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Abstract

Studying animal movement and distribution is of critical importance to addressing environmen-
tal challenges including invasive species, infectious diseases, climate and land-use change. Motion
sensitive camera traps offer a visual sensor to record the presence of a broad range of species pro-
viding location specific information on movement and behavior. Modern digital camera traps that
record video present new analytical opportunities, but also new data management challenges. This
paper describes our experience with a terrestrial animal monitoring system at Barro Colorado Is-
land, Panama. Our camera network captured the spatio-temporal dynamics of terrestrial bird and
mammal activity at the site - data relevant to immediate science questions, and long-term con-
servation issues. We believe that the experience gained and lessons learned during our year long
deployment and testing of the camera traps as well as the developed solutions are applicable to
broader sensor network applications and are valuable for the advancement of the sensor network
research. We suggest that the continued development of these hardware, software, and analytical
tools, in concert, offer an exciting sensor-network solution to monitoring of animal populations
which could realistically scale over larger areas and time spans.
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1. Introduction

Sensor networks represent a new paradigm for reliable environment monitoring and informa-
tion collection [1, 2, 3, 4, 5, 6, 7, 8, 9]. They hold the promise of revolutionizing sensing in a wide
range of application domains because of their reliability, accuracy, flexibility, cost-effectiveness,
and ease of deployment. A large number of numbers of sensors are being embedded in the natu-
ral environments (lakes, rivers, oceans, forest canopy etc.) and civil infrastructure (buildings and
bridges, data centers, etc.) [10, 11, 12]. These sensors produce huge volumes of data that must be
acquired, transported, stored, analyzed, and visualized to gain unprecedented scientific and engi-
neering insight. Sensor networks will be at the heart of the next century discovery and are therefore
linchpin of e-Science. In this paper, we describe our experiences deploying and testing a real-world
sensor network for monitoring animal communities.

The movement of organisms through their environment lies at the heart of ecological field
research and is of critical importance to addressing environmental challenges including invasive
species, infectious diseases, climate and land-use change [13]. Movement is the key defining char-
acter of most animals, and there are two basic ways to record animal motion [14]. The Lagrangian
approach monitors a specific individual, for example with a GPS-tag, and records a series of lo-
cations it passes through. The Eulerian approach, on the other hand, monitors a specific location
and records the movement of all organisms across it. Animal trackers following the Lagrangian
approach have been tracking animal movement since the advent of radio-telemetry [15]. While
useful for many purposes, these individual tracking studies are limited by the difficulty and bias
associated with capturing animals, as well as the logistical complications of tracking over long pe-
riods or large areas. Camera traps offer a Eulerian solution to monitoring animals that avoid these
biases by simply recording a photograph of the animals that move in front of them.

Distributed, motion-sensitive cameras (aka camera traps) are examples of sensor networks that
can collect data on animal populations. This paper develops the concept of camera traps as a net-
work of distributed sensors to monitor animal communities, using a year-long case study from
Barro Colorado Island (BCI), Panama. The developed system uses existing camera technology
to capture a unique and unbiased picture of environmental dynamics for medium and large sized
terrestrial animals. In the remainder of this section we present a background on the use of camera
traps and describe the specific study objectives. In Section 2 we describe the overall hardware and
software infrastructure followed by study design and methodology in Section 3. In Section 4 we
briefly describe how camera trap data can be analyzed to answer important biological questions
such as diversity and abundance of species. In Sections 5 we describe experiments results obtained
from our year long deployment at BCI. In Section 6 we describe several practical aspects of de-
ploying and testing a real-world camera networks. In Section 7 we describe future work and in
Section 8 we present concluding remarks.

1.1. Basic Advantage of Cameratraps
All animals move, but most are shy and quiet. Camera traps are an appropriate technique for

animal monitoring [16] for the following reasons: (1) They are non-invasive: when photographs are
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(a) An map of the camera trap BCI deploy-
ment.

(b) A sample camera trap deployment at BCI.

Figure 1: Camera Trap Deployment at BCI

captured using invisible IR flashes, camera traps have no effect on most animal behavior. (2) They
require low labor: camera traps are easy to deploy and can function for weeks with no attention
(3) They yield robust data: photographs are analogous to museum specimens in being a permanent
record of date, location, and species. (4) They produce bonus material: in addition to recording the
presence of a species camera traps can record animal behavior which can be important for scientific
questions, but also offers engaging images useful for education and promotion.

1.2. General Scientific Uses for Camera Trap Data
At the most basic level, camera trap data can be used to prove the existence of a species at a site;

with sufficient effort, it can also suggest the absence of a species [17]. This can be important to
show the arrival of an invasive species, or document the conservation status of rare species [18, 19].
Multiple georeferenced locations for a species can further be used to document their distribution
in an area, and compare with environmental features to create models of distribution or resource
selection [20]. Local animal density, the gold standard for animal monitoring, can also be estimated
from camera trap data, given proper study design [21, 22]. These data become more valuable as
they accumulate across sites or over years, for example showing predator-prey relationships of
tigers across India [23] and documenting their population demography at one site for 9 years [24].

1.3. Specific Objectives of our Camera Trap Study
We used camera traps to survey the diversity and abundance of the terrestrial mammal and

bird communities on BCI. In addition to the general objectives (mentioned in Section 1.2), we
are also interested to determine how these varied in space with the abundance of keystone fruit
resources. Using aerial photographs and on-the-ground mapping of palm trees [25] we have iden-
tified 5 low-fruit and 5 high-fruit 1-ha plots. We are comparing levels of animal diversity, activity
and abundance in these plots using cameras deployed in random locations within the plots. We
use 2 cameras per plot, moving them to new locations each 8 days. We followed this protocol for
1 full year from 22 January 2008 to 21 January 2009. We are also studying other things about
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(a) Database schema for the camera trap study (b) Sample clip for im-
age analysis.

Figure 2: Current Data Management Infrastructure and Image Analysis Techniques at BCI.

these plots, chief among them, radio-tracking agoutis and the seeds they disperse. In addition, this
experimental setup allows us to look at the effect of food abundance on animal communities.

1.4. Novel Aspects of Our Study
Over last few years, wireless sensor networks have been used extensively for ecological moni-

toring applications [2, 3, 4, 26, 6, 7, 8]. However, to the best of our knowledge this is the first year-
long camera trap deployment in a real-world setting (tropical rain forest on BCI) that uses novel
camera deployment strategies and systematically reports back practical and theoretical lessons
learned, both from science and sensor network research viewpoint. Following are the key differ-
ences between our work and the existing research.

Traditional camera trap studies used film cameras to study one particular target species. This
led to the development of techniques that maximize their efficiency of photographing that species,
but may decrease the detection of others (e.g. using baits or targeting animal trails). Our study
aimed to document the entire terrestrial mammal community, and therefore modified protocols to
minimize bias and detect any and all animals passing in front of a camera’s sensor. Four aspects
of our protocols are therefore different than most other camera studies: randomizing camera de-
ployment locations, using no bait, monitoring year-round, and recording video sequences for each
trigger.

Additionally, our study was designed to focus camera deployments within 10 study plots to
compare animal communities between sites with different amounts of fruit. More general moni-
toring protocols would probably alter this slightly to spread the cameras out more. The year-round
monitoring may be overkill for some research objectives. However, we advocate that randomizing
camera locations and setting without bait are important protocols that should be employed by any
study trying to document entire animal communities.
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Table 1: Hardware requirements for our application of remote cameras as sensor network to monitor animal popula-
tions.

Specification Requirements
Motion Sensor 5-10m range

Flash Infrared
Camera IR sensitive camera for night pictures, color for day

Picture resolution 1 megapixel sufficient, higher is better
Picture rate 1 frame per second allows video
Battery life Depends on photo and flash rate, 2-5+ weeks typical on 6 C-cell batteries
Trigger time 2/10th second, longer will miss animals passing by

Memory 1gb compact flash cards
Cost $500 now, cheaper is better

2. Infrastructure

The field work was conducted at the Barro Colorado Island (BCI) (9o10′
N, 79o51

′
W ) research

station, that is managed by the Smithsonian Tropical Research Institute. BCI is a completely
forested, 1567-ha island that was formed when Lake Gatun was created as part of the Panama
Canal. Animals continue to move between the island and the surrounding National Park land,
which are separated by a few 100m at various places. The island receives an average of 2632
mm of rain per year. The meteorological year is divided into two parts: a pronounced dry season
(approximately from mid-December to the end of April), and a wet season (May to mid- Decem-
ber). Relative humidity, soil moisture, air pressure, solar radiation, evapotranspiration, wind speed
and direction all show marked seasonal variation (wet/dry season differences). On the other hand,
temperature varies relatively little throughout the year [27].

2.1. Camera Hardware Requirements:
The components of a camera trap sensor network are simple in being; a collection of camera

traps which are deployed in the field, a series of memory cards used to record images and transfer
them back to the lab, and a database to save and organize images and metadata. Live transmitting
of data is limited by the battery power needed to send thousands of images from a remote camera,
not to mention limited communication networks in many wild areas.

Camera trap studies do not typically require high-resolution images, but do have a number
of minimum requirements (Table 1) needed to collect robust and unbiased data . Because they
are typically deployed for long periods of time in harsh conditions, they must be incredibly well
protected from rain and humidity (e.g., BCI is a rainforest with a prominent wet season). Most
modern digital cameras can capture night-time images using IR flashes, which can not be seen
by animals. This is an important feature because a visible flash is a source of potential bias for a
camera trap study if animals are disturbed by the flash and avoid the camera thereafter [28]. Digital
cameras with infrared flashes should result in neither aversion nor curiosity, although their flashes
may still be visible by people if viewed directly.

We used Reconyx RC55 Camera traps. Figure 1(b) shows a camera trap deployment at BCI.
Compared to other models, these camera traps hold up well in the harsh rainforest conditions.
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Figure 3: The daily activity pattern for one nocturnal and one diurnal animal species for a BCI study.

However, any electronics will suffer under this humidity, so some care is needed. We keep small
packets of desiccant in cameras, and regularly return them to the lab for cleaning and to dry them
out in a dry-closet. Carefully designed enclosures are key in keeping the moisture away, and Re-
conyx cameras come with a custom plastic enclosure with a rubber gasket. Impact of environment
on camera is presented in detail in Section 5. We use high-end rechargeable c-cells whose battery
life depends on the level activity at a site especially the number of flash pictures. Experience from
our deployments showed that we typically had an average of 30 days of battery life.

We have a developed a simple data management infrastructure (based on MySQL open source
database technology) that helps us manage these images efficiently (described in Section 3).

3. Procedure

3.1. Study Desgin
The exact way in which cameras are placed in the landscape of a study area depend on the

overall objectives. A good review of this can be found in [16, 29].
The number of cameras used in each sample unit represents a balance between collecting the

best possible data and making the most efficient use of a limited number of cameras. Statistics are
typically run on sample locations, so surveying more sites will give more statistical power. This is
typically limited by the number of cameras owned by the study, transportation costs/time between
camera sites, and the length of deployment for each camera. Deciding how long to deploy cameras
at site reflects an important tradeoff between improving the likelihood of detecting a species at a
given site (i.e., longer runs are better); increasing the number of different sample units that can
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be surveyed during the field season (shorter runs mean you can survey more sites); and, for some
objectives, maintaining population closure at a site (i.e., no immigration or emigration). In addition
to survey duration, the set type (e.g., baited or unbaited), the number of remote cameras within a
sample unit, the geographic spread of the sample unit, and local animal density will also affect
detection probability.

We assessed the mammal community with 20 Reconyx RC55 digital camera traps with 1 Gb
compact flash cards for image storage. Two cameras were deployed simultaneously at random
locations within each of 10 1-ha plots. To compare this randomized protocol with traditional trail-
side sets we also deployed a subset of cameras along trails near our plots (Figure 1(a)).We used
a GPS unit (Garmin 60CSx) to locate these points in the field and then mounted cameras on the
nearest tree at a height of 20 cm (Figure 1(b)). The camera view was maximized by aiming them in
the most suitable direction, with the least vegetation or slope obstructing their view within 5-10m.
Cameras were programmed with the following settings: low-resolution (1 mega pixel) pictures
at a frame rate of approximately 1 fps and trigger was set to no-delay mode. They were also
programmed to also make time-lapse pictures every 12 hours in order to check proper functioning.

We scheduled camera deployments to be 8 days, whereupon the camera was moved to a new
location. Most analyses are done across camera sites, so decreasing the duration of each deploy-
ment to increase the number of sites surveyed is preferred. However, increasing the number of
days at a site will increase the precision of the estimate of passage rate. Areas with lower mammal
density than BCI should use longer camera deployments, 2-4 week-long deployments are typical
in other studies [16]. This trade-off can be statistically modeled to help fine tune a study-design to
meet specific research objectives [30].

We now briefly describe our data management infrastructure. After 8 days of deployment, we
swap the memory cards in cameras with blank memory cards and return the used memory cards to
the lab where images are organized in a custom-made MySQL database with a PHP web interface.
Time, date, trigger event, trigger type and camera are automatically extracted from the metadata of
the images (exif data). Data is organized per plot, location, camera run and card run. Figure 2(a)
shows the the conceptual overview of the database but not the details.

Because we record sequences of images consecutively (pseudo-video), we have to separate or
join sequences before analyzing animal passage rates. Our basic goal is to have each sequence
represent one individual or social group of animals. We consider any pair of sequences separated
by more than 40 minutes to be different, and any less then 30 seconds apart to be the same. Con-
secutive sequences with with intermediate interval lengths are flagged and checked manually to
determine if they should be split or lumped. The final step of data processing is to identify the con-
tents of each image sequence. We register the species present and register the number of animals.
For species that are identifiable by unique coat patterns, such as ocelots or paca, we also note each
animal’s individual ID. Figure 2(b) shows a sample clip processed using the above procedure.

4. Statistical Analysis

Camera trap data is analyzed in three main ways. First, details of the animals represented by
each photo sequence are available including the species, group size, date, time, and location. This
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(a) Frequency of detection for 25 species of ter-
restrial birds and mammals on BCI. The hori-
zontal dotted line at Y=1000 stands for the theo-
retical total maximum number of species at BCI.

(b) The daily pattern of animal activity on the forest
floor. Colors match the species names in Fig 4(a)..

Figure 4: Forest signatures from camera trap deployment at BCI

data is useful for showing the overall frequency of detection of each species and the temporal
distribution of activity (Figure 3 and Figure 4).

Second, details of the animals detected at each camera location are calculated. The simplest
estimate is a detection rate over the entire camera deployment, recorded as the total number of
sequences of a given species divided by the total time a camera was running. This is useful as a
general index of abundance that may also be used to estimate true animal density [21]. A slightly
more complicated query outputs the performance of each camera on each day it was in operation
in terms of the detection or non-detection of a given species. This data is analyzed to calculate the
probability of detection for a given site, which can be further developed in occupancy modeling,
taking into account various environmental covariates [30].

Third, the captured histories of individual animals can be analyzed using mark-recapture pro-
tocols [30]. This is typically possible for a subset of species that have unique coat markings such
as spotted jaguars or striped tigers [22], but may also be applied to male ungulates with unique
antler patterns [31] or to other species tagged with unique color markings [32].
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5. Experimental Results

5.1. Forest Signatures
Our year-long deployment of remote cameras at randomized locations has given us a unique

and unbiased view of the overall activity of animals on the rainforest floor including the species
present and their relative abundance (Figure 4). The deployment resulted in a total of 764 deploy-
ments with 17111 animal detections and 25 species detections. This measure of animal activity is
simply the number of times a given species walked across a sample plot, and offers a direct metric
of potential ecological impact. For example, as shown in Figure 4, on BCI agoutis, peccaries, and
paca are the most frequently detected species, and thus the most likely to have an impact on local
plant populations through seed predation or dispersal. If calibrated into density (animals/km2) [21]
these could also be used to derive estimates of biomass for each species or ecological group.

The standardized measures of species diversity and abundance represented by these signatures
(Figure 4) are exactly those needed to evaluate the effects of modern environmental change. Ef-
fects of climate change and invasive species would be reflected in changes in species composition,
while changes in abundance would reflect natural population fluctuations, as well as more dramatic
crashes or explosions typical of human influenced dynamics.

5.2. Sample Size Optimization
Our year-round survey is unique in offering a seasonal view on the animal community. How-

ever, many basic objectives of estimating the diversity and abundance of the community can be
met with less effort. We used our year-round data set to evaluate the sample size needed to meet
these objectives. Figure 5(a) shows the relationship between estimated mammalian species diver-
sity and sampling effort. Each deployment represents one camera in the field for 8 days, and levels
off after 15-25 deployments. There are 19 large and medium-sized terrestrial mammal species the-
oretically possible on BCI, although 4 of these (jaguar, jaguarundi, margray, and grison) are very
rarely recorded on BCI, probably only as sporadic visitors.

We also evaluated the sampling intensity needed to obtain an accurate estimate of detection
frequency, an index of animal abundance (Figure 5(b)). This shows that the variation in average
agouti detection rate levels off after 15-20 camera deployments, suggesting this is an appropriate
sample effort. This could be met, for example, with 15 8-day deployments of one camera, or 3
deployments of 5 cameras. This relationship varies across species, with accurate estimates for
species that are rare, or variable in their activity, requiring more sample effort.

5.3. Camera Deployments Strategies
Sensor deployment and placement strategies has received considerable attention from the re-

search community [33, 34, 35, 36, 37]. However, to the best of our knowledge, this is is first
study that takes into account application-level metric in a year-long real-world deployment. To
evaluate the effect of camera placement on animal detections we compared the detection rate for
cameras placed right on hiking trails (n=76) with those places in random locations within the forest
(n=905). We found that there was a significant difference between trail and random trap rates for
three out of 14 species tested (Figure 6). Ocelots favour trails (6-fold higher trap rate on trails),
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(a) Estimation of species diversity with in-
creased sample size. Each camera deploy-
ment represents 8 days of monitoring. Curves
are drawn using a rarefaction (Sobs) or Jack-
knife (Jack1) resampling of 200 camera de-
ployments on BCI.

(b) The variation in estimated detection rate
for agoutis with sampling effort. The mean
rate (black line) changes little, but the variation
(min/max are thin red lines, 95% confidence in-
tervals are thick red lines) in estimates decreases
with increasing sample effort, leveling off after
around 15-20 camera deployments. Each cam-
era deployment is 8-days long. All estimates
come from 1000 resamples of data from one
study plot.

Figure 5: Sample Size Optimization Study Results
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while brocket deer and peccary avoid them (respectively 3.3 and 2.8-fold higher trap rates on ran-
dom placements). Paca also show a non-significant tendency to avoid trails, while tamandua show
a slight tendency to favor them, but none of the other nine species show any evidence for a differ-
ence in trap rates between random and trail placements. Thus, in our study area, trail side cameras
appear to be giving a biased view for a minority of species, although the degree of bias where it
exists can be very high. It may also be worth noting that serious bias occurs only in the larger
species (>10 kg) in this set.

5.4. Spatial Autocorrelation Of Detection Rates:
A common concern for all camera trap surveys not using mark/recapture analyses is to de-

termine how far apart to camera sites must be to be spatially independent. Typically, studies take
extreme caution in this regard, spacing camera traps far enough apart to minimize the potential that
the same individual animal would be detected by two cameras. The usual measure is to estimate
the diameter of the home range of a target species and make this the minimum spacing for cameras,
which is often many km [38]. However, no study has empirically evaluated the autocorrelation of
camera trap data. Our data presents an excellent opportunity to do this, with pairs of cameras
within a plot offering small-scale comparisons, and comparisons across plots offering larger-scale
comparisons. We used the Geostatistical analyst extension of ArcGIS9 (ESRI) function to evaluate
spatial autocorrelation by comparing the detection rate for a given species across all pairs of cam-
eras. We analyzed data within 2-month time windows to take into account that spatial patterns of
animal activity may vary seasonally. We analyzed data for the five most common species, which
include a large range of body size and scale of movement across the landscape.

The main result was that we found very little spatial autocorrelation in animal detection rates
for any of the 5 mammal species considered. Figure 7 shows this result in that the covariance (y
axis) between all pairs of traps is not significantly different from 0 when the cameras are greater
than 25m apart (x axis). The results were similar across species, with a positive correlation between
the detection rates for camera sites very close to each other (< 25 m) but not at any other spatial
scales. This result suggests that cameras can be placed much closer to each other than is typically
done and still record statistically independent data; instead of the many km minimum distance, we
suggest cameras be a minimum of 25 m apart. Cameras set more closely might still be useful, if
spatial autocorrelation is irrelevant, or taken into account by analyses.

5.5. Camera Performance In Real-world
Due to challenging weather and environmental conditions camera traps are often more difficult

to operate in rainy reasons. To minimize the impact of seasonality on camera performance we
suggest use of silica desiccant packets (2 if possible) to keep the insides dry.

There was a strong effect of seasonality Figure 8(a), with detection distance (measured by
walking in front of the camera when setting it out) shortening during the rainy season. This is
probably a combination of moisture on the sensor, in the air between the sensor and the target, and
on the target itself. Together, these would dampen the difference between the IR signature of an
animal compared with the background, and thus reduce its ability to detect an animal. Shrinking
the effective area each camera surveys has obvious impacts on the number of animals it detects.
Thus it is important to document these effects, and take them into account for comparisons of
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Figure 6: Comparison of trap rates (log transformed) between random (Rand, n=905) and trail (Trail, n=76) camera
placements for 14 species. Error bars are standard errors. P-values for each species give the significance of the
difference between trail and random using F-tests (allowing for overdispersion) on quasi-Poisson generalised linear
models of species counts, controlled for deployment duration by including the log of this value as an offset.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Semivariograms of detection rates for five species of mammals recorded by camera traps showing the decline
in spatial autocorrelation after 25m out to 300m (a) Spiny Rat (b) Agouti, (c) Coati, (d) Brocket Deer, (e) Peccary.
Test for autocorrelation at larger scales produced similar results for all species, as represented by one graph for our
largest species (f). Graphs show the mean (center square), standard error (box) and standard deviation (wisker) for all
pairs of camera traps within a given distance class.
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(a)Impact of seasonality on camera performance. (b)Camera failures in our study.

Figure 8: Study of Camera Performance in Real-World

animal activity across seasons or sites. We also advise keeping cameras in dry-closet whenever not
in use. Based on our experience rotating cameras out of service every 2 months for preventative
maintenance works well.

5.6. Relation Between Animal Size And Camera Parameters
An inherent property of the triggers used on camera traps is that they are less likely to detect

small animals than large, all else being equal. This can be seen in the distribution of positions of
different species relative to the camera when first detected (Figure 9), demonstrating much shorter
average distances for the smaller species and, to a lesser extent, narrower angles. We are currently
developing methods to model this phenomenon [39], allowing us to quantify camera sensitivity for
any given species, camera or environment (illustrated by detection zone sectors in (ref. Figure 9).
This approach will be important in enabling us to extract abundance signals from trap rates by
controlling for camera sensitivity.

5.7. Camera Failures In Real-world
We observed that only 30% of the deployed cameras never failed during the year (Figure 8(b)).

This shows that operating a camera trap based solution over extended periods of time does require
monitoring and debugging. Approximately 40% failures were due camera lens being blurry. The
manufacturer repaired all cameras, and used our experience to find that the problem was caused
by humidity de-laminating a filter on the lens. They have since improved the seal on the lens. The
second major source of failures was (-20%) caused by humidity affecting circuitry of the camera.
The manufacture has since developed a new coating for their circuit boards which should improve
their performance in high humidity.
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Figure 9: Positions of animals on first detection (open points) relative to the camera (filled triangles) for three repre-
sentative species of contrasting size: spiny rat (0.4 kg), paca (8 kg) and peccary (25 kg). The camera is at the origin,
with axis values in metres. The open sectors illustrate effective detection zones, estimated by fitting detection models
to the distance and angle data for locations.

6. Practical Considerations and Experiences

6.1. Equipment Management:
Although we are hopeful that improved designs will be more weather-proof, we expect that

hardware maintenance will remain a critical aspect for any long-term monitoring project. Key
items to regularly inspect and service include the rubber gaskets that prevent moisture from en-
tering system components, exposed metal contacts and battery leads (for corrosion and dirt), and
external wires. In humid environments, care should be taken when moving cameras from air-
conditioned rooms into field conditions because condensation will form on electronic parts and
lenses. Finally, it is important to be realistic about the durability of remote cameras and to prepare
for equipment malfunction. We advise that researchers not deploy every available remote cam-
era but rather have a few extra units at the ready to replace broken equipment. When working in
particularly challenging environments, maintaining a reserve of cameras amounting to 20% of the
total number deployed may be necessary to maintain consistent sampling effort.

6.2. In-Field Equipment Checking
Determining the optimal frequency at which to check each camera station usually entails a

tradeoff between maximizing efficiency and ensuring that stations will remain functional during
the entire sampling interval. Long deployments record more animals, but may run out of batteries
or memory, and result in fewer sites being sampled with a limited number of cameras. Numerous
factors, including the type of camera system (e.g., film versus digital), camera programming (e.g.,
camera delay), site remoteness, whether sets are baited or unbaited, and expected site activity level,
must be considered. When surveying a new site we generally recommend initially checking camera
sets within 7-14 days. From these preliminary data you can judge optimal survey length based on
remaining battery/memory and the rate of detection of target species.
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6.3. Baiting and Site Selection
The study design used to deploy camera traps is dependent on the goal. When wanting to deter-

mine absence or presence of a target species baiting cameras can be considered. Baiting will attract
animals from a wider area, but will only attract target species and may even repel other species.
Another way of increasing trapping rate is using landscape feature that animals use. These can be
trail (human or game) but also for example drinking ponds. To get an unbiased sample, random
camera locations can be considered. By generating random locations and deploying cameras at
these sites one tries to prevent having biases in the animals sampled.

6.4. Labor Estimates
A single experienced person can efficiently set up, check, and break down most remote camera

systems. Given the logistics and challenges of most surveys, however, including weather, accessing
the site (e.g., by vehicle, on foot), safety, the number of stations, and the total amount of weight to
be carried into the field - most surveys use two-person field teams. Furthermore, if inexperienced
personnel or new equipment are being used, two-person teams will likely improve the success of
the effort and provide more learning opportunities.

6.5. Minimizing Theft:
In this project we had minimal risk of theft because of the high security on BCI. However, this is

a potential problem for many distributed sensor networks, including camera traps. Minimizing the
detection of your camera by others is the first measure to take to reduce theft. Running cameras off-
trail and below eye-level helps this. A visible flash also gives away the location of your camera, so
digital cameras with IR flashes should be more cryptic. Units with a red filter over the flash further
reduce risk by eliminating even the dull red glow of IR flashes. A simple cable and padlock should
deter most thieves. A small sign taped to the side of the camera briefly describing the purpose of the
study and providing relevant contact information typically satisfies curiosity and limits vandalism.
However, no lock is foolproof to a determined thief with the right tools, so studies should anticipate
some level of theft by having replacement cameras on hand.

7. Future Work

7.1. Automated Image Analysis Framework
The hardware and data management protocols we outline here are appropriate for the research

objectives of most typical camera-trap projects, and they can easily handle the tens of thousands
pictures we generate per year. However, expanding collaborative wildlife monitoring networks
with large spatiotemporal scales will cause new data analysis and management problems.

Camera traps are inherently fixed in space, and moving animals are the primary cause of con-
tent changes between video frames. We have been exploring the application of automated and
semi-automated image content analysis techniques to camera trap images. We believe that these
capabilities have the potential to greatly improve the efficiency of large scale camera-trap image
processing and enable practical extraction of new information from camera trap images that would
support the investigation of a number of interesting scientific questions. For example, automated
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(a)Example calibration tar-
get.

(b)Camera physical parameter estimation.

Figure 10: Forest signatures from camera trap deployment at BCI

identification of the animal species would be of obvious utility. Even if the identification is not
100% accurate, pre-sorting images by species before presenting them to experts for analysis could
make the species identification process significantly more efficient. Likewise, advanced pattern
recognition algorithms could help researchers to efficiently identify individual animals in those
species with unique coat patterns (e.g. tigers or jaguars). Furthermore, after camera calibration
using a pattern as shown in Figure 10(a), animal movements and size can be extracted from the
camera trap images. We can then estimate the position of the animal relative to the camera at the
moment it triggered the motion sensor, and measure the distance to, and speed of, the animal as it
moves across the field of view. The position of the animal at triggering is important because it can
be used to determine the camera detection footprint for different species and types of sites [21].
Measurement of the speed an animal move might is also useful to calibrate estimates of animal
density from camera trap detection.

While these two measurements can, and have, been made manually in the field, they are quite
time consuming. We now describe our ongoing effort on automated image processing for camera
trap videos for animal detection, location and speed estimation.

Estimating Physical and Motion Parameters from each camera trap image sequence where an
animal is detected, we estimate its motion and physical parameters, such as average and maximum
moving speeds, entry position/angle, and body size using the following procedure.

The first and enabling step is camera calibration [40, 41]. To minimize the workload of people
deploying the cameras, we choose a self-calibration approach [42, 43] using a known calibration
object. For example, we used a one meter long striped white stick placed at different orienta-
tions during our camera-trap data collection at BCI. A checkerboard pattern is also often used.
Figure 10(a) shows a general purpose calibration target that we have used for some of our experi-
ments. From multiple images of the calibration target placed at a few locations in the field of view
of the camera we derive calibration parameters for both the camera and the site.

Parameters specific to the camera are known as intrinsic parameters and those associated with
the placement of the camera relative to the scene are called extrinsic parameters. It is possible to
estimate both the intrinsic and extrinsic parameters from the field images if sufficient calibration
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images are collected. However, this approach places a somewhat significant burden on the field
crew. So, our preferred approach is to separately perform the intrinsic calibration on each camera
prior to deployment in the field. Then an extrinsic calibration can be done for each site with
significantly reduced effort in the field.

Intrinsic and extrinsic camera parameters are determined by building a camera model that pro-
duces the minimum projection error [40]. From the model we can then estimate the physical
location (on the ground plane) and the dimension of the animal.

Currently we use a semi-automatic point tracking approach with some manual point designa-
tion to derive estimates of the animals movement. In our preliminary tests with BCI and other
data we have found this approach to provide accurate estimates of animal movement speed, and
the distance from the camera at first detection. Figure 10(b) shows estimated animal moving speed
from camera-trap data in comparison with the manual measurements taken in the field (a laborious
process). We can see that our estimates from camera trap images match the manual measurements
very well.

In future work, we will explore an alternate approach that would be integrated with an auto-
matic animal recognition process. In this approach we would treat this problem as a 3-D camera
view geometry problem: determining a minimum vertical rectangular bounding box B of the ani-
mal in the 3-D space whose bottom edge lies on the ground plane and its projection A in the image
plane contains the extracted animal silhouette. The center and dimensions (height and width) of
box B are then the estimated body position and dimensions of the animal. With the animal body
position in each image available, we can then track the body position over time and determine the
animals instant moving speed, moving trajectory, maximum and average moving speed, principle
moving direction, average stopping frequency, distance and angle to first detection, entry angle,
and other motion-related parameters. The team is working to determine additional useful motion
and physical parameters that might be derived from this data.

7.2. Networking Cameras
We do not network our cameras or retrieve data in real time. The energy budget needed to

transmit so many images would require a much larger battery or solar panel, which are not practical
or our applications. Real-time data would be useful for responding to rare events or monitoring
camera performance. Furthermore, it would make very difficult camera sites more practical to
monitor (e.g. treetop canopies) without physically visiting the site to retrieve the images. However,
in future, we plan to explore the option of real-time data transmission by networking the field
deployed cameras. This will allow us to study various interesting system level issues such as data
transmission reliability and energy consumption.

8. Conclusion

To conclude, data gathered from our a year-long terrestrial animal monitoring system at Barro
Colorado Island, Panama shows the spatio-temporal dynamics of terrestrial bird and mammal ac-
tivity at the site - data relevant to immediate science questions, and long-term conservation issues.
We believe that the experience gained and lessons learned during our year long deployment and
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testing of the camera traps are applicable to broader sensor network applications and are valuable
for the advancement of the sensor network research.
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