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Abstract

Transfer learning is a very important tool in deep learn-

ing as it allows propagating information from one ”source

dataset” to another ”target dataset”, especially in the case

of a small number of training examples in the latter. Yet,

discrepancies between the underlying distributions of the

source and target data are commonplace and are known to

have a substantial impact on algorithm performance. In this

work we suggest a novel information theoretic approach for

the analysis of the performance of deep neural networks in

the context of transfer learning. We focus on the task of

semi-supervised transfer learning, in which unlabeled sam-

ples from the target dataset are available during the net-

work training on the source dataset. Our theory suggests

that one may improve the transferability of a deep neural

network by imposing a Lautum information based regular-

ization that relates the network weights to the target data.

We demonstrate the effectiveness of the proposed approach

in various transfer learning experiments.

1. Introduction

Machine learning algorithms have lately come to the

forefront of technological advancements, providing state-

of-the-art results in a variety of fields [3]. However, along-

side their incredible performance, these methods suffer

from sensitivity to data discrepancies - any inherent differ-

ence between the training data and the test data may result in

a substantial decrease in performance. Moreover, to obtain

good performance a large amount of labeled data is neces-

sary for their training. Such a substantial amount of labeled

data is often either very expensive or simply unobtainable.

One popular approach to mitigate this issue is using

”transfer learning”, where training on a small labeled ”tar-

get” dataset is improved by using information from another

large labeled ”source” dataset of a different problem. A

(a) Pre-transfer training stage.

(b) Post-transfer training stage.

Figure 1: Our semi-supervised transfer learning technique

applying Lautum regularization. Omitting the blue part in

the first training stage (top) gives standard transfer learning.

common method for transfer learning uses the result of

training on the source as initialization for training on the

target, thereby improving the performance on the latter [2].

Transfer learning has been the focus of much research at-

tention along the years. Plenty of different approaches have

been proposed to encourage a more effective transfer from

a source dataset to a target dataset, many of them aim at ob-

taining better system robustness to environment changes, so

as to allow an algorithm to perform well even under some

variations in the settings (e.g. changes in lighting conditions

in computer vision tasks). Sometimes this is achieved at the

expense of diminishing the performance on the original task

or data distribution. Other works take a more targeted ap-

proach and directly try to reduce algorithms’ generalization

error by decreasing the difference in their performance on

specific source and target datasets [6].

In addition, it is often the case that the target dataset has



a large number of samples, though only a few of those sam-

ples are labeled. In this scenario a semi-supervised learning

approach could prove to be beneficial by making good use

of the available unlabeled samples for training.

In this work we focus on the task of semi-supervised

transfer learning. The problem we address is related to the

field of domain adaptation, however we make a distinction

between domain adaptation and transfer learning, where the

former refers to the case of two sources of data with the

same content (e.g. the MNIST → SVHN case) whereas the

latter refers to the case of two sources of data which are

completely different in both content and ”styling”. Another

relevant difference is that labeled data from the target dis-

tribution is typically available in the transfer learning case,

yet less so in the domain adaptation case.

Plenty of works exist in the literature on transfer learn-

ing, semi-supervised learning and using information theory

for the analysis of machine learning algorithms. The clos-

est work to ours is [1] in which an information theoretic

approach is used in order to decompose the cross-entropy

train loss of a machine learning algorithm into several sep-

arate terms. However, unlike this work we propose a differ-

ent decomposition of the cross-entropy test loss and make

the relation to semi-supervised transfer learning.

Contribution. We consider the case of semi-supervised

transfer learning in which plenty of labeled examples from

a source distribution are available along with just a few la-

beled examples from a target distribution; yet, we are pro-

vided also with a large number of unlabeled samples from

the latter. This setup combines transfer learning and semi-

supervised learning, where both aim at obtaining improved

performance on a target dataset with a small number of la-

beled examples. In this work we suggest to combine both

methodologies to gain the advantage of both of them. This

setting represents the case where the learned information

from a large labeled source dataset is used to obtain good

performance when transferring to a mostly unlabeled target

set, where the unlabeled examples of the target are available

at the training time on the source.

To do so, we provide a theoretical derivation that leads

to a novel semi-supervised technique for transfer learning.

We take an information theoretic approach to examine the

cross-entropy test loss of machine learning methods. We

decompose the loss to several different terms that account

for different aspects of its behavior. This derivation leads to

a new regularization term, which we call ”Lautum regular-

ization” as it relies on the maximization of the Lautum in-

formation [7] between unlabeled data samples drawn from

the target distribution and the learned model weights. Fig-

ure 1 provides a general illustration of our approach.

We corroborate the effectiveness of our approach with

experiments of semi-supervised transfer learning for neu-

ral networks on image classification tasks. We examine

the transfer in two cases: from the MNIST dataset to the

notMNIST dataset (which consists of the letters A-J in

grayscale images) and from the CIFAR-10 dataset to 10 spe-

cific classes of the CIFAR-100 dataset. We compare our

results to three other methods: (1) Temporal Ensembling

[5], a state-of-the-art method for semi-supervised training

which we apply in a transfer learning setup; (2) the Multi-

kernel Maximum Mean Discrepancy (Mk-MMD) method

[4], which is popular in semi-supervised transfer learning;

(3) standard transfer learning which does not use any of

the unlabeled samples. The advantage of our method is

demonstrated in our experimental results as it outperforms

the other compared methods.

The appendices to this paper are in the supplementary

material.

2. The cross-entropy loss - an information the-

ory perspective

Let D = {(xi, yi)}
N

i=1
be a training set with N training

samples that is used to train a learning algorithm with a set

of weights w. We assume that given D (a parameter of the

model), the learning algorithm selects a specific hypothe-

sis from the hypothesis class according to the distribution

p(wD). In the case of a neural network, selecting the hy-

pothesis is equivalent to training the network on the data.

We denote by wD the model weights which were

learned using the training set D, and by f(y|x,wD) the

learned classification function which given the weights

wD and a D-dimensional input x ∈ R
D computes the

probability of the K-dimensional label y ∈ R
K . The

learned classification function is tested on data drawn from

the true underlying distribution p(x, y). Ideally, the learned

classification function f(y|x,wD) would highly resem-

ble the ground-truth classification p(y|x), and similarly

f(x, y|wD) would highly resemble p(x, y). With these

notations, we turn to analyze the cross-entropy loss used

predominantly in classification tasks. In our derivations

we used several information theoretic measures which we

present in Appendix A.

Main theoretical result. Our main theoretical result is

given by the following theorem:

Theorem 1 For a classification task with ground-truth dis-

tribution p(y|x), training set D, learned weights wD and

learned classification function f(y|x,wD), the expected

cross-entropy loss of a machine learning algorithm on the

test distribution is equal to

EwD
{KL(p(x, y)||f(x, y|wD))}+H(y|x)− L(wD;x).

(1)

Note that KL signifies the Kullback-Leibler divergence and

that we treat the training set D as a fixed parameter, whereas



wD and the examined test data (x, y) are treated as random

variables. We refer the reader to Appendix B for the proof

of Theorem 1.

In accordance with Theorem 1, the three terms that com-

pose the expected cross-entropy test loss represent three dif-

ferent aspects of the loss of a learning algorithm performing

a classification task:

• Classifier mismatch EwD
KL (p(x,y)||f(x,y|wD)):

measures the deviation of the learned classification

function’s data distribution f(x, y|wD) from the true

distribution of the data p(x, y). It is measured by the

KL-divergence, which is averaged over all possible in-

stances of w parameterized by the training set D. This

term essentially measures the ability of the weights

learned from D to represent the true distribution of the

data.

• Intrinsic Bayes error H(y|x): represents the inherent

uncertainty of the labels given the data samples.

• Lautum information between wD and x,

L(wD;x) = EwD
{KL(p(x)||p(x|wD))}: rep-

resents the dependence between wD and x. It

essentially measures how much p(x|wD) deviates

from p(x) on average over the possible values of wD.

Our formulation suggests that a machine learning algo-

rithm, which is trained relying on empirical risk minimiza-

tion, implicitly aims at maximizing the Lautum information

L(wD;x) in order to minimize the cross-entropy loss. At

the same time, the algorithm aspires to minimize the KL-

divergence between the ground-truth distribution of the data

and the learned classification function. The intrinsic Bayes

error cannot be minimized and remains the inherent uncer-

tainty of the task. Namely, the formulation in (1) suggests

that encouraging a larger Lautum information between the

data samples and the learned model weights would be ben-

eficial for reducing the model’s test error on unseen data

drawn from p(x, y).

3. Lautum information based semi-supervised

transfer learning

We turn to show how we may apply our theory on

the task of semi-supervised transfer learning. In standard

transfer learning, which consists of pre-transfer and post-

transfer stages, a neural network is trained on a labeled

source dataset and then fine-tuned on a smaller labeled tar-

get dataset. In semi-supervised transfer learning, which we

study here, we assume that an additional large set of unla-

beled examples from the target distribution is available dur-

ing training on the source data.

Semi-supervised transfer learning is highly beneficial in

scenarios where the available target dataset is only partially

annotated. Using the unlabeled part of this dataset, which

is usually substantially bigger than the labeled part, has

the potential of considerably improving the obtained per-

formance. Thus, if this unlabeled part is a-priori available,

then using it from the beginning of training can potentially

improve the results. For using the unlabeled samples of the

target dataset during the pre-transfer training on the source

dataset, we leverage the formulation in (1). Considering its

three terms, it is clear that by using unlabeled samples the

classifier mismatch term cannot be minimized due to the

lack of labels; the intrinsic Bayes error is a characteristic of

the task and cannot be minimized either; yet, the Lautum

information does not depend on the labels and can therefore

be calculated and maximized.

When the Lautum information is calculated between the

model weights and data samples drawn from the target dis-

tribution, its maximization would encourage the learned

weights to better relate to these samples, and by extension to

better relate to the underlying probability distribution from

which they were drawn. Therefore, it is expected that an

enlarged Lautum information will yield an improved perfor-

mance on the target test set. Accordingly, we aim at max-

imizing L(wD;x) during training. The pre-transfer max-

imization of the term L(wD;x), which is computed with

samples drawn from the target distribution, would make the

learned weights more inclined towards good performance

on the target set right from the beginning. At the same

time, the cross-entropy loss at this stage is calculated us-

ing labeled samples from the source dataset. In the post-

transfer stage, the cross-entropy loss is calculated using la-

beled samples from the target dataset, and therefore implic-

itly maximizes L(wD;x) by itself. We have empirically

observed that explicitly maximizing the Lautum informa-

tion between the unlabeled target samples and the model

weights during post-transfer training (by imposing Lautum

regularization) in addition to (or instead of) during pre-

transfer training does not lead to improved results.

To summarize, our semi-supervised transfer learning ap-

proach optimizes two goals at the same time: (i) minimizing

the classifier mismatch EwD
{KL (p(x, y)||f(x, y|wD))},

which is achieved using the labeled data both for the source

and the target datasets during pre-transfer and post-transfer

training respectively; and (ii) maximizing the Lautum in-

formation L(wD;x), which is achieved explicitly using the

unlabeled target data during pre-transfer training by impos-

ing Lautum regularization, and in the post-transfer stage im-

plicitly through the minimization of the cross-entropy loss

which is evaluated on the labeled target data. Figure 1 sum-

marizes our training scheme.

3.1. Training with Lautum regularization

We refer the reader to Appendix C for details regarding

the estimation of the Lautum information. Once the Lautum



information has been estimated, our loss function for pre-

transfer training is:

Loss =

N∑

i=1

K∑

k=1

−ys
ik
log fk(x

s

i
|wD)− λL(wD;x

t). (2)

Note that the the cross-entropy loss is calculated using la-

beled samples from the source training set (which we de-

note by the s superscript) whereas the Lautum regulariza-

tion term is calculated using unlabeled samples from the tar-

get training set (which we denote by the t superscript). Also

note that yi represents the ground truth label of the sam-

ple xi; f(xi|wD) represents the network’s estimated post

softmax label for that sample; and L(wD;x) is calculated

as detailed in Appendix C. We emphasize that the Lautum

regularization term is subtracted and not added to the cross-

entropy loss since we aim at maximizing the Lautum infor-

mation during training. Our loss function for post-transfer

training consists of a standard cross-entropy loss:

Loss =

N∑

i=1

K∑

k=1

−yt
ik
log fk(x

t

i
|wD). (3)

Note that at this stage the cross-entropy loss, which is cal-

culated using labeled target samples, inherently includes the

Lautum term of the target data (see Theorem 1).

4. Experiments

In order to demonstrate the advantages of semi-

supervised transfer learning with Lautum regularization we

perform several experiments on image classification tasks

using deep neural networks (though our theoretical deriva-

tions also apply to other machine learning algorithms). We

train deep neural networks and perform transfer learning

from the original source dataset to the target dataset. In our

experiments we use the original labeled source training set

as is and split the target training set into two parts. The first

part is very small and contains labeled samples, whereas the

second part consists of the remainder of the target training

set and contains unlabeled samples only (the labels are dis-

carded). The performance is evaluated by the post transfer

accuracy on the target test set.

We examine four different methods of transfer learning:

(1) standard supervised transfer which uses the labeled sam-

ples only. (2) Temporal Ensembling semi-supervised learn-

ing as outlined in [5], applied in a transfer learning setting.

Temporal Ensembling is applied in the post-transfer train-

ing stage. (3) Mk-MMD [4], which is based on 19 different

Gaussian kernels with different standard deviations. Mk-

MMD is applied in the pre-transfer training stage. (4) Lau-

tum regularization - our technique as described in Section 3.

We refer the reader to Appendix D for more details about

the experimental setup. Using the settings outlined in Ap-

pendix D.1 we obtained the results shown in Table 1 for the

MNIST → notMNIST case, and using the settings outlined

in Appendix D.2 we obtained the results shown in Table 2

for the CIFAR-10 → CIFAR-100 (10 classes) case.

The advantage of using Lautum regularization is evident

from the results, as it outperforms the other compared meth-

ods in all the examined target training set splits. In gen-

eral, the Temporal Ensembling method by itself does not

yield very competitive results compared to standard trans-

fer learning.

Method Source → Target # labeled Accuracy

Standard MNIST / notMNIST 50 34.02%

TE MNIST / notMNIST 50 37.28%

Mk-MMD MNIST / notMNIST 50 46.72%

Lautum MNIST / notMNIST 50 47.96%

Standard MNIST / notMNIST 100 57.58%

TE MNIST / notMNIST 100 61.45%

Mk-MMD MNIST / notMNIST 100 63.32%

Lautum MNIST / notMNIST 100 65.21%

Standard MNIST / notMNIST 200 67.78%

TE MNIST / notMNIST 200 74.87%

Mk-MMD MNIST / notMNIST 200 80.35%

Lautum MNIST / notMNIST 200 83.77%

Table 1: target test set accuracy comparison between stan-

dard transfer learning, Temporal Ensembling (TE), Mk-

MMD and Lautum regularization for different amounts of

labeled training target samples, MNIST → notMNIST.

Method Source → Target # labeled Accuracy

Standard CIFAR-10 / 100 100 39.90%

TE CIFAR-10 / 100 100 42.20%

Mk-MMD CIFAR-10 / 100 100 45.30%

Lautum CIFAR-10 / 100 100 46.70%

Standard CIFAR-10 / 100 200 52.80%

TE CIFAR-10 / 100 200 54.60%

Mk-MMD CIFAR-10 / 100 200 59.30%

Lautum CIFAR-10 / 100 200 60.90%

Standard CIFAR-10 / 100 500 64.50%

TE CIFAR-10 / 100 500 66.50%

Mk-MMD CIFAR-10 / 100 500 68.00%

Lautum CIFAR-10 / 100 500 70.80%

Table 2: target test set accuracy comparison between stan-

dard transfer learning, Temporal Ensembling (TE), Mk-

MMD and Lautum regularization for different amounts of

labeled training target samples, CIFAR-10 → CIFAR-100

(10 classes).
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