introduces a func-

tional on the cohomology class of a closed G2-structure and shows that critical

points are exactly the torsion free ones (in that cohomology class) [54, Theorem

19]. Bryant’s Laplacian flow then turns out to be the gradient flow of this functional

for a suitable metric. The flow can be interpreted as a Kähler Ricci type flow for

G2-structures. Due to the complex nature of the Laplacian flow most of the works
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in this area have been carried out on homogeneous spaces. The first inhomogeneous

Laplacian soliton examples only appear at the time of writing of this thesis cf. [7].

In the final section of this chapter we shall give another new example.

In an attempt to simplify the Laplacian flow we initiate the investigation when

the flow is invariant under a free circle action. Our goal in this chapter is two-

fold; we first give a ‘Gibbons-Hawking ansatz’ type theorem for the construction of

closed G2-structures starting from suitable data on a symplectic manifold (P6,ω)

and secondly we derive the evolution equations for S1-invariant closed G2-structure

under the Laplacian flow, or more precisely the evolution equation of the quotient

SU(3)-structure. The latter problem was motivated by the works of Fino and Raf-

fero in [38], where they studied the flow equations for warped G2-structures on

P6×S1, and of Fine and Yao in [37], where they interpreted the Laplacian flow on

M4×T3 as a hypersymplectic flow on M4 in a bid to find hyperKähler triples. In

the final section we consider the flow on two specific examples. In particular we

will construct the first example of an inhomogeneous shrinking gradient soliton.

5.2 S1 reduction of closed G2-structure
Our aim in this section is to characterised S1-invariant closed G2-structures

purely in terms of the data on the quotient space. In other words we aim to derive a

Gibbons-Hawking type construction for closed G2-structures, see theorem 5.2.2.

Let (L7,ϕ) denote a closed G2-structure which is invariant under a free S1

action generated by a vector field Y . Following the conventions of section 4.2.1 we

write

ϕ = ξ ∧ω +H3/2
Ω

+, (5.2.1)

∗ϕϕ =−ξ ∧H1/2
Ω
−+

1
2

H2
ω

2, (5.2.2)

gϕ = H−2
ξ

2 +Hgω , (5.2.3)

where ξ (·) := H2gϕ(Y, ·) and H := ‖Y‖−1
ϕ . Since LX ϕ = 0 and ϕ is closed, we
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have

dω = 0, (5.2.4)

dΩ
+ =−3

2
H−1dH ∧Ω

+−H−
3
2 dξ ∧ω, (5.2.5)

dξ ∧ω
2 = 0. (5.2.6)

Note that the last equation follows by differentiating ϕ∧ω and using (5.2.4). Under

the inclusion SU(3) ⊂ G2, we can express the torsion form as τ2 = τh + ξ ∧ τv for

a 2-form τh and a 1-form τv which are basic (since LX τ = 0). As τ2 ∈ Λ2
14 we find

from (2.1.8) that

τh∧ω
2 = 0, (5.2.7)

τv∧
1
2

H3/2
ω

2 = τh∧Ω
−. (5.2.8)

Note that (5.2.6) and (5.2.7) imply that dξ and τh have no ω-component i.e. dξ =

(dξ )2
6 +(dξ )2

8 and τh = τ6 + τ8 ∈ Λ2
6⊕Λ2

8. In terms of the SU(3)-structure we can

express the condition dϕ = τ2∧ϕ as

dΩ
− = H

1
2 τ6∧ω +(Hτv−

1
2

H−1dcH)∧Ω
++H

1
2 τ8∧ω, (5.2.9)

HdH ∧ω
2− (dξ )2

6∧H1/2
Ω
− = τ6∧H

3
2 Ω

+. (5.2.10)

Observe that the forms (dξ )2
6, τv and τ6 are related by (5.2.8), (5.2.10) and the fact

that π1 appears in both (2.3.13) and (2.3.14). Thus, these forms are all essentially

equivalent, more precisely we have:

Lemma 5.2.1.

τv =−2H−2(dcH + J(γ1
6 )) and −2τ6 = H

3
2 ∗ω (τv∧Ω

+),

where the 1-form γ1
6 is defined by H−

1
2 (dξ )2

6∧ω = γ1
6 ∧Ω+.

Proof. Let τ6 ∧ω = H
3
2 β6 ∧Ω+ for a 1-form β6, then using lemma 2.3.3 we can



5.2. S1 reduction of closed G2-structure 100

express the SU(3) torsion forms into irreducible summands as

dΩ
+ = (−3

2
H−1dH−H−1

γ
1
6 )∧Ω

+−H−
3
2 (dξ )2

8∧ω, (5.2.11)

dΩ
− = (H(τv +β6)−

1
2

H−1dcH)∧Ω
++H−

1
2 τ8∧ω, (5.2.12)

and hence we have

dcH + Jγ
1
6 =−H2(τv +β6).

From (5.2.8) we find that τv = −2β6 and together with (5.2.10) this completes the

proof.

We can express the SU(3) torsion forms in terms of suitable derivatives of the

SU(3)-structure as:

τ6 = H−
1
2 ∗ω ((dcH + Jγ

1
6 )∧Ω

+)

τ8 =−H
1
2 ∗ω dΩ

−−∗ω((
3
2

H−
1
2 dcH + Jγ

1
6 )∧Ω

+)

and the G2 torsion form as:

τ2 =−H
1
2 ∗ω dΩ

−− 1
2

H−
1
2 ∗ω −(dcH ∧Ω

+)−2ξ ∧ (H−2dcH +H−2Jγ
1
6 ).

(5.2.13)

In appendix C we give the corresponding expressions relating the torsion of an

arbitrary (i.e. not necessarily closed) G2-structure to that of the quotient SU(3)-

structure. We can now prove the main result of this section.

Theorem 5.2.2 (Gibbons-Hawking ansatz for closed G2-structures). Given a sym-

plectic manifold (P6,ω) with trivial first Chern class admitting an SU(3)-structure

(ω,Ω) and a positive function H : P6→ R+ satisfying

d∗ω (d∗ω (H3/2
Ω
−)∧ω) = 0 (5.2.14)

with

[−∗ω (d∗ω (H3/2
Ω
−)∧ω)] ∈ H2(P6,Z) (5.2.15)
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then ϕ = ξ ∧ω +H3/2Ω+ defines a closed G2-structure on the total space of this

S1 bundle and the curvature of the connection form ξ is given by

dξ =−∗ω (d∗ω (H3/2
Ω
−)∧ω). (5.2.16)

Proof. In view of the above quotient construction we only need to prove that ξ (·) :=

H2gϕ(Y, ·) satisfies (5.2.16). Applying ∗ω to (5.2.5) we find

(dξ )2
8 = (dξ )2

6 +∗ω(d(H3/2
Ω

+))

and thus, dξ = 2(dξ )2
6 + ∗ω(d(H3/2Ω+)). Equivalently one may consider the au-

tomorphism L : Λ2
6⊕Λ2

8→ Λ2
6⊕Λ2

8 given by

L(α) = ∗ω(α ∧ω)

which acts as the identity on Λ2
6 and minus identity on Λ2

8. Then

dξ =−L(∗ω(d(H3/2
Ω

+))) =−∗ω (d∗ω (H3/2
Ω
−)∧ω),

using Ω+ =−∗ω Ω−.

Remark 5.2.3. Note that in the above theorem condition (5.2.15) is the higher

dimensional analogue of the ‘integrality’ condition that figures in the Gibbons-

Hawking ansatz and the (linear) harmonic condition on V replaced by the (non-

linear) condition (5.2.14) on the pair (H,Ω). We should emphasise that ∗ω depends

on both ω and Ω.

From lemma 5.2.1 we can characterise torsion free G2-structures in terms of

the data on the base by the following proposition.

Proposition 5.2.4 ([3]).

d ∗ϕ ϕ = 0 if and only if γ
1
6 =−dH and d(H

1
2 Ω
−) = 0.



5.3. The S1-invariant Laplacian flow 102

Moreover (P6,ω,Ω) is a Calabi-Yau 3-fold if and only if H is constant.

Proof. The first part follows immediately by imposing τ6 = τ8 = 0. If furthermore

H is constant then from lemma 5.2.1 we have (dξ )2
6 = 0. Differentiating the relation

dξ ∧Ω
+ = 0

and using (5.2.5) shows that ‖dξ‖ω = 0, which completes the proof.

5.3 The S1-invariant Laplacian flow

5.3.1 Basics

Given a closed G2-structure ϕ0 the Laplacian flow (LF) is defined as the initial

value problem

∂

∂ t
(ϕ) = ∆ϕϕ, (5.3.1)

ϕ(0) = ϕ0, (5.3.2)

where ∆ϕ := dd∗ϕ + d∗ϕ d. The LF preserves the closed condition i.e. dϕt = 0 for

all t (when the flow exists) and thus (5.3.1) is equivalent to ∂

∂ t ϕ = dτ2. In the

compact setting, Hitchin gives the following interpretation of the flow. Consider the

functional Ψ : [ϕ0]
+→ R+ defined by

Ψ(ρ) :=
1
7

∫
L

ρ ∧∗ρρ =
∫

L
volρ

where [ϕ0]
+ := {ϕ0 + dβ ∈ Ω3

+(L) | β ∈ Ω2(L)} denotes an open set of closed

G2-structures in the cohomology class [ϕ0] ∈ H3(L,R). Then computing the Euler-

Langrange equation Hitchin finds that the critical points of Ψ satisfy d∗ϕ ρ = 0. The

LF is the gradient flow of Ψ with respect to the L2 norm induced by gρ on [ϕ0]
+.

The Hessian of Ψ at a critical point is non-degenerate transverse to the action of the

diffeomorphism group and in fact is negative definite. Ψ can thus be interpreted as

a Morse-Bott functional and the torsion free G2-structures correspond to the local
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maxima. In the non-compact setting this interpretation is not valid but the LF is still

well-defined.

In [19], Bryant computes the evolution equations for following geometric

quantities under the LF

∂

∂ t
(∗ϕϕ) =

1
3
‖τ2‖2

ϕ ∗ϕ ϕ−∗ϕdτ2, (5.3.3)

∂

∂ t
(gϕ) =−2Ric(ϕ)+

1
6
‖τ2‖2

ϕgϕ +
1
4

j(∗ϕ(τ2∧ τ2)), (5.3.4)

∂

∂ t
(volϕ) =

1
3
‖τ2‖2

ϕvolϕ . (5.3.5)

Note that the coefficient in front of gϕ in (5.3.4) differs from that in [19, (6.15)] but

a calculation in local coordinates show that (5.3.4) agrees with [38, (4.2)]. In [19,

(4.30)] Bryant also derives an expression for the Ricci tensor in terms of the torsion

form only and thus, one can express (5.3.4) only in terms of the torsion form as

∂

∂ t
(gϕ) =−

1
3
‖τ2‖2gϕ +

1
2

j(dτ2). (5.3.6)

The simplest solutions to (5.3.1) are those that evolve by the symmetry of the flow.

If ϕ0 satisfies

∆ϕ0ϕ0 = λ ·ϕ0 +LV ϕ0 (5.3.7)

for a vector field V and constant λ then

ϕt := (1+
2
3

λ t)
3
2 F∗t ϕ0,

where Ft is the diffeomorphism group generated by U(t) = (1 + 2
3λ t)−

2
3V , is a

solution to LF and ϕ0 is called a Laplacian solition [68]. Depending whether λ

is positive, zero or negative the soliton is called expanding, steady or shrinking

respectively. If V is a gradient vector field then we called them gradient solitons.

5.3.2 S1-invariant flow equations

Consider now the LF starting from an S1-invariant G2-structure. Then by exis-

tence and uniqueness of the flow (at least in the compact case) cf. [22, 68] it follows
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that this symmetry persists. Thus, in the S1-invariant setting, using (5.2.13) we see

that the LF equation is equivalent to the following evolution equations on the SU(3)

structure together with the connection 1-form ξ and Higgs field H:

∂

∂ t
(ω) =−2ddc(H−1)+2d(H−2Jγ

1
6 ), (5.3.8)

∂

∂ t
(ξ )∧ω +

∂

∂ t
(H3/2

Ω
+) =−d ∗ω d(H

1
2 Ω
−)+2dξ ∧dc(H−1)−2H−2dξ ∧ Jγ

1
6 .

(5.3.9)

Observe that (5.3.8) agrees with the fact that since ϕ remains in its cohomology

class so does ω . In this section we derive the evolution equations for the data

(ω,Ω,ξ ,H,volω) on P6, but before we derive expressions for quantities that will

appear in the evolution equations.

Lemma 5.3.1.

1. ‖γ1
6‖2

ω = 1
2H−1‖(dξ )2

6‖2
ω .

2. ‖τ2‖2
ϕ = H−2(‖τ8‖2

ω +3‖τ6‖2
ω)

3. ‖dΩ−‖2
ω = H−1‖τ8‖2

ω +H−2(9
2‖dH‖2

ω +2‖γ1
6‖2

ω +6gω(dH,γ1
6 ))

4. ‖τ6‖2
ω = 2H−1‖dH + γ1

6‖2
ω

Proof. The proof is analogous to lemma 3.2.1 using the expressions given in the

previous section together with lemma 2.3.3. We prove 1. as an example,

γ
1
6 ∧∗ωγ

1
6 =

1
2

H−1/2
γ

1
6 ∧ (dξ )2

6∧Ω
+ =

1
2

H−1(dξ )2
6∧∗ω(dξ )2

6,

where the first equality follows from 2. of lemma 2.3.3 and the definition of γ1
6 .

The second equality is again just by the definition of γ1
6 . The proofs for the rest are

similar.

Proposition 5.3.2.

∂

∂ t
(ξ )∧ω

2 =− (d ∗ω d)(H
1
2 Ω
−)∧ω +2dξ ∧dc(H−1)∧ω (5.3.10)
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−2H−2dξ ∧ J(γ1
6 )∧ω−2H

3
2 Ω

+∧ddc(H−1) (5.3.11)

+2H
3
2 Ω

+∧d(H−2J(γ1
6 )) (5.3.12)

Proof. In order to extract the evolution equation of the connection form ξ in (5.3.9),

we differentiate the relation H
3
2 Ω+∧ω = 0 and use (5.3.8).

Proposition 5.3.3.

∂

∂ t
(H) =−H−1d∗ω d(H)−2H−2gω(dH,γ1

6 )−H−2‖dH‖2
ω

+
1
6

H−1‖τ8‖2
ω +

1
2

H−3‖(dξ )2
8‖2

ω (5.3.13)

Proof. Since H−2 = gϕ(Y,Y ) we can use (5.3.6) to write down its evolution equa-

tion. Thus, we only need to simplify the term

j(dτ2)(Y,Y ) = ∗ϕ(ω ∧ω ∧ξ ∧d(H−2dcH +H−2Jγ
1
6 ))

which is straightforward, except for the term involving d(Jγ1
6 ). From lemma 2.3.3

it suffices to compute

d(H1/2Jγ
1
6 ∧ω ∧ω) =−d((dξ )2

6∧Ω
+).

To compute d((dξ )2
6)∧Ω+, we first note that d(dξ )2

6 =−d(dξ )2
8. Now differenti-

ating the relation (dξ )2
8∧Ω+ = 0 we have

d((dξ )2
6∧Ω

+) = (dξ )2
6∧dΩ

++(dξ )2
8∧dΩ

+

and using (5.2.11) this finishes the proof.

Observe that even if H is initially constant (i.e. the S1 orbits have constant

size) this is not preserved in time. Using the above two propositions we can also

extract the evolution equation for Ω+ in (5.3.9) but the resulting expression is quite

involved and we have been unable to simplify it so we don’t write it out.
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Proposition 5.3.4.

∂

∂ t
(gω) =−

(
∂

∂ t
(lnH)+

1
3
‖τ2‖2

ϕ −
1
3

gω(dτv,ω)−2H−3/2(dξ ∧ τv +dτh)
3+
1

)
gω

+ j((dξ ∧ τv +dτh)
3
12 +ξ ∧ (dτv)

2
8). (5.3.14)

Proof. The idea is to again use equation (5.3.6) for gϕ . Since ∂

∂ t (gω) only evolves

on the base P6 we can ignore terms involving ξ . Thus, we have that

∂

∂ t
(gω) =−

∂

∂ t
(lnH)gω −

1
3
‖τ2‖2

ϕgω +
1
2

H−1 j(dτ2)

∣∣∣∣
P6

As SU(3) modules we have the following decomposition

Λ
3
1(L)⊕Λ

3
27(L)∼= S2(R7) = S2(R⊕R6)

= 〈ξ 2〉⊕ (ξ �R6)⊕S2(R6)

= 〈ξ 2〉⊕ (ξ �R6)⊕〈gω〉⊕S2
0(R6)

∼= 〈ξ 2〉⊕ (ξ �R6)⊕〈gω〉⊕Λ
2
8(P)⊕Λ

3
12(P)

It follows that the only terms in j(dτ) that contribute to the evolution of gω belong

to the last 3 summands. Since we have that dτ2 = dξ ∧ τv +dτh−ξ ∧dτv, the only

terms that can arise in the evolution of gω are the 〈Ω+〉⊕ 〈Ω−〉⊕Λ3
12 components

of dξ ∧ τv +dτh which we write as

(dξ ∧ τv +dτh)
3+
1 Ω

++(dξ ∧ τv +dτh)
3−
1 Ω

−+(dξ ∧ τv +dτh)
3
12

and the Λ2
1⊕Λ2

8 components of ∗ω(∗ϕ(ξ ∧ dτv)) = Hdτv. A direct computation

using pointwise coordinates to identify ϕ with ϕ0 shows that

j(H3/2
Ω

+) = 4Hgω
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and since j(ϕ) = 6 ·gϕ we also have

j(ξ ∧ω) = 6H−2
ξ

2 +2Hgω .

Lastly since Ω− =−Yy (H−1/2 ∗ϕ ϕ) ∈ Λ3
7 we see that

j(H3/2
Ω
−) = 0.

It follows now from the above that as SU(3) modules we have

Λ
3
27
∼= 〈gω −6ξ

2〉⊕〈ξ � v〉v∈T ∗P⊕Λ
2
8⊕Λ

3
12

and this concludes the proof.

The reader might find the presence of the map j in (5.3.14) rather unusual as

the latter is strictly speaking a G2-equivariant map but one can replace it by the

corresponding SU(3)-equivariant map

ι⊕ γ : S2
0(P)∼= Λ

2
8(P)⊕Λ

3
12(P)

defined in [12, Sect. 2.3].

Proposition 5.3.5.

∂

∂ t
(Ω−) =

(
1
3
‖τ2‖2

ϕ −
1
2

∂

∂ t
(lnH)

)
Ω
−−H−3/2 ∗ω (dτh +dξ ∧ τv) (5.3.15)

Proof. It suffices to use the evolution equation (5.3.3) for ∗ϕϕ and look the terms

involving only ξ .

Proposition 5.3.6.

∂

∂ t
(volω) = (

1
3
‖τ2‖2

ϕ −H−2 ∂

∂ t
(H2))volω (5.3.16)

Proof. This follows directly from (5.3.5) and the relation volϕ = H2ξ ∧ volω .



5.4. Examples of Laplacian solitons 108

Remark 5.3.7. The evolution equations derived in this section generalise those de-

rived in [38] in the special case that L7 = S1×P6 is a warped product. Note however

their choice of SU(3)-structure (P6, ω̌,Ω̌) differs from ours by a conformal factor

so that (ω̌,Ω̌) = (Hω,H3/2Ω). In particular, ω̌ is not symplectic. Since the induced

flow on the data (H,ξ ,Ω) is still generally quite complicated we shall only study it

on a couple of simple examples in the next section, which exclude their case.

5.4 Examples of Laplacian solitons

5.4.1 The Bryant-Fernández example

The compact nilmanifold L7 associated to the 2-step nilpotent Lie algebra

(0,0,0,0,0,12,13) admits a closed G2-structure given by

ϕ0 = e123 + e145 + e167 + e246− e257− e347− e356.

This example was discovered by Fernández in [34] and Bryant worked out the LF

on this example in [19]. The solution to the Laplacian flow is given by

ϕt = f 3e123 + e145 + e167 + e246− e257− e347− e356,

where f := (10
3 t + 1)

1
5 . Note that the solution in [19] contains a mistake, which

was subsequently corrected in [35] and more examples were found. This solution

is immortal and the volume grows as ∼ t1/5 in time. Bryant also shows that L7 can-

not admit a torsion free G2-structure for topological reasons and hence one cannot

expect the LF to converge. Nonetheless the torsion ‖τt‖2
gt
= 2 f−5 converges to zero.

We choose the vector field Y generating an S1 action preserving ϕ0 to be e6 so

that the connection form ξ = e6. The solution to the induced flow on the quotient

nilmanifold P6 is then given by

H = f 1/2, (5.4.1)

ωt = ω0 =−e17 + e24− e35, (5.4.2)

Ω
+
t = f

9
4 e123 + f−

3
4 (e145− e257− e347), (5.4.3)
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Ω
−
t =− f−

9
4 e457− f

3
4 (e237 + e125 + e134), (5.4.4)

gωt = f
3
2 ((e1)2 +(e2)2 +(e3)2)+ f−

3
2 ((e4)2 +(e5)2 +(e7)2), (5.4.5)

γ
1
6 =

1
2

f−5/2e5, dξ =
1
2
(e12− e47)+

1
2
(e12 + e47) ∈ Λ

2
6⊕Λ

2
8 (5.4.6)

We see that the symplectic form, and hence the volume form, stay constant while

the metric (equivalently the complex structure) degenerates at infinity. Note that

neither τ6 nor τ8 is zero in this example.

5.4.2 The Apostolov-Salamon examples

Consider the manifold L7 = N6×Ru where N6 is a compact nilmanifold with

Lie algebra (0,0,0,0,13−24,14+23). The G2-structure

ϕ =− f 2h(ω1∧du)+g2h(e56∧du)−g f 2(ω3∧ e5−ω2∧ e6), (5.4.7)

defines an orthonormal G2 coframing on L7 given by E1 = f e3, E2 = f e2, E3 = ge5,

E4 =−ge6, E5 =− f e1, E6 =− f e4 and E7 = hdu, where f ,g,h functions of u only

and ωi denote the standard self-dual 2-forms in 〈e1,e2,e3,e4〉. A direct calculation

shows:

Lemma 5.4.1.

1. dϕ = 0 if and only if ∂

∂u(g f 2) = g2h.

2. d ∗ϕ ϕ = 0 if and only if ∂

∂u( f g) = 0 and ∂

∂u( f ) = gh
f .

The explicit torsion free G2-structure given by setting f = (3u)1/3, g =

(3u)−1/3 and h = 1 corresponds to the GLPS G2 metric of section 4.6.

Let us now impose that ϕ is closed, so that h is determined by condition 1 of

lemma 5.4.1, and consider the S1 action generated by the vector field Y = e6. Then

applying the construction of section 5.2 we find

ω = (g2h)du∧ e5 +(g f 2)ω2,

Ω
+ =−( f 2hg3/2)ω1∧du− (g5/2 f 2)ω3∧ e5,
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Ω
− =−( f 2g5/2)ω1∧ e5 +(g3/2h f 2)ω3∧du

gω = g f 2((e1)2 +(e2)2 +(e3)2 +(e4)2)+g3(e5)2 +h2g(du)2,

ξ = e6, γ
1
6 =−h f−2du, dξ = ω3 ∈ Λ

2
6

H = g−1, π1 =
∂

∂u
(ln(g5/2 f 2))du, τ8 = 0.

Note that the above form for expressions of the SU(3)-structure was to be expected

since P6 is a complex line bundle on T4 so the SU(3)-structure had to involve forms

pullbacked from the base and the fibre. Since τ8 = (dξ )2
8 = 0 it follows that these

closed G2-structures all admit Kähler reductions.

Lemma 5.4.2. The torsion form is computed as

τ2 =
∂

∂u
( f 2g2)

1
hg2 ω1 +4(

g3

f 2 −
g2

f h
∂

∂u
( f ))e56.

Computing the LF for ϕ of the form (5.4.7) gives a pair

∂

∂ t
( f 2h) =− ∂

∂u
(

1
hg2

∂

∂u
( f 2g2)), (5.4.8)

∂

∂ t
(g f 2) = 4g2(

g
f 2 −

1
h f

∂

∂u
f ). (5.4.9)

This shows that the flow preserves ansatz (5.4.7) and hence the Kähler condition.

We have been unable to find the general solution to (5.4.8), (5.4.9), though numerics

show that there exists many local solutions. An explicit particular solution is given

as follows.

A shrinking gradient soliton.

With f (u) = 2−1/4eu/2, g(u) = 21/2eu and h(u) = 1 we have

ϕ0 =−2−1/2eu(ω1∧du)+2e2u(e56∧du)− e2u(ω3∧ e5−ω2∧ e6).

Taking λ =−18 and V = 15 ·∂u, we verify directly that the soliton equation (5.3.7)

is satisfied. Thus, it defines a gradient shrinking soliton and moreover the induced

metric is complete. To the best of our knowledge this example appears to be new.
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To derive the soliton equation we first observe that the general invariant vector

field V is of the form V = a · ∂u + b · e5 + c · e6, for functions a(u), b(u) and c(u).

Comparing with the expressions for τ2 and ϕ it is easy to see that we get a consistent

system only if b = c = 0. By rescaling the u-coordinate we can set h = 1 and

defining F = f 2g and G = g2, the closed condition becomes equivalent to G = F ′.

We compute the soliton equation for the unknowns (F(u),a(u)) as

(ln(F2F ′))′ =
λ

(ln(F))′
+a, (5.4.10)(

(F(F ′)1/2)′

F ′

)′
=−λF(F ′)−1/2− (aF(F ′)−1/2)′. (5.4.11)

With the ansatz F = eku, we find the solution λ =−9
2k2 and a = 15

2 k > 0. The scalar

curvature is

Scal =−1
2
‖τ2‖2

ϕ0
=−27

4
k2.

Observe that this example is not only S1-invariant but is in fact of cohomogene-

ity one type under the action of the nilpotent Lie group. As the general S1-invariant

LF is quite complicated motivated by the above example we initiate instead a search

for complete cohomogeneity one examples in the next chapter.



Chapter 6

Cohomogeneity one closed

G2-structures

6.1 Overview of chapter
Our aim in this chapter is to search for solutions to the Laplacian flow on

S3×R4 which are of cohomogeneity one type.

Recall that a cohomogeneity one manifold is one that admits an action of a

compact Lie group G such that M/G is diffeomorphic to either [0,1], (0,1), [0,1)

or S1 (thought of as [0,1] with 0 ∼ 1). The generic G orbit whose quotient cor-

responds to a point s ∈ (0,1) is a codimension 1 hypersurface diffeomorphic to a

homogeneous manifold G/K (known as the principal orbit) while for the endpoints

(if any) corresponding to s = 0,1 the orbit is a homogeneous space G/Hi for i = 0,1

(known as the singular orbits) and has codimension greater than 1. Thus, we have a

group inclusion K ⊂Hi ⊂G known as the group diagram of the cohomogeneity one

manifold M. We shall only be concerned with the case when M/G = [0,1) so that

M can be viewed as (0,1)×G/K compactified at the end s = 0 by G/H (writing

H = H0 since there is only one singular orbit).

The space S3×R4 is known to admit three 1-parameter families of cohomo-

geneity one G2 metrics, each family corresponding to a different group diagram,

see section 6.2. We shall only consider one of these three families in this chap-

ter. The first step to finding solutions to the Laplacian flow is to construct closed
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cohomogeneity one G2-structures as initial data. In section 6.3 we show that any

smooth closed SU(2)3-invariant G2-structure is necessarily torsion free and in fact

corresponds to the Bryant-Salamon one. Considering the less symmetric case of

SU(2)2×U(1)-invariant ones we find in section 6.4 that there exists a function’s

worth of smooth closed G2-structures and a 1-parameter family of closed cones.

The simplest solutions to the Laplacian flow being the soliton ones it makes sense

to understand these first. We rule out the existence of invariant conical and smooth

solitons on S3×S3×R+ and S3×R4 respectively. Since solitons arise in the blow-

up analysis of singularities of geometric flows the latter result seems to hint that no

finite time singularity occurs, thus suggesting long time existence of the flow.

6.2 Examples of explicit G2 metrics
The purpose of this section is to give a brief overview of the explicitly known

torsion free G2-structures on S3×R4 with SU(2)2×U(1) symmetry and also to set

up notation for the subsequent sections. We shall adhere to the conventions of [67].

6.2.1 The setup

Consider the Lie algebra su2 with its standard basis

T1 =

 i 0

0 −i

 T2 =

 0 1

−1 0

 T3 =

0 i

i 0


such that [Ti,Tj] = 2εi jkTk. Denoting by σi the dual basis and following the conven-

tions

v∧w =
1
2
(v⊗w−w⊗ v)

and

2dα(X ,Y ) = X(α(Y ))−Y (α(X))−α([X ,Y ])

we find dσi = −εi jkσ j ∧ σk. By identifying the tangent spaces of S3 × S3 with

su2⊕ su2 we can define a basis of the tangent bundle by T+
i = (Ti,Ti) and T−i =

(Ti,−Ti). The vectors {T+
i }3

i=1 define a Lie subalgebra and as such corresponds to

the tangent space of a diagonal S3 embedded in S3× S3. If we now denote by η
±
i
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the corresponding dual 1-forms, then the Maurer-Cartan relations give

dη
+
i =−εi jk(η

++
jk +η

−−
jk ),

dη
−
i =−2εi jkη

−+
jk ,

where we follow the convention that adjacent 1-forms are wedged together.

Equipped with these forms we define SU(2)2 ×U(1) invariant SU(3)-structures

on S3×S3 by

h = (2A1)
2(η+

1 ⊗η
+
1 )+(2A2)

2(η+
2 ⊗η

+
2 +η

+
3 ⊗η

+
3 )+

(2B1)
2(η−1 ⊗η

−
1 )+(2B2)

2(η−2 ⊗η
−
2 +η

−
3 ⊗η

−
3 ), (6.2.1)

ω = 4A1B1(η
−+
11 )+4A2B2(η

−+
22 +η

−+
33 ), (6.2.2)

Ω
+ = 8B1B2

2η
−−−
123 −8A1A2B2(η

++−
123 +η

+−+
123 )−8A2

2B1η
−++
123 , (6.2.3)

Ω
− =−8A2

2A1η
+++
123 +8B1B2A2(η

−−+
123 +η

−+−
123 )+8A1B2

2η
+−−
123 , (6.2.4)

where Ai,Bi : R+
s → R for i = 1,2. Here the U(1) is acting diagonally and is gen-

erated by the vector field T+
1 . It is easy to check that LT+

1
h = 0 if and only if the

coefficient functions of η
+
i and η

−
i for i = 2,3 are equal. We refer the reader to

[9] and section 2 of [42] for more details on these group actions. Having now intro-

duced the basic geometric objects we can now describe the SU(2)2×U(1) invariant

G2 structures on R+
s ×S3×S3 given by the 3-form

ϕ = ds∧ω(s)+Ω
+(s)

inducing the metric

gϕ = ds⊗ds+h(s).

Note that there is an extra Z2 isometric action which swaps the two S3s such that

η
−
i ↔−η

−
i while η

+
i remain unchanged. It is now easy to see this action corre-

sponds to multiplying both ω and Ω+ (and hence ϕ) by −1. We shall encounter

this symmetry again in subsection 6.3.2.
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6.2.2 Bryant-Salamon metric

In the Bryant-Salamon (BS) case we have that A1 = A2 and B1 = B2, as

such this enhances the aforementioned U(1)-symmetry to SU(2). More concretely,

S3×S3, viewed as SU(2)2, admits in addition to the usual left action by SU(2)2, a

diagonal right action by SU(2) and if all the Ai and Bi are equal then the metric is

invariant by all three SU(2)s. In this case Hitchin’s equations (3.4.2) and (3.4.3 )

become

A′1 =
1
2
(1−

A2
1

B2
1
) and B′1 =

A1

B1
.

Defining s =
∫ r

1
dx√

1−x−3 , one can solve the above system to get

A1 =
r
3

√
1− r−3 and B1 =

r√
3
.

Observe that when r = 1, A1 = 0 and B1 =
1√
3

so that the principal SU(2)2 orbits

collapse to an S3. This S3 is an associative submanifold i.e. ϕ restricts to a volume

form on it. This metric is asymptotically conical (AC) to the cone metric on S3×S3

with its nearly Kähler structure.

6.2.3 Brandhuber-Gomis-Gubser-Gukov metric

We now consider the BGGG metric. In this case, by defining

s =
∫ r

9/4

√
(x−3/4)(x+3/4)

(x−9/4)(x+9/4)
dx,

we can again solve Hitchin’s equation to get

A1 =

√
(r−9/4)(r+9/4)√
(r−3/4)(r+3/4)

, A2 =

√
(r−9/4)(r+3/4)

3

B1 =
2r
3
, B2 =

√
(r−9/4)(r+3/4)

3

As r tends to infinity, we see that A1 tends to 1 while the other coefficients grow at

the rate r. This metric is said to be of type ALC, i.e. it is asymptotic to a metric

on an S1 bundle over a 6 dimensional CY cone over a Sasaki-Einstein 5-manifold.
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In this example the latter is just S2× S3. Bogoyavlenskaya proved that one can

deform this G2 structure to get a 1-parameter family of SU(2)2×U(1) invariant

torsion free G2 structure by varying the relative size of the singular S3 orbit and

that of the S1 at infinity [15]. As such the Bryant-Salamon metric arises in the

limiting case when the size of the S1 tends infinity while when it shrinks to zero

we get the Stenzel metric on the deformation of the conifold which is topologically

just T ∗S3 = S3×R3. The Stenzel metric is a cohomogenity one AC CY metric

with principal orbits S2× S3 or more precisely SU(2)2/∆U(1), where the U(1) is

generated by T+
1 as mentioned above.

Recently Foscolo-Haskins-Nordström showed the existence of another family

of G2 metric on S3×R4, referred to as the D7 family in physics literature [41]. This

‘dual’ family arises when instead of considering the smoothing (i.e deformation) of

the conifold, one looks at its resolution (i.e blow-up1) whereby the singular orbit

is replaced by an S2 rather than an S3. They then construct a family of G2 metrics

on a non-trivial S1 bundle on the resolution which is topologically again S3×R4.

The group diagram of this family is {1} ⊂ {1}×SU(2) ⊂ SU(2)2 which is differ-

ent from those of the BGGG family; {1} ⊂ ∆SU(2) ⊂ SU(2)2. Nonetheless both

families are SU(2)2×U(1) invariant. These 2 families are related by a “G2 flop”;

if one fixes the size of the S1 at infinity and vary the parameter within each family

so that the singular S3 collapses to a point, then we get the same conically sin-

gular asymptotically locally conical (CS ALC) metric in the limit. The difference

between these two families is that the S1 quotient of the BGGG family is (topolog-

ically) the smoothing of the conifold while the S1 quotient of the D7 family is the

resolved conifold; the S1 here being the one corresponding to the asymptotically

constant sized S1 at infinity. This is duality is the G2 analogue of the concept of

geometric transition for CY 3-folds.

1strictly speaking the blow-up introduces 2 CP1s and one can contract either to get the same
topological space although distinct as complex manifolds.
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6.3 SU(2)3-invariant closed G2-structures on R4×S3

6.3.1 SU(2)3-invariant SU(3)-structures on S3×S3

As seen above the BS metric on the spinor bundle of S3 is SU(2)3-invariant.

Our aim in this section is to classify all SU(2)3-invariant SU(3)-structures on S3×

S3, cf. [71, 76] for SU(2)2-invariant ones.

To do so we first remind the reader of the group action. Given a point (a,b) ∈

S3×S3, the group SU(2)3 acts as

(g,h,k)(a,b) = (gak−1,hbk−1).

An alternative way of describing this action is to identify S3 × S3 with

SU(2)3/∆SU(2) where the ∆SU(2) acts diagonally on the right and the natural

action of SU(2)3 on the left passes to the quotient.

As an SU(2)3 module, we have the decomposition

Λ
2(R6)∼= Λ

2(R3⊕R3)∼= 3R3⊕R⊕S2
0(R3)

into irreducible summands. Without loss of generality, the generator of the 1-

dimensional component can be taken to be

ω = 12+34+56,

where for visual clarity we denote by 1,3,5 and 2,4,6 the left invariant 1-forms on

each S3. We now look at the space of invariant 3-forms. As SU(2)3 modules, we

have

Λ
3(R3⊕R3)∼= Λ

3(R3)⊕Λ
2(R3)⊗R3⊕R3⊗Λ

2(R3)⊕Λ
3(R3)

∼= 2R3⊕4R⊕2S2
0(R3).

The four invariant subspaces are generated by 135, 246 (since they correspond to

the volume forms of each S3), 146+245+236 and 235 +145+136. Thus, an arbitrary
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invariant 3-form will be a linear combination of these forms.

Our strategy can now be summed up as follows. By imposing the normalisation

condition, it will follow that there exist a 4 = (5− 1) parameter family of SU(3)

structures on SU(2)2 which are SU(2)3 invariant. We can then use ‘half’ of the

Hitchin’s equations to construct closed G2 structures on R+× S3× S3. Finally we

will need to ensure that these solutions extend smoothly across a singular S3 orbit

and are globally well-defined.

The most general ansatz for the SU(3)-structure is given by

ω = f (12+34+56), (6.3.1)

Ω
+ = a(135)+b(146+245+236)+ c(235+145+136)+d(246), (6.3.2)

where the parameters a, b, c, d and f need to be determined. The compatibility con-

dition ω∧Ω+ = 0 is already satisfied. Following [54], we view (su2⊕su2,123456)

as an oriented vector space (V,ε). We define an operator

KΩ+ : V → V ⊗Λ
6(V ∗)

v 7→ A((vy Ω
+)∧Ω

+)

where A : Λ5V ∗ ∼= V ⊗Λ6V ∗ is the inverse of the interior product. The orienta-

tion form ε allows us to view KΩ+ as an endomorphism of V . With respect to the

standard basis we can write

KΩ+ =



−ad +bc 2b2−2cd 0 0 0 0

2ad−2c2 ad−bc 0 0 0 0

0 0 −ad +bc 2b2−2cd 0 0

0 0 2ad−2c2 ad−bc 0 0

0 0 0 0 −ad +bc 2b2−2cd

0 0 0 0 2ad−2c2 ad−bc


.
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We see that indeed tr(KΩ+) = 0, in agreement with (6) in [54]. The linear map

J :=
1√
−λ

KΩ+,

where λ := 1
6 tr(K2

Ω+) = (ad− bc)2 + 4(ab− c2)(b2− cd), is an almost complex

structure iff λ < 0. By construction J is independent of the choice of basis. Thus, the

4-parameter space of SU(2)3-invariant SU(3)-structures on S3×S3 is parametrised

by the open set {(a,b,c,d) | λ < 0}.

Lemma 6.3.1. Writing A =−ad + cb, B = 2ab−2c2 and C = 2b2−2cd, the com-

plex structure J is explicitly given by,

√
−λ J(1) = A1+C2√
−λ J(2) = B1−A2√
−λ J(3) = A3+C4√
−λ J(4) = B3−A4√
−λ J(5) = A5+C6√
−λ J(6) = B5−A6.

This allows us to compute Ω− := J(Ω+) as

Ω
− =

(
1√
−λ

)3

((135)a135 +(146+245+236)a146

+(246)a246 +(145+235+136)a145),

where

a146 = aAC2 +b(A3−2ABC)+ c(BC2−2A2C)+d(A2B),

a145 = aA2C+b(B2C−2A2B)+ c(−A3 +2ABC)+d(−AB2),

a135 = aA3 +b(3AB2)+ c(3A2B)+d(B3),

a246 = aC3 +b(3A2C)+ c(−3AC2)−d(A3).
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As already mentioned above the normalisation condition (2.3.2) imposes one

constraint on quintuple (a,b,c,d, f ). Explicitly this corresponds to

f 3 =
1

4(
√
−λ )3

(3ca146−3ba145−aa246 +da135).

6.3.2 SU(2)3-invariant closed G2-structures

Since we have now derived explicit expressions for a general SU(2)3-invariant

SU(3)-structure we can compute the closed G2 equations as follows.

Lemma 6.3.2. A 1-parameter family (a(s),b(s),c(c),d(s)) defines a closed G2-

structure on R+
s ×S3×S3 if and only if b =−c, a′ = d′ = 0 and b′ =− f , where f

is determined by (a,b,c,d) via the formula given in the previous subsection.

Proof. Differentiating a 1-parameter family of SU(2)3 invariant SU(3) structure on

SU(2)2 we get

dω = f ′ ds∧(12+34+56)+ f (235−146+145−236+136−245)

and

dΩ
+ = b(3546+2413−2516)+ c(4635−1625+1342)

+b′ ds∧(146+245+236)+ c′ ds∧(235+145+136)

+a′ ds∧(135)+d′ ds∧(246).

The proof is completed by imposing dϕ = 0, or equivalently that ∂

∂ sΩ+ = d6ω and

d6Ω+ = 0, where d6 refers to the exterior differential on S3×S3.

Hence we see that a and d are constants, in other words the cohomology class

of the stable 3-form Ω+ in H3(S3× S3,R) ∼= R2 is fixed. The latter isomorphism

simply maps [Ω+] to (a,d).

In this notation the BS solution of section 6.2.2 can be expressed as

gϕ = (A2
1((1+2)2 +(3+4)2 +(5+6)2)+B2

1((1−2)2 +(3−4)2 +(5−6)2))/4
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ω(s) = A1B1((1−2)(1+2)+(3+4)(3−4)+(5+6)(5−6))/4

Ω
+(s) =−((B3

1−3A2
1B1)(135)+(−B3

1 +3A2
1B1)(246)+

(B3
1 +A2

1B1)(−145+146−235+245+236−136))/23

and one checks directly that indeed d = −a = 1/(24
√

3) are constants. Thus, af-

ter rescaling we see that Ω+ belongs to the cohomology class (1,−1). Since our

ultimate goal is to find solutions to the Laplacian flow and we know that the flow

preserves the cohomology class of ϕ (equivalently of Ω+) it makes sense to restrict

to those classes which are known to admit torsion free solutions. In fact, a torsion

free SU(2)3-invariant G2-structure extends smoothly across a singular S3 orbit if

and only if [Ω+] belongs to (1,−1), (0,1) or (−1,0), after suitable rescaling, cf.

[16]. The first case corresponds to the situation when the diagonal S3 in S3× S3

collapses at s = 0 and the latter two correspond to the case when either the first or

second S3 factor collapses. This relates to our discussion in section 6.2.3 whereby

S3×S3 can be viewed in 3 different ways

{1} ⊂ ∆SU(2)⊂ SU(2)2,

{1} ⊂ {1}×SU(2)⊂ SU(2)2,

{1} ⊂ SU(2)×{1} ⊂ SU(2)2.

The Z2 outer automorphism which swaps the two S3s, mapping 1↔ 2, 3↔ 4, 5↔ 6,

preserves the metric in the first case only. Note however that it swaps (ω,Ω+)↔

(−ω,−Ω+). In the last two cases this map is essentially a lift of the Atiyah flop

and swaps the two SU(2)3-invariant metrics.

From lemma 6.3.2 we see that the closed equations correspond to a determined

system; a single ODE in b. Although the equation b′=− f is hard to solve explicitly,

when (a,d) = (1,−1) and b = −c the ansatz (6.3.1), (6.3.2) can be equivalently

expressed as (6.2.2), (6.2.3) with A1 = A2 and B1 = B2. The closed equation is then

easily seen to be equivalent to the torsion free one, cf. lemma 6.4.1 and 6.4.2 below.

An inspection of the formula for J in lemma 6.3.1 in the case when (a,d) = (0,1)
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shows that the metric h induced by ω and J can be diagonalised by choosing the

coframing

2, 4, 6, 2(1)−2, 2(3)−4, 2(5)−6

on S3× S3, where we denote the 1-forms in bold to distinguish from the constant

‘2’ factor. With respect to these coordinates one can express ω and Ω+ by similar

expression as in (6.2.2) and (6.2.3) with η
±
i replaced by the above coframing. We

can see once again that the closed equation is equivalent to the torsion free one

as in the previous case. A similar argument holds in the (−1,0) case. Up to a

diffeomorphism these 3 metrics are the same cf. [16] and [55]. To sum up;

Theorem 6.3.3. A closed SU(2)3-invariant G2-structure on R4× S3 is in fact tor-

sion free and the induced metric is isometric to the Bryant-Salamon one.

Remark 6.3.4. Note that when (a,d) is not equivalent to one of the 3 cases above

the local existence of a solution to the ODE b′ =− f imply that there does exists a

closed G2-structure on (ε1,ε2)×S3×S3 but these will not give complete metrics.

6.4 SU(2)2×U(1)-invariant closed G2-structures on

R4×S3

Since the SU(2)3 symmetry is a too strong condition to find strictly closed G2

structures, we move to the less symmetric situation of SU(2)2×U(1). Throughout

this section we shall use the ansatz introduced in section 6.2, hence we shall restrict

only to the case when the metric has the extra Z2 symmetry.

6.4.1 The basic quantities

The purpose of this section to compute expressions for various quantities that

will be essential in our study in subsequent sections.

Lemma 6.4.1. The closed condition is equivalent to the underdetermined system;

∂

∂ s
(B1B2

2) = A1B1 +2A2B2 (6.4.1)

∂

∂ s
(A1A2B2) = A1B1 (6.4.2)
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∂

∂ s
(A2

2B1) =−A1B1 +2A2B2 (6.4.3)

In particular, we have the conserved quantity B1B2
2−A2

2B1−2A1A2B2 (see Propo-

sition 6.4.11 below for a geometric interpretation).

Proof. This is a direct computation from ∂

∂ sΩ+ = d6ω , using

d6ω =−8A1B1η
+−+
123 −8A1B1η

++−
123 +(8A1B1−16A2B2)η

−++
123

+(8A1B1 +16A2B2)η
−−−
123 .

The condition d6Ω+ = 0 is automatic from the ansatz.

Lemma 6.4.2. The coclosed equations are given by;

∂

∂ s
(A1B1A2B2)−A2

2A1−A1B2
2 = 0

∂

∂ s
((A2B2)

2)−A1A2
2−2B1B2A2 +A1B2

2 = 0

Proof. The condition d6(ω ∧ω) = 0 is automatic from the ansatz, so it suffices to

impose ∂

∂ s(ω)∧ω =−d6(Ω
−).

Lemma 6.4.3. The intrinsic torsion τ2 of the closed G2-structure is given by

τ2 =
(
(2A2B2)

∂

∂ s
(A2B2)−A1A2

2−2A2B1B2 +A1B2
2

)( 2
A2B2

(η−+22 +η
−+
33 )

−4
A1B1

A2
2B2

2
(η−+11 )

)
.

Proof. This is again a direct computation using

d6Ω
− = 16(η−−++

2323 (A1A2
2 +2B1B2A2−A1B2

2)+η
−−++
1313 (A2

2A1 +A1B2
2)

+η
−−++
1212 (A2

2A1 +A1B2
2)),

1
2

∂

∂ s
(ω2) = 16

∂

∂ s
(A1A2B1B2(−η

−−++
1212 −η

−−++
1313 )− (A2B2)

2
η
−−++
2323 ).

and imposing (6.4.1), (6.4.2) and (6.4.3).
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Remark 6.4.4.

1. Notice that the intrinsic torsion is determined by a single function. The reason

for this is that the closed condition is given by three equations whereas the

coclosed condition is given by two, however one of these equations coincide,

namely the one in Λ2
7.

2. Observe that if one imposes the coclosed condition and SU(2)3 invariance

then we get only one equation;

∂

∂ s
A+

A
B

∂

∂ s
B =

1
2
(1+

A2

B2 ).

This suggests that there exist coclosed G2-structures which are not closed,

which is in sharp contrast to the converse as demonstrated in the previous

section. As such these provide possible initial conditions for studying the

SU(2)3-invariant Laplacian coflow.

In what follows we shall always assume that ϕ is closed.

Lemma 6.4.5. The mean curvature Hs of the principal S3×S3 orbit is given by

Hs =
∂

∂ s
(ln(A1A2

2B1B2
2))

=
B1

A2B2
− 1

2
A1

A2
2
+

B2

A2B1
+

1
2

A1

B2
2
+

A2

B1B2
(6.4.4)

The above expression is rather surprising since imposing that the G2-structure is

closed determines the mean curvature; a quantity involving first order terms in gϕ ,

in fact given by h(s)−1h′(s) cf. [31, (2.1)] up to a factor of 2, by only an algebraic

expression. In particular we record that in the BS situation we have:

Hs =
3

2A
(1+

A2

B2 ) =
3
2

(4− r−3)

r(1− r−3)1/2 ,

where s =
∫ r

1
dx√

1−x−3 . Note the mean curvature is never zero for r ∈ (1,∞) but con-

verges to zero.
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Remark 6.4.6. Proposition 6.1 of [42] states that a local torsion free G2 structure

defined for s ∈ (ε1,ε2) extends to a complete solution at infinity if and only if there

does not exists any s∗ ∈ [ε2,∞) such that Hs∗ = 0. In other words the forward

completeness of the G2 metric is equivalent to asking that there exists no minimal

principal orbit i.e. a principal orbit with is also a minimal hypersurface. The proof

relies on the fact that G2 manifolds are Ricci flat (or more generally Einstein is a

sufficient condition). In our case however we only have closed G2 structures so we

cannot use their argument. Hence we need to use the closed condition together with

(6.4.4) to find a lower bound for H. One might still require further constraints to

guarantee forward completeness of local closed G2-structure though but we will not

address this issue in this thesis.

Lemma 6.4.7. The Laplacian flow equations are given as follows;

∂

∂ t
(4A2B2) =

∂ 2

∂ s2 (4A2B2)+
∂

∂ s
(A2B2)(

2A1

B2
2
+

4B1

A2B2
− 2A1

A2
2
)

− 4A1B1

B2
2

+
4A1B1

A2
2

+
2A2

1
A2B2

+
A2

1A2

B3
2

+
A2

1B2

A3
2
− 4A2

B2

− 4B2

A2
+

2A1A2
2

B1B2
2
−

2A1B2
2

A2
2B1

(6.4.5)

∂

∂ t
(4A1B1) =

(
− 8A1B1

A2B2

)
∂

∂ t
(A2B2)

−4
∂

∂ s

(A1B1

A2B2

)
(2

∂

∂ s
(A2B2)−

A1A2

B2
−2B1 +

A1B2

A2
) (6.4.6)

∂

∂ t
(B1B2

2) = (1− A1B1

A2B2
)(2

∂

∂ s
(A2B2)−

A1A2

B2
−2B1 +

A1B2

A2
) (6.4.7)

∂

∂ t
(A1A2B2) =−(

A1B1

A2B2
)(2

∂

∂ s
(A2B2)−

A1A2

B2
−2B1 +

A1B2

A2
) (6.4.8)
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∂

∂ t
(A2

2B1) = (1+
A1B1

A2B2
)(2

∂

∂ s
(A2B2)−

A1A2

B2
−2B1 +

A1B2

A2
) (6.4.9)

Since we know that the flow preserves the closed condition and that the tor-

sion form is determined by only 1 function, it follows that the above system is

determined by only one of these equations, essentially (6.4.5). Moreover we ob-

serve that equation (6.4.5) is parabolic which is consistent with the fact that the LF

is parabolic (modulo diffeomorphism). An immediate consequence of the above

equations is:

Lemma 6.4.8. The conserved quantity B1B2
2−A2

2B1− 2A1A2B2 of lemma 6.4.1 is

also preserved in time under the flow.

6.4.2 Smooth extension to singular orbit

As seen in the previous section the closed G2 equations form an underdeter-

mined system (3 equations for 4 variables) and as such one expects that there exists

many local closed G2-structures. However these may not extend smoothly to the

singular S3 orbit. The purpose of this section is to derive sufficient conditions to

ensure this smooth extension.

We shall now use the Eschenburg-Wang technique [31] to determine when an

invariant 3-form defined on the principal orbits extends smoothly on the singular

orbit. Their method can be summarised as follows; Consider a smooth manifold

M with the action of compact Lie group G such that the principal orbits have codi-

mension 1 i.e. the quotient space M/G is 1-dimensional. We shall be interested in

the situation when this quotient is isomorphic to [0,1). The singular orbit Q, corre-

sponding to the orbit at 0 with isotropy group H, has codimension strictly greater

than 1. A neighbourhood of Q can be equivariantly identified with its normal bun-

dle, say with fibre V and the principal orbits, say with isotropy group K, are then

identified with its sphere bundle. A G-invariant tensor T ∈C∞(
⊗l T M⊗

⊗m T ∗M)

can be identified with an H equivariant map

T : V →
l⊗
(V ⊕p)⊗

m⊗
(V ⊕p)∗
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where we have chosen an Ad(H)-invariant decomposition g = h⊕ p so that the

tangent at eH ∈ Q is identified with p. Since H acts transitively on the sphere in

V and T is G-invariant, it suffices to know its value along a ray in V starting from

the origin to completely determine T . The Eschenburg-Wang technique answers the

question as to when can one smoothly extend a 1-parameter family of H equivariant

map

Ts : S→
l⊗
(V ⊕p)⊗

m⊗
(V ⊕p)∗

where S is the unit sphere in V and H ⊂ O(V ) (for some metric on V ), onto Q. The

answer can be found by the following steps.

S1: Find K-invariant tensors in
⊗l(V ⊕p)⊗

⊗m(V ⊕p)∗ and compute their degree

by which we mean the degree of the H-equivariant homogeneous polynomial map

S⊂V →
⊗l(V ⊕p)⊗

⊗m(V ⊕p)∗ (which by H-equivariance necessarily take val-

ues in the subspace of K-invariant tensors). Then evaluate them at any point on the

unit sphere S in V .

S2: Write Ts as a finite sum of these tensors. Then Ts extends smoothly if and only

if the coefficient functions, which are just functions of s, written as Taylor series

are even (respectively odd) functions if the degree of its invariant tensor is even (re-

spectively odd) and r is greater than or equal to the degree of the tensor, where arsr

is the first non-zero term in the expansion.

Let us illustrate concretely how to apply this technique. In our situation G =

SU(2)2, K = {1}, H = ∆SU(2), Ts = ϕs and V = R4. So the first step is to find

the degrees of the 3-forms we will need to write ϕs i.e. we need to find the degree

of Sp(1) equivariant homogeneous polynomial maps f : H→ Λ3(H⊕ imH). For

x ∈ Sp(1), we have by equivariance that f (x) is determined by f (1) i.e. explicitly

f (x)((a,b),(c,d),(e, f )) = f (1)((x̄ax, x̄b),(x̄cx, x̄d),(x̄ex, x̄ f )),

where (a,b),(c,d),(e, f ) ∈H⊕ imH.

Lemma 6.4.9. The list of relevant 3-forms evaluated at x = 1 are:

• degree 0 : dq1dq2dq3, and d p3d p2dq1 +d p2d p0dq2 +dq1d p1d p0 +
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d p1d p3dq2 +d p2d p1dq3 +d p3d p0dq3

• degree 1 : d p3dq2dq1−d p2dq3dq1 +d p1dq3dq2

• degree 2 : d p0d p2dq2 +d p1d p3dq2 +d p0d p3dq3 +d p2d p1dq3,

d p0d p2dq2 +d p0d p3dq3−dq1d p3d p2, and

d p0d p1dq1 +d p3d p2dq1

• degree 3 : d p1dq3dq2

• degree 4 : d p1d p3dq2−d p1d p2dq3 +d p2d p3dq1,

where p = (p0, p1, p2, p3) and q = (q1,q2,q3) denote the coordinates on H⊕ imH.

Proof. Consider the degree zero, i.e. constant, polynomial f (x) = dq1dq2dq3. This

is clearly SU(2) invariant since it corresponds to the volume form of S3 so is triv-

ially SU(2) equivariant of degree 0. Likewise f (x) = d p3d p2dq1 + d p2d p0dq2 +

dq1d p1d p0 + d p1d p3dq2 + d p2d p1dq3 + d p3d p0dq3 is also invariant since it cor-

responds to the cyclic permutation of the self-dual forms on H with the 1-forms on

imH.

Consider now the degree 1 polynomial given by

f (x)((a,b),(c,d),(e, f )) = x̄(ac f + ceb+ ead−aed− ca f − ecb).

It determines four 3-forms corresponding to the real and imaginary parts. Evaluat-

ing at 1 these correspond to

d p3dq2dq1−d p2dq3dq1 +d p1dq3dq2,

d p2dq2dq1 +d p3dq3dq1−d p0dq3dq2,

d p0dq3dq1−d p1dq2dq1 +d p3dq3dq2,

d p0dq2dq1 +d p1dq3dq1 +d p2dq3dq2.

Consider now the degree 2 polynomial given by

f (x)((a,b),(c,d),(e, f )) = (x̄a)(dx̄ f − f x̄d)+(x̄c)( f x̄b−bx̄ f )+(x̄e)(bx̄d−dx̄b).



6.4. SU(2)2×U(1)-invariant closed G2-structures on R4×S3 129

Again as above we get four 3-forms but we only consider the one relevant for us.

Evaluating it at 1, we get the 3-form

d p1d p3dq2 +dq3d p2d p1 +dq1d p3d p2.

Similarly the degree 3 polynomial is given by

f (x)((a,b),(c,d),(e, f ))= x̄axix̄c f + x̄cxix̄eb+ x̄exix̄ad− x̄axix̄ed− x̄cxix̄a f− x̄exix̄cb

and the degree 4 by

f (x)((a,b),(c,d),(e, f ))= x̄axi(x̄dx̄ f− x̄ f x̄d)+ x̄cxi(x̄ f x̄b− x̄bx̄ f )+ x̄exi(x̄bx̄d− x̄dx̄b).

Evaluated at 1, they give the forms stated in the lemma.

For the second step we have to express ϕs in terms of these invariant forms.

We first need to embed R4× S3 into H⊕H so that we can rewrite ϕ in terms of

the coordinates p and q. Recall that the singular S3 is given as the homogeneous

space SU(2)2/∆SU(2). The normal bundle N is constructed as the associated bun-

dle (SU(2)2×C2)/∆SU(2), where ∆SU(2) acts on C2 in the usual way by left

multiplication. The resulting left action of SU(2)2 on N can be identified with

(g,h) ·(p,q) = (gp,gqh−1). Recall that the Lie algebra elements T±i induced global

the vector fields on R4× S3 which we denoted by the same letter. Along the ray

(s,1), the vector field generated by the action of T+
1 is simply s ∂

∂ p1
. More explic-

itly,

d
dt

∣∣∣∣
t=0

(exp(T1t)s,exp(T1t)exp(−T1t)) = (sT1,0) = (si,0) = s
∂

∂ p1
.

Similarly we compute

T+
i = s

∂

∂ pi
, T−i = s

∂

∂ pi
+2

∂

∂qi
and

∂

∂ s
=

∂

∂ p0
.

Indeed when s = 0, the vector field T+
i = 0 in accordance with the fact that the
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diagonal S3 has collapsed. The corresponding dual 1-forms are then given by

η
+
i =

1
s

d pi−
1
2

dqi, η
−
i =

1
2

dqi and dt = d p0

To conclude step 2, we can now rewrite ϕ as;

ϕ = dq1dq2dq3(B1B2
2−2A1A2B2−A2

2B1)

−C(d p3d p2dq1 +d p2d p0dq2 +dq1d p1d p0 +d p1d p3dq2 +d p2d p1dq3

+d p3d p0dq3)

+(−2A1A2B2

s
−

2A2
2B1

s
)(d p3dq2dq1−d p2dq3dq1 +d p1dq3dq2)

+(−A2B2

s
+

A1B1

s
+

2A2
2B1

s2 +
2A1A2B2

s2 +C)

(d p0d p2dq2 +d p1d p3dq2 +d p0d p3dq3 +d p2d p1dq3)

− (
2A1B1

s
+C)(d p0d p1dq1 +d p3d p2dq1)

− (
A2B2

s
+

A1B1

s
+

2A2
2B1

s2 +
2A1A2B2

s2 +2C)

(d p0d p2dq2 +d p0d p3dq3−dq1d p3d p2)

+(
2A2

2B1

s
− 2A1A2B2

s
)(d p1dq3dq2)

+(−
2A2

2B1

s2 − A1B1

s
+

A2B2

s
+

2A1A2B2

s2 )(d p1d p3dq2−d p1d p2dq3

+d p2d p3dq1),

where the coefficients functions in the terms above need to have degrees 0, 0, 1, 2,

2, 2, 3, 4 respectively, and be even or odd functions depending on the parity of the

degree in order for ϕ to extend smoothly to the singular S3 orbit. Simplifying the

above expression we get the following key lemma.

Lemma 6.4.10. The 3-form ϕ extends smoothly across the singular S3 orbit if and

only if the following holds in a neighbourhood of s = 0;

2A1B1 =−c0s+(k3−a4 +d4)s3 +
∞

∑
i=2

b2i+1s2i+1
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2A2B2 =−c0s+ k3s3 +
∞

∑
i=2

k2i+1s2i+1

4A2
2B1 =−c0s2 +a4s4 +

∞

∑
i=3

a2is2i

4A1A2B2 =−c0s2 +d4s4 +
∞

∑
i=3

d2is2i

B1B2
2 =−c3

0−3c2
0(a4−2k3)s2 +

∞

∑
i=2

r2is2i

where c0,ai,di,ki,ri are arbitrary constants.

Note that although we have given five equations in the above lemma, we only re-

quire any four of them to hold as the fifth one will be determined. Nonetheless it

will be useful to have all five expressions handy. For the sake of comparison we

also include the torsion free case computed in [67]:

2A1B1 = bs+(2cb+
1
4b

)s3 + · · ·

2A2B2 = bs+(
1
8b
− cb)s3 + · · ·

4A2
2B1 = bs2 +(−2cb)s4 + · · ·

4A1A2B2 = bs2 +(
1

8b
+bc)s4 + · · ·

B1B2
2 = b3 +(

3
4

b)s2 +(
1
16

b)s4 + · · ·

In the latter case all the terms are determined by the constants b and c only. Geo-

metrically b3 = −c3
0 corresponds to the volume of the singular S3 orbit. So fixing

b = 1 allows us to vary the parameter c and this is precisely the 1-parameter family

of ALC G2 metrics we alluded to in section 6.2. Henceforth we shall always assume

that c0 < 0 so that the S3 has positive volume.

6.4.3 The closed and smooth condition

Recall that our aim is to construct closed G2-structures which extend smoothly

across the singular S3 orbit. But before addressing the above problem we make two

important observations which follow immediately from lemmas 6.4.1, 6.4.8 and

6.4.10.
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Proposition 6.4.11. The conserved quantity

B1B2
2−A2

2B1−2A1A2B2 =−c3
0

corresponds to the volume of the singular S3 orbit and is preserved under the LF.

Remark 6.4.12. The existence of the above preserved quantity can be explained by

the fact that the Laplacian flow preserves the cohomology class of ϕ , here deter-

mined by a pair (a,d) ∈ H3(S3× S3,R) ∼= R2. As shown in the previous section

however the additional Z2 symmetry imposes that a = −d and thus, this explains

why there is only one conserved quantity.

Proposition 6.4.13. If the closed 3-form ϕ extends smoothly to S3 then it calibrates

the S3 and induces the round metric. Moreover this persists under the Laplacian

flow.

Proof. Evaluating ϕ and gϕ at s = 0 gives

ϕ
∣∣
s=0 =−8c3

0η
−−−
123 ,

g
ϕ

∣∣
s=0

= 4c2
0(η
−
1 ⊗η

−
1 +η

−
2 ⊗η

−
2 +η

−
3 ⊗η

−
3 ).

In order to analyse the closed equations in a neighbourhood of the S3 orbit it

will be more convenient to introduce the following new variables rather than the Ai

and Bi. Let

x = B1B2
2, y = A1A2B2, z = A2

2B1 and w = A2B2.

The closed condition in lemma 6.4.1 can then equivalently be expressed as

dx
dy

= 1+2
w3

yx1/2(c3
0 + x−2y)1/2

together with z = x− 2y + c3
0. Note that the functions x, y, z and w are all re-

quired to be positive for s > 0 to ensure that gϕ is non-degenerate. Hence from
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equation (6.4.2) we can interchange between the variables s and y since y′(s) > 0

i.e. y is strictly increasing. So we can eliminate the auxiliary variable s by instead

reparametrising the arc length by y. It is now easy to see that the function w com-

pletely determines the closed G2-structure. Thus, in order to ensure that the closed

G2-structure extends smoothly to S3 we only need to choose appropriate w. Be-

fore making this rigorous we shall need the following Theorem of Malgrange cf.

[40, 73].

Theorem 6.4.14. Consider the singular initial value problem

ϒ
′ =

1
s

M−1(ϒ)+M(s,ϒ), ϒ(0) = ϒ0 (6.4.10)

where ϒ takes value in Rk, M−1 : Rk→Rk is a smooth function of ϒ in a neighbour-

hood of ϒ0 and M : R×Rk→ Rk is smooth in (s,ϒ) in a neighbourhood of (0,ϒ0).

If the two conditions:

1. M−1(ϒ0) = 0

2. hId−dM−1
∣∣
ϒ0

is invertible for all h ∈ N, h≥ 1

hold then there exists a unique solution ϒ(s) to (6.4.10) and the solution depends

continuously on ϒ0 satisfying (1) and (2).

Equipped with the above theorem we can now state the smooth extension result

for closed G2-structures.

Proposition 6.4.15. The SU(2)2×U(1)-invariant closed G2-structure determined

by w extends smoothly to the singular S3 orbit if and only if there exists a function

f (s) (unrelated to the function f of section 6.3) given by

f (s) =−1
2

c3
0−

1
4

c0s2 +
1
8

k3s4 +F(s),

where F is an even power series of order at least 6 such that w = f ′(s). In which

case we have that x = 2 f + y, z = 2 f − y+ c3
0 and y is defined by

dy
ds

=
y(c3

0− y+2 f (s))1/2(2 f (s)+ y)1/2

f ′(s)2 . (6.4.11)



6.4. SU(2)2×U(1)-invariant closed G2-structures on R4×S3 134

and satisfies y(0) = 0 and y′′(0) 6= 0.

Proof. If w(s) extends smoothly and ϕ is closed then from Lemma 6.4.10 we see

that f can be defined by
∫

w(s)ds with f (0) = −c3
0/2 and takes the form stated in

the Proposition. This proves the ‘only if’ part.

From the expressions for x, y, z and w given in terms of f (s) in the Proposition

it is straightforward to verify that the closed equations in lemma 6.4.1 are satisfied.

To see that the smoothness condition is also satisfied we can directly compute the

local power series solution to (6.4.11) and we get

x =−c3
0−

3
4

c0s2− 1
16c0

s4 + · · ·

4y =−c0s2− (
1

4c0
+ k3)s4 + · · ·

4z =−c0s2 +(
1

4c0
+2k3)s4 + · · ·

2w =−c0s+ k3s3 + · · ·

It easy to see these indeed satisfy the conditions of lemma 6.4.10. The only point

that remains to be proven is the existence of a solution to (6.4.11) i.e. we need to

prove that the power series solution for y converges. Note that the latter is a singular

initial value problem since f ′(0) = 0, so we cannot appeal to the standard existence

theorem. However Malgrange’s theorem is exactly designed to address this type of

problem. To do so we first write

y =−c0

4
s2 + s4

ϒ(s)

and from the above power series for y we see that ϒ(0) = −( 1
16c0

+ k3
4 ). Using

(6.4.11) we find that ϒ satisfies the ODE

ϒ
′ =

1
s
(−3ϒ− 3

4
k3−

3
16c0

)+O(s),

where O(s) denotes a power series of order at least 1 in s with coefficients involving

ϒ, which is precisely in the form of (6.4.10). The smoothness condition on y implies
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that M−1(ϒ(0)) = 0. We also have that dM−1
∣∣
ϒ0

= −3 and hence condition (2) of

Theorem 6.4.14 is also satisfied. Thus, there exists a unique solution depending

continuously on ϒ(0).

Thus, Proposition 6.4.15 says that there is a function’s worth of local closed

G2-structures, determined by F(s), which extend smoothly to the S3. We digress for

a moment to comment on the torsion free solutions, which are of course included in

the closed ones we have just constructed. Using y as the independent variable and

from lemma 6.4.3, we can express the torsion free condition as follows.

Proposition 6.4.16. The G2-structure determined by ϕ is torsion free and extends

smoothly to the singular S3 orbit if and only if x = 2 f + y, z = 2 f − y+ c3
0 and

f = f (y) is a solution to

f̈ (y)− 2 ḟ (y)
y

+
ḟ (y)

c3
0− y+2 f (y)

(1+ ḟ (y))+
ḟ (y)

y+2 f (y)
(−1+ ḟ (y)) = 0, (6.4.12)

where ˙ denotes the derivative with respect to y and satisfies the initial conditions

f (0) = −c3
0/2 and ḟ (0) = 1. Moreover the solution is then completely determined

by the constant k3, where f̈ (0) = 2/c3
0 +12k3/c2

0.

The proof of the above Proposition is simply a matter of expressing the torsion

free condition in terms of f (y) and y only, and the initial conditions are chosen to

guarantee the smooth extension at the singular S3 orbit. The argument is analogous

to the one in Proposition 6.4.15. We shall not address the issue of local existence

of a solution f , which can be proven by an application of Theorem 6.4.14 as above,

nor the issue of extending the solution for s ∈ [0,∞) which was carried out in [15]

and also in [42] albeit in the former case the author formulated the problem as a

system of first order equations instead. We only content ourselves by stating two

explicit solutions;

f (y) = y+
1

6
√

3

which corresponds to the BS solution with c3
0 =−1/(3

√
3), and

f (y) =
1
2
(
1
6

y+
3

16
)
√

48y+81+
27
32
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which corresponds to the BGGG solution with c3
0 =−27/8, both described in sec-

tion 6.2.

Having now established the existence of infinitely many strictly closed SU(2)2×

U(1)-invariant G2-structures in a neighbourhood of the singular S3 orbit we now

proceed to studying the Laplacian flow.

6.5 SU(2)2×U(1)-invariant Laplacian flow

6.5.1 Closed conical G2-structures and solitons

It is known that the only torsion free G2 cone metric with this symmetry is

the BS one corresponding to the cone on S3× S3 with its nearly Kähler structure.

In particular, this cone has the enhanced SU(2)3 symmetry. We shall now show

that there exists a 1-parameter family of closed SU(2)2×U(1)-invariant G2 cones

which are not torsion free, however none of which are solitons. A motivation for

considering conical solitons stems from the fact that in the non-compact setting the

analysis of geometric flows is significantly harder than in the compact case. Thus,

in many cases one instead considers non-compact manifolds with one end whose

geometry is asymptotically conical. For instance there is an extensive literature on

asymptotically conical Ricci solitons, cf. [32, 69] and references therein. In the case

of the Laplacian flow however, to the best of our knowledge, there are no known

(non-trivial) such examples.

Since we are searching for conical G2-structures, we write Ai = ais and Bi = bis

for constants ai and bi to be determined, and applying lemma 6.4.1 we get:

Lemma 6.5.1. The closed equations for G2 cones is given by

a2
2 +b2

2 =

(
2
3

)2

, (6.5.1)

b1 = 3a2b2 and 2a1 = 3(b2
2−a2

2).

Proof. This is immediate from lemma 6.4.1.

Since we require the metric to be non-degenerate we have to exclude the eight

points corresponding to a2 = 0, b2 = 0 and a2 = ±b2 on the circle determined by
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equation (6.5.1). We now observe that the Z2-symmetry

(a2,b2)↔ (−a2,−b2)

leaves ϕ unchanged while the Z2-symmetry

(a2,b2)↔ (a2,−b2)

swaps ϕ and −ϕ . There is also a third Z2-symmetry

(a1,a2,b1,b2)↔ (−a1,b2,b1,a2)

which amounts to an outer automorphism of S3× S3. Up to these symmetries we

have:

Proposition 6.5.2. There is a 1-parameter of closed G2 cones determined by equa-

tion (6.5.1) with b2 > a2 > 0. Only the point (1/3,1/
√

3) gives a torsion free solu-

tion. The limiting point (
√

2/3,
√

2/3) corresponds to the collapsing a circle fibre

so that the metric collapses to a conical metric on S2×S3 whereas the limiting point

(0,2/3) corresponds to a degeneration of the metric.

We should point out that the cone on S2× S3 in the above Proposition is dif-

ferent from the AC Calabi-Yau cone i.e the SU(3)-structure on S2× S3 is not the

Sasaki-Einstein one.

Since we have proven the existence of a 1-parameter family of closed cones, a

natural question to ask is whether there exists any conical solitons. We shall answer

this question negatively.

Proposition 6.5.3. The soliton equation for a cone is given by

τ2−Vy ϕ =
λ

3
s3

ω + γ (6.5.2)

where V is a vector field and γ is a closed 2-form.
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Figure 6.1: 1-parameter family of closed G2 cones − with x denoting the BS cone

Proof. Recall that Laplacian soliton equation is given by

d(τ2−Vy ϕ) = λ ·ϕ. (6.5.3)

For conical closed G2-structures we have that d6Ω+ = 0 and d6ω = 3Ω+, hence

ϕ = d(s3ω/3). (6.5.2) now follows from this.

Since H2(S3× S3,R) = {0}, in our case γ = dβ is in fact exact. From the

SU(2)2×U(1)-invariant of the problem we can restrict to V and β of the form:

V = v0∂s + v−1 T−1 + v−2 (T
−

2 +T−3 )+ v+1 T+
1 + v+2 (T

+
2 +T+

3 ),

and

β = β0ds+β
−
1 η
−
1 +β

−
2 (η−2 +η

−
3 )+β

+
1 η

+
1 +β

+
2 (η+

2 +η
+
3 ),

where v0,v±i and β0,β
±
i are functions of s.

Proposition 6.5.4. There does not exist any SU(2)2×U(1)-invariant cone solitons

on S3×S3×R+, aside from the torsion free one.

Proof. Using the definitions of V and β as above we can express the soliton equa-
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tion (6.5.3) as a system of ODEs. Restricting only to terms involving η
+−
11 , η

+−
22

and η
+−
33 , we find that we require

τ2 = (
λ

3
s3 + s2v0)ω + terms not involving η

+−
ii . (6.5.4)

On the other hand from lemma 6.4.3 we see that τ2 is equal to

−4(a1b1)(η
+−
11 )+2(a2b2)(η

+−
22 +η

+−
33 ) ∈ Λ

2
14

up to some factor. Thus, (6.5.4) can only hold if τ2 = 0 since ω ∈ Λ2
7(L

7).

6.5.2 Invariant smooth solitons

Having ruled out the existence of any cone solitons, we shall now rule out the

existence of any smooth SU(2)2×U(1)-invariant solitons as well.

From the soliton equation (6.5.3) we see immediately that if λ 6= 0 then ϕ

is necessarily exact. On the other hand from Proposition 6.4.13 we know that ϕ

calibrates the singular S3 orbit and hence corresponds to the generator of H3(S3×

R4,R)∼=H3(S3,R)∼=R. Thus, there are no shrinking nor expanding solitons which

are SU(2)2×U(1)-invariant on S3×R4. This argument in fact applies to any 7-

manifold with a closed G2-structure which calibrates a closed associative. Note that

we could not use this argument in the cone case since ϕ was exact.

To give a more explicit argument we can compute the soliton equation follow-

ing the same notation introduced in the previous sections. As a consequence we

find that

λx = R(w−R)
(

2
d
dy

(lnw)− 1
x
− 2

y
+

1
z

)
−2v0w− v0R,

λy =−R2
(

2
d
dy

(lnw)− 1
x
− 2

y
+

1
z

)
− v0R,

λ z = R(w+R)
(

2
d
dy

(lnw)− 1
x
− 2

y
+

1
z

)
−2v0w− v0R,

where R := yz1/2x1/2

w2 . It is easy to see that λ (x− z−2y) = 0. On the other hand from
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Proposition 6.4.11 we know that x− z− 2y = −c3
0 is the volume of the associative

S3. Hence if λ 6= 0 then ϕ does not extend to the S3 orbit but is only defined on

R×S3×S3. If λ = 0 then it follows that x0 = 0 and

2
d
dy

(lnw)− 1
x
− 2

y
+

1
z
= 0

i.e. τ2 = 0. We can sum up the result of this section into:

Proposition 6.5.5. There does not exist any SU(2)2×U(1)-invariant soliton on

S3×R4, aside from the torsion free ones.

Remark 6.5.6. A consequence of the results in this chapter is that if a finite time

singularity occurs in the LF on S3×R4 with SU(2)2×U(1)×Z2 symmetry then it

cannot occur at the associative S3. The other possibility is that a principal S3× S3

orbit develops a singularity. A blow-up analysis of such a singularity will likely

give rise to a soliton on the cylinder R×S3×S3 or a torsion free solution. A natural

question to ask is whether there exists any SU(2)2×U(1)-invariant solitons on R×

S3×S3 since in this case ϕ is indeed exact. This is currently work in progress. We

have been able to eliminate the existence of steady solitons.
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Appendix for S1 quotient of

Spin(7)-structures

We give a brief overview of the construction of the Bryant-Salamon metrics

on the anti-self dual bundle of S4. We follow the approach described in [74]. The

reader will find proofs of the assertions made therein.

Consider S4 (of unit radius) embedded in R5 with coordinates x1, ...,x5 we may

choose the following local orthonormal frame

v1 =
1
R



x2

−x1

x4

−x3

0


, v2 =

1
R



−x3

x4

x1

−x2

0


, v3 =

1
R



x4

x3

x2

−x1

0


, v4 =

1√
−1+ 1

x2
5



−x1

−x2

−x3

−x4

−x5 +
1
x5


,

where R2 := x2
1 + x2

2 + x2
3 + x2

4. Denoting by ei the corresponding coframe we com-

pute

de1 =
2
R

e23 +

√
1−R2

R
e14,

de2 =
2
R

e31 +

√
1−R2

R
e24,

de3 =
2
R

e12 +

√
1−R2

R
e34,

de4 = 0
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In the language of Cartan moving frames the structure equations are given by de =

−ω ∧ e and F = dω +ω ∧ω ∈ Λ2⊗ so(4) where ω is the Levi-Civita connection

form and F the curvature. We compute them as

ω =−


0 − 1

Re3 1
Re2

√
1−R2

R e1

· 0 − 1
Re1

√
1−R2

R e2

· · 0
√

1−R2

R e3

· · · 0

 and F =


0 e12 e13 e14

· 0 e23 e24

· · 0 e34

· · · 0


Here we are only writing the upper triangular entries since the matrices are skew-

symmetric. The second equation confirms that the round metric has constant curva-

ture and that the scalar curvature is 12. We can define a local orthonormal basis of

the anti-self dual bundle by c1 := e12− e34, c2 := e13− e42 and c3 := e14− e23. ω

induces a connection on this bundle given by

∇ci = ψ
i
j⊗ ci

Since the connection is torsion free we can compute ψ i
j by

dc1 = ψ
1
2 ∧ c2 +ψ

1
3 ∧ c3

dc2 = ψ
2
1 ∧ c1 +ψ

2
3 ∧ c3

dc3 = ψ
3
1 ∧ c1 +ψ

3
2 ∧ c2

where ψ2
1 =

√
1−R2+1

R e1, ψ1
3 =

√
1−R2+1

R e2, ψ2
3 =

√
1−R2+1

R e3 and ψ i
j =−ψ

j
i . These

forms can all be pulled back to the total space of the ASD bundle which we denote

by the same letter. We introduce fibre coordinates (a1,a2,a3) with respect to the

coordinate system defined by ci. We can define vertical 1-forms by

bi = dai +a jψ
j

i

i.e. they vanish on horizontal vectors. Together with the pull back of the ei they

give an absolute parallelism of the ASD bundle. The following forms are all SO(4)-
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invariant and are hence globally well-defined on the total space:

ρ = a1a1 +a2a2 +a3a3

σ = 2 (a1b2b3 +a2b3b1 +a3b1b2)

α = a1b2c3 +a2b3c1 +a3b1c2−a1b3c2−a2b1c3−a3b2c1

τ = a1c1 +a2c2 +a3c3

β = 6 b123.

The unit (ρ = 1) sphere bundle is diffeomorphic to CP3 and restricting the above

forms we have

gFS =
1
2
((e1)2 +(e2)2 +(e3)2 +(e4)2)+

1
2
((b1)2 +(b2)2 +(b3)2)

∣∣∣
S2

ωFS =
1
2

τ− 1
4

σ

gNK =
1
2
((e1)2 +(e2)2 +(e3)2 +(e4)2)+

1
4
((b1)2 +(b2)2 +(b3)2)

∣∣∣
S2

ωNK =
1
2

τ +
1
8

σ

ΩNK =
1
4
(dτ− iα)

The subscript FS refers to the Fubini-Study metric and NK to the nearly-Kähler

one. Our choice of scaling was made to fit the conventions of section 3.4.2. The

Bryant-Salamon form is then given by

ϕBS = u2vdτ +
1
6

v3
β ,

where u = (2ρ +1)1/4 and v = (2ρ +1)−1/4.



Appendix B

Appendix for Kähler reduction of

Spin(7)

As in section 4.2 consider a pair of commuting vector fields X and Y on a 8-

manifold N8 generating a free T2 action preserving a torsion free Spin(7)-structure

Φ. We can define 3 T2-invariant functions by s1 := ‖X‖−1
Φ

, s2 := ‖Y‖−1
Φ

and R :=

gΦ(X ,Y )1/2. There also exists natural 1-forms given by

η1(·) :=
gΦ(X , ·)
gΦ(X ,X)

, η2(·) :=
gΦ(Y, ·)
gΦ(Y,Y )

.

These 1-forms are not connection forms, since for instance η1(Y ) = s2
1R2 is gen-

erally not constant, instead the canonical Riemannian connection 1-form A =

(A1,A2) ∈Ω1(N8)⊗R2 is given by

A1 := (1−R4s2
1s2

2)
−1(η1−R2s2

1η2), A2 := (1−R4s2
1s2

2)
−1(η2−R2s2

2η1).

Note that these satisfy A1(X) = A2(Y ) = 1, A1(Y ) = A2(X) = 0 and vanish on the

orthogonal complement of 〈X ,Y 〉.

Proposition B.0.1. Let H1 := s1/2
1 s3/2

2 (1− R4s2
1s2

2)
−3/4 and H2 := s3/2

1 s1/2
2 (1−

R4s2
1s2

2)
−1/4, then we can write

Φ = A1∧A2∧σ +H1 · (A1 +R2s2
1A2)∧ψ

+−H2 · (A2)∧ψ
−+

1
2

H1H2 · (σ ∧σ),
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where (σ ,ψ±) defines a symplectic SU(3)-structure on the quotient P6 := N8/T2.

Furthermore, we have

gΦ = s−2
1 η

2
1 + s−2

2 (1−R4s2
1s2

2)
−1(η2− s2

2R2
η1)

2 + s1s2(1−R4s2
1s2

2)
−1/2gσ .

Proof. By definition the covectors s−1
1 η1 and s−1

2 (1− R4s2
1s2

2)
−1/2(η2− s2

2R2η1)

are orthonormal. Since we can identify Φ with Φ0 at each point and Spin(7) acts

transitively on Gr(2,8) it follows that we can express it as

Φ = (s−1
1 η1)∧ (s−1

2 (1−R4s2
1s2

2)
−1/2(η2− s2

2R2
η1))∧ ω̃ +(s−1

1 η1)∧ Ω̃
+

− (s−1
2 (1−R4s2

1s2
2)
−1/2(η2− s2

2R2
η1))∧ Ω̃

−+
1
2
· (ω̃ ∧ ω̃),

where (ω̃,Ω̃±) defines an SU(3)-structure on P6. Setting (σ ,ψ±) = (uω̃,u3/2Ω̃±)

for u = s−1
1 s−1

2 (1− R4s2
1s2

2)
1/2 and using the above definitions for Ai proves the

expressions for Φ and gΦ. Taking the exterior derivative of σ := YyXyΦ we get

dσ = d(YyXyΦ) = LY (X)yΦ+XyLY Φ−YyLX Φ = 0

which completes the proof.

Remark B.0.2.

1. The reader will notice that the expression for Φ in the above Proposition is not

symmetric in (A1,s1) and (A2,s2) (with suitable ). The reason is because we

chose to distinguish the vector field X in the proof which in turn distinguished

Ω. However one can equivalently express gΦ as

gΦ = s−2
1 A2

1 + s−2
2 A2 +R2(A1⊗A2 +A2⊗A1)+(H1H2)

1/2gσ .

showing it is indeed symmetric.

2. When gΦ(X ,Y ) = 0, we recover the situation investigated in section 3.2 with

s1 = s, s2 = Hs−1/3, η1 = A1 = η and η2 = A2 = ξ .
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A study of the situation when (P6,σ ,ψ±) is Kähler in this more general setting

will be investigated in future work.



Appendix C

Appendix for S1-invariant closed

G2-structure and the Laplacian flow

We give an analogous result to Proposition 3.2.2 for the quotient of an arbi-

trary G2-structure (L7,ϕ) under a free S1 action. Writing τ4 = ∗ϕτ3, and from the

inclusion of SU(3)⊂ G2 we decompose the G2 torsion forms as SU(3)-modules:

τ1 = f η +T 1
6 , (C.0.1)

τ2 = τ6 + τ8 +η ∧ τv, (C.0.2)

τ4 = f4ω
2 +(τ4)

4
6 +(τ4)

4
8−η ∧ ( f+Ω

++ f−Ω
−+(τ4)

3
6 +(τ4)

3
12), (C.0.3)

where we use the notation (α)k
l to denote a k-form on P6 which belongs to the

SU(3)-module of dimension l, associated to the differential form α on L7.

Proposition C.0.1. The intrinsic torsion of (L7,ϕ) relates to that of (P6,ω,Ω) by

1. 7H2τ0 = 6(dη)0
1 +12π0H3/2

2. f1 =
1
2H−3/2σ0

3. 6T 1
6 = H−1γ1

6 +
3
2H−1dH +π1 +ν1

4. τ8 =−H1/2σ2

5. τ6∧ω = (H−1/2dcH +H1/2Jν1 +H−1/2Jγ1
6 )∧Ω+
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6. f+ = 0

7. f− =−6
7H−3/2(dη)0

1−
3
14π0

8. f4 =
1
2(dη)0

1 +
1

12τ0H2

9. (τ4)
4
6 =

1
2(dη)2

6∧ω + 1
2(

3
2H1/2dH +H3/2π1−H3/2ν1)∧Ω+

10. (τ4)
4
8 = ((dη)2

8−H3/2π2)∧ω

11. (τ4)
3
12 = ν3

12. (τ4)
3
6 = ν1∧ω−3T 1

6 ∧ω

13. H3/2τv∧Ω+ = 1
2H−1/2dH ∧Ω−+H1/2Jπ1∧Ω+− τ6∧ω−4T 1

6 ∧H1/2Ω−

A similar result was also given in [24, Thm 5.1] under the simplifying assump-

tion that H = 1. The proof of proposition C.0.1 is analogous to the calculations in

the closed case in section 5.2. Indeed setting all the G2 torsion forms aside from τ2

to zero recovers the results of section 5.2.
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[27] M. Cvetič, G.W. Gibbons, H. Lü, and C.N. Pope. Almost special holonomy in

type IIA and M-theory. Nuclear Physics B, 638(1):186–206, 2002.
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