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Abstract 1 

China pledges to reach a peak in CO2 emissions by 2030 and to make its best efforts 2 

to reach this peak earlier. Previous studies have paid much attention to the total 3 

amount of China’s CO2 emissions, but usually only one dataset is used in each 4 

evaluation. The pledged national reduction target is administratively divided into 5 

provincial targets. Accurate interpretation of province-level carbon emissions is 6 

essential for making policies and achieving the reduction target. However, the 7 

spatiotemporal pattern of provincial emissions and the associated uncertainty are still 8 

poorly understood. Thus, an assessment of province-level CO2 emissions considering 9 

local statistical data and emission factors is urgently needed. Here, we collected and 10 

analyzed 7 published emission datasets to comprehensively evaluate the 11 

spatiotemporal distribution of provincial CO2 emissions. We found that the provincial 12 

emissions ranged from 20-649 Mt CO2 and that the standard deviations (SDs) ranged 13 

from 8-159 Mt. Furthermore, the emissions estimated from provincial-data-based 14 

inventories were more consistent than those from the spatial disaggregation of 15 

national energy statistics, with mean SDs of 26 and 65 Mt CO2 in 2012, respectively. 16 

Temporally, emissions in most provinces increased from 2000 to approximately 2012 17 

and leveled off afterwards. The interannual variation in provincial CO2 emissions was 18 

captured by provincial-data-based inventories but generally missed by 19 

national-data-based inventories. When compared with referenced inventories, the 20 

discrepancy for provincial estimates could reach -57%-162% for national-data-based 21 

inventories but were less than 45% for provincial-data-based inventories. Using 22 

comprehensive data sets, the range presented here incorporated more factors and 23 

showed potential systematic biases. Our results indicate that it is more suitable to use 24 

provincial inventories when making policies for subnational CO2 reductions or when 25 

performing atmospheric CO2 simulations. To reduce uncertainties in provincial 26 

emission estimates, we suggest the use of local optimized coal emission factors and 27 

validations of inventories by direct measurement data and remote sensing results. 28 

 29 
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Abbreviations: 34 

ODIAC: Open-Data Inventory for Anthropogenic Carbon dioxide, EDGAR: 35 

Emissions Database for Global Atmospheric Research, PKU: Peking University-CO2, 36 
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CHRED: China High Resolution Emission Database, CEADs: China Emission 38 

Accounts and Datasets, CDIAC: Carbon Dioxide Information Analysis Center, GDP: 39 

gross domestic production, NBS: National Bureau of Statistics of the People's 40 

Republic of China, EF: emission factor, IPCC: The Intergovernmental Panel on 41 

Climate Change.42 
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1. Introduction 43 

Anthropogenic CO2 emissions from fossil fuel combustion and industrial processes 44 

are primarily responsible for global warming by increasing atmospheric CO2 45 

concentrations (Stocker et al., 2013). Over 2008-2017, the mean global fossil CO2 46 

emissions (FFCO2) were 9.4 ± 0.5 Gt C yr
-1

 (Le Quéré et al., 2018). Currently, 47 

stabilizing the concentration of atmospheric CO2 has become one of the most urgent 48 

challenges for humanity (Ballantyne et al., 2018). Efforts for climate change 49 

mitigation are making progress after the implementation of the Paris Agreement, 50 

which helps to regulate the total amount of CO2 emitted into the atmosphere to limit 51 

warming to below 2 °C in the long term (Rogelj et al., 2016; Schleussner et al., 2016). 52 

China plays a crucial role in climate change mitigation due to its large contribution 53 

(~30%) to global total CO2 emissions (Le Quéré et al., 2018). The Chinese 54 

government pledges to reach a peak in its emissions by 2030 and has established a set 55 

of carbon emission reduction actions in the 13th Five-Year Plan (NDRC, 2016). 56 

Therefore, an accurate assessment of China’s CO2 emissions is a vital step towards 57 

formulating emission reduction policies. 58 

More efforts have been made to estimate the amount of CO2 emissions at the national 59 

scale (Guan et al., 2018; Liu et al., 2013; Shan et al., 2017; Wang et al., 2014) and 60 

from key emitting sectors in China (Guo et al., 2014; Liu, F. et al., 2015; Shan et al., 61 

2018a; Shan et al., 2016b; Zheng et al., 2014). However, large uncertainty still exists 62 

due to the discrepancy between emission factors and energy statistics used by 63 

different inventories (Berenzin et al., 2013; Hong et al., 2017; Zhao et al., 2012). The 64 

quality of energy statistics is considered the largest contributor to the accuracy of 65 

emission estimates (Guan et al., 2012). The emissions estimated from provincial 66 

energy statistics were generally higher than those from national statistics (Guan et al., 67 

2012; Shan et al., 2016a). The difference is mainly caused by the inconsistency 68 

between national and provincial energy statistics. The energy-induced uncertainty 69 

could be attributed to the different statistical standards, inadequacies in China’s 70 
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statistical system and artificial factors (Hong et al., 2017; Shan et al., 2016a). 71 

Furthermore, the discrepancy in energy data could result in a substantial effect on the 72 

emission trends (Hong et al., 2017). However, we still have a limited understanding of 73 

the influence of energy statistics differences on the spatiotemporal distribution of CO2 74 

emissions. 75 

The carbon emissions in China have significant regional heterogeneity due to 76 

differences in social conditions, economic development, urbanization level, industry 77 

structure, and trade openness among regions (Bai et al., 2014; Dong and Liang, 2014; 78 

Xu and Lin, 2016). To interpret the differentiated contributions of regions to CO2 79 

emissions, several researchers have focused on provincial-level carbon emissions in 80 

recent years (Bai et al., 2014; Du et al., 2017; Shan et al., 2016a). This analysis can 81 

improve the understanding of the spatial patterns of emissions and provide assistance 82 

in allocating different responsibilities and setting emission targets (Shao et al., 2018). 83 

To date, provincial-level CO2 emission estimates have been developed on the basis of 84 

provincial or national energy statistics. Verified provincial statistics have been shown 85 

to better agree with satellite observations (Akimoto et al., 2006; Zhao et al., 2012). 86 

Emissions based on national statistics were downscaled from national totals to 87 

province-level values according to provincial fractions or spatial proxies (Asefi‐88 

Najafabady et al., 2014; Zhao et al., 2012), such as PKU-CO2 (Wang et al., 2013) and 89 

the Carbon Dioxide Information Analysis Center (CDIAC). However, disaggregating 90 

national emissions to the subnational or grid level using population and nightlight 91 

maps as a proxy results in spatial biases in allocating emissions within a country 92 

(Asefi‐Najafabady et al., 2014; Rayner et al., 2010), especially in China (Liu et al., 93 

2013; Wang et al., 2013). Therefore, quantitative evaluation of emissions uncertainty 94 

caused by different energy statistics and different proxies at the subnational level is 95 

urgently needed, and the evaluation of provincial emissions will provide data that are 96 

needed for local reductions and mitigations. 97 

This study is a first attempt to comprehensively evaluate provincial emission 98 

estimates using the most up-to-date inventories. The purposes were to estimate the 99 
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magnitude and uncertainty or differences in provincial CO2 emissions based on seven 100 

datasets, identify the commonalities and disparities of provincial carbon emissions in 101 

terms of spatiotemporal variations among different estimates, and thus provide 102 

support for policymakers to develop region-oriented emissions reduction policies. 103 

This study also indicated that national-level data-based inventories may not be 104 

suitable for local policy making. In the following sections, we first introduce the data 105 

and methods (Sections 2.1 and 2.2) and then present the results in the following 5 106 

sections (Sections 3.1 - 3.5): the provincial emissions and standard deviations (SDs); 107 

temporal emissions changes from 2000 – 2018; fractions of the high emitting 108 

provinces; correlations of inventories’ estimates at the provincial level; and 109 

differences between the estimates and the referenced inventories. Third, we discuss 110 

the root causes (activity data at provincial and national levels, coal emission factor 111 

and spatial proxies) that contribute to the differences and implications for inventory 112 

use and improvement (Sections 4.1 - 4.4). 113 

2. Data and methods 114 

2.1 Data 115 

The evaluation of provincial-level CO2 emissions was conducted from 7 published 116 

CO2 emission estimates based on national and provincial energy statistics (Table S1). 117 

Specifically, the global fossil fuel and industrial processes CO2 emission datasets 118 

included the year 2018 version of ODIAC (ODIAC2018), version v5.0 of EDGAR 119 

(EDGARv5.0, https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2019), and 120 

version 2 of PKU-CO2 (PKU-CO2-v2), which are developed from the national energy 121 

statistics of the International Energy Agency (IEA). The provincial-statistics-based 122 

emission datasets were the data for the years 2007 and 2012 from CHRED, version 123 

1.3 of MEIC (MEIC v1.3), NJU-CO2 and CEADs, which used provincial energy 124 

balance sheets from China Energy Statistical Yearbook (CESY) activity data. For 125 

detailed methods and key features of the total emission estimates and spatial 126 

https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2019
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disaggregation, please refer to the Supplementary Materials, Tables S2 and S3, and 127 

Han et al. (2020). Data for the year 2012 were used in spatial analysis since it was the 128 

most recent year for all data sets. 129 

The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is primarily based 130 

on country-level emission estimates for three fuel types from the CDIAC and has used 131 

the BP Statistical Review of World Energy for recent years (Oda and Maksyutov, 132 

2011; Oda et al., 2018). The Emissions Database for Global Atmospheric Research 133 

(EDGAR) was developed by the European Commission’s Joint Research Centre (JRC) 134 

based on IEA national statistics for fossil fuel combustion sources and other 135 

international statistics as input activity data under the guidelines of the 136 

Intergovernmental Panel on Climate Change (IPCC) and technology-specific emission 137 

factors (Crippa et al., 2019; Janssens-Maenhout et al., 2019). PKU-CO2 (PKU) was 138 

developed from the Peking University Fuel Inventories (PKU-FUEL), which used a 139 

subnational disaggregation method (SDM) based on the combustion rates for different 140 

fuel types compiled at the global/national level and emission factors, and for China, it 141 

used NBS provincial consumption fractions to spatially distribute the IEA total energy 142 

consumption amount (Wang et al., 2013). MEIC was developed by Tsinghua 143 

University using a technology-based methodology built upon more than 700 144 

anthropogenic sources and emission factors (Li et al., 2017; Liu, F. et al., 2015; Zheng, 145 

2018). NJU-CO2 was developed at Nanjing University using a sectoral approach 146 

under the guidelines of the IPCC (Liu et al., 2013; Wang et al., 2019). CHRED was 147 

constructed by enterprise-level point sources from the First China Pollution Source 148 

Census (FCPSC) survey and used local emission factors compiled by the NCCC (Cai 149 

et al., 2019; Wang et al., 2014). The CEADs were calculated based on apparent energy 150 

consumption data and the most up-to-date emission factors using the sectoral and 151 

reference approaches under the guidelines of the IPCC (Guan et al., 2018; Shan et al., 152 

2016a). 153 

Considering the differences in national and provincial energy statistics, the 7 154 

inventories were classified into two groups: one includes ODIAC, EDGAR, and PKU, 155 
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and the other includes MEIC, NJU, CHRED, and CEADs. CHRED is based on the 156 

most comprehensive enterprise-level data (1.5 million enterprises) from a national 157 

pollution source census and regular pollution reporting systems in China (Cai et al., 158 

2019; Wang et al., 2014). The CEADs are based on apparent energy consumption data 159 

and local optimized emission factors that are similar to China's fossil fuel quality 160 

based on 602 coal samples and 4243 coal mines (Liu, Z. et al., 2015). Therefore, CO2 161 

emissions calculated from CHRED and CEADs were used as a reference to evaluate 162 

the estimates from other emission datasets. 163 

2.2 Methods 164 

These inventories were first extracted by provincial mask (in shapefile format) 165 

from the National Geomatics Center of China using ArcGIS 10.02 software (ESRI, 166 

2012). To allocate the carbon emissions with ArcGIS when a grid spans more than 167 

two provinces, we first change the grid data into polygon (shapefile) format, calculate 168 

the area fraction of the irregular shape that falls within a certain province, and apply 169 

this fraction to the total emissions of this polygon; this result is assumed to be the 170 

emissions allocated to this province. This method produces a difference of 4% with 171 

respect to the NJU products, which provide both tabular data and gridded data. 172 

Emission intensity was calculated as CO2 emissions divided by the gross domestic 173 

product (GDP) (billion USD), which was derived from the National Bureau of 174 

Statistics of the People's Republic of China (NBS). The GDP data were adjusted by a 175 

purchasing power parity (PPP) conversion factor, defined as the number of local 176 

currency units required to buy the same amounts of goods and services in the local 177 

market that a US dollar would buy in the United States in the reference year 2010 178 
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(Wang et al., 2019). Correlation relationships (R) were conducted using the Python 179 

Scipy package (Virtanen, 2020) between inventories, and figures were plotted using 180 

the matplotlib package (Hunter, 2007) and ArcGIS. 181 

 182 

3. Results 183 

3.1 Provincial CO2 emissions derived from national and provincial energy statistics 184 

 185 

 186 

Fig. 1 Provincial CO2 emissions in 2012 for 7 inventories and standard deviations 187 

(SDs) based on national- and provincial-data-based inventories. 188 

 189 

The CO2 emissions of the 31 provinces in 2012 varied greatly, ranging from dozens of 190 

Mt to approximately 900 Mt (Fig. 1). The top 5 emitting provinces were Shandong 191 

(876±56 Mt CO2), Hebei (729±50 Mt CO2), Inner Mongolia (677±36 Mt CO2), 192 

Jiangsu (671±33 Mt CO2), and Henan (586±51 Mt CO2) based on provincial energy 193 

statistics. Lower levels of emissions were observed in Qinghai, Hainan and Tibet 194 
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provinces (<100 Mt CO2) (Fig. 1). The estimates for each province’s CO2 emissions 195 

in 2012 varied greatly, with differences ranging from 23% (Yunnan) to 232% 196 

(Ningxia). Moreover, the estimates for the top emitting provinces showed large 197 

uncertainties (Fig. 1). Specifically, the CO2 emissions in the top 7 provinces 198 

(Shandong, Jiangsu, Hebei, Inner Mongolia, Guangdong, Liaoning, and Shanxi) 199 

account for nearly 50% of total emissions, with absolute differences ranging from 158 200 

to 435 Mt CO2 in 2012. However, western provinces with low emissions, e.g., Gansu, 201 

Qinghai, Guizhou, and Hainan, had smaller discrepancies. The SDs of the inventories 202 

based on provincial statistics were generally less (26 Mt CO2) than those based on 203 

national statistics (65 Mt CO2) in 2012. For example, the emission estimates in 204 

Jiangsu and Shanghai based on national statistics showed obvious differences, with 205 

SDs exceeding 150 Mt CO2, whereas those based on provincial inventories exhibited 206 

SDs of 33 and 10 Mt CO2, respectively. 207 

 208 

3.2 The temporal evolution of provincial-level CO2 emissions and emissions per GDP 209 

derived from national and provincial energy statistics 210 

 211 

 212 

Fig. 2 CO2 emissions of the top 5 provinces from 2000 to 2018 213 
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 214 

The temporal changes in the CO2 emissions of the top 5 emitting provinces are shown 215 

in Fig. 2. Despite differences in magnitude, all the estimates agreed that the emissions 216 

of the top 5 emitting provinces increased from 2000 to approximately 2012 and 217 

leveled off afterwards. The interannual variation in existing emissions derived from 218 

provincial and national statistics is notably different, and these discrepancies 219 

increased over time. For the average of all the provinces during the period of 220 

2000-2016, the CO2 emissions derived from provincial statistics increased by 217%, 221 

and those derived from national statistics increased by 197% (Fig. S2). The total 222 

difference in the top 5 emissions from national and provincial statistics was 39 Mt 223 

CO2 in 2000. However, it increased to 447 Mt CO2 in 2016, with a peak difference of 224 

636 Mt CO2 in 2012. This trend was consistent with the findings of Guan et al. (2012). 225 

The emissions estimated from provincial statistics showed relatively consistent 226 

variations, which were able to detect apparent peak emissions in 2011 or 2012 and 227 

then leveled off or went down. Compared to emissions derived from provincial 228 

statistics, the variabilities of ODIAC, EDGAR, and PKU were relatively smooth and 229 

were unable to capture the interannual variation in CO2 emissions. Moreover, PKU 230 

tended to underestimate emissions among existing estimates, except for Henan. 231 

ODIAC showed a unique trend with emissions accelerating before 2010 and 232 

subsequently leveling off in Jiangsu and Henan. 233 

The local governments of Beijing and Shanghai have proposed clear timing targets for 234 

peaks in total and per capita CO2 emissions in 2020 and 2025, respectively (Shanghai 235 

Municipal People's Government, 2018; The People's Government of Beijing 236 

Municipality, 2016). The CO2 emissions per GDP decreased dramatically (from 1-3 to 237 

0.3-1 Mt CO2 per PPP billion USD) during the study period (Fig. 2 and Fig. S2). 238 

Specifically, the emissions per GDP decreased to 0.3-0.6 Mt CO2 per PPP billion USD 239 

for Shandong, Hebei, Jiangsu and Henan provinces. However, they decreased from 240 

approximately 3 to 1 Mt CO2 per PPP billion USD for Inner Mongolia. The spread of 241 

CO2 emissions per GDP among these datasets also decreased, mainly due to the 242 
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decoupling of CO2 emissions and GDP increase, i.e., the leveling off of CO2 243 

emissions and the increase of GDP. 244 

3.3 The fractions of provincial-level CO2 emissions derived from national and 245 

provincial energy statistics 246 

 247 

 248 

Fig. 3 The CO2 emissions fractions of the top 10 provinces in 2012. Subplots (a) and 249 

(b) are the mean fractions of national- and provincial-data-based inventories. 250 

 251 

The total fractions of the top 10 emitting provinces derived from national-data-based 252 

inventories (~56%) are rather close to those derived from provincial-data-based 253 

inventories (~58%) (Fig. 3); the remaining provinces contributed the other ~40%. 254 

However, the sequences of the top 10 provinces estimated from national statistics are 255 

quite different from those datasets calculated from provincial statistics. Shandong is 256 

the highest emission province, with mean values of up to 758 and 876 Mt CO2 based 257 

on national- and provincial-data-based inventories, representing 8.1% - 8.7% of the 258 

total emissions. Moreover, there are substantial differences in other top emitting 259 

provinces. The estimated emissions in Hebei, Shanxi, and Inner Mongolia derived 260 

from provincial-data-based inventories were approximately 34%, 36%, and 64% 261 

higher than those from national-data-based inventories, respectively. Since 262 

national-data-based inventories do not include detailed provincial energy information 263 

and thus had larger SDs, we recommend that policymakers use provincial mean 264 
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results to allocate responsibilities and to develop reduction policies according to local 265 

realities. 266 

3.4 The relationships of provincial-level CO2 emissions derived from national and 267 

provincial energy statistics 268 

 269 

Fig. 4 Correlations of multiple CO2 emission datasets at the provincial level in 2012 270 

 271 

To interpret the commonalities and differences in provincial emissions between 272 

national- and provincial-data-based inventories, the paired correlation relationship is 273 

shown in Fig. 4. The provincial-level CO2 emissions developed from provincial 274 

statistics have a good correlation relationship, with correlation coefficients (R) greater 275 
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than 0.9. Emissions from MEIC, NJU, and CEADs are highly correlated, with a mean 276 

difference of less than 40 Mt CO2 in 2012. This implies that the energy statistics 277 

played the main role in estimating emissions, albeit with differences in methodology. 278 

However, the emissions derived from national statistics showed a relatively weaker 279 

correlation (R < 0.85). The correlation between ODIAC and PKU was weakest among 280 

all the estimates. This was probably due to the different energy statistic input data 281 

(CDIAC for ODIAC and IEA for PKU) and spatial disaggregation proxies (nighttime 282 

light for ODIAC and population and vegetation for PKU), producing the striking 283 

contrast in provincial-level emissions between ODIAC and PKU, with differences 284 

ranging from -225 to 403 Mt CO2 in 2012 (Fig. 1). Although the emissions of 285 

EDGAR and PKU were both mainly used in the IEA statistics, their correlation was 286 

not strong. First, PKU used the IEA national total and provincial fractions to distribute 287 

the emissions. Second, differences in spatial disaggregation proxies (nighttime light, 288 

population density for EDGAR and population and vegetation for PKU) to reallocate 289 

national total to provincial scale and sectoral differences could enhance uncertainties 290 

in the final provincial-level emissions. Third, differences in the version used by each 291 

dataset also produced some differences. PKU used version 2014, while EDGAR used 292 

version 2017 (Table S2); these versions estimated coal production as 3637 and 3650 293 

Mt, respectively, for the same year 2014. Moreover, EDGAR also used other activity 294 

data, and for industrial processes, it included more sectors, such as the production of 295 

lime, soda ash, ammonia, ferroalloys and nonferrous metals. 296 

3.5 Spatial differences of provincial-level CO2 emissions to CHRED and CEADs 297 

 298 
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 299 

 300 

Fig. 5 Spatial differences in provincial-level CO2 emissions from CHRED (a) and 301 

CEADs (b) in 2012 302 

 303 

As CHRED used over 1.5 million enterprise-level point sources and CEADs adopted 304 
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measured emission factors that are closer to China's fossil fuel quality, they were used 305 

as references to evaluate other datasets in 31 provinces. Compared to CHRED and 306 

CEADs, the national-data-based inventories produced discrepancies in provincial 307 

estimates of -57%-162%, whereas provincial-data-based inventories produced 308 

discrepancies of less than 45%. In general, the provincial carbon emissions of ODIAC 309 

and NJU were both higher than the references, while those of PKU were lower than 310 

the references (Fig. 5). EDGAR and MEIC were comparable to CHRED and CEADs, 311 

with mean differences of 3% and 8%, respectively. With respect to mean provincial 312 

CO2 emissions, the estimates of PKU were 14% and 11% lower than those of CHRED 313 

and CEADs, respectively. Specifically, for Inner Mongolia, Tianjin, and Ningxia, the 314 

emissions by PKU were 50% or more lower than those of CHRED and CEADs. 315 

However, the emissions of ODIAC and NJU were 3% and 8% higher than those of 316 

CHRED and 10% and 13% higher than those of CEADs, respectively. ODIAC 317 

probably allocated more emissions to Beijing, resulting in 115% and 162% higher 318 

emissions than CHRED and CEADs, respectively. Higher estimates by ODIAC were 319 

also obvious in Heilongjiang, Tianjin, and Guangdong provinces, with differences of 320 

35% to 85%. These differences can be attributed to the spatial mismatch between the 321 

location of emissions and spatial proxies (Gurney et al., 2009; Zheng et al., 2017). 322 

Moreover, the spatial biases tended to increase with spatial resolution (Zheng et al., 323 

2017). The high spatial resolution of ODIAC (1 km) was found to underestimate the 324 

emissions of areas that do not have strong nighttime light (e.g., rural areas and power 325 

plants based on fossil fuels) (Wang et al., 2013). However, the saturated estimates 326 

caused by nightlight data may result in overestimated emissions in urban areas (Wang 327 

and Cai, 2017). In addition, the carbon emissions of MEIC are comparable to those of 328 

CHRED and CEADs, with mean differences of 2% to 4%. However, EDGAR tends to 329 

largely overestimate the emissions in Shanghai and Hubei, with differences of up to 330 

123% and 105% compared to CHRED and 153% and 62% compared to CEADs, 331 

respectively. 332 

 333 



18 

 

4. Discussions 334 

4.1 Reasons why the sum of the provincial data is greater than the national statistics 335 

Since the national and provincial energy statistics were surveyed by two different 336 

teams, namely, the National Bureau of Statistics and the provincial bureaus of 337 

statistics, it is not surprising that the sum of the provincial energy statistics is not 338 

identical to the national total (NBS, 2013). The sum of the provincial data is 339 

systematically greater than the national statistics due to the differences in national and 340 

provincial statistical systems and artificial factors (Hong et al., 2017). To ensure the 341 

consistency between national emissions and the sum of province-level data, one 342 

possible practical way might use the national total fossil fuel consumption and 343 

provincial fractions to scale when distributing emissions to the grid and further use 344 

field measurements and remote sensing data to validate inventories. 345 

National statistical data are usually collected by the national survey team and reported 346 

from the local level and key energy-consuming enterprises (≥ 10,000 standard coal 347 

consumption), and it is difficult to validate the locally reported data (NBS, 2013). 348 

Furthermore, data inconsistency and double counting exist in the provincial data 349 

(Hong et al., 2017; Zhang et al., 2007). Using coal data as an example, the sum of 350 

interprovincial imports was 17.6% (or 339.2 Mt) higher than that of exports in 2015, 351 

which is 27.2% that of the total coal final consumption amount (data from the energy 352 

balance sheet of provincial-level statistics). The same phenomenon is observed in the 353 

oil and natural gas data, which were 17.3% (or 81.4 Mt) and 3.3% (or 3.6*10
9 

m
3
), or 354 

15.6% and 2.3%, that of the total petroleum products and natural gas final 355 

consumption amount, respectively. Additionally, double counting is common in 356 

provincial statistics because some activities are counted by all provinces involved. 357 

For small enterprises, the quality of the energy statistics reported to NBS is not as 358 

well validated and monitored as those of large enterprises (Hong et al., 2017; NBS, 359 

2013). Moreover, energy data may be modified for artificial purposes because it 360 

correlates to GDP and thus the evaluation of the local governors (Guan et al., 2012; 361 
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Hong et al., 2017). Moreover, some of the provinces provided equal supply and 362 

consumption data, which implies that some local data were modified to achieve an 363 

exact balance. Overall, the provincial estimates are 8-18% higher than the 364 

CEADs-based national estimate after 2008. Province-based estimates (e.g., NJU and 365 

MEIC) are also higher than the CEADs (national) estimate. Hong et al. (2017) found 366 

that the ratio of the maximum discrepancy to the mean value was 16% due to different 367 

versions of national and provincial data in CESY. 368 

4.2 Contributions of three emission types 369 

 370 

Fig. 6 Compositions for point, line and area sources for EDGAR and CEADs in 2012 371 

 372 

The spatial allocation of national or sectoral emissions is generally performed on the 373 

basis of three groups of data sources, i.e., point sources downscaled with geocoding 374 

locations, line sources downscaled with traffic networks, and area sources relying on 375 

spatial proxies. Characterizing the discrepancy in these three categories can help us 376 

understand the bias better. Comparison of these three emission types was conducted 377 

with respect to EDGAR and CEADs, both of which include detailed sectoral 378 

emissions data. According to the characteristics of sectoral emissions and insights 379 

from the data developers, the 20 sectors in EDGAR and 47 sectors in CEADs are 380 

classified into the three groups above (Table S4). Additionally, there is an additional 381 

group of mixed sources in EDGAR. For several sectors in EDGAR, the inventory 382 
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information includes multiple emission sources. CEADs presented a much larger 383 

share of point source emissions than EDGAR (Fig. 6). EDGAR estimated that 384 

approximately 46% of emissions were contributed by point sources, followed by 385 

mixed sources (41%), and the remaining emissions were line and area sources (both 386 

contributing ~7%). By contrast, CEADs assumed that point sources are the primary 387 

sources (contributing 85%), followed by area sources (9%) and line sources (7%). 388 

Both EDGAR and CEADs estimated the emissions of the sectors under the guidelines 389 

of the IPCC (Janssens-Maenhout et al., 2019; Shan et al., 2017). However, there exists 390 

a substantial difference in the point source emissions. The lower proportion of point 391 

source emissions in EDGAR is partly due to the point sources it uses (CARMA) 392 

(Janssens-Maenhout et al., 2019), which neglected small point sources. Moreover, 393 

EDGAR uses population-based proxies when no point source information is available. 394 

Another reason is that some point sources cannot be separated individually from the 395 

mixed sources. 396 

Possible reasons for the differences between EDGAR and CEADs include activity 397 

data from national and provincial energy statistics, spatially disaggregated approaches, 398 

and point source emissions. The CEADs are based on sectoral fossil fuel consumption 399 

from the corresponding provincial statistical yearbook, while EDGAR is primarily 400 

based on IEA and other international statistics at the national scale. Guan et al. (2012) 401 

and Hong et al. (2017) pointed out that the inconsistency of energy statistics, 402 

especially coal consumption data, largely contributed to the emission discrepancy in 403 

China. The emissions based on provincial energy statistics were higher than those 404 

from national statistics, with a peak difference of 18% in 2014 (Shan et al., 2017). 405 

This can be attributed to overreporting or double counting in energy statistics at the 406 

provincial level by artificial factors (Guan et al., 2012; Hong et al., 2017). Meanwhile, 407 

the absence of emissions from small enterprises at the national scale and the lack of 408 

sectoral energy statistics in certain provinces both contributed to uncertainties in the 409 

provincial emission estimates (Guan et al., 2012; Hong et al., 2017; Shan et al., 2017). 410 
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4.3 Impacts of emission factors 411 

Since carbon dioxide emissions are calculated from activity data and emission factors 412 

(EFs), differences in the EFs used by these datasets also produce large differences in 413 

emission estimates (Table S2). Coal is the major energy type and represents ~80% of 414 

the total energy consumption (Liu, Z. et al., 2015). The EF used for raw coal ranges 415 

from 0.491 to 0.746 in this study. For example, the CEADs used 0.499 tC per ton of 416 

coal based on a large number of measurements, and this coal EF is considered to be 417 

representative of Chinese coal quality, while EDGAR used 0.713 (42.9% higher than 418 

that of CEADs) based on the default value recommended by the IPCC 419 

(Janssens-Maenhout et al., 2019; Liu, Z. et al., 2015; Shan et al., 2018b). Hence, 420 

differences arise due largely to the low quality and high ash content of Chinese coal 421 

(Janssens-Maenhout et al., 2019; Liu, Z. et al., 2015). Furthermore, using the Monte 422 

Carlo method, Shan et al. (2018b) showed that EFs contributed greater uncertainty 423 

(-16 – 24%) than did activity data (-1 – 9%). We thus recommended substituting the 424 

IPCC default coal EF with the CEADs measurement-based EF. Regarding emissions 425 

from coal consumption at the plant level, the collection of their EFs measured in situ 426 

is valuable for calibrating large point source emissions, and we call for such physical 427 

measurements for the calibration and validation of existing datasets (Dai et al., 2012; 428 

Kittner et al., 2018). 429 

4.4 Implications for inventory use and improvement 430 

The bottom-up inventories are used as prior emissions in atmospheric inversion 431 

models to quantify CO2 fluxes between land/oceans and the atmosphere. The errors in 432 

either the location or timing of fossil fuel carbon fluxes are directly aliased into 433 

inverse modeling (Asefi‐Najafabady et al., 2014; Gurney et al., 2009). An accurate 434 

fossil fuel CO2 emission inventory provides invaluable and independent information 435 

for inverse modeling and helps to reduce the uncertainty in land biosphere to 436 

atmosphere fluxes (Oda et al., 2018; Thompson et al., 2016). 437 
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Uncertainty in CO2 emission estimates can have a large impact on the carbon budget 438 

simulation since atmospheric inverse models use the bottom-up emission inventory as 439 

a priori emissions. Given the targets of emissions reduction in China, it is crucial to 440 

develop specific carbon emissions mitigation policies for different provinces (Shan et 441 

al., 2019). The large discrepancy in provincial-level CO2 emissions among datasets 442 

produces great challenges in the allocation of emission reduction responsibilities. 443 

Strategies for reducing emissions could be based on composited trends, and making 444 

reduction policies for provinces needs the support of provincial-energy-based datasets 445 

instead of national-energy-based ones. To reduce uncertainties in emission estimates, 446 

verification of the energy statistics by ground-based measurements and remote 447 

sensing data is urgently needed (Berezin, 2013; Yao et al., 2019). 448 

 449 

5. Conclusions 450 

We estimated China’s provincial fossil fuel CO2 emissions using seven of the most 451 

up-to-date inventories. We found that: 1) the provincial emissions ranged from 20-649 452 

Mt CO2, with SDs ranging from 8-159 Mt; 2) temporally, the emissions in most 453 

provinces increased from 2000 to approximately 2012 and leveled off afterwards; 3) 454 

the top 10 emitting provinces derived from national-data-based inventories 455 

contributed ~60% of the national total emissions; and 4) the provincial-level CO2 456 

emissions estimated from provincial statistics have a better correlation than the 457 

national-data-based inventories. The root causes of the differences were differences in 458 

activity data at the provincial and national levels within the statistical systems and the 459 

low locally optimized versus higher default coal EFs used. Thus, for future 460 

improvements, provincial activity data from national and global inventories should be 461 

made publicly available. Locally optimized coal EFs are better than default ones in 462 

inventories. Local governments need multiple highly detailed inventories when 463 

making policies designed to reduce emissions. Moreover, policymakers should focus 464 

on the top emitting provinces as high priorities when designing policies. In terms of 465 
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emissions intensity (emissions per GDP), provinces that are higher than 0.5 still have 466 

room for improvement in industrial structure adjustment. To reduce uncertainties in 467 

emissions estimates, verification of the energy statistics by ground-based 468 

measurements and remote sensing data is urgently needed. 469 
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