
Original Paper

Using Smartphones and Wearable Devices to Monitor Behavioral
Changes During COVID-19

Shaoxiong Sun1, PhD; Amos A Folarin1,2, PhD; Yatharth Ranjan1, MSc; Zulqarnain Rashid1, PhD; Pauline Conde1,

BSc; Callum Stewart1, MSc; Nicholas Cummins3, PhD; Faith Matcham4, PhD; Gloria Dalla Costa5, MD; Sara Simblett6,

PhD; Letizia Leocani5, MD, PhD; Femke Lamers7, PhD; Per Soelberg Sørensen8, MD; Mathias Buron8, MD; Ana

Zabalza9, MD; Ana Isabel Guerrero Pérez9, MSc; Brenda WJH Penninx7, PhD; Sara Siddi10,11,12, PhD; Josep Maria

Haro10,11,12, MD; Inez Myin-Germeys13, PhD; Aki Rintala13, MSc; Til Wykes6,14, PhD; Vaibhav A Narayan15, PhD;

Giancarlo Comi16, MD; Matthew Hotopf4,14, PhD; Richard JB Dobson1,2, PhD; RADAR-CNS Consortium17

1The Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United
Kingdom
2Institute of Health Informatics, University College London, London, United Kingdom
3Chair of Embedded Intelligence for Health Care & Wellbeing, University of Augsburg, Augsburg, Germany
4The Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
5Neurorehabilitation Unit and Institute of Experimental Neurology, University Vita Salute San Raffaele, Istituto Di Ricovero e Cura a Carattere Scientifico
Ospedale San Raffaele, Milan, Italy
6The Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
7Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije
Universiteit and GGZ inGeest, Amsterdam, Netherlands
8Danish Multiple Sclerosis Centre, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
9Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
10Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Barcelona, Spain
11Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
12Universitat de Barcelona, Barcelona, Spain
13Centre for Contextual Psychiatry, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
14South London and Maudsley National Health Services Foundation Trust, London, United Kingdom
15Janssen Research and Development LLC, Titusville, NJ, United States
16Institute of Experimental Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
17The RADAR-CNS Consortium, London, United Kingdom

Corresponding Author:
Shaoxiong Sun, PhD
The Department of Biostatistics and Health Informatics
Institute of Psychiatry, Psychology and Neuroscience
King’s College London
Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London
PO Box 80 De Crespigny Park, Denmark Hill
London, SE58AF
United Kingdom
Phone: 44 02078480951
Email: shaoxiong.sun@kcl.ac.uk

Abstract

Background: In the absence of a vaccine or effective treatment for COVID-19, countries have adopted nonpharmaceutical
interventions (NPIs) such as social distancing and full lockdown. An objective and quantitative means of passively monitoring
the impact and response of these interventions at a local level is needed.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e19992 | p. 1https://www.jmir.org/2020/9/e19992
(page number not for citation purposes)

Sun et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:shaoxiong.sun@kcl.ac.uk
http://www.w3.org/Style/XSL
http://www.renderx.com/


Objective: We aim to explore the utility of the recently developed open-source mobile health platform Remote Assessment of
Disease and Relapse (RADAR)–base as a toolbox to rapidly test the effect and response to NPIs intended to limit the spread of
COVID-19.

Methods: We analyzed data extracted from smartphone and wearable devices, and managed by the RADAR-base from 1062
participants recruited in Italy, Spain, Denmark, the United Kingdom, and the Netherlands. We derived nine features on a daily
basis including time spent at home, maximum distance travelled from home, the maximum number of Bluetooth-enabled nearby
devices (as a proxy for physical distancing), step count, average heart rate, sleep duration, bedtime, phone unlock duration, and
social app use duration. We performed Kruskal-Wallis tests followed by post hoc Dunn tests to assess differences in these features
among baseline, prelockdown, and during lockdown periods. We also studied behavioral differences by age, gender, BMI, and
educational background.

Results: We were able to quantify expected changes in time spent at home, distance travelled, and the number of nearby
Bluetooth-enabled devices between prelockdown and during lockdown periods (P<.001 for all five countries). We saw reduced
sociality as measured through mobility features and increased virtual sociality through phone use. People were more active on
their phones (P<.001 for Italy, Spain, and the United Kingdom), spending more time using social media apps (P<.001 for Italy,
Spain, the United Kingdom, and the Netherlands), particularly around major news events. Furthermore, participants had a lower
heart rate (P<.001 for Italy and Spain; P=.02 for Denmark), went to bed later (P<.001 for Italy, Spain, the United Kingdom, and
the Netherlands), and slept more (P<.001 for Italy, Spain, and the United Kingdom). We also found that young people had longer
homestay than older people during the lockdown and fewer daily steps. Although there was no significant difference between
the high and low BMI groups in time spent at home, the low BMI group walked more.

Conclusions: RADAR-base, a freely deployable data collection platform leveraging data from wearables and mobile technologies,
can be used to rapidly quantify and provide a holistic view of behavioral changes in response to public health interventions as a
result of infectious outbreaks such as COVID-19. RADAR-base may be a viable approach to implementing an early warning
system for passively assessing the local compliance to interventions in epidemics and pandemics, and could help countries ease
out of lockdown.

(J Med Internet Res 2020;22(9):e19992) doi: 10.2196/19992
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Introduction

On March 11, 2020, the World Health Organization declared
the rapidly spreading SARS-CoV-2 virus outbreak a pandemic.
This novel coronavirus is the cause of a contagious acute
respiratory disease (COVID-19), which was first reported in
Wuhan, Hubei Province, China [1-3]. As of July 1, 2020, it had
infected over 10 million people and spread to 213 countries and
territories around the world [4]. Although precise statistics on
mortality are being determined, COVID-19 can be deadly with
an estimated 1% case fatality rate, and this rate increases for
older adults and those with underlying health problems [5,6].
The outbreak of COVID-19 has placed an unprecedented burden
on health care systems in most-affected countries and has
resulted in considerable economic losses and a possible global
recession [7,8].

To date, there is no vaccine or highly effective treatment. The
widely adopted strategy has been the use of nonpharmaceutical
interventions (NPIs) such as social distancing and even full
lockdown to control the spread of the virus and ease the pressure
on health and care systems [9,10]. NPIs have been implemented
in many countries including China, Italy, Spain, the United
Kingdom, and the Netherlands. These measures have been
shown to considerably reduce the new confirmed cases [9]. Key
to the success of NPIs is the timing of these interventions and
the response of the population, both of which might differ among
countries and could necessitate further interventions in the case
of low compliance either nationally or locally. Furthermore,

US $11 trillion of fiscal measures have been announced by more
than two-thirds of governments worldwide in an attempt to
mitigate the fallout from the pandemic and lockdown [11].
Therefore, we urgently require an objective and quantitative
way to monitor population behavior to assess the impact and
response of such interventions. Additionally, we need to monitor
for the potential effects of a rebound in cases in the winter
months as social distancing measures are relaxed and to
strategize and understand where course corrections are required.
Similarly, understanding potential seasonal forcing of
COVID-19 will require a good understanding of different NPIs’
effects, so they can be factored out.

The increasing availability of wide-bandwidth mobile networks,
smartphones, and wearable sensors makes it possible to collect
near real-time high-resolution data sets from large numbers of
participants and greatly facilitates remote monitoring of behavior
[12-14]. By leveraging sensor modalities in smartphones, which
includes network and GPS location tracking, and Fitbit devices,
which includes step counts and heart rate, it is possible to access
mobility and even wellness for the population. To manage the
data collected from multiple sensor modalities and mobile
devices, platforms such as the open-source Remote Assessment
of Disease and Relapse (RADAR)–base [15] mobile health
platform have been developed [16]. This platform has been used
to enable remote monitoring in a range of use cases including
central nervous system diseases (major depressive disorder
[MDD], epilepsy, and multiple sclerosis [MS]) as part of the
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Innovative Medicines Initiative (IMI2) RADAR–Central
Nervous System (CNS) major program [17,18].

In this paper, we explore the utility of the RADAR-base platform
as a toolbox to test the effect and response of NPIs aimed at
limiting the spread of infectious diseases such as COVID-19
by leveraging participant data already collected from November
2017 onward as part of the ongoing RADAR-CNS studies
[16,17,19]. Specifically, we created measures of mobility (as a
proxy of physical distancing), phone use (as a proxy of virtual
sociality), and physiological measures (heart rate and sleep),
and compared these features among the baseline, prelockdown,
and during lockdown periods. Furthermore, we also provide a
joint analysis of these features to provide a holistic view and
interpret these behavioral changes during COVID-19.

Methods

Data Collection
The RADAR-CNS studies were approved by all local ethics
committees, and all participants signed informed consent [19].
We included 1062 participants recruited in five European
countries: Italy, Spain, Denmark, the United Kingdom, and the
Netherlands. Participants in the Netherlands were partially
recruited through Hersenonderzoek.nl [20]. The data were
collected for the purpose of finding new ways of monitoring
MDD (Spain: n=150; the Netherlands: n=103; and the United
Kingdom: n=316) and MS (Milan, Italy: n=208; Barcelona,
Spain: n=179; and Copenhagen, Denmark: n=106) using
wearable devices and smartphone technology to improve
patients’ quality of life (QoL) and potentially change the
treatment of these and other chronic disorders. As we focused
on country-level behavioral changes in response to the NPIs,
we aggregated data collected in Spain and did not focus on
analyzing differences between participants with MDD and MS.
Passive participant data, that is data that did not require
conscious participant engagement, were collected continuously
on a 24/7 basis through a smartphone and a Fitbit device, which
included location, Bluetooth, activity, sleep, heart rate, and
phone use data. In this study, we used participants’own Android

smartphones where available and provided a participant with a
Motorola G5, G6, or G7 if participants had an iPhone or did
not have a smartphone. For Fitbit devices, Fitbit Charge 2
devices were given to participants, and then Fitbit Charge 3
devices were given to the recently recruited participants when
Fitbit Charge 2 devices were no longer available. We asked
participants to wear the device on their nondominant hand.
Although not used for this study, active data were also collected,
which required clinicians or participants to fill out emailed
surveys (eg, Inventory of Depressive Symptomatology
[Self-Report]), app-delivered questionnaires (eg, Patient Health
Questionnaire), or perform short clinical tests (eg, Expanded
Disability Status Scale).

The data collection and management were handled by the
open-source mHealth platform RADAR-Base [16]. The platform
provides high scalability, interoperability, flexibility, and
reliability while allowing the freedom for anyone to deploy.
Due to the streaming first nature of the platform, it is also easy
to aggregate, analyze, and provide insights into the data in real
time, hence making the results of this work potentially
deployable for localized monitoring and targeted interventions.

Feature Extraction
To study physical-behavioral changes in response to COVID-19
NPIs, we examined participants’ mobility by analyzing relative
location and Bluetooth data from smartphones and step count
data from Fitbit devices. We investigated phone unlock duration
and social app use duration to study online social-behavioral
changes. Physiological measures such as sleep and heart rate
from Fitbit devices were also analyzed to identify possible
changes as a result of lockdown. A full list of features is
presented in Table 1. These features were extracted for each
participant every day. The daily features were calculated using
the data from 6 AM on the present day to 6 AM on the next day
for all features except total sleep duration and bedtime, where
8 PM was used as the starting time point and 11 AM the
finishing. When no data were found in a data modality for a
participant on a day due to the participant not wearing the Fitbit
device or not using the smartphone, we did not calculate the
feature derived from that data modality on that day.
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Table 1. A full list of extracted features.

ExtractionFeaturesCategory and modality

Mobility

Smartphone location •• The maximum distance travelled from home locationMaximum travelled distance from home
•• The time spent within 200 m radius of home location

(determined using DBSCANa)

Homestay

Smartphone Bluetooth •• The maximum number of Bluetooth-enabled nearby
devices

Maximum number of nearby devices

Fitbit step count •• Daily total of Fitbit step countStep count

Physiological measures

Fitbit sleep •• The first sleep category at nightBedtime
•• Daily total duration of sleep categories (light, deep, and

REMb)

Sleep duration

Fitbit heart rate •• The daily average heart rateAverage heart rate

Phone use

Smartphone user interaction •• The total duration of phone in the unlocked stateUnlock duration

Smartphone use event •• The total duration spent on social apps (Google Play
categories of Social, Communication, and Dating)

Social app use duration

aDBSCAN: density-based spatial clustering of applications with noise.
bREM: rapid eye movement.

The smartphone-derived location data were sampled once every
5 minutes by default, with longer sampling durations dependent
on network connectivity. Spurious location coordinates were
identified and removed if they differed from preceding and
following coordinates by more than five degrees. Home location
was determined daily by clustering location data between 8 PM
and 4 AM with the mean coordinate of the cluster that the last
coordinate belonged to being used. This choice was made
because the largest cluster may not be the home location for a
single night but the last location before phones shut down had
a higher probability to be home location for that night. The
clustering was implemented using density-based spatial
clustering of applications with noise [21]. A duration gated by
two adjacent coordinates was regarded as a valid homestay
duration on the condition that both coordinates were no further
than 200 meters from the home location. A duration longer than
1 hour was excluded due to the large proportion of missing data
when compared to the 5-minute sampling duration. All valid
homestay durations between 8 AM and 11 PM were summed
to calculate daily homestay. Daily maximum distance from
home was also computed based on the coordinates in the same
period.

Bluetooth data, including the number of nearby and paired
devices, were also collected from smartphones, which were
sampled every hour. The daily maximum number of nearby
devices was used as a mobility feature. An increased number
of nearby devices (typically other phones) detected may indicate
other users’ presence in the vicinity, which therefore can serve
as a proxy of physical distancing.

In addition to mobility features extracted from smartphones,
daily step count was taken from the Fitbit device, which was
computed as the total steps a participant walked every day.
Likewise, daily sleep duration was computed as the summation
of three Fitbit-output sleep categories (light, deep, and rapid
eye movement) sampled every 30 seconds from 8 PM to 11 AM
the next day. Bedtime was defined as the time of the first sleep
category reported by Fitbit after 8 PM. Note that the sleep
categories referred to the sleep stages provided by the Fitbit
application programming interface [22], which are not
equivalent to the medical sleep stages. Finally, daily mean heart
rate was calculated by averaging the Fitbit-output heart rate
readings, sampled every 5 seconds at best. This sampling
interval may be longer depending on Fitbit proprietary
algorithms for remaining battery level, quality scoring, and
network connectivity.

To explore changes in phone use, daily unlock duration was
calculated by summing time periods starting with the unlocked
state and ending with the standby state. Single intervals longer
than 4 hours were excluded, which might result from a missing
standby state or unintentionally leaving the phone unlocked.
App use was quantified by classifying apps according to
categories listed on Google Play [23]. As we were particularly
interested in cyber-social interactions, we focused on the daily
use time of social apps, including the Google Play categories
of Social, Communication, and Dating. Among them are
Facebook, Instagram, and WhatsApp.
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Data Analysis
We plotted how the features evolved over 1.5 years for each
country investigated. The participants’ daily median, 25th
percentile, and 75th percentile of each feature were calculated
and then plotted. A minimum of 20 participants’ data points
was a prerequisite for calculation for any given day to reduce
variance and noise. To facilitate interpretation, we also marked
time points of public announcements related to lockdown
policies [24].

To examine changes in mobility, physiological measures, and
phone use induced by the lockdowns, comparisons among
baseline, prelockdown, and during lockdown on the daily
median of each feature were carried out using Kruskal-Wallis
tests followed by post hoc Dunn tests [25,26]. For the during
lockdown phase, we chose the entire period of the national
lockdown in each country, which ended when NPIs were eased
for the first time. For the prelockdown phase, we chose the
period immediately prior to the first restrictive measure with
the same length of the entire national lockdown. For the baseline
phase, we chose the same period in 2019 as the 2020 national
lockdown for countries starting to collect data earlier than 2019,
which included Italy, Spain, and the United Kingdom. This was
aimed at suppressing seasonal variability. For Denmark and the
Netherlands where participant recruitment and data collection
started much later, we chose the period that started with the
earliest stable date (no considerate missing data or outliers) with
the same length of the entire national lockdown. If a significant
difference among these three periods was found after
Benjamini–Yekutieli correction for the number of features (n=9),
post hoc Dunn test was applied with Benjamini–Yekutieli
correction for the number of groups (n=3) [27]. Box plots were
used to present the results. A P<.05 after Benjamini–Yekutieli
corrections was deemed statistically significant. It should be

noted that we applied corrections resulting from multiple
comparisons and multiple features in each country.

We also studied factors that might influence the subpopulation
behavioral features during the lockdown period. The investigated
factors included age, gender, BMI, and educational background.
For age groups, we defined the young group as younger than
45 years and the older adult group as 45 years or older. For BMI
groups, the low BMI group was defined as less than 25, and the
high BMI group as greater than or equal to 25. For education
groups, we defined the degree group as having a bachelor’s
degree or above and the nondegree group as having lower
qualifications. Furthermore, we defined a combined factor group
of young men, as this subpopulation was suspected to be less
compliant with social distancing measures. Here we focused
on features of homestay and daily step count during the entire
period of lockdown for each country. We performed Wilcoxon
signed rank tests on these two features to examine statistically
significant differences. The P values were corrected with the
number of factors (n=5) and the number of features (n=2) using
Benjamini–Yekutieli correction.

Finally, we investigated the effects of different NPIs, in
particular immediately after national lockdowns. This was done
by comparing the NPIs implemented in the five countries within
the first 2 weeks after entering national lockdowns.

Results

Plots showing how the extracted features evolved from February
1, 2019, to July 5, 2020, and box plots of these features are
shown in Figures 1-5 and in Figure 6, respectively. Detailed
test statistics and P values comparing prelockdown and during
lockdown measures are presented in Table 2. Figure 7 shows a
zoomed in version of Figures 3 and 4.
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Figure 1. Behavioral changes for Milan, Italy (208 participants). (a) homestay duration, (b) maximum distance from home, (c) Fitbit step count, (d)
maximum number of nearby devices, (e) total sleep duration, (f) bedtime, (g) heart rate, (h) unlock duration, (i) social app duration. Solid line: median;
shade: 25th percentile to 75th percentile. dur: duration; WHO: World Health Organization.
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Figure 2. Behavioral changes for Spain (329 participants). (a) homestay duration, (b) maximum distance from home, (c) Fitbit step count, (d) maximum
number of nearby devices, (e) total sleep duration, (f) bedtime, (g) heart rate, (h) unlock duration, (i) social app duration. Solid line: median; shade:
25th percentile to 75th percentile. dur: duration; WHO: World Health Organization.

Through RADAR-base, we quantified changes in mobility,
phone use, and physiological measures as a result of NPIs
introduced to control COVID-19. As expected, following
national lockdowns, participants in all countries stayed at home
for longer, travelled shorter distances, walked less, and had
fewer Bluetooth-enabled devices in the vicinity.

In contrast to increased physical distancing (reduced sociability)
suggested by these mobility features, higher phone use,
indicating compensatory sociability, was observed. Italy, Spain,
and the United Kingdom saw longer unlock duration, and these
3 countries together with the Netherlands also showed longer

social app use duration. Tellingly, both unlock duration and
social app use duration saw peaks around the news of national
lockdowns in all countries.

Concurrent with the changes in mobility and phone use, changes
in physiological measures were observed. Participants in Spain,
Italy, and the United Kingdom went to bed later and slept more.
Participants in Spain, Italy, and Denmark also had a decrease
in heart rate. Although not statistically significant, an increase
in sleep duration and bedtime in Denmark and the Netherlands,
and a decrease in heart rate in the United Kingdom and the
Netherlands can be seen in Figures 3-5.
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Figure 3. Behavioral changes for Copenhagen, Denmark (106 participants). (a) homestay duration, (b) maximum distance from home, (c) Fitbit step
count, (d) maximum number of nearby devices, (e) total sleep duration, (f) bedtime, (g) heart rate, (h) unlock duration, (i) social app duration. Solid
line: median; shade: 25th percentile to 75th percentile. dur: duration; WHO: World Health Organization.
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Figure 4. Behavioral changes for the United Kingdom (316 participants). (a) homestay duration, (b) maximum distance from home, (c) Fitbit step
count, (d) maximum number of nearby devices, (e) total sleep duration, (f) bedtime, (g) heart rate, (h) unlock duration, (i) social app duration. Solid
line: median; shade: 25th percentile to 75th percentile. dur: duration; WHO: World Health Organization.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e19992 | p. 9https://www.jmir.org/2020/9/e19992
(page number not for citation purposes)

Sun et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Behavioral changes for the Netherlands (103 participants). (a) homestay duration, (b) maximum distance from home, (c) Fitbit step count,
(d) maximum number of nearby devices, (e) total sleep duration, (f) bedtime, (g) heart rate, (h) unlock duration, (i) social app duration. Solid line:
median; shade: 25th percentile to 75th percentile. dur: duration; WHO: World Health Organization.
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Figure 6. Box plots for comparisons among baseline, prelockdown, and during lockdown phases for different features. (a) homestay duration, (b)
maximum distance from home, (c) Fitbit step count, (d) maximum number of nearby devices, (e) total sleep duration, (f) bedtime, (g) heart rate, (h)
unlock duration, and (i) social app duration. *means P<.05, **means P<.01, ***means P<.001.
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Table 2. Results of post hoc Dunn test (after Kruskal-Wallis tests) on the extracted features between prelockdown and during lockdown periods (only
statistically significant differences were reported).

NetherlandsUKDenmarkSpainItalyFeatures

Homestay

–7.33–9.19–5.44–8.98–9.38z test

<.001<.001<.001<.001<.001P value

Maximum distance from home

7.588.405.488.919.0z test

<.001<.001<.001<.001<.001P value

Steps

4.786.822.577.728.23z test

<.001<.001.02<.001<.001P value

Maximum number of nearby devices

7.7310.25.068.169.68z test

<.001<.001<.001<.001<.001P value

Total sleep duration

—–4.24—a–5.23–4.65z test

—<.001—<.001<.001P value

Bedtime

—–5.28—–7.23–4.31z test

—<.001—<.001<.001P value

Heart rate

—4.182.687.619.94z test

—<.001.02<.001<.001P value

Unlock duration

—–6.0—–8.57–8.8z test

—<.001—<.001<.001P value

Social app use duration

–4.98–5.72—–2.36–7.72z test

<.001<.001—<.001<.001P value

aThe difference was not statistically significant.
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Figure 7. Zoomed in time series plots for Copenhagen, Denmark (left) and the United Kingdom (right). (a) homestay duration, (b) maximum distance
from home, (c) Fitbit step count, (d) maximum number of nearby devices, (e) total sleep duration, (f) bedtime, (g) heart rate, (h) unlock duration, (i)
social app duration, (j) COVID-19 confirmed and death cases. Solid line: median; shade: 25th percentile to 75th percentile. dur: duration; WHO: World
Health Organization.

The differences across countries existed in the implemented
NPIs as well. The requirement of staying at home except for
essential trips and the cancellation of public events were
implemented in all countries but Denmark where they were
only recommended. Working places were required to close for
some sectors in Spain, the United Kingdom, and Denmark, and
were required to close for all but essential works in the
Netherlands and Italy. Public transport was recommended to
close in Italy, Spain, and Denmark. Among all countries, Spain
had the least strict restrictions on gatherings and school closures
(only geographically targeted).

We observed that the young group spent more time at home in
Italy, Spain, and the United Kingdom, and degree holders spent
more time at home in Italy and Denmark. The young group took
fewer daily steps in Italy, the United Kingdom, and the
Netherlands; the low BMI group took fewer daily steps in Italy,
Spain, Denmark, and the United Kingdom; the young men group
took fewer daily steps in Italy, the United Kingdom, and the
Netherlands. Participants educated to degree level walked more
in the United Kingdom and the Netherlands but less in Italy.
The detailed results are presented in Table 3.
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Table 3. Wilcoxon signed rank test results on the examined factors during lockdown periods (only statistically significant differences were reported).

NetherlandsUKDenmarkSpainItalyFeatures and factors

Homestay

Age

—3—a252108w test

—<.001—.003<.001P value

Gender

—————w test

—————P value

Degree

——0—270w test

——.004—<.001P value

BMI

—220———w test

—<.001———P value

Young men

—————w test

—————P value

Step

Age

151285.5——283.5w test

<.001.004——<.001P value

Gender

———27767.5w test

———.005<.001P value

Degree

06——76w test

<.001<.001——<.001P value

BMI

—1738700w test

—<.001.001<.001<.001P value

Young men

0—26—149w test

.02—<.001—<.001P value

aThe difference was not statistically significant.

Discussion

Principal Findings
We quantitatively investigated COVID-19 and associated
lockdown-related changes in mobility, physiological measures,
and phone use features derived from passive data collected
through mobile devices (smartphones and wearable Fitbit
devices) of participants recruited in five European countries to
the RADAR-CNS program. We were able to measure significant
changes in behavioral features between baseline, prelockdown,

and during lockdown periods. As well as confirming expected
changes such as spending more time at home, travelling much
less, having far fewer nearby devices, we observed that people
were more active on their phones, interacting with others
through social apps particularly around major news events such
as national lockdown, suggesting physical but maybe less social
distancing. Furthermore, participants had lower heart rates, slept
more, and went to bed later. In addition, we found that younger
people spent more time at home and took fewer daily steps.
Participants with lower BMI took more steps while maintaining
comparable homestay with the higher BMI group. With 5 billion
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global smartphone users and 500 million smartwatch and
wearable device users [28,29], we propose that the ability to
generate metrics such as these is vital for evaluating NPIs
efficacy.

Our mobility analyses are in line with Google mobility reports
[30], where substantial reductions in mobility and increase in
residential stays during lockdown periods were found in Italy,
Spain, and the United Kingdom; Denmark and the Netherlands
by comparison showed an increase in mobility trends for parks
and a relatively small increase in residential stays. However, in
comparison to Google mobility reports, which provide valuable
aggregated data for short periods, RADAR-base is an
open-source highly configurable platform that supports
collection and analysis of participant-level mobile and phone
data in near real time with a potential for targeted interventions.
Specifically, focused test and tracing may be directed to people
perceived to be at high risk based on their behavior. In addition,
RADAR-base was also used to collect self-reported
questionnaires related to emotional well-being, functional status,
and disease symptom severity of its participants [19]. Since
April 2020, new questionnaires have been distributed to
specifically assess COVID-19 symptoms and diagnosis status
of our RADAR-CNS research participants. Our future work
will use the entirety of these data to investigate the potential of
wearable data, such as digital early warning signs of COVID-19,
the impact of COVID-19 on the QoL, and the clinical trajectories
of their primary diagnosis (MDD or MS).

The difference in the response across nations may reflect
differences in the implementation of NPIs, media
communication, and cultural differences. Denmark implemented
stricter restrictions on working places and public transports but
were less strict on homestay and public events [24]. In contrast,
Spain was more flexible on restrictions of group gatherings and
school closures. The contrast in the implementation of different
NPIs between the two countries showing distinct behaviors
during lockdown sheds light on which NPIs might be more
productive in promoting physical distancing. This shows the
potential utility of RADAR-base for remotely monitoring the
effect of different NPIs, and we also saw evidence of this in our
data with participants beginning to return to prelockdown
routines as NPIs were lifted. Future work will compare these
differences within a country and across countries, which may
further elaborate on the effect and impact of NPIs on infection
rates and potential second waves.

It is interesting to note that the younger group in general stayed
at home more and took fewer steps than the older group. Since
most countries required staying at home except for essential
trips, one reason could be that the older adults, often less
experienced in using online shopping, had to go out for
groceries. This conjecture requires future work to investigate.
Those educated to the degree level stayed at home for
significantly longer in Italy and Denmark, possibly reflecting
higher employment in sectors better able to work from home.
The low BMI group took more steps but retained similar
homestay to the high BMI group, which suggested they may
have found other means to exercise locally. This information
helps us understand the effectiveness of the NPIs at a

subpopulation level and may be useful in informed strategies
for targeted NPIs.

The ability to simultaneously manage multiple data modalities
in RADAR-base facilitates the joint analysis and interpretation
of them together with NPIs. The decrease in heart rate may be
explained by the concurrent reduction in steps, the increase in
homestay, and total sleep duration. The reduction in mobility,
coupled with an increase in phone use, could possibly serve as
indicators of physical distancing observance and resultant
compensated social interaction. The delayed bedtime might be
related to children homeschooling as a result of school closure,
increased phone use, and a lack of exercise. As such,
RADAR-base can also be applied to monitor the population
health when jointly interpreting features such as step count,
sleep duration, and bedtime, which is vital if the social
distancing is implemented for a longer duration.

Finally, it has been shown that an elevated resting heart rate
may suggest acute respiratory infections [31]. It may be possible
to infer one’s infection by continuously monitoring heart rate,
especially when the population remains indoor for a vast
majority of the time. Such monitoring provides the possibility
to generate early warning signals for symptomatic or
presymptomatic respiratory infections, thereby aiding timely
self-isolation or treatment. The COVID-19–related symptom
and diagnosis questionnaires have been added to the study and
may provide a means to investigate these relationships further.

Media Effects
In addition to changes in trends over longer periods, we also
identified interesting findings in relation to specific events (see
Figure 7). A dramatic reduction in total sleep duration was
observed in Denmark around March 11, 2020, which may be
related to the announcement of the pending lockdown on that
day and a 185% increase in the confirmed cases in Denmark on
the previous day. Another example can be seen just after the
mitigation phase was announced in the United Kingdom on
March 12, in which social distancing was not strongly
recommended, yet we saw participants isolating themselves
voluntarily by staying at home for much longer. These
observations highlight the potential role of media and social
media in the distribution of information that may precipitate
certain behavior. This observation may also explain the
significant difference between the baseline and prelockdown
phases, and suggests that people may have acted ahead of further
government restriction. Furthermore, this is accompanied by a
marked loss of week day and weekend periodic structure
prelockdown and during the lockdown periods.

Limitations
There are some issues to consider concerning this work. First,
the participants included in this study have different medical
conditions (MDD or MS), which led to different baseline levels
across countries. Nevertheless, as the focus of this study is the
changes in the prelockdown and during lockdown phases relative
to the baseline, we were still able to identify and compare the
changes induced by lockdowns. We also analyzed the data
collected in Spain split into MDD and MS separately and found
the results only differed marginally. Understanding of any
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artifacts or effects introduced into the RADAR-CNS data by
the NPIs will be crucial in RADAR-CNS being able to deliver
its aim of identifying signals that predict and prevent MDD and
MS. Although the medical conditions of the population in this
study might not be fully generalizable to a wider population
healthy or with other conditions, we were able to demonstrate
the utility of RADAR-base in monitoring behavioral changes,
which can be readily generalized to other cohorts.

Second, the individual disease status at baseline may be different
from that of the during lockdown period in each country, which
might complicate the comparisons. To mitigate this, we used
the same time period from the previous year to suppress the
seasonal variability. We believe this complication on the
population level was unlikely to be large, especially compared
to the impact of lockdowns.

Third, participants recruited at different times may use different
devices for smartphones and Fitbit depending on the availability
and enrollment dates, which might make it difficult for
interparticipant comparisons. Yet, this work focused on the
population-level behavioral changes induced by NPIs where
the handset variability was less of a factor.

Fourth, on account of requirements for participants’ privacy in
the RADAR-CNS studies, location data were purposely
obfuscated with a participant-specific random value preventing
precise localization of the participants, which limited use of
regional geographic factors within a country. It would be
interesting to examine how specific regions react to lockdowns
when these data are available in future work.

Fifth, limited sample sizes in certain countries and data loss
impacted the smoothness of the plots showing how the extracted
features evolved over time. The plots for Denmark and the
Netherlands showed relatively large variance particularly in the
early phase, as these sites have only recently begun recruiting.
Several dips and spikes in step counts and heart rate were seen
in all countries during July and August. This observation was
due to having data loss because of connectivity issues with the
Fitbit server during this time.

Last, we only explored a subset of features that can be derived
from smartphones and Fitbit wearable devices. Future work

will investigate whether other features offer additional
information for a more complete description of lifestyle changes.

Conclusions
Using participants’data from smartphones and wearable devices
collected and managed by RADAR-base over 1.5 years covering
the outbreak and subsequent spread of the COVID-19 pandemic
across five European countries, we were able to detect and
monitor the physical-behavioral and social-behavioral changes
in response to the NPIs. We found that, as well as expected
findings (that validated the data collection platform) relating to
increased time spent at home, less travel, and fewer nearby
Bluetooth-enabled devices, participants were more active on
their phone, in particular, interacting with others using social
apps, especially around major news events, suggesting increased
physical distancing with socialising and interaction moving
online. Furthermore, we found that participants had lower heart
rates, slept more, and went to bed later. We demonstrated
different responses across countries with Denmark showing
attenuated responses to NPIs compared to other countries, which
may be associated with their different focus of implementation
NPIs. We found that younger people stayed at home for longer
yet walked less compared to older adults and that the people
with lower BMI remained more active during lockdown while
having comparable homestay compared to their counterparts
with higher BMI. Joint analysis of the extracted features is
important for evaluating aspects of NPIs performance during
their introduction and any subsequent relaxation of these
measures. This work demonstrates the value of RADAR-base
for collecting data from wearables and mobile technologies to
understand the effect and response of public health interventions
implemented in response to infectious outbreaks such as
COVID-19. This ability to monitor response to interventions,
in near real time, will be particularly important in understanding
behavior as social distancing measures are relaxed as part of
any COVID-19 exit strategy. Future work will include using
participants’ responses to COVID-19–related questionnaires
together with an expanded feature set to gain more specific
understandings into the relationship between mobile
devices–derived features and the COVID-19 symptoms.
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