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Abstract
The biologics sector has amassed a wealth of data in the past three decades, in line with the bioprocess development and 
manufacturing guidelines, and analysis of these data with precision is expected to reveal behavioural patterns in cell popula-
tions that can be used for making predictions on how future culture processes might behave. The historical bioprocessing data 
likely comprise experiments conducted using different cell lines, to produce different products and may be years apart; the 
situation causing inter-batch variability and missing data points to human- and instrument-associated technical oversights. 
These unavoidable complications necessitate the introduction of a pre-processing step prior to data mining. This study 
investigated the efficiency of mean imputation and multivariate regression for filling in the missing information in historical 
bio-manufacturing datasets, and evaluated their performance by symbolic regression models and Bayesian non-parametric 
models in subsequent data processing. Mean substitution was shown to be a simple and efficient imputation method for 
relatively smooth, non-dynamical datasets, and regression imputation was effective whilst maintaining the existing standard 
deviation and shape of the distribution in dynamical datasets with less than 30% missing data. The nature of the missing 
information, whether Missing Completely At Random, Missing At Random or Missing Not At Random, emerged as the key 
feature for selecting the imputation method.
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Introduction

Biologics manufacturers have accumulated a large amount 
of data on biologics process development, scale-up and 
manufacturing operations to comply with the bioprocess 

development and manufacturing guidelines described by 
the Pharmaceutical Quality by Design initiative. Despite its 
existence, these large amounts of data on process param-
eters, culture properties and phenotypic characteristics of the 
cultivated organisms are not explored to its full extent. The 
field is expected to benefit significantly from the adaptation 
of approaches that combine model-based process optimisa-
tion with process-specific heuristics for enhancing yield and 
production efficiency. The extensive data recordings from 
the manufacturers could be used to assist Process Analytical 
Technology (PAT) implementation in biologics manufacture, 
provided that the database is exploited to its full potential 
[1].

One of the major challenges in mining biologics data-
bases is associated with the fact that they contain highly 
heterogeneous data collected over long periods, from differ-
ent projects, products and cell lines. The product type, the 
host cell type and consequently the bioprocess parameters 
exhibit changes over time. These biological variations, or 
how the biological variations manifest themselves affecting 
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manufacturing conditions, lie in the immediate interest of 
biologics data mining, mainly due to the fact that recurrent 
patterns emerging from these data sets could be employed to 
improve existing processes, and even assist the implementa-
tion of smart bioprocessing systems, which have the ability 
to self-learn and self-adapt.

The heterogeneity of the database not only contributes 
to the wealth of information to be extracted, but also intro-
duces challenges concerning its analysis. Compilation of 
data spread across years and different projects inherently 
introduces technical variations and inconsistencies; instru-
mentation systems change and/or receive updates, sampling 
is often not consistent across projects possibly due to limita-
tions on instrumentation, and there is the inevitable varia-
tion due to the process operator, i.e., the human factor, and 
these obstacles result in missing/incomplete information to 
accumulate in databases. The way missing data are handled 
constitutes one of the major challenges in mining biolog-
ics manufacturing data since the method adopted to handle 
missing data has been shown to strongly influence the sec-
ondary analysis of the dataset [2, 3]. It is, therefore, impera-
tive to choose a suitable method to deal with missing data to 
increase the accuracy of the predictions and interpretations 
made in the secondary analysis.

An understanding of the underlying pattern (also called 
the data structure, or the trends) was reported to be impor-
tant to help us choose from an assortment of statistical meth-
ods available to address the different types of missing data 
[4]. There are different missing data mechanisms depending 
on whether the missing data depend on the observed values 
or the missing values themselves [5]. The structure of the 
biologics datasets indicates that they generally exhibit miss-
ing patterns across different days of the bioprocess, and that 
most of these missing values relate to parameters that are 
instrument-monitored and fetched automatically, except for a 
few, which are measured offline. Consequently, the biologics 
datasets appear to suffer from gaps that are missing at ran-
dom. The possible analytical approaches to handle such data 
are (1) discarding incomplete cases; (2) imputing, i.e., filling 
in the missing data; or (3) analysing the incomplete data 
adopting a method that does not require a complete dataset 
[6]. Excluding large fractions of observations may introduce 
the risk of bias [7], and imputation was previously shown 
to improve classification accuracy in data analysis [8]. Gap 
filling by single or multiple imputations is a widely explored 
option in standard data pre-processing. Single imputation 
approaches employ a pre-determined method of imputation 
based on the nature of the dataset, and the gaps are filled 
in using the same method for the whole dataset every time, 
generating consistent results [9] and, therefore, deliver the 
simplest route.

This study focused on evaluating the efficacy of two sin-
gle imputation methods—mean substitution and regression 

imputation to deal with missing information in two types 
of biologics manufacturing datasets: cell culture bioprocess 
harvest data and dynamic cultivation data. The imputed 
datasets were then exposed to secondary analysis via simple 
data processing to validate the performance of gap-filling 
strategies employed.

Materials and methods

Data

Two different types of bioprocess development and scale-up 
data from monoclonal antibody production using Chinese 
Hamster Ovary (CHO) cell lines provided by MedImmune 
were used in the study. The time series data, which consisted 
of daily parameter recordings from multiple culture batches 
that lasted for 14 days and the harvest day data were investi-
gated separately. Time series data set consisted of readings 
of 14 different parameters from 75 cultures screened across 
14 days of culture period, and harvest day data had record-
ings of 15 different parameters for the harvest days of 90 dif-
ferent cultures ranging between the 4th day to the 19th day 
post-inoculation. The parameters under investigation were 
viable cell density, elapsed culture time, culture volume, pH, 
total cell density, lactate,  NH3, glucose, average cell com-
pactness, average cell diameter, glutamine, glutamate,  Na+, 
 K+, and osmolarity. In the interest of manufacturer propri-
etary rights, the parameters were anonymised as A–O, and 
the ‘Product’ row corresponds to final product titre for each 
batch (Table 1).

Gap filling and statistical analysis

Gap filling in multivariate data

The harvest day dataset had 20.2% gaps that required impu-
tation, and 36 of these 90 cultures had no missing values. 
The gaps in this complete dataset were imputed by mean 
substitution, and principal component analysis was carried 
out on the imputed and complete datasets to identify outliers, 
and any bias introduced by imputation.

A controlled mini-study was devised to investigate the 
effect of imputation by mean substitution on the dataset. 
Data points were randomly deleted from the subset of 36 
cultures with no missing values to introduce 20.2% gaps 
equivalent to 20.2% of the dataset, and then the gaps were 
imputed with mean substitution. For validating the bias of 
the estimates, an analogous experiment was designed, in 
which the same gaps were filled by random number genera-
tion, using values that lie between the maximum and the 
minimum values that each variable took across the 36 data-
sets. The same was performed on simulated datasets with 
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different percentages of gaps (1.4%, 19.1%, 25.7%, 28.4%, 
33.1% or 66.4%).

The 3 datasets belonging to 36 cultivations with (1) no 
missing data, data with 20.2% gaps (2) imputed by random 
number generation, and (3) imputed by mean substitution 
were then employed in a test case for data analysis to evalu-
ate the performance of data imputation strategy in subse-
quent data processing. The test case involved construction 
of mathematical models to describe the product titre in terms 
of the available bioprocess parameters. Symbolic regression 
(SR), which follows an evolutionary algorithm to construct 
the best fitting model for the data, was employed to construct 
these models [10]. 38 random combinations of parameter 
settings (population size—5, 50, 500, 5000; number of gen-
erations—5, 50, 500, 5000; maximum number of genes—1, 
2, 3, 4, 10; maximum model depth—1, 2, 3, 4, 5, 10) for 
constructing the regression model were tested to evaluate the 
prediction success of the model. Randomly selected 67% of 
the dataset (24 cultivations) was employed to construct the 
models (training data), and the remaining 33% (12 cultiva-
tions) was spared to evaluate the predictive power of the 
constructed models (test data). The complexity of the con-
structed model was employed as the measure of its predic-
tive success. A very complex model was highly successful 
in describing the training data whereas its predictive perfor-
mance was poor on the test data, i.e., model overfitting. The 
difference between the prediction error of the model on the 
test data and the training data [testing error (TEE) − training 
error (TRE)] indicated model overfitting for highly positive 

values. Conversely, an over-simplistic model failed to ade-
quately describe the training data, and was not employed 
to study the test data. To evaluate the effect of the fraction 
of data employed as training data on model performance, a 
similar analysis was conducted utilising 85% and 90% of the 
dataset as training data.

Gap filling in time series data

Regression imputation was used to fill in the 26.2% missing 
values in time series data to avoid significantly altering the 
standard deviation or the shape of the distribution [4]. Based 
on the nature of the distribution, polynomial regression (1) 
and logarithmic regression (2) were evaluated as potential 
candidates, with y being the nominal value for the parameter 
to be imputed, x being the day of sampling and a, b, c, and 
d being arbitrary constants:

The root mean square of the residuals, which gives the 
difference between the observed parameter values and the 
calculated parameter values for the models, was then tested 
for a range of values, by assigning different values to the 
constants starting with an arbitrary non-zero value (in this 
case, 10). Having obtained the best fitting logarithmic and 
polynomial equations for all the parameters, non-normal 
robust F test was used to evaluate the significance of the 

(1)Y = ax
3 + bx

2 + cx + d,

(2)Y = a[ln (bx + c)] + d.

Table 1  Results of the non-normal robust F test

F stat critical value is 7 for all rows in both the models (p = 0.0001)

Parameters Cubic model Logarithmic model

Root mean 
square 
residual

F test against 
y = d model

F test against y = 0 model Root mean 
square 
residual

F test against y = d model F test against y = 0 model

A 13.1513 72359.3743 80166.6220 2.8468 1718339.4150 1718339.4150
C 69.3262 683.0890 831.2835 59.6001 1255.2270 1255.2270
D 76.2204 986.8539 1138.0420 67.4351 1556.4680 1556.4680
E 0.1385 0 892865.8000 0.1385 0 892865.8000
F 16.2188 57.6222 347.3065 15.5948 80.1238 405.0123
G 2.4787 4.5066 67.9761 2.4654 72.4435 72.4435
H 8.3052 0.7606 2593.0990 8.3060 0 2592.5060
I 0.0223 0 333463.8000 0.0223 0 333463.8000
J 1.2009 0.0657 37399.7500 1.0906 2440.5810 45390.0800
K 1.5372 15.3113 79.3399 1.4775 97.9238 97.9238
L 1.9222 0.0093 161.4175 1.9199 1.8973 162.2340
M 151.1273 1030.4960 1158.6530 49.8450 12235.0500 12235.0500
N 45.7868 671.2673 943.1314 20.6023 5453.9470 5453.9470
O 6.2970 548.3050 1754.2620 6.3071 1748.0530 1748.0530
Product 993.4056 860.9427 868.8166 996.9977 860.7497 860.7497
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best fit criterion employed to select the optimal model struc-
ture. A non-normal F test was selected for this evaluation 
owing to the non-normal distribution of the data and non-
homogeneous within-treatment variances. The F value was 
calculated by evaluating the correlation between MST (mean 
square between treatments—which is the square of the dif-
ference in means of two methods under consideration) and 
MSE (mean square error—which is the unbiased estimate of 
variance), and is given by the formula (3) [11]:

The robust F test scores of all the parameters for both 
cubic and log models were compared against constant-only 
fit given by Y = d, where d ∈ ℝ . The better fitting model 
was then used for imputing the missing data points. The 
root mean square residual, which is the difference between 
observed value and the calculated value, was used in the 
comparison of the F test value against Y = d, and a measure 
of significance was given by p value < 0.0001 for the cubic 
and the logarithmic models.

A model-based clustering algorithm dedicated to the 
analysis of time series data was used as a subsequent data 
processing approach. The imputed dataset was employed to 
investigate how the temporal profiles of the operation param-
eters evolved through the progression of cultivation. The 
default merge and extension threshold settings of the tool, 
m = e = 0.5, were used [12].

Results

Gap filling in multivariate data

The performance of missing data imputation by mean sub-
stitution was evaluated against no imputation and against 
missing data imputation by random assignments in a mini-
study investigating the effect of imputation in subsequent 
data processing. The main objective of implementing a 
successful imputation strategy is to yield a dataset which 
has similar performance to the complete dataset (i.e., no 
imputation) in data processing carried out post-imputation 
[13]. Regression models predicting culture titre from bio-
process parameters were constructed for data analysis as 
described above, and three measures were used to evaluate 
the success of missing data imputation method based on 
the three datasets tested: (1) the magnitudes of the testing 
error (TEE) and the training error (TRE), which are root 
mean squares errors (Fig. 1a, b); (2) the magnitude of the 
difference between the two error values, which assesses 
model overfitting (Fig. 1c); and (3) the magnitude of the 
difference between the overfitting of the imputed dataset 
and of the complete dataset (Fig. 1d). The prediction suc-
cess of the models constructed using the complete dataset 

(3)F = MST∕MSE.

was observed to be more similar to those constructed using 
mean imputed data than using random substitution (32% 
vs 64%) (Fig. 1a, b). The models constructed using the 
dataset with randomly filled in gaps demonstrated an over-
fitting of 81% indicated by error magnitudes, dismissing 
the strategy as a potential gap-filling method (Fig. 1c), 
despite the absolute value of the difference between the 
TEE − TRE of the imputed dataset and the complete 
dataset being lower for random filling than for mean sub-
stitution across different test cases by 18% (Fig. 1d). An 
additional cross-validation was carried out by calculating 
a measure akin to the Predicted Residual Sum of Squares 
(PRESS) for the test data, where this parameter was cal-
culated across ten simulated datasets by removing differ-
ent samples and substituting them with model values. The 
results exhibited better fitting for mean imputed data than 
random number substitution, in comparison to the com-
plete data (adjusted R2 = 0.9540 vs 0.8852) (Fig. 1e).

The simulated datasets and the complete dataset were fur-
ther analysed for the distribution of parameters before data 
removal and after imputation by principal component analy-
sis (PCA) (Fig. 1f, g). The distribution did not suggest any 
clustering, indicating the absence of any major bias intro-
duced by the gap-filling strategy. Following the evaluation of 
the performance of mean substitution as a gap-filling strat-
egy, the imputation method was employed for pre-processing 
the full harvest day data comprised of 90 cultivations. A 
projection of the raw data and mean imputed harvest day 
data on the same plane by PCA showed no evident cluster-
ing among the datasets, indicating that mean substitution 
introduced no additional bias (Fig. 1h), and thus could suc-
cessfully be employed to pre-process datasets with relatively 
low percentage of gaps (this case 20.2%).

One of the success parameters, the magnitude of the 
difference between the two error values, was employed to 
determine the most suitable model construction parameters. 
Model overfitting was observed to increase with increasing 
either one of the generation number, the maximum number 
of genes or maximum depth of the model. Model construc-
tion parameters: population size: 500, number of genera-
tions: 500, the maximum number of genes: 4, and the maxi-
mum model depth: 2 were selected to yield only nominal 
overfitting for the dataset for which mean substitution was 
employed for imputation. As would be expected, increasing 
the size of the training set from 67% to 85 or 90% substan-
tially reduced overfitting. A 27% increase in the training set 
size was sufficient to reduce the error in mean-substituted 
dataset by only 6%, whereas the improvement in prediction 
error was by 72.70% for random imputation. This indicated 
that a higher fraction of the dataset needed to be allocated 
to train the model when the gap filling is not informative 
about the data structure, as in the case of randomly filled 
data points.
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The data processing approach employed in this analy-
sis relied on principles of genetic programming to han-
dle high-dimensional modelling problems with unknown 
model structure. Starting from a random population of 
individual models, the population evolves through a course 
of generations until an acceptable fit is achieved [10]. The 
evolutionary nature of the approach renders each analysis 
unique, and essentially unrepeatable. For this reason, the 
algorithm was allowed to run 50 times employing the opti-
mal parameter settings to investigate recurring patterns. 

The standard deviation of the TEE and TRE values for 50 
runs was spread across a range of 2–34% around the mean, 
indicating that although the actual models constructed in 
each run were unique, the predictive capability of the 
models remained within an acceptable limit. The param-
eters anonymised as D, G, L, M, and N were observed 
to be employed more frequently than others indicating 
that despite its heuristic nature, SR was able to nominate 
relevant culture parameters for attaining a mathematical 
representation of the product titre (Fig. 1i).

Fig. 1  Performance evaluation to validate the efficacy of different 
methods of imputation. Predictive performance of SR analysis show-
ing magnitude of errors (Y-axis) for 38 different combinations of 
SR parameters (X-axis) is provided in a and b. Straight lines denote 
the mean values. The ‘TEE − TRE’ test metric employed to evalu-
ate model overfitting is provided in c in increasing values from left 
to right. Blue, green and orange refer to the mean substituted, ran-
domly filled and unfilled datasets in a–c. TEE and the TRE are shown 
in lighter and darker shades of the same colour. The difference in the 
magnitude of overfitting with respect to the unfilled dataset is pre-
sented in d. Outlier values have been omitted for visualisation pur-
poses in a–d. The magnitudes of the training and test errors as well as 
the average error distribution are displayed in e for the 38 test cases of 
unfilled and imputed data sets. Each box represents the interquartile 
range with upper line representing the third quartile, lower line the 
first quartile and centre line representing median of the distribution. 
U unfilled, MI mean imputed, RI random imputed datasets. Principal 
component analyses (PCA) for the complete data (in green), the mean 
imputed data (in red), and for the random imputed data (in blue) are 
projected on to the same plane (f). The results of the PCA for the 
complete data (in green) projected against four mirror cross-valida-

tion datasets of mean imputation (MI) (MI1, MI2, MI3, and MI4 in 
blue, magenta, red, and in black, respectively) (g). The results of PCA 
for the comprehensive mean-substituted dataset of 90 cultivations are 
shown in h. Red crosses denote the filled cultivations and the blue 
circles represent the raw data. PC1 and PC1 are represented in the 
abscissa and the ordinate, respectively. In all PCA analyses, the first 
two PCs explain more than 99% of the variance in their respective 
dataset (f–h). Parameter recurrence in the mean-substituted harvest 
day data for 90 cultivations is given in i. X-axis denotes the cultiva-
tion parameters and Y-axis denotes the number of times each param-
eter featured in the equations. Temporal segmentation clustering of 
the imputed time series data is shown in j. X-axis shows the segmen-
tation threshold at which the consecutive time points form a single 
segment. Parameter clusters displayed in orange indicate clusters that 
formed early at the timescale, when many small time segments were 
formed. Moving from left to right on the X-axis, fewer time segments 
that span longer periods impose more stringent clustering conditions 
resulting in tighter clusters, and the parameters that exhibited simi-
lar patterns of behaviour over the whole period of culture decrease 
moving from green to orange, yellow and grey clusters. (Color figure 
online)



662 Bioprocess and Biosystems Engineering (2019) 42:657–663

1 3

Gap filling in time series data

A model-based imputation strategy was employed to address 
the missing data points in the time series dataset with the 
time course distribution of the cultivation parameters and the 
product roughly following logarithmic or third-degree poly-
nomial trends. Each parameter and the product titre were 
analysed separately. The statistical evaluation of the robust-
ness of both models for each culture parameter indicated that 
the logarithmic model performed better for all parameters, 
except for H, O, and the product titre (Table 1).

Both H and O were constant-only models, and thus would 
not be influenced by the choice of model. Even though the 
cubic model performed slightly better for imputation of the 
missing data in the product titre, both cubic and logarith-
mic models were shown to represent the trends in the data 
significantly better than a constant-only fit. Hence, for con-
venience, logarithmic regression model was employed for 
imputation across all parameters in the dataset.

Following gap filling, a data processing strategy which 
cannot work in the presence of gaps in the dataset was 
employed as an exercise to demonstrate the applicability of 
the approach. For this purpose, temporal segmentation clus-
tering of the parameters [12] was conducted (Fig. 1j). This 
analysis allowed us to identify parameters, which displayed 
similar clustering patterns regardless of how many clusters 
were identified; many with fewer members and finer similar-
ity relations; or only a few with many members and coarser 
similarity relations. Parameters anonymised as F, H and J 
were observed to cluster together regardless of the tightness 
in cluster similarity, indicating that these parameters dis-
played the same trend throughout the course of cultivation. 
Monitoring and tracking only one of these three parameters 
as a representative would be sufficient for PAT analytical 
purposes, and this information could potentially be critical 
in applications where there are limitations on the sample 
volume to be withdrawn from the culture.

Discussion

This study demonstrated the implementation of two sim-
ple methods—mean substitution and regression imputa-
tion for handling missing data in biologics manufacturing 
databases—and showed that adopting these methods for a 
database of monoclonal antibody production using CHO cell 
lines did not introduce any bias in secondary analyses.

Understanding the rate and pattern of the missing data, 
its distribution, existing missing data mechanisms, and the 
nature of the data itself [14], emerged as imperative in 
the selection of a suitable gap-filling strategy. The biolog-
ics data employed in the study, despite spanning across 
several years and being collected from different cell lines 

producing different products, were relatively uniform, and 
of high quality. The number of critical process attributes 
monitored remained relatively constant over time; product 
titres and cellular physiologies remained within compa-
rable ranges across different projects, and missing data 
constituted less than 30% of the data set. This allowed suc-
cessful implementation of simple approaches, whose per-
formance would be adversely affected by high proportions 
of data missing [15]. For cases where a known or a specific 
relationship exists, it could be better to apply prior knowl-
edge about the expected behaviour of the data to construct 
a model for imputation. However, one should approach this 
method extremely cautiously, as such assumptions may 
lead to misleading results in exceptional cases where and 
if the data structure deviated from the “generally accepted 
and thus presumed” behaviour. The performance of the 
adopted gap-filling strategies was evaluated based on the 
extent of data that were actually missing in the original 
dataset; 20.2% of the harvest data and 26.2% of the time 
series data were missing. Regardless, the methodologies 
were initially tested on data with 1.4%, 19.1%, 25.7%, 
28.4%, 33.1% or 66.4% gaps prior to this analysis, and the 
results were comparable for these datasets except for that 
where 66.4% of the data was missing.

Mean substitution on harvest day data and regression 
imputation on dynamic bioprocess data were both shown 
to perform adequately without substantially altering the 
standard deviation profile or shape of the data distribu-
tion. Secondary analysis of the harvest data via the use of 
predictive models revealed key parameters that contribute 
to variations in culture titre. Parameters that varied con-
currently throughout the bioprocesses were identified in 
the secondary analysis of the dynamic data. Such coor-
dinated behaviour among process parameters highlighted 
redundant measurements made, and could assist the design 
of future bioprocess experiments. All secondary analyses 
(i.e., data processing) could successfully be conducted 
without any interference from the adopted imputation 
strategy, demonstrating the elemental nature of selecting a 
suitable data pre-processing strategy before implementing 
complex methods such as predictive/descriptive statisti-
cal modelling and model-based inference in the mining 
of biologics data.
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