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RAMSEY GOODNESS OF CYCLES*
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Abstract. Given a pair of graphs G and H, the Ramsey number R(G, H) is the smallest
N such that every red-blue coloring of the edges of the complete graph Ky contains a red copy
of G or a blue copy of H. If a graph G is connected, it is well known and easy to show that
R(G,H) > (|G| — 1)(x(H) — 1) + o(H), where x(H) is the chromatic number of H and o(H)
is the size of the smallest color class in a x(H)-coloring of H. A graph G is called H-good if
R(G,H) = (|G| —1)(x(H) —1)4+0o(H). The notion of Ramsey goodness was introduced by Burr and
Erdés in 1983 and has been extensively studied since then. In this paper we show that if n > 10| H|
and o(H) > x(H)??, then the n-vertex cycle Cy, is H-good. For graphs H with high x(H) and o(H),
this proves in a strong form a conjecture of Allen, Brightwell, and Skokan.
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1. Introduction. A celebrated theorem of Ramsey from 1930 says that for every
n, there is a number R(n) such that any 2-edge-coloring of a complete graph on R(n)
vertices contains a monochromatic complete subgraph on n vertices. Estimating R(n)
is a very difficult problem and one of the central problems in combinatorics. For a
pair of graphs G and H, we can define the Ramsey number R(G, H) to be the smallest
integer N such that any red-blue edge coloring of the complete graph on N vertices
contains a red copy of G or a blue copy of H. As a corollary of Ramsey’s theorem,
R(G, H) is finite, since we always have R(G, H) < R(max(|G|,|H]|)).

Although in general determining R(G, H) is very difficult, for some pairs of graphs
G and H, their Ramsey number can be computed exactly. For example, Erdds [11] in
1947 showed that the Ramsey number of an n-vertex path versus a complete graph of
order m satisfies R(P,, K,,) = (n —1)(m —1)+1. The construction showing that this
is tight comes from considering a 2-edge-coloring of Ky, N = (n—1)(m—1) consisting
of m — 1 disjoint red cliques of size n — 1 with all the edges between them blue. It
is easy to check that this coloring has no red P, or blue K,,. Chvatal and Harary
observed that the same construction serves as a lower bound for R(G, H) where G
is any connected graph on n vertices and H is an m-partite graph. Let x(H) be
the chromatic number of H, i.e., the smallest number of colors needed to color the
vertices of H so that no pair of adjacent vertices have the same color, and let o(H)
be the the size of the smallest color class in a x(H)-coloring of H. Refining the above
construction, Burr [5] obtained the following lower bound for the Ramsey number of
a pair of graphs.
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LEMMA 1.1 (Burr [5]). Letting H be a graph and G a connected graph with
|G| > o(H), we have

(1) R(G, H) = (|G| = 1)(x(H) = 1) + o(H).

To prove this bound, consider a 2-edge-coloring of complete graph on N = (|G| —
D(x(H) — 1) + o(H) — 1 vertices consisting of x(H) — 1 disjoint red cliques of size
|G| — 1 as well as one disjoint red clique of size o(H) — 1. This coloring has no red
G because all red connected components have size < |G| — 1, and there is no blue H
since the partition of this H induced by red cliques would give a coloring of H by
X(H) colors with one color class smaller than o(H), contradicting the definition of
o(H).

The bound in Lemma 1.1 is very general but for some graphs is quite far from
the truth. For example, Erdés [11] showed that R(K,, K,,) > Q(2"/?), which is much
larger than the quadratic bound we get from (1). However, there are many known
pairs of graphs (such as when G is a path and H is a clique) for which R(G, H) =
(IG] = 1)(x(H) = 1) + o(H). If this is a case we say that G is H-good. The notion of
Ramsey goodness was introduced by Burr and Erdds [6] in 1983 and was extensively
studied since then.

A lot of early research on Ramsey goodness focused on proving that a particular
pair of graphs is good. For example, Gerencsér and Gyérfas [15] showed that for
n > m the path P, is P,,-good. Chvétal showed that any tree T is K,,-good [8]. For
more recent progress on Ramsey goodness see [1, 9, 13, 18, 19] and their references.

The problem of Ramsey goodness of cycles goes back to the work of Bondy and
Erdés [4], who proved that the cycle C,, is K,,-good when n > m? — 2. Motivated by
their result, Erdés et al. conjectured as follows.

CONJECTURE 1.2 (Erdés et al. [12]). Ifn > m > 3, then R(Cy, Kp) = (n —
)(m—1)+1.

Over the years, this problem has attracted a lot of attention. After several im-
provements, Nikiforov [18] showed that conjecture holds for n > 4m + 2. In addition
several authors proved it for small m (see [7] and the references therein). Very re-
cently, Keevash, Long, and Skokan [16] showed that R(C,,, K;,) = (n—1)(m—1)+1
for n > Q(log)ﬁ) < )- This proves the conjecture for large m.

In this paper we investigate Ramsey goodness of an n-vertex cycle versus a general
graph H. When n is sufficiently large as a function of |H|, Burr and Erdés [6] proved
more than 30 years ago that C,, is H-good. Recently Allen, Brightwell, and Skokan
[1] conjectured that the cycle is H-good already when its length is linear in the order
of H.

CONJECTURE 1.3 (Allen, Brightwell, and Skokan [1]). Forn > x(H)|H| we have
R(Cn, H) = (n—1)(x(H) = 1) + o(H).

There has been some work (see, e.g., [20] and its references) showing that the
path P, is H-good. Since R(P,, H) is always at most R(C),, H), a weakening of the
above conjecture is to show that P, is H-good for n > x(H)|H|. This was achieved
by the authors of this paper in [21].

In this paper, we prove the following result.

THEOREM 1.4. Forn > 109my, and my > my_1 > -+ > my satisfying m; > 122,
we have R(Cpy Ky ,...m,) = (n—1)(k — 1) + my.

Here Ky, ,....m, is a complete multipartite with k parts of sizes m1, ..., my. Notice
that the vertices of a k-chromatic graph H can be partitioned into k independent sets

.....
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of sizes my,...,my with o(H) =my < mgy < --- < my. This is equivalent to H being
a subgraph of K., . m,. Therefore Theorem 1.4 implies the following.

COROLLARY 1.5. Suppose that we have numbers n, and a graph H with n >
10%|H| and o(H) > x(H)*2. Then R(Cp,, H) = (n —1)(x(H) — 1) + o(H).

For graphs H with large x(H) and o(H), the above theorem proves Conjecture 1.3
in a very strong form—it shows that in this case, the condition “n > x(H)|H|” is
unnecessary, and n > 10°| H| suffices. For certain graphs H, Theorem 1.4 shows that
C,, is H-good in a range which is even better than “n > 10%|H|.” For example, if H
is balanced (i.e., if |H| = o(H)x(H)), then Theorem 1.4 implies that C,, is H-good
as long as n > 10%|H|/x(H).

1.1. Proof sketch. Here we give an informal sketch of the proof of Theorem 1.4.
For simplicity we talk just about the balanced case of the theorem, i.e., the proof of
R(Cp,KEF) = (k—1)(n—1) +m.

Let R(C>p, K, .....m,, ) denote the smallest number N such that in every coloring
of K by the colors red and blue there is a red cycle of length at least n or a blue
K, ... omy- In [21] the following theorem is proved.

THEOREM 1.6. Given integers m1 < mo < --- < my and n > 3my + dmy_1, we
have

R(CvaKml ~~~~~ mk) = (k_l)(n_1)+m1'

Notice that the above theorem is essentially a version of Theorem 1.4, except that
it produces a red cycle of length at least n rather than one of length ezactly n. The
proof of our main theorem uses many ideas from the proof of Theorem 1.6. Because
of this it may help readers to familiarize themselves with the very short proof of that
theorem in [21]. It can be summarized as follows: If K is colored so that there is no
blue Ky, .....m,, then we use induction to find a large red subgraph G in Ky which
is an expander. Then we use the famous Pdsa rotation-extension technique to find a
long red cycle in G.

To prove Theorem 1.4 we use a similar strategy, except that we build a red cycle
of length at least n to also contain a special red subgraph called a gadget. Informally
a gadget is a path between two special vertices  and y which has many chords.
Because of these chords, the gadget has the property that it has paths between x and
y of many different lengths. A consequence of this is that if we can find a cycle C
of length at least n which contains a suitable gadget, then C' also contains a cycle
of length exactly n. Thus the proof of Theorem 1.4 naturally splits into two parts.
The first part is to show that a large graph with no blue K* contains a gadget (see
section 2). The second part is to build a cycle of length at least n containing a gadget
we found (see section 3).

To find a gadget in a graph with no blue K¥ , we make heavy use of expanders.
It turns out that if K has no blue Kfn, then it contains a large red subgraph G
with good expansion properties (see Lemma 2.5). Once we have an expander, we
prove several lemmas which find various structures inside expanders such as trees
(Lemma 2.8), paths (Lemma 2.9), and cycles (Lemma 2.13). We then put these
structures together to build a gadget (Lemma 2.2). We remark that the gadgets that
we use are very similar to absorbers introduced by Montgomery in [17] during the
study of spanning trees in random graphs.

After constructing gadgets, the proof of Theorem 1.4 has three main ingredients—
Lemmas 3.7, 3.9, and 3.14.
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The first ingredient, Lemma 3.7, should be thought of as a version of the k = 2
case of Theorem 1.4. Since the full proof of Theorem 1.4 is inductive, Lemma 3.7
serves as the initial case of the induction. The proof of this lemma is quite similar to
the proof of Theorem 1.6 in [21], with one extra ingredient—mnamely gadgets.

The second ingredient, Lemma 3.9, should be thought of as a strengthening of
Theorem 1.4 in the case when the red subgraph of K is highly connected. In this
case it turns out that the Ramsey number can be lowered significantly (to n+0.07kn).
The proof of this lemma again uses gadgets.

The third ingredient, Lemma 3.14, should be thought of as a stability version
of Theorem 1.4. It says that for N close to R(C,, K¥ ), if we have a 2-colored Ky
with no red C,, or blue K¥, then the coloring on Ky must be close to the extremal
coloring. Specifically it shows that most of the graph can be partitioned into k—1 large
sets Ay, ..., Ap_1 with only blue edges between them. Once we have this structure,
Theorem 1.4 is fairly easy to prove—since Aq, ..., A;x_1 only have blue edges between
them, they cannot contain a blue K2, (or else the whole graph would contain a blue
KE). Then we apply the a version of the k = 2 case of Theorem 1.4 to one of the sets
A; to obtain a red C,, (specifically we apply Lemma 3.7 which serves as the “initial
case” of the induction.)

1.2. Notation. For a graph G, the set of vertices is denoted by V(G) and the
set of edges by E(G). We will often identify a graph with its vertex set, for example,
we will use |G| to mean the number of vertices of G. Throughout this paper the order
of a path P, denoted |P], is the number of vertices it has. The length of P is the
number of edges P has, which is |P| — 1. Similarly, for a cycle C, both the order and
length of C' are defined to be |C|, the number of vertices of C. If P = py,pa,...,ps is
a path, then p; and p; are called the endpoints of P, and po,...,p;_1 are called the
internal vertices of P. We will say things like “P is internally contained in S” or “P
is internally disjoint from S” to mean that the internal vertices of P are contained in
S or disjoint from S. For a graph G and two vertices x,y € G we let dg(z,y) be the
length of the shortest path in G between x and y.

Recall that a forest is a graph with no cycles, and a tree is a connected graph with
no cycles. A rooted tree is a tree with a designated vertex called the root. In tree T’
with root 7, we call T\ {r} the internal vertices of T. We think of the edges in a rooted
tree as being directed away from the root. Then for a vertex v, the out-neighbors of
v are called the children of v, and the in-neighbor of v is the parent of v. The depth
of a rooted tree is the maximum distance of a vertex from the root. A binary tree is
a tree of maximum degree 3. Notice that for any m, there is a rooted binary tree of
depth [logm] and order m.

Recall that for a vertex v in a graph G N¢(v) denotes the neighborhood of v in
G—the set of vertices with edges going to v. The degree of a vertex in G is denoted
by dg(v) = |Ng(v)|, and the maximum degree taken over all vertices of the graph is
denoted by A(G). For a set of vertices S in a graph G we let Ng(S) = U,cg Na(S)
denote the set of neighbors in G of vertices of S. For U C G, we let Ny(S) =
Ng(S)NU = {u € U : us is an edge for some s € S}. When there is no ambiguity in
what the underlying graph is, we will abbreviate Ng(.S) to N(S).

The complement of a graph G, denoted G, is the graph on V(G) with zy €
E(G) <= xy ¢ G. Notice that R(H, K) < R is equivalent to saying that in any
graph on G on R vertices either G contains H or G contains K. We let K¥ denote the
complete multipartite graph with k parts of size m. With this notation, K}, means a
set of k vertices (with no edges.) Notice that we have R(K},,G) < m for any graph G.
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Throughout the paper “log” always means “log,,” the binary log. In this paper
we will omit floor and ceiling signs where they are not essential.

2. Gadgets. In this section we construct gadgets which are one of the main
technical tools which we use in this paper. A gadget is a graph containing paths of
several different lengths between a designated pair of vertices a and b.

DEFINITION 2.1. A k-gadget is a graph J containing two vertices a and b such
that J has a to b paths of orders |J| and |J| — k.

The vertices a and b are called the endpoints of the k-gadget. We will often
identify a k-gadget J with the path of order |J| contained in it. A (< k)-gadget is a
graph J with two vertices a and b with a to b paths of lengths |J|, |J| -1, ..., |J]| —k.
In other words a (< k)-gadget is simultaneously a k’-gadget for ¥’ =1,2,.. k.

An example of a k gadget is a cycle with k + 2 vertices with a and b a pair of
adjacent vertices. Then a to b paths of orders k + 2 and 2 can be obtained by going
around the cycle in different directions. For our purposes we will construct more
complicated gadgets. The reason for this is that short cycles do not necessarily exist
in graphs whose complements are K -free.

The main goal of this section is to prove the following lemma.

LEMMA 2.2. There exists a constant N1 = 107 so that the following holds for any
Ay kom € N with m > k3, A > 2u > 10°, and pm > 4100()\m)%.

Let G be a graph with |G| > (Ni \uk)m and with G K -free. Then G contains a
(< Am)-gadget J of order (A + p)m with endpoints a and b as well as an internally
disjoint a — b path Q of order pm.

The above lemma could be be rephrased as a Ramsey-type statement. If we let
Jtn be the family of all < t gadgets on n vertices, then Lemma 2.2 implies that
R(j)\m,()\—&-u)mqu%) < (NlAMk)m

Notice that Lemma 2.2 also finds a path ) between the two endpoints of the
gadget it produces. This path should be thought of as a technical tool which we will
later use to join gadgets together.

The structure of this section is as follows. In section 2.1 we introduce expanders
and give their basic properties. In section 2.2 we give a variant of a result of Friedman
and Pippenger about embedding trees into expanders. In section 2.3 we prove some
lemmas about embedding paths and cycles into expanders. In section 2.4 we prove
Lemma 2.2. In section 2.5 we prove some additional properties of gadgets which we
will need.

2.1. Expanders. We'll use the following notion of expansion.

DEFINITION 2.3. For a graph G and W C V(G), we say that G (A, 8, m)-expands
into W if the following hold.
(i) |Nw(S)| > AlS| for S C V(G) with |S| < m.
(i) |Ng(S)US| > |S|+ pm for S CV(G) with m < |S| < |G|/2.

The following easy observation shows how we can change the parameters A and
[ while maintaining expansion.

Observation 2.4. Suppose that G (A, 8, m)-expands into W.

(i) W' DOW, A’ <A, and ' < 8, then G (A/, 5/, m)-expands into W".

(ii) If W C U C V(@) with |[V(G) \ U| < tm, then G[U] (A, 8 — t,m)-expands
into W.
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The following lemma shows that graphs whose complement is K* -free contain
large subgraphs which expand well.

LEMMA 2.5. Forall 8, m, M, A > 1 with B+2 < M/4 and 3A < 8 the following
holds.
Let G be a graph with G KF -free and |G| > max(m, M (k — 1.5)m). Then there
exists an integer k' and an induced subgraph H C G such that the following hold:
o H is K¥ _free.
o M(K —1.5)m—m < |H| <Mk —1.5)m. Also we have |[H| > m.
e H (A, B, m)-expands into V(H).

Proof. The proof is by induction on k. The initial case is when k = 1, which
holds vacuously since any graph with m vertices contains a copy of K} (by definition
K} is just any set of m vertices).

Assume that for £ > 2 we have a graph G as in the statement of the lemma,
and the result holds for all k£ < k. Without loss of generality, we may assume that
|G| = M (k — 1.5)m (by possibly passing to a subgraph of G of this order.)

Suppose that there is a set S with m < |S| < |G|/2 such that |[Ng(S) U S| <
S|+ (B+1)m. Let T = V(G) \ (Na(S)US). Using |S| < |G]/2, |Ng(S)U S| <
IS|+ (8+ 1)m, |G| > M(2 — 1.5)m, and 8 + 2 < M/4 we obtain that |T'| > m. We
also have that |[SUT| = |G| — |[Ng(S)\ S| > M(k — 1.5)m — (8 + 1)m. Choose s
and ¢ maximum integers for which |S| > M (s — 1.5)m and |T| > M(t — 1.5)m. We
certainly have s,t > 1. From the maximality of s and ¢, we have |SUT| = |S|+|T| <
M(s+1-15)m+M({t+1—-15)m = M(s+t—1.5)m+ Mm/2. Combining this with
|[SUT| > M(k—15)m—(B+1)m, we get k— (8+1)/M < s+t+1/2. Together with
(841)/M+1/2 < 1 and the integrality of k, s, and ¢ this gives s+t > k. Let s’ € [1, 5]
and t' € [1,t] be arbitrary integers with s’ + ¢ = k. This ensures s',¢ < k — 1. Since
G is KF -free and there are no edges between S and T, we have that either G[S] is
K¢ -free or G[T] is K!, -free. By induction either S or T' contains a subgraph with the
required properties.

Now suppose that for every set S with m < |S| < |G|/2 we have |[Ng(S)U S| >
|S| + (8 4+ 1)m. Let S be the largest set of vertices in G with |S| < 2m for which
ING(S)\ S| < (A +1)|S]. We have that |[Ng(S) US| < (A+2)[S| < |S]|+ (84 1)m.
By our assumption we have that |S| < m.

Let G' = G\ S. We claim that this graph satisfies the conditions of the lemma
with k' = k. Certainly G’ is K* -free. Also since k > 2, we have |G’| > |G| —m =
M (K —1.5)m —m > m. Suppose that we have S’ C V(G’) with |S| < |G'|/2 < |G]/2.
If |S’| > m, then |[Ng/(S")US'| > |Ng(S")US'|—|S| > |S'|+(B+1)m—|S]| > |S|+Lm.
If |.S’| < m, then by maximality of S, we have |[Ng(S'US)\ (S"US)| > (A+1)|SUS’|,
which implies that [Ng/(S")| > |[Ng/(S" U S)| — |[Ng(S)| > |[Ng(S"US)\ (S’US)| —
INc(S)\ S| > (A+1)(|S']+1S]) — (A +1)|S] > A|S’|, proving the lemma. 0

Notice that in the above lemma, we can always take k' > 2, since no graph with
|H| > m has H is K} -free. The following lemma shows that expanders have good
connectivity properties.

LEMMA 2.6. Suppose that G (A, B, m)-expands into W C V(G). Suppose that
we have three disjoint sets of vertices A, B,C C V(G) with (A — 2)|A| > |C NnW],
(A —=2)|B| > |CNnW|, and fm > 2|C].

Then there is an A to B path P in G, avoiding C, and with |P| < 8logm +
2G|/ Bim.
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Proof. Let a = 4logm and b = |G|/Bm. With this notation, it is sufficient to
find an A to B path of length < 2a + 20.

Set A = A and A" = (Ng(A") U A%) \ C for each i. Using the definition of
“(A, B,m)-expands” and (A —2)|A| > |CNW| we have that |A*T!| > 2| A?| whenever
|A;| < m, which implies that |A*| > m. Using the definition of “(A, 3, m)-expands”
and m > 2|C| we have that |A*T1] > |A? + Sm/2 whenever m < |A;] < |G|/2.
Combining this with |A?| > m gives |A%*?| > bBm/2 > |G]/2.

Similarly, letting B = B and B! = (Ng(B*)UB*) \ C we have |B*T?| > |G|/2.
Therefore A%t? and B**? intersect, giving us the required path. ]

2.2. Embedding trees. We'll need a version of a theorem of Friedman and
Pippenger [14] about embedding trees into expanding graphs. The following lemma
is proved in [2]

LEMMA 2.7 (see [2, Lemma 5.2]). Suppose that we have A, M, m, and n such
that 9Am < M. Let X = {x1,...,x¢} be a set of vertices in a graph G on n vertices.
Suppose that we have rooted trees T(xy),...,T(x:) satisfying Soi_, |T(z;)| < M and
A(T(z;)) < A for all i. Suppose that for all S C V(G) with m < |S| < 2m we have
IN(S)| > M + 10Am, and for S C V(G) with |S| < m we have

2) NG\ X| 2 4AIS\ X[+ D (droot(T(@)) + A).

zeSNX

Then we can find disjoint copies of the trees T(x1),...,T(xt) in G such that for each
i, T(x;) is rooted at x;. In addition for all S C V(G) with |S| < m, we have

3) IN(\ (T(z1) U+ UT (1)) > AlS].

The following version of the above lemma will be easier to apply.

LEMMA 2.8. Suppose that we have a graph G and a set W C V(G) such that G
(4A, B, m)-expands into W with 20A < B. Let X = {z1,..., 2.} = G\ W.

Then for any family of rooted trees {T(x1),...,T(x)} with A(T(xz;)) < A and
Zle |T(x;)| < (8 —10A)Ym we can find disjoint copies of T(x1),...,T(xt) in G with
T(z;) rooted at x; such that G (A, B, m)-expands into W \ (T(z1) U---UT(z;)).

Proof. By setting M = (8 — 10A)m, we see that the assumptions of Lemma 2.7
hold for the family of trees T(x1),...,T(z;). This allows us to embed the trees
T(xz1),...,T(x;) such that |[Ne(S)\(T(x1)U- - -UT(x¢))| > AlS| holds for all S C V(G)
with |\S| < m. This shows that part (i) holds of the definition of G (A, 8, m)-expanding
into G\ (T(z1) U---UT(2;)) = W\ (T(z1) U---UT(x;)). Part (i) also holds as a
consequence of G (44, 3, m)-expanding into W. ]

2.3. Embedding paths and cycles. In this section we prove several lemmas
about embedding paths and cycles into expanders. They will be the building blocks
for the gadgets which we construct in the next section.

The following lemma allows us to connect prescribed vertices together by short
paths.

LEMMA 2.9. Let G be a graph, ,m,t € N, and fix £ = 4|G|/Bm + 10log fm.
Suppose that G (16, 3, m)-expands into W C V(G) with (B8 — 80)m > 40> + |G\ W|.
Suppose that we have pairs of vertices x1,y1, T2, Y2, ..., Te,ys € G\ W.

Then there are vertex-disjoint paths Py, ..., P, in G with P; going from x; to y;
and |P;| < L.
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Proof. Let X = G\ W and list the vertices of X as (x1,y1,T2,Y2,---,Tt, Y,
Z1,...,2) for r = | X| — 2t. We assign a tree T'(v) to each v € X as follows. For
t=1,...,t the trees T'(x;) and T'(y;) are both rooted binary trees with ¢¢ vertices of
depth < [logtf]. For vertices z; we let T'(z;) be the tree consisting of a single vertex.
Notice that A(T'(v)) < 4 for all v, G (16, 8, m)-expands into W, 20 - 4 < g, and that
Yvex [T(v)] <2620+ |G\ W| < (8—10-4)m. Therefore we can apply Lemma 2.8 to
G with A =4 in order to find disjoint copies of T'(v) rooted at all v € X such that G
(4, B, m)-expands into W’ = W\ J,cx T'(v).

Fori=1,...,tlet A; = V(T(z;)) and B; = V(T (y;)). Notice that to prove the
lemma it is sufficient to find vertex-disjoint paths @; from A; to B; internally inside
W' of length < £—2[log ¢f]—1. Indeed once we have such paths, we can join Q; to the
paths P,, in T'(z;) and Py, in T'(y;) from the endpoints of @Q; to x; and y;, respectively,
in order to obtain P; (since A; and B; are binary trees of depth < [logtf], we know
that e(Py,),e(Py,) < [logtl]). We will repeatedly apply Lemma 2.6 to G and W' t
times in order to find such paths Q1,...,Q; of length < ¢ — 2[logt/] — 1.

Suppose that for some i € {1,...,t}, we have already found vertex-disjoint paths
Q1,...,Qi—1, each of length < £ —2[log /] — 1. Let C' = (U;; Qj) U (U, Aj U B;).
Notice that we have 2|4;|,2|B;| = 2t¢ > |Q1| + -+ |Qi—1] > |C NW'|. We also have
pm > 4t20 > 2(i — 1)¢ + 2t2¢ > 2|C|. Therefore, by Lemma 2.6, there is a path Q;
from A; to B; avoiding C with |Q;| < 8logm + 2|G|/Bm < £ —2[logtl] — 1 (the last
inequality uses tf < Sm). d

The following lemma allows us to find a short cycle C' in an expander, such that
the graph expands outside C.

LEMMA 2.10. Suppose that we have a nonbipartite graph G which (A, B, m)-
expands into W C G with A > 2.

Then G contains an odd cycle C with |C| < 16logm + 4|G|/Bm such that G
(A =5, 8,m)-expands into W\ V(C).

Proof. Let C be the shortest odd cycle in G.
CLAIM 2.11. For any vertices x,y € C we have d¢(z,y) = da(z,y).

Proof. We certainly have d¢(xz,y) > dg(x,y). Suppose for the sake of contradic-
tion that we have x,y € C with do(x,y) > dg(z,y). Without loss of generality, we
may suppose that dg(z,y) is as small as possible among such pairs of vertices. Let P
be a z — y path of length dg(z,y).

Suppose that PNC contains some vertex z € {x,y}. We have dg(z, 2) < dg(z,y),
so by minimality of dg(z,y) we have that de(z,2) = dg(z,2) < dp(x,z). Simi-
larly, we obtain d¢(z,y) = da(z,y) < dp(z,y). This gives us do(x,y) < do(z,z) +
dC(Za y) < dp(l', Z) + dP(Za y) = dG(‘xa y)7 contradicting dc(l‘, y) > dG(‘xa y)

Suppose that PN C = {z,y}. Let @ be the x — y path along C' with |C| having
the same parity as |P|. By replacing @ by P we obtain an odd cycle shorter than C,
contradicting the minimality of |C|. o

From Lemma 2.6 applied with C' = (}, we have Diam(G) < 8logm+ 2|G|/Sm and
so Claim 2.11 implies that |C| < 2Diam(G) < 16logm + 4|G|/Sm.

For any v € V(G), Claim 2.11 implies that | Ng(v) N C| < 5, since otherwise there
would be two vertices x,y € Ng(v) N C with de(z,y) > 3 > 2 = dg(z,y). Using the
fact that G (A, 8, m)-expands into W we obtain that for any S with |\S| < m we have
INc(S)N(W\C)| > |Nag(S)NW| —|Ng(S)NC| > (A —5)|S|. This implies that G
(A — 5, Bm, m)-expands into W\ V(C). d
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The same proof also proves the following.

LEMMA 2.12. Suppose that we have a graph G which (A, 3, m)-expands into
W C G with A > 2, and we have two vertices x,y € V(G).

Then there is a path P from x to y with |P| < 16logm + 4|G|/Bm such that G
(A — 5,8, m)-expands into W\ V(P).

To prove Lemma 2.12 one lets P be the shortest x to y path in G. The path P
ends up having the required properties by the same argument as in Lemma 2.10.

The following lemma allows us to find a cycle whose length is close to a prescribed
value.

LEMMA 2.13. Suppose that we have a nonbipartite graph G which (A, B, m)-
expands into G for A > 20 and > 8A. Let r be an odd integer with r < m.

Then G contains an odd cycle C with r 4+ 2 < |C| < r + 16logm + 5|G|/Bm. In
addition there is an induced subgraph graph G' of G such that G' (AJ4—"7,8—3,m)-
expands into V(G) \ V(C), and C\ V(G') is a path of order r.

Proof. By Lemma 2.10, G contains an odd cycle C\qq4 such that |Coaq| < 16 log m+
4|G|/pm such that G (A — 5, 8, m)-expands into V(G) \ V(Coaq). If |Cogal > r + 2,
then the lemma holds with C' = C,qq and G’ a subgraph of G formed by deleting
r consecutive vertices on C' (here G’ (A/4 — 7,8 — 3, m)-expands into V(G) \ V(C)
using r < m and Observation 2.4). Therefore, suppose that |Coqq| < 7, and let x,y
be two vertices in Cygqq at distance ||Co4q|/2|. Notice that this means that there
are z to y paths Rt and R~ in C of orders |Coaa|/2 + 1/2 and |Coaal/2 — 1/2,
respectively.

By Lemma 2.8, G contains a path P of order r — |Cbq4|/2 + 5/2 starting with z,
with PNC = {z}, such that G (A/4—2, 8, m)-expands into V(G)\(V(C)UV (P)). (For
this application, we have G = G, W =V (G) \ V(Coaa), X = V(Coaa), A = AJ4 -2,
B = p, and m = m. Let T(x) be a path of order r — |Coqq|/2 + 5/2, and let T'(z') be
the single-vertex tree for all z’ € X \ {z}.) Let z # x be the other endpoint of P and
W = V(G)\ (V(Coaa) UV (P)).

Suppose that zy is an edge. Joining Rt to P gives a cycle C of order r + 2 for
which the lemma holds with G’ a subgraph of G formed by deleting r consecutive
vertices on C' (here G' (A/4 — 7,8 — 3, m)-expands into V(G) \ V(C) using r < m
and Observation 2.4).

Suppose that zy is a nonedge. Let G; be the induced subgraph of G on (V(G) \
(Coda U P)) U {z,y}. Notice that since r < m, Observation 2.4(ii) implies that G,
(A/4—2,8—2,m)-expands into W. By Lemma 2.12, G contains a z to y path @ of
length < 16logm + 4|G|/(8 —2)m < 16log m + 5|G|/Bm such that Gy (A/4—7,5—
2, m)-expands into W\ V(Q). Since zy is a nonedge, we have |Q| > 3.

Notice that |[RT| and |R™| have different parities. Therefore we obtain an odd
cycle C with |C| < r + 16logm + 5|G|/Bm by joining Q to P to either RT or R™.
We have either |C] = |[R™|+ |P|+|Q| —3 or |C| = |[RT|+ |P| +|Q| — 3. Using
(B[ = [Coaal /2 — 1/2, |R*| = [Coaal /2+ 1/2, 1Q] > 3, and |P| = 1 — [Coqal /2 + 5,2
we get |C| > |R™|+|P|+|Q| -3 >r+2and |Q| > |C|—|R"|—|P|+3 = |C|—r. Since
|Q| > |C|—r, we can choose a set U of |C| —r consecutive vertices on Q. Let G’ be the
induced subgraph of G on (V(G1)\V(Q))UU to get G' (A/4—7,8— 3, m)-expanding
into W\ V(Q) =V(G) \ V(C) as required (using Observation 2.4(ii)). 0

2.4. Constructing gadgets. In this section we construct gadgets in graphs
whose complement is K¥ -free. The overall goal of this section is to prove Lemma 2.2.
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Fic. 1. A 3-gadget.

The following lemma shows that odd r-gadgets exist in graphs whose complements
are KF -free. It also finds two large binary trees attached to the endpoints of the
gadget. These binary trees will later be used to join several gadgets together.

LEMMA 2.14. Let m,k, and r be integers with m > max(k®,10°), r odd, and
r <m. Let G be a graph with G K -free and |G| > 9100000km.

Then G contains an r-gadget J with |J| < r + 2000m3 with endpoints a and b.
In addition there are two disjoint binary trees Ty, and Ty in G of order m and depth
< [logm] with T, rooted at a and having T, NJ = {a} and T} rooted at b and having
T,NJ = {b}

Proof. For this lemma we fix M = 9000000, A = 4000, and S = 1500000. See
Figure 1 for a diagram of what kind of r-gadget we will find in G.

Apply Lemma 2.5 to G in order to find an integer k¥’ and a subgraph G; of G
with (M —2)(K' —1.5)m < |G1| < M (k' — 1.5)m such that Gy (A, 8, m)-expands into
G, and G is K,’i;—free. We have k' > 2, since |G1| > m implies that G; cannot be
K} -free. Notice that since |G1| < M (k' — 1.5)m < Mkm < Mm3 and M/B <6, we
have |G;1]/8m < 6m3. Notice that Gy is nonbipartite—indeed since Gy is K¥ _free,
every set of size mk’ in Gy contains an edge which implies that «(G1) < mk’ and
X(G1) = [G1|/a(Gr) = (M — 2)(K' — 1.5) /K" > 10000.

Apply Lemma 2.13 to (G1 in order to find an odd cycle C' with vertex sequence
Ay 1y ey Jry 15Xy vy Tty by Yy Ye—1,...,y1 such that ¢ < 16logm + 5|G1|/Bm <
50m3. In addition, we obtain a subgraph G C Gy which (A/5, 8 — 3, m)-expands
into Wy = V(G1) \ C. Without loss of generality, we may assume that C is labeled
so that {x1,22,...,2¢, b, Y, Yy—1,..., 41,0} = C N Ga.

Apply Lemma 2.8 to G2 and W5 in order to find two binary trees T, and T
internally in W5 of order m and depth < [logm] with T, NC = {a} and T, NC = {b}
(for this application let T, be a single-vertex tree for z € C \ {a,b}). From the
application of Lemma 2.8 we have that G5 (A/20, 5—3, m)-expands into W\ (T,UT3).
Let G3 = G2\ (T, UTy) and W5 = W\ (T,UTy). Notice that since Gy (A/20, 5—3,m)-
expands into W3 and |T, U Tp| = 2m, by Obervation 2.4(ii), Gs (A/20,8 — 5,m)-
expands into Wj.

Apply Lemma 2.9 to G3, W3, and the set of pairs x1,y1,...,%, y¢ in order to
find disjoint paths Pi,..., P, in G with P; joining x; to y; and |P;| < 40m3 (for
this application we use 8/ = 8 — 5, t < 50m3, |G3 \ Ws| = |Gs N C| = 2t + 2,
m > 10° and ¢ = 4|G|/B'm + 10log(8'm) < 40m3 which ensure that we have
(B’ —80)m > 4-50m3 - 50m3 - 40m3 + 2 - 50m3 + 2 > 4420 + |G \ Wa)).
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Let J=CUP,U---UP;,. We will show that J is an r-gadget satisfying all the
conditions of the lemma. Notice that the following are both vertex sequences of paths
from a to b in J:

Ql = a7j17j23"'7]‘1”71'17P15y17y23P27x27m37P33y37‘"7xtaPt7yt;bv

Q2 = avylaPlvxlva,P23y27y3aP37x3a-~'7ytvpta1'tab'

We have that |Qq1| = |J| and |Q2] = |J| — 7, and so @1 and Q2 qualify as the two
paths in the definition of the r-gadget J. Finally we have |J| < r + tmax!_; |P;| <
7+ 2000mS5. 0

The following lemma shows that if the complement of a sufficiently large graph
is K¥ -free, then the graph contains a (< t)-gadget.

LEMMA 2.15. Let m, k, and r be integers with m > max(k3,10°) and r < logm.
Let G be a graph with G KF -free and |G| > 9500000km.

Then G contains a (< 27)-gadget J with |J| < 2" +2050 - - m3 with endpoints a
and b. In addition there are two disjoint binary trees T, and Ty in G of order m and
depth < [logm] with T, rooted at a and having T, N J = {a} and Ty, rooted at b and
having Ty N J = {b}.

Proof. For this lemma we fix M = 9500000, A = 40000, and 8 = 1500000.
Apply Lemma 2.5 to G in order to find an integer ¥’ and a subgraph G’ of G with
(M = 2)(K — 1.5)m < |G| < M(K — 1.5)m such that G’ (A, 3, m)-expands into G’
and G7 is K -free. Notice that since |G| < M(K — 1.5)m < Mkm < Mm?3 and
M/B <17, we have |G’|/Bm < Tm3.

The strategy of the proof of this lemma is to repeatedly apply Lemma 2.14 in
order to find 2%-gadgets for i € {1,...,7} and join all these gadgets together using
Lemma 2.6. See Figure 2 for an illustration of what the final (< 2")-gadget looks like.

CLAaM 2.16. For s < r, G' contains a (< 2%)-gadget J with |J| < 2% + (s +
1)2050m% with endpoints a and b. In addition there are two disjoint binary trees
T, and Ty, in G’ of order m and depth < [logm| with T, rooted at a and having
T, N J ={a} and T} rooted at b and having T, N J = {b}.

Proof. The proof is by induction on s. The initial case “s = 0” follows from
Lemma 2.14. Let s > 1. Suppose that we have a (< 2°7!)-gadget J in G’ with
|J] <2571 4 52050 - m3 with endpoints a and b as well as two disjoint binary trees
T, and Ty in G’ of order m and depth < [logm| with T, NJ = {a} and T, N J = {b}.

The cases “s =17 and “s > 2”7 are slightly different. If s > 2, apply Lemma 2.14
to G'\ (JUT, UT,) in order to find a (257* + 1)-gadget J' in G’ \ (J UT, UT}) with
|J/| <271 +1+2000m3 and with endpoints o’ and b’ as well as two disjoint binary
trees T, and T} of order m and depth < [log m| with T;NJ’ = {a’} and TyNJ" = {V'}.

a
1-gadget 3-gadget (QZ’J" "UFZ)—gadget

1-gadget

FiG. 2. Constructing a (< 21°6™)-gadget in the proof of Lemma 2.15.
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If s = 1, we do the same, except we apply Lemma 2.14 to get a 1-gadget J' (rather
than a (2!71 + 1)-gadget which we wouldn’t be able to obtain from Lemma 2.14 since
2171 4+ 1 is even).

Let A=T,, B=T),and C = JUJ UT, UT, \ {a,b'} to get three sets with
|C] < 30000m < (A —2)|A|, (A —2)|B|,8m/2. Applying Lemma 2.6 to these three
sets gives us a path P from Ty, to T} avoiding J U J' UT, UT, \ {a,b'} and satisfying
|P| < 8logm + 2|G|/Bm < 22m3. Notice that since T, and T} are trees with depth
< [logm], there are paths P, and Py of length < 2[logm] from a and ¥’ to the two
endpoints of P. Joining P to P, and P, gives a path ) from a to b’ of length < 26m3.

We claim that J = JUJ UQ is a (< 2%)-gadget in G’ with endpoints a’ and b.
We'll deal with the s > 2 case first. Let ¢ € {0,...,2°}. We need to find an o’ to b
path in J of order |.J| — t. Since .J is a (< 2571)-gadget, J contains an a to b path R
with |R| = |J| — (t mod 2°~! + 1). Since J’ is a (2571 + 1)-gadget, J' contains a’ to
bV paths Ry and Ry with |Ro| = |J/| and |Ry| = |J'| — 2°7! — 1. Now, depending on
whether ¢ > 2571 4+1 or not, either RQRy or RQR, is a path of the required length. If
s =1, then a similar argument works. (Since both J and J’ are 1-gadgets, we obtain
paths Qo and @4 in J of orders |J| and |J| — 1 and paths Ry and R; in J’ of orders
|J'| and |J'| — 1. Now QoQRo, QoQRy1, and Q1 QR are paths of lengths |J|, | J| — 1,
and |J| — 2, respectively.)

Notice that as required by the claim, we have the binary trees T, and T}, of order
m and depth < [logm] with T/ NJ = {a’} and T, N J = {b}. Finally, we have
J| < I+ 7 +1Q] < (2571 + 52050 - m3) 4 (2571 + 1 4 2000m3) + 26m3s <
25 4+ (s + 1)2050m% completing the induction step. ]

O

The lemma is immediate from the above claim with s = r.

We are now ready to prove Lemma 2.2

Proof of Lemma 2.2. For this lemma we fix M = N; = 107, A = 40000, § =
1500000, and 7m = Am. Notice that G is K% -free. Apply Lemma 2.5 to G with m = m
in order to find an integer k" and a subgraph G’ of G with (M —2)(k'—1.5)m < |G’| <
M (k' —1.5)m such that G’ (A, B, m)-expands into G’ and G is K -free. Notice that
since |G| < M(K' —1.5)m < Mkim < Mm3 and M/3 < 7, we have |G’|/Bm < T3,

Apply Lemma 2.15 twice with m = 7 and r = [logm] in order to obtain two
disjoint, (< 7)-gadgets J; and Jy in G with |.J1],|J2] < m + 2050 - logm - m3. In
addition, letting the endpoints of J; be a; and b; we obtain disjoint binary trees T, and
Ty, of order m and depth < [logm] with T,,N(J1UJe) = {a;} and Tp,N(J1UJ) = {b;}.
In order to have disjointness, we first apply Lemma 2.15 to the graph G’, and then
apply Lemma 2.15 to the graph G'\ (J; UT,, UTy,).

Let A=T,,,B=T,,,and C = J; U JyUTy, UTy, \ {a1,a2} to get three sets of
vertices with |C| < 30000 < (A — 2)|A|, (A —2)|B|, 8m/2. Applying Lemma 2.6 to
these three sets gives us a path P, from T,, to Ty, avoiding J; U JoUTy, UTp, \{a1, a2}
and satisfying |P| < 8logm + 2|G|/Bm < 22m3. Notice that since T,, and T}, are
trees with depth < [logm], there are paths P; and P of length < 2log m from a; and
as to the two endpoints of P,. Joining P, to P; and P gives a path @), from a; to as
of order < 26m3. By the same argument we can find a disjoint path @ from b; to be
of order < 2613 (using A =Ty, B="T,,, and C = J;UJoUT,, UT,, UQ, \ {b1,b2}).

Now, we have two (< Am)-gadgets Ji and Jo of order < Am + 2050 - log Am -
(Am)3 < (A + p)m (using pm > 4100(Am)7), as well as two paths Q, and Q,
between their endpoints with |Qq|, |Qs] < 26(Am)=.
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Notice that the following holds:

0<|/hUJoUQ,UQp| — (A+2u)m +2 < Am.

Indeed, the left-hand inequality follows from |Ji|, |J2| > Am and A > 2u, whereas the
right-hand inequality comes from gm > 4100(Am)i and |Qal, |Qs] < 26(Amn)3, (|J1| —
am), (|J2] — Am) < 2050(Am)3.

Therefore, since Jp is a (< Am)-gadget, there is a path @Q; from a4 to by in Jy of
order [J1| — (|J1 U J2UQq U Q| — (A +2u)m + 2). Notice that |JoUQ, UQyU Q1| =
(A+2pu)m—2 and |J2| < (A+p)m. Therefore we can choose two vertices a and b on the
path Q,Q1Qp such that the interval @ of Q,Q1Qy from a to b has exactly um vertices.
Let J be J together with the two segments of Q,Q1Q5 outside the internal vertices of
Q. Noting that connecting paths to the endpoints of a (< t)-gadget produces another
(< t)-gadget, we have a (< Am)-gadget J with |J| = (A + p)m and an internally
disjoint path @ of order um joining its endpoints. 0

2.5. Gadget-cycles. We'll use gadgets by joining many of them into a cycle
and then using the property of a (< k)-gadget to shorten the cycle into one of pre-
scribed length. The following definition captures the notion of a cycle containing
many gadgets on it.

DEFINITION 2.17. An (a,b, m)-gadget-cycle C' is a set of disjoint gadgets Jy, ..., J;
together with a set of disjoint paths Q1, ..., Q¢ with the following properties:
(i) Ji has endpoints a; and b;. Q; goes from b; to ;11 (mod ). Other than at these
vertices, the paths do not intersect the gadgets.
(i) |J;| < m for eachi=1,...,t.
(ii) |Ui_y (Ji UQ:)| > b.
(iv) There is a number k such that each J; is a (< k)-gadget with [|J'_, (J; U Q)| —
tk < a.

See Figure 3 for a diagram of a gadget-cycle. Notice that if C is an (a,b, m)-
gadget-cycle C, then we have |C| > b. Notice that any (a, b, m)-gadget-cycle C' is also
an (a, |C|, m)-gadget-cycle. If C'is a gadget-cycle as in Definition 2.17, we say that it
contains the gadgets Jy, ..., J;. If P; is the path in J; of order | J;| for i = 1, ..., ¢, then
we will sometimes identify C' with the cycle with vertex sequence Pi@Q1P2Qs ... P;Q;.

Fic. 3. A gadget-cycle.
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The following simple lemma shows that gadget-cycles contain cycles of all lengths
between the parameters a and b.

LEMMA 2.18. For any n with a < n < b, every (a,b,m)-gadget-cycle contains a
cycle of length n.

Proof. Let Jy,...,J; be (< k)-gadgets and Q1,...,Q: paths as in the defini-
tion of (a,b,m)-gadget-cycle. Choose numbers kq,...,k € {1,...,k} such that

U§:1(Ji U QZ)‘ — 22:1 k; = n (parts (iii) and (iv) of the definition of “gadget-cycle”
ensure that we can do this). Now since each J; is a (< k)-gadget, it contains a
path P; between its endpoints of length |J;| — k;. Now Ule P; U Q; is a cycle of
length n. 0

The following lemma allows us to join two gadget-cycles into a larger gadget-cycle.

LEMMA 2.19. Suppose that we have an (a1, by, m)-gadget-cycle Ci, a vertex-
disjoint (ag,ba, m)-gadget-cycle Co, and r > 16 vertez-disjoint Cy to Co paths P,
.., P of length < €. Then for some i,j < r there is an (a,b, m)-gadget-cycle C' with
V(C) S C1UCUPUP;, [C] = (1= Z)(IC1] +C2]) = (IC1] +|C2))/2, and

a=ai+as+4m + 24,

b:(b1+b2)<1—j;).

Proof. Without loss of generality, we can suppose that by = |Cy] and by = |Ca|.
For ¢ = 1,...,r, by possibly replacing each P; by a shorter path, we can assume
that each P; is internally outside C; U Cs. Let ci,... 70\101\ be the vertex sequence
of Cy and ci, .. .,clgczl the vertex sequence of Cy. For a path P;, let z(P;) = (s,t)
where ¢ and ¢} are the endpoints of P;. Notice that x(P;) € [1,|Cy|] x [1,]Cs|] for
each 7. There must be two paths P; and P; with z(P;) and z(P;) within L' distance
2(|C1| + |Cs])/+/r. (Otherwise, the r L'-balls of radius (|C| + |Ca|)/+/7 would all be
disjoint. This gives a contradiction to the total volume of these balls being less than
Cal - [Cal )

Let S be the set of < 2(by + bs)/+/r vertices of C; and Cy between the endpoints
of P; and P;. Let C be the gadget-cycle on (C; UCs U P;U P;) \ S formed by joining
Cy and O, with P; and P; and discarding the vertices of S. The gadgets of C' are all
the gadgets of C; or Co which are completely contained in C'. The paths in C are all
the other vertices in C.

Notice that there are at most four gadgets in C; and C5 which can intersect C
but not be gadgets in C' (the only way such a gadget can arise if one of the endpoints
of P; or P; is contained in it). From this we see that C is an (a, b, m)-gadget-cycle
with a = a1 +as +4m+ |P| + |Pj| < a1+ az +4m + 20 and b = |Cy| + |Ca| + |P;| +
|P;| —|S] > b1 4+by—2(bi +b2)/+/1. We also have |C| > |C1|+|Co|+|P;|+|P;| —|S| >
(b1 +02)(1 = Z) = (G1] + Ca) (1 = ) 2 (Gl +[Cal) /2. 0

3. Ramsey numbers. In this section we will prove Theorem 1.4. The only
results from the previous section which we will use here are Lemmas 2.2, 2.18, and 2.19.
We will also employ Theorem 1.6 in this section. However, it is worth noting that
the weaker result R(C<,, KE) < O(n) would also suffice in all our applications of
Theorem 1.6.

The structure of this section is as follows. In section 3.1 we introduce expanders.
The expanders which we introduce here are slightly different from the ones we used
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in the previous section. In section 3.2 we prove the special case of Theorem 1.4 when
k = 2. Since the full proof of Theorem 1.4 is inductive, the “k = 2” case will serve as
the initial case for our induction. In section 3.3 we prove Theorem 1.4.

3.1. Expanders. We will use the following notion of expansion.

DEFINITION 3.1. Let H C G be an induced subgraph of a graph G. We say that
H is an (d,m,n)-expander in G if the following hold:
(i) [Nu(S)| > d|S| for S C V(H) with |S| < m.
(ii) |Ng(S)US|>n for S CV(H) with |S| > m.

Notice that if H is an (d, m,n)-expander in G and we have G' D G, d' < d, m' > m,
n >dm', and n’ <n, then H is an (d',m’,n’)-expander in G'.

The following lemma shows that if the complement of a graph is K, n,,-free, and
large sets expand to n, then the graph contains a large (d, m’, n)-expander.

LEMMA 3.2. Suppose that we have integers n, m, and d with n > (d+2)(d+3)m,
a graph G, and a set of vertices U C G with |U| > (d + 3)?>m. Suppose that G[U] is
Kp.m-free and that [Ng(S)U S| > n for every S C U with |S| > m.

Then there is a set B C U with |B| < m such that G[U \ B] is a (d, (d + 2)m,n)-

expander in G \ B.

Proof. Let B be the largest subset of U with |B| < (d + 3)m and |Ny(B) \ B| <
(d+1)|B|. Since [Ny (B)UB| < (d+2)(d+ 3)m we have that U\ (Ny(B)UB)| > m.
Since there are no edges between B and U \ (Ny(B)U B), the Ky, m,-freeness of G[U]
implies that |B| < m. We show that G[U \ B] satisfies (i) and (ii) of the definition of
“(d, (d + 2)m,n) expander in G\ B.”

To see that (i) holds, let S C U \ B be a subset with |S| < (d 4+ 2)m. Notice
that we have [Ny (S) \ (SU B)| > (d + 1)|S] since otherwise S U B would be a larger
set with |SU B| < (d+ 3)m and |[Ny(SUB)\ (SUB)| < |[Ny(S)\ (SUB)| +
|Nuy(B) \ B| < (d+ 1)|S U B| (contradicting the maximality of B). This shows that
Nis(S)] = IN($)\ (SUB)| = dIS].

To see that (ii) holds, let S C U \ B be a subset with |S| > (d + 2)m. We have
INy(B)N S| < |Ny(B)\ Bl < (d+1)|B| < (d+ 1)m < |S| — m, which implies that
|S\ Ny (B)| > m. Therefore, using the assumption of the lemma we get

[Ne\5(S) US| =2 [Na\p(S\ Nu(B))U(S\ Nu(B))|
= [Na(S\ Nu(B)) U (S\ Nu(B))|
>n. O

The following lemma shows that expanders are highly connected.

LEMMA 3.3. Let G be a graph with G K, y-free and H a (d + 1,m,n)-ezpander
in G. Then H is d-connected.

Proof. Let x, y be two vertices in H and S a set of d — 1 vertices in H \ {z,y}.
To prove the lemma, it is sufficient to find an z to y path avoiding S. Define NIT{\S(U)
to be the rth neighbourhood of a vertex v € H, i.e., the set of all vertices in H \ S
at distance < r from v in H \ S. From the definition of (d + 1, m,n)-expander, we
have that |Nj, ¢(v)| = min(2",m) for all v € H \ S. Therefore we have INWB ™ ()],

H\S
logm
|NH§;S (y)‘ > m.

We claim that Ng%g“(;v) N Ngfglﬂ(y) #0. It NE%;”(%’) N N};’%g’(y) # (), then

this is obvious. Otherwise by K, ,,-freeness of G there is an edge between N;?%g” (x)
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and N2 (y) which is equivalent to Ng%g.nﬂ(a:) ANCET T () £ ). We get an z — y

H\S H\S
path avoiding S of length < 2logm + 1 by joining paths from x and y to a vertex in
N# & (@) N NGEE T (y). O

The same proof as above also gives the following lemma, which shows that any
two vertices are connected by a short path in an expander.

LEMMA 3.4. Let G be a graph with G K, m-free and H a (3, m,n)-ezpander in
G. Then for any x,y € H, there is an x —y path P in H with |P| < 3logm.

It is also possible to connect given vertices by long paths in an expander.

LEMMA 3.5. Let G be a graph with G K, ;m-free and H a (3,m,n)-ezpander in
G with |H| > 6lm. Then for any x,y € H, there is an x — y path P in H with
10m < |P| < 12m.

Proof. Notice that H — x — y contains a cycle C with |C| > 20m (e.g., by The-
orem 1.6). By Lemma 3.3 combined with Menger’s theorem, there are two disjoint
paths P, and P, from z and y, respectively, to C. Joining P, and P, to the longer
segment of C' between P, N C' and P, N C gives an x to y path P of length > 10m.
If P > 12m, then by the K,, ,,-freeness of G, P has a chord whose endpoints are
at distance at most < 2m on P. By repeatedly shortening P with such chords, we
obtain a path of length between 10m and 12m. O

3.2. R(Ch, Km,,m,). The goal of this section is to prove the k = 2 case of
Theorem 1.4. This serves as an initial case of the induction in the full proof of the
theorem.

An important tool which we will need is the Pésa rotation-extension technique.
Let P = pips...p: be a path in a graph G. We say that a path @ is a rotation of P if
the vertex sequence of Q is p1ps ... Pi—1PtPt—1 - - - Pi+1P; for some i. Notice that for @
to be a path, the edge p;p;—1 must be present. We say that a path @ is derived from
P if there is a sequence of paths Py = P, Py,..., Ps = (Q with P; being a rotation of
P;_; for each i. We say that a vertex z is an ending vertex for P if it is the final
vertex of some path derived from P. The following lemma from [3] is a variation of a
result of Pésa from [22].

LEMMA 3.6. Forv € V(G), let P be a mazimum length path in G starting at v.
Let S be the set of ending vertices for P. Then |[Ng(S)| < 3|5].

The following lemma could be seen as a strengthening of the statement that
“R(Cpy Kpym) < n—1+m”—it says that in a graph whose complement is K, ,,-free
which satisfies certain other conditions, we can connect a given pair of vertices by a
path of prescribed length. We will use this lemma at several points in the proof of
Theorem 1.4.

LEMMA 3.7. There is a constant No = 2 - 10*° such that the following holds. Let
n and m be integers with n > Nam and m > 8. Let G be a graph with G K, ,,,-free
and |[Ng(A)U A| > n for every A C V(G) with |A] > m. Let x and y be two vertices
in G and P an x to y path with |P| > 8m.

Then there is an x to y path of order n in G.

Proof. For this lemma we fix ¢ = 10%2°, A = 10%!, k¥ = 2 and note that N, >
2N1kAp, where Nj is the constant from Lemma 2.2.

Without loss of generality, we may assume that |P| < 10m. (Indeed if |P| > 10m,
then by K, n-freeness of G, P has a chord whose endpoints are at distance < 2m
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along P. Shortening P with this chord gives a shorter path of length > 8m. Therefore
there is an x to y path with length between 8m and 10m.)

By Lemma 2.2, we see that G\ P contains a (< Am)-gadget J of order (A+ p)m
with endpoints a and b, together with an internally disjoint path @ of order um from
a to b. By K, m-freeness of G, we can find two disjoint edges from the middle m + 1
vertices of @) to the middle m + 1 vertices of P. By deleting the segments of P and @
between these edges, we get two paths P, and P, of length > 4m going from x and
y to a and b. Without loss of generality, we can suppose that a and b are labeled so
that P, connects x to a and P, connects y to b.

Apply Lemma 3.2 to G with U = G\ (V(P,) UV (P,) UV (J)) and d = 4 in order
to find a set B C U with |B| < m such that the subgraph H = G\ (V(P,) UV (P,) U
V(J)U B) is a (4,6m,n)-expander in G \ B. Since |V(P,) UV (P,) UV (J)UB| <
|P| + Q| + |J]| + | B| < 10%2m, we have that |H| > m.

Let P, have vertex sequence x = po,p1,p2,-..,Pt. By K m-freeness of G, there
is an edge between some p, € {pm+1,...,p:} and some vertex v € H. Let R be
the longest path in H starting from v and S be the set of ending vertices of P. By
maximality of | R|, we have that Ny (S) C R. Lemma 3.6 implies that [Ny (S)| < 3|5].
By property (i) of H being a (4,6m,n)-expander in G \ B, we have that |S| > 6m.
Therefore by property (ii) of H being a (4, 6m, n)-expander in G\ B we have |(Ng(S)U
S)N(RUP, UP,UJ)| = |Nx\p(S)US|>n.

Notice that by K, -freeness of G, S has neighbors in {po,...,p,—1}. Let p;
be the last neighbor of S in this set. Let R’ be a path derived from R which ends
with a neighbor of p;. Let P’ be the x to y path formed by joining py,...,p; to
R' to py,pri1,...,p¢ to J to P,. Notice that (Ng(S)US)N(RUP, UP,UJ) =
(Ng(S)U S) N P’ (this comes from (RU P, UP, UJ)\ P = {pit1,...,pr—1} and
the fact that there are no edges from S to {p;t1,...,pr—1} by the definition of p;).
Together with |(Ng(S)US) N (RU P, UP,UJ)| > n, this gives |[P'| > n. The path
P’ is of the form P, JP, for some paths P, and P,. Let P” be the shortest path with
|P"| > n and of the form P,/JP,’ for some paths P, and P,/. Notice that we must
have |P”| < n + 5m < n + Am since otherwise, using |J| = (A 4+ p)m < n and the
K m-freeness of G, either P! or P,/ has a chord whose endpoints are at distance
< 2m on P” (contradicting the minimality of |P”|). Now using the property of the
(< Am)-gadget J we can find an a to b path J' in J of order |J| — (|P”| —n). Joining
J' to P,/ and P, we obtain an x to y path of order n. 0

From the above lemma it is easy to find R(Cy,, K, m,)-

COROLLARY 3.8. There is a constant Ny = 2-10% such that the following holds.
Let n, my1,mgy be integers with mo > my, mo > 8, and n > Noms. Then we have
R(C'ruKml,mz) =n-+myq — 1.

Proof. From Lemma 1.1, we have R(C),, Ky m,) > 1+ mq1 — 1. Therefore it
remains to show that R(Cy, Ky m,) < n+mq — 1.

Let G be the red color class of a 2-edge-coloured K, 4, —1. Suppose that K ym, 1
contains no blue K, m,, i.e., that G is Ky, m,-free.

By Theorem 1.6 there are two adjacent vertices x and y with a path of length
> n > 8mgy between them. Since G is Ky, m,-free and |G| = n 4+ my — 1 we have
that [Ng(A) U A| > n for any A C V(G) with |A| > ma. Also since mo > my, G is
K1, mo-free. Therefore, by Lemma 3.7 applied with m = msg, there is a path of order
n from x to y which together with the edge xy gives a cycle of order n in G (and
hence a red cycle of order n in the original graph). 0
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3.3. R(Cyp, Knm,,...,m;). Here we prove Theorem 1.4. First we need two inter-
mediate lemmas.

Notice that Theorem 1.4 implies that R(C,, KX) < (k — 1)(n — 1) + m. The
following lemma shows that a much better bound holds as long as the red color class
of the 2-colored complete graph is highly connected in a certain sense.

LEMMA 3.9. There is a constant N3 = 10°6 such that the following holds. Suppose
that we have m, n, and k satisfying n > Nam and m > k*°. Let G be a graph with
|G| > 0.07kn + n. Suppose that for any two sets of vertices A, B of order 2m, there
are at least k20 disjoint paths from A to B.

Then either G contains a cycle of length n or G contains a copy of K .

Proof. For this lemma we fix A\ = 10%*, ; = 10%!, and notice that N3 = 10* Ny,
where N; is the constant from Lemma 2.2. For & = 2, the lemma is weaker than
Corollary 3.8, so we will assume that & > 3. Suppose that we have a graph G as in
the lemma with G KF -free. We will find a length n cycle in G.

In G, select a maximal collection of disjoint (< Am)-gadgets of order (A + p)m
together with length pum paths joining their endpoints, i.e., choose disjoint (< Am)-
gadgets Jq,...,J; of order (A + p)m as well as internally disjoint paths Q1,...,Q:
of order um with @Q; going between the endpoints of J;, such that ¢ is as large as
possible. Let U3 = G\ U'_, V(J;) UV(Q;). By maximality of ¢, G[U;] contains no
(< Am)-gadget of order (A + p)m with a path of length pm joining its endpoints. By
Lemma 2.2, we have that |U;| < (NjAuk)m (since m > k29, X\ = 10?4, and p = 10!
imply m > k3, A > 2u, and pm > 4100(Am)1). Using Ny < 0.005N3 and n > Nym
we get |Ur] < (NiApk)m < 0.005kn. This implies [J; U« U, UQ1 U---U Q| >
0.06kn +n > 1.06n.

Construct an auxiliary graph H on [t] with ij and edge if there are at least 12
disjoint edges from Q; to Q;. Using [Jy U---UJ; UQ1 U---U Q¢ > 0.06kn and
n > Nzm, we have |H| > |G\ U1|/(A + 2u)m > 900k. The reason for defining this
graph H is that paths in H correspond to gadget-cycles in G. The following claim
makes this precise.

Cramm 3.10. Let P be a path in H. Then there is an (a,b,2Am)-gadget-cycle
contained in |J,cp(Jo UQy) where a = 0.01)] p|Ju UQy| and b=0.993" _p|J, U
Qul-

Proof. Without loss of generality, we may assume vertices are labeled so that P
has vertex sequence 1,2,...,|P]

Notice that it is sufficient to find a gadget-cycle C' containing all the gadgets
Ji,...,Jip| and with V(C) C Uli‘l V(J;) UV(Q;). Indeed such a gadget-cycle is
always an (a,b, (A + p)m)-gadget-cycle with a = Zli‘l(uz UQi| —Am) and b =

P 1J]. Using |J;] = (A4 p)m and |Q;| = pm, we have that a < 0.01 Y121 [, uQ;|
and b > 0.99 Z‘Zill |J; UQ;| (for these we use A > 2004). It remains to show that such
a gadget-cycle containing all the gadgets Ji,. .., J|p| exists.

For each i = 1,...,|P| — 1, let M; be the matching of size 12 from Q; to Q;y1
(which exists since {i,7 + 1} is an edge in H). Fix some orientation of @; for each i.

Notice that for any two sets of distinct numbers S and T', there are two subsets
S’ C Sand T" C T with |S'| > |S|/2—1 and |T’| > |T'|/2 —1 for which we have either
“s<tforallse S',teT” or ‘¢t <sforallse S teT"” Fori=1,2,...,|P|—1
we apply this repeatedly with S = @Q; N M;_; and T = @; N M; in order to obtain
new matchings M| C My, ..., M\/P|—1 C M|p|_1 of size 2 with the property that the
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endpoints of M/_; in Q; are either all to the left or all to the right of the endpoints
of M/ in Q;.

Now, for each i, we delete the segment of ); between the endpoints of M/ _; and
the segment of @; between the endpoints of M;. Adding the edges of M, ..., Mp|—1
to the graph produces the required gadget-cycle containing all the gadgets Ji,...,
J|p‘ _1- 0

We will often use the fact that the gadget-cycle produced by Claim 3.10 has order
at least 0.99) p|Jy UQy| (which holds since any (a, b, m)-gadget-cycle has order
at least b).

Using the KF -freeness of G we obtain that H has small independence number.

Cram 3.11. o(H) <k-1.

Proof. Suppose for the sake of contradiction that H contains an independent set
I of order k. For 4,5 € I, let M; ; be a maximal matching in G between @; and Q).
From the definition of edges in H we have that M; ; < 12 for i¢,j € I. For ¢ € I, let
Qi = Qi\U, je; V(M; ;). Usingm > k' we have |Q;| = pm > m+12k, which implies
that |Q;| > m. By maximality of M; ; there are no edges between @} and @Q’;. But
this means that G [J;c; Q}] contains a copy of KF, contradicting the K} -freeness of
G. O

The following is a variant of the well-known fact that a graph can be covered by
a(@G) vertex-disjoint paths.

CLAM 3.12. There are k — 1 vertez-disjoint paths Py, ..., Py_1 in H with |H| —
|Py| — - — |Px—1] <200k and |P;| > 200 fori=1,...,k— 1.

Proof. Choose vertex-disjoint paths Q1,...,Q; in H covering V(H) with ¢ as
small as possible. Without loss of generality, suppose that we have |Q1| < Q2] <
-+ < |Q¢|. By minimality of ¢, we have that the starting vertices of Q1,...,Q: form
an independent set (otherwise we could join two of the paths together to obtain a
smaller collection of paths). Claim 3.11 implies that ¢ < k — 1.

Let r be the index with |@Q,—1| < 200 and |@,| > 200 (possibly with » = 0.) Let
U =Q1U---UQ,_1 to obtain a set with |U;| < 200k. Using |Q, U - U Qx—1| =
|H|—|Uz| > 900k —200k = 700k, it is possible to break some of the paths Q,, ..., Qr—1

into shorter paths in order to obtain a collection of exactly k — 1 paths P, ..., Px_1
of orders > 200 (to do this notice that in any collection of < k — 1 paths of total order
> 700k, there must be a path of order > 700). 0

Let Py,...,Py_1 be the paths from the above claim and assume that they are
ordered such that |Py| > |Py| > -+ > |Py—1|. Let Uy = UueH\(Plumqu,l) Jp UQy,
and observe that from Claim 3.12 we have that |Usz| < 200(\ + 2u)mk < 0.005kn.

Suppose that >, p |J,UQy| > 2n. Then since for each v, |J,UQ,| < (A+2u)m <
n, there is a path P C P; with 3n > > _p|J, UQy| > 2n. By Claim 3.10, there is
a (0.01,cp S0 UQu],0.99% cp |Jy UQy|,2Am)-gadget-cycle in G. Notice that we
have

0.01) [, U@y <0.01-3n <n<0.99-2n <099 | J,UQuy.
veEP veP

Lemma 2.18 implies that G contains a cycle of length n.
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Suppose that 37 p |[J, UQy| < 2n. Fori=1,...,k —1, let C] be the gadget-
cycle produced out of the path P; using Claim 3.10. We have

(4) CYis a <0.01 D 1T UQu[,0.99 > [, UQu, 2/\m> -gadget-cycle.
veP; veEP;
Let Us = U;:ll (UvePi(J” U QU)) \ CY. Notice that from (4), we have the inequality
|CY1 > 0.99|U,ep, (JoUQy)| for i = 1,..., k—1, which together with - _p [J,UQ,| <
2n implies that |Us| < 0.02kn. Let U = U3 UU; UUs = G\ Ui:ll C? to get a set
with |U| < 0.03kn. Notice that as a consequence of (4), |U| < 0.03kn < 0.1|G|, and
|Pi| > -+ > |Pg_1| we have |C{| > |G|/2k. Using |P;| > 200 and (4) we have that for
all 4
(5) C?1>0.99 3 [T, UQy| > 0.99 - 200(Am + 2m — 2) > 2m.
vEP;

For a permutation o of [k — 1], we set S7 = 22‘21 Zvepo(j) |y U Qyl for i =
1,...,k — 1. Notice that S{_; = |G| — |U1 U Us| always holds. Using the fact that
|P;| > 200 for each i, we always have S > 199(\ + 2u)im.

Cram 3.13. There is a sequence of gadget-cycles D1, ..., Dir_1 as well as a per-
mutation o of [k — 1] with the following properties:
(a) o(1) =1.

(b) For each i we have D; C UUCg(l) U Cg(z) U--- UCg(i).
(¢) For each i we have |D;| > 2m.
(d) D; is an (a;,b;,2Am)-gadget cycle for

a; = 0.0187 +8(i — 1)Am + 2(i — 1)|G| /K",
b; = 0.99(1 — 2k~ 5)" =187,

Proof. Set D1 = C{ and (1) = 1. Now for i = 1, (a) and (b) hold trivially, (c)
comes from (5), and (d) is equivalent to the “/ = 17 case of (4). For i > 2 we will
recursively construct D;, o(¢) from Dy,...,D;_1, and o(1),...,0(i—1). Suppose that
we have already constructed Dy, ..., D;_1, and o(1),...,0(i — 1) satisfying (a)—(d).
We construct D; and o(i) as follows.

By (c), we have |D;_1| > 2m and by (5) we have |U,c—1p (o(1),....00-1)) Ci | =
2m. Using the assumption of the lemma, we find at least k20 disjoint paths from
D;_1 to Uje[kfl]\{g(l)w‘,J(Fl)} C? internally contained outside these sets. Since the
paths are all disjoint, there is a subcollection of k2°~7 of them with length < |G|/k".
In addition, there is a further subcollection of k2°~7~! of them which go from D;_;
to CJQ for some particular j. To get D;, we apply Lemma 2.19 to this collection of
k29=7=1 paths, the gadget-cycles C; = ng and Co = D;_; and with the parameters
m' =2 m, r = k?°"7"1 and ¢ = |G|/k". We set o(i) = j.

Now (b) holds as a consequence of “V(C') € C; UCy U P; U P;” in Lemma 2.19
and (c) holds as a consequence of “|C| > (|C1| + |C2|)/2” in Lemma 2.19.

Recall that C; = CY is a (0.01(S7 — S7_),0.99(S7 — S7_,), 2Am)-gadget-cycle
by (4) and Co = D;_q is a (a;—1,b;—1,2Am)-gadget-cycle by (d) holding for D;_;.
Thus (d) holds for D; from the application of Lemma 2.19 together with m’ = 2Am,
r=k2 0=|G|/k7, and “(bi—1 +0.99(S7 — 57 ,))(1 —2k~6) > b;. O

From here, fix o to be the permutation from Claim 3.13. Notice that S{ > |C{| >
|G|/2k implies 2(i — 1)|G|/k" < 0.157, while S¢ — S? > 199(\ + 2u)(i — 1)m implies
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8(i—1)Am < 0.1(S? — S7). Combining these gives 8(i —1)A\m+2(i—1)|G|/k” < 0.15¢
and hence a; < 0.1187. We also have b; > 0.99(1—2k~6)*S? > 0.99(1 —2k~6+1)S9 >
0.9157 (using k > 3). Putting these together we have that a; < 0.25b; for all 4.
Since 87 —S7 | = EUGPW) |Jy U Q| < 2n for all i, we have that b; < 0.99(1 —
2k=6)17287 = ;1 4 0.99(1 — 2k~6)"=2(S7 — S7) < b1 + 2n. Also, using k > 3
we have S7_; = Zf;ll |Js UQs| = |G| — |Up UUy| > (1 +0.07k)n — 0.01kn > 1.16n
which implies by_1 > 0.91 - 1.15n > n. Combining these we get that there is some
for which n < b; < 3n and hence a; < 0.25-3n < n. By Lemma 2.18, D, contains a
cycle of length n. ]

The following lemma could be seen as a structural statement of the form “If N
is close to R(C,,, KF) and Ky is 2-colored without red cycles C,, and blue K* , then
the coloring on K must be close to the extremal coloring.”

LEMMA 3.14. There is a constant N3 = 10°® such that the following holds. Sup-
pose that n > Nam, m > k*', k > 2 and G is a graph with |G| > (k—1)n, G C,-free,
and G KF -free. Then V(G) can be partitioned into sets Ay, ..., Ax_1 and S such that
the following hold:

(i) |A;|>m fori=1,....k—1.

(ii) There are no edges between A; and A; fori#j.
(iil) G[Ai] is Ko m-free fori=1,... k—1.
(iv) |S] < k2L

Proof. We construct a sequence of graphs Gy, Gy, ... recursively as follows. Let
Go = G. If G; contains three sets A, B, S; with |A|,|B| > m, |S;| < k?°, such that A,
B, and S; all lie in the same connected component of G; and S; separates A from B,
then let G,+1 = G; \ S;. Notice that since Gy is Kf;;—free, we must have G = Gi_1.

Choose a partition of V(Gy) into sets Aq,...,A; such that for each i, we have
|A;| > m, there are no edges between A; and A; for i # j, and ¢ is as large as possible.
Notice that any A; with |4;| > 3m must have a connected component C; of order at
least |A;| — m + 1 (otherwise A; can be split into sets of order > m with no edges
between them, contradicting the maximality of ¢). From this we obtain that any A;
with |A;| > 5m must have the property that “for any two subsets A, B C A; of order
> 2m, there are at least k%0 disjoint paths from A to B in A;.” Indeed otherwise, by
Menger’s theorem there would be a set S’ of size < k%0 separating ANC; from BNC;,
contradicting Gy = Gi—_1. Let S =51 U---USp_1 = V(G) \ V(Gi) to get a set with
|S| < k2L

Fori=1,...,t, let ; = min(0, |A;| — n).

CLAM 3.15. Gy contains KI, forr=t+ |3 St ).

Proof. Without loss of generality, suppose that Aj,..., A; are ordered so that
T1,...,2q <mand Tqq1,...,2s > m for some integer a.

Using Lemma 3.9, we see that when z; > 0.25n, G[A;] contains a KJ, for j =
1+ [4z;/n]. (First notice that |x;/0.07n] > 1+ [4a;/n] for x; > 0.25n. This implies
that |A;| = z; + n > 0.07jn 4+ n, and so the assumptions of Lemma 3.9 hold for
G[A;] with k' = j.) By Corollary 3.8 we know that G[A;] contains a K2, whenever
|A;] > n+m —1. This implies that when m < z; < 0.25n then G[A;] contains a copy

of K LHzi/ml =Kl = K2 Putting the above observations together, we obtain that

G[Ag+1 U -+ U Ay contains a K ot e [m/n],
By Corollary 3.8 and the fact that |A;| > m, we know that G[A;] contains a K, ,,
whenever z; < m. Since there are no edges between any of these Ky, 2, ..., Kz,
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their union consists of a K2

o together with a K, ... Using z1,...,2, < m, we

have that K, . ., contains a K,%Z?:lxipmj. Together with K7, this gives a copy

of K&HZLl wi/2ml gy G[A; U---UA,]. Since 4/n < 1/2m, this contains a copy of
ot i dwi/n]

Now, we have found a Kfn_a+2i:““ /"] and a disjoint Ky [2imy dwi/n], Putting
a5t

these two together, and using |z| + [y] > |z + y], we obtain a KfnJ,FL" w1 i) as re-

quired. 0

From Claim 3.15 and the K -freeness of G, we obtain that ¢ + [2 St wil <

k —1. We also have that tn 4+ Y_ x; > |G| —|S| > (k — 1)n — k*'. Putting these

together, we get %2221 z; > |2 S w] - %21 Together with n > 10k?!, this

gives Y2 x; < n/2. Combined with tn + Y.\ z; > (k — 1)n — k' this implies
t—k+1> —% — k%l Since t — k + 1 is an integer, this implies that ¢ > k£ — 1. From
t+ 2 22:1 z;| < k—1 we obtain that t = k — 1. The K -freeness of G implies that

each G[4;] is K, m-free, proving the lemma. 1]

We can now prove the main result of this paper.

Proof of Theorem 1.4. From Lemma 1.1 we have that R(C,, Ky, .m,) > (n —
1)(k — 1) + m;y. Therefore, it remains to prove the upper bound. Fix N3 = 10°°. Let
n,faml, ...,my, be numbers with n > Nym;, my > my_ | > --- > my and m; > 122
for i = 1,...,]2;.

We prove that R(Cyy, K,y . my) < (n—1)(k—1)+my for k = 2, ..., k by induction
on k. The initial case is when k = 2 which comes from Corollary 3.8. Therefore assume
,,,,, me_y) < (n—1)(k—2) 4+ my. Let K be a
2-edge-colored complete graph on (n — 1)(k — 1) + my vertices. Suppose, for the sake
of contradiction, that K contains neither a red C), nor a blue K,,, .. m,. Let G be
the subgraph consisting of the red edges of K.

CLAM 3.16. |[Nag(W)UW| > n for every W C G with |[W| > my.

Proof. Suppose that |[Na(W) U W| < n — 1 for some W with |[W| > my. Let
K'= K\ (Ng(W)UW) to get a graph with |K’| > (n—1)(k —2)+ m;. By induction
K' contains either a red C,, or a blue K, .. m,_,. In the former case, we have a red
Cp, in K, whereas in the latter case we have a blue K,,, ., formed from the copy
of Kp,,....m,_, together with W. O

ke

k

Set m = my, and notice that G contains no blue K¥ . Apply Lemma 3.14 to G in
order to partition it into sets Ay, ..., Ax_1 and S satisfying (i)—(iv). Notice that from
condition (ii) of Lemma 3.14 and Claim 3.16, we have |(Ng(W)UW)N(A4;US)| > n for
any W C A; with |W| > m. Combined with |S| < k?! < m and n > N3m, this implies
that |A;| > 10°®*m for each i. For i = 1,...,k — 1, apply Lemma 3.2 with U = A4;,
G = G[A4; U S], and d = 3 in order to find subsets H; C A; with |H;| > |4;| — m such
that G[H;] is a (3, 5m,n)-expander in G[H; U S]. Let G’ = G[H; U---U Hi_1 U S].

Suppose that for some ¢ and j, there exist two vertex-disjoint paths from H; to
H; in G'. Let P; and P> be two such paths with |P;| + |P»| as small as possible.
Using Lemma 3.4 we have that |Py N Hy|,|Po N Hy| < 3log5m for all s (since if we
had |P; N Hg| > 3log 5m, then Lemma 3.4 would give a shorter path in H; between
the first and the last vertex of P; in P N Hy). Together with m > k%2, this implies
|P1],|P»| < 3klog5m < m. Let p} and p5 be the endpoints of Py and P, in H; and
let p] and p} be the endpoints of P and P> in H;. By Lemma 3.5 applied with
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m’ = 5m, there is an p} to ph path Q; in H; as well as a p] to p} path Q; in H; with
50m < |Q;],]@Q;] < 60m. Notice that we have n—62m < n—|Q;UP,UP,|+2 < n—50m
and “|[Ng, (W)U W|>n—|S| >n—m for W C H; with [W| > 5m.” Therefore, we
can apply Lemma 3.7 to H; with P = Q;, m' =5m, and n’ =n — |Q; U P, U Py| + 2
in order find a pj to pj path Q in H; with Q)| = n —[Q; U P U P| + 2. Joining Q;
to P to Q; to P, gives a red cycle of length n in K.

Suppose that for all 7 # j, there do not exist two vertex-disjoint paths from H; to
Hj in G'. We show that there is a vertex v which separates some H, from the others.

CramM 3.17. There is a set A C V(G'), a 2-connected subgraph D C G', a vertex
veV(D), and an indexa € {1,...,k—1} such that H, CV(D) C A, A\ (SU{v}) =
H,\ {v}, and Ng:(A —v) C A.

Proof. Let Dy,...,D; be the maximal 2-connected subgraphs of G'. By maxi-
mality we have that |D; N D;| <1 for any ¢ # j. By Lemma 3.3, H; is 2-connected
for all 7, and hence H; C D, for some j. By Menger’s theorem we have that each of
Dy, ..., D; can contain at most one of the sets H; for : = 1,...,k — 1 (since there do
not exist two vertex-disjoint paths between H; and H; for distinct ¢ and j).

Let F be an auxiliary graph with V(F) = {D,...,D;} with D;D; an edge
whenever D; N D; # (. It is well known that F is a forest (see Proposition 3.11
in [10]). Let T be any subtree of F' which contains H; for some 4, and let D,.,,; be an
arbitrary root of T. There is a vertex Dy € T such D, contains H, for some a, but
no descendant of Dy contains H; for any j # a. Let D = Dj,.

If Dy # Dyoot, then let Dy be the parent of Dy and v the unique vertex in Dg N Dy,.
Let A be the set consisting of v plus all the vertices in the connected component of
G’ —wv containing H,. If Dy = D0, then let A be the set consisting of all the vertices
in the connected component of G’ containing H, (which is just |J, . Dy), and let v
be an arbitrary vertex in D.

In both of the above cases, H, C V(D) C A and Ng/(A —v) C A are immediate.
To see A\ (SU{v}) = H, \ {v}, recall that Hy,..., H;_1,S partitioned V(G’) and
Dy, was chosen so that no descendant of Dy, in T' contains H; for any j # a. |

veT

Let A, v, and a be as produced by the above lemma. Notice that G[A] is
K41, m+1-free. Indeed given a copy of K, 41,m+1 in G[A], we have a copy of Ky, p, in
G[A]\ {v}. Since from Claim 3.17 there are no edges between this K,, ,, and H;\ {v}
for ¢ # a, we obtain a copy of K* in G.

Notice that for any W C A with |[W| > 5m + k%! + 1, we have

[NA(W) U W[ = [Na(W\ (SU{w})) U (W (SU{v}))]
= [Na(W N (Ha \ {v})) U(W N (Ha \ {v}))]
>n

To see the last inequality, recall that from Claim 3.17 we have A\ (SU{v}) = H,\ {v},
Ny, us(A—v) C Ng/(A—wv) C A, that H, is a (3, 5m,n)-expander in G[H, U S], and
that W (1 (Ho \ {v})] = W\ (S U{o})| > 5m.

Let u be any neighbor of v in D. Since |H,| > 10°?m and H, is K, . -free,
H, — v — u contains a cycle C with |C| > 100m (e.g., by Theorem 1.6). By 2-
connectedness of D combined with Menger’s theorem, there are two disjoint paths P,
and P, from u and v, respectively, to C. Joining P, and P, to the longer segment
of C between P, N C and P, N C gives a u to v path P of length > 50m. Applying
Lemma 3.7 to the graph G[A], the vertices u and v, the path P, and m’ = 5m + k2!
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gives a path of order n from u to v which together with the edge uv forms a cycle of
length n in G (and hence a red C), in K). d

4. Concluding remarks. In Theorem 1.4 we needed two conditions for C,, to
be Ky, ....m,-good—we needed n > 100, and m; > i%2.

The first of these conditions “n > 10%°m;” cannot be removed completely (al-
though the constant 100 can probably be significantly reduced) as there are con-
structions showing that C,, is not K,,, . m,-good for n < my. One family of such
constructions is to fix a number r € {1,...k} and consider a 2-edge-coloring of a
complete graph on (k—r)(n— 1) +r(m, — 1) vertices consisting of (k —r) red cliques
Ci,...,Ci_, of size n—1 and r red cliques Cy—r41, ..., C) of size m, —1. For n > m,,
this construction has neither red C), nor blue K,,, .. m,—there is no red C,, since all
red components have size < n — 1, and there is no blue K, . ., since the k parts
of Ky, ,....m, have to all be contained in different sets Cy,...,Cy, but only k — r of
these have size bigger than m,. (and so it is impossible to simultaneously embed the
k—r+1 parts of Ky, ... m, of sizes m,, my41,...,my). This construction shows that
for n > m, we have R(Cy, Ky, ..m,) > (k—7)(n—1)+r(m, —1). For r = 1, this is
exactly (1). From this bound we obtain that for m, <n < m, + =% —1, the cycle
Cy, is not K, ... .m,-good. By choosing r = k, we see that the bound “n > 10%9yn,,”
in Theorem 1.6 cannot be improved significantly beyond “n > kmy/(k — 1).”

We conjecture that the second condition “m; > i%2” in Theorem 1.4 can be
omitted completely. Such a result would in particular show that C), is K,, good, i.e.,
it would prove particular cases of Conjecture 1.2. Because of this it would likely require
different proof techniques from the ones used in this paper (for example, Nikiforov’s
ideas from [18] showing that C,, is K,,-good for n > 4m + 2 may be helpful).

The gadgets that we use are very similar to absorbers introduced by Montgomery
in [17] during the study of spanning trees in random graphs. An absorber is a graph
A with three special vertices x, y, and v such that A has x to y paths with vertex sets
V(A) and V(A)\ {v}. While absorbers have a long history, Montgomery’s key insight
was that they can be found in very sparse graphs with good expansion properties.
The graphs in which we need to find gadgets are also very sparse, and structurally the
gadgets that we find are a natural generalization of Montgomery’s absorbers. However,
the graphs in which we look for gadgets are even sparser than Montgomery’s and have
weaker expansion properties. Specifically, Montgomery was looking at graphs G in
which any small set S satisfies [N(S)| > C|S|log* |G|, whereas in this paper we
consider graphs which only have |[N(S)| > C|S|. The level of expansion at which
we find gadgets is optimal up to a constant factor. Since we find gadgets (and as a
consequence absorbers) at such a low expansion, our intermediate results are likely to
have application in the study of random and pseudorandom graphs.
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