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ABSTRACT Radio Access Networks (RAN), Edge Computing (EC), and Network Slicing are some of the
critical components in 5G networks used to provide different transport services over the same infrastructure
and to enable new features, e.g., low latency and context awareness. It is important to have tools for evaluating
present and future applications over these components; however, there is a gap between theoretical work
on resource allocation and its deployment in simulated, emulated, or real-world experiments. This paper
addresses these issues through a new emulation software named eXP-RAN, which enables experimenting
with network slicing in virtualized RAN nodes and EC scenarios. In this version, we have focused on the
computing part of RANs. Experiments can be created manually or imported from an optimization model.
We describe the software architecture and its advantages over traditional tools such as ns-3 and Mininet,
as well as more recent tool targets to EC simulations such as EdgeCloudSim. We also illustrate how two use-
cases, a virtual RAN (VRAN) / Multi-Access Edge Computing (MEC) orchestration and a network slicing
for video service providers can be emulated and explored using eXP-RAN.

INDEX TERMS Radio access networks, edge computing, network slicing, emulation tool.

I. INTRODUCTION

Since mobile networks became important tools for human
daily lives, users have been creating high expectations
about the increased capacity and the new services offered
by the next generation of these networks. For 5G net-
works, this means gigabits per second and support for the
3GPP standardized types of scenarios [1], [2], i.e., enhanced
mobile broadband (eMBB, e.g., UHD/4K/8K videos);
ultra-reliable low-latency communications (URLLC, e.g.,

The associate editor coordinating the review of this manuscript and

approving it for publication was Petros Nicopolitidis

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

autonomous cars); massive machine-type communications
(mMTC, e.g., smart cities, sensor networks, IoT). How-
ever, these new services do not depend only on more band-
width, as in the previous generations of mobile networks,
but they also need low latency, high reliability, edge comput-
ing capabilities, resource partitioning, among other features.
New technologies, such as Network Function Virtualization
(NFV) [3], Multi-Access Edge Computing (MEC) [4], and
Network Slicing [5], have been introduced as part of the
5G networks standards. A large part of the success of the
5G networks depends on these new technologies and its
proper integration with the Radio Access Network (RAN) in
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such a way that meets user expectations. Thus, there is great
interest in experimenting with these multiple technologies in
order to anticipate problems and identify opportunities.

Nowadays, tests involving RAN, Edge Computing (EC),
and network slicing primarily rely on simulations or small
testbed environments. The simulation offers scalability,
repeatability and allows the users to evaluate several aspects
such as network throughput, packet loss, power and CPU
consumption [6]. However, for a service or application to
be evaluated, it must be recreated within the simulator,
employing the specific abstractions of that simulator. This is
generally time-consuming and may not accurately represent
real-world systems. Simulation tools also lack abstractions to
offer truly isolated views of physical and virtual resources,
which is a relevant characteristic for network slicing [7], [8].
This happens because simulation tools work with models that
simulate the behavior of a physical or logical resource, while
emulation tools try to mimic the resource itself. This is a point
which gives emulation tools advantage over simulation tools
to create isolated views of physical and virtual resources.
On the other hand, the smaller test environments [9], [10] fail
to provide scalability, limiting the scope of the evaluations,
especially regarding RAN topology and service coverage.
Even setting up a small real-world environment involving
RAN, EC, and network slicing is also a complex, error-prone,
and time-consuming activity. Repeatability is also a common
issue, mainly for third-parties trying to compare with previ-
ous work. There are a few emulation tools (e.g., [11]) that
allow users to evaluate isolated aspects of a service, such as
the network performance of a specific virtualized function.
However, these tools do not have the abstractions and features
for implementing a complete evaluation environment.

In this work, we introduce eXP-RAN, an emulation tool
designed to lower the barrier for gaining experience with
RAN and EC. eXP-RAN, in its current version, is focused on
the computing part of RANs and provides a modular architec-
ture that allows the user to experiment with a variety of func-
tionalities related to RAN and EC such as desegregated RAN
modeling, network slice modeling, service representation
through lightweight container-based virtualization, and the
monitoring of the entire emulated environment. eXP-RAN by
design supports the emulation of multiple scenarios where
the base stations, MEC hosts and cloud servers are running
in coordination. In the case of emulation involving desegre-
gated RAN, the model to convert radio processing functions
(generally, virtualized) into computational resources have to
be provided by the user either as the output of an optimization
model or as a service file. In addition, eXP-RAN provides two
useful functionalities: (1) the ability of converting the output
of an optimization model into an infrastructure and service
description that can be processed and emulated by eXP-RAN;
and (2) the capability of auto-tuning. The first capability
allows users to perform sensitive analysis of optimization
models, which can be time consuming when performed
using the solver. The second capability allows users to scale
the emulation scenarios while keeping the same hardware
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capacity. eXP-RAN is publicly available as an open-source
project.!

To demonstrate the capabilities of eXP-RAN, we designed
two use-cases. In the first use-case, we use eXP-RAN to
emulate a VRAN/MEC orchestration model. In the second
use-case, we use eXP-RAN to emulate the deployment of
two network slices with different Quality of Service (QoS)
demands and analyse how both slices are affected as workload
increases.

This paper is organized as follows. Section II introduces
important requirements that must be satisfied by a tool such
as eXP-RAN and provides an overview of existing tools
and to which extent such tools support the desired require-
ments. Section III presents the system architecture, design
layout, and implementation details of eXP-RAN. Section IV
presents the auto-tuning feature of eXP-RAN. In Section V
use-cases are emulated with eXP-RAN and the results of the
experiments are discussed. Finally, Section VI presents final
considerations and future work.

Il. REQUIREMENTS AND RELATED TOOLS

In this section we briefly discuss the relevant requirements
for a tool which goal is to allow users to analyze different
engineering problems in the RAN, EC, and network slicing
domain. We also summarize the extent to which currently
existing tools are able to fulfill several requirements. The list
of requirements is presented below.

Slicing abstraction — the need to create subsets of virtu-
alized and isolated resources is required for supporting new
applications (e.g., distributed AR/VR) and business models
(e.g., wholesale sales for vertical industries). Thus, an emu-
lation (or simulation) tool must offer a proper slicing abstrac-
tion in order to assess the deployment of concurrent and
new services over a single shared substrate. From the service
providers’ perspective, a slice must appear as a traditional set
of resources that they are able to monitor, control, and man-
age. From the infrastructure providers’ perspective, it should
be possible to create or destroy independent and isolated
slices.

Network modeling — some characteristics of the backhaul
from a RAN (and, eventually, of the fronthaul) must be rep-
resented. For example, link capacity and propagation delay
need to be represented in order to evaluate optimization mod-
els involving the RAN. Also, these characteristics must be
available, not only for the physical substrate, but also for
every virtual network slice created over this substrate. The
ability to emulate real-world network technologies, such as
the TCP/IP stack and Software-Defined Networking (SDN)
switches, can also increase the accuracy level in the
evaluations.

Computing modeling — EC allows to push applications,
data, and computing power to the edge of the network, at the
proximity of data sources or destinations. Thus, in addition
to network modeling, an emulation (or simulation) tool for

1 https://github.com/LABORA-INF-UFG/eXP-RAN
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EC scenarios must offer a way to represent virtualized
computing resources (e.g., CPU and RAM). Additionally,
the computing modeling must be integrated with the network
modeling in order to allow, for example, the representation of
virtual network functions.

Service representation — 5G networks are creating the
need for service providers to verify the behavior of the set
of applications that compose their services in a given set
of virtualized resources. Nowadays, it is a common prac-
tice to represent services as collections of virtual functions,
implemented, for example, as containers. Also important
is a way to formally model or represent the entire ser-
vice, and in this respect, some common approaches are
optimization models and service descriptions in a formal
language.

Service reconfigurability — the ability to scale up, scale
down, and elastically redirect loads or replace resources are
extremely important features to support running services
over virtualized resources. In order to implement these fea-
tures, we must be able to reconfigure the service by increas-
ing/decreasing the number of virtual functions, migrating
virtual functions, (re)chaining them, and other operations
involving the service elements during run time, both seam-
lessly and without service interruption.

Predictable performance — in the context of RAN and
EC, there are several metrics that depend on fine-tuning the
resource allocation of the computing resources among the
software components. In an event-driven simulator, this is not
a concern, but predictable performance is critical for emula-
tors. For example, throughput, delay, and CPU consumption
are affected by the amount of computing resources allocated
to a software component. Thus, an emulation tool needs to
identify the limitations of the hardware and properly adjust
the allocation of the resources.

Monitoring — a key feature of any evaluation tool is the
ability to monitor the test environment. Traditional metrics
such as CPU and RAM consumption, bandwidth, packet
delay and loss are very common in almost every evaluation
tool. However, the ability to monitor independently each
network slice is rare. It is also important to have flexibility
in the monitoring so that the experimenter can: choose which
metrics need to be followed online, choose which metrics
need to be persisted, compute statistics over the metrics, and
add new metrics.

Ease of use — tools such as eXP-RAN may have a wide
range of potential users with diverse background knowledge.
Thus, it is important to provide enough abstractions to allow
beginners to start experimenting with the tool without diffi-
culties. Afterwards, documentation, basic examples, and full
use-cases can pave the way for users to master a tool and
achieve their goals.

Reusability — many emulation and simulation tools have
reached large adoption and a long life due to, at least in
part, high reusability. A modular architecture and properly
designed components are key aspects for reusability, mainly
in large and complex software systems. In the context of
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5G networks, service representations and slicing abstractions
should be easily composed, reused, and extended.

Table 1 summarizes to which extent some available tools
fulfill the requirements discussed above. The adhering level
is directly related to our description of the requirements,
as explained below.

TABLE 1. Some relevant tools comparable to eXP-RAN.

ol £

~ £ 5 = %
. A e =] Q =] [Se)
Requirement “28 g & 2 &
O = o O =

> o s = D

S )

= =]

%] m
Slicing abstraction M L L - -
Network modeling L H H M H
Computing modeling H M H H L
Service representation M L H M -
Service reconfigurability H L M L L
Predictable performance - - - H H
Monitoring M M M M M
Ease of use H H H H M
Reusability H H H H H

(H) High (M) Medium (L) Low (-) Not Available

Among the reviewed tools, none of them covers all the
requirements (as shown in Table 1). The Very Lightweight
Network & Service Platform (VLSP) [12] is a tool that can
emulate / simulate different aspects in SDN and virtualized
environments. Slice Controller [13] was introduced as a com-
panion software for slicing resources of a virtual data center,
where an isolated instance of VLSP can act as a Virtual
Infrastructure Manager (VIM) of each slice. Since this soft-
ware is focused on data centers, network slicing is simplified,
while network characteristics, such as generic topologies, link
capacity, and propagation delay are not properly represented.
Service representation involves the creation of applications in
Java, which is the programming language used to develop this
software. Monitoring is quite flexible, but was not designed
with slicing support as a goal.

Mininet [14] is a popular emulation tool used to create
realistic virtual networks, and to experiment with OpenFlow
and SDN systems. Indeed, some aspects of eXP-RAN were
inspired by Mininet, mainly those related to the network rep-
resentation and ease of use. The native support for slicing in
Mininet is based on third-party tools such as FlowVisor [15]
and OpenVirteX [16], which consist on creating virtual SDNs
by using an OpenFlow controller proxy. Thus, the slicing
abstraction is tied to OpenFlow rules and does not provide a
representation for a physical substrate. Even though Mininet
is based on containers, natively, the service representation
depends on the user creating and composing her application
with containers.

Fogbed [17] is an emulation framework that focuses on
fog computing environments. Fogbed has several tools in
common with eXP-RAN, but the software has different goals.
Fogbed also has adopted a design strategy with potential
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advantages, but with some serious risks. This software is built
on top of other large software sets, such as Containernet [18]
and MaxiNet [19], which are forks from Mininet. Thus,
Fogbed is highly dependent on multiple non-mature software
tools that are managed by communities of developers with
their own roadmaps. Additionally, slicing abstraction is an
inheritance from Mininet and predictable performance is not
a concern in the design of Fogbed.

EdgeCloudSim [6] is a simulator focused on edge comput-
ing to allow experiments that involve modeling of networking
and computing resources. EdgeCloudSim was based on the
known simulator CloudSim [20] and was improved with
features to support sophisticated network models, mobile
devices, and more realistic load generation. EdgeCloudSim
allows the application properties to be defined in a specifica-
tion file, but the application itself must be developed in Java,
i.e., the programming language of the simulator. Additionally,
the simulator was not built with slicing abstraction support as
a goal and this change has a large impact in its code base.

The ns-3 [21] is one of the most widely used discrete-event
network simulators. To introduce general support for a slicing
abstraction in ns-3 would imply a large number of modifica-
tions to the simulator code. Thus, those interested in using
ns-3 have been making specific changes in order to attend
to their needs [22], [23], for example, associating IDs to
flows, or grouping resources in a customized way. Similar to
VLSP, in ns-3 the service representation requires creating an
application inside the simulator, but using C++- or Python as
the programming language. However, differently from VLSP,
ns-3 does not properly deal with virtualized environments,
despite some non-scalable initiatives [24], [25]. This means
ns-3 lacks the proper support for service representation, plus
its support for service reconfigurability is low. Although the
monitoring requirement is traditionally well satisfied by sim-
ulation tools, ns-3 does not support isolated multi-perspective
monitoring. This explains, for example, why it scored as
Medium with respect to the monitoring support.

In summary, eXP-RAN was designed by taking into con-
sideration all the previous requirements. The native support
for slicing abstraction, service representation, and predictable
performance are some of its key characteristics. Its slicing
abstraction can be easily described as a specification listing
a subset of the network and computing resources. eXP-RAN
can represent services as containers. Additionally, eXP-RAN
also introduces the self-tuning functionality, which aims
to avoid inaccuracy in evaluations due to hardware
limitations.

lIl. eXP-RAN: DESIGN AND IMPLEMENTATION
This section presents the software architecture, system mod-
ules, and implementation details of eXP-RAN.

A. SOFTWARE ARCHITECTURE

The eXP-RAN architecture is divided into three layers as
depicted in Fig. 1. The Infrastructure layer is responsible for
creating virtual resources (e.g., machines, links, switches),
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FIGURE 1. eXP-RAN layers.

which emulate physical ones. The Slicing layer manages
sets of virtual resources by partitioning and isolating them,
consequently representing slices in the infrastructure. The
Service layer deploys a service abstraction over a given slice.
These three layers are discussed in detail.

1) INFRASTRUCTURE LAYER

The Infrastructure layer was designed following the stan-
dards terminology defined by ETSI — European Telecommu-
nications Standards Institute [26]. This layer is responsible
for the emulation of the four major network elements in
a 5G RAN, which are: (i) edge computing resources (e.g.,
MEC hosts), (ii) base stations (e.g., 4G/eNodeB, 5G/gNB),
(iii) forwarding nodes, and (iv) links. Fig. 2 shows an example
of a topology that can be emulated in eXP-RAN with all four
types of network elements. Thus, in eXP-RAN, a network
topology is emulated by nodes (MEC host, base station, and
forwarding nodes) and links.

W
/N
Was

FIGURE 2. Example of an eXP-RAN topology.

Map Keys

MEC Host

Base Station

Forwarding

¥ ®

»

Forwarding nodes are only used to forward traffic; there-
fore they have no computing capacity. Base station nodes
represent the cell sites of the RAN. They need to emulate
signal processing for the RAN, and thus they have a lim-
ited computing capacity. MEC hosts, on the other hand, are
the processing power of the RAN, thus they possess higher
computing capacity compared to base station nodes. In real-
world, computing capacity is represented by physical servers.
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In eXP-RAN, we emulate physical servers using Virtual
Machines (VMs).

2) SLICING LAYER

This layer emulates the slices created over the infrastructure,
i.e., the set of virtual resources and services owned and
managed by a certain tenant. In eXP-RAN, virtual resources
are emulated by containers and links. Services, on the other
hand, are emulated by Virtualized Network Functions (VNFs)
running as containers. Thus, a slice includes a combination of
containers, links and VNFs running inside the containers.

3) SERVICE LAYER

This layer emulates the services being offered within the
slices. Services are offered as a set of VNFs. The service layer
is mainly responsible for configuring the VNFs inside the
containers, so that they can properly run as an entire service.

B. WORKFLOW AND SYSTEM MODULES

Fig. 3 shows the main steps to go through an emulation
with eXP-RAN. The system currently supports three differ-
ent ways of user interactions. In the first method (step la
in Fig. 3), the user provides the output of an optimization
model. This method is useful to perform sensitive analysis
of optimization models, which can be time consuming when
performed using the solver. eXP-RAN, on the other hand, can
be used in this situation to provide quick insights on different
parameters of interest.

The second method of interaction with eXP-RAN is by
using the Topology Generator (step 1b in Fig. 3). This is a
module of the system that generates random network topolo-
gies for experimenting with RAN and EC. This method
is particularly interesting for users with limited knowledge
of RAN/EC scenarios as well as to support educational
purposes.

The third method of interaction allows the user to spec-
ify her own infrastructure and services (step lc in Fig. 3).
In this case, the user describes the infrastructure and services
by writing JSON files following the eXP-RAN notation.
Listing 1 and 2 are part of an infrastructure description exam-
ple according to this notation: Listing 1 describes infrastruc-
ture nodes of different types (forwarding and base station
nodes), VMs, and containers; while Listing 2 defines the
infrastructure links connecting these nodes. This is the most
flexible method of interaction with the system.

Alternatively, users can interact with eXP-RAN using the
benchmarker module (step 7 in Fig. 3). Note that step 7 has
double meaning as it is an optional flow and an user input.

In the current version of eXP-RAN, there are six main
modules available. These modules are described below.

The Model Adapter module is responsible for converting
the output of an optimization model into an Infrastructure
and Service Description file (step 2a in Fig. 3) for eXP-RAN.
As of today, the Model Adapter module is a proof of concept
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FIGURE 3. eXP-RAN workflow and system modules. Single arrows
represent mandatory flow; arrows only with dashed lines identify user
inputs; arrows composed by dots and dashed lines represent optional
flow; rectangles identify the system modules and circles represent input
files.

"nodes": [
{
"nodeNumber": 1,
"nodeType": "Forwarding"
} r
{

"nodeNumber": 2,

"nodeType": "BaseStation",
"vms": [
{
"vmNumber": 1,
"cpu": 1,
"ram": 1024,
"containers": [

{
"ctnNumber": 1,
"cpu": 0.2,
"ram": 512

}

Listing 1. Nodes described in an Infrastructure Description file in JSON
format.

using the CPLEX? solver and must be customized by the
user for each different model, including the ones imported

2https://WWW.ibm.com/analytics/cplex-optimizer
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TABLE 2. Ethernet-based link profiles (proc. delay = 5 (us), packet size = 1518 Bytes).

Technology Throughput (Gbps) Prop. delay (us)
mmWave (60-80 GHz) 0.9,1.25,1.5,2,3,4,8 1-20
pWave (6-60GHz) 0.2,0.3,04,0.5,0.6,0.7,0.8,0.9, 1, 1.25, 1.5, 2 1-100
Copper (1000/10G/40GBASE-T) 1, 10, 40 0.05-0.5, 0.275, 0.15
SMF fiber @ 1310 nm
(1000, 10G, 40, 100GBASE-EX, LR, LR-4) 1, 10,40, 100 1-200, 50, 50, 50
SMF fiber @ 1550 nm
(1000, 10G, 40, 100GBASE-ZX, ER, ER-4) 1,10, 40, 100 1-350, 200, 200, 200
TbE (*under development) 200, 400 1-50

"links": [
{
"linkType": "Nodes",
"Connections": [
{

"linkNumber": 1,
"fromNode": 1,
"toNode": 2,
"delay": 0.122,
"capacity": 50.0

}

Listing 2. Links described in an Infrastructure Description file in JSON
format.

from CPLEX. Models implemented in other solvers can also
be used as long as the user modifies the Model Adapter
module. However, customizing the existing Model Adapter
module for CPLEX or other solvers models is much easier
than implementing the whole solution from scratch, since
eXP-RAN specifies well defined interfaces and generaliza-
tions to support such conversions.

The Topology Generator module is designed to generate
random RAN topologies. In order to generate realistic topolo-
gies, this module takes into account real-world topology
metrics such as graph topology, type of nodes (forwarding,
MEC host, and base station) and their proportions, and the
characteristics of the links. Random topologies are gener-
ated from a Waxman graph [27], a type of graph commonly
used to represent RAN topologies in the literature [10], [28].
Once the topology is created, nodes are labeled according to
the following proportions: 5% of the nodes are labed MEC
host nodes; 30% are base stations; and 65% are forwarding
nodes. These percentages are derived from studies conducted
in [28]. Finally, links are characterized by randomly choos-
ing one of the profiles described in Table 2. These profiles
are derived from studies conducted in [10]. The generated
topology is then converted into an Infrastructure Description
file (step 2b in Fig. 3). It is important to mention that the
Waxman graph does not label the vertex of the graph. The
labeling approach occurs after the graph being generated and
was proposed in [28] to represent RAN topologies. Thus, it is
possible that, after labeling, the resulting topology does not
match a physical one, although it keeps its properties. Indeed
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this is a known problem and despite of that, the methodology
proposed in [28] has been used to represent the topologies
of RANSs, e.g., in [10]. Alternatively, as mentioned before,
the user can provide her own topology by describing it as
a JSON file. In the JSON file, the user can specify the
percentage of each node, node configuration, link profile,
connectivity, etc.

The Infrastructure Manager module takes as input an
Infrastructure Description file (step 3 in Fig. 3) — generated
either by the Model Adapter, or the Topology Generator,
or provided by the user — and instantiates an environment
that emulates the infrastructure description accordingly.
Since services may have constraints regarding how traffic
between two service components should be routed (e.g., load
balancing constraints), eXP-RAN also has a Network Con-
troller that allows the users to specify paths in the network
to route the traffic of the services, and to apply network
rules accordingly to ensure these constraints. The network
rules are in the form of OpenFlow rules that are applied
to Open vSwitch (OvS) [29] switches in the network as
needed.

A slice abstraction is implemented in eXP-RAN by a
combination of tools such as Docker, OvS, Linux Traf-
fic Control (LTC) and OpenFlow. The isolation among the
slices is achieved because each Docker container is a pro-
cess isolated from other containers by default and we create
an overlay network for each slice using OvS. Furthermore,
LTC is used to set different bandwidth and latency con-
straints on each slice and OpenFlow rules are responsible for
managing the network traffic of each slice in the emulation.
OpenFlow manages the network traffic by applying network
rules on each virtual switch to properly forward each packet.
The user does not need to know OpenFlow in order to specify
the rules to route the traffic of her service. For example,
in the VRAN use-case, OpenFlow is used to represent VRAN
splits and the necessary OpenFlow rules are specified in an
abstract way by the user. The user is able to do that simply by
setting the same first and last node in the Service Description
file. Other OpenFlow rules to manage the network traffic
include ARP rules that are also set in an abstract way once the
user specifies the source and destination of each service. All
OpenFlow rules are created and managed in the emulation in
an abstract way by converting the description files provided
by the user to each rule.
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"services": [

{

"flows": [
{
"flowIdentifier": 1,
"bandwidth": 125,
"nodes": [3, 1, 2],
"ctnSourceNum": 1,
"ctnTargetNum": 3

"flowIdentifier": 2,
"bandwidth": 100,
"nodes": [3, 1, 2],
"ctnSourceNum": 2,
"ctnTargetNum": 4

}

Listing 3. Example of a Service Description file in JSON format in
eXP-RAN.

Given the Infrastructure Description file, the Infrastruc-
ture Manager first creates each type of node and link,
then it applies the limitations to the links. After that,
the Infrastructure Manager starts the creation and config-
uration of the VMs (representing the computing capacity
of the nodes) inside the nodes followed by the creation
of the containers (representing the virtual resources) inside
the VM.

As mentioned before, eXP-RAN emulates a service as a set
of applications (VNFs) running inside containers. Containers,
in turn, are deployed as part of the infrastructure. However,
some services may need specific configurations in order to
work properly. In eXP-RAN, configurations related to ser-
vices are described in the Service Description file and are
applied by the Service Manager module (step 4 in Fig. 3).
The Service Description file can be generated by the Model
Adapter or provided by the user. Listing 3 shows an example
of this type of file. The service configuration takes place
after the infrastructure being instantiated by the Infrastructure
Manager.

The System Monitor module is designed for collecting
specific monitoring metrics related to the infrastructure
and the services (steps 5 and 6 in Fig. 3). The col-
lected metrics are saved in text files and can be accessed
by the user in order to understand the results of the
emulation.

Finally, the Benchmarker module is a powerful built-in
feature in eXP-RAN that is not available in any of the tools
analyzed in Section II. The Benchmarker ensures the pre-
dictable performance requirement discussed in Section II by
configuring the eXP-RAN tool according to the hardware
capacity where it is running. In this context, this module
helps the user make proper choices during the process of
configuring an emulator (steps 7 and 8 in Fig. 3). More
details on how the Benchmarker can be used are given
in Section IV.
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C. IMPLEMENTATION DETAILS

This subsection details how we implemented the three types
of nodes, available in eXP-RAN, to emulate a network topol-
ogy. Fig. 4 illustrates the main elements of each node.

>

vSwitch []

Forwarding Node Base Station Node MEC Host

FIGURE 4. eXP-RAN type of nodes.

1) FORWARDING NODE

Fig. 5 shows the technology used to implement a forwarding
node. Since forwarding nodes are only used to forward traffic,
they have a single virtual switch. This virtual switch is imple-
mented using OvS and configured using LTC and OpenFlow
rules. LTC is needed in order to emulate the link restrictions,
e.g., capacity (or bandwidth) and latency, while OpenFlow is
used to route the traffic of the service.

2) BASE STATION NODE

Fig. 5 shows the technology used to implement a base station
node. This node has some VMs to represent the limited
computing capacity and a couple of virtual switches. The first
switch works like the switch mentioned on the forwarding
nodes, i.e., it does packet forwarding. The second one is used
to connect the VMs inside the node, i.e., it works as a Top of
Rack (ToR) switch. OvS, LTC and OpenFlow are used with
the same purpose as in the forwarding nodes. We use Xen
VMs to represent the physical servers and Docker containers
to represent virtual resources.

3) MEC HOST
Fig. 5 shows the technology used to implement a MEC host
node. MEC hosts are nodes with high computing capac-
ity (i.e., multiple VMs) and two virtual switches that have
the same functions as the switches of a base station node.
Indeed the main difference between base station nodes and
MEC hosts is the amount of (physical and virtual) computing
resources in the node, i.e., the amount of VMs and Docker
containers.

Fig. 6 summarizes how some real-world components are
emulated by eXP-RAN.

IV. BENCHMARKING A SERVER BEFORE EMULATION

Many of the potential users of eXP-RAN may use hardware
whose computer resources are not sufficient to emulate cer-
tain types of services, e.g., a network load generation with
demanding throughput rates. Usually, such limitations are
caused by the CPU capacity. For example, in both use-cases
that will be presented in Section V, we use a CPU config-
uration of 2x Intel Xeon Silver 4114 Processor. Even with
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FIGURE 6. Real-world components and how they are represented in eXP-RAN.

its combined resource of 20 cores, 40 threads, and a boost
clock up to 3 GHz, the server could not fulfil the scenarios
we wanted to emulate. Given that the real scenarios can
easily scale up to more than one hundred nodes (varying
from MEC hosts, base stations, and forwarding nodes), each
one requiring one CPU core to either generate or process
2.5 Gbps of throughput, our hardware was not able to fulfil
these requirements.
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The Benchmarker module in eXP-RAN was designed
with this limitation in mind. The idea is that the Bench-
marker configures the tool, so that eXP-RAN can only use
the amount of computer resources provided by the user,
while generating an emulation very close to real-world
performance. To do that, the Benchmarker needs the fol-
lowing information: the throughput that should be gen-
erated, and the accepted packet loss (i.e., how much
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of packet loss the user considers reasonable for her
use-case).

The benchmark is performed in two phases. In the first
phase, the Benchmarker starts with the ‘best-case scenario’,
i.e., it tries to generate and process the exact throughput
provided by the user, using one vCPU to generate and another
one to consume the throughput. After this first attempt, if the
packet loss is equal to or less than the one accepted by
the user, the Benchmarker goes to the second phase of the
benchmark test. Otherwise, the Benchmarker scales down
the throughput, i.e., it reduces the throughput rate in order
to comply with the specified packet loss. This is done by
dividing the throughput by two and running the test again.
If the test result does not have the acceptable packet loss,
the Benchmarker divides the throughput again, but now by
ten. This process is repeated, dividing the throughput rate
by 2 and by 10, alternately, until the Benchmarker finds a
throughput rate that can be processed within the accepted
packet loss. Alternatively, the user can provide the series of
numbers to be used to scale down the throughput rate.

Once the Benchmarker finds a throughput that complies
with the packet loss specified by the user, it proceeds to
the second phase of the benchmark test. The goal of this phase
is to ensure that the emulation uses the most of the hardware.
Given that, in most cases, the number of flows the user wants
to generate is higher than the amount of cores and threads
available, it is not reasonable to use a full vCPU to either
process or generate a single flow. Thus, the second phase
estimates the percentages of vCPU required for generating
and processing the throughput rate defined in the first phase.

V. EVALUATION

In this section, we discuss two use-cases that illustrate some
of the benefits of using eXP-RAN, and how our tool con-
tributes to experimentation with RAN and EC. In all of
the experiments, we employed as the reference hardware a
server with the following configuration: 2x CPUs Intel Xeon
Silver 4114@2.20 GHz and hyper-threading, 20 cores and
40 threads, 128 GB (8x 16 GB DDR4@2666 MHz), and
12 TB in RAIDS (8x HDs of 2 TB, 7200 RPM, SATA 6 Gbps).

A. VIRTUALIZED RAN

In a virtualized RAN (VRAN), the functionalities of a base
station (e.g., eNodeB or gNodeB) may be implemented as
VNFs where their instantiation place depends on the func-
tional split. A functional split defines which VNFs run in a
Remote Unit (RU) and which VNFs run in the Central Unit
(CU). However, each pair of VNFs has specific demands for
capacity and latency, as summarized in Table 3. As described
in [30], industry and academic researchers are focused on
three options for real scenarios, namely PDCP-RLC, PHY
split I and PHY split IV. The proper positioning of the
VNFs may bring benefits, for example, related to interference
control and energy efficiency, but the choice involves sev-
eral base stations with different network characteristics (i.e.,
capacity and latency). Therefore, there is a complex resource
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TABLE 3. Capacity and latency requirements for each split, considering
150 Mbps DL and 50 Mbps UL demand.

Split One-way | DL UL
latency capacity capacity
RRC-PDCP 30ms 151Mbps 48Mbps
PDCP-RLC 30ms 151Mbps 48Mbps
RLC-MAC 6ms 151Mbps 48Mbps
Split MAC 6ms 151Mbps 49Mbps
MAC-PHY 250us 152Mbps 49Mbps
PHY splitI 250us 173Mbps 452Mbps
PHY split I 25048 933Mbps 903Mbps
PHY split IIT 250ps 1075Mbps 922Mbps
PHY split IlIb | 250us 1966Mbps 1966Mbps
PHY split IV | 250us 2457.6Mbps | 2457.6Mbps

allocation [31], [32] problem that must be solved before
properly deploying a vVRAN solution.

Several works [9], [10], [33] have investigated the alloca-
tion problem associated with the functional split and the posi-
tioning of VNFs in the VRAN context. In order to illustrate
eXP-RAN capabilities, we selected a third-party work [9]
from which we only had access to the text. From the text
we extracted the optimization model, solved it, and expanded
its evaluation using eXP-RAN. In the following, initially,
we present how eXP-RAN employs its Benchmarker mod-
ule to identify the proper scale to the values employed in
the optimization model and, thus, becomes able to provide
coherent performance results. Later, we describe the pro-
cess of emulating the FluidRAN model, proposed in [9],
using eXP-RAN.

1) AUTO TUNING

A common problem in emulating a RAN is the unintention-
ally generated packet loss by the transmitter, when the aggre-
gated throughput is higher than a certain threshold. Thus,
the first step is defining a packet loss that could be considered
negligible to the evaluation. For example, we chose 0.1% as
the maximum acceptable packet loss, which is provided as an
input to the Benchmarker.

According to Table 3, eXP-RAN should be prepared to
emulate links with capacity up to near 2.5 Gbps, which works
as another input to the Benchmarker. It is hard to achieve
this performance with a single vCPU, but the packet loss
is unknown a priori and the correct value to scale down
the capacity in order to not exceed the maximum accept-
able packet loss is also unknown. As illustrated in Fig. 7,
the Benchmarker provides this information through several
automatic tests. In addition to the reference hardware (Intel
Xeon Silver 4114), Fig. 7 also presents the results for another
hardware with the following configuration: 1x CPU Xeon
E31270 V2@3.50 GHz and hyper-threading, 4 cores and
8 threads, 16 GB (2x 8 GB DDR3@ 1600 MHz), and 1 TB in
RAID2 (2x HDs of 1 TB, 7200 RPM, SATA 6 Gbps). Since
the traffic generation is a CPU intensive task, both machines
have a similar performance and the higher clock poses a
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FIGURE 7. Packet loss as a function of the generated throughput.

small advantage to the older hardware that has a more modest
general configuration. The emulation becomes more realistic
as the processing power of the hardware running the emulator
increases. In this case, as the CPU clock speed increases,
the packet loss decreases and the aggregated throughput
recommended by the Benchmarker for the emulation also
increases.

By default, the Benchmarker runs 30 tests of 120 seconds
and decreases the throughput from the initial value
(e.g., 2.5 Gbps) until the one that satisfies, on average,
the packet loss threshold (e.g., 0.1%). In order to speed up
the tests, also by default, the Benchmarker decreases the
throughput by dividing it by 2 and by 10, alternately, until
it reaches the threshold. In some scenarios, it may be useful
to choose a scale factor lower than the value recommended by
the Benchmarker. For example, the topology to be evaluated
may have a number of nodes that demands the reservation of
much less than one vCPU per node.

Once the Benchmarker finds the scale down value,
i.e., 20:1 (2500/125) in our example, then the tool starts
verifying if less than 1 vCPU is also able to transmit the
throughput (e.g., 125 Mbps) constrained to the maximum
packet loss (e.g., 0.1%). By default, the Benchmarker runs
30 tests of 120 seconds and decreases the amount of vCPU by
a step of 10% while the average packet does not exceed the
maximum threshold (e.g., 0.1%). In our reference hardware,
we found that 0.5 vCPU was able to transmit 125 Mbps in a
sustainable way. This evaluation focused on the demand of a
transmitter node, but it is necessary to identify the demand for
the receiver, which has initially a dedicated vCPU. In general,
the receiver demands fewer resources than the transmitter,
so the Benchmarker can start from the transmitter configu-
ration (e.g., 0.5 vCPU). Again, by default, the Benchmarker
runs 30 tests of 120 seconds and decreases the amount of
vCPU by a step of 10% while the average packet loss does
not exceed the maximum threshold (e.g., 0.1%). We found
that 0.2 vCPU was able to receive 125 Mbps in a sustainable
way.

2) MODEL EMULATION
As previously described, in [9], the authors present the Flu-
idRAN Design Problem (FRD) that has as objective function
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the minimization of the network operator costs while satisfy-
ing the users’ demand. The costs are related to data transfer
and the computing resources necessary for the VNFs of the
VRAN, in order to satisfy the throughput demanded by the
users. The FRD problem considers a simplified version of
the functional splits in which there are only four possible
functions and three splits. The splits are:

1) CU: f3—RU: f2, f1, f0 (PDCP-RLC).
2) CU: f3, f2 - RU: f1, f0 (MAC-PHY).
3) CU: f3, f2, f1 — RU: 0 (PHY).

In [9], the authors also explore how FluidRAN can be
adapted to represent MEC services deployed in the network.
This is achieved by simply adding a new VNF {4 to the
service chain. The capacity and the delay of this VNF can
be specified for each service it represents. The main issue is
to evaluate the impact of MEC services in the VRAN. The
authors identify that FRD is NP-hard to solve and so they
employed Benders’ decomposition method to approach the
problem. Analyzing the robustness of a solution generated by
the FluidRAN model or making a sensitivity analysis of the
model are very time-consuming. In this context, eXP-RAN
becomes an useful tool, since it makes it possible to test the
model varying different parameters of interest and collecting
several metrics.

Using the Model Adapter module, described in
Section III-B, we created six FluidRAN emulated scenarios
for evaluation - labelled from A to F. All scenarios are
based on the topology shown in Fig. 8. The blue node is the
Central Unit (CU), the (eleven) black nodes represent the
Remote Units (RUs) / Base Stations (BSs), and the red nodes
are the forwarding nodes. Based on the optimization model
output, VRAN consists of different functional splits of the
BSs indicated in the Fig. 8. Part of the VNFs are run in each
RU and the rest are run in the CU. Since each pair RU-CU
may have a different split, we labeled each one as a different
VRAN service. There are eleven VRAN services because
there are eleven pairs CU-RU, i.e., eleven BSs, which are
independently defined by the optimization model. However,
many VRAN services have the same functional split because
the FluidRAN model compacts Table 3 to only three options,
as described above.

Map Keys
@ Central Unit (CU)
@ Remote Units (RUs)
@ Forwarding nodes

FIGURE 8. Emulated topology randomly generated.
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Each scenario emulates the same eleven VRAN services,
while scenarios from B to F' also emulate one additional MEC
service deployed in the CU. In scenario A, there are only the
eleven VRAN services that were optimally deployed. This
scenario confirmed the expected performance derived from
the Benchmarker, i.e., the packet loss was neglected in all
VRAN services by applying the proper scale factor. Within
the scenarios from B to F, we increased by one the number
of shared links between the MEC and the vVRAN services,
i.€., scenario B has one shared link, scenario C has two shared
links, and so on. Table 4 compares each FluidRAN scenario
described above.

TABLE 4. Emulated FluidRAN scenarios comparison.

Shared links | MEC service emulation
Scenario A 0 links No
Scenario B 1 link Yes
Scenario C 2 links Yes
Scenario D 3 links Yes
Scenario E 4 links Yes
Scenario F 5 links Yes

Scenarios from B to F do not necessarily have the same
shared links in common, since the randomly generated RAN
topology and the flows distribution of the VRAN services do
not favor this sort of comparison. These scenarios are also
differentiated from one another by the place where the MEC
service is consumed, i.e., where the mobile users demanding
the MEC service are positioned. The positioning of the users
affects the MEC service routing and so does the amount
of links that are shared between the MEC and the VRAN
services.

For the sake of clarity, we randomly chose three VRAN
services for analyzing, in addition to the MEC service.
The emulated MEC service provides to each of its users
the equivalent to 20 Mbps in the real-world (considering the
scale factor of 20:1, recommended by the Benchmarker). This
could correspond to a 4K-video streaming or an early stage
VR service [34]. Fig. 9 presents the results when the MEC
service is accessed by 10 users. ‘vVRAN 1’ represents the
MAC-PHY split, ‘vRAN 2’ represents the PDCP-RLC split
and ‘Split vVRAN’ corresponds to a VRAN service that had
its flow split as a consequence of the optimal solution. For
every scenario, we performed 30 tests of 20 minutes each. The
mean values are presented with confidence interval bounds at
a confidence level of 95%.

From Fig. 9, we can observe that the VRAN services are
noticeably impacted only in scenario D. In order to improve
its performance, this result suggests that the focus should
be on the shared links of this scenario. The solution could
involve rerouting some flows of the vVRAN services or chang-
ing some functional splits. However, the low and localized
impact suggests that a simple approach, e.g., a basic heuris-
tic or a greedy solution could solve the problem. Probably,
it would not be necessary to recompute the FRD problem
again.
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FIGURE 9. Impact of the MEC service consumed by 10 users.

When the number of MEC users increases significantly,
it is expected that the impact tends to be notably higher in
the vVRAN services. However, the RAN topology and the flow
distribution of the vVRAN services make it difficult to predict
where and the extent of this impact. Again, eXP-RAN pro-
vides valuable information through an easy manner. Fig. 10
presents the results when the MEC service is accessed by
100 users, while the remaining configuration is kept identical,
as with the previous tests. All the scenarios with the MEC
service emulation exhibit severe packet loss and all the VRAN
services are affected in at least one scenario, but it is not trivial
the way that the MEC service impacted the vVRAN services.
For example, the ‘vRAN 2’ service is not the most affected
service as previously, while the scenarios B and C present the
highest packet loss. Differently from the result of the previous
tests, under this load, it would be useful to recompute the FRD
problem again, including the MEC service as a new VNFE.
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FIGURE 10. Impact of the MEC service consumed by 100 users.

In this use-case, we evaluated the impact of a MEC service
introduced after the optimal allocation of the vVRAN services.
The evaluation was focused on the packet loss generated
by the overload in the RAN links. However, the evaluation
could be easily expanded to include multiple services, users
changing from one BS to another, reconfiguration of the
nodes in terms of computing capacity, reconfiguration of
the links in terms of capacity or delay, among several other
changes in the experimentation environment. Additionally,
this use-case would be hard to represent in tools such as
ns-3 and Mininet. The ns-3 is focused on discrete event
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simulation and cannot represent computing resources, while
Mininet service representation depends on the user creating
and composing her application inside the tool. Furthermore,
VLSP/Slice Controller would depend on the user to properly
adjust the application/service flows since this software tool
does not have an auto-tune feature.

B. VIDEO SERVICE DEPLOYMENT

According to Cisco [35], by 2023, more than 80% of all
IP traffic will be video [36], with a large part of this traf-
fic generated by mobile devices. The use of caching at
the edge of the Internet is an old approach, introduced by
Content Delivery Networks (CDNs) at the end of the last
century, i.e., more than 20 years ago. To date, companies
like Akamai, Cloudflare, Limelight, and several others offer
content distribution services on a global scale. Given the
relevance of this market and the impact on communication
networks, several telecommunications companies have also
started offering content distribution services, such as AT&T,
China Telecom, and Telefonica. In addition, companies like
Netflix and Google have created their own unique CDNs,
known as Netflix Open Connect and Google Global Cache,
respectively. The introduction of ETSI MEC contributes to
standardizing the offer of caching services in a much sim-
pler, faster, and flexible way through VNFs. The benefits of
MEC (for caching) can be considered clear for users, service
providers, and infrastructure operators. However, the effec-
tive advantage of Network Slicing may not be so clear, mainly
for users and service providers who will be charged in a differ-
ent manner in order to gain from it. Network Slicing promises
to offer virtualized infrastructures to customers (tenants), e.g.,
a video service provider, that will be able to easily deploy
their services. Additionally, each customer will be able to
manage her virtualized infrastructure as needed, for example,
configuring the virtual (computing and network) resources or
allocating to her users a certain amount of network capacity.
In this use-case, we illustrate how eXP-RAN can emulate
two network slices, from different tenants with different QoS
demands, and analyze how they are affected as workload
increases. Scenarios with two network slices are commonly
used in the literature to illustrate the benefits of using network
slicing [37], [38].

We considered two slices. One, denoted by ‘Premium’
slice, is hired by the video service provider A (or tenant A),
while the other, denoted ‘Best-Effort’ slice, is provided to the
video service provider B (or tenant B). Tenant A offers a video
service to clients willing to pay a higher fee to receive their
video content with assured quality, while tenant B provides
video services to clients that paid a lower fee to receive
their video content and can have their video quality affected
by other clients’ demand on the network. Thus, tenant A
provides a premium video service, while tenant B offers a
best-effort video service.

We assume that both tenants have leased the network slices
from the same infrastructure provider of the previous use-
case, but covering only the subset of resources illustrated
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in Fig. 11. Thus, both network slices share the same physical
infrastructure shown in Fig. 11, which involves: a MEC host,
three base stations, and three forwarding nodes. This topology
could be built by modifying the Infrastructure Description
file generated previously and providing it as input to the
Infrastructure Manager module. The Service Description file
must be created for each tenant and then provided to the
Service Manager module.

(F2—(F2)

Map Keys
@  MECHost
@ @ Base Station

@ Forwarding

FIGURE 11. Topology for the emulation of the video service.

In the ‘Premium’ slice, the video service deployed is a con-
tainerized version of the FFmpeg software [39]. The server
side of the service is deployed in the MEC host, while the
clients run in the base station B2. The service deployed in
the ‘Best-Effort’ slice follows a similar approach with the
containerized version of the FFmpeg running in the MEC host
and the clients running in the base station B3. In both slices,
the clients receive 1080p video at a Constant Bit Rate (CBR).
For sake of simplicity, we consider that each tenant has five
clients. In each slice, one client is started every 30 seconds
until all the five clients started.

Fig. 12 presents the result of this experiment. The x-axis
indicates the number of the time window, where each time
window has a length of 10 seconds. Thus 1 is the first time
window of 10 seconds, 5 is the fifth time window of 10 sec-
onds, and so one. Each point in the y-axis represents the qual-
ity of the service received by each client during the 10-second
time window. The QoS is the ratio between the average
expected throughput and the average provided throughput to
the video flow. In Fig. 12 this ratio is computed every 10 sec-
onds. In the figures, only one client of the “Premium” slice
is illustrated because all of them show the same performance.
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FIGURE 12. Video stream results.
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We can observe that, as the workload increases, the QoS pro-
vided to the client of the “Premium” slice does not change.
On the contrary, in the “Best-Effort” slice, as the workload
increases, the QoS provided to each client decreases. Thus,
each network slice meets their requirements.

Finally, it is worth to mention that this use-case would be
hard to represent in tools such as Mininet, Fogbed, Edge-
CloudSim, and ns-3 due to lack or poor slice abstraction
support.

VI. CONCLUSION

In this paper, we presented eXP-RAN — an emulator for
gaining experience with Radio Access Network, Edge Com-
puting, and Slicing. eXP-RAN is an open-source tool used
to emulate RANs and EC infrastructures with the ability to
slice the network resources and evaluate the performance
of running services. eXP-RAN is distinguished from other
tools by its ability to abstract and represent RANS, virtualized
services and network slicing.

We described how the application empowers researchers to
run more realistic evaluation studies to support the emerging
telecommunication applications. Two use-cases were ana-
lyzed, one focusing on a VRAN design and the other one on
a slice running a video streaming service.

As future work, we plan 1) to add the radio part of the RAN
to the tool, i.e., radio resource allocation, loss propagation,
shadowing, fading, etc.; 2) to address the labeling problem
in the topology generator; 3) to add new use-cases, exploring
other aspects such as large number of network slices and com-
bination of network slicing and placement of VRAN network
functions; 4) to improve the existing support for automating
the service deployment and the system monitoring. Creating
a fully service agnostic approach is challenging, but there is
a lot of effort in literature and tools such as Open Network-
ing Automation Platform (ONAP) and Open Source Mano
(OSM) [40] are already following this direction. Among the
improvements in system monitoring, there are the integra-
tion with analytics and interactive visualization tools such as
Grafana.
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