
Inverse Problems

PAPER • OPEN ACCESS

An inverse potential problem for subdiffusion: stability and
reconstruction*

To cite this article: Bangti Jin and Zhi Zhou 2021 Inverse Problems 37 015006

 

View the article online for updates and enhancements.

This content was downloaded from IP address 193.60.238.99 on 15/01/2021 at 06:23

https://doi.org/10.1088/1361-6420/abb61e
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv4KYUpozmHTUIgiX1FwBf7hPg6mBFLBWjdfyBPbxxYMM0NuRxkGLY9-Kn0lshrn6qo_q5k3GivfkHjOivKXsUb4gOk10AExTedjLoCHl4ab1JwioH1hYRYeD2tuCJPTy-xg680xL_3FlJRfQV7o31YTIIkyZLcjYSHJqccwlTkWpBirfepqkchFSZDZidd0tH6Q8ZZ_SjZm0zNPGZNYP7NfmsvL3ZvKUUji_zl-lh3gbjpVic5PQ_srLMEjZl6tp-lBWk_2a6In2eyGekkR9ha&sig=Cg0ArKJSzD0mNV1q5_Y1&adurl=http://iopscience.org/books


Inverse Problems

Inverse Problems 37 (2021) 015006 (26pp) https://doi.org/10.1088/1361-6420/abb61e

An inverse potential problem for
subdiffusion: stability and reconstruction∗

Bangti Jin1,∗∗ and Zhi Zhou2

1 Department of Computer Science, University College London, Gower Street,
London WC1E 6BT, United Kingdom
2 Department of Applied Mathematics, The Hong Kong Polytechnic University,
Kowloon, Hong Kong Special Administrative Region of China

E-mail: b.jin@ucl.ac.uk, bangti.jin@gmail.com and zhizhou@polyu.edu.hk

Received 1 June 2020, revised 7 September 2020
Accepted for publication 8 September 2020
Published 3 December 2020

Abstract
In this work, we study the inverse problem of recovering a potential coeffi-
cient in the subdiffusion model, which involves a Djrbashian–Caputo deriva-
tive of order α ∈ (0, 1) in time, from the terminal data. We prove that the
inverse problem is locally Lipschitz for small terminal time, under certain
conditions on the initial data. This result extends the result in [6] for the
standard parabolic case to the fractional case. The analysis relies on refined
properties of two-parameter Mittag–Leffler functions, e.g., complete mono-
tonicity and asymptotics. Further, we develop an efficient and easy-to-
implement algorithm for numerically recovering the coefficient based on
(preconditioned)fixed point iteration and Anderson acceleration. The efficiency
and accuracy of the algorithm is illustrated with several numerical examples.
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1. Introduction

Let Ω ⊂ Rd (d = 1, 2, 3) be a smooth open bounded domain with a boundary ∂Ω. Consider
the following initial boundary value problem for subdiffusion:⎧⎪⎪⎨

⎪⎪⎩
∂α

t u = Δu + q(x)u, in Ω× (0, T],

u(·, 0) = u0, in Ω,

u = 0, on ∂Ω× (0, T],

(1.1)

where T > 0 is the final time and u0 is the initial data. The notation ∂α
t u denotes the

Djrbashian–Caputo derivative of order α ∈ (0, 1) (in time), defined by [22, p. 91]

∂α
t u(t) =

1
Γ(1 − α)

∫ t

0
(t − s)−αu′(s)ds,

where

Γ(z) =
∫ ∞

0
sz−1 e−s ds, for Rz > 0,

denotes Euler’s Gamma function. For smooth functions u, the fractional derivative ∂α
t u recov-

ers the usual first-order derivative u′(t) as α→ 1−. The function q refers to the radiativity or
reaction coefficient or potential in the standard parabolic case, dependent of the specific appli-
cations. Throughout, we denote by u(q) the solution of problem (1.1) that corresponds to a
given potential q ∈ L2(Ω).

The model (1.1) is a direct extension of the standard subdiffusion model, which has a trivial
potential q (i.e., q ≡ 0), and can faithfully describe anomalously slow diffusion processes. At a
microscopical level, standard subdiffusion can be described by continuous time random walk,
where the waiting time distribution between consecutive jumps is heavy tailed with a divergent
mean, in a manner similar to Brownian motion for normal diffusion, and the governing equation
for the probability density function of the particle appearing at certain time instance t and space
location x is of the form. Subdiffusion has been observed in several applications in engineering,
physics and biology, e.g., thermal diffusion in fractal domains [31], and dispersive ion transport
in column experiments [11]; see the review [29] for physical motivation and an extensive list
of physical applications; see also the works [12, 41] for the derivation of reaction-subdiffusion
models within the framework of continuous time random walk.

In this work, we study the following inverse problem for the model (1.1): given a function
g, recover q ∈ L2(Ω) such that

u(q)(·, T) = g in Ω. (1.2)

The direct problem for q ∈ L2(Ω) has not been extensively studied, and we give a
study in section 2 via an operator theoretic formulation. Let A = −Δ, with its domain
D(A) = H1

0(Ω) ∩ H2(Ω), and the graph norm denoted by ‖ · ‖D(A). If ω is an open subset of
the domain Ω, we identify

L2(ω) = { f ∈ L2(Ω) : (1 − χω) f = 0},

where χω denotes the characteristic function of the subset ω. We denote by λ1 the small-
est eigenvalue of A, and ϕ̄1 the corresponding nonnegative eigenfunction, normalized by
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‖ϕ̄1‖L∞(Ω) = 1. Further, let

cα = sup
t�0

tEα,α(−t), (1.3)

where Eα,α(z) is the two-parameter Mittag–Leffler function defined in (2.2) below. This con-
stant plays a crucial role in the analysis. Proposition 3.1 gives an upper bound on cα, which
implies cα < α.

Then the following stability estimate holds: for small time T , the inverse problem is locally
Lipschitz stable. The proof of the theorem employs the implicit function theorem, and certain
estimates on the solution operators with sharp constants, which in turn uses heavily refined
properties of Mittag–Leffler functions; see section 3 for the detailed proof.

Theorem 1.1. Let 3
4 < γ < 1, 0 < ε < 1 − cα

α , μ0,μ1 > 0 such that 1 � μ1
μ0

< (1−ε)α
cα

. Let

u0 ∈ D(A1+γ), with

μ0λ1ϕ̄1 � −Δu0 � μ1λ1ϕ̄1 (1.4)

and set ω = {x ∈ Ω : ϕ̄1(x) � 1 − ε}. Then there exists a constant θ > 0 depending only on
μ1

(1−ε)μ0
and α such that if λ1Tα < θ, then there is V, a neighborhood of 0 in L2(ω) and a

constant c such that

‖q1 − q2‖L2(ω) � c‖u(q1)(T) − u(q2)(T)‖D(A), ∀q1, q2 ∈ V.

Remark 1.1. The regularity condition u0 ∈ D(A1+γ) is to ensure the well-posedness of the
direct problem with q ∈ L2(Ω). The condition (1.4) is to ensure pointwise lower and upper
bounds on the solution u(0)(T ), and the set of u0 satisfying (1.4) is a convex subset of D(A1+γ).
The condition λ1Tα < θ dictates that either T or λ1 should be sufficiently small, the latter of
which holds if the domain Ω is large, since λ1 tends to zero as the volume of Ω tends to infinity
[8].

We also develop a simple algorithm to numerically recover the potential q. It is based on pre-
conditioned fixed point iteration given in (4.1), and employs Anderson acceleration [2] to speed
up the convergence. It extends an existing scheme proposed in [34] for the standard parabolic
problem to subdiffusion, but enhanced by the preconditioner A−1 for better numerical stability
and acceleration via Anderson acceleration. The algorithm is straightforward to implement,
since it involves solving one direct problem at each iteration, and generally applicable (no sign
restriction, no condition on the initial data), and when equipped with the discrepancy princi-
ple [9, 14], it is also accurate for both subdiffusion and normal diffusion. We provide several
numerical experiments to confirm the efficiency and accuracy of the algorithm, and to illustrate
the behavior of the inverse problem. The stability result in theorem 1.1 and the reconstruction
algorithm represent the main contributions of this work.

Now we discuss several existing works. Inverse problems for subdiffusion are of relative
recent nature, initiated by the pioneering work [4] for recovering the diffusion coefficient from
lateral Cauchy data (in the one-dimensional case) using Sturm–Liouville theory; see the work
[19] for an overview. The inverse potential problem for the model (1.1) has also been analyzed
in several works [18, 20, 21, 30, 42]. Miller and Yamamoto [30] proved the unique recovery
from data on a space-time subdomain, using an integral transformation. Zhang and Zhou [42]
discussed the unique recovery using a fixed point argument [13], and derived error estimates
in the presence of data noise. Kaltenbacher and Rundell [20] gave the well-posedness of the
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direct problem and also proved the invertibility of the linearized map from the space L2(Ω)
to H2(Ω) under the condition u0 > 0 in Ω and q ∈ L∞(Ω) using a Paley–Wiener type result,
where the condition q ∈ L∞(Ω) plays a central in the proof, which invokes a type of strong max-
imum principle. Further, they developed (frozen) Newton and Halley type iterative schemes for
numerically recovering the coefficient q from the terminal data, and proved their convergence.
Kian and Yamamoto [21] derived a stability result for recovering a space-time dependent poten-
tial coefficient from lateral Cauchy data. It is worth noting that the parabolic counterpart of the
inverse problem (1.2) has been extensively studied [5, 6, 13, 23, 33]. Isakov [13] proved the
existence and uniqueness for the inverse problem using strong maximum principle, and pro-
posed a constructive algorithm based on fixed point iteration. Choulli and Yamamoto [5] proved
a generic well-posedness result in a Holderian space, by introducing a scalar parameter in the
leading elliptic termΔu. Later, they [6] analyzed the inverse problem in a Hilbert space setting.
Theorem 1.1 represents an extension of the result in [6] to the subdiffusion case. Note that due
to the drastic difference in solution operators, i.e., the fractional case involves Mittag–Leffler
functions, the extension is nontrivial. We refer interested readers to [25, 26, 36] and references
therein for related inverse source problems, which are often employed to analyze the generic
well-posedness for the inverse potential problem.

The rest of the paper is organized as follows. In section 2, we discuss the well-posedness of
the direct problem, and prove that for every q ∈ L2(Ω), there exists a unique classical solution,
for suitably smooth initial data u0. Then in section 3, we give the proof of theorem 1.1. Next, we
develop the fixed point algorithm and present its preliminary properties in section 4. Last, we
provide several numerical experiments to illustrate feasibility of the reconstruction algorithm.
Throughout, (·, ·) denotes the L2(Ω) inner product, and Hs(Ω) denotes the usual Sobolev space
[1]. The notation c denotes a generic constant which may change at each occurrence, but it is
always independent of the coefficient q.

2. Well-posedness of the Cauchy problem

First we study the well-posedness of the following abstract Cauchy problem:{
∂α

t u(t) + Au(t) = qu(t), in (0, T),

u(0) = u0

(2.1)

It is a reformulation of the direct problem (1.1) into an operator form. We prove that for suit-
ably smooth u0 and any q ∈ L2(Ω), problem (2.1) has a unique classical solution u = u(q) ∈
Cα([0, T]; L2(Ω)) ∩ C([0, T]; D(A)). The analysis is based on a ‘perturbation’ argument, devel-
oped recently in [17] for the numerical analysis of nonlinear subdiffusion problems, where
Banach fixed point theorem and the argument of equivalent norm family play an important
role (see, e.g., [7, chapter 3]); see also [20] for a well-posedness result under slightly different
assumptions on the potential q.

Specifically, let {(λ j,ϕ j)}∞j=1 be the eigenpairs of the operator A, with the eigenvalues λ j

ordered nondecreasingly and multiplicity counted, and {ϕ j}∞j=1 form an orthonormal basis of
L2(Ω). For any γ > 0, the notation D(Aγ) denotes the domain of the fractional power Aγ , with
the graph norm ‖ · ‖D(Aγ ), given by

‖v‖D(Aγ ) =

⎛
⎝ ∞∑

j=1

λ2γ
j (v,ϕ j)2

⎞
⎠

1
2

.
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By viewing qu(t) as the inhomogeneous term and applying Duhamel’s principle, we deduce
that the solution u(t) satisfies

u(t) = U(t) +
∫ t

0
E(t − s)qu(s)ds,

where U(t) = F(t)u0, and the solution operators F(t) and E(t) are defined by [17]

F(t)v =

∞∑
j=1

Eα,1(−λ jt
α)(ϕ j, v)ϕ j,

E(t)v =

∞∑
j=1

tα−1Eα,α(−λ jt
α)(ϕ j, v)ϕ j.

Here Eα,β(z) refers to the two-parameter Mittag–Leffler function, defined by [22]

Eα,β(z) =
∞∑

k=0

zk

Γ(kα+ β)
, z ∈ C. (2.2)

The next lemma collects smoothing properties of the operators F and E. The notation ‖ · ‖
denotes the operator norm on L2(Ω).

Lemma 2.1. For the operators F(t) and E(t), the following estimates hold

‖F(t)‖ � Eα,1(−λ1tα), ‖E(t)‖ � tα−1Eα,α(−λ1tα),

‖AθE(t)‖ � cα,θt
(1−θ)α−1.

where the constant cα,θ > 0 depends on α and θ.

Proof. The first estimate follows from the fact that Eα,1(−t) is completely monotone [32]:

‖F(t)v‖2
L2(Ω) =

∞∑
j=1

Eα,1(−λ jt
α)2(ϕ j, v)2

� Eα,1(−λ1tα)2
∞∑
j=1

(ϕ j, v)2 = Eα,1(−λ jt
α)2‖v‖2

L2(Ω).

The second follows similarly since Eα,α(−t) is also completely monotone, and the last is known
from [17, lemma 3.4]. �

Now we can specify the function analytic setting. Let 0 < β < (1 − γ)α be fixed and set

X = Cβ([0, T]; D(Aγ)) ∩ C([0, T]; D(A)),

with the norm given by

‖v‖X = ‖v‖Cβ ([0,T];D(Aγ )) + ‖v‖C([0,T];D(A)).

Then for every q ∈ L2(Ω), we define an associated operator L(q) by

[L(q)] f (t) =
∫ t

0
E(t − s)q f (s)ds, ∀ f ∈ Cβ([0, T]; D(Aγ)).

5
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The next result gives the mapping property of the operator L(q).

Lemma 2.2. For any q ∈ L2(Ω), L(q) maps Cβ([0, T]; D(Aγ)), with γ > 3
4 , into X.

Proof. Let f ∈ Cβ([0, T]; D(Aγ)), q ∈ L2(Ω) and let g(t) = q f (t), 0 � t � T. We split the
function L(q) f into two terms L(q) f = v1 + v2, with

v1(t) =
∫ t

0
E(t − s)(g(s) − g(t))ds and v2(t) =

∫ t

0
E(t − s)g(t)ds.

Since f ∈ Cβ([0, T]; D(Aγ)), by Sobolev embedding theorem [1], g ∈ Cβ([0, T]; L2(Ω)), and
thus by [35, lemma 3.4], v1 ∈ Cβ([0, T]; D(A)) ⊂ X. Next, for t ∈ [0, T], τ > 0 such that
t + τ � T , we have

v2(t + τ ) − v2(t) =
∫ t+τ

t
E(s)g(t + τ )ds +

∫ t

0
E(s)[g(t + τ ) − g(t)]ds.

Thus by the smoothing property of E in lemma 2.1, we deduce

‖Aγ(v2(t + τ ) − v2(t))‖L2(Ω) � cα,γ‖g‖C([0,T];L2(Ω))

∫ t+τ

t
s(1−γ)α−1 ds

+ cα,γτ
β‖g‖Cβ ([0,T];L2(Ω))

∫ t

0
s(1−γ)α−1 ds.

Since ∫ t+τ

t
s(1−γ)α−1 ds �

∫ τ

0
s(1−γ)α−1 ds =

τ (1−γ)α

(1 − γ)α
, (2.3)

we obtain

τ−β‖Aγ[v2 (t + τ ) − v2 (t)]‖L2(Ω)

� cα,γ

(1 − γ)α

(
τ (1−γ)α−β + T (1−γ)α

)
‖g‖Cβ([0,T];L2(Ω)).

Since β < (1 − γ)α, v2 ∈ Cβ([0, T]; L2(Ω)). It remains to show Av2 ∈ C([0, T]; L2(Ω)). This
follows from the identity

−Av2(t) = −
∫ t

0
AE(t − s)g(t)ds = (F(t) − I)g(t),

in view of the identity d
dt (I − F(t)) = AE(t) [17]. Since F(t) − I is continuous on L2(Ω), the

desired assertion follows. This completes the proof of the lemma. �
Lemma 2.3. If q ∈ L2(Ω), then I − L(q) has a bounded inverse in B(X).

Proof. The proof proceeds by the argument of equivalent norm family (see, e.g., [7, chapter
3, section 3.8]). Specifically, we equip the space X with an equivalent family of norms ‖ · ‖λ,
λ � 0, defined by

‖ f ‖λ = sup
t∈[0,T]

e−λt[‖ f (t)‖L2(Ω) + ‖Aγ f (t)‖L2(Ω)]

+ sup
0�s<t�T

e−λ(t+1) ‖ f (s) − f (t)‖D(Aγ )

|t − s|β + sup
t∈[0,T]

e−λ(t+2)‖A f (t)‖L2(Ω),

6
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which is equivalent to the norm on X, and then prove the invertibility by choosing λ suitably.
For f ∈ X, let v = L(q) f. Then by Sobolev embedding [1] and lemma 2.1,

e−λt‖v(t)‖L2(Ω) = e−λt‖
∫ t

0
E(t − s)q f (s)ds‖L2(Ω)

� c
∫ t

0
e−λ(t−s)‖E(t − s)‖‖q‖L2(Ω)e

−λs‖ f (s)‖C([0,T];D(Aγ ))ds

� c
∫ t

0
e−λssα−1ds‖q‖L2(Ω)‖ f ‖λ � cλ−α‖q‖L2(Ω)‖ f ‖λ,

where the last inequality follows from changing variables ζ = λs by∫ t

0
e−λssα−1 ds = λ−α

∫ λt

0
e−ζζα−1 dζ � λ−α

∫ ∞

0
ζα−1 e−ζ dζ = λ−αΓ(α).

Similarly,

e−λt‖Aγv(t)‖L2(Ω) � c
∫ t

0
e−λ(t−s)‖AγE(t − s)‖‖q‖L2(Ω)e

−λs‖ f (s)‖C([0,T];D(Aγ ))ds

� c
∫ t

0
e−λss(1−γ)α−1 ds‖q‖L2(Ω)‖ f ‖λ � cλ−(1−γ)α‖q‖L2(Ω)‖ f ‖λ.

Meanwhile, for t ∈ [0, T) and τ > 0 with t + τ � T , we have

Aγ(v(t + τ ) − v(t)) =
∫ t

0
AγE(s)q[ f (t + τ − s) − f (t − s)]ds

+

∫ t+τ

t
AγE(s)q f (t + τ − s)ds,

which directly implies

e−λ(t+τ+1)‖Aγ(v(t + τ ) − v(t))‖L2(Ω)

� c
∫ t

0
e−λs‖AγE(s)‖‖q‖L2(Ω) e−λ(t+τ−s+1)

× ‖ f (t + τ − s) − f (t − s)‖D(Aγ ) ds + c
∫ t+τ

t
e−λ(s+1)‖AγE(s)‖

× ‖q‖L2(Ω)e
−λ(t+τ−s)‖ f (t + τ − s)‖D(Aγ ) ds

� cτβ‖q‖L2(Ω)‖ f ‖λ
(∫ t

0
e−λss(1−γ)α−1 ds + τ−β

∫ t+τ

t
e−λ(s+1)s(1−γ)α−1 ds

)
.

This, the inequality (2.3) and the choice β < (1 − γ)α give

e−λ(t+τ+1)τ−β‖Aγ(v(t + τ ) − v(t))‖L2(Ω)

� c‖q‖L2(Ω)‖ f ‖λ
(
λ−(1−γ)α + τ (1−λ)α−β e−λ

)
� c‖q‖L2(Ω)‖ f ‖λ

(
λ−(1−γ)α + e−λ

)
.

In the same way, we deduce

τ−β e−λ(t+τ+1)‖v(t + τ ) − v(t)‖L2(Ω) � cT‖q‖L2(Ω)‖ f ‖λ(λ−α + e−λ).

7
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Combining the preceding two estimates gives

sup
0�s<t�T

e−λ(t+1) ‖v(t) − v(s)‖D(Aγ )

|t − s|β � cT‖q‖L2(Ω)‖ f ‖λ(λ−(1−γ)α + e−λ).

Next, in view of the identities d
dt (I − F(t)) = AE(t) [17] and limt→0+‖F(t) − I‖ = 0, we deduce

−Av(t) =
∫ t

0
− AE(t − s)q[ f (s) − f (t)] + F(t)q f (t) − q f (t).

Then the preceding argument and lemma 2.1 lead to

e−λ(t+2)‖Av(t)‖L2(Ω) � c
∫ t

0
e−λ‖AE(t − s)‖‖q‖L2(Ω)

× e−λ(t+1)‖ f (s) − f (t)‖D(Aγ ) ds

+ ce−λ(t+2)‖q‖L2(Ω)‖ f (t)‖D(Aγ)

� c‖q‖L2(Ω)‖ f ‖λ e−λ

(∫ t

0
(t − s)β−1 ds + 1

)

� cT‖q‖L2(Ω)‖ f ‖λ e−λ.

Combining the preceding estimates implies

‖L(q) f ‖λ � cT(e−λ + λ−(1−γ)α)‖q‖L2(Ω)‖ f ‖λ.

It follows directly from this estimate that the function ‖L(q) f‖λ tends to zero as λ tends
to infinity, and thus the operator norm ‖L(q)‖λ < 1 if λ is large enough, which shows the
lemma. �

Now we can state the unique solvability of the Cauchy problem (2.1).

Proposition 2.1. If q ∈ L2(Ω) and u0 ∈ D(A1+γ). Then the Cauchy problem (2.1) has a
unique classical solution u(q) = (I − L(q))−1U.

Proof. Since u0 ∈ D(A1+γ), by the regularity theory for subdiffusion [35, theorems 2.1 and
2.3], U ∈ X. Thus, by lemma 2.3, the Cauchy problem (2.1) has a unique solution u = (I −
L(q))−1U ∈ X. The fact that u is the classical solution to problem (2.1) follows from the fact
that qu ∈ Cβ([0, T]; L2(Ω)) and u0 ∈ D(A), by the regularity theory of subdiffusion [35]. �

3. Proof of theorem 1.1

Below we assume u0 satisfies the condition of theorem 1.1. In view of the Sobolev embed-
ding D(A1+γ) ↪→ C2,δ(Ω) for some δ > 0, the function U(t) ∈ C2+δ, 2+δ

2 α(Ω× [0, T]) [24], and
satisfies ⎧⎪⎪⎨

⎪⎪⎩
∂α

t U = ΔU, inΩ× (0, T],

U(0) = u0, inΩ,

U = 0, on ∂Ω× [0, T].

The next result collect several properties of the function U(t).

Lemma 3.1. The following properties hold on the function U(t).

8
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(a) μ0ϕ̄1(x) � u0(x) � μ1ϕ̄1(x), x ∈ Ω.
(b) μ0Eα,1(−λ1tα)ϕ̄1(x) � U(x, t) � μ1Eα,1(−λ1tα)ϕ̄1(x), (x, t) ∈ Ω× [0, T].
(c) 0 � −∂α

t U(x, t) � ‖Δu0‖L∞(Ω) � μ1λ1, (x, t) ∈ Ω× [0, T]

Proof. Part (a) is already proved in [6]. Part (b) follows from the maximum principle
for the subdiffusion model (see, e.g., [27, Theorem 1.1] or [28]). We only prove (c). Let
w(x, t) = ∂α

t U(x, t). Then w satisfies⎧⎪⎪⎨
⎪⎪⎩

∂α
t w = Δw, in Ω× (0, T],

w(0) = Δu0, in Ω,

w = 0, on ∂Ω× [0, T].

By assumption, Δu0 � 0 in Ω, and thus by the maximum principle for the subdiffusion
[27, theorem 1.1], 0 � −w(x, t) � ‖Δu0‖L∞(Ω). This implies assertion (c). �

Let ω be defined as in theorem 1.1. Lemma 3.1(b) implies that

uT =
1

U(T)|ω

extended by zero outside ω belongs to L∞(Ω). Now we define the operator PT : L2(ω) → L2(ω)
by

q �→
∫ T

0
− AE(T − s)uT[U(s) − U(T)]q ds + F(T)q.

This operator arises in the linearization of the forward map.
The next result gives an upper bound on the constant cα defined in (1.3). In particular, it

indicates that cα < α < 1, which is crucial for proving theorem 1.1.

Proposition 3.1. For any α ∈ (0, 1),

cα := sup
t�0

tEα,α(−t) � α2π

sin(απ) + απ
.

Proof. Let f(t) = tEα,α(−t). By the asymptotics of the Mittag–Leffler function Eα,α(−t),
i.e., Eα,α(−t) � c

1+t2
, and complete monotonicity of the function Eα,α(−t), the function f(t) is

nonnegative on [0,∞), and tends to zero as t →∞. Thus, there exists a maximum. Now let
u(t) = tα−1Eα,α(−tα). Then it satisfies the following ODE

R∂α
t u + u = 0, t > 0, with 0I1−α

t u(0) = 1,

where the notation R∂α
t and 0Iβt denote the Riemann–Liouville fractional derivative and integral,

respectively, based at t = 0. Let w(t) = tu(t) = tαEα,α(−tα). Then direct computation with the
identity R∂α

t tγ = Γ(γ+1)
Γ(γ−α+1) t

γ−α leads to

R∂α
t w(t) =

∞∑
k=0

(−1)k

Γ(kα+ α)
R∂α

t tkα+α =

∞∑
k=0

(−1)k

Γ(kα+ α)
Γ(kα+ α+ 1)
Γ(kα+ 1)

tkα.
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Using the recursion Γ(z + 1) = zΓ(z) twice,

R∂α
t w(t) =

∞∑
k=0

kα(−1)k

Γ(kα+ 1)
tkα + α

∞∑
k=0

(−1)k

Γ(kα+ 1)
tkα

=

∞∑
k=0

(−1)k

Γ(kα)
tkα + α

∞∑
k=0

(−1)k

Γ(kα+ 1)
tkα

= −tαEα,α(−tα) + αEα,1(−tα),

where the last step follows since 1/Γ(0) = 0. Consequently,

R∂α
t w + w = αEα,1(−tα) with 0I1−α

t w(0) = 0.

Thus, the solution theory for fractional ODEs indicates that w(t) is represented by

w(t) =
∫ t

0
(t − s)α−1Eα,α(−(t − s)α)αEα,1(−sα)ds. (3.1)

Then using the facts that 0 � Eα,1(−t) � 1, Eα,α(−t) � 0 (as a result of the complete mono-
tonicity of Eα,1(−t) [32]), and the differentiation formula

d
dt

Eα,1(−tα) = −tα−1Eα,α(−tα),

we deduce

w(t) � α

∫ t

0
(t − s)α−1Eα,α(−(t − s)α)ds = α(1 − Eα,1(−tα)) < α.

Meanwhile, by Simon’s theorem [38],

Eα,1(−tα) � 1
1 + Γ(1 + α)−1tα

< Γ(1 + α)t−α,

there holds

w(t) =
∫ t

0
(t − s)α−1Eα,α(−(t − s)α)αEα,1(−sα)ds

� αΓ(α+ 1)
∫ t

0
(t − s)α−1Eα,α(−(t − s)α)s−α ds

= αΓ(α+ 1)
∫ t

0

∞∑
k=0

(−1)k

Γ(kα+ α)
(t − s)kα+α−1s−α ds.

Using the identity
∫ t

0 (t − s)a−1s−b ds = ta−b Γ(a)Γ(1−b)
Γ(a+1−b) for any a > 0 and b < 1, we deduce

w(t) � αΓ(α+ 1)
∞∑

k=0

(−1)k

Γ(kα+ α)
Γ(kα+ α)Γ(1 − α)

Γ(kα+ 1)
tkα

� αΓ(α+ 1)Γ(1 − α)
∞∑

k=0

(−1)k

Γ(kα+ 1)
tkα = αΓ(1 − α)Γ(1+α)Eα,1(−tα).

10
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Now by the recursion identity and reflection identity for the Gamma function,

Γ(1 − α)Γ(1 + α) = αΓ(1 − α)Γ(α) =
απ

sin(απ)
.

Combining the preceding estimates leads directly to

sup
t�0

tEα,α(−t) � α max
t�0

min

(
απ

sin(απ)
Eα,1(−tα), 1 − Eα,1(−tα)

)
. (3.2)

By the complete monotonicity of Eα,1(−t), the first term απ
sin(απ) Eα,1(−tα) in the bracket is

monotonically decreasing, whereas the second term 1 − Eα,1(−tα) is monotonically increas-
ing. Thus, one simple upper bound is obtained by equating these two terms, which directly
gives

Eα,1(−tα∗ ) =
1

1 + απ
sin(απ)

.

Upon substituting it back to (3.2) and noting the complete monotonicity of Eα,1(−t), we deduce

cα � α
απ

sin(απ)

1 + απ
sin(απ)

=
α2π

απ + sin(απ)
.

This completes the proof of the proposition. �
Remark 3.1. Note that the identities

lim
α→0+

απ

απ + sin απ
=

1
2

and lim
α→1−

απ

απ + sin απ
= 1.

and the function f (α) = απ
απ+sin απ

is strictly increasing in α over the interval (0, 1). Thus, the
factor is strictly less than 1 for any α ∈ (0, 1). Note also that for the limiting case α = 1, the
constant c1 = supt�0 te−t = e−1, which is much sharper than the preceding bound. Since the
function Eα,α(−t) is actually continuous in α, one may refine the bound on cα slightly for α
close to unit. Further, it is worth noting that the integral representation (3.1) for w(t) can also be
deduced from the following Christoffel–Darboux type formula for Mittag–Leffler functions,
i.e., ∫ t

0
sγ−1Eα,γ(ysα)(t − s)β−1Eα,β(z(t − s)α)ds

=
yEα,γ+β(ytα) − zEα,γ+β(ztα)

y − z
tγ+β−1,

where y = z are any complex numbers. Consequently, by a limiting argument,∫ t

0
sα−1Eα,α(−sα)Eα,1(−(t − s)α)ds =

d
dλ

λtαEα,α+1(λtα)|λ=−1,

which upon simplification gives directly the formula (3.1) for w(t).

Remark 3.2. Proposition 3.1 provides an upper bound on the constant cα. In figure 1(a),
we plot the function α−1tEα,α(−t) versus t for several different fractional orders, where the
Mittag–Leffler function Eα,α(−t) is computed using an algorithm developed in [37]. Clearly,
for any fixed α, the function tEα,α(−t) first increases with t and then decreases, and there is
only one global maximum. The maximum is always achieved at some t∗ between 0.8 and 1,
a fact that remains to be established, and the maximum value decreases with α. The optimal

11
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Figure 1. The function α−1tEα,α(−t) and its maximum cα
α versus the upper bound

απ
απ+sin απ in proposition 3.1.

constant cα
α versus the upper bound απ

sin απ+απ is shown in figure 1(b). Note that cα
α is strictly

increasing with respect to α, and the upper bound in proposition 3.1 is about three times larger
than the optimal one cα

α
. This is attributed to the fact that the derivation employs upper bounds

of the Mittag–Leffler function Eα,1(−t) that are valid on the entire real line, instead of sharper
ones on a finite interval, e.g., [0, 1]. The fact that the ratio cα

α
increases with α implies that the

smaller the fractional order α is, there is a larger degree of freedom for choosing the parameter
ε as well as μ1/μ0 in theorem 1.1, which partly indicates the potential beneficial effect of
subdiffusion on the inverse potential problem.

The next result gives the invertibility of the operator I − PT on L2(ω).

Lemma 3.2. Under the assumptions of theorem 1.1, there exists a θ > 0 depending only on
α and ε such that if λ1Tα < θ, then the operator I − PT has a bounded inverse in B(L2(ω)).

Proof. First, we bound ‖tAE(t)‖. Using the eigenpairs {(λ j,ϕ j)}∞j=1 of the operator A, we
deduce

E(t)v =

∞∑
j=1

tα−1Eα,α(−λ jt
α)(ϕ j, v)ϕ j, ∀v ∈ L2(Ω).

Thus,

‖tAE(t)v‖2 =
∞∑
j=1

(λ jt
αEα,α(−λ jt

α))2(v,ϕ j)2.

Since supt∈[0,∞]|tEα,α(−t)| � cα < α, in view of proposition 3.1,

‖AE(t)v‖ � cαt−1.

Meanwhile, using the governing equation for U(t), we have

U(t) − U(0) = 0Iαt ΔU(t),

which together with the fact ΔU(x, t) � 0 implies

U(t) − U(T) = (0Iαt ΔU)(t) − (0Iαt ΔU)(T)

=
1

Γ(α)

∫ t

0
[(T−s)α−1−(t−s)α−1](−ΔU(s))ds +

1
Γ(α)

∫ T

t
(T−s)α−1(−ΔU(s))ds.

12
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Since (T − s)α−1 − (t − s)α−1 � 0 and −ΔU(x, t) � 0 in Ω× [0, T], by lemma 3.1(c)

U(t) − U(T) � 1
Γ(α)

∫ T

t
(T − s)α−1(−ΔU(s))ds � (T − t)α

Γ(α+ 1)
μ1λ1.

Similarly,

U(T) − U(t) � 1
Γ(α)

∫ t

0
[(t − s)α−1 − (T − s)α−1](−ΔU(s))ds

� μ1λ1

Γ(α+ 1)
(tα + (T − t)α − Tα) � (T − t)α

Γ(α+ 1)
μ1λ1.

Consequently, there holds

‖U(s) − U(T)‖L∞(Ω) �
1

Γ(α+ 1)
μ1λ1(T − s)α.

Lemma 3.1(b) implies

‖uT‖L∞(Ω) �
1

μ0(1 − ε)Eα,1(−λ1Tα)
.

The preceding two estimates and lemma 2.1 imply

‖PT‖B(L2(ω)) �
∫ T

0
‖AE(T − s)‖‖uT‖L∞(Ω)‖U(s) − U(T)‖L∞(Ω) ds + ‖F(T)‖

�
∫ T

0
cα(T − s)−1 λ1μ1

Γ(α+ 1)
(T − s)α

1
μ0(1 − ε)Eα,1(−λ1Tα)

ds

+ Eα,1(−λ1Tα)

=
cαμ1

μ0(1 − ε)αΓ(α+ 1)Eα,1(−λ1Tα)
λ1Tα + Eα,1(−λ1Tα).

Let m(x) be defined by

m(x) =
cαμ1

μ0(1 − ε)αΓ(α+ 1)
x

Eα,1(−x)
+ Eα,1(−x).

Straightforward computation shows

m′(x) =
cαμ1

μ0(1 − ε)αΓ(α+ 1)

Eα,1(−x) − xE′
α,1(−x)

Eα,1(−x)2
+ E′

α,1(−x).

Thus, m(0) = 1 and by proposition 3.1,

m′(0)=
cαμ1

μ0(1 − ε)αΓ(α+ 1)
− 1

Γ(α+ 1)
=

[
cαμ1

μ0(1 − ε)α
− 1

]
1

Γ(α+ 1)
< 0,

under the given conditions on ε,μ0 and μ1 in theorem 1.1. Thus, there exists a θ > 0 such
that whenever x < θ, m(x) < 1, and accordingly, for λ1Tα sufficiently close to zero, PT is a
contraction on L2(ω). Then by Neumann series expansion, I − PT is invertible and (I − PT )−1

is bounded. This completes the proof of the lemma. �
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Now we introduce the trace operator: tr : X → D(A), v �→ v(T ). Then tr ∈ B(X, D(A)) and
‖tr‖B(X,D(A)) � 1. Finally, we can present the proof of theorem 1.1.

Proof. With lemma 3.2 at hand, the proof is identical with that of [6]. We only
include a proof for the convenience of readers. We define the mapping: K : L2(ω) → L2(ω),
q �→ [−Au(q)(T )]|ω = [−Atr(I − L(q))−1U]|ω . Clearly, K is continuously Fréchet differen-
tiable, cf lemma 2.3, and its derivative K′ at q ∈ L2(ω) in the direction p is given by

K′(q)[p] = [−Atr(I − L(q))−1L(p)(I − L(q))−1U]|ω.
Let QT = K′(0) = [−AtrL(·)U]|ω. Then

QT(p) =

[∫ T

0
− AE(T − s)p[U(s) − U(T)]ds + (F(T) − I)pU(T)

]
|ω.

We define a multiplication operator M : L2(ω) → L2(ω), p→ U(T )p. Then M is invertible,
and its inverse is exactly the multiplication operator by uT . Consequently, QT M−1 = PT − I.
By lemma 3.2, (PT − I)−1 belongs to B(L2(ω)). Therefore, QT has a bounded inverse and
Q−1

T = M−1(PT − I)−1. By the implicit function theorem, K is locally a C1-diffeomorphism
from a neighborhood of 0 onto a neighborhood of K(0). In particular, K−1 is Lipschitz contin-
uous in a neighborhood of K(0). Then theorem 1.1 follows by noting the following inequality

‖Au(q1)(T)|ω − Au(q2)(T)|ω‖L2(ω) � ‖u(q1)(T) − u(q2)(T)‖D(A),

for any q1, q2 ∈ L2(ω). �

4. Fixed point algorithm

Now we propose a simple fixed point algorithm to find the potential q from the terminal
observation. Given a noisy version of the exact data g = u(q†)(T ) corresponding to the exact
potential q† and an initial guess q0, we employ the following fixed point iteration

qk+1 = F(qk), with F(q) = q + λA−1(u(q)(T) − g), (4.1)

where λ > 0 is a relaxation parameter and A = −Δ is the negative Laplacian with a zero
Dirichlet boundary condition. In the absence of the preconditioning operator A−1, the itera-
tion (4.1) was proposed in [34] for the standard parabolic problem. For both normal diffusion
and subdiffusion, the unpreconditioned version works very robustly for exact data, but it tends
to suffer from severe numerical instability in the presence of data noise. This is attributed to
the fact that the noise in the data g is amplified by a factor λ at each iteration, in view of the
smoothing property of the solution operator, and the noise effect accumulates very rapidly so
as to completely spoil the reconstruction after a few iterations. The preconditioner A−1 is to
mitigate the deleterious effect of noise in the observation g by implicitly filtering out the high-
frequency components present in the noise thereby achieving a form of regularization [9].
Numerically, the scheme is straightforward to implement since it requires only one forward
solve, and the preconditioning step incurs very little extra computational effort.

We have the following contractive property on the cone S = {h ∈ C(Ω) : h(x) � 0}.

Proposition 4.1. For any nonnegative u0 ≡ 0 and any q ∈ S, the linearized map F′ is
contractive on S in the following sense

‖F′(q)h‖L2(Ω) < ‖h‖L2(Ω), ∀h ∈ S,

14
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provided that the relaxation parameter λ is sufficiently small.

Proof. For any q, h ∈ S, the Gâteaux derivative F is given by

F′(q)[h] = h − λA−1v(T),

where v ≡ v(q, h) satisfies the following inhomogeneous problem⎧⎪⎪⎨
⎪⎪⎩

∂α
t v = Δv − qv + hu(q), in Ω× (0, T],

v = 0, on ∂Ω× (0, T],

v(0) = 0, in Ω.

By the ‘strong’ maximum principle for the subdiffusion model [28] and the nonnegativity of
u0 and q that

0 < u(q)(x, t) � ‖u0‖L∞(Ω) ∀(x, t) ∈ Ω× (0, T].

Since h ∈ S, the maximum principle [28] shows v(x, t) � in Ω× [0, T]. Further, with
f(t) = hu(t), the solution v can be represented by

v(t) =
∫ t

0
E(t − s) f (s)ds =

∞∑
j=1

∫ t

0
(t − s)α−1Eα,α(−λ j(t − s)α)( f (s),ϕ j)ds ϕ j.

In particular,

(v(T),ϕ1) =
∫ t

0
(t − s)α−1Eα,α(−λ1(t − s)α)( f (s),ϕ1)ds.

Now if h ≡ 0, then for any fixed t > 0, supp( f(t)) = supp(h), and by the positivity of ϕ1 in Ω,
( f(t),ϕ1) > 0 for any t > 0. Thus, 0 � v(T ) ≡ 0, and by the properties of elliptic problems,
A−1v(T ) > 0 in Ω. Thus, by choosing λ sufficiently small (depending on h), we deduce the
desired assertion. �

The next result shows that the fixed point iteration (4.1) can actually also be interpreted
as a preconditioned gradient descent method, under certain restrictions on u0 and the residual
u(q)(T ) − g. The descent property can be numerically observed in a more general case, which,
however, remains to be proved.

Proposition 4.2. If u0 ≡ 0 is nonnegative and u(q)(T) − g ≡ 0 is not sign changing, then
A−1(u(q)(T) − g) is a descent direction to the functional J(q) = 1

2‖u(q)(T) − g‖2
L2(Ω)

.

Proof. Let w ≡ w(q) solve the adjoint problem⎧⎪⎪⎨
⎪⎪⎩

R
t ∂

α
Tw = Δw − qw, in Ω× (0, T],

w = 0, on ∂Ω× (0, T],

R
t ∂

α−1
T w(T) = u(q)(T) − g, in Ω,

where the notation R
t ∂

α
T w denotes the right-sided Riemann–Liouville fractional derivative

(based at T), and R
t ∂

α−1
T w(T) the Riemann–Liouville fractional integral of order 1 − α. Further,

using the solution operator Eq associated with the Δ− q, w can be represented by

w(t) = Eq(T − t)(u(q)(T) − g) =
∫ T

t
Eq(s − t)(u(q)(T) − g)δT(s)ds, (4.2)

15
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Algorithm 1. Anderson acceleration for the fixed point iteration (4.1).

1: Give the initial guess q0, memory parameter m � 1, and the maximum iteration number K.
2: for k = 0, 1, . . . , K do
3: Set mk = min(m, k).
4: Compute Rk = [rk−mk , . . . , rk], with ri = F(qi) − qi.
5: Find β(k) ∈ Rmk+1 by

β(k) ∈ arg min
β∈Rmk+1,

∑mk
i=0 βk=1

‖Rkβ‖.

6: Set qk+1 =
∑mk

i=0 β
(k)
i F(qi).

7: Check the stopping criterion.
8: end for

where δT (s) denotes the Dirac delta function at T. Then direct computation shows that the
gradient J′(q) to the functional J(q) is given by

J′(q) = −
∫ T

0
u(q)w(q)dt.

Now it follows that∫
Ω

J′(q)A−1(u(q)(T) − g)dx = −
∫ T

0

∫
Ω

u(q)w(q)A−1(u(q)(T) − g)dxdt.

By the maximum principle for elliptic problems, u(q)(T ) − g ≶ 0 in Ω implies A−1(u(q)(T ) −
g) ≶ 0 in Ω, and similarly, u(q) is positive almost everywhere in Ω× (0, T) for nonnegative
u0 ≡ 0 [28]. Meanwhile, in view of the representation (4.2), using a density argument (i.e.,
approximating the singular source (u(q)(T ) − g)δT (s) with (u(q)(T ) − g)φn(t), with φn � 0
being smooth and φn(t) → δT(t) weakly; see [28] for relevant argument) and the weak max-
imum principle for subdiffusion, u(q)(T ) − g ≶ 0 implies w(t) ≶ 0 almost everywhere in
Ω× (0, T). Consequently, we arrive at∫

Ω

J′(q)A−1(u(q)(T) − g)dx < 0,

i.e., A−1(u(q)(T ) − g) is a descent direction to the functional J(q). �
Numerical experiments indicate that the convergence behavior of fixed point iteration (4.1)

depends very much on the relaxation parameter λ > 0: if λ is small, then it converges steadily
but only slowly, whereas for large λ, the convergence may be unstable and suffers from large
oscillations. In order to accelerate the convergence, we employ the classical Andersson accel-
eration technique [2], which can be viewed as a version of GMRES for nonlinear problems
[40]; see the review [3] for other related extrapolation techniques. The complete procedure for
Anderson acceleration is listed in algorithm 1. The integer m controls the number of memory
terms used for the Anderson update. Thus, the acceleration step only involves simple algebraic
manipulations, and the associated computational overhead is negligible. In our experiment
below, m = 2 represents a good choice. At line 7 of the algorithm, the stopping criterion of the
iteration can employ the standard discrepancy principle, i.e.,

k∗ = min
k�1

{‖u(qk) − g‖L2(Ω) � τδ}, (4.3)

where τ > 1 is the tolerance, and δ = ‖g − u(q†)‖L2(Ω) is the noise level. The discrepancy
principle is a well established early stopping strategy for iterative regularization methods [9].
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The fixed point algorithm and its accelerated variant exhibit a very similar behavior in practice,
when noise is present in the data; see section 5 for numerical illustrations.

Despite the enormous empirical success, the global convergence of Anderson acceleration
remains completely open, even for affine linear maps with fixed memory (the case of linear
map with full memory is well known due to its connection with GMRES [40]). The local
convergence of Anderson acceleration for contractive maps was studied recently in [10, 39].
However, these results do not apply to the inverse potential problem, since the associated map
is not a contraction.

Remark 4.1. In the fixed point iteration (4.1), the update does not change the boundary
condition of the initial guess q0. Thus, it is implicitly assumed that the boundary condition
is exactly known. Further, for g ∈ L2(Ω), by the standard elliptic regularity result, the update
increment A−1(u(q)(T ) − g) belongs to H2(Ω), and thus the regularity of the initial guess q0

essentially determines the regularity of the iterates, and the algorithm is most suitable for
recovering a smooth potential.

Remark 4.2. There are alternative choices of fixed point algorithms. One popular choice is
due to Isakov [13]: given the initial guess q0, it reads

qk+1 =
∂α

t u(qk)(T) −Δu(qk)(T)
g

.

The convergence of the algorithm in the time-fractional case has been analyzed in [42], pro-
vided that the terminal time T is sufficiently large. Anderson acceleration might also be used
to accelerate this algorithm.

5. Numerical reconstructions and discussions

Now we illustrate the accuracy and efficiency of the fixed point algorithm (4.1) with one-
and two-dimensional numerical examples. The direct problem is solved by a fully discrete
scheme based on the Galerkin finite element method in space and backward Euler convolution
quadrature in time, which is first-order accurate in time and second-order accurate in space
[15]; (see [16] for an overview of existing schemes). The noisy data g is generated by

g(x) = u(q†)(x, T) + ε sup
x∈Ω

|u(q†)(x, T)|ξ(x), x ∈ Ω,

where the noise ξ(x) follows the standard Gaussian distribution, and ε � 0 denotes the (relative)
noise level. The exact data u(q†)(x, T) is generated using a finer spatial-temporal mesh in order
to avoid the inverse crime. In Anderson acceleration, the memory parameter m is fixed at 2, and
the relaxation parameter λ is fixed at 1000 and 100 for one- and two-dimensional problems,
respectively. Note that this choice of λ is not optimized, since the optimal choice depends
strongly on the problem data, e.g., T and u0. Nonetheless, the numerical experiments below
indicate that Anderson acceleration is fairly robust with respect to λ, and works for a broad
range of λ values. Throughout, the parameter τ in the discrepancy principle (4.3) is fixed at
τ = 1.01. Below, For a given reconstruction q∗, we compute two metrics, the L2(Ω)-error eq

and the residual rq, defined, respectively, by

eq = ‖q† − q∗‖L2(Ω) and rq = ‖u(q∗) − g‖L2(Ω),

where q† denotes the exact potential. Unless otherwise specified, the results presented below
are obtained by the fixed point algorithm (4.1) with Anderson acceleration, with a zero initial
guess.
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Table 1. The reconstruction error eq for example 5.1 with T = 0.01.

α\ε 0 1 × 10−3 5 × 10−3 1 × 10−2 5 × 10−2

0.25 2.21 × 10−3 (1000) 4.77 × 10−2 (8) 1.36 × 10−1 (7) 2.04 × 10−1 (4) 3.91 × 10−1 (3)
0.50 2.71 × 10−3 (1000) 4.43 × 10−2 (15) 1.41 × 10−1 (7) 1.99 × 10−1 (4) 4.06 × 10−1 (3)
0.75 2.01 × 10−3 (1000) 4.91 × 10−2 (7) 9.06 × 10−2 (6) 2.02 × 10−1 (3) 1.04 × 100 (1)
1.00 3.36 × 10−3 (1000) 7.85 × 10−2 (6) 2.12 × 10−1 (3) 2.83 × 10−1 (3) 1.00 × 100 (1)

Table 2. The reconstruction error eq for example 5.1 with T = 0.1.

α\ε 0 1 × 10−3 5 × 10−3 1 × 10−2 5 × 10−2

0.25 2.89 × 10−3 (1000) 4.69 × 10−2 (9) 8.06 × 10−2 (9) 2.04 × 10−1 (4) 3.88 × 10−1 (3)
0.50 3.65 × 10−3 (1000) 4.96 × 10−2 (8) 8.10 × 10−2 (7) 2.04 × 10−1 (4) 3.78 × 10−1 (3)
0.75 5.44 × 10−3 (1000) 4.69 × 10−2 (9) 7.95 × 10−2 (8) 2.03 × 10−1 (4) 3.50 × 10−1 (3)
1.00 4.99 × 10−3 (1000) 4.59 × 10−2 (9) 7.08 × 10−2 (8) 2.01 × 10−1 (4) 3.19 × 10−1 (3)

Table 3. The reconstruction error eq for example 5.1 with T = 1.

α\ε 0 1 × 10−3 5 × 10−3 1 × 10−2 5 × 10−2

0.253.69 × 10−3 (1000) 4.56 × 10−2 (16) 9.55 × 10−2 (10) 2.03 × 10−1 (4) 3.99 × 10−1 (3)
0.505.14 × 10−3 (1000) 4.74 × 10−2 (11) 1.32 × 10−1 (9) 2.02 × 10−1 (4) 4.10 × 10−1 (3)
0.751.19 × 10−2 (1000) 4.93 × 10−2 (12) 7.85 × 10−2 (10) 1.96 × 10−1 (4) 3.54 × 10−1 (4)
1.002.12 × 10−1 (1000) 2.12 × 10−1 (1000) 2.13×10−1(1000) 2.17 × 10−1(46) 3.14 × 10−1(43)

5.1. Results for the one-dimensional case

First we present two one-dimensional examples on the unit interval Ω = (0, 1). In the com-
putation, the domain Ω is divided into M equal subintervals, and the time interval (0, T) is
divided into N subintervals. To generate data, we take M = 1000 and N = 1000, whereas for
the inversion, M = 200 and N = 500. The fixed point iteration (4.1) is run for at most 1000
iterations.

The first example is to recover a smooth potential.

Example 5.1. u0 = sin πx + 1
100 x(1 − x) and q†(x) = ex sin(2πx).

Note that the initial condition u0 is chosen to fulfill the conditions in theorem 1.1. The
numerical results for example 5.1 are shown in tables 1–3, with three different final times,
T = 0.01, T = 0.1 and T = 1, which also include the results for normal diffusion (i.e.
α = 1.00). In the tables, the numbers refer to the reconstruction error eq, and the numbers
in the brackets denote the stopping index determined by the discrepancy principle (4.3). It is
observed that the error eq decreases steadily as the noise level ε tends to zero for all three frac-
tional orders α and final time T . For each fixed T and ε, the accuracy does not change much
with respect to α, and thus the fractional order α does not influence much the behavior of
the reconstruction error. Nonetheless, for any fixed α, when the data is noise free, the error
eq increases with the time T , although only very slightly. These observations are consistent
with the local Lipschitz stability in theorem 1.1 (and the stability for the parabolic case [6]),
which holds for all α ∈ (0, 1], so long as the terminal time T is sufficiently small. The numer-
ical experiments actually indicate that even for much large T , the inverse problem exhibits
nearly identical behavior in terms of the reconstruction error eq, indicating similar degree of
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Figure 2. Numerical reconstructions for example 5.1 at T = 1 with different α values.

ill-posedness. See figure 2 for exemplary reconstructions for example 5.1 with T = 1 at two
noise levels. The reconstructions are largely comparable with each other for different fractional
orders, corroborating table 3. However, the last observation for large T seems no longer valid
for normal diffusion (i.e., α = 1), for which the numerical reconstruction becomes much more
challenging; the fixed point algorithm does not work as well as in the fractional case: it takes
many more iterations to reach the discrepancy principle, and yet the reconstruction is generally
inferior at all noise levels. This agree also with the empirical observations in the last column
of figure 1 of [20].

Tables 1–3 indicate that with Anderson acceleration and discrepancy principle, the fixed
point algorithm is generally terminated after about 10 iterations for low noise level, and 5 iter-
ations for high noise levels. In contrast, the fixed point algorithm (4.1) takes far more iterations,
by a factor of 10; see table 4 for related results for example 5.1 with T = 1. Nonetheless, with
or without acceleration, the obtained reconstruction errors are largely comparable with each
other, except the case ε = 0, for which the iteration (4.1) requires far more than 1000 iterations
in order to achieve comparable accuracy with that in table 3. Thus, Anderson acceleration is
very effective in speeding up the convergence, while maintaining comparable accuracy. It is
worth noting that for T = 1, the results for normal diffusion are inferior for T = 1, as mani-
fested by the fact that the convergence of the fixed point algorithm suffers seriously and the
least-squares problem in Anderson acceleration exhibits pronounced ill-conditioning, which
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Table 4. The reconstruction error eq for example 5.1 with T = 1, without Anderson
acceleration.

α\ε 0 1 × 10−3 5 × 10−3 1 × 10−2 5 × 10−2

0.25 2.49 × 10−2 (1000) 4.93 × 10−2 (368) 1.43 × 10−1 (110) 2.19 × 10−1 (75) 8.23 × 10−1 (18)
0.50 3.03 × 10−2 (1000) 4.96 × 10−2 (496) 1.43 × 10−1 (148) 2.17 × 10−1 (101) 8.10 × 10−1 (25)
0.75 4.64 × 10−2 (1000) 5.02 × 10−2 (896) 1.42 × 10−1 (267) 2.15 × 10−1 (182) 7.97 × 10−1 (46)
1.00 1.18 × 100 1.18 × 100 1.18 × 100 1.19 × 100 1.19 × 100

(1000) (1000) (1000) (1000) (1000)

Figure 3. Convergence behavior of the fixed point algorithm with Anderson acceleration
for example 5.1 with α = 0.5 at T = 1. In the plots, the red circle refers to the stopping
index determined by the discrepancy principle (4.1).

necessitates proper regularization (done via SVD here). Also the accelerating effect of Ander-
son acceleration is less dramatic, although it does converge after more iterations, when
compared with that for smaller T or small α. These observations seem to indicate the dra-
matic difference in the behavior of the inverse potential problem for subdiffusion and nor-
mal diffusion at large time T , and the fractional case is far more amenable with numerical
reconstruction.

The convergence behavior of the acceleration scheme is shown in figure 3. Note that the
reconstruction error eq first decreases, and then starts to increase as the iteration further pro-
ceeds. This behavior is very similar to semi-convergence typically observed for an iterative
regularization method (e.g., Landweber iteration). The discrepancy principle (4.3) can choose
a suitable stopping index before the divergence kicks in, indicated by the red circle in the plots,
and the attained reconstruction error is only slightly larger than the optimal value (along the
trajectory), showing the optimality of the discrepancy principle. Further, a few extra iterations
beyond the stopping index does not greatly deteriorate the reconstruction, i.e., the algorithm
enjoys excellent numerical stability. This highly desirable property is attributed to the use of
the preconditioner A−1 in the iteration (4.1). Surprisingly, the residual rq is monotonically
decreasing as the iteration proceeds, and eventually levels off at the noise level δ. That is, the
fixed point iteration is actually a descent method for minimizing the residual rq, an interesting
fact that remains to be rigorously established (see proposition 4.2 for a partial justification).
Thus, overall, the algorithm with discrepancy principle is an effective reconstruction method.
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Table 5. The reconstruction error eq for example 5.2 with T = 0.01.

α\ε 0 1 × 10−3 5 × 10−3 1 × 10−2 5 × 10−2

0.25 3.53 × 10−3 (1000) 2.68 × 10−2 (5) 3.70 × 10−2 (2) 3.95 × 10−2 (2) 7.59 × 10−2 (2)
0.50 7.48 × 10−3 (1000) 2.56 × 10−2 (5) 4.02 × 10−2 (2) 4.54 × 10−2 (2) 1.13 × 10−1 (2)
0.75 1.63 × 10−2 (1000) 2.57 × 10−2 (4) 3.81 × 10−2 (2) 4.99 × 10−2 (2) 1.79 × 10−1 (2)
1.00 1.18 × 10−1 (1000) 1.46 × 10−1 (8) 1.35 × 10−1 (1) 1.16 × 10−1 (1) 1.18 × 10−1 (1)

Table 6. The reconstruction error eq for example 5.2 with T = 0.1.

α\ε 0 1 × 10−3 5 × 10−3 1 × 10−2 5 × 10−2

0.25 3.25 × 10−3 (1000) 1.95 × 10−2 (6) 3.53 × 10−2 (2) 3.69 × 10−2 (2) 1.11 × 10−1 (1)
0.50 7.58 × 10−3 (1000) 2.79 × 10−2 (5) 3.76 × 10−2 (2) 3.96 × 10−2 (2) 6.91 × 10−2 (2)
0.75 9.57 × 10−3 (1000) 2.83 × 10−2 (5) 4.45 × 10−2 (4) 4.55 × 10−2 (2) 7.91 × 10−2 (2)
1.00 1.94 × 10−2 (1000) 1.87 × 10−2 (5) 3.67 × 10−2 (2) 3.85 × 10−2 (2) 6.91 × 10−2 (2)

Table 7. The reconstruction error eq for example 5.2 with T = 1.

α\ε 0 1 × 10−3 5 × 10−3 1 × 10−2 5 × 10−2

0.25 3.21 × 10−3 (1000) 1.69 × 10−2 (6) 3.43 × 10−2 (2) 3.53 × 10−2 (2) 5.66 × 10−2 (1)
0.50 6.52 × 10−3 (1000) 2.79 × 10−2 (7) 3.44 × 10−2 (2) 3.52 × 10−2 (2) 4.99 × 10−2 (2)
0.75 1.06 × 10−2 (1000) 3.04 × 10−2 (6) 4.36 × 10−2 (5) 3.50 × 10−2 (2) 4.57 × 10−2 (2)
1.00 6.02 × 10−2 (1000) 6.02 × 10−2 (1000) 6.04 × 10−2 (5) 6.06 × 10−2 (5) 6.06 × 10−2 (4)

The next example is about recovering a nonsmooth coefficient.

Example 5.2. u0(x) = 1 + 3
2 sin 2 πx and q†(x) = min(x, 1 − x).

Note that the given initial condition u0 does not satisfy the condition of theorem 1.1, since it
does not satisfy the required regularity condition and also changes sign in the domain, and the
true potential q† is also less smooth. The numerical results for example 5.2 are summarized in
tables 5–7. Similar to example 5.1, it is observed that the fractional order α and the terminal
time T does not affect much the reconstruction accuracy, indicating generic ill-posedness of
the inverse problem, irrespective of the fractional order α. See figure 4 for numerical recon-
structions for the case T = 1; and like before, the results for the case α = 1.00 are inferior to
that in the fractional case. Overall, the reconstructions represent acceptable approximations.
Unsurprisingly, the approximation error is largely around the kink, where the exact potential
q† exhibits weak singularity. This is attributed to the smoothing effect of the preconditioner
A−1 in the fixed point update. Thus, the iterates are overly smooth when compared with the
exact one q†.

According to tables 5–7, the overall algorithm converges within 5 iterations. In contrast,
the convergence of the fixed point algorithm (4.1) requires many more iterations; see table 8
for example 5.2 with T = 1. Nonetheless, except for the case α = 1.00, the reconstruction
errors are largely comparable. Thus, Anderson acceleration is also effective in speeding up the
convergence for recovering nonsmooth potentials. The plots of iterate convergence in figure 5
again show a clear semi-convergence phenomenon. Note that overall the fixed point iterates is
still descent with respect to the residual, although there is one oscillation at the beginning. The
oscillation is related to the fact that the chosen λ is fairly large.
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Figure 4. Numerical reconstructions for example 5.2 at T = 1 with different α values.

Table 8. The reconstruction error eq for example 5.2 with T = 1, without Anderson acceleration.

α\ε 0 1 × 10−3 5 × 10−3 1 × 10−2 5 × 10−2

0.25 6.85 × 10−3 (1000) 2.67 × 10−2 (43) 3.39 × 10−2 (3) 3.49 × 10−2 (3) 5.66 × 10−2 (1)
0.50 8.24 × 10−3 (1000) 2.82 × 10−2 (51) 3.43 × 10−2 (5) 3.46 × 10−2 (4) 4.43 × 10−2 (2)
0.75 1.16 × 10−2 (1000) 3.03 × 10−2 (79) 3.45 × 10−2 (9) 3.44 × 10−2 (7) 4.51 × 10−2 (4)
1.00 5.65 × 10−2 5.66 × 10−2 5.67 × 10−2 5.70 × 10−2 5.61 × 10−2

(1000) (1000) (1000) (1000) (864)

5.2. Results for the two-dimensional case

Last we given a two-dimensional example on the unit square Ω = (0, 1)2 with a smooth coeffi-
cient. The domain Ω is first partitioned smaller square of side length 1/M, and then a uniform
triangulation is obtained by connecting the upper left and lower right vertices. The data is gen-
erated using M = 200 and N = 1000, and for the inversion, the discretization parameters are
taken to be M = 100 and N = 500. The fixed point algorithm (4.1) is run for a maximum 200
iterations and the relaxation parameter λ is fixed at 100, which is very conservative for scheme
(4.1).

Example 5.3. u0(x1, x2) = sin2πx2 and q†(x1, x2) = sin(πx1)x2(1 − x2).
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Figure 5. Convergence behavior of the fixed point algorithm with Anderson acceleration
for example 5.2 with α = 0.5. In the plots, the red circle refers to the stopping index
determined by the discrepancy principle (4.1).

Table 9. The reconstruction error eq for example 5.3 at T = 0.1.

α\ε 0 1 × 10−3 5 × 10−3 1 × 10−2 3 × 10−2

0.25 2.29 × 10−3 (200) 6.27 × 10−3 (2) 6.91 × 10−3 (2) 8.16 × 10−3 (2) 1.52 × 10−2 (2)
0.50 5.59 × 10−3 (200) 6.11 × 10−3 (2) 6.23 × 10−3 (2) 6.94 × 10−3 (2) 1.30 × 10−2 (2)
0.75 1.13 × 10−2 (200) 8.03 × 10−3 (2) 7.55 × 10−3 (2) 7.25 × 10−3 (2) 9.48 × 10−3 (2)
1.00 1.37 × 10−2 (200) 1.19 × 10−2 (5) 1.03 × 10−2 (2) 9.83 × 10−3 (2) 8.95 × 10−3 (2)

Figure 6. Numerical results for example 5.3 with T = 0.1 and α = 0.5: the first and
second rows refer to the reconstruction q and the pointwise error eq = q − q†.

23



Inverse Problems 37 (2021) 015006 B Jin and Z Zhou

The initial condition u0 does not satisfy the condition in theorem 1.1. The numerical results
for example 5.3 at T = 0.1 are shown in table 9 and figure 6. With λ = 100, the fixed point
method (4.1) can only converge very slowly, and requires thousands of iterations to yield
reasonable reconstruction, and thus the corresponding results are not shown. Anderson acceler-
ation can greatly speed up the convergence, so that with any fixed noise level ε > 0, it converges
in two iterations. The method converges steadily, and the reconstruction error eq decreases
steadily as the noise level ε tends to zero. Up to ε = 1 × 10−2 noise in the data, the result
represents an excellent reconstruction of the true potential q†.

6. Conclusion

In this work, we have presented a study on the inverse problem of recovering a potential in the
subdiffusion model from terminal data. Under certain restrictions on the initial data, we have
derived a local Lipschitz stability result, using refined properties of Mittag–Leffler functions.
Further, we have developed a simple fixed point algorithm for recovering the potential coef-
ficient. When equipped with the discrepancy principle and Anderson acceleration, extensive
numerical experiments indicate that it is highly efficient and accurate.

There are a few interesting questions on the inverse potential problem awaiting answers.
First, the numerical experiments indicate a descent property of the fixed point iteration for
the residual, which however remains to be established in the general case. Second, it is of
much interest to analyze the regularizing property, e.g., convergence and convergence rates,
of the fixed point algorithm (and the accelerated variant) when equipped with the discrep-
ancy principle. Third, it is natural to ask whether it is possible to recover the potential and the
fractional order α simultaneously from the terminal data, and if so, also to derive relevant sta-
bility estimates. In the case of lateral Cauchy data, it is known that one can recover the diffusion
coefficient and fractional order together [4]. We shall explore these issues in future works.
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