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Abstract

Metabolic networks adapt to changes in their environment by modulating the activity of

their enzymes and transporters; often by changing their abundance. Understanding such

quantitative changes can shed light onto how metabolic adaptation works, or how it can

fail and lead to a metabolically dysfunctional state. We propose a strategy to quantify

metabolic protein requirements for cofactor‐utilising enzymes and transporters through

constraint‐based modelling. The first eukaryotic genome‐scale metabolic model to

comprehensively represent iron metabolism was constructed, extending the most recent

community model of the Saccharomyces cerevisiae metabolic network. Partial functional

impairment of the genes involved in the maturation of iron‐sulphur (Fe‐S) proteins was

investigated employing the model and the in silico analysis revealed extensive rewiring of

the fluxes in response to this functional impairment, despite its marginal phenotypic effect.

The optimal turnover rate of enzymes bearing ion cofactors can be determined via this

novel approach; yeast metabolism, at steady state, was determined to employ a constant

turnover of its iron‐recruiting enzyme at a rate of 3.02 ×10−11mmol·(g biomass)−1·h −1.
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1 | INTRODUCTION

Metabolic networks are comprised of the interactions of metabolites,

enzymes and their regulators (Sauer, 2006). Just two of these

components, the enzymes and the metabolites, are included in most

metabolic network models. Enzyme abundance and metabolite concen-

trations have been shown to act inversely to maintain homeostatic

control of metabolic reaction rates in Saccharomyces cerevisiae (Fendt

et al., 2010). Thus an understanding of their relationship can help us to

determine the nature of transitions between different metabolic states.

The measurement of intracellular metabolite pools and protein

abundances are useful approaches to understand these homeostatic

mechanisms, and have been applied to many different systems ranging

from bacteria such as Escherichia coli (Bennett et al., 2009) to tumour

cell lines (Madhukar, Warmoes, & Locasale, 2015; Matsumoto et al.,

2016). Although total protein content and absolute quantification of

individual proteins have been reported for a number of biological

systems (Bennett et al., 2009; Carroll et al., 2011; Madhukar et al.,

2015; Matsumoto et al., 2016; Picotti, Bodenmiller, Mueller, Domon, &

Aebersold, 2009), the properties of metabolic systems cannot be

defined by studying enzyme proteins in isolation. Enzymes are often

present in lower copy numbers compared to other components of the

proteome, such as ribosomal proteins. For some enzymes, these copy

numbers are at the limits of detection and quantification by current

analytical techniques (Picotti et al., 2009). A recent study on the direct

and absolute quantification of over 1,800 yeast proteins revealed that

<25% of the proteins that could be quantified were components of the

metabolic network (Lawless et al., 2016).

© 2018 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

Biotechnology and Bioengineering. 2019;116:610-621.610 | wileyonlinelibrary.com/journal/bit

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

http://orcid.org/0000-0002-3018-4790
http://orcid.org/0000-0003-3410-6439


Metabolic models with high predictive ability are important tools for

the investigation and engineering of metabolism (Aung, Henry, &Walker,

2013). Metabolic models can provide reasonable predictions when direct

measurements of network components are infeasible, as is demon-

strated by predictions on flux distributions using genome‐scale models

(Orth, Thiele, & Palsson, 2010). Analyses with stoichiometric models can

be used to predict flux, but only a limited number of studies exist on

their use for estimating absolute enzyme abundances, for example in

yeast (Nilsson & Nielsen, 2016; Sánchez et al., 2017); an alternative

approach would be to make use of the cofactors to determine the

relative abundances of those enzymes that use those cofactors.

To exploit this relationship between metabolic enzymes and their

cofactors, we propose a network‐based strategy to determine optimal

enzyme abundance by model predictions based on the metabolic

requirements of their cognate cofactors. We have studied a family of

cofactors that are not, themselves, metabolic intermediates and which

do not have donor functional groups. We chose to study the iron

cofactor family, including iron in its ionic form (Fe3+, Fe2+) and complex

ion entities such as the haem family (sirohaem, haems A, B, C and O), and

the iron‐sulphur clusters (2Fe‐2S, 4Fe‐4S), because these iron‐containing
cofactors bind nearly 10% of the documented enzymes and transporters

in the metabolic network. Baker’s yeast, the first eukaryote to have its

genome sequenced (Goffeau et al., 1996), has long been a favourite

model organism (Botstein, Chervitz, & Cherry, 1997). Cellular activities

including DNA replication, recombination and repair, RNA transcription

and translation, intracellular trafficking, as well as the enzymatic

activities of general metabolism, and mitochondrial biogenesis are

conserved from yeast to human (Barrientos, 2003). The availability of

comprehensive and powerful genome‐scale models of the yeast

metabolic network (Aung et al., 2013) for almost two decades (Famili,

Forster, Nielsen, & Palsson, 2003) made yeast an ideal model for our

study. Although there is a wealth of knowledge about iron utilisation and

homoeostasis in yeast (De Freitas et al., 2003; Lill & Mühlenhoff, 2008;

Miethke &Marahiel, 2007), this information has not been integrated into

the curated genome‐scale metabolic model, thus limiting the model’s

usefulness for in silico studies. This issue has recently been highlighted

by a comprehensive study on the comparative analysis of yeast

metabolic models (Heavner & Price, 2015).

In this study, we have extended the genome‐scale metabolic model

of Saccharomyces cerevisiae to include iron metabolism, and made the first

comprehensive mathematical representation of any inorganic ion in a

model of a network in a eukaryote; this model is publicly available

(BioModels [Chelliah et al., 2015] access no: MODEL1709260000). The

new model has been benchmarked against known environmental

responses (viz., changes in the availability of iron and copper) and

genetic modifications relating to iron metabolism. The model has allowed

the identification of the extensive rewiring of metabolic fluxes to cope

with the hemizygosity of essential genes involved Fe‐S cluster

maturation. The model permitted the establishment of the requirements

for iron‐family cofactors, based on how the fluxes were distributed

through the metabolic network. These requirements were then used as

proxies for calculating the metabolic requirement of those metabolic

enzymes and transporters that employ iron species as cofactors.

2 | MATERIALS AND METHODS

2.1 | Modelling methods

2.1.1 | Primary metabolic model, simulation
environment and model annotation

The primary model for the incorporation of iron metabolism was selected

as the most recent stoichiometric model of the S. cerevisiae metabolic

network (v7.6; Aung et al., 2013). The extended model (Yeast7.Fe) is

provided as Supporting Information S1 and the details on modification

and extension of the existing model are provided in Supporting

Information S2 in supplemental material. The extended genome‐scale
model of S. cerevisiae is available in a COBRA compatible‐SBML format

(v.4). A specific growth rate of 0.1 hr−1 was used unless otherwise

specified. The iron and copper supplementations of the system was

determined from a standard defined medium for S. cerevisiae (Baganz,

Hayes, Marren, Gardner, & Oliver, 1997). Iron and copper limitations

were imposed on the system by scaling the extracellular availability of the

respective ions in the medium down to 10% of the original upper bound.

Details regarding the extension annotations and the simulation environ-

ment and approaches are provided in Supporting Information S3, and the

simulation code is provided in Supporting Information S4.

2.1.2 | Cofactor representation

For any metabolic reaction catalysed by a cofactor requiring

enzyme (N):

⇋+ +aA bB cC dD,

where the stoichiometric coefficients of the substrates (A and B)

and products (C and D) are denoted by their cognate lower case

letters, a cofactor (X) of enzyme N enters the metabolic reaction as a

substrate and leaves as a catalytically unreactive product:

⇋+ + + +aA bB xX cC dD xX .

Details regarding the representation of cofactors are provided in

Supporting Information S3. The distribution of fluxes throughout the

metabolic network would be correctly influenced by the requirements

for, and the availability of, iron in this representation. Iron‐containing
cofactors could be required for some of the enzymes necessary for

catalysing a reaction, and a dedicated amount of cofactors should be

reserved for this use, without being actually involved in the reaction

itself. The effect that this modification had on the distribution of fluxes,

including the growth rate, will be discussed in Section 3.

2.1.3 | Evaluation of the predictive power of the
model

Prediction of gene essentiality was used as the evaluation criterion for

the new reconstruction. Empirical data on S. cerevisiae S288C strain

essentiality was obtained from Saccharomyces Genome Database (SGD;
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Cherry et al., 2012; website accessed on March 22, 2017). A full list of

non‐SGD resources for gene essentiality is provided in Supporting

Information S5 in supplemental material. Details regarding evaluation of

the predictive power of the model are provided in Supporting Information

S3.

2.2 | Experimental methods

2.2.1 | Strains, cultivation conditions, subcellular
fraction enrichment protocols and analytical assays

Heterozygous deletion mutants HO/Δho, ARH1/Δarh1, ATM1/Δatm1 and

YFH1/Δyfh1 of S. cerevisiae strain BY4743 (background: MATa/Δ his3Δ1/

his3Δ1 leu2Δ0/leu2Δ0 lys2Δ0/LYS2 MET15/met15Δ0 ura3Δ0/ura3Δ0 )

were used in this study (Baker Brachmann et al., 1998). Deletion of a

single copy was verified by PCR using the confirmation primers

described in Baker Brachmann et al. (1998). Qiagen DNeasy Blood &

Tissue Kit was used for isolation and purification of DNA from the cell

extracts as described in the manufacturer’s protocol. Analytical assays

were carried out employing enzymatic or colorimetric methods. Details

regarding those analytical assays, as well as those of the cultivation

conditions and the subcellular fraction enrichment protocols are

provided in Supporting Information S3. All data pertaining these analyses

are provided in Supporting Information S5 in supplemental material.

3 | RESULTS

3.1 | Iron metabolism in yeast metabolic models

Although the predictive power of the yeast metabolic network model

has improved substantially over the years, it is still limited by the

F IGURE 1 Schematic representation of iron metabolism in the yeast model. Pathways and metabolites are represented by uppercase and
lowercase letters, respectively. Directionality of the fluxes through the pathway is specified by arrows (for single reaction steps) and block arrows
(for lumped consecutive reaction steps). Metabolic enzymes are shown in teal colour. The cell and organelle boundaries are represented as double

dashed lines; the mitochondrion, nucleus, vacuole and ER have cartoon representations. The minimal representation of iron metabolism in the
existing Yeast 7.6 model is provided in (a). The details on the reductive, non‐reductive and xenosiderophore‐bound iron uptake, intracellular
transport and storage of iron, haem and sirohaem biosynthetic and degradation pathways are provided in (b). Details regarding the biogenesis of
Fe‐S clusters in the mitochondrion (ISC machinery), and the maturation of apoenzymes (A) into Fe‐S cluster‐bound holoenzymes (H) in the

mitochondrion (ISC machinery), in the cytosol and in the nucleus (CIA machinery) are provided in (c). An empty scaffold (ES) and its sulphonylated
form (SS) were introduced as pseudometabolites in the Fe‐S cluster formation mechanism. The regulation of iron uptake via the iron regulon,
employing the negative feedback from Fe‐S cluster biogenesis, is demonstrated in (d). The shuttling of the signals representing the availability of

mitochondrial iron (PS) and its depletion (AS) were introduced as pseudo‐metabolites to modulate and activate the reductive iron uptake routes.
For simplifications of the function and activity of the iron regulon, see text [Color figure can be viewed at wileyonlinelibrary.com]
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omission or incomplete representation of some pathways in the

model. Our previous work on the Yeast 7 metabolic network model

highlighted the fact that the high metabolic burden (characterised by

high reaction fluxes, and often indicative of the low efficiency of their

cognate enzymes (Bonarius, Hatzimanikatis, Meesters, Schmid, &

Tramper, 1996) carried by pathways involved in energy generation

and processes imposed limitations on the model’s predictive ability

(Dikicioglu, Kırdar, & Oliver, 2015). A recent analysis that we carried

out by constraining this model by fluxes calculated using the

intracellular concentrations of intermediates in the purine nucleotide

biosynthetic pathway, as determined by HPLC analysis (Hesketh,

Vergnano, Wan, & Oliver, 2017), demonstrated that the prediction of

growth rate was at least half or twice the experimentally determined

value. The distribution of the fluxes indicated that the iron uptake

and utilisation pathways were inactive because they were inade-

quately represented in the model and completely disconnected from

the rest of the metabolic network (Figure 1a). We addressed each of

the deficiencies through extensive literature curation and will explain

how iron metabolism was incorporated into the network model in the

following sections.

3.1.1 | Uptake, intracellular transport and storage
of iron

Both reductive (Fe3+—transporting, high affinity) and non‐reductive
(Fe2+—transporting, low affinity) iron uptake mechanisms were

incorporated into the metabolic network. High‐affinity iron uptake,

as both free and xenosiderophore‐bound iron, was represented by

the reductive pathway. The intracellular transport of iron and

complex iron entities, such as haem and sirohaem, across intracellular

boundaries and the storage of residual components and excess iron

were also considered (Figure 1b). Iron export is not known to be

exhibited by S. cerevisiae (Haas, Eisendle, & Turgeon, 2008) and so

was excluded.

The concentration limit to determine the lower bound of the flux

through the low‐affinity iron uptake reactions was set at 1 µM

(Lesuisse, Blaiseau, Dancis, & Camadro, 2001). The high‐ and low‐
affinity uptake systems were modelled as working independently of

one another. However, in the absence of a functional low‐affinity
system, the high‐affinity system will be used, even in the presence of

abundant iron (and vice versa); these situations are allowed for in the

model (Haas et al., 2008; Lesuisse et al., 2001). Specific ARN family

transporters involved in the uptake of each iron‐bound xenosider-

ophore and the fate of each xenosiderophore in the yeast cell was

modelled individually for ferrichrome, N,N′,N″‐triacetylfusarinine C

(TAFC), enterobactin and ferrioxamine B (see Supporting Information

S2 in supplemental material; Haas et al., 2008). The reductive

assimilation of iron bound to xenosiderophores was facilitated by one

of the functionally non‐interchangeable metalloreductases (Fre1p–

4p; Yun, Bauler, Moore, Klebba, & Philpott, 2001) and all members of

the family of mannoproteins (Fit1p–3p) that are incorporated into

the cell wall via glycosylphosphatidylinositol (GPI) anchors in S.

cerevisiae (Haas et al., 2008).

The mechanism of copper recruitment by the reductive pathway

of high‐affinity iron uptake (Philpott, 2006) necessitated the

incorporation of copper uptake into the metabolic network. Since

copper metabolism was not represented in the primary metabolic

network of yeast to any degree, the network was extended to

incorporate the uptake of copper and its function in high‐affinity iron

uptake. It is important to note that the representation of copper was

not exhaustive; only activities that are relevant to iron metabolism

were considered in this reconstruction. The threshold for switching

between high‐ and low‐affinity copper transport was set as 20 µM

(Hassett, Dix, Eide, & Kosman, 2000). The threshold concentrations

were used to calculate a threshold flux boundary to be used in the

model. Two assumptions were made in modelling the uptake of

copper across the cell envelope: (a) Although included as a unique

species in the model, the high‐affinity copper transporter Ctr3p was

not associated with the copper uptake reaction in the model along

with Ctr1p. This exclusion was necessary since the CTR3 gene, found

in strains of the S288C lineage that were used in this study, has been

inactivated by insertion of a Ty2 transposon (Knight, Labbé, Kwon,

Kosman, & Thiele, 1996). (b) Fre1p copper reductase was similarly

excluded from gene‐reaction associations since it was reported to be

active only during the first 3–4 hr post‐inoculation (Georgatsou &

Alexandraki, 1994). The in silico analyses conducted in this study

were all carried out using pseudo‐steady‐state assumption; by that

time, Fre2p was thought to determine copper reductase activity.

3.1.2 | Biosynthesis and recycling of complex iron
entities

The biosynthesis and recycling of haem, sirohaem and Fe/S clusters

were fully implemented in the genome‐scale model of the yeast

metabolic network. The synthesis of 5‐aminolevulinate from glycine

and succinyl‐CoA via the Shemin pathway (Ferreira & Gong, 1995)

was introduced and 5‐aminolevulinate uptake was excluded from the

model. Haem catabolism in the endoplasmic reticulum, and the

storage of bilirubin in the vacuole were also introduced to the model

de novo (Figure 1b).

A pseudometabolite—mitochondrial empty scaffold (ES)—was

introduced to the metabolic network to model Fe‐S cluster

biogenesis (the ISC machinery) in the mitochondria and Fe‐S cluster

assembly (the CIA machinery) in the cytosol and nucleus. This

allowed the maturation of the Fe‐S clusters and the ensuing transfer

to their cognate apoenzymes (Johnson, Dean, Smith, & Johnson,

2005; Lill & Mühlenhoff, 2006; Lill et al., 2012; Urzica, Pierik,

Mühlenhoff, & Lill, 2009). Although this scaffold is thought to be a

transient protein complex (Lill & Mühlenhoff, 2008), we associate the

members of this complex with a “reaction” step in the metabolic

model that converts an empty scaffold into a sulphonylated scaffold

(SS). The ES is then released in the next step once the Fe‐S cluster

itself was formed. Both 2Fe‐2S and 4Fe‐4S cluster maturation have

been assigned to the mitochondrion, cytosol, or nucleus as applicable.

Two different mitochondrial 4Fe‐4S maturation routes have been

implemented to account for the genetic determination of 4Fe‐4S
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cluster maturation for lipoic acid synthesis (by Lip5p) and succinate

dehydrogenase (encoded by SDH2) or for other mitochondrial Fe‐S
proteins (denoted as H1 or H2 in Figure 1c, respectively; Lill &

Mühlenhoff, 2008).

3.1.3 | The iron regulon

Two different regulatory mechanisms for iron uptake via the iron regulon

were implemented in this model: (a) the yeast‐specific haem‐regulated
positive feedback route (Lill & Mühlenhoff, 2008), and (b) the

mitochondrial Fe‐S cluster biogenesis‐associated negative feedback route.

Haem deficiency, indicated by the deactivation of the enzymes

encoded by the essential genes (HEM1–4, HEM12, HEM13, HEM15) of

the pathway, was reported to be an indicator of low‐iron uptake in

yeast (Lill & Mühlenhoff, 2008). We coupled the essential enzymes of

haem biosynthesis to the reaction representing low‐affinity iron

uptake catalysed by Fet4p to account for this positive feedback

mechanism by associating these essential enzymes with the low‐
affinity iron uptake reaction. This coupling with low‐affinity iron

uptake ensured that haem biosynthesis would not be over‐activated
by the network unless extracellular iron was abundant.

The negative feedback on iron uptake by Fe/S cluster biogenesis is

shut down upon iron depletion. This was modelled by introducing two

new pseudo‐metabolites: AS signalling the depletion of intracellular iron,

and PS indicating the intracellular availability of iron (SBO:0000409 term:

interaction outcome). AS activated the iron regulon in the nucleus,

relaying a message to the cell envelope to activate the uptake of iron

(Figure 1d). PS was coupled with the formation of Fe‐S apoclusters in the

mitochondrion. This was done by introducing PS as a metabolite in the

Fe‐S cluster biogenesis reaction, thus ensuring that the reaction would

have flux as long as PS, that is iron, was available. Unavailability of iron

produced AS, which was then relayed from the mitochondrion to the

nucleus and further to the cell envelope, unchanged. Msn5p, a

karyopherin shuttling between the nucleus and the cytoplasm, was

assigned a modified function in the model, being associated with the

transport of PS from the cell envelope back to the mitochondrion, thus

representing the relay of the signal for the presence of iron in the cell.

Aft1p, which is responsible for relaying the iron depletion signal to the

cell boundary, was reported to have an additional role in creating iron

resources for the cell by binding Cth2p to facilitate the degradation of the

mRNAs for iron‐containing enzymes (Cherry et al., 2012). This route was

excluded from the network since the model does not treat enzymes as

either the substrates or products of reactions. Aft1p was also reported to

mediate saving iron by activating Vth1p‐mediated biotin uptake since

biotin synthesis was reported to be iron consuming (Shakoury‐Elizeh
et al., 2004). This route was also excluded since biotin co‐enzyme

metabolism was not considered to be of direct interest to our system.

3.2 | Iron family cofactor considerations of
metabolic enzymes

Iron family cofactors, copper ions and pyridoxine (the last is used in

only one reaction) were used as substrates and untransformed

reactants in those reactions that were catalysed by enzymes

activated by these cofactors, as described in “Cofactor representation.”

This allowed us to establish the connectivity between iron

metabolism, described above, and the primary metabolic network

of yeast. For this purpose, the copper, iron, haem, sirohaem,

pyridoxine and Fe‐S requirements of the metabolic network were

identified (see Supporting Information S6 and S7 in supplemental

material; De Freitas et al., 2003; Johnson et al., 2005; Lill et al., 2012;

Terali, 2010). A variety of reasons led us to exclude 41 enzymes

reported to involve iron cofactors from this compilation: the

documented information was observed to conflict with other

available information; the enzyme was not included in the Y7.6

version of the yeast metabolic network model, or the protein was

associated with a regulatory task (see Supporting Information S8 in

supplemental material; De Freitas et al., 2003; Johnson et al., 2005;

Lill et al., 2012). The metabolic enzymes with iron‐binding attributes

in the reconstruction Y7.Fe included all metabolic enzymes whose

empirically verified non‐ubiquitous iron‐binding properties were

reported in UniProt, and which were assigned to the iron‐ion binding

Molecular Function Gene Ontology (GO:0005506; both databases

accessed on August 1, 2018). The reconstruction captured 24 (60%

of existing empirical data), including such enzymes identified through

literature mining and curation additional to those reported in the

public databases (see Supporting Information S9 in supplemental

material for detailed information on these comparisons).

3.3 | Consideration of cell growth by indirect
association with the biomass equation

Although the elemental iron content of yeast has long been

determined (Lange & Heijnen, 2001), experimental data are not

available on how much iron content existing yeast biomass

constituents possess or on the relative content of potential key

iron‐containing compounds that could potentially be included, and

therefore, it was not possible to incorporate any direct involvement

of iron into the biomass equation. Given this dearth of available

data, simply adding an iron ion term would result in the iron flux

being syphoned off towards biomass, bypassing the metabolic

network. Even without a representation of the iron content in

biomass components, our model is able to predict the essentiality of

iron for the cell indirectly, and correctly predicts that yeast

becomes inviable upon complete depletion of iron from the

extracellular environment.

Given the above limitations, and following the conduct of a

Gedankenexperiment, we propose an approach for the incorporation

of iron species in the definition of biomass, and consequently, in the

biomass equation of the metabolic network. For this purpose, we

identified which amino acids bind different types of iron entities and

in what ratios (Table 1). The relative abundances of proteins that

have functional iron entities in comparison to the global proteome

were extracted from Paulo et al. (2016). The stoichiometric

coefficients of the iron entities to be incorporated into the biomass

equation were calculated from the stoichiometric coefficients of the
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amino acids that could potentially bind (see Supporting Information

S10 for details on the calculation).

3.4 | Reconstruction of the extended
stoichiometric model and general design
considerations

Reconstruction of the model involved the modification of four

existing species (all metabolites), 13 species types (11 metabolites

and two enzymes), and 53 existing reactions, as well as the removal

of three reactions from Y7.6. Some 90 species types (68 enzymes, 18

metabolites and four pseudo‐metabolites), representing 173 species

(67 enzymes, 11 pseudo‐metabolites and 95 metabolites) and 104

new enzymatic and transport reactions were introduced to the

model. Here, “species” denotes both metabolites and enzymes as the

standard nomenclature adopted in the model. Thus the new version

of the model, Y7.Fe, has improved the gene coverage of the existing

model by 6%.

Reactions, which were reported to take place at the membrane

but did not have a detailed mechanism explained, were represented

to occur across the membrane. This device simplified the model

without compromising on the details of iron metabolism. The

enzymes associated with these reactions were localised to the

membrane to highlight the transmembrane nature of the reaction.

Pseudo‐metabolites were introduced such that they did not interfere

with the material, energy, or redox balances of the network. They

were introduced in coupled reactions to avoid accumulation, and

these reactions were unbounded so that the system was not

constrained by the flux limitations through these reactions when

the underdetermined system was optimised for a given objective.

Only 14 new dead‐end metabolites could be detected in Y7.Fe,

indicating that the extension by incorporation of iron metabolism did not

disrupt the connectivity of the metabolic network. All dead‐end
metabolites were new species in the iron model, and were individually

curated for their use and functionality within the network. The Fe‐S
clusters matured in the nucleus are not recruited by the metabolic

enzymes in the current reconstruction. However, this process was

included to enable future extensions of the model, albeit at the cost of

introducing phosphate and mature 4Fe‐4S species as dead‐end metabo-

lites in the nucleus. Other dead‐end metabolites were introduced through

cyclic interconversions: PS (extracellular), NADPH, NADP, FMN and

FMNH2 (in vacuole) and FMNH2 (in the mitochondria). Some by‐products
of iron metabolism are allowed to accumulate in the yeast cell as

reported in the literature: bilirubin and ferrioxamineB (in the vacuole),

coprogen, ferrichrome and enterobactin (in the cytoplasm). L‐Cysteine is

transported into the mitochondrion in our model for the assembly of the

sulphonylated scaffold for Fe‐S cluster formation. Although recent

reports have suggested a putative cysteine synthase (Mcy1p) identified

in the mitochondrial outer membrane (Hughes, Hughes, Henderson,

Yazvenko, & Gottschling, 2016), this mechanism has not yet been

extensively investigated and so was excluded. The biomass‐modified

version of the model (Y7.FeBM; Supporting Information S11) had the

same number of dead ends and yielded similar predictions on growth rate

to the original model reconstructed in this study.

Some 97% of the reactions contained in Y7.Fe were comparable

to those of Y7.6 and only 823 (ca. 23%) reactions had non‐zero fluxes

when the unit glucose uptake rate was used as the single constraint

for optimising growth. Of those 823 reactions, the flux through only

229 remained the same and the difference in fluxes through 254 of

the remaining reactions was more than 25%. This indicated that

introduction of iron metabolism into the genome‐scale metabolic

model resulted in a substantial rewiring of nearly one‐third of the

active reactions in the model under standard growth conditions. The

predicted growth flux was reduced by 7% in Y7.Fe (see Supporting

Information S5 in supplemental material), indicating the cost of the

iron metabolism to the existing network. This high metabolic burden

was most likely to be associated with energy generation, and could

not be captured by Y7.6. This observation was in line with the growth

predictions obtained by constraining the fluxes through the purine

pathways in our preliminary analysis. Revisiting the same system, the

flux predictions improved substantially employing Y7.Fe with only a

±20% difference between the experimentally measured and pre-

dicted growth fluxes, at the cost of lower predictive accuracy of the

growth phenotype. Indeed, an analysis of those reactions, which

displayed more than 25% change in their flux between Y7.6 and Y7.

Fe, showed that they were associated with genes that were

significantly enriched for the nucleoside phosphate metabolism

process term (p < 10–38) along with other metabolic processes in

line with our observations on the analysis involving the purine

intermediates used as flux constraints. We carried out a sensitivity

analysis to investigate robustness by selecting the fluxes that

displayed a change more than 15–35% (in 5% increments), and

TABLE 1 Amino acid—iron entity binding relationships in biomass definition

Iron entity Attached amino acid Binding ratio per iron entity Reference

4Fe‐4S Cysteine 2 Andreini, Bertini, Cavallaro, Najmanovich, and Thornton (2009)

4Fe‐4S (biotin synthase) Arginine 2 Andreini et al. (2009)

2Fe‐2S (Rieske) Histidine–cysteine 2–2 Andreini et al. (2009)

2Fe‐2S (non‐Rieske) Cysteine 4 Andreini et al. (2009)

Haem b Cysteine 1 Li, Bonkovsky, and Guo (2011)

Haem c Cysteine 2 Li et al. (2011)

Fe(III)‐mono Cysteine 4 Andreini et al. (2009)
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observed that the genes encoding the enzymes that catalysed these

reactions were significantly enriched for the same, or very similar

processes (see Supporting Information S5 in supplemental material).

The variability of the flux distributions was taken into consideration

in conducting this analysis (for details of the method, see Supporting

Information S3 in supplemental material).

The analysis of the fluxes in the biomass‐modified model, Y7.

FeBM, indicated that the magnitude of only 8% of the fluxes were

altered as a response to this change and that the magnitude of the

change was minimal (Supporting Information S10). The modifications

were proportional enrichment in the fluxes for the production of the

iron entities that were incorporated into the biomass equation.

Despite being far from providing a complete picture due to the

problems regarding data availability discussed above, this exercise of

incorporating iron entities into biomass definition demonstrated that,

in fact, it was the incorporation of the iron metabolism into the

network that caused extensive rewiring of the fluxes when iron was

taken into consideration as a metabolic cofactor, rather than the part

Fe‐proteins played in the biomass.

The predictive power of the Y7.Fe model was further investigated

by determining its ability to define gene essentiality. The extended

model was observed to perform very similarly to the existing primary

model, Y7.6, with only marginal differences in measures evaluating

predictive power of the model despite a sizeable improvement of 6%

in gene coverage (Table 2). Major improvements and extensions in

the metabolic network model structures were previously observed to

have substantial negative effects on the predictive power as a trade‐
off (Aung et al., 2013). Both Y7.Fe and Y7.6 models performed

similarly in predicting gene essentiality, indicating that the additional

14 dead‐end metabolites introduced in our reconstruction did not

affect the quality of the existing model.

3.5 | Iron‐recruiting enzyme requirements of the
metabolic network model

The stoichiometry of the cofactors introduced into the reactions was

observed to be closely related to the predictions of growth rate,

which meant that such predictions were very sensitive to the

metabolic requirement for iron in the network. The total iron

requirement of the cell was calculated from the iron composition of a

standard defined medium for yeast (Chiu & Segrè, 2008), and the

recruitment of iron or complex iron entities as cofactors by the

enzymes was simulated based on the constraint imposed by the iron

transport flux. Fine‐tuning for the sustainable iron recruitment

indicated that the stoichiometric coefficients for these terms need to

be in the order of magnitude of 10–14 if the supply of iron is not to

reduce the rate of growth (Figure 2). The metabolic requirement of

total turnover for iron‐recruiting enzymes was determined as

3.02 × 10–11 mmol·(g biomass)−1·h−1 based on this model. The

maximum and minimum theoretical requirements for iron‐recruiting
enzymes were determined by investigating the variability of these

fluxes. This analysis demonstrated that the cell employs the

pathways where minimal iron recruitment of the cognate enzymes

would be required, possibly to improve the energy efficiency of the

system. The total turnover was only marginally (0.02‰) higher than

that computed for the theoretical minimum usage. On the other

hand, we observed that the fluxes through these pathways would be

rewired such that the turnover of iron‐recruiting enzymes would be

increased by 34% (Supporting Information S5).

The stoichiometric coefficients for cofactors were determined to

be very low, as expected by their biological context. Although iron

was not among the trace element cofactors, the stoichiometric

coefficients were determined to be in the magnitude of 10–14 (see

Section 2.1.3). An alternative strategy to determine enzyme

abundances from the reaction flux and the turnover rate of these

enzymes (kcat) could be evaluated to replace the stoichiometric

coefficient strategy. Iron, being a micronutrient, is usually provided in

the growth medium at a low concentration. Therefore, constraining

enzyme abundances by iron availability constrains the reaction flux

altogether, since the kcat for each reaction would remain constant.

Even making a favourable selection of kcat values based on available

data, the constraint on iron availability indicated that material flow

through high‐flux reactions, such as those involved with the

mitochondrial respiratory chain, would then adopt impractically low

values to satisfy the constraint on iron availability and compromise

growth rate substantially. This indicated that the limiting factor

concerning iron metabolism was the availability of iron, not the

enzyme turnover rates, necessitating the modulation of reaction

stoichiometry.

Working with such small numbers also imposes technical

constraints on the analysis. The precision of the machine and the

solver used can both cause problems at this stage. For the current

analyses, the precision of both the machine and Gurobi (Gurobi

Optimizer Version 3.0; Gurobi Optimization, Inc., Houston, TX; April

2010, http://www.gurobi.com/) were two orders of magnitude lower

than the stoichiometric coefficients, allowing us a robust platform to

conduct the analyses independent of whether the MATLAB or the

Python version of Cobra was utilised. Several tests were run to

ensure that Gurobi did not treat the stoichiometric coefficients as

zero, and that the performance of the solver was not compromised

TABLE 2 Evaluation of the predictive power of the extended
model

Y7.6 Y7.Fe

Number of genes 908 963

Number of TP 677 709

Number of TN 83 84

Number of FP 73 90

Number of FN 76 80

PPV (%) 90 89

NPV (%) 52 48

Sensitivity (%) 90 90

Specificity (%) 53 48

Predictive success (%) 84 82
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(as described in Supporting Information 3). However, for less

abundant cofactors, this is an issue that needs to be addressed.

3.6 | Benchmarking the model against
environmental and genetic challenges

Having established the iron‐recruiting enzyme requirement of the

metabolic network, we extended the investigation to understand

how the in silico system adapted to environmental challenges that

were tailored specifically to exploit this model. The response of the

network to different levels of extracellular iron and copper

availability was investigated through flux distributions. For this

purpose, the upper and lower bounds of the fluxes through several

reactions were set to zero to mimic reports available in the literature

(Haas et al., 2008; Lesuisse et al., 2001). The high‐affinity iron uptake

system was activated by blocking the routes through low affinity Fe2+

uptake routes. The absence of extracellular xenosiderophores was

also taken into consideration for the simulation of an S. cerevisiae

monoculture. The predictions on flux distributions were in agreement

with the expected physiological outcome on how the yeast

metabolism responded to low or high abundance of copper

(Cankorur‐Cetinkaya et al., 2013; Vest et al., 2016) or iron

(Holmes‐Hampton, Jhurry, McCormick, & Lindahl, 2013; Vest et al.,

2016; Table 3).

We then investigated how Y7.Fe could be used to study the

impact of the deletion of the genes ARH1, ATM1 or YFH1 or a

reduction in the functionality of their protein products, which are all

essential components of the ISC machinery. All three genes are

essential, although only arh1 deletants could be identified as inviable

employing the model. This implies that YFH1 (the Fe‐S cluster

scaffold protein) and ATM1 (the Fe‐S apocluster transporter) have

essential functions outside of the metabolic network, perhaps for the

supply of Fe‐S clusters for essential non‐enzyme proteins.

Despite their essentiality, the hemizygous mutants of these genes

in the diploid BY4743 genetic background did not produce any

significant growth defects (p < 0.01) with the specific growth rate for

all mutants remaining within ± −0.43 0.01 h 1 as also indicated by the

model predictions. Our experiments demonstrated that the hemi-

zygous mutants did not display significant differences (p < 0.01) with

respect to their utilisation of glucose or ammonium as carbon and

nitrogen sources, respectively, nor in their production of ethanol or

glycerol. On average, the hemizygous mutants were observed to

consume more iron per unit optical density equivalent number of

cells although this difference was not observed to be significant due

to the high variance between replicates. However, a significant

difference in the intracellular distribution of copper was observed

between these mutants and the wild type was observed. That said,

measurements of intracellular haem, copper, reduced or total iron

content of the mutants gave no further insight into the essential roles

of ARH1 , YFH1 and ATM1 inside or outside metabolism (Supporting

Information S5).

The reactions with non‐zero fluxes were more often catalysed by

enzymes encoded by essential genes (2.32‐fold over‐enrichment;

p < 10–40) in Y7.Fe than in Y7.6. In line with this observation, ARH1

was widely associated with reactions having non‐zero fluxes in the

metabolic network. ARH1 being an essential gene also for the model,

the reorganisation of the fluxes in the network could only be

investigated by introducing an “in silico reduction of function.” We

used flux as a proxy for the functional capacity of the enzyme

catalysing that reaction and lowered the flux value by 50% to mimic

the impact of heterozygosity. The flux bounds that were set to 50%

of their wild‐type flux value did not relate to nutrient uptake fluxes;

F IGURE 2 Indispensable role of iron for yeast. This plot
demonstrates how growth rate predictions of the metabolic network

model are affected by the amount of iron recruited by the metabolic
enzymes. The stoichiometric coefficient of iron ions and complex iron
entities to be recruited by iron requiring enzymes without impairing

growth substantially can be determined based on the constraints
imposed by the experimentally permissible limits of iron uptake

TABLE 3 Performance table for benchmarking the model predictions with empirical observationsa

Y7.Fe predictions Empirical observations

O2 uptake Growth O2 uptake Growth

High iron available in the extracellular space ↔ ↔ ↔ ↔

Low iron available in the extracellular space ↓ ↓ ↓ ↓

High copper available in the extracellular space ↔ ↔ ↔ ↔

Low copper available in the extracellular space ↔ ↔ ↔ ↔

Hemizygosity in ARH1 ↓ ↔ ↓ ↔

Δccc2/ Δccc2 ↓ ↔ ↓ ↔

Δccc2/ Δccc2—no copper supplementation ↔ ↓ ↔ ↓

a↑: increase against control; ↓: decrease against control,↔ : remains constant.
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therefore, they did not change the nutrient limitation of the system

and this has been confirmed by the glucose uptake flux being

maintained at its upper bound limit under both conditions. Conse-

quently, the predicted growth rate was reduced by 50% in response

to limiting the flux through the reaction catalysed by ARH1 at 50% of

its original value, the expected outcome for the remaining non‐zero‐
fluxes was to be reduced by 50%, or to remain unchanged. However,

14% of all fluxes were observed to be rewired or had changed by a

factor other than a 50% reduction.

Some 22% of the enzymes and transporters represented in Y7.Fe

(963 in total) associated with 506 fluxes were affected by these

changes. The rewiring of the fluxes was predominantly observed to

involve lipid metabolism (p < 10–11). Furthermore, fluxes were ob-

served to be rewired away from the metabolism of glycine and serine

family of amino acids (p < 10−6) towards the metabolism of neutral

lipids (p < 10−4). The enzymes associated with the reactions that

displayed unexpected variations in the magnitude of their fluxes were

significantly associated with oxidative phosphorylation (p < 10–40),

aerobic respiration (p < 10–30), and purine nucleotide metabolism

(p < 10–72).

Among the reactions with unexpectedly altered fluxes, 28% were

orphan reactions, mostly involved in small molecule transport or

exchange, for which the relevant gene has yet to be identified. Many

of these reactions were involved with the transport or exchange of lipid

metabolism intermediates across organelles, as well as of amino acids

including glycine, L‐alanine, L‐leucine, serine and valine and of small

inorganic molecules including ammonia, bicarbonate, carbon dioxide,

hydronium ion, oxygen, phosphate and water (Supporting Information 3).

The rewiring of lipid metabolism and the changes in the fluxes in

the energy pathways in response to a perturbation induced to mimic

the reduction of ARH1 function in the cell was in line with earlier

findings on its role in biological systems. Apart from acting as an

essential component of the ISC machinery, the Arh1 protein is an

ortholog of the human adrenodoxin reductase (Manzella, Barros, &

Nobrega, 1998), which was reported to function in the mitochondrial

electron transfer chain that catalyses the conversion of cholesterol

into pregnenolone. Expression of human ARH1 on a retroviral vector

was shown to restore the LDL receptor function in cells from patients

suffering from familial hypercholesterolemia (Eden et al., 2002),

demonstrating the enzyme’s role in neutral lipid metabolism, as also

captured by our analysis in the model yeast system.

Because iron cofactors, specifically Fe‐S clusters, were used

extensively as cofactors by enzymes catalysing mitochondrial

reactions (particularly those that affect energy generation routes

via aerobic respiration), constraining the flux of such a reaction was

observed to lead to a reduction in the oxygen uptake flux, also by

50%. This was observed not only upon imposing limitations on iron

uptake, but also upon rendering of the Fe‐S cluster biogenesis fluxes

low, as demonstrated by the simulations carried out to mimic the

impact of genetic modifications on the metabolic network. This

example also demonstrated the tight links across the metabolic

network. Because the flow of material (i.e. flux) through the

reactions, which were catalysed by iron‐requiring enzymes, would

not be isolated from the flux through those that did not require iron‐
bearing enzymes. The fluxes through reactions which (in theory) had

no direct relationship with iron metabolism were also affected in

response to this extension of the model.

The extended model of the yeast metabolic network now serves

as a functional platform to study rare disorders associated with the

iron metabolism, as well as those of other ions to the extent of their

involvement in iron‐associated pathways. ARH1, studied extensively

above, encodes the yeast homolog of the adrenodoxin reductase, and

mutations in the human gene are reported to be responsible for

auditory neuropathy and optic atrophy (Paul et al., 2017). The model

also allowed us to simulate the impairment of CCC2, the copper‐
transporting ATPase, mutations in whose human homolog, ATP7B, is

responsible for Wilson’s disease (Cankorur‐Cetinkaya et al., 2013;

Júlvez, Dikicioglu, & Oliver, 2018). Using the model, we were able to

demonstrate a critical impairment associated with this disorder—

namely, that under conditions of high oxygen availability, the deletion

of CCC2 impaired growth in the absence of copper supplementation

(Table 3).

4 | DISCUSSION

The complex network of interactions between enzymes, metabolites

and their regulators defines transitions between metabolic states.

Metabolic state shifts mediate adaptive responses that allow cells to

respond to environmental or genetic perturbations. Such shifts in the

state of metabolism may be desirable in some cases, such as

biotechnological applications, or most unwelcome in other situations

such as switching to a diseased state that may induce cancer or other

conditions. Genome‐scale models of the metabolic network are of

central importance since they allow us to achieve a better under-

standing of how the fluxes can be rewired in response to an internal

or external input, and thus have been frequently used in biotechno-

logical applications as a prediction tool, since the aim is often to

obtain a preferred flux distribution (Kerkhoven, Lahtvee, & Nielsen,

2014). Iron has an important role in a range of biotechnological

applications from improving human nutrition (Puig, Andres‐Ccolas,
Garcia‐Molina, & Penarrubia, 2007) to the production of recombinant

proteins (Eck et al., 2018), and healthcare applications concerning

iron storage abnormalities (Valerio, 2007). The incorporation of an

extensive, well‐curated iron metabolism in metabolic networks may

greatly enhance the opportunities metabolic models offer for

applications in red, green, or white biotechnology.

This paper has presented a comprehensive extension of the

genome‐scale stoichiometric model of the yeast metabolic network

by incorporating the involvement of ion cofactors, which are not,

themselves, consumed in the metabolic reactions in which they are

involved. We selected the iron ion as our test case as it is involved in

nearly 10% of all enzymatic steps in the yeast metabolic network. A

substantial number of non‐metabolic proteins also recruit iron

cofactors. Although iron species to be used by non‐metabolic

proteins can be produced by the metabolic network model, they
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remain as dead‐end metabolites since these models do not include

non‐metabolic biological processes. In its current form, introducing

the empirical iron requirement of yeast as a constraint for the

metabolic network would yield an inevitable overestimation of the

iron requirement for metabolism, since all of the iron transported

across the cell boundary can theoretically be utilised metabolically.

Nevertheless, the quantitation of distinct iron‐containing cofactor

species contributing to the biomass would allow an improved

definition of biomass composition to be established, which would

indirectly account for the iron species requirements of non‐metabolic

proteins, resolving this problem of overestimation.

Although this study was specific to iron, we contend that our work

has provided a new approach for handling co‐enzymes and co‐factors in
stoichiometric models of metabolism, and that this approach can be

generalised for other such entities. We made use of pseudo‐metabolites,

which were not produced or consumed by the cell, in modelling the

system. We used this formalism since these intermediates, functioning in

cyclic interconversion pathways, allowed a more explicit description of

the molecular mechanisms represented in the model. The Y7.Fe model

allowed us to define the optimal turnover rate of iron cofactors in the

metabolic network, something which is not possible to achieve

experimentally using current analytical technologies. The method

provided a means to estimate enzyme fluxes from reaction fluxes and

cofactor availability. Proteomics data available at the global scale can, at

present, only provide us with the relative quantitation of some enzymes;

therefore, empirical protein abundance data do not afford us the means

to evaluate our predictions. However, we note once again that ion

cofactor availability, rather than empirically determined enzyme turn-

over rates, was more prominent as a limiting factor in determining the

predictions that can be made using the Y7.Fe model. Therefore, we

believe our method provides a very reasonable estimate of the iron‐
recruiting enzyme requirements of the metabolic network under defined

circumstances, which is currently not possible with any other method.

Our model represents an unconventional way of extending

metabolic network models to incorporate non‐metabolic information.

The ion cofactors are “non‐metabolic” in the sense that they are

conserved moieties that are not, themselves, transformed by

metabolic reactions. Although they can be considered as “pseudo-

metabolites,” these cofactors proved highly effective in altering the

distribution of fluxes through the metabolic network. The flux

distribution would not have been substantially affected were it not

for the involvement of cofactors taken up and biosynthesized by the

new reactions introduced into the metabolic network model. This

distribution can now be constrained not only by the macronutrient (e.

g. glucose) availability, but also by the availability of an essential

micronutrient, that is iron. The ability to incorporate the roles of such

ion cofactors could prove essential for constructing models of

biological systems at the level of the whole cell or organism.

ACKNOWLEDGEMENTS

We thank Andy Hesketh for access to data on purine nucleotides

prior to publication. Ayca Cankorur‐Cetinkaya and Alexander P. S.

Darlington for useful discussions on copper‐iron metabolism in

yeast, and Daniel J. H. Nightingale for discussions and guidance on

the subcellular fractionation of yeast organelles and on the

available yeast proteomic datasets. The authors gratefully acknowl-

edge the funding from the Leverhulme Trust (ECF‐2016‐681 to

Duygu Dikicioglu), European Commission 7th Framework Pro-

gramme (BIOLEDGE Contract no: 289126 to SGO), BBSRC

(BRIC2.2 to SGO).

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest.

ORCID

Duygu Dikicioglu http://orcid.org/0000-0002-3018-4790

Stephen G. Oliver http://orcid.org/0000-0003-3410-6439

REFERENCES

Andreini, C., Bertini, I., & Rosato, A. (2009). Metalloproteomes: a

bioinformatic approach. Accounts of Chemical Research, 42(10),

1471–1479. https://doi:10.1021/ar900015x

Aung, H. W., Henry, S. a, & Walker, L. P. (2013). Revising the

representation of fatty acid, glycerolipid, and glycerophospholipid

metabolism in the consensus model of yeast metabolism. Industrial

Biotechnology, 9(4), 215–228. https://doi.org/10.1089/ind.2013.0013

Baganz, F., Hayes, A., Marren, D., Gardner, D. C. J., & Oliver, S. G. (1997).

Suitability of replacement markers for functional analysis studies in

Saccharomyces cerevisiae. Yeast, 13(16), 1563–1573. https://doi.org/

10.1002/(SICI)1097‐0061(199712)13:16<1563::AID‐YEA240>3.0.
CO;2‐6

Baker Brachmann, C., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., &

Boeke, J. D. (1998). Designer deletion strains derived from Sacchar-

omyces cerevisiae S288C: A useful set of strains and plasmids for PCR‐
mediated gene disruption and other applications. Yeast, 14(2), 115–

132. https://doi.org/10.1002/(SICI)1097‐0061(19980130)14:2<115::
AID‐YEA204>3.0.CO;2‐2

Barrientos, A. (2003). Yeast models of human mitochondrial diseases.

IUBMB Life, 55(2), 83–95. https://doi.org/10.1002/tbmb.718540876

Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., &

Rabinowitz, J. D. (2009). Absolute metabolite concentrations and

implied enzyme active site occupancy in Escherichia coli. Nature

Chemical Biology, 5(8), 593–599. https://doi.org/10.1038/

nchembio.186

Bonarius, H. P. J., Hatzimanikatis, V., Meesters, K. P. H., de Gooijer, C. D.,

De gooijer, C. D., Schmid, & Tramper, J. (1996). Metabolic flux analysis

of hybridoma cells in different culture media using mass balances.

Biotechnology and Bioengineering, 50(3), 299–318. https://doi.org/

http://.org/10.1002/(SICI)1097‐0290(19960505)50:3<299::AID‐
BIT9>3.0.CO;2‐B

Botstein, D., Chervitz, S. A., & Cherry, J. M. (1997). Yeast as a model

organism. Science, 277(5330), 1259–1260. Retrieved from. http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid = 3039837&

tool = pmcentrez&rendertype = abstract

Cankorur‐Cetinkaya, A., Eraslan, S., Kirdar, B., Esper, G. J., Winton, E. F.,

Garcia, E., & Freitas, A. T. (2013). Transcriptional remodelling in

response to changing copper levels in the Wilson and Menkes disease

model of Saccharomyces cerevisiae. Molecular BioSystems, 9(11), 2889.

https://doi.org/10.1039/c3mb70276f

DIKICIOGLU AND OLIVER | 619

http://orcid.org/0000-0002-3018-4790
http://orcid.org/0000-0003-3410-6439
https://doi:10.1021/ar900015x
https://doi.org/10.1089/ind.2013.0013
https://doi.org/10.1002/(SICI)1097-0061(199712)13:16<1563::AID-YEA240>3.0.CO;2-6
https://doi.org/10.1002/(SICI)1097-0061(199712)13:16<1563::AID-YEA240>3.0.CO;2-6
https://doi.org/10.1002/(SICI)1097-0061(199712)13:16<1563::AID-YEA240>3.0.CO;2-6
https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
https://doi.org/10.1002/tbmb.718540876
https://doi.org/10.1038/nchembio.186
https://doi.org/10.1038/nchembio.186
https://doi.org/%2010.1002/(SICI)1097-0290(19960505)50:3	%3c	299::AID-BIT9	%3e	3.0.CO;2-B
https://doi.org/%2010.1002/(SICI)1097-0290(19960505)50:3	%3c	299::AID-BIT9	%3e	3.0.CO;2-B
https://doi.org/%2010.1002/(SICI)1097-0290(19960505)50:3	%3c	299::AID-BIT9	%3e	3.0.CO;2-B
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid	=	3039837&tool	=	pmcentrez&rendertype	=	abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid	=	3039837&tool	=	pmcentrez&rendertype	=	abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid	=	3039837&tool	=	pmcentrez&rendertype	=	abstract
https://doi.org/10.1039/c3mb70276f


Carroll, K. M., Simpson, D. M., Eyers, C. E., Knight, C. G., Brownridge, P.,

Dunn, W. B., … Beynon, R. J. (2011). Absolute quantification of the

glycolytic pathway in yeast: Deployment of a complete QconCAT

approach. Molecular and Cellular Proteomics, 10(12), 007633. M111.

https://doi.org/10.1074/mcp.M111.007633

Chelliah, V., Juty, N., Ajmera, I., Ali, R., Dumousseau, M., Glont, M., … Laibe,

C. (2015). BioModels: Ten‐year anniversary. Nucleic Acids Research,

43(D1), D542–D548. https://doi.org/10.1093/nar/gku1181

Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G.,

Chan, E. T., … Wong, E. D. (2012). Saccharomyces Genome Database:

The genomics resource of budding yeast. Nucleic Acids Research,

40(Database issue), D700–D705. https://doi.org/10.1093/nar/

gkr1029

Chiu, H.‐C., & Segrè, D. (2008). Comparative determination of biomass

composition in differentially active metabolic States. Genome Infor-

matics. International Conference on Genome Informatics, 20, 171–182.

Dikicioglu, D., Kırdar, B., & Oliver, S. G. (2015). Biomass composition: The

“elephant in the room” of metabolic modelling. Metabolomics, 11,

1690–1701. https://doi.org/10.1007/s11306‐015‐0819‐2
Eck, A., Schmidt, M., Hamer, S., Ruff, A. J., Förster, J., Schwaneberg, U., …

Oldiges, M. (2018). Improved microscale cultivation of Pichia pastoris

for clonal screening. Fungal Biology and Biotechnology, 5(1), 8. https://

doi.org/10.1186/s40694‐018‐0053‐6
Eden, E. R., Patel, D. D., Sun, X. ‐M., Burden, J. J., Themis, M., Edwards, M.,

… Soutar, A. K. (2002). Restoration of LDL receptor function in cells

from patients with autosomal recessive hypercholesterolemia by

retroviral expression of ARH1. The Journal of Clinical Investigation,

110(11), 1695–1702. https://doi.org/10.1172/JCI16445

Famili, I., Forster, J., Nielsen, J., & Palsson, B. O. (2003). Saccharomyces

cerevisiae phenotypes can be predicted by using constraint‐based
analysis of a genome‐scale reconstructed metabolic network.

Proceedings of the National Academy of Sciences of the United States

of America, 100(23), 13134–13139. https://doi.org/10.1073/pnas.

2235812100

Fendt, S.‐M., Buescher, J. M., Rudroff, F., Picotti, P., Zamboni, N., & Sauer,

U. (2010). Tradeoff between enzyme and metabolite efficiency

maintains metabolic homeostasis upon perturbations in enzyme

capacity. Molecular Systems Biology, 6(1), 356. https://doi.org/10.

1038/msb.2010.11

Ferreira, G. C., & Gong, J. (1995). 5‐Aminolevulinate synthase and the first

step of heme biosynthesis. Journal of Bioenergetics and Biomembranes,

27(2), 151–159. https://doi.org/10.1007/BF02110030

De Freitas, J., Wintz, H., Kim, J. H., Poynton, H., Fox, T., Vulpe, C., & Vulpe,

C. (2003). Yeast, a model organism for iron and copper metabolism

studies. BioMetals, 16(1), 185–197. https://doi.org/10.1023/

A:1020771000746

Georgatsou, E., & Alexandraki, D. (1994). Two distinctly regulated genes

are required for ferric reduction, the first step of iron uptake in

Saccharomyces cerevisiae. Molecular and Cellular Biology, 14(5), 3065–

3073. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid =

358674&tool = pmcentrez&rendertype = abstract

Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H.,

… Oliver, S. G. (1996). Life with 6000 genes. Science, 274(5287), 563–

567. 546 Retrieved from. http://www.ncbi.nlm.nih.gov/pubmed/

8849441

Haas, H., Eisendle, M., & Turgeon, B. G. (2008). Siderophores in fungal

physiology and virulence. Annual Review of Phytopathology, 46,

149–187. https://doi.org/10.1146/annurev.phyto.45.062806.

094338

Hassett, R., Dix, D. R., Eide, D. J., & Kosman, D. J. (2000). The Fe(II)

permease Fet4p functions as a low affinity copper transporter and

supports normal copper trafficking in Saccharomyces cerevisiae. The

Biochemical Journal, 351(Pt 2), 477–484. Retrieved from. http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid = 1221384&tool =

pmcentrez&rendertype = abstract

Heavner, B. D., & Price, N. D. (2015). Comparative analysis of yeast

metabolic network models highlights progress, opportunities for

metabolic reconstruction. PLOS Computational Biology, 11(11),

e1004530. https://doi.org/10.1371/journal.pcbi.1004530

Hesketh, A., Vergnano, M., Wan, C., & Oliver, S. G. (2017). Bacterial

signaling nucleotides inhibit yeast cell growth by impacting mitochon-

drial and other specifically eukaryotic functions. mBio, 8(4), e01047‐
17 https://doi.org/10.1128/mBio.01047‐17

Holmes‐Hampton, G. P., Jhurry, N. D., McCormick, S. P., & Lindahl, P. A.

(2013). Iron content of Saccharomyces cerevisiae cells grown under

iron‐deficient and iron‐overload conditions. Biochemistry, 52(1), 105–

114. https://doi.org/10.1021/bi3015339

Hughes, A. L., Hughes, C. E., Henderson, K. A., Yazvenko, N., & Gottschling,

D. E. (2016). Selective sorting and destruction of mitochondrial

membrane proteins in aged yeast. eLife, 5, 5. https://doi.org/10.7554/

eLife.13943

Johnson, D. C., Dean, D. R., Smith, A. D., & Johnson, M. K. (2005).

Structure, function, and formation of biological iron‐sulfur clusters.

Annual Review of Biochemistry, 74, 247–281. https://doi.org/10.1146/

annurev.biochem.74.082803.133518

Júlvez, J., Dikicioglu, D., & Oliver, S. G. (2018). Handling variability and

incompleteness of biological data by flexible nets: A case study for

Wilson disease. NPJ Systems Biology and Applications, 4(1), 7. https://

doi.org/10.1038/s41540‐017‐0044‐x
Kerkhoven, E. J., Lahtvee, P.‐J., & Nielsen, J. (2014). Applications of

computational modeling in metabolic engineering of yeast. FEMS Yeast

Research, 15(1). n/a‐n/a. https://doi.org/10.1111/1567‐1364.12199
Knight, S. A., Labbé, S., Kwon, L. F., Kosman, D. J., & Thiele, D. J. (1996). A

widespread transposable element masks expression of a yeast copper

transport gene. Genes & Development, 10(15), 1917–1929. Retrieved

from. http://www.ncbi.nlm.nih.gov/pubmed/8756349

Lange, H. C., & Heijnen, J. J. (2001). Statistical reconciliation of the

elemental and molecular biomass composition of Saccharomyces

cerevisiae. Biotechnology and Bioengineering, 75(3), 334–344. Retrieved

from. http://www.ncbi.nlm.nih.gov/pubmed/11590606

Lawless, C., Holman, S. W., Brownridge, P., Lanthaler, K., Harman, V. M.,

Watkins, R., … Hubbard, S. J. (2016). Direct and absolute quantifica-

tion of over 1800 yeast proteins via selected reaction monitoring.

Molecular & Cellular Proteomics, 15(4), 1309–1322. https://doi.org/10.

1074/mcp.M115.054288

Lesuisse, E., Blaiseau, P. L., Dancis, A., & Camadro, J. M. (2001).

Siderophore uptake and use by the yeast Saccharomyces cerevisiae.

Microbiology (Reading, England), 147(Pt 2), 289–298. Retrieved from.

http://www.ncbi.nlm.nih.gov/pubmed/11158346

Li, T., Bonkovsky, H. L., & Guo, J. (2011). Structural analysis of heme

proteins: implications for design and prediction. BMC Structural

Biology, 11, 13. https://doi.org/10.1186/1472-6807-11-13

Lill, R., Hoffmann, B., Molik, S., Pierik, A. J., Rietzschel, N., Stehling, O., …

Mühlenhoff, U. (2012). The role of mitochondria in cellular iron‐sulfur
protein biogenesis and iron metabolism. Biochimica et Biophysica Acta,

1823(9), 1491–1508. https://doi.org/10.1016/j.bbamcr.2012.05.009

Lill, R., & Mühlenhoff, U. (2006). Iron‐sulfur protein biogenesis in

eukaryotes: Components and mechanisms. Annual Review of Cell and

Developmental Biology, 22(1), 457–486. https://doi.org/10.1146/

annurev.cellbio.22.010305.104538

Lill, R., & Mühlenhoff, U. (2008). Maturation of iron‐sulfur proteins in

eukaryotes: Mechanisms, connected processes, and diseases. Annual

Review of Biochemistry, 77, 669–700. https://doi.org/10.1146/annurev.

biochem.76.052705.162653

Madhukar, N. S., Warmoes, M. O., & Locasale, J. W. (2015). Organization

of enzyme concentration across the metabolic network in cancer cells.

PLOS One, 10(1), e0117131. https://doi.org/10.1371/journal.pone.

0117131

Manzella, L., Barros, M. H., & Nobrega, F. G. (1998). ARH1 of

Saccharomyces cerevisiae: A new essential gene that codes for a

620 | DIKICIOGLU AND OLIVER

https://doi.org/10.1074/mcp.M111.007633
https://doi.org/10.1093/nar/gku1181
https://doi.org/10.1093/nar/gkr1029
https://doi.org/10.1093/nar/gkr1029
https://doi.org/10.1007/s11306-015-0819-2
https://doi.org/10.1186/s40694-018-0053-6
https://doi.org/10.1186/s40694-018-0053-6
https://doi.org/10.1172/JCI16445
https://doi.org/10.1073/pnas.2235812100
https://doi.org/10.1073/pnas.2235812100
https://doi.org/10.1038/msb.2010.11
https://doi.org/10.1038/msb.2010.11
https://doi.org/10.1007/BF02110030
https://doi.org/10.1023/A:1020771000746
https://doi.org/10.1023/A:1020771000746
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid	=	358674&tool	=	pmcentrez&rendertype	=	abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid	=	358674&tool	=	pmcentrez&rendertype	=	abstract
http://www.ncbi.nlm.nih.gov/pubmed/8849441
http://www.ncbi.nlm.nih.gov/pubmed/8849441
https://doi.org/10.1146/annurev.phyto.45.062806.094338
https://doi.org/10.1146/annurev.phyto.45.062806.094338
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid	=	1221384&tool	=	pmcentrez&rendertype	=	abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid	=	1221384&tool	=	pmcentrez&rendertype	=	abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid	=	1221384&tool	=	pmcentrez&rendertype	=	abstract
https://doi.org/10.1371/journal.pcbi.1004530
https://doi.org/10.1128/mBio.01047-17
https://doi.org/10.1021/bi3015339
https://doi.org/10.7554/eLife.13943
https://doi.org/10.7554/eLife.13943
https://doi.org/10.1146/annurev.biochem.74.082803.133518
https://doi.org/10.1146/annurev.biochem.74.082803.133518
https://doi.org/10.1038/s41540-017-0044-x
https://doi.org/10.1038/s41540-017-0044-x
https://doi.org/10.1111/1567-1364.12199
http://www.ncbi.nlm.nih.gov/pubmed/8756349
http://www.ncbi.nlm.nih.gov/pubmed/11590606
https://doi.org/10.1074/mcp.M115.054288
https://doi.org/10.1074/mcp.M115.054288
http://www.ncbi.nlm.nih.gov/pubmed/11158346
https://doi.org/10.1186/1472-6807-11-13
https://doi.org/10.1016/j.bbamcr.2012.05.009
https://doi.org/10.1146/annurev.cellbio.22.010305.104538
https://doi.org/10.1146/annurev.cellbio.22.010305.104538
https://doi.org/10.1146/annurev.biochem.76.052705.162653
https://doi.org/10.1146/annurev.biochem.76.052705.162653
https://doi.org/10.1371/journal.pone.0117131
https://doi.org/10.1371/journal.pone.0117131


protein homologous to the human adrenodoxin reductase. Yeast,

14(9), 839–846. https://doi.org/10.1002/(SICI)1097‐0061(19980630)
14:9 < 839::AID‐YEA283 > 3.0.CO;2‐A

Matsumoto, M., Matsuzaki, F., Oshikawa, K., Goshima, N., Mori, M.,

Kawamura, Y., … Nakayama, K. I. (2016). A large‐scale targeted

proteomics assay resource based on an in vitro human proteome.

Nature Methods, 14(3), 251–258. https://doi.org/10.1038/nmeth.4116

Miethke, M., & Marahiel, M. A. (2007). Siderophore‐based iron acquisition

and pathogen control. Microbiology and Molecular Biology Reviews,

71(3), 413–451. https://doi.org/10.1128/MMBR.00012‐07
Nilsson, A., & Nielsen, J. (2016). Metabolic trade‐offs in yeast are caused

by F1F0‐ATP synthase. Scientific Reports, 6(1), 22264. https://doi.org/

10.1038/srep22264

Orth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis?

Nature Biotechnology, 28(3), 245–248. https://doi.org/10.1038/

nbt.1614

Paul, A., Drecourt, A., Petit, F., Deguine, D. D., Vasnier, C., Oufadem, M., …

Marlin, S. (2017). FDXR mutations cause sensorial neuropathies and

expand the spectrum of mitochondrial Fe‐S‐synthesis diseases. The

American Journal of Human Genetics, 101(4), 630–637. https://doi.org/

10.1016/j.ajhg.2017.09.007

Paulo, J. A., O’connell, J. D., Everley, R. A., O’brien, J., Gygi, M. A., & Gygi, S.

P. (2016). Quantitative mass spectrometry‐based multiplexing com-

pares the abundance of 5000 S. cerevisiae proteins across 10 carbon

sources. Journal of Proteomics, 148, 85–93. https://doi.org/10.1016/j.

jprot.2016.07.005

Philpott, C. C. (2006). Iron uptake in fungi: A system for every source.

Biochimica et Biophysica Acta, 1763(7), 636–645. https://doi.org/10.

1016/j.bbamcr.2006.05.008

Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B., & Aebersold, R.

(2009). Full dynamic range proteome analysis of S. cerevisiae by

targeted proteomics. Cell, 138(4), 795–806. https://doi.org/10.1016/j.

cell.2009.05.051

Puig, S., Mira, H., Dorcey, E., Sancenón, Andrés‐Colás, N., Garcia‐Molina,

A., … Peñarrubia, L. (2007). Copper and iron homeostasis in

Arabidopsis: Responses to metal deficiencies, interactions and

biotechnological applications. Plant, Cell & Environment, 30(3), 271–

290. https://doi.org/10.1111/j.1365‐3040.2007.01642.x
Sauer, U. (2006). Metabolic networks in motion: 13C‐based flux analysis.

Molecular Systems Biology, 2, 62. https://doi.org/10.1038/msb4100109

Shakoury‐Elizeh, M., Tiedeman, J., Rashford, J., Ferea, T., Demeter, J.,

Garcia, E., … Philpott, C. C. (2004). Transcriptional remodeling in

response to iron deprivation in Saccharomyces cerevisiae. Molecular

Biology of the Cell, 15(3), 1233–1243. https://doi.org/10.1091/mbc.

E03‐09‐0642
Sánchez, B. J., Zhang, C., Nilsson, A., Lahtvee, P. ‐J., Kerkhoven, E. J., &

Nielsen, J. (2017). Improving the phenotype predictions of a yeast

genome‐scale metabolic model by incorporating enzymatic con-

straints. Molecular Systems Biology, 13(8), 935. Retrieved from.

http://www.ncbi.nlm.nih.gov/pubmed/28779005

Terali, K. (2010). Characterisation of the yeast Nfs1/Isd11 cysteine

desulphurase complex. Queen Mary: Queen Mary, University of

London. Retrieved from. https://qmro.qmul.ac.uk/jspui/bitstream/

123456789/572/3/TERALICharacterisation2010.pdf

Urzica, E., Pierik, A. J., Mühlenhoff, U., & Lill, R. (2009). Crucial role of

conserved cysteine residues in the assembly of two iron−sulfur

clusters on the CIA protein Nar1. Biochemistry, 48(22), 4946–4958.

https://doi.org/10.1021/bi900312x

Valerio, L. G. (2007). Mammalian iron metabolism. Toxicology Mechanisms

and Methods, 17(9), 497–517. https://doi.org/10.1080/

15376510701556690

Vest, K. E., Wang, J., Gammon, M. G., Maynard, M. K., White, O. L., Cobine,

J. A., … Cobine, P. A. (2016). Overlap of copper and iron uptake

systems in mitochondria in Saccharomyces cerevisiae. Open Biology,

6(1), 150223. https://doi.org/10.1098/rsob.150223

Yun, C. W., Bauler, M., Moore, R. E., Klebba, P. E., & Philpott, C. C. (2001).

The role of the FRE family of plasma membrane reductases in the

uptake of siderophore‐iron in Saccharomyces cerevisiae. The Journal of

Biological Chemistry, 276(13), 10218–10223. https://doi.org/10.1074/

jbc.M010065200

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Dikicioglu D, Oliver SG. Extension of

the yeast metabolic model to include iron metabolism and its use

to estimate global levels of iron‐recruiting enzyme abundance

from cofactor requirements. Biotechnology and Bioengineering.

2019;116:610‐621. https://doi.org/10.1002/bit.26905

DIKICIOGLU AND OLIVER | 621

https://doi.org/10.1002/(SICI)1097-0061(19980630)14:9	<	839::AID-YEA283	>	3.0.CO;2-A
https://doi.org/10.1002/(SICI)1097-0061(19980630)14:9	<	839::AID-YEA283	>	3.0.CO;2-A
https://doi.org/10.1038/nmeth.4116
https://doi.org/10.1128/MMBR.00012-07
https://doi.org/10.1038/srep22264
https://doi.org/10.1038/srep22264
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1016/j.ajhg.2017.09.007
https://doi.org/10.1016/j.ajhg.2017.09.007
https://doi.org/10.1016/j.jprot.2016.07.005
https://doi.org/10.1016/j.jprot.2016.07.005
https://doi.org/10.1016/j.bbamcr.2006.05.008
https://doi.org/10.1016/j.bbamcr.2006.05.008
https://doi.org/10.1016/j.cell.2009.05.051
https://doi.org/10.1016/j.cell.2009.05.051
https://doi.org/10.1111/j.1365-3040.2007.01642.x
https://doi.org/10.1038/msb4100109
https://doi.org/10.1091/mbc.E03-09-0642
https://doi.org/10.1091/mbc.E03-09-0642
http://www.ncbi.nlm.nih.gov/pubmed/28779005
https://qmro.qmul.ac.uk/jspui/bitstream/123456789/572/3/TERALICharacterisation2010.pdf
https://qmro.qmul.ac.uk/jspui/bitstream/123456789/572/3/TERALICharacterisation2010.pdf
https://doi.org/10.1021/bi900312x
https://doi.org/10.1080/15376510701556690
https://doi.org/10.1080/15376510701556690
https://doi.org/10.1098/rsob.150223
https://doi.org/10.1074/jbc.M010065200
https://doi.org/10.1074/jbc.M010065200
https://doi.org/10.1002/bit.26905



