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Abstract

Frequencies of 1 GHz or more and high packing densities are becoming common in much 
electronic equipment, such as mobile communication systems. In these situations, the effect 
of electromagnetic coupling in the interconnections can seriously degrade performance, and 
leads to many repeated attempts at a satisfactory design if not understood. This thesis 
describes several aspects of a method to analyse the complex three dimensional 
electromagnetic behaviour of printed circuit boards, which is used to understand and correct 
these problems. An approximate solution to Maxwell’s equations in terms of a lumped 
element equivalent circuit model, using capacitors, inductors and resistors, is first developed.

The method employs Green’s functions for the electric scalar and magnetic vector potentials. 
Series solutions for these in situations where there are up to three infinite, planar dielectric 
layers and two ground planes are developed. They are shown to have good convergence 
properties, and their use makes the method very efficient.

The concept of inductance is examined, and developed to model the inductance of the vias 
used to connect different layers together. For more general cases of modelling inductance 
and capacitance, basis functions for rectangular and triangular elements are examined, and 
efficient subroutines to calculate the potentials due to them are described.

The modelling of more general metal shapes than tracks is tackled by describing them in 
terms of polygons. A comprehensive method for processing these into a set of rectangular 
and triangular elements is developed, and possible enhancements to this discussed.

Results are presented to show that the methods described yield excellent agreement with 
experimental results, while being extremely efficient in terms of computer time and 
resources.
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Chapter 1 

Introduction

1.1 Introduction

The design of circuits has long been something of an art. In the past, circuits were first 
designed on paper, with component values calculated by hand. When a satisfactory design 
had been reached, the circuit was implemented as a breadboard, with the components 
interconnected by wires (often a tangled mass of wires!). Unexpected behaviour of the 
circuit often occurred at this stage, so a certain amount of “try it and see” changing took 
place, until the circuit performed satisfactorily, and the design could be transferred to a 
printed circuit board (PCB). This transfer would also be done by hand, leaving considerable 
scope for more errors to creep in, necessitating one or more redesigns.

Nowadays, electronic design is usually carried out using computer aided design (CAD) 
packages, both for the design of the circuit and the layout of PCBs and integrated circuits 
(ICs). These packages include circuit simulation facilities, which predict the performance 
of the schematic circuit and thus replace the breadboard stage. However, the ability to 
simulate any unwanted effects introduced by the PCB layout is not usually found in such 
packages. Analogue and digital systems are now using higher frequencies (up to a few 
GHz), for example in radio communications or high performance computers, while the 
emphasis on miniaturisation means that components are becoming more and more tightly 
packed, thus increasing unwanted coupling. The problems on PCBs are more severe than 
in ICs at the present time, and so this work has concentrated on the former.

A PCB consists of a dielectric substrate with one or more layers of printed metallisation 
pattern. PCBs with internal layers of conductors are fabricated as several separate substrates, 
which are then bonded together. Discrete components, such as capacitors, resistors, 
transistors and ICs, are mounted on the substrate, and use the metallisation pattern to provide 
the necessary connections between themselves for the circuit to function. As a result of the 
trends discussed above, it is often not a good approximation to ignore the effects of the PCB 
metallisation pattern in the circuit simulation. Instead, the combination of metallisation
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pattern and dielectric must be treated as a complex, multi-terminal component, which will 
in general have a very complex transfer characteristic. In addition, such a model should be 
integrated into the CAD system.

The work described in this thesis forms part of a project at Philips Research Laboratories, 
Redhill (PRL) to produce a computer package, known as FACET, which is able to predict 
unwanted effects caused by layout. Its use will help to prevent costly design mistakes, and 
to speed up the design process. Additionally, the availability of such a powerful tool enables 
design aspects to be explored much more thoroughly than has been possible before, which 
should lead to more robust designs. A summary of the main achievements made during this 
research appears as section 9.2 in the concluding chapter.

The next section describes the approaches that have been used for electromagnetic 
modelling, and the following section gives more information about the computer package 
developed.

1.2 Electromagnetic Modelling

Electromagnetic modelling has a long history, going back to Maxwell at least. Before the 
advent of computers, the problems that could be tackled were limited by the complexity of 
the calculations to simple, symmetrical geometries. An example of this is the capacitance 
of a thin rectangular plate, investigated by Maxwell [1893], and many others since, eg. 
[Reitan and Higgins, 1957]. The method they used was the method of subareas, essentially 
dividing up the plate into a number of smaller areas, imposing a constant charge density on 
each area and solving for these charge densities. This method has some resemblance to that 
used here, as will become apparent later.

With the advent of high speed computers, there has been an explosion of interest in the field, 
and a large associated literature has built up. There are many numerical approaches which 
have been used for electromagnetic modelling. All numerical methods convert the 
continuous field problem to a discrete equivalent. General numerical analysis techniques 
such as the finite difference method (FDM) [Zienkiewicz and Morgan, 1983, Chapter 1] or 
finite element method (FEM) [Zienkiewicz and Morgan, 1983, Chapters 3 and 4] have been 
widely used in many fields. Essentially, these work from the differential form of Maxwell’s 
equations. The problem is discretised by creating a mesh of points covering the region of
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the PCB and surrounding space. This mesh must be fine enough to represent the electric 
and magnetic fields with reasonable accuracy. The methods then relate the field values at 
each mesh point to those at adjacent mesh points to produce a set of simultaneous equations 
to be solved. Unfortunately, for a PCB of moderate size and complexity, a 3D mesh with 
many tens of millions of nodes is likely to be produced because of the rapid spatial variations 
in the metallisation pattern, and consequently the fields. This is much too large to be 
feasible, even with today’s computers.

An alternative approach, which is rather more promising for this application, is to work from 
the integral form of Maxwell’s equations, for instance using the electric field integral 
equation [Wang and Drane, 1982]. This method breaks up the pattern of conductors into 
patches, on each of which charge or current sources of unknown amplitude are defined. 
The unknown amplitudes can then be found by forcing the fields to obey the relevant 
boundary conditions. The number of simultaneous equations produced is equal to the 
number of unknown amplitude terms. Since unknown sources are only present on 
conducting surfaces, the number of simultaneous equations produced is many times smaller 
than for the FDM or FEM. The penalty is that the individual terms in the simultaneous 
equations are rather more complex to obtain, and the set of equations is non-sparse, since 
each source in principle affects every other source. However, the reduction in problem size 
is of much greater importance here, and such methods make the problem feasible.

In such integral methods, the continuous field problem is typically reduced to a set of 
discrete simultaneous equations using the method of moments [Harrington, 1968]. The 
simplest implementation of this is the wire grid model [Moore and Pizer, 1984], where the 
surfaces are modelled as a mesh of thin wires. This method has been used successfully for 
the modelling of radar cross-sections, because the far field pattern is fairly accurately 
predicted. The method is less well suited to modelling coupling and impedance on PCBs. 
This is because of the need for a fine grid of wires to model the rapid variations in current 
density within conductors at radio frequencies (RF), and the difficulty in obtaining the 
correct values for the near fields. PCB radiation and irradiation is another important subject, 
but this is not addressed here.

A better approach, and the one adopted in this work, is to use physically realistic charge and 
current distributions to model the actual distributions. The behaviour of charge and current 
in tracks and at conductor edges has been investigated [van Nie, 1977; Mittra and Lee, 1971; 
Kobayashi, 1985], so these results can be incorporated in the assumed distributions. With
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this approach adopted, the next problem is to find the fields or potentials due to these charge 
and current distributions. Several authors have provided solutions for a variety of situations 
[Wei et al, 1984; Yamashita, 1968; Farrar and Adams, 1974; Crampagne et al, 1978].

The final problem with which this work is concerned is to produce a model suitable for 
analysis with a standard circuit analysis package. This enables the results of the simulation 
to be displayed in a way meaningful to an electronic designer. One way to do this, and the 
method adopted here, is to associate the elements into which the layout is subdivided with 
components in an equivalent circuit. This method was pioneered by Ruehli [1972, 1979, 
1987] and co-workers at IBM, and has the great advantage of producing inductance and 
capacitance values for identifiable parts of the layout. Such components are meaningful to 
an electronic designer. Alternatives are possible, such as expressing the results as an 
admittance matrix, but these are generally harder to implement and to interpret.

Commercially available packages are rather limited in this field. Touchstone [EEsof], the 
most commonly used package for microstrip simulation, has good models for junctions and 
pairs of coupled tracks, but cannot handle multi-layer boards and non-parallel tracks. 
Greenfield2 [Quantic] will simulate multi-layer boards, but is also restricted to parallel 
tracks. The lack of a capability for non-parallel tracks is the most serious limitation for all 
but the most regular of digital PCBs, and the lack of a model for irregularly shaped 
metallisation areas is also a serious limitation for RF PCBs. There are several published 
papers addressing specific problems, such as crossing tracks [Koike et al, 1987], or comers 
and T junctions [Silvester and Benedek, 1973], but only the IBM work referred to above 
addresses more general problems. This is, however, aimed specifically at IC simulation, and 
is not available as a commercial package.

The problem of a general 3D analysis capability for PCBs is addressed in the FACET 
system, described in the next section. The work presented in this thesis has investigated 
several of the areas necessary for this system, and the results of this work have been 
incorporated into the system.

1.3 The FACET System

FACET, standing for Functional Analysis of Circuits using Electromagnetic Theory, is the 
name of the CAD package developed at PRL for PCB simulation. The package is described
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in the paper by Milsom et al [1989], provided as additional material to this thesis. FACET 
has much greater functionality than other commercially available packages, such as those 
mentioned in the previous section. It can handle a large number of non-parallel conductors 
in a multi-layer configuration, with models for all the conductor features commonly found 
on PCBs. A brief description of the functionality of the package is given in the remainder 
of this section.

FACET treats the PCB layout information held in the CAD system used for design as 
follows. The description of the layout contains the following types of conductor features:

• Pads, or places where components can be attached. There are two types of these. 
Rectangular pads are for the attachment of surface mounted devices (SMDs), which are 
compact discrete components, such as resistors or capacitors, and surface mounted 
integrated circuits. Their use is becoming more and more widespread, principally 
because of their small size. Circular pads are for the attachment of the more traditional 
wire ended components, and consist of a circular area of metal (for the solder 
connection) together with a via, or hole through the PCB (for the component lead). 
Although the use of wire ended components is reducing, they will continue to be used 
for several specific applications, such as high power inductors, and for vias connecting 
different PCB conductor layers.

• Tracks form the majority of the conductors on a typical PCB. Their principal use is to 
provide connections between components. However, they can also be used to realise 
printed components such as inductors and resistors. This latter use is becoming 
increasingly common, and will become more so with the availability of accurate models 
for these components.

• Polygons are areas of metal which are many sided and irregular in shape. They are 
often used as partial ground planes, in an attempt to improve the isolation between 

different parts of the layout. The modelling of polygons is described in detail in Chapter 
7.

• Vias are holes through the PCB substrate, usually metallised. They provide electrical 
interconnections between different conductor layers, and are also used for the 
attachment of wire ended components, as mentioned above.

• Ground planes may also be present, either on one surface of the PCB or remote from 

it (usually the equipment package). One ground plane parallel to the PCB surface, 
modelled as a perfect conductor, can be taken into account in the current version of 
FACET.
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These features are processed into sets of elements as the first stage in the modelling process, 
an element being a portion of conductor area. FACET represents the electrical behaviour 
of the PCB by an equivalent circuit, consisting of capacitors, inductors and resistors. An 
appropriate topology for the equivalent circuit is automatically generated, and each 
component in this circuit is associated with a set of FACET elements. The degree of 
subdivision performed is controlled predominantly by the maximum frequency at which the 
model is required to be valid, a higher frequency requiring more subdivision to maintain the 
accuracy of the representation. The geometrical complexity also has an effect on the degree 
of subdivision.

FACET then solves for the values of the equivalent circuit components. The electromagnetic 
analysis required for this is the heart of FACET, and the methods used are described in 
Chapter 2. The output from this stage is an equivalent circuit, written in the input language 
of an appropriate circuit simulator, at present PHILPAC or PANACEA, which are in-house 
Philips packages, although SPICE could in principle also be used.

The equivalent circuit model of the PCB is then combined with details of the circuit 
components to be attached to the PCB to form the complete circuit representing the 
behaviour of the PCB and its components. Using PHILPAC or PANACEA, any simulation 
required can now be performed in the same way as for the schematic circuit without PCB 
effects. The results can be viewed in the same way as the designer would the results of a 
simulation of the components alone, to see the effect of layout on the circuit performance. 
There are additional post processing options in FACET to aid in diagnosing problems with 
a layout. The most important of these is a power flow plotting facility, which shows plots 
of the distribution of electromagnetic power at a particular frequency superimposed on the 
layout diagram.

The work described in this thesis addresses several of the areas within FACET, to which it 
has made a major contribution.

1.4 Outline of Thesis

Chapter 2 is a theoretical overview. It begins by taking Maxwell’s equations and rewriting 
them in terms of an electric scalar potential and a magnetic vector potential. The equations 
for these can be solved by using appropriate Green’s functions (effectively the potential due



-  1 9 -

to a point charge or current source), the derivation of which is described in Chapter 3. The 

process of forming an equivalent circuit model for the conductors on the PCB is then 
described, showing how the layout is subdivided into elements, which are then associated 

with equivalent circuit components. This association is shown to satisfy Maxwell’s equations 
given certain approximations, which are justified by reference to the class of problems 

tackled.

Chapter 3 discusses the derivation of the set of Green’s functions for the scalar and vector 
potentials required by the previous chapter for geometrical arrangements suitable for PCB 
modelling. The Green’s functions are derived through a Fourier transform method and 

expressed as infinite series of charges or currents, which can be regarded as image sources. 

The association of these series with the classical method of images is shown explicitly for 
a few simple cases, then the convergence properties of the series are examined. The series 

are shown to converge well for most practical cases, which is an important factor in 
obtaining simulation results in a reasonable time.

Chapter 4 begins by demonstrating the equivalence of the standard definition of inductance 
in terms of magnetic flux through closed loops to a definition in terms of the vector potential, 
as used in Chapter 2. It then takes one of the simplest of the Green’s functions derived in 
Chapter 3, that for the vector potential in free space, and uses it to illustrate how the 
computation of inductance is performed for a particular example. The example is the 

inductance of vias, which can be modelled as hollow, cylindrical conductors. Efficient 
expressions are developed for the self inductance of a via and the mutual inductance between 

vias.

Chapter 5 goes on to describe the computation of scalar and vector potentials for the 
elements used to model the charge and current distributions in polygons and tracks, and also 

the mutual inductance between the rectangular elements used in the polygon model. A large 

set of subroutines has been implemented to compute these potentials for a variety of types 
of elements and arrangements of PCB and ground planes. These are shown to be extremely 
efficient, which is vital since they are the major time consuming factor in the field analysis 

part of a typical simulation.

Chapter 6 details a variety of tests that have been performed on these subroutines, both on 

their own and within FACET. These tests include some checks on the internal consistency
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of the models and some checks against known results, to show that the correct behaviour is 

indeed predicted.

Chapter 7 describes the development of a model for polygons, which are large or irregularly 
shaped areas of metal on a PCB, thus bringing together the work of the previous chapters. 
A detailed scheme for subdividing a polygon into elements is described. This produces the 
three sets of elements described in Chapter 2, and performs various other tasks needed for 
the production of the final equivalent circuit. Some inefficiencies in the present model are 
identified, principally the production of an excessive number of elements in some 
circumstances or the production of extremely large equivalent circuits. Several approaches 
to solve these problems are suggested, and a small test described to show the possibilities. 
The implementation of these methods will be the subject of future work.

Chapter 8 gives the results of comparisons between the methods described so far, when 
incorporated into FACET, and either experimental data or literature results. Excellent 
agreement is demonstrated, at frequencies of up to 10 GHz, providing confirmation of the 
accuracy of the approach taken in this thesis and in FACET. Some timing information is 
also given to show that the methods are also extremely efficient. The main problem with 
speed (when there is one) is identified as being due to circuit simulation rather than the 3D 
field analysis. The methods suggested in Chapter 7 could help reduce this problem 
considerably.

Chapter 9 gives a summary of the woik described in this thesis and discusses its usefulness. 
Several ideas for future research, to enhance the efficiency of the models and for extensions 
into other areas, are presented.

1.4.1 Notes on Computations

All of the code referred to in this thesis has been written in FORTRAN 77, using double 
precision (8 byte) numbers where appropriate, and compiled using Release 4.1 of IBM’s VS 
FORTRAN compiler. The compiler options OPT(2), which performs a considerable amount 
of optimisation, and NOSDUMP, which suppresses some internally generated code, were 
used. The code was run on an IBM 4381/14 computer running the VM/CMS operating 
system, which can perform approximately 3 million floating point operations per second. 
References to the time taken for simulations refer to the CPU time used on this system.
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Chapter 2 

Theoretical Overview

2.1 Introduction

This chapter provides the theoretical basis for the models developed. The analysis begins 

with Maxwell’s equations, which are rewritten in terms of scalar and vector potentials. The 

solutions for these potentials are by means of Green’s functions, and this forms the subject 

of Chapter 3. The basic method for subdividing the PCB layout into sets of elements which 

represent components in the equivalent circuit model is described. This is done initially for 

polygon areas, and then simplified to cover the model for tracks.

A detailed analysis demonstrates that the equivalent circuit model for the layout is a valid 

solution to Maxwell’s equations, given the approximations introduced. The principal 

approximations are the forms of charge and current distribution imposed in the layout, and 

the assumption that the dominant coupling effects take place at spatial separations of rather 

less than a wavelength. Both of these approximations are well founded, and their use is 

borne out by the accuracy of the results obtained.

2.2 Scalar and Vector Potentials

The starting point for the analysis is Maxwell’s equations [Ramo et al, 1965, pp. 234-236]

V x E 9B
dt (a)

V x H = J  + ̂  
dt (b)

( 2 . 1)

V.D = p 
V.B = 0

(c)
0d)



- 2 2 -

where E and H arc the electric and magnetic field vectors, D and B are the electric and 

magnetic flux density vectors, p and J are charge and conduction current densities, and t is 
time.

The metals and dielectric substrates used in printed circuit boards can be considered to be
isotropic, so the following relations between vectors can be applied

B = (iH
D = eE (2.2)
J = aE

where \l is the permeability, e is the permittivity and o is the conductivity at any given point.

Taking the divergence of equation 2.1 (b) and combining it with equation 2.1 (c) yields the 

current continuity equation, which is a consequence of the conservation of charge

The vectors E and B can be expressed in terms of an electric scalar potential <|> and a

magnetic vector potential A as [Ramo et al, 1965, pp. 259-261]

E = - V* -  I T  (2.4)
B = V x A

The divergence of the vector potential is arbitrary [Ramo et al, 1965, pp. 259-261]. Here

it is convenient to impose the Lorentz condition, which sets

If equations 2.4 and 2.5 are substituted into Maxwell’s equations 2.1, the following pair of 

Helmholtz equations for the potentials result:

(2.3)

(2.5)

( 2 . 6)

V2A - n e - ^ -  = - h J  
dt2
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The final step is to ignore the time dependent terms in equation 2.6. This amounts to 
assuming that the dominant interaction effects take place at spatial separations of rather less 
than a wavelength. In practice this seems to be a very good approximation for circuit boards. 
Note that time dependence and coupling between electric and magnetic fields are still 
retained in the solution through equations 2.3 and 2.4. The resulting expressions for the 
potentials are the Poisson equations

Each of these equations is then solved to find the potential for a given distribution of charge 
or current density, as described in Chapters 3 and 5. This yields the integral representations

where the integrals are over a volume which includes all the sources under consideration, r 
is the object point, where the potential is required, and r ' is the source point The Green’s 
functions G* and GA can be considered to be the potential due to a unit point charge and a 
unit point current respectively. In free space they assume the particularly simple forms

where i is a unit vector directed parallel to the point current In more general situations, 
with arbitrary arrangements of dielectric material and grounded metal bodies, the Green’s 
functions are rather more complex.

Within FACET, a restricted set of configurations is allowed, a generalised view of which 
is shown in Figure 1. The substrate of the printed circuit board is modelled as an infinite 
parallel-sided slab of dielectric of thickness c. There is also an infinite, ideal ground plane 
parallel to the PCB surface and separated from the rear surface of the PCB by a distance 
4- This distance is allowed to take any value between zero and infinity. Most practical

(2.7)
V2A = - p j

<Kr) = J J jĜ r | O p(rO d\' 
Mr) = JJjGA(r|r#)J(r')d3r'

(2.8)

(2.9)



- 2 4 -

z
A

0

- d .

Air

Dielectric t r

Air

Ground Plane

Figure 1. Vertical section through PCB structure

situations can be modelled by this arrangement. Green’s functions for these cases are derived 

in Chapter 3 as infinite series of terms similar to those in equation 2.9.

2.3 Equivalent Circuit Model

The aim of this analysis is to produce an equivalent circuit model for the conductors on the 

PCB, in terms of a set of inductors, capacitors and resistors. The resistors represent both 

dielectric and resistive losses. The flows of current in the inductors and charge in the 

capacitors give an approximation to the real charge and current distributions.

There are two types of equivalent circuit model used. The first is for large or irregularly 

shaped areas of conductor, which are modelled as polygons. The second is for tracks, which 

are thin sections of conductor where the current flow can be considered to be purely 

longitudinal, leading to a simplified model. There is no restriction on track orientation. 

These models are discussed in turn.
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Figure 2. Elements and equivalent circuit for the interior of a polygon

23.1 Polygons

The formation of an equivalent circuit begins with the creation of a rectangular grid within 

each polygon, discussed in detail in Chapter 7. This creates rows of physical nodes, at the 

intersections of grid lines, with each row parallel to either the global X or global Y axis. 

These nodes are identified with circuit nodes, to which the equivalent circuit components 

forming the model of the polygon are attached. The individual equivalent circuit 

components are represented by rectangular and triangular elements (or patches). These are 

formed by the subdivision, and basis functions which model the charge and current 

distributions in the polygon are defined on each element [Ruehli, 1979].
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Figure 2 shows part of the interior of a polygon, with the subdivision into elements. The 
circles represent the nodes, and are in the same position in all four diagrams. The location 
and spacing of these nodes is determined by the geometry of the polygon and the maximum 
frequency for which the model is required. Chapter 7 describes how they are produced, and 
describes the more complex arrangements necessary at the polygon edges. For this example 
the grid of nodes is regular, but this need not be the case.

Current flowing in the polygon is considered by splitting it into two orthogonal components, 
parallel to the global X and Y axes. Two sets of elements are generated, one for each 
direction of current flow, called the X and Y inductive elements respectively. The X 
inductive elements have basis functions which model the flow of current from one node to 
the next parallel to the global X axis. Each element therefore extends from one node to the 
next in this direction, and halfway to the next row of nodes at larger and smaller Y 
co-ordinates. These elements are shown as the first picture in Figure 2, with the arrows 
indicating the direction of current flow. They are represented as self inductances in the 
equivalent circuit model, with series resistors to represent the resistive loss. Inductive 
couplings between elements are represented by mutual inductances.

The Y inductive elements are similar, this time modelling the current flow parallel to the 
global Y axis. These elements are shown as the second picture in Figure 2, with the arrows 
indicating the direction of current flow. They are also represented as self inductances in the 
equivalent circuit model.

The distribution of charge can be modelled by just one set of elements as it is a scalar 
quantity. Each element has basis functions to model the charge density distribution around 
a node. These elements are called the capacitive elements, and are shown in the third picture 
in Figure 2. Each element can be considered as representing one plate of a capacitor, and 
the ground plane is also represented as a capacitor plate. In the equivalent circuit model, 
capacitors are formed by taking all pairs of capacitor plates in turn, with a resistor placed 
in parallel to model the dielectric loss.

The final picture in Figure 2 shows a simplified version of the equivalent circuit model 
generated for this section of the polygon. Only the self inductances and the capacitances to 
ground from the edge nodes are shown, to avoid making the diagram too cluttered. The full 
model has the resistors described above, capacitors between each pair of nodes, and mutual 
inductances between each pair of parallel inductors - the mutual inductance between
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Figure 3. Elements and equivalent circuit for a track section

perpendicular inductors is zero, as orthogonal currents do not interact inductively with one 
another.

The model developed to date treats each capacitive element as having a constant charge 

density on it, and each inductive element as having a constant current density in it. The 

analysis that follows allows for more general charge and current distributions, which may 

be implemented in future work to improve the accuracy and efficiency of the model, if 

necessary.

2.3.2 Tracks

The model for tracks is somewhat simpler, as the flow of current is assumed to be purely 

longitudinal. As for polygons, a set of nodes is defined along the track with a spacing 

determined by the maximum frequency for which the model is required. Figure 3 shows 

the arrangement of nodes and elements for a short section of track. Only one set of elements,
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the inductive elements, is required to model the current flow in the track, with each element 
modelling the current flowing between two nodes, in the same way as in a polygon. These 
are shown as the first picture in Figure 3. The two inductive elements at the end of the track 
section are half the length of the other elements. The second set of elements, the capacitive 
elements, model the charge density distribution around a node, again in the same way as for 
a polygon. These are shown as the second picture in Figure 3.

The equivalent circuit model is just a one dimensional version of that developed for 
polygons. A simplified version of this, showing only the self inductances and capacitances 
to ground, is shown as the third picture in Figure 3.

The following treatment is developed for polygons, but the results are readily specialised to 
cover tracks as well.

2.4 Capacitance

Consider first the iA capacitive element. This has N; charge basis functions \|/* defined within 
it, giving a total charge density distribution p,-

where Q* are the amplitudes of the basis functions. Harmonic time dependence, of angular 
frequency co, has been assumed, and the common factor e** will be dropped from subsequent 
equations. More complex time dependence could be taken into account using Fourier 
analysis, superposing the solutions for several different frequencies. The total charge in the 
element, <2„ is found by integrating the charge density of equation 2.10 over the volume of 
the i* capacitive element, giving

(2.10)
«=l

( 2 . 11)

where the integrals are over the volume of the i* element.
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A solution is required for the charge density distribution necessary to produce a given 
voltage distribution over the layout. This cannot be done exactly with a finite set of basis 

functions. An approximate solution is found using the point collocation method. This 

samples the value of potential at points in each element (the same number of points as 

the number of basis functions). The value of the potential at each of these points is the sum 

of the potentials due to every basis function. The n* collocation point in the iA capacitive 

element is located at rfa The potential here is (J)*,, given by the summation

K" nj

<t>£n = V  V  Q,.J J  jGt (r„, I r') Vm(r0 d V  (2.12)
y=l B= 1

where the total number of capacitive elements is Nctl, and the integral is over the volume 

of the f  capacitive element. For a given set of <j>k, the above equation yields a set of 

simultaneous equations which can be solved for the coefficients of the basis functions <2> 

for all values of j.

To find the matrix of capacitances between elements, appropriate sets of <{),■„ are used. For 
the i* column of the capacitance matrix, the voltage at all collocation points within the i* 
element (the source element) is set to to IV, and the voltage at all other collocation points 

is set to OV. When the simultaneous equations have been solved for the coefficients of the 

basis functions, the capacitance between the i* and f  capacitive elements, Cijt is simply 

minus the charge on the j* capacitive element,

Cij = -Qj <fc=l , i* j  (2.13)

where Qj is found using equation 2.11.

This above procedure is then repeated with each element in turn acting as the source element. 

The capacitance to ground of the iA capacitive element, Cu, is the charge on this element 

when the whole polygon is at a uniform potential of IV. It is therefore found as the sum 

of the charges on the iA capacitive element, accumulated over the set of Nctl solutions.

More complex voltage distributions could be used to model the actual distribution more 

accurately. The only condition for a set of capacitances to be produced is that the 
superposition of all the voltage distributions in the Nctl solutions is a uniform IV over the
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Figure 4. Inductive elements overlapping a capacitive element

whole structure. Other possibilities have been examined for tracks, where the conclusion 
was that although improvements are possible, the effects are of second order importance.

The set of capacitances has been produced from purely electrostatic considerations, using a 

piecewise constant approximation to the charge distribution. For a circuit solution, the 

current continuity condition of equation 2.3 must also be satisfied. The solution method 

above can only do this in an average sense over the volume of each capacitive element, 

because of the approximations used. Integrating equation 2.3 for the conservation of charge 

over the volume of the i* capacitive element, and substituting for the total charge and 

potential in the element using equations 2.11 and 2.12 gives

a a
( 2 . 14)

dt

j
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The left hand side can be transformed to a surface integral using the divergence theorem, 
and evaluates to the net current leaving the volume of the i* capacitive element.

element in a polygon. The four currents defined in the figure are the total current in each 
of the inductive elements. With this definition equation 2.14 becomes,

The set of equations for all i is just Kirchhoffs first law, for the continuity of current, applied 
to the equivalent circuit for the polygon. This means that the model developed is consistent 
with both the electromagnetic laws of Maxwell’s equations and Kirchhoffs first law from 
circuit theory, and so the representation is valid providing Kirchhoffs second law is also 
obeyed. This will be demonstrated shortly.

At the edges of the polygon the arrangement of elements becomes more complex: there may 
be fewer inductive elements overlapping a particular capacitive element, and the capacitive 
element itself may be triangular in shape. Similarly, tracks only have two inductive elements 
overlapping each capacitive element. However, if the left hand side of equation 2.15 is 
considered as the total current leaving the ih capacitive element, then the above analysis is 
still valid.

2.4.1 Dielectric Loss

Dielectric loss is accounted for by placing a resistor of value 1/(©C tan 8) in parallel with 
each capacitor C , where tan 8 is the loss tangent of the PCB material, and © = 2nf is the 
angular frequency. This is not rigorous, since there are fields outside the PCB material, and 
the loss is therefore slightly over estimated. However, the computational costs of a full 
analysis is much greater, and the difference in accuracy is very small. This model requires 
the circuit simulator to permit frequency dependent resistors, which both PHILPAC and 
PANACEA do for AC analysis. Where these are not allowed, a resistor value computed at 
the expected dominant frequency would have to be selected, with a consequent loss in 
accuracy. Note that this approximation is required for all transient analysis, even in 
PHILPAC and PANACEA.

Figure 4 shows the arrangement of the four inductive elements overlapping the i01 capacitive

(2.15)

j
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Figure 5. Capacitive elements overlapping an X inductive element

2.5 Inductance

The previous section examined the model for charge, leading to equations for the equivalent 

circuit capacitances. This section examines the model for current, and will lead to equations 

for the equivalent circuit inductances. Equation 2.2, relating electric field and current, and 

equation 2.4, relating electric field and potentials, can be combined to yield

This equation simply shows that the current density at any point is proportional to the 

electric field there.

In isotropic materials the vector potential A is always parallel to the current producing it, 

as illustrated by equation 2.6 which defines the vector potential. Since the current flow in 

the polygon has been partitioned into two orthogonal sets, only one of these need be 

considered. That considered is the set of X inductive elements. Figure 5 shows the 

arrangement of the iA X inductive element and the two capacitive elements which overlap 

it  Writing the x component of equation 2.16 as

+ Vd> + = 0
a  Y dt (2.16)

( 2 . 17)
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and taking the line integral of this equation along the length of the element (ie. parallel to 
the x axis) results in

H 1-

where (j)* and <J>lf are the potentials at the two ends of the line along the i* inductive element, 
which is of length ( . Let the width of the element be w, and assume for the moment that 
the variation of fields in the thickness of the element can be ignored. Averaging equation 
2.18 across the width of the element, taken as the y direction, gives

+ [ f e  -  $^] + - | - [ 4 -  = 0 (2.19)

This can be viewed as a form of Ohm’s law, relating the mean current density in the element 
to the applied voltage across the element and the voltage across the element due to current 
flow elsewhere. The three terms in this equation are now examined in turn.

The first term represents the potential drop across the internal or surface impedance of the 
element. Let this impedance be ^  in the i* element, and let the magnitude of the current 
flowing in the i* element be /,. Then,

* = -sbrJJ7* * *  (220)

This is considered in detail in Appendix A, where it is shown that the internal impedance 
function is complex and varies with frequency. The real part represents conductor loss and 
is incorporated in the model as a resistor in series with the inductor of the appropriate 

element. The imaginary part is coL̂ , where is the internal inductance, due to the presence 

of magnetic flux within the conductor itself, and is frequency dependent. This is 
incorporated in the model by adding it to the frequency independent external inductance 
derived below, which is due to magnetic flux outside the conductor. The effect of a finite 
conductor thickness was also examined, and included within the internal impedance 
function 7̂ .

The second term is just the mean voltage difference between the two ends of the element, 
as shown in Figure 5.
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Tuming to the third term, it is shown in Chapter 4 that the mutual inductance between two 
elements, Z*;, can be written as

Ay =  i j j  k . d l ,  dydz  ( 2 . 2 1 )

where 4 is the cross sectional area of the element (assumed constant); £ is the length of 
the itM element; A1 is the vector potential due to a current of 1 amp flowing in the f  element; 
dlf is directed parallel to the direction of current flow in the i* element (along its length);
and y and z are respectively the width and thickness directions in this element If the current
flow directions in the two elements are at an angle 0 to one another, the width of the i* 
element is and its thickness is negligible, equation 2.21 can be rewritten as

LH = -^T S rJ flAyl dx®  (2-22>H lj

where the integral is over the area of the i* element, and x is the length direction in the i* 
element. This is the form in which the inductance is calculated.

Equation 2.19 can therefore be written as,

N,xtl

where N„{ is the total number of X inductive elements. The set of all such equations for X 
and Y inductive elements is just Kirchhoffs second law, for the voltage drop around a loop, 
applied to the equivalent circuit for the polygon. In conjunction with equation 2.15, which 
was Kirchhoffs first law for the polygon, this demonstrates that the electromagnetic and 
circuit representations are equivalent, and so the equivalent circuit is a valid model.

At the edges of the polygon the arrangement of elements can be more complex, but the 
above analysis remains valid for rectangular elements. In a track, two capacitive elements 
overlap each inductive element in exactly the same way as shown in Figure 5, so the above 
analysis is also valid for tracks.

Some attention needs to be paid to differences with triangular elements, which can be created 
at the edges of the polygon. Figure 6 shows a triangular element, of length / and width w.
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Figure 6. Triangular element for inductance: current flow direction shown by arrow, nodes shown 

by filled circles

These elements are right angled triangles, with the current flow direction assumed parallel
to the hypotenuse and a circuit node placed conceptually at each end of the hypotenuse,
between which the equivalent circuit self inductance is connected. For the puiposes of 
analysis, the current density in such elements is defined to be uniform, with a peak current 
of 1 amp at the widest point (and hence a mean current of 0.5 amp). When equation 2.18, 
relating current density and applied voltage, is averaged over the width of the element to 
obtain equation 2.19, the third term in equation 2.19 will contain a factor of l/(w/2) rather 
than 1/w. Equation 2.22 for the inductance between elements becomes,

la = 2 T 6 J  JI Ayl ‘fr'fv (2.24)

where the integral is over the area of the triangle. With this result, equation 2.23 is valid
for both rectangular and triangular elements.

2.6 Conclusions

The treatment in this chapter began with Maxwell’s equations, which were rewritten in terms 
of scalar and vector potentials. The basic concept of the subdivision of a layout into 
elements which are modelled by components in an equivalent circuit was described, and it
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was shown that this model led to Kirchhoffs first and second laws (equations 2.15 and 2.23), 
and is therefore a valid representation of the electrical behaviour of the layout. A detailed 
description of how polygonal areas are subdivided into elements is given in Chapter 7.

The development of this model involved two main approximations:

1. The dominant interactions are assumed to take place at spatial separations of rather less 
than a wavelength, which is nearly always the case for PCBs.

2. The actual charge and current distributions in the layout are modelled by a finite set 
of basis functions. In a polygon, the sets of elements and basis functions chosen give 
a piecewise constant approximation to the actual charge and current distributions. In 
tracks, the distributions are piecewise constant along the length of the track, while the 
distribution across the width produces a flat scalar or vector potential distribution in that 
direction.

Further confirmation of the validity of these approximations is given by comparing results 
from simulations with experimental data or previously published woik. Chapter 8 does this 
for several examples, and the excellent accuracy obtained there shows that the 
approximations are indeed reasonable.

The next chapter derives a set of Green’s functions for the scalar and vector potentials, 
required in the computation of the values of the equivalent circuit components. These are 
derived for a set of configurations which is able to model most PCB structures.
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Chapter 3 

Green’s Functions for Scalar and Vector Potentials

3.1 Introduction

Scalar and vector potential Green’s functions were briefly introduced in Chapter 2 as the 

potential due to a unit point charge or current respectively. For the simplest possible case 

of a point source in free space, the solution to this problem is well known [Bleaney and 

Bleaney, 1976, p.4], and was given as equation 2.9. This chapter is concerned with the much 

more complicated configuration shown in Figure 7, consisting of three layers of isotropic 

dielectric, bounded by two perfectly conducting ground planes. The three layers are of 

dielectric constant et for -d  ̂< i  < 0 , ^  for 0 < z < c and £3 for c < z £ c + d* All three layers 

have the same relative permeability, assumed here to be 1.0. The dielectric layers and the 

ground planes are assumed to be of infinite extent in the x and y directions, with boundaries 

between them parallel to the xy plane.

This structure can be used to model a PCB, with layer 2 representing the substrate, layers 

1 and 3 representing the air gaps above and below the PCB, and the ground planes 

representing two surfaces of a metal package. The analysis is, however, performed for the 

general case. Simpler cases of the results are then generated by:

• Placing one or both ground planes at infinity

• Setting two or three of the dielectric constants equal to one another

• Placing the point source at z = 0 or z -  c, and determining the potential at z = 0 or z = c

Published results have only treated the complete structure shown in Figure 7 in two 

dimensions in the spectral domain [Yamashita, 1968], or much simpler cases in the spatial 

domain (three dielectric layers with no ground planes [Silvester, 1968], or two dielectric 

layers with one ground plane [Chow, 1980]). This chapter covers all these cases with one 

general formulation, which gives results for three dimensions in the spatial domain.
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z
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V A V \ \ \  Layer 3  £ . X v

Layer 2 £2

0

w / / / / / / / / / / / / / / / / / ,

■> X

-cL-
Ground Plane

Figure 7. Structure to be analysed: section through the x-z plane

Section 3.2 gives a general description of the approach used. This approach is then used in 

section 3.3 to derive the scalar potential for all locations of the source charge and of the 

object point (ie. the point where the potential is required). Sections 3.4, 3.5 and 3.6 

specialise these general results to simpler cases, by the methods listed above. Section 3.7 

derives similar results for the vector potential. These are much simpler, because the vector 

potential is not affected by discontinuities in the dielectric constant The results in these 

sections are enclosed in boxes for ease of identification, since there are inevitably a great 

many cases to be considered.

The results produced can be interpreted as the potentials due to series of image charges, as 

in the classical method of images [Bleaney and Bleaney, 1976, pp.48-56]. Section 3.8 shows 

this correspondence exactly for some of the simpler cases, and describes the remaining cases 

qualitatively.

The solutions for the potential are obtained in the form of infinite series. For practical 

puiposes it is therefore necessary to know how quickly the series converge. This question 

is examined in section 3.9 for various representative cases.
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Some of the results described here have been used in FACET, where they have proved their 
usefulness and accuracy. There, they are spatially convolved with known basis functions 
for the charge and current distributions over track and polygon elements on a PCB to give 
the potentials due to these elements. This process is described in Chapter 5. The form of 
solution obtained here enables this convolution to be performed very efficiently.

3.2 General Approach

3.2.1 Scalar Potential

The scalar potential Green’s function can be written as,

Gr*(*|ab,y|yb.z l2b) (3.1)

This represents the scalar potential at the point (x, y, z) due to a point charge placed at 
(*o. y0. Zq)- In this chapter, the solution for the potential <|>(x, y, z) due to a unit point charge 
placed at (0,0, Zq) is found. No loss of generality results from this simplification. The 
Green’s function is related to this by,

G ^ x \ x Q , y \ y 0 t z\zQ) = (K *-*b ,y -y 0. z) (3.2)

At zero frequency, the (electrostatic) scalar potential required is the solution of the Poisson 
equation,

V2<t> = — i-SOOSO-mz-jfc) (3.3)

This is also valid approximately for non-zero frequencies when the spatial dimensions
involved are rather less than the wavelength of signals at the maximum frequency of interest, 
as discussed in Chapter 2. To solve for the potential, apply the two dimensional Fourier 
transform,

1 [ Ax,y) ******  *  ‘‘y (3-4>
* iy i rm

to equation 3.3. Also, set

k2 =  kZ + ky ( 3 . 5 )



- 4 0 -

since the transformed equation only contains k* and k, as A* + kf. The transformed equation 
is now an ordinary differential equation in the spectral domain,

-4-<ji(*,z) - * 2 <kfcz) = - ^ i - 8( z - 2b) (3.6)
dz2 2n£

The term on the right hand side of equation 3.6 is only non-zero in the plane z = Zq. This 
plane is parallel to the other boundaries in the geometry, so by treating it as another 
boundary a problem with N dielectric layers can be modelled in terms of N + 1 regions. The 
problem therefore reduces to a set of V +1 Laplace’s equations,

- A r H k j ) - k 2 U m  = 0 (i=  1..JV+1) (3.7)
dz

with appropriate boundary conditions enforced at all the boundaries. The general solution 
of this set of equations is,

<j>,<te) = A*eb  + A^e~h  (3.8)

where Af and A,7 are initially unknown functions of k. In the solution for the problem with 
three dielectric layers, there will therefore be four separate regions in which to solve
equation 3.7, giving eight unknown functions of it to be determined. Section 3.3 details the
solution of this problem.

32.2 Vector Potential

The vector potential Green’s function can be written in a similar way to equation 3.1 as

GA(x\xo,y\y0,z \z^  (3.9)

This represents the vector potential at the point (x, y, z) due to a point current placed at 
(Xq, y0, 2q). Just as for the scalar potential, the solution is found for the potential A(x,y,z) due 

to a unit point current source placed at (0,0, Zq). The Green’s function is then

GA(x\xo,y\y0,z\zd  = A ( x - X o , y - y 0, z )  (3.10)

At zero frequency, the (magnetostatic) vector potential required is the solution of the Poisson 
equation,
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V2A = -HoI5(*)5(y)8Cz-ztf (3.11)

where I is a unit vector in the direction of the current at the current source.

This equation can then be solved in the same way as for the scalar potential. The results 

are simpler, however, because all three layers have the same relative permeability. Hence, 

only two Laplace’s equations analogous to equation 3.7 have to be solved. This derivation 

is detailed in section 3.7.

3.3 Scalar Potential Solution for the General Case

3.3.1 Source Charge in Layer 1

The source charge is located at z-Zq, in layer 1. An extra boundary is therefore introduced 

at z = Zq. The solutions to the four Laplace’s equations can be written in a similar way to 

equation 3.8 as

§a(k,z) = A+ela + A e -d\ <> z < Zq

(j)b(k,z) = B+ela + B e Zq <  z < 0

(3.12)
<j>c(*,z) = C+e2 +C~e~]a 0 <z<zc

= D+ela + D~e~kz c<z<c + di

where A+ to D~ are initially unknown functions of arbitrary wavenumber k. These are 

determined by the Fourier transformed boundary conditions, which are
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1)  =  0 (0

00

§ b ( k ,  Zq)  =  § a ( k ,  Zo)

4>c(̂ . 0 ) = <j>>(*,0 ) 0’v)
(3.13)

(V )

t r j ^ U k .O )  = e , - | - * # , 0 ) 

63-^-W fcc) = 62

-£♦»(*.%> = -

m

(vi)

The first two conditions enforce zero potential on the ground planes at z = -dl and 
z = c + 4. which is the only solution possessing a Fourier transform. The next three enforce 
continuity of potential at the boundaries between the four regions. The last three enforce 
continuity of the normal component of electric flux density D at the boundaries where no 
free charge is present, and a discontinuity equal to the charge density at the boundaries where 
free charge is present [Bleaney and Bleaney, 1976, p. 121].

Equations 3.12 and 3.13 are combined to solve for the functions A+ to D~. For convenience, 
set

For the situation described in the introduction to this chapter, layer 1 and layer 3 are both 
air, with dielectric constant Ex = £3 = 1 , and layer 2 is the PCB material, with dielectric 
constant £2 > 1. a  and p are written in the above way so that they are both positive for this 
case. Also define Zj and z, by

The full solution to this problem is detailed in Appendix B. For clarity of presentation of 
the results, define the function ^(l,m,n,z) as,

62-61 62-63
ej + E! ■ P £2 + 63 (3.14)

zd  =  U - ^ o l  » zs  =  Z +  ZQ (3.15)

W .m .n.z) = 1  =  (3.16)
Vx2+ y2 + (2 ftfc + 2 mdl + 2 nc + z)2
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Writing <!>,•, to represent the potential in layer j  due to a charge in layer i, and using the 

notation of equation 3.16, the space domain potentials are given by,

[  £( I , m , n ,z£  + ^(/+l,/n + l , n + l , - z d)
-  £( I ,m + 1, n ,zs) -  £ ( /+1, m , /1 + 1,-z,)

+ a  { £(/+l,  m , n + l , 2̂ ) + 5( / , m + 1, n ,-z^)
-  5(/+1,w + 1 , h+ 1.2») -  £( / . w , * .-%) }

+ P { £ ( /+ l ,m + l ,  n ,zs) + £( / , m , n+ l . -z , )  
- £ ( / + l ,  m . « . 2̂  -  §( / , / n + 1,/1+ 1,-z ^  }

+ ap{ £( / ,m + l ,n + l , z , )  + £(/+l,  m , n ,-z ,)
-  £( / , /n , n + l . z ^  -  £ ( /+ ! , /n + 1, n ,-zJ) } ]

[  4( * . m »«. z<f) + ^(/+ 1, m + 1, «+1, -z^
-  £( / , /n+ l ,n ,  z,) -  £(/+l, m , n + 1,-Zj)

+ p { £ ( / + l , m + l , n , z , )  + £( / , /n ,n + l , -Z j )
- £ ( / + ! ,  m t n,z£ -  £( / , m + 1 , « + 1,-z^ } ]

Scalar potentials with three dielectric layers, two ground planes

The coefficients Kifir[) are given by equation B.5,

/=0 m=0 n=0

= X X X̂(ct) ̂(p) x
I  A  —  r \  _  a/=0 iw=0 «=0

X X 2 / ™ (ot)*i"(p) x
/=0 jn=0 n=0

Mx,y,z)
(3.19)

[  £(/, m , /i,z^ + 5( / + l , / n + l , / t + l , - 2k)
-  £( / ,m+l,n,zJ) -  £(/+!, m ,/1 + 1,-z,) ]

(B.5)

Interestingly, A (̂r|) can also be written as a Jacobi polynomial, which simplifies its 

computation for large values of i and j. This derivation is detailed in Appendix C.
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• W w )  = x
/=0 /n=0 n=0

[  5 (  /  , zzz , zz, z^) +  ^ ( Z + l . m  +  l . n + l . - Z d )
-  5 (  /  , zzz+ 1, zz, z , )  -  5 ( 7 + 1 .  zzz , zz + 1, - z , )

+  a  { 5 (  7 , zzz , /i, Zy) +  5 (7  + 1 .  w* + 1 ,  zz + 1 ,  -zs)
-  5 (  7 , zzz+ 1 ,  zz, z^) -  5 ( 7 + 1 .  zzz . n + l . - z ^ )  }

+  p  { 5 (7  + 1 ,  m  +  1, zz, Zj) +  5 (  7 , zzz , z z + l , - z , )
- 5 ( 7 + 1 ,  zzz t n,z£  -  5 (  /  , zzz+ 1 ,  z z +  1 , - z ^ )  }

+  a p {  5 ( 7 + l , m + l , n , z j )  +  5 (  7 , zzz , n + l , - z j )
- 5 ( 7 + 1 ,  zzz , zz, zs) -  5 (  7 . z z z + l . z z + l . - z , )  } ]

oo oo

= 4 ^ 1 ,  X  X  x
/=0 m=0 n=0

[  5(7, rn ,n ,z£  + ^ ( l+ l ,m  + l ,n + l , - z j )  ^  ^
-  5(7 ,m +l,n ,zJ) -  5(7+1, m , zz+l.-z,)

+ a  { 5(7, >« ,«, z,) + 5(7 + 1, zzz + 1, zz +1, —Zj)
-  5(7, zzz + 1, zz, zj) -  5(7+1. zzz , zz + 1, -zd) } ]

(̂w) = 4̂ S X X*""(a) *>"(p) x
/=0 m=0 «=0

[  5(7, WZ , zz , zj) + 5 (7+l, /n+l,«+l, -Zrf )
- 5 ( 7 , m + l ,  zz , z^ 5(7+1, zzz , zz + l.-z ,)

+ a  { 5(7, m , n , z,) + 5(7 + l,/w + l , n + l , - zs)
— 5(7,m + 1, zz ,zj) -  5(7+1, zzz , zz+l.-z,*) }

+ p { 5(7,/n+l,rt+l,z<i) + 5(7+1, m , zz , - z J  
-5 (7 ,  /zz , zz 1, ẑ ) -  5(7 + l ,m  + l, « + 2, —zs) }

+ ap{ 5(7, wi + 1, n — 1, z_j) + 5(7+1, zzz , zz + 2, -z,)
-5(7 ,  m , zz + 1, zj) -  5(7+1, zzz + 1, zz ,-z^) } ]

Scalar potentials with three dielectric layers, two ground planes

33.2 Source Charge in Layer 2 or 3

Similar analysis is used for the cases with the source charge in layer 2 or in layer 3. The 
details of the calculations are presented in Appendix B. Applying the theorem of reciprocity 
[Morse and Feshbach, 1953, p.883], only three distinct new cases for the potential are 
generated. These are given in equations 3.20, 3.21 and 3.22.
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3.4 Simpler Geometries - Fewer Ground Planes

The general results of sections 3.3.1 and 3.3.2 are now applied to simpler geometries. This 

section examines the results when one or both of the ground planes are removed (or placed 

at infinity).

3.4.1 One Ground Plane

The case with one ground plane is treated by letting 4  - » .  Then, e-2** —> 0, and so the 

second term in equation B.2 becomes,

The function \\f(k) in Appendix B can then be written as a double summation instead of the 

triple summation in equation B.6, ie.

The potentials <f>n - <J>33 can now be derived from their general forms in equations 3.17 - 3.19 

and 3.20 - 3.22. Firstly, terms of the form ^(l,m,n,z) are replaced by £(0,m,n,z), as they are 

zero when 1*0. All terms of the form £(/+ l,m,n,z) can be deleted as they simplify to 

£(1 jn,n,z), which becomes zero as 4  -> 00 • The previous results therefore simplify to

(3.24)
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oo oo

*,,Cwi) = x
m=0 n=0

[  5(0. m , n ,zj) -  5(0, m + 1, n ,zs)
+ a  { 5(0, m + 1, n ,-zj) -  5(0, m , n ,-zs) )
+ p { 5(0, m ,n + l,-z s) -  5(0,m + l , / i+ l , -* j )  }
+ ap{ 5(0, m + 1, n + 1, -  £(0, m ,n+ l,zj) } ]

oo oo

x
m=0 n=0

[  5(0, m, n ,zj) -  5(0, m + 1, n ,zs)
+ p { 5(0, m, n+ l,-zs) -  5(0, m + 1, » + 1, -zj) } ]

= 0   ̂X XP" K,m(a) X
m=0 n=0

[  5(0,/«, n, zj) -  5(0,m + l,n ,zs) ]

oo oo

* * * * * *  = 4 ^ X 5 / “  x
m=0 «=0

[  5(0, m, n ,zj) -  5(0, m + 1, n .z,)
+ a  { 5(0, m, n ,zs) -  5(0, m + 1, n ,zj) }
+ p { 5(0, m,n+ 1,-Zj) -  5(0, m + 1, n + 1, -zj) }
+ ap{ 5(0,w ,n + l , - z d) -  5(0, m + l , « + l , - z J) } ]

oo oo

m=0 n=0

[  5(0, m, n, z<i) -  Z,(P,m+l,n,zs)
+ a  { 5(0, m,n,zs) -  5(0, m + 1, n, zj) } ]

oo oo

= 4 ^ Z S P" ^ (a) X
m=0 n=0

[  5(0, m , n ,zj) -  5(0, m + 1, n ,zs)
+ a  { 5(0, m , n ,zs) -  5(0,m+1, n ,zj) )
+ p { 5(0, m+ 1, n + 1, zj) -  5(0, m , n - l , z s) }
+ ap{ 5(0, m + 1, n - 1, zs) -  5(0, m ,n + l,zd) } ]

Scalar potentials with three dielectric layers, one ground plane

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

( 3 . 30 )
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= 4sfcrX(aP)"x
"=° (3.31)
[  5(0. 0, n ,zj) -  a  5(0, 0, n , - zs)

+ p 5(0, 0, rt + l.-Zy) -  a p 5(0, 0, n + l .z^  ]

oo

<I>12( W )  = ^ ^ (aP)" t  ^(0' ° ' ^  + P ^(0.0, n + 1,-z,) ]  (3.Anefo
n=0

4
n=0

OO

^ ( w )  = 4s b r X { a p r  x4n£^2 rt=0
[  5(0, 0, rt , z^ + a  5(0, 0, n , zs)

+ P 5(0,0, n + 1, -zs) + ap 5(0,0, n + 1, - zd) ]

H=0
OO

* * * * *  =  * £ *  X (ap )" x
n=0

[  5(0, 0, n ,zj) + a  5(0, 0, n , z,)
-  p 5(0, 0, n - 1, zs) -  ap 5(0, 0, n + 1, zj) ]

Scalar potentials with three dielectric layers, no ground planes

32)

(3.33)

(3.34)

oo

<t»23(W) = i y | r X (aP)” [  ^ ° ' 0' n' 2<t> + a  ^<f>,0.n,zs) ]  (3.35)

(3.36)

3.4.2 No Ground Planes

The case with no ground plane is treated by taking the results from section 3.4.1 and letting 

dy - » oo. Then, e-2** -> 0, and so the first term in equation B.6 becomes,

( a - e - ^ r
= a“ (3.37)

The function \|r(k) can then be written as a single summation, instead of the double 

summation in equation 3.24, ie.
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oo

\|f{k) = (a$)ne~2nkc (3.38)
n=0

The potentials <j>n - <J)33 can now be derived from their previous forms in equations 3.25 - 

3.30. For the same reasons as in section 3.4.1, terms of the form £(0,m,n,z) are replaced 
by £(0,0,n,z), and terms of the form £(0,w + l,n,z) become zero. The previous results 

therefore reduce to those in equations 3.31 - 3.36.

3.5 Simpler Geometries - Fewer Dielectric Layers

This section examines the results when the number of dielectric layers is reduced to two or 

one, in each case with either two, one or no ground planes.

3.5.1 Two Dielectric Layers, Two Ground Planes

This case is treated by letting 4  0, so that e~7U' -»1 . The first term in equation B.2

simplifies to

/■ —2kd,\n _( a - e  M (_ i)n
v J K } (3.39)

The function y(£) can then be simplified to the double summation,

(3.40)
1=0 R=0

Since 4  = 0, terms of the form ^(l,m,n,z) or ^(l/n + \,n,z) can both be replaced by 

^(/,0,n,z). If the source charge is in layer 1 (which is now of zero thickness), then Zj = z,. 
Hence, (J)u, (J)12 and <J)13 in equations 3.17 - 3.19 all become zero, as must be the case since 

the source is coincident with the lower ground plane. The remaining three cases are
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= 4^E E ('1)X(P)X
1=0 n=0

[  £( / , 0,«, + £ ( /+1, 0, « + 1, -zj) 3̂41^
-  £( I , 0, n, zs) -  £ ( /+1, 0, n+ 1,-Zj)

+ p { £ ( /+ l , 0, n,zs) + £( I , 0,n + l,-z 5)
- £ ( / + ! , 0,n,zj) -  £( / , 0, /i + 1, -zj) } ]

= ^ S S (-1)X(P) x
1=0 n=0

[  £(/,0, n, zj) + £(/+l,0,  n+l.-z^)
-  £(/, 0, n,zs) -  £(/ +1,0,  n +1,  -zs) ]

(3.42)

oo oo

f33(W ) = 4 i t X S ( “ ,)X (P )  X
1=0 n=0

[  £(/, 0, n ,zd) + £(/+l,0,  n + l , - z d)
-  £(/, 0, n , z,) -  £(/+ 1, 0, /i + 1, -zs)

+ P { £(/,0, n + 1, zj) + £(/+1,0, n ,-z£
-  5(/,0f / i - l , * )  -  £(/+1,0, n + 2,-Zj) } ]

Scalar potentials with two dielectric layers, two ground planes

(3.43)

3.5.2 Two Dielectric Layers, One Ground Plane

This case is treated by letting 4  -> 0 and 4  -> 00 • Using equations 3.23 and 3.39, the 

function can be simplified to the single summation,

oo

W )  = (3-44)
n=0

As in section 3.5.1, there are now only three cases for the potential. These are derived from 

equations 3.28 - 3.30 as,
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oo

47C£oE2
~° (3.45)

[  5(0.0. n ,z£  -  5(0,0, n ,zs)
+ p { 5(0, 0 ,n + l,-zs) -  5(0, 0, n + l,-z£  } ]

1 0  ° °

<t>23( w )  = 4 ^ - S (_P)n [  5(°.°.«.%) -  5(0,0, n, zs) :  (3.46)
w=0

oo

x47CCOE3
(3.47)

[  5(0, 0, n ,zj) -  5(0, 0, n ,zs)
+ P { 5(0, 0, n +1 ,zj) -  5(0,0 ,n - l ,z s) } ]

Scalar potentials with two dielectric layers, one ground plane

3.5.3 Two Dielectric Layers, No Ground Planes

This case is treated by putting e2 = e3 in the results of section 3.4.2. Hence, from equation 
3.14, p = 0, and so y(fc) = 1. Also, <J)12 = <J>13, and ^  ^  = <j>33, as would be expected since 
layer 2 and layer 3 can no longer be distinguished. The three cases therefore reduce to,

<t>nCw) = 4^ - r - C  §(0.0,0,%) -  a  5(0.0,0,-z,) ]  (3.48)

♦kC*0V) = 5(0,0,0, ẑ ) (3.49)

<t>220 w )  = 4^ - C  5(0,0,0, zd) + a  5(0,0,0, zs) ]  (3.50)

Scalar potentials with two dielectric layers, no ground planes

These results are the same as those obtained from classical image theory [Bleaney and 
Bleaney, 1976, pp.48-56].

3.5.4 One Dielectric Layer, Two Ground Planes

This case is treated by taking the results of section 3.5.1, and additionally letting —» 0.
Then, e-2*4 —> 1, and the second term in equation B.2 simplifies to
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( P - e - a ^ y  ( _ 1}»
— ---------    = v } (3 51)
( l - P e - ^ r 1 1-P

Combining equations 3.40 and 3.51, the function \j/(£) can be simplified to the single 

summation,

oo

-  «)(i -  P)W )  = 6 t "o7  >  ^  (3.52)
/t= 0

Since 4  = 0, terms of the form ^(/,0,n,z) or 5(J+1.0,n,z) can both be replaced by

5(0,0,n,z). If the source charge is in layer 3 (which is now of zero thickness), and the

potential is required at z,

zs = c + z , zd = c — z (3.53)

Using this relationship, it is seen that $23 and <t>33 in equations 3.42 and 3.43 both become

zero, as would be expected. The remaining case is,

<t>22(W z) = Awl  c Y  [  5(0, 0,n,z<*) + 5(0, 0,n  + l,-z<i)
4k£<& t o  (3.54)

-  5(0, 0, n, zs) -  5(0, 0, n + 1, - zs) ]

Scalar potential with one dielectric layer, two ground planes

3.5.5 One Dielectric Layer, One Ground Plane

This case is treated by putting = 83 in the results of section 3.5.2. Since p = 0,

V(*) = (3.55)

As in section 3.5.4, there is now only one case for the potential, equivalent to equations 

3.45 - 3.47,
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<l>22(w) = 4 K̂ )E2 £ £(0,0,0, zj) 5(0,0,0, zs) ] (3.56)

Scalar potential with one dielectric layer, one ground plane

This is just the potential due to a unit (positive) point charge at (0,0, Zq) and a unit (negative) 
point charge at (0,0, -  zj  , as predicted by classical image theory [Bleaney and Bleaney, 
1976, pp.48-56].

3.5.6 One Dielectric Layer, No Ground Planes

This case is treated by putting = £2 in the results of section 3.5.3. Hence, from equation 
3.14, a  = 0. Also, <j>n = <j>12 = <|>22 . as would be expected since layer 1 and layer 2 can no 
longer be distinguished. The remaining case is the potential due to a point charge in an 
infinite medium of dielectric constant e*

W w )  = 4J _  5(0,o,o,zd) (3.57)

Scalar potential with one dielectric layer, no ground planes

3.6 Simpler Results - Particular Source and Object Point Positions

This section presents the results of positioning both z and Zq on the boundaries of layer 2. 
This results in simpler forms for the formulae presented earlier. These are useful for the 
case mentioned in the introduction, where layer 2 represents the PCB material, when the 
metallisation patterns are on the top or bottom surface of the PCB. The results presented 
will be:

• W *, y) for z = Zq = 0, so zd — z, — 0 . This can be derived from <j)n, <j>12 or (j)̂
• <5>oc(*, y) for z = 0, Zq — c (or vice versa), so zd = z, = c. This can be derived from <J>12,

1̂3» 2̂2 01* (̂ 23
• $«:(*» y) for z = Zq = c, so zd = 0 and z, = 2c. This can be derived from (J)̂ , (J)̂  or <J>33
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The results are derived from those for all the situations presented in sections 3.3, 3.4 and 
3.5. They will be given without further explanation.

oo oo

b=0 m=0 n=0

[  5( / , m , n, 0) + £(/+1, m + 1, r t+ 1,0)
-  5( / ,/n + l,n, 0) -  ^(/+1, m , n+1,0)

+ p { £(/+ l,nz + 1, n, 0) + 5( / , m , / t+ l ,0 )
~ 5 ( / + l ,  m ,n, 0) -  5( I ,m + l ,n + 1 ,0 )  } ]

(3.58)

/=0 m=0 n=0

OO OO OO

[  5(/, m ,n,c) + £(/+ l,/n + 1, n, c)
-  ^(/, /n+l,n,c) -  £(/+!, m , n,c) ]

(3.59)

oo oo

= 4̂ X X X*-» xz /=0 m=0 «=0
[  5(/, m , n ,0) + £(/+1, /n + 1, n + 1,0)

-  £(/, m + 1, n + 1,0) -  £ ( /+ l ,  m , n ,0)
+ a  { 5(/, m , n+1,0 )  + £ ( / + l , / n + l ,  n ,0)

-  £(/,m + 1, n ,0) -  4 ( /+ l ,  m , n+1,0 )  } ]

Scalar potentials with three dielectric layers, two ground planes

(3.60)

oo oo

* * * >  = x
^  rt=0 (3.61)

[  5(0, m, n ,0) -  £(0,m + l, n ,0)
+ p { £(0,/n, n + 1, 0) -  £(0,m+l, n+1,0) } ]

oo oo

^  X (3 62)m=0 «=0
[  5(0, m, n, c) -  £(0, m +1, n, c) ]

oo oo

<i>cc(*>:y) -  47ceo£2 ^  P  ^ m « (a )  x

WB° (3.63)
[  £(0, m, n , 0) -  5(0, m + 1, n +1,0)
+ a  { 5(0, m, n + 1,0) -  5(0, m+1, n ,0) } ]

Scalar potentials with three dielectric layers, one ground plane
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<footey) = -± £ 2 -  ] > > ) "  [  S(o, ° - ° )  + P S(0. 0 ,»+1.0) :  (3.64)
n=0

oo

<M*oO = 0  ^ 1 +P)- X (aP)* ^(0’ ° ' "■c) (3-65)
«=0

oo

=  i ^ j h  S (aP)" 1 ° ’ 0) + “  ̂ ( a  ° ’ " + h  0) 3 (366)
n=0

Scalar potentials with three dielectric layers, no ground planes

oo oo

^  = 4 ^  X Z ( - ,)X (P ) X
1=0 «=0 (3.67)

[  5ft 0, n ,0) + 5 (/+ 1,0, n+1,0)
-  \( l.0, n+1,0) -  5 ((+ l,0 , n ,0) ]

Scalar potential with two dielectric layers, two ground planes

<t>cc(*.y) = - ^ y ^ -  2 , (  -fir C 1(0, o, n, 0) -  5(0,0, n + 1 , 0 ) :  (3.68)
B=0

Scalar potential with two dielectric layers, one ground plane

The formulae in equations 3.61 - 3.66 and equation 3.68 can be rewritten in a form that is 

efficient for computation. The details of this are presented in Appendix D.
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3.7 Vector Potential Solution

An arbitrarily directed current source between the ground planes in Figure 7 can be resolved 

into two components, one parallel to the ground planes and one normal to them. This section 

details how the vector potential is obtained for both cases.

3.7.1 Source Current Parallel to the Ground Planes

The point current source is located at z -  % between the two ground planes, directed parallel 

to the x axis. The Poisson equation 3.11 for the vector potential shows that the vector 

potential is parallel to the current source producing it, and is therefore also parallel to the x 

axis. Hence, only the x component A* of the vector potential is considered.

Because all three dielectric layers have a relative permeability of 1.0, only two Laplace’s 

equations are required to solve for the vector potential. These are

Axa(k,z) = A+efa + A~e~la — dx < z < zq
(3‘69)Axb(k,z) = B+e +B e zO£z<c + di

where Axa is the Fourier transformed x component of the vector potential for z <Zq, Axb is the 

same for z>Zq, and A+ to B~ are initially unknown functions of arbitrary wavenumber k. 
These are determined by the Fourier transformed boundary conditions, which are,

Axa{K -dx) =  0 (0

Axb(k,c + d£ = 0 0*0
(3.70)

Axa(k, Zq) = Axb(k, Zq) (Hi)

^ (* '* > )  = ^  <w

The first two conditions enforce zero vector potential on the ground planes at z = -dl and 

z=c + d1, which is the only solution possessing a Fourier transform. The next condition 

enforces continuity of potential at the boundary between the two regions. The last condition 

enforces a discontinuity in H equal to the current density at the boundary between the two 

regions [Bleaney and Bleaney, 1976, p.121].



- 5 6 -

The solution of these equations is performed in an identical manner to that for the scalar 
potential, and so the details are omitted. There are three cases to be considered, with two, 
one and no ground planes respectively. The x component of the vector potential, A*, for each 
of these cases is:

oo

A£x,yj) -  [  £(0,0,n,zj) + £(0,0, n + 1,-z^)
£o  (3-71)

-  £(0,0, n, zs) -  £(0,0, n +1, -zs) ]

x component of vector potential with two ground planes

A^x.y.z) = ^ - [  | ( 0 ,0,0, zj) -  £(0 ,0 ,0 ,2j) ] (3.72)

x component of vector potential with one ground plane

A£x,y,z) = ^  £(0,0,0 ,zd) (3.73)

x component of vector potential with no ground planes

3.7.2 Source Current Perpendicular to the Ground Planes

The point current source is located at z = ^ between the two ground planes, directed parallel 
to the z axis. The vector potential is therefore also parallel to the z axis, so only its z 
component, A,, is considered. This component produces a magnetic field parallel to the 
ground planes, which is not constrained by any boundary conditions [Bleaney and Bleaney, 
1976, p.121]. The ground planes therefore have no effect, and the z component of the vector 
potential is given by,

4 ( W )  = £(0,0,0,zj) (3.74)

z component of vector potential



- 5 7 -

*1iQ\ • Q
zo

\ f

Ground Plane

• -Q

Figure 8. Image representation of a point charge above a ground plane

3.8 Correspondence with Image Series

The method of images [Bleaney and Bleaney, 1976, pp.48-56] is a technique which, in some 
cases, enables the effect of material boundaries on the scalar potential to be accounted for. 
This is done by defining a system of “image” chaiges in a homogeneous medium, of 
appropriate strength and location, which have the same combined effect as the original 
charge in the inhomogeneous medium. The simplest example of this is a point charge above 
an infinite ground plane. The effect of the ground plane is the same as that of a point charge 
of equal magnitude and opposite sign to the original charge, placed the same distance from 
the ground plane and on the opposite side. This is where the image of the original charge 
would be if the ground plane were a mirror, hence the name of the method. This situation 
is illustrated in Figure 8.

If the potential is required at (x, y, z), then this point has a separation in the z-direction of 
\z-Zq\ = zd from the original charge, and a separation of z + z0 = zt from the image charge. 
Hence, for any z > 0, the potential can be written as,

♦ (W )  = 4(0,0, 0, zj) -  4(0,0, 0, zs) ]  (3.75)

which is the same as equation 3.56, the potential for one dielectric layer and one ground 
plane, when £2= 1. Note that the potential is only given correctly in the space above the 
original ground plane; below the ground plane, the potential is zero. This illustrates the point 
that, in general, a different image series will be required to yield the potential in each region 
of the original problem, because there can only be one charge in the region of interest. If
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Figure 9. Infinite image series for two dielectric layers, one ground plane

this were not the case, there would be additional singularities in the potential, not present 

in the original situation.

A similar correspondence is found between the results of equations 3.48 - 3.50, for two 

dielectric layers and no ground planes, and those in Bleaney and Bleaney [1976, pp.48-56] 

for a point charge above a semi-infinite dielectric, but this will not be detailed here. When 

these two cases are combined, the situation shown in Figure 9 results. There are now in 

effect two “mirrors”, a perfectly reflecting one (the ground plane) and a partially reflecting 

one (the air-dielectric interface). The combination of these two produces an infinite series 

of images, the first few of which are shown in Figure 9 [Chow, 1980]. This series is valid 

for evaluating the potential within the dielectric. A different image series would be needed 

to evaluate the potential above the dielectric, with no image charges in this region. Both 

series give the same result for the potential on the air-dielectric interface, which can be 

written as,

oo

4>cc(x.y) =  -p )“ L  5(0, o, n , 0) -  t o  0, n  + 1 ,0 )  ]  (3.76)
*=0
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Figure 10. Innnite Image series for three dielectric layers, no Ground planes

which is the same as equation 3.68 when e2 = £, and 63 = 1.

Another case is that shown in Figure 10. Again, there are two reflecting surfaces, but this 
time both of them are partially reflecting. This results in the infinite series of images shown, 
also only valid within the dielectric, first derived by Silvester [1968]. The potential on the 
top air-dielectric interface can be written as,

00

kcCt.y) = V  p2" :  5(0,0, n, 0) + P 5(0,0, n +1,0) ]  (3.77)
n=Q

This is the same as equation 3.66 when £2 = £, and = £3 = 1 (so that a  = P).

More complicated geometries have not been dealt with by image theory, to the author’s 
knowledge, but general principles can be deduced. Since two reflecting surfaces produce 
an infinite series of images, it would be expected that three reflecting surfaces would 
produce a doubly infinite series of images, four reflecting surfaces a trebly infinite series 

of images, and so on. The results in previous sections, with doubly and trebly infinite series, 

are of the form expected. This suggests that they too could be interpreted as image series,
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N = 4  
N = OO

20
Normalised distance from source

Figure 11. Potential for a PCB with no ground planes: £2 = 5

if so desired. However, because of their complexity, it would be unattractive to derive them 

in the same way as Silvester did [1968] for a singly infinite series.

3.9 Rate of Convergence of Series

Convergence is a vital consideration in determining the optimum trade-off between accuracy 

and efficiency in the FACET simulations. The rate of convergence of the infinite series 

derived so far is now examined for a few examples, with two, one or no ground planes and 

two or three dielectric layers. Only the behaviour of the scalar potential formulae is 

examined, since the vector potential formulae are so similar.

To obtain potentials for these examples, layer 2 in the general geometry of Figure 7 is taken 

to be a PCB material, and layers 1 and 3 are taken to be air. Hence, e1 = e3= l and so 

a  = p. The source charge and object point are both placed at z = c, the boundary between 

layers 2 and 3. The potentials examined are therefore all <t>cc, as derived in section 3.6. These
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Figure 12. Potential for a PCB with no ground planes: = 20

results can be extrapolated readily to more general cases if required, but the general 

conclusions will be similar for all geometries with the same structure.

Plots are presented in the following sections of the potential (on a logarithmic scale) against 

the distance from the source point charge. The potential is normalised by the potential one 

PCB thickness away from a unit point charge in free space, ie. (47ce0c)_I , and the distance 

from the point charge is normalised by the thickness of the PCB, ie. c. These definitions 

enable the results from the various cases examined below to be compared easily.

3.9.1 No Ground Planes, Three Dielectric Layers

The first case examined is a PCB with no ground planes present. The potential is derived 

from equation 3.66 by setting a  = p and changing the upper limit of summation from infinity 

to N,
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Figure 13. Potential for a PCB with a ground plane on its bottom face: Ej = S

N

4>cc(x.y) = V p2» L 5(0i o, o) + p 5(0, 0, n + 1, 0) ]  (3.78)

n=0

Figure 11 shows the results for various values of the upper limit of summation N when 

£2 = 5, Figure 12 shows the same for £2 = 20 . In the first case, the convergence is rapid, 

and putting N = 4 produces a nearly exact answer. The second case converges rather more 

slowly, but using N= 10 still gives a very good answer. This difference is because for 

£2 = 5, p = 0.67, whereas for £2 = 20, P = 0.90. Hence, for the latter case the series 

coefficients decrease more slowly with increasing n, so the higher terms in the series are 

given more weight than before, and more of them need to be included before their effect 

becomes negligible. As a partial compensation though, in the second case the potential drops 

off more rapidly close to the source, showing the confinement of the field by the high 

dielectric constant and reducing the effect of inaccuracies in the value of the potential.
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N = 10 
N = 2 0  
N = 3 0  
N = 4 0  
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Figure 14. Potential for a PCB with a ground plane on its bottom face: ^  = 20

In both cases the series converge rapidly. Since the dielectric constant of typical PCB 
material is rarely much more than 5, putting N = 4 should be accurate enough for most 
situations.

3.9.2 One Ground Plane, Two Dielectric Layers

This case is a PCB with a ground plane on its bottom face. The potential is derived from 
equation 3.68, using the same conditions as the previous section,

N

M *,)0 = 4^ -  -P)" C 5(0, 0, n, 0) -  4(0, 0, n + 1, 0) ]  (3.79)
n=0

Figure 13 shows the results for various values of N when £2 = 5, and Figure 14 the same 
for £2 = 20. In both cases the convergence is slower than it was without a ground plane. 
This is partly because the magnitude of the series coefficients decreases less rapidly than 
before, falling off as P" rather than p2", and partly because the coefficients now alternate in
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Figure 15. Potential for a PCB with a ground plane 1 board thickness from its bottom face

sign. This also accounts for the sharp dip in potential for N= 7 in Figure 13, which is where 

the calculated potential becomes negative. Note that sharp dips on a logarithmic scale only 

correspond to small changes on a linear scale, and the actual change is from a very small 

positive value to a very small negative value. This is possible with a series of alternating 

sign, but is not a problem here since it only appears to affect the results for a few values 

of N. The convergence is still quite fast when 62 = 5, and using N= 10 gives a very good 

answer. When 62 = 20 the convergence is slower, as before, and it is necessary to set 

N =40 to achieve the same level of accuracy.

Note, however, that the potential is much reduced compared to the case with no ground plane 

- by a factor of about 5000 for 62 = 5, and of about 70,000 for 62 = 20 at a distance of 20 

board thicknesses from the source. Hence, the slower convergence may not matter greatly 

in real problems as the potential may not be significant further than, say, five PCB 

thicknesses from the source charge.
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Figure 16. Potential for a PCB with a ground plane 0.1 board thicknesses from its bottom face

3.9.3 One Ground Plane, Three Dielectric Layers

This case is a PCB with a ground plane removed a distance 4  from its bottom face. The 

potential is derived from equation 3.63 by setting a  = p and changing the upper limits of the 

summations from infinity to M and N,

M  N

m=0 n=0 ^  g 0 ^

[  £(0, m, n , 0) -  £(0, m +1, n +1,0)

+ p { £(0,m,n + 1,0) -  £(0,m + l, n ,0) } ]

In this section the dielectric constant of layer 2 is fixed at ^  = 5, about that of typical PCB 

material, and the effect of varying the distance from the bottom face of the PCB to the 

ground plane is examined.
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Figure 17. Potential for a PCB with a ground plane 1 board thickness from its top face and a 

ground plane on its bottom face

Figure 15 shows the results for 4  = cy ie. placing the ground plane one board thickness from 

the bottom face of the PCB, and Figure 16 shows the results for 4  = 0.1c . The convergence 

is better with the ground plane further away, which might be anticipated since the 

convergence of the previous cases was faster with no ground plane than with the ground 

plane on the bottom face of the PCB. In both cases the results are very good for 

M=N= 5, and in the first case putting M =N= 3 also gives very good results. The total 

number of terms needed is not many more than before, M =N= 3 corresponding to 16 terms 

and M =N=5 to 36 terms.

The values of the potentials fall between the previous results for £2 = 5 (in Figure 11 and 

Figure 13), that with 4  = c being closer to the case with three dielectric layers, no ground 

planes and that with 4  = c being closer to the case with two dielectric layers and one ground 

plane. Because the potential falls off rather more rapidly with the closer ground plane, the 

slightly worse convergence in this case may be of reduced importance in practice.
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Figure 18. Potential for a PCB with a ground plane 3 board thicknesses from its top face and a 

ground plane on its bottom face

3.9.4 Two Ground Planes, Two Dielectric Layers

This case is a PCB with one ground plane on its bottom face and a second one placed a 
distance *4 from its top face. The potential is derived from equation 3.67, setting the upper 
limits of summation to L and N,

In this section the dielectric constant of layer 2 is again fixed at 62 = 5, and the effect of 
varying the distance from the top face of the PCB to the second ground plane is examined.

Figure 17 shows the results for *4 = c, ie. placing the ground plane one board thickness from 
the top face of the PCB, and Figure 18 shows the results for *4 = 3c . It is immediately

L  N

1=0 n=0 (3.81)
[  n , 0) + %(l+1, 0, n + 1, 0)

-  S(Z,0,n + 1,0) -  S(Z+1,0, n ,0) ]
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Figure 19. Potential for a PCB with ground planes 1 board thickness from its top face and 1 board 

thickness from its bottom face

apparent that the presence of the second ground plane has a large effect on both the value 

of the potential and the convergence of the series. The potential now falls away vary much 

more rapidly than for the previous cases, and faster for 4  = c than for ^  = 3c , as would be 

expected. There are also sharp dips in the potential, where it becomes negative, as noted 

before. Here, this is a more serious effect, occurring for all values of L and N, but at a 

greater distance from the source as the number of terms is increased. The effect is rather 

worse for the ground plane one board thickness from the top PCB surface than with it three 

board thicknesses away, as would be expected from the behaviour of previous results.

Because the potential does fall off very rapidly, taking L=N= 5 and setting the potential to 

zero when it is computed with a negative value will produce an approximation as accurate 

as those suggested in previous cases, which may be useful for practical situations.
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Figure 20. Potential for a PCB with ground planes 3 board thicknesses from its top face and 1 

board thickness from its bottom face

3.9.5 Two Ground Planes, Three Dielectric Layers

This case is the most general one of a PCB with ground planes above and below it, separated 

by air gaps from the PCB dielectric. The potential is derived from equation 3.60, setting the 

upper limits of summation to L, M and N,

a  L M  N

= -4^ -  X  X 5 / » » (a ) x
/=0 m_Q ^

f  £ ( / ,  m , n ,0) +  £ ( / + l , / n + 1, n+1,0)
L (3.82)

-  £(/, m+ 1, n + 1,0) -  £(/+!,  m , n ,0)

+ a  { £(/, m , n + 1, 0) + £ ( /+ l ,m + l ,  n , 0)

-  £(/, m + 1, n , 0) -  £(/+!, m , n + 1, 0) } ]

The results shown are for the dielectric constant of layer 2 fixed at £2 = 5, fixed at one 

board thickness, and ^  set to one board thickness (in Figure 19) and three board thicknesses 

(in Figure 20).
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Figure 21. Potentials for various cases of ground plane positions

The potential is now obtained from a triple summation. As might be expected from previous 

results, the convergence is reasonably slow, and has the same behaviour as that for two 

ground planes and two dielectric layers in the previous section. Setting L=M=N = 5 may 

be sufficiently accurate for use in practical problems, but even this results in 216 terms in 

the summation.

3.9.6 Summary

The discussion in this section has shown the behaviour of the solutions derived for the 

potential. The forms ranged from the simplest, with no ground planes and a single 

summation, to the most complex, with two ground planes and a triple summation. 

Figure 21 shows the solutions for several of these cases, all with £2 = 5 and ^  = £3 = 1 , put 

together for ease of comparisoa This also illustrates that the more ground planes that are 

present, and the closer they are to the PCB, the faster the potential is attenuated.



3.10 Conclusions

This chapter has considered the problem of evaluating the potential due to a unit point charge 
or point current, which yield the electrostatic scalar potential Green’s function and the 
magnetostatic vector potential Green’s function respectively. This problem was posed for a 
region consisting of three dielectric layers bounded by two ground planes, all of infinite 
extent in two dimensions (x and y). Solutions for the potential anywhere in the structure 
due to a point source placed anywhere were found. The solutions were obtained in the 
spectral domain, and by expanding these as infinite series the transform back to the spatial 
domain was made possible.

The results obtained were then used to generate results for simpler cases, with fewer 
dielectric layers or fewer ground planes. The convergence of the series was examined, and 
they were found to converge rapidly, with the partial exception of the most general case. 
Another advantage of the simpler cases was demonstrated by this: as well as being
expressed in a simpler form, their expansions converged more rapidly. This method could, 
in principle, be used for any number of dielectric layers, but the mathematical complexity 
would become too great and the resulting series would not converge rapidly enough to be 
of practical use.

The next two chapters make use of the Green’s functions developed here, describing the way 
they are incorporated into FACET. Chapter 4 uses the vector potential Green’s function in 
the computation of the inductance of vias. Chapter 5 uses both scalar and vector potential 
Green’s functions, convolving them with various basis functions defined on rectangular and 
triangular elements. In both these applications, the ease of computation and accuracy of the 
Green’s functions has been very useful.
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Chapter 4 

Modelling the Inductance of Vias

4.1 Introduction

Vias are holes in the dielectric material of a printed circuit board (PCB), perpendicular to 
its surface and usually plated with solder. They are either used to connect different layers 
of metallisation or as a point of attachment for the leads of wire ended components. The 
inductance of these vias is assumed to be much more significant than their capacitance to 
other conductors. In particular, when a via is part of an ground return path its impedance, 
due mainly to inductance at radio frequencies, may be critical. This chapter describes the 
model developed for the inductance of vias. These are treated as hollow thin-walled 
cylinders, with a uniform current flow along their surface in an axial direction.

The model is developed in the following way. Firstly the basic definitions of inductance 
are derived in an appropriate foim. The equation for the vector potential due to current flow 
along a hollow cylinder, used in the computation of the inductances, is derived from the 
results of Chapter 3, and the numerical method chosen for its evaluation described. This is 
then used to derive the self inductance of a via and the mutual inductance between two 
parallel vias. For the case of the mutual inductance approximate expressions are also 
derived, which can be evaluated much more rapidly than the exact forms, and their accuracy 
is examined. Finally, the internal impedance of a via is examined.

4.2 Definitions of Inductance

4.2.1 Mutual Inductance

Consider a set of current-carrying conductor loops in free space. A current I; flowing in the 
i* loop produces a magnetic field B,. This results in a magnetic flux linking the j A loop, 
where
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v.) = | Bi- dSj (4.1)

The integral is over any open surface Sj bounded by the j* loop, and dSj is the outward 

normal to this surface. The mutual inductance Ly between the two loops is defined as the 

flux linking the f  loop due to a unit current flowing in the i* loop,

Vy
h  = ~ T  (4-2)li

It can be shown from the theorem of reciprocity [Morse and Feshbach, 1953, p.883] that

Ly = L$. The magnetic field B is expressed in terms of a vector potential A, in the same way

as in Chapter 2, where

B = Vx A (4.3)

The solutions for the vector potential which will be needed later in this chapter were derived 

in section 3.7. Equation 4.1 can be rewritten in terms of the vector potential using Stokes’ 

Law [Morse and Feshbach, 1953, p.43]. For a unit current flowing in the Ith loop, this can 

be combined with equation 4.2 to give the mutual inductance between the two loops as

h, = f A,-. dlj (4.4)

where the integral is now around the f  loop and dl; is directed around this loop in the 

direction of current flow. If the conductor forming the loop cannot be assumed to be thin, 

then the above equation must be modified to average the contributions to the integral over 

its cross section. If the cross sectional area is taken to be a constant, q, and y and z are the 

co-ordinates normal to the local current flow direction, the result is,

This is the form used to calculate inductances in this chapter, and is also the form used in 

equation 2.21 of Chapter 2.
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Figure 22. Co-ordinates used for via geometry

4.2.2 Partial Inductance

The discussion so far has related to current loops. However, it is often convenient to 

consider the constituent parts of these loops separately. For example, part of a loop might 

consist of PCB tracks, part of vias (the subject of this chapter) and part of external 

connections. Equation 4.5 involves the integral of the vector potential around the j'k current 

loop, and could with no loss of generality be partitioned into several integrals, each over a 

part of this loop. Equally, the i* loop could be split into several parts, each contributing 

independently to A,-.

Each inductance defined by equation 4.5 can therefore be partitioned into a set of partial 

inductances, as defined by Ruehli [1987]. These can then be manipulated as inductances 

in their own right With these definitions the inductance problem for a general set of 

conductors breaks down into three parts:

• Split the conductors into a number of suitable elements

• Compute the vector potential due to unit current flow in these elements

• Compute the full set of partial inductances between elements

When these partial inductances are combined and used in a circuit simulator, the correct 

behaviour of the current loops will be obtained.



4.3 Computation of the Vector Potential

Figure 22 shows a section perpendicular to the axis of the via, which is of length 2a and
radius b. The vector potential is required at an observation point P. The local co-ordinates
which will be used are cylindrical. The x axis is coincident with the axis of the via, and the
via extends from x - - a  to x -a .  The angle co-ordinate 0 is measured anticlockwise from
the line between the centre of the via and the observation point P. In these co-ordinates,
(r, 0, x) the observation point is situated at (/^, 0, Xq). The via is assumed to be a hollow,
thin walled cylinder, with a uniform current density around its circumference directed
parallel to the x axis. The current per unit length around the circumference is of magnitude
~ r A ,  so that a total current of 1 amp flows through the via. This value is used entirely 
2 K b
for convenience, since inductance is then numerically equal to flux, as shown by 
equation 4.2.

Because the current is directed parallel to the x axis, the only component of the vector 
potential A that is non-zero is the x component A,, as can be seen from equation 3.11 for 
the vector potential. The PCB material is assumed to have the same permeability as air, 
Mo. so the region being considered is homogeneous. This remains true even if there is an 
ideal infinite ground plane parallel to the PCB (allowed in a FACET simulation), since this 
is perpendicular to the vias and therefore has no effect, as discussed in section 3.7. The 
walls of the cylinder are thin, so no integration over r is needed to find this component, 
which is

R in the above equation is a function of 0. The cosine rule can be used to express it in terms 
of b and (which are constants) and 0,

bdxdd

(4.6)
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The substitution a  = 0/2 is useful. In terms of a, R is

R2 = (Rq -  b)2 + 4W?q sin2a  (4.8)

Noting also that dQ = 2da, equation 4.6 is transformed into the form used for computations,

Ac =
a  — X n +  ^ l  ( R n  ~Xq + V ( R q  -  b) + AbRQ sin a  + (a -  Xq)

—a —  X q  +  ' ^ [ ( R q  —

da (4.9)
b) + AbRQ sin a  + {a + X q )

43.1 Evaluation of the Integral

Equation 4.9 has to be integrated numerically. Two methods have been used: Simpson’s rule 

[Matthews and Walker, 1970, pp.349-353], and a set of rules due to Patterson[1968]. The 

use of these is discussed in more detail in Chapter 5. Both these methods are used in an 

iterative way, using more integrand values until the required level of convergence is 

achieved. This is usually after only two or three rules, involving at most 15 or so integrand 

evaluations. The subroutine takes about 0.75ms to run using three rules and about 0.35ms 

using two rules.

4.4 Self Inductance of a Via

Equation 4.5 shows that the self inductance of the via is found by integrating the x 

component of the vector potential over its surface. The via is thin walled, so the 

cross-sectional area a, in equation 4.5 is replaced by the circumference of the via, 2nb and 

no radial integration is performed. Since the vector potential was derived for unit current, 

the self inductance of the via is numerically equal to the flux linking the via. Denoting the 

self inductance by I*, and noting that A.dl =AJdxQ , equation 4.5 becomes
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= J Axdx0
(4.10)

since A, is independent of 0. The problem now is to perform the integration. This can be 

tackled by setting up a function

AK,R) = l n ^  + V « 2 + 42 ]

which when integrated with respect to £ gives

= 51n̂  + V«2 + 42] - V/?2 + ̂
Using the function /(£, /?), the self inductance of equation 4.10 can be written as

(4.11)

(4.12)

hi =
Ho

4 k 2

•TC

dQ (4.13)

Using equation 4.12, performing the two inner integrations and combining the results then 

gives for the inner term

= 2aIn 2 a 4aJ

-2a + ^ R 2 + 4a2 

-  2^1 R2 + 4a2 + 2R

(4.14)

For the self inductance, Rq in Figure 22 is constant and equal to the radius of the via, b. 
From equation 4.7, the expression for R to be used in the above equation is therefore 

R1 = 2b\l -  cos 0).

Equation 4.14 now has to be integrated over 0. No analytic solution to this integral has been 

found, but it can be written in a simplified form, the derivation of which is detailed in 

Appendix E. Briefly, the second term results in an elliptic integral of the second kind (see
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foimula 2.576.2 in Gradshteyn and Ryzhik [1980]), and the integration of the third term is 
trivial. The resulting expression for the self inductance is

, _ 2m,
Mi -  _2K

n
• y

1 2
a In ■&.+-SJ - ^ r  + 4sin2ab Y b2
• }

da

(4.15)

\i 2 . ,2— va +b + b

where E is the complete elliptic integral of the second kind.

4.4.1 Evaluation of the Numerical Integral

The first term in equation 4.15 has to be integrated numerically. This is done in the same 
way as for the vector potential in section 4.3.1, with the exception that the number of rules 
in the numerical integration is fixed at 2. This has been found to give better than 0.1% 
accuracy provided that the length of the via is at least a tenth of its radius, which is always 
the case. Only 7 integrand evaluations are required to give this answer, so the routine is fast 
- taking about 23ms to run.

4.4.2 Evaluation of the Elliptic Integral

The second term in equation 4.15 involves the complete elliptic integral of the second kind. 
This is evaluated using a four term expansion given by Cody [1965]. For the integral E{k) 
this is

E(k) -  1 + 0.4630106r| + 0.1077857ti2
2-, 1 (4.16)+ [0.2452740q + 0.0412532It]2 ]  x l n ( | )

where r| = l-Jfc2. The maximum error in this approximation is 3.91 x 10"5. Since 
1 < E{k) < -y-, this is perfectly acceptable.
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Figure 23. Self inductance of a via of varying size

4.4.3 Results

Two sets of results are shown in Figure 23 to show the behaviour of the model. The first 

is for a via of length 1mm and radius between 0 and 2mm. The self inductance approaches 

infinity as the radius approaches zero, which is to be expected because of the terms in \/b 

in equation 4.15.

The second set of results is for a via of radius 0.5mm and length between 0 and 2mm. The 

self inductance of a very long via would be expected to be proportional to its length. For 

shorter vias doubling the length more than doubles the self inductance because of the extra 

mutual inductance between the two halves. This reinforcing effect reduces with length 

because of the reduction in mutual inductance with separation.

These results show that the predicted self inductance varies in a reasonable manner when 

the length and radius of the via are varied. The values predicted are also reasonable when 

compared with those predicted for tracks in FACET, although details are not given here.
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=  a.

x =  0

x = - a
Figure 24. Geometry used for mutual inductance calculations: section through via axes

4.5 Computation of the Mutual Inductance Between Vias

Expressions for the mutual inductance between two vias can now be worked out, proceeding 

along similar lines to the derivation of the self inductance. In practical cases all vias are 

parallel to one another: here both vias are assumed to be parallel to the x axis. A section 

through the via axes is shown in Figure 24, and a section through the vias perpendicular to 

their axes is shown in Figure 25. The first via is of length 2a; and radius b,. It is centred 

at x = 0, and so extends from x = -  q to x -  q . The second via is of length 2q and radius 

bj. It is centred at x=xc, and so extends from x = xc- a i to x - + q .

The full solution for the mutual inductance is derived below, treating both vias as hollow 

cylinders and resulting in some rather complex expressions. Various approximations are 

then investigated to find an approach that gives results much faster and with sufficient 

accuracy.
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Figure 25. Geometry used for mutual inductance calculations: section perpendicular to via axes

4.5.1 Full Calculation

To calculate the mutual inductance, the distance R between two arbitrary points on the via 

circumferences in the plane perpendicular to their axes is needed. With 9/ and 0, as defined 

in Figure 25, and s as the separation of the via axes in this plane, this distance can be shown 

to be,

R2 = s2 + b 2 + b2 -  2bpj cos(0, -  0y) + 2s(bj cos 0y-  bL cos 0;) (4.17)

Denoting the x component of the vector potential due to unit current flow in the first via 

by the mutual inductance between the two vias is

h  =
i Cx‘ + aJ

i r2lt rx' +a>
l i r i  J \ dxi dQi*0 *x -  a;

(4.18)

The integral over 0, cannot be reduced to 2% as before because the vector potential is no 

longer symmetrical about 0; = tl Similarly, the integral to give the vector potential is



- 8 2 -

asymmetrical about 0, = 0. The vector potential A, at the point {b}, 0y, xj) on the second via 
is therefore

CLi -  Xj +  V R 2 +  (di -  Xj)2 

— <Ji — Xj + VR2 + (fli + xj)2
dQi (4.19)

The lull expression for the mutual inductance between the two vias is therefore

+  0:

In
Oi-Xj + Ir  2 + (oi -  xj)2 

— cii — Xj + i R2 + (a,- + xjy
dXjdQjddj (4.20)

The inner integral, over x>, is identical in form to that already evaluated for the self 
inductance, but with more complicated limits. Call this integral /'. It is turned into the 
required form (equation 4.11) by splitting the logarithm into two parts, and performing the 
substitutions Z3 = ai-x j and ^ = - a i-x j respectively on the two halves. This gives

where the limits ^  to £4 are given by

=  O i - O j - X , kl = Oi + q-Xc
xc

(4.21)

(4.22)

The discussion is simplified by introducing the functions I\(£j) and / '2©

/',© = l̂n[̂  + V«2 + ̂ ]

/ ',©  = VI

( 4 . 23 )
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Using equation 4.12 and the above functions, / ' can be written as

/ ' = -  *2(62) + ̂ 261) + f 264) - J 2S 3) (4-24)

This result now has to be integrated with respect to 0, and 0, to give the mutual inductance. 

No analytic solution for the integration of 7\(^) has been found, and so this has to be 
performed numerically (using the NAG subroutine D01DAF [NAG, 1988]). However, some 
progress can be made with the second function / '2©  . Equation 4.17 for R can be expanded 

and rearranged to

(4.25)
R2 = {s2 + b 2 + b 2 + 2sbjcos 0,} -  {2bt(bjcos 0y + 5)} cos 0,

-  [2bjbj sin 0y} sin 0f

Formula 3.032.1 in Gradshteyn and Ryzhik [1980] is

|  flpoosx+qsmx)dx = 2 + cos dx (4.26)

Therefore set

Ci = s2 + b 2 + b 2 + 2sbj cos 0y

c2 = V  {2bj(bj cos 0y + s)}2 + {2bjbj sin 0; }2
(4.27)

The integral of I \  over 0f can now be performed, using formula 2.576.1 in Gradshteyn and 

Ryzhik [1980], to give

f  ' I r 2 + %2 d0, = 2

where E is the complete elliptic integral of the second kind. When cl and c2 are expanded 
as functions of 0;, the resulting expression is rather complicated, and no analytic solution for 

the integral over 0, has been found. This remaining single integral is therefore performed 

numerically, using the method described in section 4.3.1.

c\ + £ + ° i cos 0,- d&i



This section presented in some detail the full calculation of the mutual inductance between 
two vias when both are treated as hollow cylinders. This result takes rather a long time to 
compute, principally because of the double numerical integration of I\. The main use for 
the results obtained from this section is therefore to compare with the results from the 
following sections, where various approximations are used, as a check on their accuracy.

4.5.2 Approximations for the Mutual Inductance

An approximation to the mutual inductance can be obtained by treating one or both vias as 
a filament of current, or a thin wire. The expressions derived above can then be greatly 
simplified.

45.2.1 Treating One Via as a Thin Wire

For this case, the second via is treated as a thin wire, so bs = 0. The expression for R in 
equation 4.17 simplifies to

This is no longer a function of 0;, so the integration over 0, can be replaced with a 
multiplication by 2n. The integration of I \  over 0,- still has to be performed numerically, 
although it is now symmetrical about 0, = n. This is done in the same way as for the self 
inductance in section 4.4.1. Again, only 7 integrand evaluations are needed for results of 
sufficient accuracy. The integration of l \  results in a simpler form of the elliptic integral 
in equation 4.28

R2 = s2 + b 2 — 2sty cos 0, (4.29)

The full expression for the mutual inductance can therefore be written as

( 4 . 31 )
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Figure 26. Mutual inductance between two vias: length = 1.0mm, radius = 0.5mm, separation of 
centres = s mm

4.5.22  Treating Both Vias as Thin Wires

With both vias treated as thin wires, = b} = 0. The expression for R in equation 4.17 

simplifies to

R2 = s2 (4.32)

This is no longer a function of 0f or 0;, so the integrations over these can be replaced with 

a multiplication by 4tc2 . Using /' as defined in equation 4.24, with R2 replaced by s \  the 

full expression for the mutual inductance is now
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4.5.3 Results and Comparison of Methods

Figure 26 shows results from the full integrations and the two approximations detailed 
above for the mutual inductance between two vias. Both vias had length and radius 1mm, 
and the second via was positioned with xc = 0, separated from the first via by s mm.

A separation of 0 corresponds to the self inductance of the via. The full integrations give 
exactly the same answer for this as was obtained in the previous section. Approximating 
one via as a thin wire gives a result which is about 10% less than the correct answer. 
Approximating both vias as thin wires gives an infinite result. This would be expected from 
the results of the previous section: for s = 0, / '2©  = —00 when £ is negative, and with 
Jt = 0 one or more of the limits ^  to given by equation 4.22, is negative.

Separations of between 0 and 1mm are not physically realistic in this case, since they 
correspond to the vias overlapping. For separations of more than 1mm, the answers given 
by the three methods quickly converge: at a separation of 3mm the differences from the full 
integration result are 0.7% for the one thin wire approximation and 1.3% for the two thin 
wires approximation.

The times taken by these different methods are (approximately):
Two thin wires 0.10ms
One thin wire 0.87ms
Full integration 100ms or more

Hence, the approximate methods are greatly preferred. Since the one thin wire 
approximation is the more accurate of the two, and still takes less than 1ms to evaluate, it 
is the method adopted for inclusion in FACET. If the two vias have different diameters, the 
smaller of them is considered as the thin wire.

4.6 Internal Impedance of a Via

The results derived so far have been for the external impedance of a via, due to the fields 
set up in space by the current flowing through it. Also of interest is its internal impedance, 
due to the fields set up in the metal of the via itself. This depends on the conductivity of 
the via metallisation and the frequency. The via has been assumed to be thin walled, so to 
calculate the internal impedance it can be modelled to a good approximation as a flat sheet
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Frequency R, (mO) ©L, (mQ) L, (pH)

1 MHz 0.549 0.005 0.750
10 MHz 0.550 0.047 0.750

100 MHz 0.625 0.453 0.720
1 GHz 1.974 1.969 0.313

10 GHz 6.226 6.226 0.099
100 GHz 19.695 19.695 0.031

Table 1. Surface impedances for a via of length lim m  and radius 0.5mm

of metal, of length 2a and width 2tc&, with the current distribution assumed symmetrical in 
the thickness (ie. the metal sheet is assumed to have two current carrying skins). The 
necessary skin effect theory is detailed in Appendix A, so the results will just be summarised 
here.

The impedance of a square region (of any size) in a conducting sheet with defined thickness 
and conductivity is called the surface impedance, Z,. This has units of Ohms per square, 
and can be written as

Z, = Rs + jnL, (4.34)

where Rs and L, are respectively the surface resistance and inductance. To obtain the internal 
impedance, Z,y of a particular via, the surface impedance is multiplied by the number of 
squares (where the subdivision is in the direction of the current), giving

*  = i b  <4-35>

At low frequencies, when the skin depth of the conductor is much greater than its thickness, 
both R, and Z* are constant. At higher frequencies, R, increases as V / while L, falls off as 
ip lf, so that at very high frequencies the real and imaginary parts of the surface impedance, 
R, and coL,, are equal.

As an example, consider a via with radius 0.5mm and length 1.5mm (ie. a - 0.75mm and 
b = 0.5mm). The metallisation is taken to be be 15 pm of copper, which has a conductivity 
of 5.8 x 107 S m '1. For this metal the skin depth is equal to its thickness at a frequency



of 19.4 MHz. Table 1 shows how Rif ©Z* and Lf vary with frequency. They all behave in 
the manner expected.

The resistance of this via is small at all frequencies likely to be used. Its internal inductance 
is also small compared with its external self inductance of 349 pH, and reduces with 
increasing frequency. Hence, modelling the via as a flat sheet to calculate its internal 
impedance is quite accurate enough.

4.7 Conclusions

This chapter outlined the calculation of the vector potential due to a via, the self inductance 
of a via and the mutual inductance between two vias. The necessary theory of inductance 
was derived from first principles. All the above quantities are calculated very efficiently, 
none taking more than 1ms of CPU time. The results obtained behave as would be expected 
for various limiting cases, and have reasonable values. The internal impedance of a via was 
also examined, and shown to be of much less importance than the external inductance.

The next chapter goes on to describe the computation of scalar and vector potentials due to 
track and polygon elements, used in the computation of the values of capacitors and 
inductors in the equivalent circuit model. For polygon elements, the mutual inductance 
between elements can be computed analytically, using similar methods to those developed 
in this chapter.
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Chapter 5 

Evaluation of Potentials and Inductance

5.1 Introduction

This chapter is concerned with the algorithms which calculate the scalar and vector 
potentials, both for track and polygon elements, the self inductance of a rectangular polygon 
element, and the mutual inductance between two rectangular polygon elements, and with the 
FORTRAN 77 subroutines which implement them in FACET. The nomenclature is 
discussed briefly, and then the expressions used to calculate the potentials and inductance 
are derived.

The assumed charge or current density distributions within each element are known as basis 
functions, and two types of these are used in the algorithms described here. Each polygon 
element has just one basis function, which is a constant charge or current density as 
appropriate. This is because these elements are designed to describe part of a large area of 
metal, where variations in charge and current density occur relatively slowly.

In contrast, track elements have up to six basis functions, each of which has a singular 
behaviour in the width of the element This behaviour produces a potential distribution 
which is approximately flat across the width of the element, which is close to the actual 
distribution expected. The additional basis functions, only included for charge, allow for 
some “leaning” of the charge density distribution in an attempt to model better the 
capacitance between tightly spaced tracks. The use of these additional basis functions is 
optional in FACET, as there can be a considerable time penalty associated with it.

It is important that the algorithms are computationally efficient, since they consume a large 
fraction of the computer time used in a typical FACET simulation. The expressions derived 
here for the polygon elements are all analytic, for maximum efficiency. Those for the track 
elements have as much of the expression as possible derived analytically, leaving just a 
single integration to be performed numerically. Special attention has been paid to this 
numerical integration, to ensure that it is performed accurately and efficiently. Timings are
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presented to show that high efficiency has indeed been obtained in all the implemented 
subroutines, and to demonstrate the time savings that result from the analytical approach, 
where it can be applied.

5.2 Subroutine Naming Conventions

A naming convention for the full set of subroutines was adopted, giving each subroutine a 
five or six character name. The naming convention is described in detail in Appendix F, 
so only the names of the subroutines implemented are listed here. Note that there are 
additional subroutines in FACET which conform to the convention, but which are not 
relevant to the work reported here.

Six subroutines are implemented in FACET Version 3.0 to calculate vector potentials. Four 
of these are for potentials due to polygon elements. These are:

VPR1G VPR1N VPT1G VPT1N

The remaining two subroutines are for potentials due to track elements. These are:
VTR1G VTR1N

More cases have to be considered for the scalar potential, and 36 subroutines are 
implemented in FACET, split evenly between those for polygon elements and those for track 
elements. Those for polygon elements are:

SPR1CB SPT1CB
SPR1CM SPT1CM
SPR1CS SPT1CS
SPR1GB SPT1GB
SPR1GD SPT1GD
SPR1GM SPT1GM
SPR1NB SPT1NB
SPR1ND SPT1ND
SPR1NM SPT1NM

and those for track elements are:
STR1CB STR6CB
STR1CM STR6CM
STR1CS STR6CS
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STR1GB STR6GB
STR1GD STR6GD 
STR1GM STR6GM 
STR1NB STR6NB 
STR1ND STR6ND 
STR1NM STR6NM

The remaining subroutines are for the calculation of inductance of polygon rectangles. There 
are two subroutines, called:

5.3 Rectangular Polygon Elements - Vector Potential

The Green’s function GA for an point current source with a ground plane parallel to the 
bottom face of the PCB and placed a distance below it was given by equation 3.72. This 
can be written as,

where the x and y co-ordinates are in the plane of the PCB faces and the z co-ordinate is 
perpendicular to the PCB. This represents the vector potential at the point (x,y,z) due to a 
unit point current i at the point fo, y0. %)■ The second term is due to the image current, which 
models the induced current in the ground plane, and can be ignored if there is no ground 
plane present. Equation 2.22 for the mutual inductance between two elements requires the 
x component of the vector potential due to a uniform current density distribution, A,, in a 
rectangular element, with a total current of 1 amp.

The location of the origin and the orientation of the x and y axes in equation 5.1 are 
arbitrary, so they can be defined locally with respect to an element The plane z = 0, 
however, corresponds to the bottom face of the PCB at all times. Figure 27 shows the local 
co-ordinate axes for a rectangular element of length 2a and width 2b. The origin of these 
co-ordinates is the centre of the rectangle, which therefore extends from -a  to a in the x

SIPR MIPRPR

GA(x\xo,y\yo,z\zo)  =

(5.1)
1

(x-xd + ( y - y 0) + (z + zo+24)'
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Figure 27. Rectangular element and local co-ordinate axes

co-ordinate and from -b  to b in the y co-ordinate. A uniform current is assumed to flow 

parallel to the x axis. At a point (x.y.z) in these co-ordinates, the vector potential due to this 

current is parallel to the x axis, and is given by

A = J GA(x\x0,y\y0,z\z0)dy0dx0 (5.2)

where i is now a unit vector parallel to the x axis, and the 1/26 factor is to normalise the total 

current to 1 amp. It is shown in Appendix G how the integral I

r r
J  i  + f .Kxi,xZjyl,y2,z) =  ■ ■ ■ ■ ■ -  ( 5.3)

can be evaluated analytically, the result being given in equation G.21. In terms of this 

integral, equation 5.2 becomes

|L) ,  I .

A = 4  = ~g^"( K - a - x , a - x , - b - y , b - y ,  \z-z^\)
-  I ( -a -x ,  a - x , - b - y ,  b -y ,  z + ZQ + 2d{) )
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This is the function implemented in the subroutine VPR1G. When there is no ground plane 

present, the second term in equation 5.4 is zero, and this simplified form is implemented in 

the subroutine VPR1N.

5.4 Rectangular Polygon Elements - Scalar Potential

For the scalar potential, the formulae are slightly more complicated. In FACET, a single 

sided PCB is defined as one with a ground plane on its bottom face. For an element on the 

top surface of a single sided PCB of thickness c, Appendix D shows that the Green’s function 

can be written as

N + l

G^x\xo,y\y0,c\c) = (5.5)
n=0

where

Rn = V(*-Ab)2 + (y-yo)2+4«2c2 (5.6)

and the PH are functions of e;, the dielectric constant of the PCB. They are therefore constant 

for any given PCB material. The upper limit of summation, N + 1, is chosen to give the 

required accuracy. This matter was discussed in some detail in section 3.9. Hence, the 

scalar potential <j> at the point (x,y,c) is

N + l

<|> = I { -a -x ,a -x ,  - b - y ,  b -y ,  2nc) (5.7)
n=0

This is implemented in the subroutine SPR1CS. The other subroutines with names of the

form SPRlxx are for different ground plane and element locations. They are very similar

in form, but with different expressions for the Green’s functions. The full set of Green’s 

functions needed to implement the subroutines was derived in Chapter 3.
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Figure 28. Type 2 triangular element and local co-ordinate axes

5.5 Triangular Polygon Elements - Vector Potential

Figure 28 shows the local co-ordinate axes for a triangular element. The origin of these 
co-ordinates is at the right angle comer. The triangle extends from 0 to 2a in the x 
co-ordinate and from 0 to 2b in the y co-ordinate. In the terminology to be introduced in 
Chapter 7, this is a type 2 triangular element. There are four types of triangular element, 
the other three being reflections of the type 2 element in one or both of the X and Y axes. 

The other types of triangle have local co-ordinates with the origin at the right angle comer. 

Table 2 shows their extent in these local co-ordinates.

The vector potential due to current flow in a triangle, A, is obtained from an expression 

similar to equation 5.2. However, in this case the current flow is assumed to be parallel to 

the hypotenuse, because this is always part of the edge of the polygon, and clearly current 

cannot flow over such an edge. The vector potential is therefore also parallel to the 

hypotenuse, and is given by integrating GA over the area of the triangle. This results in

The normalising factor is chosen so that the peak current in the triangle is 1 amp. In section 

6.8 it is confirmed that this is the correct choice. The integration limits are different for each

Gk(x \x0,y\y0,z\z0)dy0dx0 (5.8)
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Element Type
Minimum X 
Co-ordinate

Maximum X 
Co-ordinate

Minimum Y 
Co-ordinate

Maximum Y 
Co-ordinate

1 -2a 0 0 2b

2 0 2a 0 2b

3 -2a 0 -2b 0

4 0 2a -2b 0

Table 2. Minimum and maximum local co-ordinates for triangles

of the four types of triangle. Table 3 gives the limits necessary to obtain the potential at 

the point (x,y) in local co-ordinates.

It is shown in Appendix G how the integral /'

r r

J'(xi, X}, yh y2, z) = I I =  (5.9)
V*2 + y2 + z2

can be evaluated analytically, the result being given in equation G.42. With the limits 

provided by Table 3 for the appropriate type of triangle, equation 5.8 can be written in terms 

of the integral / ' as

PoiVa2 + b2 , i k
 4tiab------ ( Kxi,x2tyl,y2, \ z - z Q\) (5.10)

-  7(x1,x 2,y i,y2»z + zb + 2^i) )

This is the function implemented in the subroutine VPT1G. When there is no ground plane 

present, the second term in equation 5.10 is zero, and this simplified form is implemented 

in the subroutine VPT1N.
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Element Type Xi yi y%

1 -x-2a -X -y -y+2b

2 x-2a X -y -y+2b

3 -x-2a -X y y+2b

4 x-2a X y y+2b

Table 3. Integration limits for triangles

5.6 Triangular Polygon Elements - Scalar Potential

The scalar potential is obtained in almost the same manner as for a rectangular element, with 
the charge density assumed constant over the triangle. Considering again an element on the 
top surface of a single sided PCB, the scalar potential <|> at the point (x,y) can be written in 
a similar way to equation 5.7 as

n +i

<t> = /'Or, X2 , y{, y2,2nc) (5.11)
n=0

This is implemented in the subroutine SPT1CS. The other subroutines with names of the 
form SPTlxx are for different ground plane and element locations. They are very similar 
in form, but with different expressions for the Green’s functions. The full set of Green’s 
functions needed to implement the subroutines was derived in Chapter 3.

5.7 Rectangular Polygon Elements - Self Inductance

The self inductance of a rectangle is obtained by integrating the vector potential given by 
equation 5.4 over the area of the rectangle, as shown by equation 2.22. The derivation of 
this result is detailed in Appendix G in two parts. The first part, with the result given in 
equation G.72, gives the self inductance of a rectangle with no ground plane present. The 
second part, with the result given in equation G.86, gives the mutual inductance between the 
rectangle and its image: if a ground plane is present, this must be subtracted from the first
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result to give the true value of the self inductance. This result is implemented in the 
subroutine SIPR, the name standing for Self Inductance of a Polygon Rectangle.

5.8 Rectangular Polygon Elements - Mutual Inductance

The mutual inductance between two parallel rectangles with parallel current flow directions 
is obtained by integrating the vector potential due to the first rectangle, given by equation 
5.4, over the area of the second rectangle, as shown by equation 2.22. The derivation of this 
is considered in Appendix G, with the result being given by equation G.103. This equation 

gives the same inductance with the rectangles labelled either way round, as would be 
expected from reciprocity. If a ground plane is present, the mutual inductance between the 
first rectangle and the image of the second rectangle needs to be subtracted to give the 
correct answer. This result is implemented in the subroutine MIPRPR, the name standing 
for Mutual Inductance between Polygon Rectangle and Polygon Rectangle.

5.9 Rectangular Track Elements - Scalar Potential

A track rectangle is described using exactly the same co-ordinate system as for a polygon 

rectangle, shown in Figure 27. However, these elements are used to represent tracks, which 
are typically long, narrow sections of metal, rather than the interior of a large area of metal, 

so different basis functions are appropriate. The basis functions selected have two parts. 
It has been shown [Mittra and Lee, 1971] that the charge density distribution near a 

conductor edge varies inversely as the square root of the distance from that edge. The 
resultant singularities at the two edges y=±b  are modelled by including a factor of

in the basis functions. This factor alone results in a scalar potential distribution that is 
virtually flat across the width of the element, provided that this width is less than about 

2(c + 4)- This is almost always the case for PCB tracks. Figure 29 shows this charge

2mm wide on a single sided board with dielectric constant 5 and a coincident ground plane.

1 1 (5.12)
V(b-yXb+y) 

distribution and the resulting scalar potential distribution for an element 10mm long and
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C h a r g e  D e n s i t y  S c a l a r  P o t e n t i a l
Figure 29. Charge density distribution and resulting scalar potential

This is almost flat across the width of the track; the variation from flatness is due to the 

presence of the ground plane and dielectric, but the effect is not very large.

The ends x - ± a  will not usually represent the edge of a conductor, and so do not need to 

have singularities modelled. The remaining variation is built into the basis functions by a 

bivariate polynomial in x and y, of the form x!y*. In FACET, i can take the values 0, 1 or

2 and j  can take the values 0 or 1, so these are therefore the only cases considered here. 

These terms allow for the slower spatial variations in the charge density caused by mutual 

attraction or repulsion of charge in neighbouring elements, and propagation effects when 

tracks have significant electrical length. The resulting set of basis functions is,

Considering for the moment an element on the top surface of a single sided PCB, the Green’s

5.13 to yield the potential <|> at the point (x,y,c) due to the (ij)‘k basis function in the element. 

This is,

(5.13)

function given by equation 5.5 is convolved with the set of basis functions given by equation
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(5.14)

The inner integral, over can be performed analytically, while the integral over y0 has to 

be performed numerically. The evaluation of these integrals is described below.

The results are implemented in the subroutine STR6CS, with a simplified version, which 

only computes the potential due to the i=j = 0 basis function, implemented in STR1CS. 

As for the polygon elements, the other subroutines with names of the form STR6xx and 

STRlxx are for different ground plane and element locations. They are very similar in form, 

differing only in the expressions for the Green’s functions, derived for all cases in 

Chapter 3.

5.9.1 Evaluation of the Analytic Integral

The general form of the integral with respect to % (ie. along the length of the element) is,

The evaluation of this integral is considered for * = 0,1,2. Performing the substitution 

£) = xq - x  and setting R']=(y-y^2 + 4nV  results in the simpler form,

N+l

ixi(x>y>yo) = (5.15)

( 5 . 16)
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Expanding the numerator results in up to three integrals, of standard form. In terms of these, 

the three original integrals I' can be written as,

N+ 1

iS

17 =

=

«=0 
N + 1

Y f *  d ',»  + xl’<^
n=0 
N+ 1

J / . D ' a ,  + 2xl',„ + *2I'„J
«=0

The three new integrals I'* can all be evaluated to give

(5.17)

I'o, = r = log
2+ ^

V(a-.a - x  + \ ( a - x ) 2+/?'2

-a - x  + V (a + x)2 + /?'2
(5.18)

r +/? .  
-a -x  - H

= ^ ( a - x f  + R’l -  V(
2 , r»/2

I 'u  = I , .2 _ -   = ^ ( .a -x y  + R't -  \(a+x)2 + R’l (5.19)

12 , = [  ^  = 4-T  ( a - x ) ^ l ( a - x ) 2 + RJ 21
yi_ir

/2
n

(5.20)

+ (a+x)V(a+x)2+R,2n -  tf'jfol

The integrand in equation 5.18 is singular when |x| <a, ^ = 0 and R'n = 0. This can only 

occur when n -  0 and the point (x, y) is inside the source element, but will require special 

treatment in the numerical part of the integration which follows. Physically, this singularity 

occurs for the point within the distributed source which is coincident with the observation 

point. The other integrands are always finite and smooth.
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5.9.2 Evaluation of the Numerical Integral

The remaining integral with respect to y0 (ie. across the width of the element) is,

No analytic solution to this integral has been found, so the integration has to be performed
numerically. The integrand can be made smoother by applying the substitution y0- b  sin 0. 
This removes the singularities at y0 = ± b, resulting in

The logarithm, square root and sine terms in the integrands take much more CPU time to 
evaluate than additions and multiplications. For any given 0, these terms are the same in 
all the integrands. In addition the possible values of 0 are known in advance, so the sin 0 
terms need only be computed once, and stored for later use. For each set of six integrand 
evaluations only one logarithm and two square root terms need calculating (for each value 
of n), whereas calling a standard numerical integration subroutine for each in turn would 
result in 24 calculations, taking at least eight times as long. The integrations are therefore 
all performed together inside the subroutines.

Any numerical integration method can be represented as

T

where the w, are weighting factors and the integrand is evaluated at the T abscissae x,. In 
general, the accuracy of the final answer increases as the number of abscissae is increased.

In the subroutines, an iterative approach is adopted to obtain the required accuracy as 
efficiently as possible. This uses a set of integration rules, with increasing T, and applies 
them in turn until the difference between the answers produced by two consecutive rules is

n

jc
2

(5.22)

Vf{x)dx =
* t= l

(5.23)
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less than the maximum error permitted. For the greatest efficiency, it is preferable to use 
a set of interlacing integration rules. This means that each rule uses the same set of 
abscissae x, as the previous rule, and then adds a new set of abscissae intermediate between 
each of the old pairs of abscissae, so that no integrand evaluations are wasted.

Two such methods have been used. These are Simpson’s rule [Matthews and Walker, 
1970], and a set of rules due to Patterson [1968]. Both methods are implemented identically 
in the subroutines. The choice of subroutine is made by setting up three arrays, containing 
the number of points per rule, and the abscissae positions and their associated weights for 
each rule, all containing information for the appropriate method. Patterson’s method is 
generally preferred, as it is the more powerful of the two. The option of using Simpson’s 
rule has been retained so that the two methods can be compared if any doubt arises. This 
also means that if a better integration method is found it can be incorporated with very little 
effort.

5.9.2.1 Handling the Singular Integral

As mentioned in the previous section, the function r m is singular when the object point is 
inside the source element. This is handled by setting it to zero in the first part of the 
numerical integration, and then evaluating its contribution to the potentials separately. The 
two integrals Sj

n jt

So = \ I'oo dQ and S1 = \ I'oo b sin 0 dQ (5.24)
•L 2 L  «!_2L

2 2

are integrated using the NAG subroutine D01AHF [NAG, 1988]. This implements a version 
of Patterson’s rules, and is adapted to handle singularities. Its accuracy (for a given number 
of integrand evaluations) is greatly improved by submitting each integral as two parts, split 
at the singularity (which is at y0 = b sin 0 = y).

Denote the potential calculated without the I'oo term by Noting that P0 x is the
coefficient of the I'm, term in equation 5.17, the complete potential is

+ PotSj  (5.25)

The non-singular integral § '( ijy X ,y )  is evaluated as described above.
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5.10 Rectangular Track Elements - Vector Potential

The calculations for the vector potential are rather simpler. Only the ^-directed component 

of current density is considered, and the model for inductance only uses the i=j = 0 basis 

function. The current density basis function is therefore,

The Green’s function for the vector potential was given by equation 5.1. As was the case 

for polygon elements, there are only two different subroutines needed. The subroutine 

VTR1G is for the case with a ground plane present, while the subroutine VTR1N is for the 

case without a ground plane. Both of these are implemented in exactly the same way as 

those for the scalar potential, described in the previous section.

5.11 Speed of the Subroutines

It is important that the subroutines developed are as efficient as possible in their use of 
computer time, as the time spent in the evaluation of potentials and inductance is one of the 
major components of the time taken for a typical FACET analysis. Three approaches have 

been taken to ensure maximum efficiency:

1. Analytic expressions have been derived for all the integrals required in the subroutines 

for polygon elements, and for as much of the integrals as possible in the subroutines for 

track elements. Considerable effort has been made to ensure that these expressions are 

as compact as possible, even though some are rather complicated. Even the most 

complicated expressions are still quicker to evaluate than they would be if evaluated 

using a numerical integration method. Also, there are none of the convergence problems 

which have to be addressed using numerical methods.

2. Where numerical integration methods do have to be used, considerable attention has 

been paid to both the method selected and the efficiency of its implementation.

3. Considerable attention has been paid to the structure of the subroutines, to ensure that 

no unnecessary calculations were performed. In conjunction with the use of optimising 

compilers, this has resulted in subroutines which have their speed limited mainly by the

(5.26)
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speed of the intrinsic functions (logarithms, sines, etc.) provided as part of the 
FORTRAN 77 language.

The subroutines are divided into four sets, computing the potentials due to polygon 
rectangles and triangles, the inductance between polygon rectangles, and the potentials due 
to track rectangles. These are now examined in turn.

5.11.1 Polygon Rectangle Potential Subroutines

These subroutines implement the results of equations 5.4 and 5.7. Examination of equation 
G.21 shows that to evaluate the integral /  of equation 5.3, it is necessary to compute 8 square 
roots, 4 logarithms and 4 arcsines. These are much more costly to evaluate than simple 
arithmetic operations. The times taken to evaluate these functions are approximately:

• 11.4jxs for a square root
• 12.1ps for a logarithm
• 13.6jxs for an arcsine

whereas an addition or multiply operation takes only about 0.3ps. Hence, each evaluation
of I would be expected to take at least 194ps.

The calculation of the vector potential due to a constant current density in a rectangle 
requires one or two evaluations of /. The evaluation of the scalar potential due to a constant 
charge basis function requires one evaluation of I for each term in the series in equation 5.7 
or its equivalent The number of terms in these series can be varied. Here the default values 
used in FACET are assumed. The evaluation of these functions would therefore be expected 
to be the dominant factor in the time taken by each subroutine if the subroutines are working 
efficiently.

Table 4 shows, for each of the subroutines for rectangular polygon elements, the number 
of evaluations of I required, together with the time taken for the function evaluations and 
the time taken for the complete subroutine to execute. This shows that, apart from the vector 
potential subroutines, where other overheads are becoming important, the function 
evaluations occupy around 87% of the subroutine execution time. It is therefore unlikely 
that these times can be improved on without faster algorithms for function evaluations or 
faster hardware.
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Subroutine
Name

Number of 
Evaluations 

of I

Time in ms Proportion of 
Time in 

FunctionsFunctions
Full

Subroutine

VPR1N 1 0.194 0.263 73.8%

VPR1G 2 0.340 0.424 80.2%

SPR1CS 12 2.227 2.58 86.3%

SPR1ND 12 2.328 2.69 86.5%

SPR1CB
SPR1NB

22 4.268 4.91 86.9%

SPR1CM
SPR1NM

44 8.536 9.84 86.7%

SPR1GD 49 9.506 11.10 85.6%

SPR1GB 144 27.936 31.90 87.6%

SPR1GM 288 55.872 63.70 87.7%

Table 4. Times for polygon rectangle potential subroutines

The subroutine VPR1G amalgamates some terms from the two evaluations of I , and the 

subroutine SPR1CS does not perform some of the function calls for the first evaluation of 

/, which is why the time for function evaluations is not an exact multiple of 194ps. These 

changes save approximately 48|is and lOOjxs respectively, which is a worthwhile 

improvement

These times are substantially faster than those for the rectangular track elements, as will be 

demonstrated shortly - typically by a factor of three or four. This indicates that the analytic 

solutions are giving the improvement in efficiency that might be expected, and also that the 

subroutines for track rectangular elements are efficient, given their use of numerical 

integration.
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Subroutine
Name

Number of 
Evaluations 

of P

Time in ms Proportion of 
Time in 

FunctionsFunctions
Full

Subroutine

VPT1N 1 0.253 0.354 71.5%

VPT1G 2 0.446 0.585 76.2%

SPT1CS 12 2.612 3.38 77.3%

SPT1ND 12 2.612 3.44 75.9%

SPT1CB
SPT1NB

22 5.071 6.58 77.1%

SPT1CM
SPT1NM

44 10.131 13.10 77.3%

SPT1GD 49 11.281 14.70 76.7%

SPT1GB 144 33.131 42.90 77.2%

SPT1GM 288 66.251 85.40 77.6%

Table 5. Times for polygon triangle potential subroutines

5.11.2 Polygon Triangle Potential Subroutines

These subroutines implement the results of equations 5.10 and 5.11. Examination of 

equation G.42 shows that to evaluate the integral / ' of equation 5.9, it is necessary to 

compute 7 square roots, 3 logarithms, 4 arcsines and 4 arctangents. One additional square 

root, V 1 + a 2, only needs to be evaluated once for each triangle. The additional function, 

an arctangent, takes approximately 14.8ps to evaluate. Hence, each evaluation of / ' would 

be expected to take at least 230jxs, with an additional 11.4jis for each triangle.

Table 5 shows, for each of the subroutines for triangular polygon elements, the number of 

evaluations of f  required, together with the time taken for the function evaluations and the
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time taken for the complete subroutine to execute. For these subroutines, the function 
evaluations occupy about 77% of the subroutine execution time. This is less than was the 
case for the rectangular elements because the evaluation is rather more complicated, so other 

parts of the calculation occupy a more significant amount of time. The fact that the 
proportions are nearly the same for all the subroutines indicates that the implementation has 

been performed efficiently.

The vector potential subroutines VPT1G and VPT1N also involve one extra square root, to 
normalise the answer, and VTR1G has some of the logarithm terms amalgamated - saving 
approximately 36ps. The subroutines SPT1CS and SPT1ND do not perform some of the 
function calls for the first evaluation of /'. This saves approximately 159|xs, although 
SPT1ND takes slightly longer to run because it has greater overheads.

5.11.3 Polygon Rectangle Inductance Subroutines

These subroutines implement the results of equations G.72 and G.84 for the self inductance 
of a rectangular element, and of equation G.103 for the mutual inductance between two 

parallel rectangular elements.

For the self inductance, equation G.72 shows that 1 square root and 2 logarithms need to 
be evaluated when there is no ground plane present Equation B.84 shows that in addition, 
3 square roots, 4 logarithms and 1 arcsine need to be evaluated when a ground plane is 
present

For the mutual inductance, equation G.103 shows that 24 square roots, 64 logarithms and 

16 arcsines need to be evaluated when there is no ground plane present, and twice the 
number when a ground plane is present. For the special case of the elements being coplanar 

and no ground plane present, only 16 square roots and 32 logarithms need to be evaluated.

Table 6 shows for each of these situations the time taken for the function evaluations and 

the time taken for the complete subroutine to execute. The self inductance subroutine SIPR 
is very fast, and so the function evaluations only occupy 52% or 65% of the execution time. 
The mutual inductance subroutine MIPRPR takes rather longer to run, and here the function 

evaluations occupy nearly 90% of the execution time.
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Subroutine
Name

Ground Plane

Time in ms Proportion of 
Time in 

FunctionsFunctions
Full

Subroutine

SIPR absent 0.034 0.065 52.3%

SIPR present 0.130 0.200 65.0%

MIPRPR
elements
coplanar

absent 0.570 0.64 89.1%

MIPRPR absent 1.266 1.44 87.9%

MIPRPR present 2.531 2.84 89.1%

Table 6. Times for polygon rectangle Inductance subroutines

These times need to be contrasted with the time it would take to compute the self and mutual 
inductances by a numerical integration of the vector potential due to one element over the 
area of the second element - the way it still has to be done for triangles. The computation 
of the self inductance is very much faster than this would be - SIPR takes rather less time 
to run than VPR1N or VPR1G. The difference is rather less pronounced for the mutual 
inductance, which could be evaluated using an integration rule involving only four or six 
evaluations of the vector potential for elements spaced well apart. This gives approximately 
equal times using either method. However, the analytic method is always accurate whilst 
the numerical method can have errors of up to several percent, and so it is preferable to use 

the analytic method here.

5.11.4 Track Rectangle Potential Subroutines

These subroutines implement the results of section 5.9. Examination of equations 5.18 - 5.20 
shows that each evaluation of the three functions /'*, requires the computation of 2 square 
roots and 1 logarithm. Each integrand evaluation for the numerical integration requires these 

functions to be computed once for each term in the series for the Green’s function in equation



Subroutine
Name

Number of 
Evaluations

Time in ms Proportion of 
Time in 

FunctionsFunctions
Full

Subroutine

VTR1N 15 0.524 0.746 70.2%

VTR1G 30 1.047 1.41 74.3%

STR6CS
STR6ND

180 6.282 10.0 62.8%

SPT1CB
SPT1NB

330 11.517 16.5 69.8%

SPT1CM
SPT1NM

660 23.034 34.8 66.2%

SPT1GD 735 25.652 40.8 62.9%

SPT1GB 2160 75.384 108 69.8%

SPT1GM 4320 150.768 222 67.9%

Table 7. Times for track rectangle potential subroutines

5.7, or its equivalent for other board structures. The number of integrand evaluations 

required is variable, but 15 is a typical number.

Table 7 shows, for each of the subroutines for rectangular track elements, the number of 

evaluations of the I'M required, together with the time taken for the square roots and 

logarithms, and the time taken for the complete subroutine to execute. These times are for 

the six basis function subroutines. The times for the single basis function routines are about 

15% less. The difference is not very large because these subroutines still have to compute 

two square roots and one logarithm for each evaluation of /'<>, , so the time saving just results 

from the remaining computation that is avoided.
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The subroutines take about three or four times longer to run than the analytic subroutines 
for the polygon rectangles, which indicates that their efficiency is good, given the much 
more rapid spatial variation of the fields. The time spent in intrinsic function evaluations, 
at an average of about 65% of the subroutine time, is a smaller fraction of the time than for 
the polygon subroutines. This is because there are more calculations performed in the track 
subroutines, and more trips around loops, giving generally larger overheads. The figures 
indicate that the performance of the subroutines would be hard to improve significantly.

5.12 Conclusions

This chapter examined the algorithms used in the computation of potentials and inductance. 
Careful attention was paid to the implementation of these formulae, and the resultant 
subroutines are extremely efficient, particularly those which were able to use analytic results. 
The use of analytic formulae was shown to be faster than using numerical techniques, 
although the latter still performed very efficiently.

The next chapter takes the subroutines described here and performs a variety of checks to 
see that their behaviour is reasonable and consistent. In conjunction with the accuracy of 
the results obtained, as described in Chapter 8, this gives good confidence in the correct 
implementation of the approach developed in this thesis.
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Chapter 6 

Verification of Subroutines

6.1 Introduction

This chapter examines several checks that have been performed on the subroutines described 

in the previous chapter, both on their own and when incorporated into FACET. These 

include some checks for consistency, for instance between rectangular and triangular 

polygon elements, and some checks to see that the solutions behave in a physically realistic 

manner. These tests give a high degree of confidence that the coding of the subroutines has 

been performed correctly.

6.2 Check on Symmetry with Rectangular Elements

6.2.1 Polygon Elements

Because the basis functions used for charge and current densities in polygon elements are 

constant, the potential at each of the four points (±x, ±y) in the local co-ordinates of a 

polygon rectangle should be identical. This was checked using the subroutine SPR1CS. 

The rectangle used has a half length of a = 3.2 mm, and a half width of b = 0.8 mm. The 

potential was computed with x=±3.3 mm and y = ±0.9 mm, for a PCB 1.6mm thick with 

a dielectric constant of 4.55. The computations were performed using double precision 

numbers, which provide approximately 18 decimal digits. For comparison, they were also 

performed using extended precision numbers, which provide approximately 35 decimal 

digits.
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Local x Local y Potential
3. 3mm 0. 9mm 5 428 129.086 160 898 91 V

—3.3mm 0. 9mm 5 428 129.086 160 961 77 V
3. 3mm -0.9mm 5 428 129.086 160 900 07 V

-3.3mm -0.9mm 5 428 129.086 160 963 17 V

Extended precision: 5 428 129.086 160 965 28

The variation between double precision results only occurs in the last five digits, and as such 
is just a consequence of the finite precision of the numbers used for the calculation. The 
extended precision results are all identical for the first 18 digits, and similarly close to the 
other results. For comparison, check the potential at a nearby point:

Local x Local y Potential
3.300 001mm 0.9mm 5 428 122.479 857 250 82 V

This point is only lnm away from the previous point, but the difference in potential is much 
greater than the difference between the previous four results. Hence, the subroutine can be 
considered to be sufficiently symmetrical. Similar tests can be performed on all the other 
potential subroutines, and similar answers are found.

6.2.2 Track Elements

The basis functions used for charge and current densities in track elements are not constant. 
The (ij)* charge density basis function pv was given by equation 5.13 as

P ij(x ,y )  =  Z l —  (5.13)
W - y 2

where x and y are the local co-ordinates of the element, 0 < i < 2 and 0 <j < 1. These give 
a charge distribution which is crowded towards the edges of the track, whereas the charge 
density basis function used for polygon rectangles gives a constant charge across the width 
of the element.

For the lowest order basis function, with i= j= 0, the same symmetry relations as for a 
polygon rectangle should hold. This was checked using the subroutine STR1CS, with the
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same rectangle and PCB dimensions as in the previous section. Also as before, the 
computations were performed using double precision numbers and extended precision 
numbers for comparison. The numerical integrations all used 15 points.

Local x Local y Potential
3. 3mm 0. 9mm 11 441 980 242.576 960 6 V

-3.3mm 0. 9mm 11 441 980 242.576 637 3 V
3. 3mm -0.9mm 11 441 980 242.576 959 6 V

-3.3mm -0.9mm 11 441 980 242.576 636 3 V

Extended precision: 11 441 980 242.576 644 4

The variation between double precision results is very similar to that found with the polygon 
rectangle subroutine, so the subroutine is sufficiently symmetrical. The extended precision 
results are all identical for the first 18 digits, and similarly close to the other results.

The difference in the absolute values of the potential for track and polygon rectangles is due 
to the different amounts of charge represented by each basis function. The total charge in 
a track rectangle is 2na, while that in a polygon rectangle is 4ab, a factor of nf2b less. For 
this example, % flb-1963, while the ratio of the two potentials is 2108:1, so the answers 
are similar when the total amount of charge is taken into account. They are not identical 
because of the different charge density distributions in the two basis functions.

6.3 Comparison of Potentials due to Polygon Rectangles and 

Triangles

A rectangular polygon element can be decomposed into two triangular polygon elements, 
as shown in Figure 30, and this decomposition can be performed in two different ways. 
Since constant charge and current densities have been used for the calculation of scalar and 
vector potential, the potential due to the pair of triangular elements should be identical to 
that due to the single rectangular element, when any difference in normalisation has been 
taken into account.

The subroutines which evaluate the scalar potential perform no normalisation, and so are the 
simplest ones to compare. The first comparison uses the subroutines SPR1CS and SPT1CS,
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Figure 30. Rectangular polygon element split into triangular elements in two ways

with the same rectangle as in the previous section. In the local co-ordinates of the various 

triangles (ie. relative to the right angle comer), the point at which the potential is required 

is:

Triangle Type Local x Local y
1 0. 1mm 1. 7mm
2 6. 5mm 1. 7mm
3 0. 1mm 0. 1mm
4 6. 5mm 0. 1mm

The various potentials are found to be:
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Potential due to rectangle: 5 428 129.086 160 898 91 V

Potential due to type 1 triangle: 4 285 007.923 697 420 16 V
Potential due to type 4 triangle: 1 143 121.162 464 107 62 V
Sum of the above two potentials: 5 428 129.086 161 527 78 V

Potential due to type 2 triangle: 566 739.439 298 289 86 V
Potential due to type 3 triangle: 4 861 389.646 863 202 33 V
Sum of the above two potentials: 5 428 129.086 161 492 19 V

The sum of the potentials due to the triangular elements is very close to that due to the 
rectangular element in both cases. There is more difference than there was between 
symmetrical points for the rectangle in the previous section, but much less difference than 
that caused by moving the object point lnm. Hence, this test demonstrates that the 
subroutines SPR1CS and SPT1CS are consistent with one another. Similar tests with the 
other subroutines give similar results.

6.4 Variation of Potential in the Plane of an Element

The scalar or vector potential due to a polygon element would be expected to vary smoothly 
in the plane of that element, peaking at the centre of the element. This has been checked 
by examining the variation of potential over the area of a rectangular or triangular polygon 
element. Figure 31 shows both surface and contour plots of the scalar potential on a 
rectangular and a triangular element. These were computed using the subroutines SPR1CS 
and SPT1CS, again for a PCB 1.6mm thick with a dielectric constant of 4.55. The 
rectangular element was 2.4mm square, and the triangular element had the same side lengths.

The plots show the potential over an area 2.5mm square, with the outline of the elements 
superimposed on the contour plot. They demonstrate that the potential is changing smoothly, 
and exhibiting the expected peak in the centre of the element, falling off toward the edges. 
The plot for the triangular element shows that the potential falls off rapidly outside the 
element. These plots also give added confirmation of the correct symmetry of the potential.

In contrast, the potential due to a track element has a rather different behaviour, as illustrated 
in Figure 32. The difference is principally in the behaviour of the potential across the width 
of the element, where it is somewhat flatter than for the polygon elements, and falls off more
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Rectangle

Figure 31. Scalar potential on rectangular and triangular polygon elements: element outlines 

shown dotted

rapidly outside the element This is because of the singularity in the charge density basis 

functions given by equation 5.13. For narrow tracks, this gives a potential distribution which 

is flat across the element, as discussed in section 5.9. Here, the element is rather short and 

wide (1.5 times the PCB thickness), which is why the potential distribution is not quite flat.

The same sort of plots can be used to demonstrate that the other subroutines behave in a 

similar manner.

Far away from the element, the potential should approach that due to a point charge of the 

same total magnitude. Figure 33 illustrates this for the same rectangle as before, using the 

subroutines SPR1CS and STR1CS. The results for the track element have been normalised



Figure 32. Scalar potential on rectangular track element: element outline shown dotted

to represent the same total charge as the polygon element The graph shows the potentials 
at the point (0,y), with y between 0 and 10mm, due to the rectangular elements, and 
compares them with the potential due to a point charge of magnitude 4ab, the total charge 
in the element. The three potentials approach each other quite rapidly. The difference is 
less than 10% when y = 6 mm, and less than 1% when y = 16 mm. This demonstrates that 
the subroutines have the correct behaviour for more distant points.

In the near field of the rectangle, the potentials due to the rectangular element behave much 
more realistically than that due to the point charge, as would be expected. The exact result 
would be a potential flat over the width of the track then falling off sharply. Neither result 
has quite this shape: the element is rather wide for a track, while a polygon element is 
usually surrounded by other elements which contribute to the production of a flat potential. 
It can again be shown that the other subroutines behave in a similar manner.

6.5 Variation of Potential Perpendicular to an Element

The potential variation along a line perpendicular to the plane of an element would be 
expected to be smooth except at the following places, where there is a discontinuity in the 
derivative of the potential (ie. the electric field normal to the PCB):

• At the element itself. Here the discontinuity is due to the presence of charge or current, 
which causes the gradient of the potential to reverse in sign. Note that the elements are
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Figure 33. Scalar potential for polygon and track rectangular element and a point charge

assumed infinitesimally thin in these calculations, so variation inside the conductor is 

not considered. This is dealt with separately, in Appendix A.
• At the boundary between two dielectric layers, for the scalar potential only. Here the 

ratio of the derivatives of the potential on either side of the boundary is equal to the ratio 

of the two dielectric constants.

This was examined for a rectangular polygon element using the subroutines SPR1CM, 

SPR1CS and SPR1CB, for a rectangular track element using the subroutines STR1CM, 

STR1CS and STR1CB, and for a triangular polygon element using the subroutines SPT1CM, 

SPT1CS and SPT1CB. All the elements had a half length of a = 5.0 mm and a half width 

of b = 0.5 mm, and were on the top surface of a PCB 2mm thick with a dielectric constant 

of 4.55 and a ground plane on its bottom surface.

The potential was computed along a series of sections normal to the PCB surfaces, at local 

co-ordinates of (0,y) for the rectangle and (5mm,y) for the triangle. The vertical sections 

began at the ground plane on the bottom of the PCB and extended up to 3mm above the



-  119 -

0.0mm
0.5mm
0.6mm
1.0mm
2.0mm

0 1 2  3  4
Distance from  B ottom  of PCB (mm)

Figure 34. Scalar potential on vertical sections ymm from centre of rectangular polygon element

PCB. Five different sections were used for each case. The first of these was at the centre 
of the element, the next on the edge, followed by one just outside the element, and another 
two further away. The following diagram shows a view looking down on the PCB. Each 
dot indicates where a vertical section passes up through the PCB.

Figure 34 shows the potentials on these sections for the rectangular polygon element, 

Figure 35 shows the potentials for the rectangular track element, and Figure 36 shows the 

potentials for the triangular element. These demonstrate the expected features. The plots 

for the rectangular track element are normalised so that they represent the same total charge 

as the rectangular polygon element. All three sets of plots are similar, although the plots
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Figure 35. Scalar potential on vertical sections ymm from centre of rectangular track element

for the triangular element have a smaller potential since this element contains half the charge 

of the rectangular element

The first section, at the centre of the element, has the largest potential, and this shows a 

discontinuity of gradient, in the form of a sharp peak, at the vertical position of the element. 

The second section, at the edge of the element, also exhibits this sharp peak, and this is at 

almost the same level for the track element The remaining sections show no sharp 

discontinuity.

The second effect expected is the discontinuity in the gradient of the potential at the 

boundary between the two dielectric layers. This can only become apparent if the gradient 

of the potential is non-zero at the boundary. This is the case for the final two sections, where 

the peak in potential moves above the PCB, and this discontinuity of gradient can be seen 

clearly, particularly for the y = 2 mm section. This can be examined more closely for the 

rectangular polygon element Denoting the distance from the bottom of the PCB by z, the 

potentials immediately adjoining the boundary are:
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Figure 36. Scalar potential on vertical sections ymm from edge of triangular element

z Potential Difference Subroutine
1.9999mm 3 252 623.140 V 27.849 V SPR1CM
2.0000mm 3 252 650.989 V SPR1CS
2.0001mm 3 252 777.582 V 126.593 V SPR1CB

The difference column shows the difference between the potential and that at z = 2 mm. 

The ratio of these two differences is 4.55, the ratio of the dielectric constant of the board 

(4.55) to that of free space (1.00), which is the expected answer. This therefore demonstrates 

that the three subroutines involved match correctly at the boundary between their regions 

of validity.

Similar results have been obtained for the ground plane parallel to the bottom of the PCB 

or absent altogether, and for the vector potential, enabling considerable confidence to be 

placed in all the potential subroutines.
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Figure 37. Self inductance of a polygon rectangle compared with that of a track rectangle

6.6 Self Inductance of a Rectangle

The self inductance of a polygon rectangle can be checked by comparing its value with that 

computed for a track of the same dimensions by FACET. Figure 37 shows this comparison 

for a rectangle 1mm wide, with a length of between 0 and 10mm. The results are very close. 

The difference ranges from 5.5% at a length of 1mm to just 1% at a length of 10mm.

This difference is probably due to the different basis functions used. The current density 

basis function for tracks in FACET was given by equation 5.26 as

Jx = *-----  (5.26)
V b 2- y 2

where Jx is the current density, b is the half width of the track and y is the distance from the 

centre of the track in the width direction. This gives a current distribution which is crowded 

towards the edges of the track, whereas the current density basis function used for polygon



rectangles gives a constant current across the width of the track. This probably accounts for 

most of the difference between the two results.

Good confidence can therefore be placed in the correctness of the formula used for the self 

inductance of a polygon rectangle, and also of the implementation of self inductance for 

track rectangles in FACET. It can also be shown that the formula for the self inductance 

of a rectangle given in equation G.72 is equivalent to that given by Ruehli [1972] when 

applied to a rectangle of zero thickness.

6.7 Mutual Inductance between Rectangles

The mutual inductance between polygon rectangles for which the assumed directions of 
current flow are parallel can also be checked by comparison with the results for track 
rectangles of the same dimensions from FACET, and by comparison with the formulae 

developed for the mutual inductance between vias in Chapter 4.

This was done for two rectangles, one on either side of a PCB. The location of the 

rectangles is shown on the following plan, with the co-ordinates given in mm:

A M )

. (0,0)

The first rectangle is centred at the origin, and is of length 5mm and width 1mm. The 

second rectangle is centred at (4mm,2mm), and is of length 6mm and width 1mm. The 

thickness of the PCB was varied from 0mm to 100mm, this giving a variable separation of 

the two rectangles in the plane perpendicular to the PCB surfaces. The results are shown 

in Table 8. The results for the track rectangles were derived using FACET, which employs 

a six point numerical integration instead of the analytic integration performed for polygon 

rectangles. The results for the polygon rectangles were obtained directly from the subroutine 

MIPRPR. The two sets of results are extremely close. The largest difference is for the zero 
thickness PCB, and this is only 0.2%.
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Thickness of PCB (mm)
Mutual Inductance (pH)

Polygon Rectangles Track Rectangles

0.0 772.83 774.55
0.5 761.69 763.07
1.0 732.70 733.44
2.0 652.35 652.32
5.0 443.87 443.72

10.0 270.19 270.15
20.0 145.58 145.58
50.0 59.701 59.700

100.0 29.962 29.962

Table 8. Mutual inductance between two rectangles

Another check is provided by comparing the results from polygon rectangles to those from 

vias, which are modelled as hollow cylinders. This has been done for two rectangular 

elements, each 10mm long and 1mm wide. The elements are separated either vertically (ie. 

perpendicular to the surface of the PCB) or horizontally (ie. in the plane of the PCB and 

perpendicular to the current flow direction). A separation of 0 corresponds to the elements 

being coincident. The pair of vias used for comparison were each 10mm long with a 1mm 

diameter. Here the separation is defined to be that in a direction perpendicular to their axes.

Figure 38 shows the results. When the elements are coincident, the mutual inductance 

between them is just the self inductance of one of them, as would be expected (the value is 

the same as that for a 10mm long rectangle in Figure 37). The self inductance of the via 

is less than that of the rectangle, because the current is spread out over a greater volume.

As the elements are separated, their mutual inductance changes in different ways. The 

vertical separation of rectangles produces the fastest initial decrease in inductance. This is 

because in the other two cases, the elements remain partially overlapping (a situation not 

possible in reality) until the element centres are separated by 1mm or more. This means that 

the current distributions reflect the closer proximity for a given separation for these two 

cases than for the vertical separation, and so the mutual inductance falls off more slowly.
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Figure 38. Mutual inductance between elements with varying separations

At a separation of 2mm, all three cases have nearly the same mutual inductance, and at larger 
separations they converge completely. This is because at large separations, the distances 
over which the current is spread are small in comparison with the separation, and so the 
details of the current distribution become unimportant.

These two checks indicate that the mutual inductance calculated by the subroutine MIVIVI 
has reasonable values, and exhibits the correct behaviour both at small and large element 
separations.

6.8 Vector Potential and Self Inductance of Triangles

In order to demonstrate that the correct normalisations have been applied to the vector 
potential, a set of triangular elements in a form very similar to a rectangle was created. This 
arrangement is shown in Figure 39, where the co-ordinates are given in mm, and are the 
local co-ordinates of the bottom left triangle. It consists of ten triangles, each having sides
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Flgure 39. Set of triangular elements, with equivalent rectangular element shown dotted

of length 2a = 2b = V2” mm = 1.41421 mm. This is virtually the same as a rectangle 10mm 

long and 1mm wide aligned at 45° to the global X axis. This rectangle is shown dotted in 

Figure 39. The only differences are at the two ends. The vector potentials are compared 

at the point shown, which is at (l,3)mm in the local co-ordinates of the bottom left triangle 

and at (-1.67157 , 0.91421)mm in the local co-ordinates of the equivalent rectangle. The 

vector potentials are:

Triangle: 0.24790 x 10”6
Rectangle: 0.24778 x 10”6

The difference is only 0.05%, indicating that the correct normalisation for the vector 

potential has been chosen. The existence of any difference at all is due to the effects of the 

two ends.



-  127 -

The second comparison which can be made is for the self inductance, using the same 
equivalent rectangle for comparison. The results here are:

Triangle: 4.9383 nH
Rectangle: 4.8143 nH

These results are not quite so close - the difference is about 2.5%. However, the self 
inductance of the rectangle was computed analytically, while that of the set of triangles was 
computed by numerical integration, with four points per triangle. The error resulting from 
this can be as much as a few percent, so the results agree as well as could be expected.

6.9 Conclusions

This chapter described a variety of tests that have been performed on the subroutines 
described in Chapter 5. These included checks on internal consistency, comparison of results 
from tracks, polygon elements and vias, and comparison with known results. All these tests 
were passed satisfactorily, indicating that the results generated can be used with confidence.

Before the subroutines can be of use in FACET, the input geometry, consisting of a 
description of the PCB layout in terms of tracks, pads, polygons and vias, has to be 
processed into a set of elements. The next chapter describes how this is performed for 
polygons, producing the necessary set of rectangular and triangular elements.
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Chapter 7 

Modelling of Arbitrarily-Shaped Metallisation Areas

7.1 Introduction

In addition to tracks and pads, radio frequency PCBs often contain other areas of 

metallisation. These may be of irregular shape, or may be rectangular in shape but so wide 

that the assumptions made in modelling them as tracks would not be valid.

This chapter describes how the input geometry, ie. the polygon shape, is processed to 

produce the sets of inductive and capacitive elements introduced in Chapter 2, which 
provided a theoretical basis to the modelling of such areas as polygons. These elements are 
represented by rectangles or right angled triangles. The sections follow fairly closely the 

computer code written to perform this function, and illustrate the method by following a 

particular example through all the stages.

The strategy adopted is firstly to form a grid of nodes over the polygon. Elements are then 

created between and around the nodes, in as similar a manner as possible to the idealised 

set of elements described in Chapter 2. At the edges of the polygon, the element formation 

is slightly different. Effectively, an element is created in the normal way, and then truncated 

by the side of the polygon. This results in either truncated rectangles or triangles for 

elements. Considerable effort has been applied to this method, to cover the great variety 

of possible input geometries and to produce an efficient solution.

Each self inductance in the equivalent circuit is represented by just one inductive element. 

However, a capacitor plate can be represented by up to three capacitive elements, because 

some capacitive elements at the polygon edge can be created with a complex shape. These 

elements have to be subdivided to produce just rectangles and right angled triangles, so that 

the subroutines described in Chapter 5 can be used. This will be seen when elements are 
created for the example polygon.
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Figure 40. Outline of example polygon, showing order and location of corners

When the geometry processing has been described, ways in which the efficiency of the 

model could be improved are discussed. This is because in some situations the time taken 

for the simulations can become excessive, particularly when polygons are being used to 

model non-ideal ground conductors. Several methods which could be of use are identified 

and assessed.

7.2 Input and Grid Definition

The polygon geometry is described by an ordered list of the (x,y) co-ordinates of its comers. 

These can be provided in either a clockwise or an anti-clockwise sense, but they are always 

translated into a clockwise order. A set of bondpoints can also be provided. These are 

points within the polygon where components may be connected. They are specified by their 

location and a node number, which is used to identify the bondpoint in the input file of the
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Figure 41. Initial set of grid lines produced for the example polygon

circuit analysis package (PHILPAC or PANACEA), which is automatically generated by 

FACET.

Figure 40 shows one example of a set of twelve comers and the polygon shape associated 

with them. The aim of the grid definition is to produce a set of lines parallel to the global 

X and Y axes, which subdivides the polygon into a set of rectangles and right angled 

triangles.

The first task is to form two arrays, containing all the distinct x co-ordinates and all the 

distinct y co-ordinates present in the set of input comers. These provide the initial set of 

grid lines. A grid line parallel to the Y axis is produced at each x co-ordinate, called an X 

grid line. Similarly, at each y co-ordinate a Y grid line, parallel to the X axis, is produced. 

The situation is then as shown in Figure 41.



-  131 -

Figure 42. Final set of grid lines produced for the example polygon

It can be seen that the set of grid lines just produced creates trapezia, as well as rectangles 

and right angled triangles. To correct this, an X grid line needs to be produced where a Y 

grid line intersects a diagonal side (if one is not already present), and vice versa. This 

process of creating new grid lines continues until there are no points on a diagonal side 

where it is intersected by just one grid line. The full set of grid lines for the example 

polygon is shown in Figure 42 - three extra X grid lines and two extra Y grid lines have 

been produced in the second part of the process just described.

For the equivalent circuit produced to represent the polygon to be an accurate model of 

propagation effects, the grid lines must be separated by no more than one tenth of a 

wavelength at the highest frequency of interest This is so that the piecewise constant 

approximations to the charge and current distributions in the polygon have sufficient 

flexibility to model the actual distributions fairly accurately. If any grid lines are separated 

by more than this amount, the appropriate number of extra grid lines are inserted between
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them. When this has been done, the check for grid lines intersecting diagonal sides needs 
to be performed again, and any extra grid lines that are found to be necessary are generated.

The above process means that it is possible to generate an input geometry which results in 
a very large number of grid lines being generated. An example of this is a square with a 
comer placed at the origin and one side orientated at 46° to the X axis. However, analysis 
of several RF board designs found no geometries likely to cause such trouble. If any are 
found, the methods described in section 7.7 could be used to eliminate the problem.

This completes the definition of a grid for the polygoa It is now possible to work with 
integer co-ordinates. An integer x co-ordinate of 1 is assigned to the X grid line with the 
smallest x co-ordinate, a co-ordinate of 2 to the line with the next smallest x co-ordinate and 
so on. The same operation is then performed for the integer y co-ordinates from the Y grid 
lines. The positions of all the comers and bondpoints can now be expressed in these integer 
co-ordinates, which makes the subsequent processing much more efficient.

7.3 Classification of Sides and Corners

To proceed further, it is necessary to have some method for classifying the orientation of 
sides of the polygon and the shape of comers. Working in integer co-ordinates, there are 
four possible orientations for a line (one parallel to each of the two axes, two diagonal at 
any intermediate angle). Here, the direction of a line is also important. This is because each 
line joining two comers has metal to one side of it and not the other. Because the comers 
are provided in a clockwise direction, on progressing from one comer (the nlh) to the next 
(the (n + 1)1* ) the metal is always to the right. There are hence eight distinct orientations 
of a side needed here (the four referred to above, each with metal to one side or the other 
of it), illustrated in Figure 43, for the side between comers n and n+ 1. They are assigned 
the labels 1 to 8, in order of their angle to the global Y axis. Those with labels 1 and 5 are 
parallel to the Y axis, those with labels 3 and 7 are parallel to the X axis, while the others 
can have any intermediate orientation.

A comer is created at the junction between two sides. The scheme adopted to classify 
comers is similar to that used to classify sides. Each type of comer has a two digit label. 
For the nih comer, the first digit is the orientation label of its first side, joining the (n -1)* 
and ^comers. Similarly, the second digit is the orientation label of its second side, joining
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Figure 43. Classification of sides: the shaded side indicates the interior of the polygon

the n* and (n + l)rt comers. It follows that there are 64 possible comer type labels, the full 

set of which is illustrated in Figure 44. Of these 64 possible labels, 12 are not allowed and 

have a cross through them in the figure. There are several reasons for this:

• Labels 11, 33, 55 and 77 correspond to three comers in a straight line, parallel to one

of the axes. This situation is considered an input error, as prohibiting it simplifies the

geometry processing.

• Labels 15, 37, 51 and 73 correspond to three comers in a straight line which doubles

back on itself. This corresponds to a piece of metal of zero thickness, and is therefore

not allowed.

• Labels 26, 48, 62 and 84 correspond to a possible geometry. This is because the 

orientations of the two sides do not have to be the same and so they could form an acute 

angle at the comer where they meet. However, the algorithm described earlier for the 

creation of a grid will produce an infinite number of grid lines if such comers are 

present, and so they are forbidden. No such geometries have been observed in any real 

layout.
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Figure 44. Classification of corners: the shaded side indicates the interior of the polygon



-1 -1 -1 -1 -1 -1 123 13 134 -1 -1 -1
-1 -1 -1 -1 -1 12 0 0 0 14 -1 -1
-1 -1 -1 123 132 0 0 0 0 0 14 -1

113 13 132 0 0 0 0 0 0 0 0 145
181 0 0 0 0 0 0 176 17 17 17 157

-1 18 0 0 0 0 16 -1 -1 -1 -1 -1
-1 -1 178 17 17 167 -1 -1 -1 -1 -1 -1

Figure 45. Initial shape array for the example polygon

7.4 Creation of the Shape Array

Now that the comers and sides have been classified, a two dimensional array containing a 

representation of the polygon shape is set up. This enables subsequent processing, to 
proceed as easily as possible. Figure 45 shows the shape array for the example polygon - 
the rows have been displayed in reverse order so that the shape appears with the same 
orientation as in previous figures. This array contains the same number of rows as Y grid 
lines and the same number of columns as X grid lines. The (ij) entry in the array 
corresponds to the point with an integer x co-ordinate of i and an integer y co-ordinate of 
j. Each array entry is an integer which gives information on the location of the corresponding 

point. The scheme for assigning array entries is shown in Table 9. A point can have one 

of four types of location. These locations, and their initial array entries, are:

1. Outside the polygon, array entry = -1
2. Inside the polygon, array entry = 0

3. On a side of the polygon, array entry = side label + 10
4. At a comer of the polygon, array entry = comer label + 100

The calculation of the initial array entries is performed as follows:

1. The whole array is filled with zeroes

2. The first side (connecting comers 1 and 2) is selected
3. The array entries corresponding to each of the two comers are set to the correct value 

(comer label +100)
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Array Entry Location of Point Is the Point a Node?

-1 outside polygon no

0 inside polygon no

11 - 18 on a side no

50 inside polygon yes

51 inside polygon yes, bondpoint

61 -68 on a side yes

111 - 188 at a comer yes

Table 9. Locations corresponding to array entries

4. The array entries corresponding to the remaining points on the side (if any) are set to 

the correct value (side label + 10)

5. Steps 2-4 are repeated for all the other sides

When this has been done the array contains the correct values for the perimeter of the 

polygon and zeroes everywhere else. The next step is to decide which points are inside the 

polygon and which are outside, counting points on the perimeter of the polygon as outside 

for the present This is done by passing along the rows of the array in turn, beginning with 

the first row. When a side or comer is reached, there are three possibilities:

1. The next point will be inside the polygon. The following array entries indicate that this 

is the case:

11, 12, 18, 112, 113, 118, 121-123, 128, 171, 172, 178, 181-183, 188

2. The next point will be outside the polygon. The following array entries indicate that 

this is the case:

14-16, 134-136, 144-147, 154, 156, 157, 164-167

3. The next point will not differ from the current point. This is the case if neither of the 

above conditions holds
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The first point is assumed to be outside the polygon, and subsequent points are determined 
to be inside or outside by using the above rules. If a point is determined to be outside the 
polygon and its corresponding array entry is 0, the entry is changed to be -1. When all the 
rows of the array have been processed, all the entries are set correctly.

7.5 Assignment of Nodes

With the shape array completely defined, the next task is to decide where nodes should be 
placed. The first nodes dealt with are the user-defined bondpoints. Each is taken in turn, 
and the array entry corresponding to its location is modified in accordance with Table 9:

• If the bondpoint is on a comer, the array entry is not changed.
• If the bondpoint is on a side, 50 is added to the array entry.
• If the bondpoint is an internal point, the array entry is set to 51.

Nodes are then placed as necessary over the remaining points in the polygon. Each circuit 
node is associated with an intersection of grid lines, but each intersection of grid lines does 
not have to be associated with a circuit node. As was discussed in section 7.2, each 
equivalent circuit component should be no more than a tenth of a wavelength in size at the 
highest frequency of interest. This is also the maximum grid spacing, which the node 
spacing is never greater than. Other than this, nodes have to be placed at comers and to form 
a rectangular grid in any particular section of the polygon, so that the equivalent circuit 
model can be created properly. The following definition is necessary to explain the 
processing:

Two points are in the same section of metal if a straight line drawn between them does 
not leave the polygon, ie. does not pass through any points with an array entry of -1.

Each entry in the shape array is examined in turn to see if it should be a node. Calling the 
point corresponding to this entry the current point, the following rules are used:

• If the current point has an array entry of -1 then it is outside the polygon and cannot
be a node.

• If the current point has an array entry of 50 or more, then it is automatically a node (it 
is either a comer or has been identified previously as a node), and its value is 
unchanged.
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Figure 46. Grid lines and node locations for the example polygon

• If the current point is on a side, it is made a node if there is another node in the same 

section of metal in one or more of the four directions left, right, up and down. This is 

signified by adding 50 to its array entry.

• If the current point is an internal point, with an array value of 0, it is made a node if 

there are one or more nodes in the same section of metal going up or down and there 

are one or more nodes in the same section of metal going left or right. To signify this, 

its array entry is changed from 0 to 50.

When all the entries in the array have been examined the above process is repeated, until 

no new nodes are created. Then a check is made to see if any nodes are spaced by more 

than the maximum allowed, a tenth of a wavelength. If any are, new nodes are defined one 

at a time and the above process repeated until all nodes are sufficiently close together.

This process creates the smallest set of nodes possible given that they have to form a 

rectangular grid within each section of the polygon. In a polygon of simple shape, such as 

the example being used here, there will be nodes at all internal points. In a polygon of more 

complex shape however, not all the internal points need have a node associated with them.
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Figure 47. Grid lines and node locations for a complex polygon: interior of polygon shown dotted

Figure 46 shows the node locations for the example polygon - these are marked by crosses, 

and are at all the intersections of the grid lines within the polygon. Figure 47 shows the 

same for a rather more complicated polygon. This illustrates the methods described above, 

reinforcing the point that not all the intersections of grid lines have nodes associated with 

them.

The final task associated with the nodes is to number them for use in the circuit analysis 

package. Any nodes associated with bondpoints are given the user-defined node number 

of the bondpoint. Other nodes are numbered in sequence, starting at the first node in the 

first row of the shape array and progressing along each row and down the rows. The first 

number in the sequence is determined elsewhere, and depends on the overall layout 

geometry: in FACET it is usually 60001 for the first polygon. Each new node number is 

then just one greater than the last.
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Figure 48. X Inductive element types: arrows indicate current flow direction

7.6 Creation of Elements

7.6.1 X Inductive Elements

This set of elements consists of rectangles on which basis functions are defined to represent 

current flow parallel to the X axis, and right angled triangles on which basis functions are 
defined to represent current flow parallel to diagonal sides at the edge of the polygon. For 

convenience, the set is referred to simply as the set of X inductive elements. Figure 48 
shows the different types of elements that may be created, showing the direction of current 

flow within the elements and the two nodes that the element links (marked by crosses). A 

rectangle connects one node with the node immediately to its right, while a triangle connects 

one node with the node to the right and one row up or down. Each element represents the 

series connection of one resistance and one self inductance in the equivalent circuit model. 

There are three types of rectangle:

• Type 1 is a full width rectangle, used over the interior of the polygon. In width, it 
extends up halfway to the next row of nodes above, and down halfway to the next row 

of nodes below.
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• Type 2 is a half width rectangle, used at the bottom of a section of a polygon. In width 
it extends upwards halfway to the next row of nodes above.

• Type 3 is also a half width rectangle, used at the top of a section of a polygon. In width 
it extends downwards halfway to the next row of nodes below.

In addition, there are four types of right angled triangle, differing in their orientation, with 
the two nodes connected at opposite ends of the hypotenuse.

Elements are created by stepping through the shape array as before, and considering only 
those points where nodes are present - these are identified by having a shape label of 50 or 
more. Next, it is decided for each such point what type(s) of element need to be created - 
up to two elements may be created, each of which is represented by a separate self 
inductance and resistance in the equivalent circuit. This is done by examining the shape 
array. For the present purposes, the current node is called node 1 and the next node along 
the current row is called node 2.

The following shape labels indicate that node 1 is not at the right hand edge of a section, 
and hence one or two elements should be created:

50, 51, 61-63, 67, 68, 112, 113, 116-123, 127-132, 138-143, 152, 153, 163, 171-188.

Having decided that elements should be created, it is now necessary to decide which types 
of elements are required. This is done by examining the shape labels for nodes 1 and 2. 
Four variables are required, to indicate whether each node is at the top or bottom of a section 
- these are minlt min2, maxj and max2. If node 1 is at the bottom of a section, minx is set to 
1, otherwise it is set to 0. Similarly, if node 1 is at the top of a section, maxx is set to 1, 

otherwise it is set to 0. The same process is repeated for node 2 with min2 and max2.

Node 1 is counted as being at the bottom of a section if there is no metal below and to the 
right of i t  It is counted as being at the top of a section if there is no metal above and to 
the right of it. Node 1 is at the bottom of a section for the following values of the shape 
label:

67, 68, 171-188;

and it is at the top of a section for the following values of the shape label:

62, 63, 112, 113, 122, 123, 132, 142, 143, 152, 153, 163, 172, 182, 183.
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Flgure 49. X Inductive elements for the example polygon

Slightly different sets of values are used for node 2, this time it is the presence of metal to 

the left that is important. The resulting set of shape labels indicating that node 2 is at the 

bottom of a section is:

66, 67, 116, 117, 127, 136, 146, 147, 156, 157, 166, 167, 176, 186, 187; 

and the set indicating that node 2 is at the top of a section is:

63, 64, 131-147.

With the four variables set, the required elements can be created. Table 10 shows the 

elements that are created for different values of the variables minj, min2, maxj and max2. 

Figure 49 shows the set of X inductive elements created for the example polygon: they are 

shown slightly reduced in size to enable them to be distinguished easily.
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minj min2 maxt max2 Elements created

0 0 0 0 Rectangle type 1

1 0 0 0 Rectangle type 2, triangle type 3

0 1 0 0 Rectangle type 2, triangle type 4

1 1 0 0 Rectangle type 2

0 0 1 0 Rectangle type 3, triangle type 1

1 0 1 0 Triangle types 1 and 3

0 1 1 0 Triangle types 1 and 4

1 1 1 0 Triangle type 1

0 0 0 1 Rectangle type 3, triangle type 2

1 0 0 1 Triangle types 2 and 3

0 1 0 1 Triangle types 1 and 4

1 1 0 1 Triangle type 2

0 0 1 1 Rectangle type 3

1 0 1 1 Triangle type 3

0 1 1 1 Triangle type 4

1 1 1 1 Not possible

Table 10. X inductive elements created in various positions
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Figure 50. Y Inductive element types: arrows indicate current flow direction

Type 1 Type 2

7.6.2 Y Inductive Elements

This set of elements consists of rectangles on which basis functions are defined to represent 

current flow parallel to the Y axis. No triangles are necessary in this set of elements, as they 

were included with the X inductive elements, and no more than one element is created at 

each point. A rectangle connects a node with the node immediately above it, and is 

represented by the series connection of one resistance and one self inductance in the 

equivalent circuit. There are three types of rectangle which can be created, shown in 

Figure 50:

• Type 1 is a full width rectangle, used over the interior of the polygon. In width, it 

extends right halfway to the next column of nodes, and left halfway to the previous 

column of nodes.

• Type 2 is a half width rectangle, used at the left hand edge of a section of a polygon. 

In width it extends right halfway to the next column of nodes.

• Type 3 is also a half width rectangle, used at the right of a section of a polygon. In 

width it extends left halfway to the previous column of nodes.

As before, elements are created by stepping through the shape array and considering those 

points where nodes are present. For each node, it is decided whether an element will be 

created, and what type of rectangle it should be. For the present purposes, the current node 

is called node 1 and the node immediately above it is called node 2.
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Figure 51. Y inductive elements for the example polygon

No element will be generated if node 2 is at a “triangular peak”, with a shape label of:

114, 124, 125

In addition, no element will be generated for certain cases where both nodes are on a 

diagonal side, or the comer at the end of a diagonal side. The relevant combinations of 

shape labels are:

node 1: 66, 161-168

node 2: 62, 121-128

or:

node 1: 68, 118, 128, 138, 158, 168, 178, 188

node 2: 64, 114, 124, 134, 144, 154, 164, 174.

For situations not covered by the above, an element will be generated if node 1 is not at the 

top of a section. The shape labels for which this is the case are:

50, 51, 61, 65-68, 116-121, 127-131, 138, 141, 152-157, 163-167, 171, 174-181, 185-188.



-  14 6 -

Having decided that an element is to be created, it is necessary to decide which type of 

element is required. This is done by examining the shape labels for nodes 1 and 2. If there 

is no metal to the left of either node 1 or node 2, a rectangle of type 2 should be created. 

The relevant values of the shape label are given below. Only a subset of values are given 

for node 2, as several values are automatically covered by the value of the label for 

node 1:

61, 68, 118, 121, 128, 131, 138, 141, 171, 178, 181, 188 for node 1, or

62, 121-128 for node 2.

Similarly, if there is no metal to the right of either node 1 or node 2, a rectangle of type 3 

should be created. The relevant values of the shape label are given below, again with only 

the necessary subset of the values for node 2:

65, 66, 152-157, 163-167 for node 1, or

64, 114, 124, 134, 144, 154, 164, 174 for node 2.

In all other cases, an element of type 1 is created.

Figure 51 shows the set of Y inductive elements created for the example polygon, again 

shown slightly reduced in size.

7.6.3 Capacitive Elements

The final set of elements to be generated is the capacitive elements. These differ from the 

X and Y inductive elements in that they have basis functions defined on them to represent 

the charge density distribution in the vicinity of a node. They also differ in that up to three 

elements may be created to represent one capacitor plate in the equivalent circuit model. 

The elements consist of rectangles and right angled triangles. Figure 52 shows the various 

types of elements that may be created, showing the location of the node for each element 

as a cross. The type 1 rectangle extends in the X direction from halfway to the previous 

column of nodes to halfway to the next column of nodes, and in the Y direction from 

halfway to the row of nodes below to halfway to the row of nodes above. All the other 

element types can be considered as a subset of the area of the type 1 rectangle, and are drawn 

to this scale in the figure.
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Figure 52. Capacitive element types

Type 1b Type 2b Type 3b  Type 4b

Type 3 c  Type 4 c

As before, elements are created by stepping through the shape array and examining the shape 

label for each node. The number and types of elements created depends only on the shape 

label of the current node: one or more elements are always created. Table 11 shows for each 

element type the shape labels that result in its creation. A particular shape label will result
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Element Shape Labels Element Shape Labels

Rectangle type 1 50,51

Rectangle type 2a
67,116,117,175,
176,185,186,187

Rectangle type 2b
63,131,132,141,

142,143,152,153

Rectangle type 3a
61,118,121,
127,128,138

Rectangle type 3b
65,154,163,
164,165,174

Rectangle type 4a
134,135,138,

144,145,175,185
Rectangle type 4b

127,152,153,
156,157,166,167

Rectangle type 4c
131,141,171,

174,178,181,188
Rectangle type 4d

112,113,116,117,
122,123,163

Triangle type la 121 - 128 Triangle type lb 62

Triangle type lc
112,122,132,142,

152,172,182
Triangle type 2a

114,124,134,144,
154,164,174

Triangle type 2b 64 Triangle type 2c 141 - 147

Triangle type 3a 181 - 188 Triangle type 3b 68

Triangle type 3c
118,128,138,158,

168,178,188
Triangle type 4a

116,136,146,156,
166,176,186

Triangle type 4b 66 Triangle type 4c 161 - 168

Table 11. Capacitive elements created for various shape labels

in the creation of at most three sub-elements, which together represent one capacitor plate 

in the equivalent circuit.

Figure 53 shows the set of capacitive elements created for the example polygon, again 

shown slightly reduced in size.



Figure 53. Capacitive elements for the example polygon

7.7 Ways of Improving Efficiency

There are two main sources of inefficiency in the model developed so far. The first is to 

do with the geometry processing, which in some circumstances can generate an excessive 

number of elements. The second is to do with the equivalent circuit generated, which can 

become excessively large. This is particularly the case in modelling non-ideal ground 

conductors, where all possible couplings must be considered, but can also be a consequence 

of the first problem.

This section examines briefly ways in which these inefficiencies might be improved. None 

of these ideas have been fully implemented, and they would form an interesting and useful 

piece of additional work.
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Figure 54. Geometry of polygon example to show excessive subdivision: comers are numbered, 
bondpoints are marked with a cross and labelled

7.7.1 Improvements to Geometry Processing

Two different ways of modifying the geometry processing have been identified. The first 

would result in the generation of fewer elements within FACET, while the second would 

amalgamate several FACET elements into one equivalent circuit element where possible, 

thus reducing the size of equivalent circuit generated.

7.7.1.1 Generating Fewer Elements

Input geometries with one or more of the following features can result in an excessive 

number of elements being generated:

• sides which are not quite parallel to the global axes

• comers on different parts of the polygon with almost the same X or Y co-ordinate

• bondpoints with almost the same X or Y co-ordinate as each other or as a comer
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Figure 55. Grid lines generated for the example polygon

An example of a polygon with many of these features is shown in Figure 54. This has seven 

sides, numbered in a clockwise sense in the figure, and three bondpoints, labelled as Pn 

(where n is 1, 2 or 3) in the figure. The side between comers 5 and 6 is not quite parallel 

to the X axis, while comer 3 has a slightly different X co-ordinate to comers 6 and 7. Also 

(and slightly more obviously), the three bondpoints PI, P2 and P3 all have slightly different 

Y co-ordinates. Figure 55 shows the effect of this on the geometry processing. An 

excessive number of grid lines have been generated, some very finely spaced. Because of 

this, 276 elements were generated, as 177 inductive elements and 99 capacitive elements.

This can be improved by the following steps:

• set the Y co-ordinates of comers 5 and 6 to the mean of their original Y co-ordinates

• set the X co-ordinates of comers 3, 6 and 7 to the mean of their original X co-ordinates

• set the Y co-ordinates of the three bondpoints to the mean of their original Y 

co-ordinates
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Figure 56. Grid lines generated for the example polygon after realignment of corners and 
bondpoints

This results in the set of grid lines shown in Figure 56, a considerably smaller set than 

before. For this modified geometry, 77 elements were generated, as 46 inductive elements 

and 31 capacitive elements.

This demonstrates that a useful addition to the geometry processing would be a 

pre-processor, which looked for the sort of problem cases outlined above and realigned the 

appropriate comers and bondpoints. Rules would need to be built in to this so that features 

were moved no more than a “reasonable” distance. The definition of a reasonable distance 

would take account of the size of the polygon, the typical size of other features on the circuit 

board and the maximum frequency of operation. Such a pre-processor should be relatively 

simple to implement, and of considerable use.
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7.7.1.2 Generating Fewer Components

Even after the steps suggested in the previous section have been taken, there may be more 
equivalent circuit components generated than are necessary on grounds of electrical length. 
Components can be up to a tenth of a wavelength square at the highest frequency in the 
simulation with good accuracy retained. However, the elements within FACET are often 
smaller than this, either because the geometry of the polygon forces more subdivision or 
because the greater subdivision is necessary to obtain an accurate representation of the 
charge and current distributions.

It would therefore be useful to be able to combine several elements together to form one 
equivalent circuit component where this is appropriate. Such processing is already 
performed in FACET for track elements, and the same principles could be applied to 
polygons. A possible procedure could be:

• create the set of grid lines and nodes as described in sections 7.2 to 7.5
• identify a reduced set of nodes spaced up to a tenth of a wavelength apart - these nodes 

are the ones to which the larger equivalent circuit components will be attached
• generate inductive and capacitive elements as described in section 7.6, but associating 

them with just the reduced set of nodes

This approach would produce sets of capacitive elements to be combined to form single 
capacitor plates, and sets of inductive elements to be combined to form single inductances.

The combination of capacitive elements can be handled in the same way as it is for track 
capacitive elements in FACET already. However, the combination of inductive elements 
may be more complicated, as there are no simple formulae for combining a sets of series 
and parallel inductors (together with mutual inductances) into sets of single inductors with 
mutual inductances between them. The approach suggested in the next section may therefore 
be more useful in general.

7.7.2 Reducing the Size of the Equivalent Circuit

The equivalent circuit generated for a polygon typically has a large number of components 
and nodes, but very few of the nodes are connected to anything outside the polygon itself.
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In a frequency domain analysis, the effect of all these components could be represented by 
an N port admittance matrix, where N is the number of external connections.

This relates the column vectors of voltages at circuit nodes, [V ] and net (inward) currents 
at circuit nodes, [ / ] .  Denoting the admittance matrix by [y ], the relationship is

[ / ]  = [y ]  [v ]  (7.i)

This matrix contains N2 entries for each frequency in the simulation, and so can involve 
many fewer values than the full set of equivalent circuit components for a typical polygon. 
If it can be generated in less time than PHILPAC or PANACEA takes to analyse the full 
equivalent circuit, then this could be a useful approach. In fact, even if the time taken is 

greater than that for the full circuit simulation it may still be useful. This is particularly the 
case if many different signals are to be applied to the same circuit, when the admittance 
matrix need only be generated once.

The full admittance matrix for the polygon, involving all the nodes, must first be generated. 
This consists of four parts:

1. an inductive part [ T j ,  which only depends on frequency through the scaling factor 

1/©
2. a capacitive part [Yc] , which only depends on frequency through the scaling factor ©
3. an inductive part f y j  due to the skin effect, with more complex frequency dependence
4. a resistive part also due to the skin effect, with more complex frequency

dependence

These parts can then be combined at each frequency to form the full admittance matrix, and 
the nodes without external connections are compressed out of it, leaving the required N port 
admittance matrix. These stages are now described in turn.

7.7.2.1 Generation of the Inductive Part of the Admittance Matrix

Given a set of N inductors, the N x N  inductance matrix [L ] relates the current flowing in 
one inductor to the voltage appearing across another. For the iA and j* inductors, this 
relationship is
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y. -  j .  L
J ^  dt (7.2)

=

where V} is the voltage induced across the j *  inductor; I: is the current flowing through the i*  

inductor; Uj is the mutual inductance between the two inductors; and harmonic time 
dependence of angular frequency © has been assumed.

To obtain the inductive part of the admittance matrix, what is needed is the relationship 
between voltages at nodes (rather than between nodes) and currents at nodes (rather than 
through components). The necessary steps to do this are:

1. Form a list of all the nodes to which one or more inductors are connected.
2. Set the voltage at the first node to IV and that at all other nodes to OV. Solve for the 

currents at all the nodes. This gives the first column of the admittance matrix.
3. Generate the remaining columns of the admittance matrix in the same manner, with each 

node in turn set to IV.

To obtain the nodal currents requires N' solutions of the set of equations

y © [/] [L ]  = [V] (7.3)

where the column vector [V ] is now the set of unit and zero voltages across inductors, and 
N* is the total number of nodes in the equivalent circuit. Each solution of the above equation 
provides one column of the inductive part of the full admittance matrix, [ l^ ]. The only 
frequency dependence in this part of the admittance matrix is an overall factor of 1/©.

could be regarded as being caused by self inductances alone, so this approach could 
be used to remove mutual inductances from a circuit if it was necessary, for example if a 
circuit simulator could only handle a very limited number of them. This equivalent set of 
self inductances is much larger than the original set, containing in principle a self inductance 
between each pair of nodes, and some of the values can be negative.

1.1,22 Generation of the Remaining Parts of the Admittance Matrix

The remaining parts of the admittance matrix can be calculated much more easily. Take the 
capacitive part first. The ( i j )  element in the admittance matrix is the net inward current at
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the j* node with unit voltage applied to the iA node and zero voltage to all other nodes. 

Hence for the capacitive part of the admittance matrix [yc], the element is

YCij = (7.4)

where Ci} is the capacitance between the iA and j A nodes. If there is no capacitance present, 

then the admittance matrix element is zero.

The remaining parts of the admittance matrix are found similarly. The lull admittance 

matrix at angular frequency ©, [y ], is then

[ y ]  =  M  +  [ y c ]  +  C +  [> * ,]  (7.5)

7.7.2 J  Compression of the Admittance Matrix

The admittance matrix generated in equation 7.5 is an port matrix. The final step is to 

compress this admittance matrix down to the required N port admittance matrix. Writing 
equation 7.1 in a more explicit form,

N'

h = J ja V j  (7.6)

Assume that only the first N nodes in the set correspond to the required external connections. 

Hence, there can be no net current at the remaining nodes, ie.

It = 0 N+l < i £ AT (7.7)

Consider the final row of the admittance matrix. Since I# = 0, equation 7.6 can be written 
as

Vr =

N '-l

X - YtfN'
( 7 . 8 )

This enables equation 7.6 to be rewritten as
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N '- l

(7.9)

where

(7.10)

Y[j is now an (Af -1) port admittance matrix. Hence, successive application of equation 7.10 

can reduce it to the required N port admittance matrix.

7.7.3 Test Results

A short program was written to test out these ideas. It only deals with inductances, 

converting an inductance matrix of self and mutual inductances to an admittance matrix, 

compressing this admittance matrix as required, and then converting the reduced admittance 

matrix to a set of self inductances.

A test run was performed using an example with 175 self inductances, 8141 mutual 

inductances and 108 nodes. This was compressed to an 8 port admittance matrix, and the 

simulation times compared. The results were:

PHILPAC analysis of the full equivalent circuit took about 15 minutes for the first 

frequency point and 5 minutes for each subsequent point

• Conversion of the inductance matrix to an 8 port admittance matrix and then to a set 

of 28 self inductances took 14 seconds

• PHILPAC analysis of the resultant circuit took 0.3 seconds for the first frequency point 

and 0.02 seconds for subsequent points

In this case the compression only needed to be performed once. This is because only 

inductances were involved, and so the frequency dependence of all the terms in the 

admittance matrix was the same. The improvement in simulation time is dramatic, and 

would still be considerable if the conversion had to be performed for every frequency point.
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Some effort would be required to set up a scheme for labelling the nodes to be compressed 
out of the admittance matrix, but apart from this the implementation should be 
straightforward.

7.8 Conclusions

This chapter has described all the steps taken to process the geometry of the polygon into 
sets of nodes and elements, to be represented by components in the equivalent circuit These 
steps enable the processing to be performed efficiently, generating the smallest possible 
number of elements.

Some particular input geometries can cause excessive subdivision. These were discussed, 
together with the problem of excessively large equivalent circuits being generated. 
Implementation of the pre-processor for the geometry processing and the equivalent circuit 
compression scheme described should enable the efficiency of simulations to be improved 
considerably. It would therefore be most worthwhile to investigate these possibilities.

The next chapter examines several examples of the use of these methods, demonstrating their 
accuracy and discussing efficiency issues where they arise.



Chapter 8 

Results

8.1 Introduction

The methods described in this thesis have been incoiporated into FACET. This chapter 

examines several different examples of the many problems which have been modelled using 

these methods. The results are compared either with experimental data or with previously 

published work, and give a good indication of the accuracy possible.

As described in Chapters 2 and 7, a given layout is divided into a set of inductive and 

capacitive elements, representing self inductances and capacitor plates in the equivalent 

circuit model. The number of inductors or capacitors in the equivalent circuit can be much 

greater, because there is, in principle, a mutual inductance between each pair of self 

inductances in the model, and a capacitor formed from each pair of capacitor plates in the 

model.

8.2 Microstrip Filter

This design is for a low pass filter with a bandwidth of about 2 GHz. The layout is shown 

as the first picture in Figure 57. It consists of a line about 47mm long and 0.25mm wide, 

with three wider sections (respectively 5.1mm, 3.1mm and 1.3mm wide) and two stubs, each 

of which is terminated by a larger area of metal. The input end of the filter is labelled with 

a “1”, and the output end of the filter is labelled with a “2”. The substrate is 0.635mm thick 

alumina, with a dielectric constant of 10.5 and a loss tangent of 0.0025. The tracks are 

formed from 20pm thick copper, and there is a ground plane, which is assumed here to be 

ideal, on the bottom face of the substrate. Measurements were made of the attenuation of 

the filter with 50ft terminations.
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I n p u t  G e o m e t r y

P r o c e s s e d  G e o m e t r y  — T r a c k s  O n ly

P r o c e s s e d  G e o m e t r y  — T r a c k s  a n d  P o l y g o n s
Figure 57. Layout of microstrip filter and subdivision into elements

The filter was modelled in two ways. In the first, all conductors were modelled as tracks, 

for which only one component of current is allowed. In this example that component is 

parallel to the long tracks. The subdivision of the layout for this model is shown as the 

second picture in Figure 57. The subdivision was such that no equivalent circuit component 

was more than a tenth of a wavelength long at 10 GHz, resulting in 144 elements, grouped 

into 81 self inductances and 71 capacitor plates.

In the second model, the five larger areas of metal were represented by polygons. This 

subdivision is illustrated as the third picture in Figure 57. This resulted in 497 elements, 

grouped into 304 self inductances and 201 capacitor plates.



Model RADIUS
FACET 
time (s)

MININD MINCAP
PHILPAC 

time (s)

Tracks 5mm 77 1015H 10'18F 350

Tracks and
3mm 82 i o 15h

i o 12h

i o 18f

i o 15f

4830
5mm 154 2210

Polygons
5mm 154 H-L o 1 io_18f 14100

Table 12. Simulation times for microstrip filter

The RADIUS parameter in FACET enables the interaction (ie. mutual inductance and 

capacitance) between elements separated by more than this distance to be ignored, and can 

reduce considerably the size of the equivalent circuit generated. In addition, there are two 

parameters, MININD and MINCAP, which are used in the translation of the FACET output 

of equivalent circuit components into the PHILPAC or PANACEA file. These discard any 
mutual inductors or capacitors with numerical values smaller than the given values, enabling 

the PHILPAC file to be considerably reduced in size. All of these parameters need to be 
used with care. If too many couplings are ignored the simulation will be inaccurate, while 

if too few are ignored the computation time will be excessive.

Table 12 shows the simulation times for the various cases. The PHILPAC time is for a run 

with 100 different frequencies. This shows the dramatic difference in times that can result 

from variations in these three parameters. It is now necessary to determine the relative 

accuracy of these simulations.

Figure 58 shows results from the tracks only simulation; the tracks and polygons simulation 

with a RADIUS of 3mm; and experimental measurements. The tracks and polygons 

simulation is much more accurate than the tracks only simulation. The agreement is almost 

perfect up to 6 GHz, and still quite close at higher frequencies. The discrepancy above 6 GHz 

is principally a frequency shift, with the model predicting features at higher frequencies than 

they are found in the measurements. This may be due to dispersion [Edwards, 1981]. 

Formulae suggest that for this situation, the effects of dispersion are to increase the effective 

dielectric constant, and hence the value of the equivalent circuit capacitors, by about 1.5% 

at 6 GHz and 3.7% at 10 GHz. This would tend to decrease the frequencies from those
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predicted by about 0.75% and 1.75% respectively, and would go some way towards 

explaining the slight discrepancy.

Increasing RADIUS to 5mm was found to have very little effect, demonstrating that 3mm 

was sufficiently large for this parameter: this is about five times the substrate thickness, at 

which distance the presence of the ground plane has attenuated the potentials considerably. 

The table shows that varying the MININD and MINCAP parameters had a dramatic effect 

on the simulation time. Over the range of values used there was little noticeable effect on 

the accuracy. Hence, the largest values were used, giving the shortest simulation times.

The difference between the two simulations indicates, as might be expected, that it is not a 

good approximation to assume that the currents in the five larger areas of metal flow parallel 

to the axis of the filter. The excellent agreement when these areas are modelled by polygons 

indicates that the model is good, and the simulation times are not made too excessive.

■... Tracks only
-  - Tracks and Polygons
—  Experiment

o 8 102 64
Frequency (GHz)

Predicted and measured responses of microstrip Alter



Figure 59. Subdivision of Y type layout with polygon ground plane: X inductive elements in the 

ground plane are shown dotted, input and output ports are arrowed.

8.3 Y Type Layout

The next example is a specially fabricated test layout. This is shown in Figure 59, and 
consists of two tracks, each 1mm wide, forming a “Y” shape. The substrate was 1.6mm 
thick MAS-FR4-74, 100mm long and 50mm wide. Measurements were made to establish 
its actual dielectric constant and loss tangent at frequencies up to 500 MHz by constructing 
a parallel plate capacitor: these were found to be 4.90 and 0.017 respectively. There is a 
ground plane on the bottom face of the substrate, metallised with 15pm of solder on top of 
18pm of copper, the same material as the tracks.

With a port formed between each track end and the ground plane, the layout was a four port 

netwoik. Twoport measurements of the attenuation of this layout were performed, using the 
port labelled “1” as the input port and the port labelled “2” as the output port. The other 
two ports had 50Q chip resistors connected across them. These were found to have a 

significant inductive impedance at high frequencies, and so measured rather than ideal values 
for the termination impedances were used in the simulations. This improved the accuracy 
of the simulations considerably.

The layout was modelled in two ways. The first model treated the ground plane as ideal. 
The tracks were subdivided into 32 elements, grouped into 18 self inductances and 16
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Figure 60. Predicted response of Y type layout with polygon ground plane: showing the e ffe c t o f  

varying RADIUS.

capacitor plates. The second model represented the ground plane as a polygon. The 

subdivision for this model is shown in Figure 59, where the tracks and the polygon ground 

plane are superimposed, and the elements in the polygon are shown dotted. The subdivision 

was such that no equivalent circuit component was larger than a tenth of a wavelength at 

1 GHz, resulting in 277 elements, grouped into 175 self inductances and 104 capacitor plates.

Model RADIUS FACET time (s) PHILPAC time (s)

Ideal ground plane 10mm 6 7

10mm 20 2100
Polygon ground

40mm 57 18000
plane

200mm 82 21000

Table 13. Simulation times for Y type layout
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Figure 61. Predicted responses of Y type layout with polygon and ideal ground planes

Table 13 shows the simulation times for the various cases: the PHILPAC time is for a run 

with 100 different frequencies. For the model with the ideal ground plane, a RADIUS of 

10mm was sufficient, and larger values did not alter the simulation results significantly. 

For this case, both the FACET and PHILPAC simulations were fast

However, for the model with a polygon ground plane, larger values of RADIUS were 

necessary. Figure 60 shows the simulation results for several values of RADIUS, compared 

with the experimental results. This shows that a RADIUS of 200mm is necessary, ie. no 

couplings can be ignored, if accurate results are needed - although at the lower frequencies 

(below 400 MHz) the differences are small. It was also found that discarding equivalent 

circuit components by using MININD and MINCAP changed the results considerably. The 

FACET run time was still fast, but the PHILPAC run time was rather long, taking nearly 

six hours to produce 100 results. Ways in which this time could be improved were discussed 

in Chapter 7.
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Figure 61 compares the results from the model with an ideal ground plane to those from the 
polygon ground plane model. In general, the differences are small, but the polygon ground 
plane gives significantly better results between 500 MHz and 1000 MHz. At higher 
frequencies, the ideal ground plane model gives better results. This is probably because the 
subdivision of the ground plane in the polygon model is not sufficient to resolve all the 
details of the current flow in the ground plane. However, it is not practicable to increase 
the subdivision until improvements to the speed of the PHILPAC solution phase of the 
problem have been made.

These results show that some improvement to the accuracy of a simulation can be made by 
modelling the ground plane with a polygon. However, the simulation times are rather long 
at present, so this facility should be used sparingly.

8.4 Current Flow in Ground Conductors

When a circuit board is designed using ground conductors for return current paths, it can 
be important to know where the current will flow in these. The intuitive answer is that it 
will take the shortest path possible. In fact, however, it will take the path of lowest 
impedance, which may or may not be the shortest path. It has been suggested [Barrow, 
1989] that even at a relatively low frequency (in RF terms) of 1 MHz, the return current 
will tend to flow underneath the tracks providing the signal.

This has been investigated with the simple layout shown in Figure 62. This consists of a 
track in the shape of a “U”, with each side having a length of 10mm and a width of 1mm, 
on the top face of a substrate 1mm thick with a dielectric constant of 5. The bottom face 
of the substrate has a 20mm square polygon, to represent a ground conductor. One end of 
the track was connected to the polygon with a via (which is modelled as a single inductor), 
and the simulation was performed for a voltage source connected between the other end of 
the track and the ground conductor. The metallisation of the track and polygon was 
modelled as 15|im of copper. At frequencies below 10 MHz, this has a surface resistance 
of about 1.15mft per square.

The polygon was subdivided finely enough to be able to resolve the details of the current 
distribution. This resulted in 807 elements, grouped into 514 self inductances and 273 
capacitor plates. RADIUS was set to 5mm, since the results for the Y type layout showed
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Figure 62. Layout for demonstrating current flow in a ground conductor: X inductive elements in 

the polygon ground conductor are shown dotted

that at low frequencies a small value for RADIUS is adequate, and this value allows 

sufficient couplings to be included. As was the case for the Y type layout, discarding 

equivalent circuit components by using MININD and MINCAP changed the results 

considerably. The FACET run took 322s, or just over 5 minutes. The PHILPAC run took 

15400s, or nearly 260 minutes for just one frequency point

A modified form of the power flow plot facility in FACET was used to plot the magnitude 

and direction of the current flowing in the polygon at two different frequencies. Figure 63 

shows the current flow at 1 kHz, and Figure 64 shows the current flow at 1 MHz. In both
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figures, the arrows indicate the direction of the current flow by their orientation, and the 

magnitude of the current (on a linear scale) by their length. At 1 kHz, the current takes the 

shortest path, while at 1 MHz it principally flows underneath the tracks, as predicted.

The free space wavelength of a 1 MHz radio wave is 300m, so this change has nothing to 

do with propagation effects. The explanation is in terms of inductance. The area of the loop 

defined by the route taken by the current at 1 kHz is approximately 100mm2, while that of 

the loop defined by the route taken by the current at 1 MHz is approximately 30mm2. Hence 

the self inductance of the 1 kHz route would be expected to be rather more than that of the 

1 MHz route.
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Figure 63. Direction and magnitude of current flow at 1 kHz
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Figure 64. Direction and magnitude of current flow at 1 MHz

Figure 65 shows this effect more clearly. At low frequencies, the inductive component of 

impedance is negligible, and the current follows the path of least resistance. At 1 kHz this 

path has a resistance of 36.8mQ and an inductance of 17.5nH (which represents an 

impedance of 0.11Qm£2). At high frequencies, the inductive component of impedance 

dominates, and the current follows the path of least inductance. At 1 MHz this path has a 

resistance of 42.5mft and an inductance of 12.1nH (which represents an impedance of 

76.0mQ). Hence, between 1 kHz and 1 MHz, the route taken by the current changes in order 

to use the path of lowest impedance.
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Figure 65. Resistance and Inductance of the demonstration layout

8.5 Capacitance of Square Plates

This section examines the capacitance of a square conducting plate in free space, and the 

capacitance of a similar plate to ground when the ground plane is close. Similar examples 

are commonly found in the literature, so this provides a check on the accuracy of the 
capacitance solution developed in this report. The subdivision of the square into capacitive 
elements is shown in Figure 66. The geometry processing method adopted results in the 

edge elements being half the width of the other elements, which improves the accuracy of 
the solution [Ruehli and Brennan, 19731. This is principally because it enables better 

modelling of the rapid charge density variations near to the edge of the square.

The first example is the capacitance of a lm square plate in free space. This was simulated 
with an ideal ground plane a long distance (1000km) away and adding together all the 
capacitances to ground of the capacitive elements. The results are shown in Figure 67 for 
various subdivisions of the square. In all cases RADIUS was set large enough for all 

couplings to be considered, as otherwise the values calculated were in error. The greatest
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Figure 66. Square plate subdivided into 25 capacitive elements: equivalent circuit nodes shown by 

crosses

subdivision examined was 31 capacitive elements per side, a total of 961 elements, taking 

about 1 hour to simulate. Coarser subdivisions took much less time (eg. 1 minute for 13 

elements per side). The convergence of the results is quite fast, with a capacitance of 40.58 

pF for 31 elements per side. This is close to the result obtained by Ruehli and Brennan 

[1973] of 40.54 pF. They achieved faster convergence by the use of the Galerkin method 

rather than the point collocation used here and by the use of narrower edge elements. 

However, these would increase the computation time considerably, and have little effect on 

the accuracy of the solution for the intended problems.
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Figure 67. Capacitance of a lm  square plate in free space

The second example is a square with sides of 20mm placed 2mm above an infinite ground 

plane. The results are shown in Figure 68 for various subdivisions of the square. For a 

parallel plate capacitor of these dimensions, the expected capacitance would be 1.771 pF. 

That predicted is 2.725 pF with 31 elements per side, or roughly 50% more, so the effects 

of fringing capacitance are still considerable. Reitan [1959] modelled parallel plate 

capacitors by subdividing each plate into 36 equally sized elements with constant charge in 

each, using approximate relations for the potential.

By the method of images [Bleaney and Bleaney, 1976, pp.48-56], it can be seen that the 

capacitance to ground of a capacitor plate above an ideal ground plane is double the 

capacitance of a parallel plate capacitor with two plates of the same size as the original plate, 

separated by twice the distance between the original plate and the ground plane. Reitan 

predicts a capacitance of 0.6629 pF for plates 10mm square spaced by 2mm, which scales 

to 1.3258 pF for plates 20mm square. Hence, the value predicted by Reitan for the 

configuration examined here is 2.652 pF, in good agreement with the value obtained from 

FACET.
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Figure 68. Capacitance to ground of a 20mm square plate: 2mm thick substrate with dielectric 
constant £; = 5

The second example converges less rapidly than the first. This is because the of the presence 

of the ground plane, which makes the charge density more constant over the majority of the 

square, with a sharper variation at the edges, and hence a greater subdivision is necessary 

for the same accuracy. This specific problem could be tackled more efficiently by having 

more small elements near to the edges, and fewer large elements in the interior. However 

this would then be less applicable to the more general problems for which FACET is 

required.

8.6 Conclusions

The four different examples examined in this chapter have demonstrated that the accuracy 

achievable using polygons in FACET is very good, enabling accurate modelling of layouts 

that could not be modelled before. The simulation run times are reasonable, except when 

modelling complex polygon shapes which require extensive subdivision on purely



-  174 -

geometrical grounds, or for simulations with no ideal ground plane, when all couplings must 
be included at high frequencies. For these cases, improvements to the efficiency would be 
most worthwhile. Possible methods for achieving this were discussed briefly in Chapter 7.

The combination of the high accuracy achieved and the reasonable simulation times provides 
the main justification for the approximations introduced into the theory of Chapter 2. The 
equivalent circuit model is therefore a useful and efficient way of representing the electrical 
behaviour of circuit boards.
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Chapter 9 

Conclusions and Future Work

9.1 Conclusions

The work described in this thesis is concerned with modelling the electromagnetic behaviour 

of metallisation patterns on PCBs. The model selected was an equivalent circuit model, and 

the derivation of this from Maxwell’s equations was described. This derivation involved two 

main assumptions.

The first assumption is that the effects of retarded potentials can be ignored. This is 

effectively a quasi-static assumption. Although the vector and scalar potentials used to 

compute the values of the equivalent circuit components are calculated at zero frequency, 

they are then linked through the current continuity equation and the equation for the electric 

field, which do include time variations. This assumption implies that, for accurate results, 
the dominant coupling effects should take place over relatively small separations, where the 

retarded potentials are very similar to the static potentials.

The “rule of thumb” which has been used here is that separations of less than five times the 

distance from the top of the substrate to the ground plane can be considered as small. It 

was shown in Chapter 3 that the potential falls off rapidly with distance from a source when 

a ground plane is present, as is usually the case, suggesting that this assumption is likely to 

be valid for most layouts. As an example, the results for the microstrip filter examined in 

Chapter 8 were extremely accurate when all couplings over a distance of 3mm or more were 

ignored. This distance corresponds to about five times the substrate thickness. The results 

were accurate up to the maximum measured frequency of 10 GHz, with some slight 

frequency shifts becoming apparent above 6 GHz. These shifts were believed to be caused 

by dispersion, and are therefore an indication that the retarded potentials are beginning to 

differ from the static ones over such distances, which might be expected since 3mm 

corresponds to about a quarter of a wavelength at 10 GHz
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The only case for which this approximation seems more questionable is when there is no 
ground plane present The Y type layout described in Chapter 8 was modelled both with 
an ideal ground plane, and with this ground plane represented by a polygon. When modelled 
with an ideal ground plane, couplings over distances of more than 10mm had virtually no 
effect which is less than a tenth of a wavelength at the highest measured frequency of 
1.4 GHz. When modelled with a polygon representing the ground plane, however, all 
couplings had to be included for accurate results to be produced. The largest separation 
was about 110mm, corresponding to about a wavelength at the maximum frequency. The 
results produced were slightly more accurate than those with the ideal ground plane model, 
even at the higher frequencies. This suggests that the errors introduced by the absence of 
retarded potentials must cancel out to a large extent, so the model is valid at rather higher 
frequencies than would be expected.

In summary, the quasi-static approximation seems to hold rather well for typical PCB 
geometries, even into regimes where it might be expected to fail.

The second main approximation is that the actual charge and current distributions are 
approximated by finite sets of basis functions. The effects of this are reduced considerably 
by the choice of physically realistic basis functions. For tracks (not the main subject of this 
thesis) this is done by having singular basis functions in the width to model the effects of 
the track edges, and polynomial distributions in the length to model other variations.

The model for polygons developed in this thesis used constant basis functions, as the charge 
and current distributions are only slowly varying in the interior of a typical polygon. These 
basis functions are likely to be rather less accurate near the edges of the polygon, although 
helped somewhat by having narrower elements adjacent to edges. The intention was to see 
how accurate the results produced by this model were before deciding whether it was worth 
adding in basis functions with the flexibility to model the distributions more accurately. 
The accuracy of the results presented in Chapter 8 suggests that such refinements are 
unlikely to yield dramatic improvements in accuracy in most circumstances. It may be 
worthwhile investigating whether better modelling of the edge behaviour is necessary for 
particular geometries, and this forms part of the suggested future work.

With the theoretical basis for the model established, the next task was the evaluation of the 
scalar and vector potentials due to the various charge and current distributions. Chapter 3 
detailed the solution to the first part of this problem, calculating the scalar and vector
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potential Green’s functions, effectively the potential due to point charge and current sources 
respectively. The method adopted was to take a general class of structures, consisting of 
three infinite dielectric layers and two infinite, ideal ground planes, and obtain expressions 
for the potential at any position due to a point source at any position. The solution was 
obtained in the spectral domain, a fairly standard approach. By manipulating this solution, 
it was expressed in a form amenable to an inverse Fourier transform, so that the results could 
be expressed in the spatial domain. These results were obtained in the form of infinite series 
of point source potentials. For most cases of interest, the series were shown to converge 
rapidly, so that typically only ten or twenty terms were needed to obtain a solution of good 
accuracy. As well as being an efficient solution in its own right, this form could be 
convolved efficiently with the basis functions for charge and current distributions, and in the 
same way for different PCB structures. This simplified the software creation task 
considerably.

Chapter 4 showed how the simplest of these solutions, that for the vector potential in free 
space, could be used to compute the self inductance of a via and the mutual inductance 
between two vias. Some attention was paid to obtaining an approximate form of the 
expression for the mutual inductance, the result being an expression which could be 
evaluated over a hundred times faster than the full expression, but was almost as accurate.

Chapter 5 then tackled the more general task of convolving the Green’s functions derived 
in Chapter 3 with the basis functions for track and polygon elements. For the polygon 
elements, the basis functions are constant charge and current density, and the convolution 
integrals were performed analytically. The expressions derived enabled the potentials to be 
computed very efficiently, many times faster than would be the possible using numerical 
integration. Analytic expressions were also derived for the self inductance of a rectangular 
polygon element and the mutual inductance between two parallel rectangular polygon 
elements. The self inductance could be evaluated very much more rapidly than using a 
numerical approach. For the mutual inductance the difference was rather less marked, but 
the analytic expressions still have the advantage of guaranteed accuracy.

For the track elements, the presence of the edge singularities in the basis functions meant 
that the convolution integrals could not be performed completely analytically. However, 
much of the integration could be performed analytically, leaving only a single numerical 
integration to perform. Careful attention to this enabled the potentials for up to six basis 
functions to be evaluated in little more time than that for one, and the resulting subroutines
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were shown to have their speed limited mainly by the time taken to calculate mathematical 
functions (principally square roots, logarithms and sines) on the computer. Some attention 
was also paid to the method of numerical integration, the selected method being shown to 
have good efficiency. The software was written so that other integration methods could 
easily be slotted into place should ones with better performance be found.

Chapter 6 detailed a series of tests that were performed on the subroutines described in 
Chapter 5. These checked the internal consistency of routines and showed that the results 
from different routines joined together properly at the boundaries of their regions. They also 
checked the results against known solutions, such as the potential due to a point charge. 
The purpose of these tests was to demonstrate that the routines behaved in the expected 
manner, so that they could be used with confidence in the rest of the work.

The only remaining task before results could be obtained was the creation of an appropriate 
set of elements from the geometry of the metallisation pattern on the PCB. Chapter 7 
described how the subdivision into elements was performed for areas modelled as polygons. 
The methods used for other metallisation shapes, and the details of how all the different 
elements are formed into sets for the overall solution to occur, were not part of this work, 
and are not described here.

The method developed took advantage of the fact that most polygonal areas on a PCB are 
found to have straight edges, predominantly parallel to the PCB edges. A grid was formed 
from the geometry, and around this sets of rectangular and triangular elements were formed. 
These in turn could be associated with self inductances and capacitor plates in the equivalent 
circuit model. The method had to deal with rather irregular shapes, and so the grid could 
not be a simple regular one, as often seems to be used. A comprehensive classification 
scheme for labelling the different geometrical features was developed, and the method can 
handle complex shapes, with concave and convex areas and cut-outs.

It was recognised that some geometries caused excessive subdivision, and therefore 
unacceptably long simulation times. Modifications to the geometry processing were 
proposed which would solve several of these problems. To address the more general 
problem of excessively large equivalent circuits being produced, a method for transforming 
these into a much smaller admittance matrix was proposed, and demonstrated for a simple 
example. This has the potential for a very large improvement in efficiency, and its full 
development should have a high priority, since at present the time taken for a circuit analysis
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can often be much larger than that taken for the full 3D field analysis performed within 
FACET.

With the various pieces of the work described, the final (and most important) question was, 
how well did the simulation results compare with experiment? Chapter 8 addressed this 
issue for four different examples. Two could be compared directly with experiment, and 
excellent accuracy was demonstrated. The other two examples were to compare against 
literature results, again giving results of very high quality.

In conclusion, the results of this work must stand by their accuracy and efficiency. It is 
hoped that both have been amply demonstrated in this thesis.

9.2 Summary of Achievements

The achievements made during the research were outlined in the main part of this thesis. 
They are summarised below:

1. The equivalent circuit model developed for the Philips PCB simulator FACET has been 
extended to model polygonal areas of metal, with arbitrary directions of current flow. 
It has been shown that this model provides an approximate solution to Maxwell’s 
equations. The approximations are that the treatment is quasi-static, ie. radiation effects 
are ignored, and that the charge and current distributions can only assume certain forms. 
Both approximations are well founded, and it was shown that this approximate solution 
satisfied Kirchhoffs first and second laws exactly.

2. Green’s functions have been derived for the electric scalar and magnetic vector potential 
for a configuration with three layers of dielectric material and two perfectly conducting 
ground planes. This configuration is able to model the majority of PCB structures. 
The Green’s functions were obtained as infinite series of point sources in the spatial 
domain, which is a very convenient form for computational purposes.

3. A large set of Green’s functions has been derived for simplified structures with fewer 
ground planes, fewer dielectric layers or a combination of the two. Other simplified 
Green’s functions have also been derived for particular combinations of source and 
object point locations. All of these have the major advantage of a reduced 
computational complexity, and are applicable to many cases of interest to PCB
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modelling. The convergence of the series derived was examined for several of these 

cases and shown to be good, often only requiring ten or twenty terms to be computed 

for results of good accuracy.

4. The Green’s functions derived for some of the simpler configurations have been shown 

to correspond to those derived by other authors using the method of images. The 

method detailed here has the advantage of being able to derive Green’s functions in 

situations where they would be much too complex to derive readily using the method 

of images.

5. A model for the self inductance of a via and the mutual inductance between parallel 

vias has been developed. The expression derived for the self inductance of a via is very 

fast to compute. An approximate expression has been developed for the mutual 
inductance that is over a hundred times faster to compute than the exact expression, but 

is only marginally less accurate.

6. Analytic expressions have been derived for the scalar and vector potentials due to 

constant charge and current densities defined on rectangular and triangular elements, 
used within polygon areas. In addition, analytic expressions for the self inductance of 

a rectangular element and the mutual inductance between two parallel rectangular 

elements have been derived. These have been presented in a compact form, and a set 

of subroutines has been developed to incoiporate these results. The subroutines were 
shown to be extremely efficient.

7. Expressions have been derived for the scalar and vector potentials due to the singular 

charge and current density distributions used within track elements. These have as 
much as possible of their form derived analytically. Numerical integration techniques 

have been investigated to make the numerical part of the evaluation as efficient as 

possible. A set of subroutines has been developed to implement these results. These 

subroutines have been shown to be efficient, taking only three or four times longer to 

run than the subroutines implementing the analytic results.

8. A wide range of tests has been performed on the subroutines developed, both on their 

own and as part of the FACET system. These tests demonstrated that the subroutines 

gave the answers that would be expected in a variety of special situations, and so giving 

good confidence that their implementation has been performed correctly.
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9. An algorithm for subdividing a polygonal area into the sets of elements required to 
produce the equivalent circuit model has been developed. This required the 
development of a detailed classification scheme for the types of comers and sides 
present in various polygon geometries and the development of algorithms to generate 
the correct size and shape of elements to model the polygon geometry exactly.

10. Problems which may occur with particular polygon geometries have been identified, and 
solutions proposed. One partial solution is the creation of an admittance matrix to 
represent the equivalent circuit produced. This admittance matrix can then have the 
rows and columns corresponding to the internal nodes (those with no connection to 
external circuit components) compressed out. This method has been demonstrated to 
have the potential to improve simulation times dramatically, and to be applicable to all 
FACET equivalent circuits, not just those containing polygons.

11. Results of FACET simulations on four different designs have been presented, all the 
designs incorporating areas modelled as polygons. Two of these were compared with 
experimental results, and two with literature results. The accuracy of the simulations 
was shown to be very good, thus demonstrating the validity of the models developed 
in the remainder of the thesis.

9.3 Areas for Further Work

During this research, a preliminary investigation of methods for improving the efficiency 
of FACET simulations was undertaken. This is worthy of follow-up studies, which are 
outlined below together with other potential areas for future work.

1. The first problem identified with the use of FACET is that of an excessive number of 
elements being generated. This is a particular problem for certain polygon geometries, 
and could be improved somewhat by the development of a pre-processor which detected 
such types of geometries, principally features which are not quite aligned, and took 
appropriate action, namely aligning the features if the movement required was not too 
excessive. Such a pre-processor should be relatively simple to implement, and of 
considerable usefulness.

2. The second, and more major, problem identified is the production of extremely large 
equivalent circuits, which are very slow to analyse using circuit simulators. These are
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a particular problem when simulating non-ideal ground conductors, when all coupling 
terms need to be included, but has been found to be a problem in other cases too. The 
method identified to solve this problem was to convert the equivalent circuit to an 
admittance matrix and then compress out nodes with no external connections. This 
method was shown to have the potential for very large gains in speed, and should form 
a very useful piece of further work.

3. The model developed for polygons assumes constant charge and current density 
distributions within each element While this is a good approximation for the majority 
of elements in a polygon, the distributions are known to approach infinity near the 
polygon edges. A brief investigation to determine whether there would be useful gains 
in accuracy by using singular basis functions for elements on the edge of a polygon 
could be undertaken. If worthwhile improvements were found, such a scheme should 
then be implemented.

4. A concern which will become increasingly important to PCB designers is the 
electromagnetic compatibility (EMC) of equipment, which is concerned with the effect 
that pieces of equipment have on one another. A particular manifestation of this is 
radiation from PCBs, which is at present excluded from the FACET models. However, 
most PCBs are not designed as antennas, so radiation should be of secondaiy 
importance. It could therefore be predicted by performing a FACET simulation to 
determine the currents flowing around the PCB metallisation pattern, assuming that 
radiation does not modify this. The radiation from the current and charge distributions 
could then be determined by including retarded potentials in the Green’s functions. A 
further refinement would be to determine the small error potentials and then correct the 
currents and charges accordingly, to enable a more accurate simulation of the circuit 
performance. In most cases this correction would probably be of secondary importance, 
but there may be situations where its inclusion is vital.

The above list is by no means exhaustive, but serves to illustrate that there is still much 
useful work to be done, both to enhance the capabilities of the woik performed to date, and 
to extend the concepts developed into new areas.
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Appendix A 

Skin Effect

This appendix shows how the finite thickness and conductivity of the metals used as 
conductors on PCBs give rise to the surface impedance term that is used in Chapter 2. This 
relates the total current flowing through a given section of metal to the electric field at the 
surface of the metal.

Consider a sheet of metal of thickness h and conductivity o. The current density J  at any 
point in the metal is related to the electric field E at that point by Ohm’s law,

J = o E  (A.l)

Using Ohm’s law, and assuming harmonic time variation of angular frequency CD, the first 
two of Maxwell’s equations (given in Chapter 2 as equations 2.1 (a) and (b)) become

V xE  = -;coB  (a)
(A.2)

V x H = (a + j  © £q er) E (b)

The dielectric constants of metals are similar to those of dielectrics [Ramo et al, 1965, 
p.250]. Hence, the yco e<£. term only becomes significant for frequencies approaching the 
optical, far above those of interest in this work, and can be neglected in this analysis.

Consider now a current propagating along the metal sheet, and assume that the current 
density is uniform in the plane of the sheet. Take the x and y axes to be in this plane and 
the z axis in the thickness direction, and assume the current is propagating parallel to the x 
axis. The current density and electric field therefore only have ^-directed components, and 
these only vary in the z direction (ie. E a  Ex{z) ). Similarly, the magnetic field only has 
a y-directed component, H a  Hy(z). Equation A.2 can therefore be rewritten as

dE.
3 z

SH  (A 3)
= Jx+juDx (b)
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Eliminating Hy from equations A.3 gives an equation for E„

-  j(o\haEx = 0 (A.4).2

Noting that frequency/and angular frequency © are related by © = 2tc/, set

(A.5)
x = (l+yWrc/HoO =

so that x2 = y©|Xoa. 5 is known as the skin depth, as discussed below. Equation A.4 can then 

be written as

To proceed further, boundary conditions need to be applied. Those used in FACET are that 

the electric fields on the top and bottom surfaces of the metal sheet are both equal, ie. 

£x(0) = Ex(h) = Eq. This assumes that the width of the conductor is small enough for there 

to be negligible variation in the electric field Ex around its perimeter. The assumption is 

certainly valid at low frequencies. There is, however, evidence that at microwave 

frequencies the current in a microstrip line (a track on the top surface of a substrate with a 

ground plane on the bottom surface) flows principally on its bottom surface (ie. that nearest 

the ground plane) [Horton et al, 1971; Pucel et al, 1968]. The assumption will also be less 

valid for polygons than for tracks, as they usually have rather larger widths.

These effects could be allowed for by changing the boundary conditions to more appropriate 

ones. However, this has little effect on accuracy at the frequencies of interest for the work 

reported here, and complicates the formulae considerably. Hence, the boundary conditions 

referred to above will be used, enabling cx and c* to be found as,

(A. 6)

which has the general solution

£>   Xz . xzx — C\e + C2̂ (A.7)



It can be seen that when the thickness of the metal, h, is rather greater than the skin depth, 
8, this parameter is the distance into the metal at which point the fields are reduced to Me 
of their value at the surface of the metal. As the frequency is increased, 8 decreases, and 
the fields are confined more and more strongly to a thin surface layer on each side of the 
metal sheet. As an example, a 15|im thick sheet of copper has a conductivity of 
a  = 5.8 x 107Sm“\  so that its thickness is equal to the skin depth at a frequency of 
19.4 MHz.

Consider a square section of the metal sheet, of unit length and width with sides parallel to 
the x and y axes. The total current flowing through this section, /, is given by

The surface impedance, Z„ is the voltage across a square area for unit total current. The 
voltage drop along the surface of this unit square of conductor is simply Eq, so the surface 
impedance is

>h

(A.9)

o
2cEq i _  e^ h

x 1 + e ^ h (A. 10)

The units of surface impedance are Ohms per square. The internal impedance of an element, 
in Ohms, can then readily be found from the surface impedance. For an element of half 
length a and half width b, the internal impedance is,
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The surface impedance itself is complex, because the iields inside the metal lag behind those 
at the surface. Set,

% = Vic/HoO = -1- (A.12)

so that x = (1 + j% . With this definition, Z, can be expanded into real and imaginary parts, 
corresponding to resistance and inductive reactance,

(1  +j%  1 +
2a j _ e-* e-*h

(A. 13)
(1 +/)£ 1 -  e -  2je~^ sin %h

20 1 -  l e ^ o o s ty  + e

Define R, as the surface resistance, with R, = Re(£), and L, as the surface (or internal) 
inductance, with (aL, = Im(Z,) . These are then given by

I  l + 2e ^ Asin Ih -  e~*h
Rs =  ru-------------- in" (A. 14)

20 1 -  2e~^hcos^i + e ~ ^

-  _ L  1 -  2e ~ ^ * s i n . . .0/t _t l fltt (A. 15)2a  J _  2e-S* cos^i + e '25*

Since £2 «= co, at “high frequencies” R-toL, , so the real and imaginary components of the 
impedance are approximately equal. High frequencies are those for which the skin depth, 
5, is much less than the thickness of the metal sheet.



Appendix B 

Solution of the Equations for the Scalar Potential

Introduction

This appendix describes the solution of the equations for the scalar potential derived in 

Chapter 3. The equations are solved in the spectral domain for the source charge in each 

of the three dielectric layers, giving six distinct potential functions. The method for 

transforming these back to the spatial domain is then described.

Potentials for the Source Charge in Layer 1

The first case to be considered is that with the source charge located at z = Zq in layer 1. 

This results in the set of four Laplace’s equations of equation 3.12

= A V + A V * - d x < z< Z Q

§b(k,z) z q < z < 0

<j>c(£,z) = C+e* + C V * 0 < z < c

<j> JJcyz) =  d V ’ + d V 2 c<z<c + dz

together with the Fourier transformed boundary conditions
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(o .-e -2U')n ((3 -  e~7Ui)' —2nkc

(3.13)

M b - d J  = 0 (0

Uk,c  + d^ = 0 (»)

$b(k’ Zo) = Zq) («0

<j>c(*> 0 ) = <j)fc(/:, 0 )  (iv)

^ , c )  = <j>c(&, c ) (v)

E2 - ^ - U k , 0 ) = 0 ) (vO

®3 =  t 2 - ^ - ^ c( k , c )  (Vl'0

- £ ♦ * » .* >  = ■ £ « * , * )  -  (v«0

The functions A+ to D" are all found to contain a factor,

^  = [(1  - c u f ^ ) ( l  -  (te"2**) - « “ ' ( « - e - ^ ) ( p - e-2̂ )-]  ^

which can be rewritten as an infinite sum,

W )  = -F-------------------------------------- 1-------------------------------------- T

( 1 - o ^ X l
v ^ (l-ae-^Xl-Pe'^) J \

(B.2)

/  'i ( 1 -  ac“2“ ‘)Ml (1 -  (k”2̂ ) ^ 1 '
*=0

Now, the terms in this sum can be expanded further. Looking at the first term, that in a, 

its two components can be expressed as summations,

■ 2 > ' > ’
n—r —2rkd,e

H  (B.3)

( l - c a T ^ 1)
______  = V  (n + s)! ,
-2kd̂ n+i ni s!

s=0

These two summations can be combined into a single infinite sum,
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(a -e ~ 2kd,y  

(1 -  ae"2*^)"+1

oo

I
m=0

A^,(a)e_2mfc4 (B.4)

where coefficients of the form ^(rj) are given by the summation,

min [ i j]

W O  = (B'5)

Interestingly, Â Cn) can also be written as a Jacobi polynomial. This derivation is detailed 

in Appendix C. \|/(&) can now be written as,

V(*) = ^  ^  y 1 A^,(a) ATJP) e-Wxe-2mM'e-'ukd* (B.6)
/=0 m=0 n=0

This has converted a function of complex form, with no easily found inverse Fourier 

transform, into a triple summation of terms of a much simpler form. This will enable the 

inverse transform to be performed analytically, which is a very considerable advantage. 

With \\r(k) defined above, the functions are found to be,

A+ _ 1 I" e~la0 _ eKzo-2c-2d2)
47ie0e1£ L

+ P(e*(%-2c)_e-*(% + M))

+ a p ( ^  ~ ̂  -  e**  +2£)) ]  yOfc)

(B.7)

_  1 r  ^ - 20- 2 4 - 2̂ )  _  e -H!o+2dO
471606!̂  L

+ a(e*(z° ~ Ml) -  e~*(z° +2cf ̂  + 2̂ ))

_ l_  + 24  + 24 ) _  g*(?o -2c- 2 4 )^

+ ap(e_A<Zo +2c+ ̂  -  ek(z° ~2dl~ 2̂ )) ]  \|/(£)

(B.8)
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n+ _  1 r  -k(z0+2c+2dl + 2d2)  _  h ^ - lo - ld d
"  4 7 0 -0zxk L * *

+ a(e~K!o+̂ )- e kl°)

+ p(6^% -2<?) -  e~k(A) +2c+ Ml))

+ «P(e*(zb_2̂ -6 " * (z6+24+2^ )) ]  y(*)

5  “  4trP_P.fr [  C g
kz<> _  a ~K jo  +  2 4 )

47ce0e1it "

+ a(«** ”2c" 2̂ -  +2<» 24+24)̂

+ p^g-^  + 24 + 24) _ " 24)̂

+  a P ( e -* (% +2c+2rfl)- e ‘ (:i>-2" ))  ]  v ( t )

r + _ 1 - a  r  -i(%+2rt-24 + 24) _ ik(zo-2c-24)
c  “  4w oe1ik L

+  P ( e * ( % - ^ ) _ e -* (% + 2«-24)) j  v(jfe)

C” _  1 ~  Q- r e*% _
47^ 06^  L

+ P(e"*(zb+2‘il+2^ ) -e*(zb_2̂ )) ]  \j/(&)

(B.9)

(B.10)

(B.ll)

(B.12)

D+ = (1~ ^  + P) [  e-‘( ^ ^ 24+2<y _  ^ - 2 ^ 2 4 ) ]  vW  (B.13)

D'  = (1 4^ , f c P) C 3 * »  (B-14)

The potential in each of the four regions can now be deduced. As would be expected from 
the theorem of reciprocity [Morse and Feshbach, 1953, p.883], the potential at z = Zj due to 

a point charge at z = 3, is found to be the same as the potential at z = Zo due to a point charge 
at z = zx. Therefore, use zd and z, as defined in equation 3.15,

zd =  \ z  Zq \ , zs = z + zq (3.15)

The four solutions of equations 3.12 can be reduced to three written in terms of zd and zf. 
Reciprocity then reduces the nine formulae, for the source charge and object point in any 
of the three layers, to six.
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Therefore, write §ab(k,z) as the transformed potential in layer b due to a source charge in 

layer a. Reciprocity means that ^  ^  , when written in terms of zd and z,. Noting that,

1 - a  1 + a  1+ P 1 “ P
ei %

the three solutions for the transformed potential are,

(B.15)

1=0 m=0 n=0

|-  -k{ 21^ + 2md1 +2nc+ zd) +  g -Jk{2(/+l)d2 +2(mf 1 ^  +2(«+l)c- zd)

_  e -k{2ld2+2(m¥l)dl +2nc+ zs) _  e ~k{2{l+l)d1 + 2/nd1 +2(n+l)c-z,}

+ a(e~k[1{l+V)dl+̂  +2(n+1)c+ 2d) + e~k̂  +2("»+1M +2n*~ z*\
_  e -k[2(l+l)dz +2<n*l)d1 +2(n+l)c+ z,) _  e ~k{2ldi  + 2mdl +2nc-zg}^ (B.16)

+  +2nc+z,} +  e -k[2ld1 + 2mdl +2(n+l)c-z,}

_  g-t{2(/+ l)d2 + 2mdy +2nc+ zd) _  g-*{2/d2+2(*H-l)<i1 +2(n+l)c- zd)^

+  a p ( e “ *{2/<̂  +2("I+1M  +2(«+1) ^  %) +  ^ { 2 ( / + l ) ^  + 2 ^ !  +2/ic- z j

_  e -k{2Id2 + 2mdx +2(«+l)c+ zd} _  ^-it{2(/+l)d^ +2(m+1 ^  Vine- zd}^ j

oo oo

^ • z) = x  
/=0 m=0 n=0

r  ^ -* { 2 ^  + 2/n^i +2nc+ ẑ } g -)k{2(/+l)dz+2(m+l>i1 +2(n+l)c- zd)

_  g -Jk{2/d2+2(/n+l>i1 +2nc+ zf} _  g -*{2(/+l)d2+ 2/M4 +2(n+l)c- z,}

+  $ ( e ~ k [  2 ( / + 1 > ^ + 2 (m + 1 H  + 2 « c + ^ }  +  ^ { 2^  +  2^ !  + 2( n + l ) c - Z j }

_  g -ik{2 (/+l)d2 + 2wdl +2WC+ZJ} _  e ~k{2ld2+2(/n+l)dl +2(«+l)c-zd}^ j

oo oe oo

/=0 m=0 n=0

j- ^-k[2ldi + 2mdx +2nc+ zd) ^ -Jk{2(/+ l+ 2(m + l%  +2(n+l)c- zd}

_  e -*{2/^+2(m+l)d1 +2nc+ z,} _  g -ik{2(/+l)d2 + 2m^ +2(«+l)c- z,} “I

(B.17)

(B.18)
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Potentials for the Source Charge in Layer 2

Consider now the case with the source charge located at z = Zq in layer 2. The solutions to 

the four Laplace’s equations can be written just as in equation 3.12, but with modified 

regions of validity for each solution,

<j)a(k,z) = A+ekz+A~e~kz —dx < z < 0

tyb(k,z) = B+ekz + B e 0 < z < z q

$c(k,z) = C+eh + C~e~b ZgZzZc

<|>d(fcz) = D*eb +D~e~b c < z < c+

The Fourier transformed boundary conditions are now,

§a(k, -  dx) = 0 (0

Mk,c + d£ = 0 («)

§b(k, 0 ) = §a(k, 0 ) (iii)

§c(k, 2o) = ib(k, zo) 0'v)

§c£k, c ) = <j>c(£, c ) (v)

e j-jg -M t. 0) = E[ - V  4pa(k, 0 ) (vO

63 e) = ej -jr-<j>c(*,c) (vii)

i - i A O  = £ * # . % )  -  3 ^ -  (v«0

Note that conditions (i), (ii), (v) and (vii) are still the same as in equation 3.13.

Solving again for the unknown functions A+ to D results in,

A + =  1 +(X r  _  e Kzo-2c-2dd
47C£0£2fc L

+ P ^ ^ z0- 2 c ) _ g-*(Zo + 2d2)>j J

_  1 + q  r e K ^ -2 c -2 d l -2 d 2)  _  e - K ^ 2d x)
A itz fo k  L

(B.19)

(B.20)

(B.21)

(B.22)
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B + =  ----- 1---- T e 4** -  p ^ - 2* - 2̂
4 jce0e 2/: L e

+ a ( e *̂°-2c_ ̂  ^  — e~k(jQ+

+  p ( £ * ^ ° + ^4i )^

+  a p ( < f  * * + ^ + 2 4 )  __ ^  -2 c“  2 4 ) )  J  w

=  -------1------ f  . * 0 0 - 2 ^ 2 4 - 2 4 )  _  -* (^  + 2 4 )
4tcc0£2/: l e

+  a ( e _fcb -  ~2c~  2^ ))

+  p ( e ' ^ +24  + 24 ) _ e *(% -2^-24)^

+  a p ( g ^  -  <f*(*>+ 2 ^ )  J  y (^ )

C+ =-------1----r  £-*(20+20+24 + 2̂  _ k(^-2 c-2 dd
^TUkPlk L *

+  O c(e* ^ °  24t ~  2dd  __ +2c+ 24z)^

+ P(tf ̂  — g~^° +2c+ 2̂1

+  C X P ( ^ +2 c ) _ ^ 2b- 2 ^ 2 4 ) )  j  W )

C~ =----- - -̂--- r  e*** _ -■*(%+M)
4 7 0 ^ 2 *  L *

+ a(e-feb -  ~

+  p ( < f ^  +  M  +  2 ^ ) _ e ^ - 2 4 ) ^

+  a p ( e ^ - ^ - ^ _ e - ^ + ^ )  ]  m

D + =  —1 +  P  r  -^(Jb +2c+ 2 J , +  2dj> _  *6 , - 25- 24)
4)teo£2Jfc 

]  v W

D "  =  4 ^ [  ]  v ( t )

(J>2i is the same as <J>12 in equation B.17, as would be expected from reciprocity, 
cases are,

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

The two new
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oo oo oo

^ • z) =  4s i j X X X * ™ ( W | 3 )  xZ 1=0 m=0 rt=0
- * { 2 ^  + 2tnd̂  +2nc+ zd) -kilQ+Yy^ +2(n* 1 ^  +2(/H-l)c- z j

_  ^-*{2/d2+2(m+l>i1 +2nc+ z,} _  -*{2(/+l>fc + 2i»idi +2(»+l)c-zJ}

+  a ( 6 _ik{2̂  + 2/ndl +2/IC+ Z,} +  ^“*C2C/+1>4 +2(wrt-l)dl +2(«+l)c-z,}

_  ^-4(2^2 +2(/»+l>i1 +2nc+ zd) _  g-)k{2(/+l)d2 + 2mdl +2(n+l)c- Z<f}  ̂ (B.29)

+  p(g-*{2</+1H + 2('"+1M +2*<m-z,} +  e -*{2W2 + 2«4 +2(«+l)^z,}

_  ^-*{2(/+l)d2 + 2 ^ !  +2«c+ z*} _  g-*{2W2+2(wH-l)4 +2(/H-1)c-  z*}̂

+  a p (e " * {2(/+1)̂  +2(m+1)4 +2nc+ +  e~k^ + ^  +2(n+i)c-z<,}

_  ^-*{2(/+l)d2 + 2/mfx +2nc+ z j _  ^-*{2/^ +2(mH)d1 +2(«+l)c- z,})]

OO o o

^ 3(M = i S f X X X ^ ^ ^ x
^ 2 /=0 m=0 «=0
j- g -Jk{2£^ + 2mdy +2nc+ zd) +  g -*{2(/+l)4 +2(m+l>i1 +2(n+l)c- zd) 

_  -*{2/4+2(ffH-l)4 +2nc+ z,} _  g -4(2(/+l>i2+ 2/n^ +2(n+l)e-z,}

+  a ( < f * { ̂  + ^  +2rtC+ Zfl +  e-kM +lM +2("H-1M +2(«+l)c- z,}

_  e ~k{21dl +2(nn-l)dl +2nc+ zd] _  e ~k{2{l+\)dl +2mdl +2(n+l)c-zd))]

(B.30)

Potentials for the Source Charge in Layer 3

Finally, consider the case with the source charge located at z = Zq in layer 3. As in equation 
B.19, the solutions to the four Laplace’s equations have their regions of validity modified 
from equation 3.12, giving,

tyjk,z) = A*eb +A e fe -d, < z < 0

i/b(k,z) = B+eb + B~e~b O i z i c

t>c{k,z) = C*eb + C~e~b C < Z < Z q

ifi/fcz) = D*eb + D~e~b Z Q < Z < C  + d2

The Fourier transformed boundary conditions become,
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M k , - d )  = 0 (0

§/.k,c + h) -  0 («)

tyb(k,0) =  <j>a( * , 0 )  (iii)

<j>c(k, c) = §b(k, c ) O'v)

Zq)  =  <i>c(* .zb ) (v)

£ l - £ u k , 0 ) = t l J - M k , 0 ) (vi)

% -Jr- C) =  £2 -Jj- $(,(/:, c ) (vii)

^ - W * >2b) = -£♦,(*,% ) -  (vm)

Note that conditions (i)-(iii) and (vi) are unchanged from equation B.20.

Solving again for the unknown functions A+ to D~ results in,

A+ = (1 ; a)(1: P) [  e + '-e * * -* -2*  ]  W )ATXifi3k L

A-  = ,(1+«)(1-P) r ^ - 20- 2^ - ^ _  ̂ 2 4 0  •, (t)
4 7 1 6 0 6 3 ^  L  J  T V  /

*+ = x — 1V c

£ -  _  1 - P r ^ - 2^-2 4 - 2 4 2) _  -Kzo+idx)
4n E ^ k  L

+ a ( ^ - / (Zo"2̂ 24)) ]  V(*)

£+ _  1  r e -k o  _  e ki^  -2 c -  2 4 )
4716063/: L

+ _2̂  24 " ̂  -  e-*26+Ml))

_j_ p^g-*fo +2c+ 2̂ i) _ g*^ “4°“ 24i ~ 2^^

+ a P ( e ^ “4<>-24)- ^ +2c)) ]  y(*)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)
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(B.38)

(B.39)

c -  _  1 r  eK^-io-2d^-7dH _  e-*(zo+24 )
47̂ 6063k

+ a(e~b° -e* *  _2c" 2̂ )

+ P(e«% -2^)-e-t(%-2c))

+  a p ( e " * <%" 2 c + 2 a ,) - « * <!b' i l l " a y )  ]  v ( t )

D+ _ 1 T e-^+2c+M1 + 24) _ eKzo-2̂ 2d̂ )
4716063 k L

+ a(e*(2b -2^ 24 -  24) _ g"*^ +2c+ 2^)

+ $(e~K*°+24) _ 24 -  ̂

+ a p ( ^ ^ 24)-e " * Zb+24+24)) ]  \j/(*)

D~ = ----- ?------T e *  -  e~Kz°+2dl)47C6oe3/: L

+ a(e-k2o -e kiz° - :W )
+ p ( g iO b -^ ^ .g -^ - a c j )

+  a p ( e " * (z° " 2 ^  2 4 )  _

As would be expected from reciprocity, <j>31 is the same as 4>13 in equation B.18, and <J>32 is 
the same as <j>23 in equation B.30. The remaining new case is,

(B.40)

00 00

^ (fc2) = x /=0 m=0 w=0
j- e ~k{21d2 + 2mdl +2nc+ zd) +  ^-*{2(/+l)<iz +2(/*+l>i1 +2(n+l)c- zd)

_  g -)k{2W2+2(/w+l>i1 +2nc+ z,} _  g -Jfc{2(/+l)4 + 2 / ^  +2(n+l>r- z,)

+  a ( e ~ k[2Idl + ̂  +2nC+ Z' } +  g “*C2(/+l)4t +2(m+lH +2(n+l)c- z,}

_  g -*{2 ^ 2  +2(/*fl)4 +2«c+ z,,} _  ^-A{2 (/+1)4 2  + 2mdi +2(«+l)c- zd}^ (B.41)

+  P ( e _*{2/4 +2(m+1^ i  +2(«+l)c+ z,} +  g -*{2 (/+l>i2 + 2md1 +2nc- zd)

_  e ~k[2ld2 + 2mdl +2(«-l)c+z1} _  g -*{2 (/+l)d2 +2 (m+l) 4  +2(»+2)c-z,}^

+  a p ( g _)t{2/4 +20lH':1)4 +2(n_1)c+ 2*} +  e -*{2(/+D4z+ 2/"4 +2(n+2)c- z,}

_  e ~k{2 ld2 + 2mdl +2(/H-l)c+ z j  _  ^-Jfc{2(/-t-l>i2 +2(m+l)d,1 +2«o- z,} ) ]
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Performing the Inverse Fourier Transform

The Fourier transform pair used in this thesis is,

7 ( tp V  = M A>0 e -to t* ?  dx dy
OO oo

and (B.42)

A*,y) = TF j  J /(*,.*,) ^ ' v  dk, dky

The transformed potentials <j>(̂  k, ) , derived in this appendix, are composed of terms of the 
form,

-zV^2 + 1$
gikrJCy) = e --------- (B.43)

V/g + ty

The potential <J>0c,y) will therefore have terms of the form,

g(x,y) = I j i%> ky) €?**€?*>* dk, dky
**—oo oo

= 4 | ~  I " V  cos( ^ )  cos(^y) dk̂  dky

since gik^ ty  in equation B.43 is an even function of both and k,.

Now, formula 3.961.2 in Gradshteyn and Ryzhik [1980] can be written as,

(B.44)

(ty)dk, = Ko(lo / y W )  (B.45)

and formula 6.671.14 can be written as,
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fK o(l^[y2 +z2 \  cosily) dk, = - | — = L =  (B.46)
\  jc2 + y2 + z2

Substituting equations B.43, B.45 and B.46 into equation B.44 therefore yields the required 
general term for the potential as,

g(x,y) = —r  1 =  (B.47)
\JC2 + y2 + z2

which can be interpreted as the potential at the point (x,y,z) due to a point charge at the
origin, ignoring normalisation constants. This enables the spectral domain potentials given
in equations B.16 - B.18, B.29, B.30 and B.41 to be transformed into the spatial domain 
potentials given in equations 3.17 - 3.22.



Appendix C 

Series Coefficients as Jacobi Polynomials

The series coefficient Â {r|) was written in Appendix B as,

min{/j}

W O  = ^
r=0

Using table 22.3.3 in Abramowitz and Stegun [1965], take the Jacobi polynomial G£p,qjc). 
Assume that i > j  and put,

P -  q -  i - j+ 1  , x = T]2 (C.l)

The polynomial Gfjt—j  + l , i - j + 1,rj2) can then be expressed as,

G f l - J + u - j *  i.n2) = (C2)
r=0

Expression 22.5.2 in Abramowitz and Stegun, relating the Jacobi polynomials Gj(p,qjc) and 

Pjy,S)(x) can be written as,

G / w + u - y + M 2) = 2n2- i )  (C.3)

Combining equations C.2 and C.3 results in,

f T W - l )  -  j \ - < f  (C.4,
r=Q

Reversing i and j  when j  > i, the coefficient given by equation B.5 can therefore be 

expressed as,



Direct evaluation of the Ku coefficients presents a computational problem when i and j  
exceed about 30, as they are then the very small difference (less than 1) between two very 
large numbers (1030 or more). When they are expressed as Jacobi polynomials, a recurrence 
relation [Erdelyi, 1953] can be used to compute them, and this does not run into numerical 
difficulties until i and j  exceed about 500, enabling all the necessary coefficients to be 
computed efficiently.
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Appendix D 

Efficient Representations for some Potential 
Formulae

Some of the formulae for the scalar potential derived in Chapter 3 can be rewritten in a form 
which is more efficient for computation. These cases occur when the source element and 
object point are both on one of the PCB surfaces, and will be detailed in turn.

Single Sided PCB with Coincident Ground Plane

This case corresponds to setting dl = 0 and in Figure 7. Layer 2 then represents the 
PCB substrate, and layer 3 represents the free space above the PCB. The potential <t>cc for 
this case is given by equation 3.68. Writing this with a finite upper limit of summation, 
N, and expanding the function £ gives

N

tec =
1+P

4716062

1 + P
47C6Q62

1 + P
47t6o62

XH
n=0

N

y‘ + 4n2c2

am

2 + /  + 4(rt + l ) V

(-P)

Vx2+/ + 4 « V  Z - i  " 2 ■ 2 • '  2 2
n=l V *2+ y + 4n &

(D .l)
N

' I
-  (i + P)

2 2 x + y X (-P)
n—1

V.
11=1

2 2 1  2 2x +y +4n c

(-p>
N

V .x2 + y 2 + 4(N + l )2c2
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If a new set of constants Pn is defined by,

P„ = - / ’od + p X - p r 1 l<n<N
PN+, = -Ptf. -P)N

(D.2)

the potential can be written as the single series,

x2+y2 + 4n2c2
(D.3)

This has transformed two series of TV+1 terms each (a total of 2TV+2 terms) into one series 

of TV+2 terms. This results in TV less terms to compute, and will therefore roughly halve 

the CPU time needed to calculate the potential.

This case corresponds to setting 4  = °° and 4  = 00 in Figure 7. Layer 2 then represents the 

PCB substrate, and layers 1 and 3 represent the free space below and above the PCB. There 

were three formulae for different cases derived for the potential in Chapter 3:

1. Source element and object point on top surface of the PCB, given by <J>ec in equation

2. Source element and object point on bottom surface of the PCB, given by <j)oo in equation

3. Source element and object point on opposite surfaces of the PCB given by in 

equation 3.65

The third case is already in the form of a series with TV+1 terms, and the first two cases 

are equivalent with a  and p interchanged. Therefore, only the first case will be examined 

here. The potential <|>cc is,

Double Sided PCB without Ground Plane

3.66

3.64
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N

4n e ^  ,  , , , ,  ,  ,  2

4" C (D.4)

*  ■ “  , ,  ]+ y2 + 4(n+l)2c2 JV.
Using exactly the same methods as before, this can be expressed in terms of the single series 

given by equation D.3 with a different set of PH constants. These are,

1 + p4rc£oe2 
Do (l +  c

= p0Y * Y
p, = fo(l + a)V p""' ISnSJV (D'5)

Double Sided PCB with Ground Plane

This case corresponds to a non-zero value of 4  in Figure 7, with = <». Again, there were 

three formulae for different cases derived for the potential in Chapter 3. However, this time 

all are distinct, and can be made more compact. The potentials all involve double series 

over m and n, and the upper limits of summation will be taken to be M and N respectively. 

The three cases are treated in turn.

Source element and object point on top surface of the PCB

The relevant potential is <(>„, given by equation 3.63. Writing this with finite upper limits 

of summation gives,
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$cc
m=0 n=0 Yx2 + y2 + 4{ttfc/1 + nc}2 

a

Y

x2 + y2 + 4{md1 + (n+ l)c}2

x2 + y2 + 4{(m+1)^ + (/i+ l)c}2

___________ a __________

\ x 2 + y2 + 4{(m+1)^ + nc}'

(D.6)

where the A ^a) are a set of constants, defined in Appendix B, equation B.5. The same 
methods as before can be employed to reduce the above expression to a double sum of just 
one term. The algebra involved is rather more extensive, so only the results will be shown. 
The potential can be expressed as,

Af+1 N+1

Ann

m=0 «=0 x2 + y2 + 4(mdi + nc)2
(D.7)

with the set of constants A™ defined by,

Ax) -
1 + p

47C£oe2
Af+1,0 = -  Ax) 
Ayv+i = 4 ~'°N

%+l.V+l = 

AnO =  

AnJV+1 -

Ak =

Ax) a P ^(w(a ) 
A)0 P^^Mv(a ) 
Ax) t^mo(a ) — C^m-l.oC01) ]  
Ax)pN[ a A ^ a ) - / ^ _ 1>A<a)]

(D.8)

Atf+i/i -  -Ax)P" ^aP^wnCa) + ̂ M,t_1(a )]  
Ann = Ax) p'-'CPK^Ca) + aK ^ jC a) -  a p A T ^ a )  -  A ^ r f a ) ]  

1 <m<M , l< n< N

This has transformed four double series, each having (Af +1) x (N +1) terms, into one 
double series of (M+2) x (N + 2) terms. For large values of M and N this cuts the number
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of terms which have to be evaluated by about 75%, a considerable saving. The values 
actually used in the current version of FACET are M = N=5 . For this case, the above 
transformation means that only 49 terms need to be computed instead of 144, reducing the 
CPU time required by about 66%.

Source element and object point on rear surface of the PCB

The relevant potential is <|>oo, given by equation 3 .6 1 . Writing this with finite upper limits 
of summation gives,

=  x  
m=0 n=0

+

1

(D.9)

*slx 2 + y2 + 4{mdl + nc}2
P

vx2 + y2 + 4{mdi + («+ l)c}2 
1

*s'lx2 + y2 + 4[(m+ 1 )di + nc}2

P

^lx2 + y2 + 4{(m+ 1 )di + (n + l)c}2

As for the previous case, this can be written in the form of equation D.7, with <J>CC replaced 

by <J>oo. The set of constants A™ is now defined by,

a 1 + aAx) = 4tu&2 
Af+1,0 =  ~ A iO KMo(a ) 

Avv+i -  Ax) P^+1A w (a)
A / + i  a + i =  “  A jo PN+1^ o c )

AnO =  A x)C ^m o(a ) _ ^ m - l ,o (a ) ]  ( D I O )

An^+1 = Ax) pN+1[Xn/v(a ) ”
A v i -  A jo P n[ ^ o « ( a )  +  ^ ( a ) ]

A f+l* =  “  Ax) P " C + 
Ann =  Ax) P T ^ ( a )  +  Km,n-l(a ) “  ^m-l,«(a ) “  ^/n-l,n-l(a ) ]

1 <m<M , 1 <rt<N
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Source element and object point on opposite surfaces of the PCB

The relevant potential is (j^, given by equation 3.62. Writing this with finite upper limits 
of summation gives,

00c “
m=0 n=0

l + p

Yx2+y2 + [2mdt + (2 n + l)c)2 

1 + P

4x2 + y2 + {2(m + 1 + (2/i + l)c}2

(D.ll)

This can be written in a very similar form to equation D.7 as,

00c “

M+l N

Ann

m=0 n=0
x2 + y2 + [2mdi + (2n + l)c}2

The constants A™ for this case are given by,

(1 + aXl+P)An = P X ( a )47ceoe2

Ann = Ajo P"IX i(a) -  ̂ ( a ) ]  
Af+U “  ~Ax)Pn̂ Mn(a )

1<m<M , 0<n<N

(D.12)

(D.13)

In the FACET subroutine which evaluates these potentials, the second sum in equation D.12 
is extended to N +1, and the constants A»a+i. with 0 < m < M + 1, are set equal to zero. The 
potential can then be written in exactly the same form as equation D.7, making the 
subroutine clearer and simpler to implement.
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Appendix E 

Formula used for the Self Inductance of a Via

The logarithm term in the integration required when equation 4.13 is expanded using 
equation 4.14 is

r -

Mo* In 2 a + ̂ \R 2 + 4a2
2n2

_  - 2 a +  ^̂ R2 + 4a2

t
| Performing the substitution a  = 0/2, so that R = 2b sin a, this becomes

I =
K2

In b2 sin2a  + a2 da (E.2)
-a + V b2 sin2a  + a

This can be expressed as the difference of two terms given by

Ii = Mo*
n

n

In y  i + —JL 
b sin a  * h ci da

b sin a

(E.3)

In —  + ' \ l  1not "b sin i_2 • 2b sin a
da
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Both of these can be expressed in terms of an inverse hyperbolic sine. Since this is an odd 
function, it follows that

I, =

and hence

n2 I  V h sin a  J

— H F" P " sinh_1(  T ? —  )  d ajc J|) v ^ s m a  /
= - I ,

I = 21, = -21,

(E.4)

(E.5)

Formula 8.261 in Gradshteyn and Ryzhik [1980] shows that

f -
ln(2 sin a) da = 0 (E.6)

This enables I, to be written as

Ii = a +4 sin2a

a +4 sin2a

da -  ln(2 sin a) da

(E.7)

which is the form needed for use in equation 4.15.



Appendix F 

Subroutine Naming Conventions

This appendix describes the consistent naming convention which has been adopted for the 
subroutines that compute potentials and inductance. There are three sets of subroutines, 
which compute respectively scalar potentials, vector potentials and inductance. These are 
detailed in turn.

Scalar Potential Subroutines

The subroutine name is of the form Sesnab. The various parts of the name have the 
meanings:

• S indicates that the subroutine computes the Scalar potential due to an element 
e indicates the type of element. It can take the values
• P indicating a polygon element
• T indicating a track element
s indicates the shape of the element It can take the values
• R indicating a rectangular element
• T indicating a triangular element (only valid as a polygon element)

• n indicates the number of basis functions included It can take the values 1 or 6.
• a indicates the location of the ground plane. It can take the values

• C indicates that a ground plane is present coincident with the bottom surface of the 
PCB (4 = 0 in Figure 7)

• G indicates that a ground plane is present parallel to and below the bottom surface 
of the PCB (4 * 0 in Figure 7)

• N indicates that there is no ground plane present
• b indicates the location of the source element and object point. It can take the values

S indicating both on the top surface of the PCB
• D indicating both on either surface of the PCB

M indicating both either on the surface of or inside the PCB
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• B indicating the source element on or inside the PCB, the object point above the 
PCB

Not all combinations of the above are used. With a coincident ground plane, the subroutines 
for b=D are identical to those with b=S, and so are not needed. In all other cases, those 
with b=S are a subset of those with b=D (but no simpler), and so are not needed.

Vector Potential Subroutines

The subroutine name is of the form Vesla. The various parts of the name have the 
meanings:

• V indicates that the subroutine computes the Vector potential due to an element
• e indicates the type of element. It can take the values

P indicating a polygon element
• T indicating a track element

• s indicates the shape of the element It can take the values
• R indicating a rectangular element
• T indicating a triangular element (only valid as a polygon element)

• 1 indicates that there is only one basis function
• a indicates the location of the ground plane. It can take the values

• G indicates that a ground plane is present parallel to the bottom surface of the PCB
• N indicates that there is no ground plane present

Inductance Subroutines

There are two inductance subroutines:

• SIPR, standing for Self Inductance of a Polygon Rectangle
• MIPRPR, standing for Mutual Inductance between Polygon Rectangle and Polygon

Rectangle



Appendix G 

Integrals for Polygon Elements

Integral for Potential due to a Rectangle

Here the integration required in Chapter 5 is performed. The integral is denoted by /, where

= I I i = ~  (G.l)rr̂ f
Now,

[  —& .......  = In( x + ' l x 2 + y2 + z2 )
J V x 2 + y2 + z2

Hence, setting

^  ln ^x + V *2 + y2 + z2 ^dy

(G.2)

(G.3)

enables /  to be written in the form

Ĉ*i> 2̂» 3̂1 > ̂ 2*z) = A(*2> Ji* >'2» z) ~ A(*i*?i»3fcz) (G.4)

Now integrate by parts, using
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and

ln^jc+V *2 + y2 + z2 ^ dv _ ju =

du _ ________________y________________  dy ‘ (G.6)
 ̂f~n ~n ~n /  l~o 9  ̂ ^

V *2 + y2 + z2 ( x  + ̂ lx2 + y2 + 2 )

Combining equations G.5 and G.6 gives

h(x,y\,y2 ,z) = |y l n ^ +  Y r2 + y2 + z2 -  /2 (G.7)

?!

where

f
y\

h  = I - y<fy . - ■ = -  (G.8)
Vx2 + y2 + z2 (* +  Vx2 + y2 + z2 )

Simplifying this with the substitution,

£ = x + ^ x 2 + y2 + z2

y = ± V ^2 -  2x% -  2 (G.9)

<£ = , y *
vx2 + y2 + z2

results in

U = f ± V ^2 -2 x % -  r  
% <&, (G.10)

where the positive sign is taken for y > 0 and the negative sign for y < 0. Equation G.10 can 

be integrated by parts. Setting,
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± -  2x% -  /
u = ----------- E  _̂ v_ _ 1

^ 2 ^  (G “ )
d£. _ j£  + Z v = £

- 2 a / i= 2 T T  ~22x£ -  Z

results in

/2 = r±Ve-2 4 -22f ± f
^  J Ws2 -

(x^ + z )

2x^ -  z1 (G.12)

= l y f 2 -  h  -  14

= yi~y\ -  h -  h

The term y2- y x is the independent of x, and so will cancel out in equation G.4. The 

remaining two integrals will now be tackled in turn. First /3, which is solved using equations 

G.9 and G.2,

r

.  ± xd%1-1 —
- 2x ^ - z 4

r (G.i3)

V 7 7 7 7 7
y2

= £;tln^;y + V *2 + y2 + z 2  ̂j
?!

IA can be solved using formula 2.266 in Gradshteyn and Ryzhik [1980], and noting that 

arcsin x = -  arcsin( -jc),
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h  =
± z

= ±  |z

=  ± 1*1

\  . /  - ; £ - z 2 \
arcsin ■ —  I

[ V £ Vx2 + z2 /

(arcsrn
c2 + z2 + W * 2 + y 2 + z2

V 7 7 7  ̂ jc+"nI.x2 + y 2 + z2 )

(G.14)

)
yi

This formula can be simplified somewhat. Consider

A = arcsin(v ^  ..............^  + arcsin ^  Ẑ  ̂ ^

+ z2)(y2 + z2) /  V  Vy2 + 22 / (G.15)

Formula 1.625.1 in Gradshteyn and Ryzhik can be written as

arcsin a + arcsin p  = arcsin fa V l-p 2 + p V l-a 2)  ( G . 1 6 )

provided a2 + p2 < 1. Setting,

a =

P =

*lyl

V (x 2 + z2)(y2 +  z2)

=  l; 1̂ 2+y2 + 

\ ( * 2 +

V  + z
p2 =

'(** + z2)(y2 + z2)

V y 2 + z~

(G.17)

Equation G.16 will always be valid, because

a 2 + p2 =
x2y 2 +  y 2 2 + z4 

x2y 2 +  x2z2 + y 2z2 + z4
< 1 (G.18)
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Combining equations G.15, G.16 and G.17 gives

2 2 2 2 2 x  + z  + X V X  +  y  +  zA = arcsin( V 7 7 7  (*W *2 + /  + z2) )
Combining equations G.14, G.15 and G.19 gives a simpler form for /4 

arcsin |y | = ± arcsiny

(  *y \ ^  (  U\ \arcsin ■ — ......................    I ± arcsin I — —:---  I
^  \ ( x 2 4- z2)^ 2 + z2) ^  x  \ y 2 + z2 x

(G.19) 

, noting that

yi

(G.20)

y\

Note that the second term in the above expression is independent of x  , and so will cancel 

out in equation G.4.
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The required result can now be written in full,

I(xh X2 , y{,y2, z) = >*2 In

-  ^ ln

+ -*2 In

jq In

(xz + ̂ lxj2 + y 2 + z2" \  

x i+ ^ lx 2 + K 2 + z2 /

f  X2 + ̂ X22 + y 2 + 2 \

\  XjWxj2 + y 2 + z2 /  

{  y2+ + y*2 + *2 ^
\  y i+ ^ lx i2 + y 2 + 2 J

{  y2 + ^ lx2 + y 2 + 2 \  

\  yi + ^ lx 2 + y 2 + 2 /  

*$2 \  
+ z2)(y22 + z2) )

-  \z\ arcsinl — j
^ n V  + z y y i4

+  | z | arcsin (  —  X^ 1 ............. ^

V  V(X22 + z2)(y2 + z2) '

+ |z | arcsin^ — - *^2 . .  - ^

V  V (^ 2 + z2)(y2 + z2) /

1 z | arcsin ̂  — f   - ^

+ z2)(y!2 + z2) '(*i‘

(G.21)

Integral for Potential due to a Triangle

Here the integration required in Chapter 5 is performed. The integral is denoted by /', which 
is similar to I but with one of the limits to the inner integral a function of x. a  is the gradient 
of the hypotenuse, given by

“  = <G-22>

With this definition, the integral / ' is



r r/'(*!, *2, y{,y2, z) = I I

=  j^ln^y + V'

,y1+a(x-x1)
dydx

V 7 7 7 7 - 2

*2 + y2 + z2 )

y + z
vt + a(x-x{) (G.23)

1̂
=  4 ( * i » > i >  « . z )  -  z)

/j was dealt with in the previous section. However, for this section the terms which were 

cancelled out in equations G.12 and G.20 have to be retained because of the variable 

integration limit in equation G.23. This results in the following expression for Ix when jq 

and have the same sign,

4(y» *i» a* z) = *2 + y\2 + *2 )

-  xx ln ^ !  + Vxj2 + yx2 + z2 )

(Xj  W i g 2 +  y 2 + z2 \  

Xi + ̂ l x 2 + + z2
+ yi l n |  -------;■••••••....... I  -  (X2  -  x{)

(G.24)
-  |z| arcsin^  —■

V  V(X22 + z2) ^ 2 + z2) /

< ■,  T ,  ,  )
^ \(*i + z )(v, + z ) '

+ |z| arcsml

+ z*)fyi* + O

± |z | arcsin| ^  |  ± |z| arcsin| — ...\Z.\ „ • j

x  VX22 +  2 s  x  **i2 + z2 X

where the sign of the last two terms depends on the sign of x{ and x±. If these are of opposite 

sign, the integral must be split at x -  0, and the sum Ix(y, jq, 0, z) + Ix(y, 0, jq, z) taken. The 

result of this is simply to add a term ± k to the above formula. To simplify the growing 

number of ± signs, set the following two constants
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+1 if IV 0

-1 if Xi < 0

+1 if •*2 —  0

-1 if •*2 < 0

(G.25)
f  +1 if  X2>0

■*2

Using these constants, and noting that | z | arcsin \z \ = z  arcsin z , equation G.24 can be 

written as

A(y» *1. f y z )  = xz l n ^  + Vxz2 + y {2 +  z2 ^

-  xx ln ^ y , +  V x ,2 +  y t2 +  z ^

(  -»2 + V x 2 2 +  y\ +  z2 ^
+ y i ln l    =  I  -  -  X,)

\  Xi +  Vxj2 +  y ,2 + z2 /

(  ^
V  V (V  + z2)(>12 + z2) /

+ | z | arcsin ̂  — *1~yi — ^

V  V(*i2 + z2) ^ 2 + z2) /

-  ftz arcsin I — . z 1 + siz arcsinf...— ;.... z ........ ■■ I

+ (.S2  — S1) —

This is now correct for all values o f Xy and Note that if they have the same sign, the last 

term is zero.

Turning now to /6, which is given by

-  |z | arcsin I — ■  -  I (G.26)

/<s(*i.*2.yi. a’z) = ^  l n ^  + a(x -  x{) + V *2 + (yx + a(x -  xx) f  + z2 ^dx (G.27)
*1

This is somewhat more complicated. The notation is simplified slightly by setting

p = y i - e a , (G.28)
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which enables equation G.27 to be written as

+ ax+  Vx2(l + a 2) + 2apx+ p2 + z2 (G.29)

This can now be integrated by parts, with

= 1 v = *dx

u = ln^p + ax + V*2(l + a 2) + 2apx + p2 + z2 ^  

du ap + (1 + o?)x + a u 2(l + a 2) + 2aPx + p2 + z2
(G.30)

dx
Vjc2(1 + a 2) + 2apx + p2 + z2 ( p  + ax + Vjc2(1 + a 2) + 2apx + p2 + z2 )

Applying this to /6 gives

i*Z
4 = L ln ^ p  + ax + V x2(l + a2) + 2apcc + 132 + z2 )  1 -  /7 (G.31)

*1

Expanding some of the terms containing a  and p, using equations G.22 and G.28, gives

P + CU2 = y2 
p + ax! = y{

p2 + 2ap*2 + (1 + a 2)^ 2 = X}2 + y22 (G.32)
p2 + 2apxj + (1 + a 2)* 2 = x 2+ y 2

Use of these formulae simplifies equation G.30 to,

4  = -*2 + ^ x. 2 + y 2 + 2 ^  — xi in^ y i+ ^ * i2 + y\2 + z2^ ~ h  (G.33)
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Consider now Ilt given by

In —

x(ap + (1 + a 2)x + aV*2(l + a 2) + 2a$x + p2 + z2 )  dx

"\Zjc2( 1 + a2) + 2apx + p2 + z 2 ^p + cxx+ *\/jc2(1 + oc2) + 2otpx + p2 + z 2 ^

(G.34)

x2^ x 2(l + a2) + 2 a p x  +  p 2 + z 2 -  ( p x 2 -  ocz2jc)

2 . 2 \\/ 2/i . _2v . . o2 . 2(xz +  z 2) V x z( l  + a2) + 2apx + pz + z

/8 is straightforward,

, i x dx
“  1 2— f* + z■r
ro-̂ ) (G-35)

= Lx-Iz l  arctan( —2— |  I
L ^ ui 'J[x \
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/9 is first split into two parts,

f_  a (pix2 -  olz2x )  dx
Iq —

(x2 + z2)Vx2(l + a2) + 2apx + p2 + 2

-  — *
JXi y x 2(\ + a2) +2ap* + p2 + z2 (G.36)

— z i I  (p + ax) dx

J  (x2 + z2)Vx2(l + oc2) + 'loQx+ ft* , 2p +z'Xi '  '
-  Ao ~  At

Use equations G.22 and G.28 to simplify two more terms

(1 +  a 2)x2 +  a p  =  ^  +  c%  
(1 +  a 2)*! +  a p  =  Xi +  a y i

(G.37)

Using Gradshteyn and Ryzhik formula 2.261 together with the above formulae gives the 

following result for /10,

1*2Lj 1 /'*%/ o o o _\
Ao =  ̂ I Inf 2 \(1 + a2)(p2 + z2 + 2apjc+ (1 + a2)*2) + (1 + a 2) * + a p ) l  \1 + a2 *- ■*.

yi-axi ta|  *2 + °% + V(1 + a2)^ 2 + + Z2) |
Vl + a 2 \  jq + ayi + V(1 + a2)^ 2+y 2 + z2) /

*i
(G.38)

In is performed with the aid of the following substitution,
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5 =

Applying this substitution results in,

a(az -px)p(ocx+p)
2 2 0 2tz ozt

^xz p_^ (G.39)
aPS+1) * j

(XZ2 +  p2
<fa = ------------- 1- df

a p ( ( + 1)

h 1 = "
a2Bz2VctpzzA/ a 2z2 -I- p2

(a2z2 + p ^ V p V  + a2(z2 + a 2z2 + p2)
(G.40)

This can be solved using Gradshteyn and Ryzhik formula 2.284, giving

h i = — | z | arctan( pW «a *+

IV  p2̂ 2 + a2(z2 + a V  + p2) )
- z  arctan

|  Otz2-  Px
V zV(l + a2)x2 + 2ap;(1 + ciz)xz + 2apx + z2 + p2 )

= -  z arctan

+ z arctan

/  o(z2 + XiX  ̂ -  x$x \

\  z V ? 7 7 T 7  /

&

X1

/  a (z2 + x12) -  x^ \  
V  W * 2 + v,2 + z2 )

(G.41)

'X\ +yi

where use has been made of the fact that | z | arctan | z | = z arctan z , and of equations G.28 
and G.32.

Now equations G.23, G.26, G.33 - G.36, G.38 and G.41 can be combined to give the full 
result for / ' as



-  yjln

^  ?2 + Vjt22 + >22 + g2 ^

\  >1 + ^ 2 + ^l2 + Z2 , /

(X2 + ^ lx 2 2 +  y t 2 +  Z2 ' \

X i+ ^lx2 + >!2 + Z2 /

^2 +  ° %  +  V (1 +  CL2)(X22 +  ^  +  Z2) |

\  + ay! + V(1 + a2)(^2+>j2 + z2) yV 7 w
+ z arctan^ -y-) -  z arctan^ - y - )  

+ z arctan fV z \ * 2 + y 2 + 2 /
{  a(z2 + x 2) -  x\yx \  

\  Z^lxi2 + Vi2 + z2 X

(G.42)

-  z arctan

z \ x i “ + yj

*2X1+ z arcsinr
\  yj f.. 2 . _2w_. 2+ z )(yi

-  |z | arcsin

+ z2) ^

^  ^I(X2 + z2) ( y 2 + z2) '

+ ,s>z arcsin I —,_— z_—   I -  Stz arcsinl — ------ 1
V V ? 7 7 '  W v . . ’ '

”  0*2 “  ̂ l) ' J ’

Integrals for Inductance of Rectangles

Two further integrals need consideration to be able to compute the self inductance of a 

rectangle and the mutual inductance between rectangles. These are both further integrations 

of the terms derived in the first part of this appendix. The first of these is
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In  = J  f  y ln ^ x + V x 2 + y2 + z2 ')dydx (G.43)

Beginning with the inner integral /13,

^ 1 3  =  ^  y  +  V jc 2 +  y 2 +  z 2 ^  dy (G.44)

Making the substitution,

% = x W x 2 + y2 + z2

V *2 + y2 + z2

and noting that

y = ± V ^2 -  2x%- z2 (G.45)

<  =

J ^ l n «  = ± t , 2in% -  

j l n ^  = -  %
(G.46)

/13 can now be integrated, giving



Ii3 = ^ * ( 5 - * )  In § 4

J 4
=  ± ?  + % \

3̂. r i ^ * , » , = » , • ) *  i W , ‘ + /  *
* i , 1 .  i f t 1 * , 1,]

2Z
(G.47)

>>4

3*3
2 2 1 2 

3*4 +  z -  - j y *= Y (y42 + 22) ln ( i  + Vj:2 + y42 + z2 )  + y  W x 2 +

-  | ( y 32 + z2,ln(x + V 7 7 ^ 7 7 )  -  | W i 2 + y32 + z2 + J4 * ’

To obtain the required answer, /12, the components of this result need to be integrated with 

respect to x. These components will now be examined, taking the logarithmic term first.

/14 = -L <j2 + z2)J * ]n(x + ^lx2 + y2 + z2 ^ d x  (G.48)

This can be integrated by parts. Setting,

u = ln (x W x 2 + y2 + z2 )  dv
_ 1 dF -  1 (G.49)

dx
V jc2 + y2 + z2

results in

/14 =  - y  (y2 +  z 2)|^jc ln^x + Vjc2 + y2 + z2 ^  -  V *2 + y2 + z2 j  (G.50)
X4

Next the square root term,
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r15 = = | [ v  + /  + M]*3
(G.51)

x4

and finally the constant term,

‘16 = - \ p * (G.52)

Equations G.43, G.47 and G.50 - G.52 can now be combined to give In as

hi - -j- x4(y42 + z2) ln ^ , + Vz42 + y42 + z2 ^

- y  x3&42 + O ln(*3 + ̂ x32 + >42 + z2 )

- y ^ O ^  + z ^ ln ^  + V;^2 + f t 2 + z2 ^

+ Y ^ (^ 2 + z2) l n ^  + Vi32 + yi2 + z2 )

+ i  (x<2 -  2y4 — 2z2)Vx42 + y42 + z2
(G.53)

- i ( x 32-2y i2-2 z 2) i x 32 + y 2 + z2

- i ( x 42-2y32-2 z 2) i x 2 + yy2 + z2

+ i  (*j2 -  2y? -  2z2) ix 32 + y32 + z2

— + - f W  + “̂ “■X4);32 “

The second integral required is

/17 = |  |  arcsinf — ^  (G.54)
'  v(x2 + z2)^ 2 + z2) '
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Tackle this by considering the following problem,

_a_
dy

^ a r c s i n ^  *
\  ^  y(x + z )(y + z ) J  /

(W, g ) — p — )
\  V V(*2 + z2)(y2 + z2) /  Cc2 + z2)V*2 + /  + z2 /

(G.55)

( xy \  xy \z \
.  I +   =

y(x2 + z2)(y2 + z2) '  (y2 + z2) v x 2 + y 2 + z 2

xy\ z \  (2x2 + y 2 + 2z2)+

Oc2 + z2W (*2V  + z2)3

If the two terms after the arcsin in equation G.55 can be integrated, then the problem can 

be solved. Consider first

!

/ , ,  =  I |  y2U I2y +z V*2 + y2 + z2
_________   (G.56)

y + z . dy2 2 y + z

This is simplified by the substitution

:2 2 . . 2 . 2
^ = 21 +y +Z‘ (G.57)

= ydy

which enables /lg to be written as
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As = M

=  + -t t K & t)

I I \ l ~2 2 2 \ z \ x  , (  V jc 2 +  y 2 +  z 2 - X

-  | z | ^  + * + z  + — H  J  2 2 2 -~ I
\  1 x  +  y  +  2 + x  /

The second term to be integrated from equation G.55 is

jj 
1

.  ,  UU (2*2+y2 + 2z2) ,
As = I I — — 2 -y 1 = - d y d x

x +z W  + v2 + z2)3(x + y  + z  )

UU :
2 . 2 1----------------------

X 2 \ x 2 + y 2 + z:

\y '  fT

dx

I r r ^ 1 4 " )\  \ x  + y + z +y X

by the same methods used for /18.

/17 can now be evaluated, using equations G.55, G.58 and G.59. This results in

(G.58)

(G.59)



( X aV a \

, I

\ ( x 42 + z2) ( y 2 + z2) '

( X&A \

^  V (V  + OG^* + z0

4

-  x$y4 arcsin

V 4

-  arcsin ̂  *^3 ^
V  \ < * 2 + z2)(y32 + z2) '

I  ■--=   I
V(xj2 + z2)(y32 + z2) /

-  |z|V*42 + y42 + 2 + |z|"\Zjc32 + y42 + z2 

+ \ z \4 x 2 + y 2 + 2 -  \z\4x^  + y32 + z2

-  y * 4|z|  In
f  4 x 2 + y 2 + z2 -x 4 \

4 7 ^ 7 +x4 /

f  4x32 + y42 + z2 - x ,  \
\  V *32 + y42 + 2 +xj

i i t ,  (  4 7 7 ~ r - ; - x 4
+ y * 4|z | i n i   -4- )

\  +  3*3 +  2 + X 4 /

+ y ^ U I  In

-  y ^ M  In

-  y ^ U I  In

{  \Ixj2 + y 2 + z2 - x 3 \

X  4 x 2 + y 2 + 2 +x$ /

(  4 x 42 + y42 + z2 - y 4 \

\  < 2 + y 2 + z2 +y4 /

1 | 1 1 {  4 x i 2 + y42 + 2 - y 4
+  y y 4 M  i n f  J  - 2 —  2 .....  1

\  + y4 + z +y4 /

(4 x 4 + y 2 + z2 -y 3 \

< 2 + y32 + z2 + y 3 X

V  W  + ^32 + ̂  + % X

+ y y j M  In

(G.60)
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Formulae for the Self Inductance of a Rectangle

In order to compute the self inductance of a rectangle, equations G.21, G.53 and G.60 need 
to be combined. The rectangle has a length (x dimension) of 2a and a width (y dimension) 
of 2b. With the centre of the rectangle being taken as the co-ordinate origin, the x 
component of the vector potential, at the point (x,y) in the rectangle is given by

Ax = - y y  l ( - a - x ,a - x , - b - y ,b - y ,0 )  (G.61)

where I is given by equation G.21, with z = 0 as the potential is required on the rectangle 
itself. The self inductance of the rectangle is then

L = - i - J ” J \ d y d x  (G.62)

For I(xu X2 , yx, y2, 0) in the above integration, the values of xx etc. are

-2a 0 <X2 < 2 a
-2b< Jj <0 0£yz<2b

I contains eight logarithm terms, all of the form

In terms of this function,

pa pb p2a p2b pO p2b
J J I dy dx = ^  ftx,y,0) dy dx -  J ^  dy dx

- f f° f(x,y,0) dy dx + f° f° f(x,y,0)dydx
•O J-2  b J-2a J-2b
p2b p2a pO p2a

+ ^ 4  fey*®) dy ~ J ^ fo 'y^ dydx
p2b  pO pO pO

j{x,y,0) dy dx + ftx,y,0)dydx
•0 J-2a J-2b -2a

(G.63)

f(x,y,z) = y ]n(x + 4 x 2 + y2 + z2 ^  (G.64)

(G.65)

Each of these integrals is given by equation G.53, which is simplified by having two of the 

limits and z equal to zero. The first four integrals are therefore,



f ” ^ f ( x ,y ,0 ) d y d x  =  4ab2 \ n ( l a  + 2 ^ a 2 + b2 )  + - j  (a2 - I b 2) ^ a 2 + b‘

• 8  13 4 3 ~ . 2
+ T  -  T a -  2a6

- | °  f / 0to',O)a(y<it = -4oft2 ln (  -2a + 2 Y a2 + b2 )  + y

+ 4 (a2- lb 2)'!a2 + b2 -  4 ”«3 + 2afe22 v- -  3

- f  j °  fi.x,y,0)dydx = 4ab2\n(la  + 2^1 a2+ b2 )  -  y  a :

+ y  (a2 -2b2)^l a2 + b2 + y i 3 -  2ab2

f° f° fi.x,y,0) dy dx = -4ab2 ln (  -2a + 2V a2 + ft2 )  -  -4-«: 
-2<j J-2* '  /  3

+ y f t 3 +  y  (a2 -2b2)^la2 + b2 + 2a62

Noting that

= I6062

(G.66)

(G.67)

(G.68)

(G. 69)

(G.70)

l n ( - 2a + 2V a 2 + 62 )  = ln(  -2a + 2 ^ a 2 + b2 )  + hi^2a + 2^1 a2 + b2 ^

-  ki(2a + 2 ^a 2 + b 2>)

= ln 4 b 2 -  ]n (2a  + 2 ^ a 2 + b 2 ^

= 2 In26 -  \n(2a + 2yJaz + b2 ')

the sum of the first four integrals in equation G.65, 5, is

S  =  16a b 2 t o ( 2 a  + 2 ^ la 2 + b 2 )  -  16a62 ln 2 6  +  - y ( a 2 - 2 6 2) V a 2 +  6 2 

16 3 . 32  h 3
3 3 (G.71)

ta (  a + ^ f + f t 2 )  + - Y ( a 2-2 b 2)'Ja2 + b2 -  - f a 3 + f - b 3

The last four integrals in equation G.65 are the same as the first four with a and b 
interchanged. From equations G.61 and G.62, the self inductance of a rectangle is therefore,
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(G.72)

+ ( f b  In

If a ground plane is present, the mutual inductance between the rectangle and its image must 
be subtracted from its self inductance. This is more complicated as z is no longer zero as 
in equation G.61 - for the simplest case of a ground plane on the back of a PCB with 
thickness c, then z = 2c. This case will now be examined. The mutual inductance between 
source and image rectangle is

Urn -  — f  f I ( - a - x , a - x , - b - y , b - y , 2 c ) d y d x  (G.73)
I6nb J-a J-b

I  still contains eight logarithm terms, in almost the same form as equation G.65. In addition, 
there are now four arcsin terms to be considered. Setting

v , , )
+ z2)(y2 + z2) '

g(x,y,z) = | z | arcsin |  \  (G.74)
'  V (x2

enables the integral of /  to be written as

nb [2a [2b [0  [2b
I dy dx = ^  I Rx,y,2c) dydx  -  j  I fix,y,2c) dy dx

[2a [0  [0  [0
fix,y,2c) dy dx +  Ax,y,2c) dy dx■b -2b  -2a J-2b

[2b [2a [0  [2a
+ 1 1  Ax,y,2c) dy dx -  I I Rx,y,2c) dy dx

[2b [0  [0  [0
Ax,y,2c) dy dx + f(x,y,2c) dy dx«b J-2a J-2b -2a

[2a [2b [0  [2b
-  I I g(x,yt2c) dy dx + J I g(x,y,2c) dy dx

[2a [0  [0  [0
+ g(x,y,2c) dy dx -  g(x,y,2c) dy dx•b J-2b  J-2a J-2  b

(G.75)
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The first four of these integrals are,

I*" f* flw 2c)dydx  = 4a f ( 62 + c2) \n(la  + 2*'la2 + b2 + c2 ')

i f l a + i 'l  a2+ c2 ^  ^-  c2ln|

+ ~  ((a 2 -  2b2 -  2c2)V a2 + 62 + c2

.2 . -2 ^ 2  . .2+ V  + OVIi +c'
2-  (a2- 2 c2)Va2 + c2 -  2c3 ) 2a ^

^  = 4 a ^ - ( b 2 + c2)ln (-2 a  + 2'yJa2 + b2 + c2 ')

+ c2ln (-2a  + 2 ^a 2 + c2>)  ^

+ y  (  2(62 + c2)^lb2 + c2

+ (a2 -  26 2 -  2 c2)Va2 + b2 + c2

-  2c3 -  (a2-2 c 2)^Ja2 + c2 )  + 2ab2

-f£ fix,y,2c) dy dx = 4a f  -c2ln^2a+2\a2 + c2 ^

+ (62 + c2) to(2a + 2^1 a2 + b2 + c2 )  ^

+ t (  ~ ~ 2c2)Va2 + c2 -  2c3

+ (a2 -  262 -  2c2)^l a2 + b2 + c2

+ 2(62 + c2) ^ b 2 + c2 )  -  2a62

(G.76)

(G.77)

(G.78)
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J° J° Kx,y,2c) dy dx = 4a f  c2 ln^ -2a + 2^1 a2 + c2 ^

-  (62 + c2) ln^ -2a + 2 1̂ a2 + b2 + c2 ^ ^

+ y (  ~2ci ~ (<»2- 2 c 2)V a27 c 2
(G.79)

+ 2{b2 + M b 2 + c2

+ (a2 -  2b2 -  2c2)Va2 + 62 + c2 )  + 2ab2

In the same way as in equation G.70,

l n ( - 2a + 2V a 2 + 62 + c2 )  = 2 In2^lb 2 + c2 -  ]n(2a + 2^la2 + b2 + c2>)

i( -2 a  + 2 \la 2 + c2 )  = 21n2c  -  ln(2a + 2^1 a2 + c2 )

(G.80)

In

The sum of the first four integrals in equation G.75, S', reduces to

5' = 16a(62 + c2)ln ( a + V a2 + fr2 + c2

Vft2 + c2 /
2 , {  a + V a 2 + c2 \-  16ac lnl -------- -̂-------  1 (G.81)

+ -M. (a2 -  26 2 -  2c2)V a2 + 62 + c2 -  - f - c 3

+ -y • (62 + c2)V 62 + c2 -  -y -  (a2 -  2e2)Va2 + e2

As before, the last four integrals in equation G.74 are the same as the first four with a and 

6 interchanged. Consider now the four arcsin integrals in equation G.75. Each of these is 

given by /17 in equation G.60, simplified by having two of the limits equal to zero for each 

integral. These four integrals are
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nlb {  ab \g(x,y,2c) dy dx = -Sabc arcsin I — ■ -■■ ■   - 1

V  V (a2 + c \ b 2 + c2) '

+ 8c2(V a 2 + fc2 + c2 -  V *2 + c2 -  V a2 + c2 + c )

\  \  ya +b +c +a /  \  ya +c +a /  /

\  \  ya +b +c +b /  \  yb +c +b /  /

U g(x,y,2c) dy dx =  -8aZ?c arcsin J — — -   -  - |
V 'yjfsj2 J _  ,.2Vfc2 _ L  ^  /(a" + c + O

+ 8c2( - ^ l b 2 + c2 + 'Nla2 + b2 + c2 + c -  Vtf2 + c2 )

/ . „ /  .  * /
\  \  V a2 + i>2 + c2 -a  J  \  Va2 + e2 - a  /  /

f  V ZZZ-A  „ , /
\  \  W  + c2 +ft /  \  Va2 + f>2 + c2 +b /  /

+ 4 bc‘

+ 4&c‘

f f° gC^O^c) dy dx = -%abc arcsin J  — . . . . . . . . . . . . . . . . . . . . — j
26 ^  \(a 2 + c2)(fc2 + c2) '

+ 8c2( - V a 2 + c2 + c + V a2 + fc2 + c2 -  Vfc2 + c2 )

(G.84)

\  V a2 + c2 4a /  \  >a2 + i)2 + c2 4a /  /

\  Va + b  + c  - b  /  \  + c —b /  J
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-  f  f  g(x,y,2c) dy dx = -%abc arcsin ■ —   1
J- 2 a J-2b  \  a / ,  2 2 w .2  2  ̂ /x  y(a + c )(b + c ) '

+ 8c2(c  -  Vfl2 + c2 -  + V<z2 + ft2 + c2 )

(G.85)
+ 4ac‘

+ 4bc‘

\  \  ya2 + c2 -a  /  \  ya +b +c -a  /  /

( J _ V
X  X ya2 + c2 -b /  \  va2 + b2 + c2 -b /  J

can now be found by adding S' from equation G.81, S' with a and b reversed and the four 

integrals given in equations G.82 - G.85. After simplification of the logarithm terms, the 

result is given by equation G.86. Note that if c -  0, this reduces to the same formula as that 

for L in equation G.72. The self inductance of the rectangle, taking the ground plane into 

account, is simply L -L ^.
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(  t f j (  a W a W  + C2 , \

\  \  yb2+c2 /

b + ̂ la2 + b2 + c2+ a b In i )
+ ac In

+ bcL In

Va2 + c2 

Vfc2 + c2 (a + Va2 + c2 )
c(a  + ' l a 2 + b2 + c2 )

Va2 + c2 (fc + V *2 + c2 )

+ 3

3

-  a6c arcsin

(G.86)

c^6 + V a2 + 62 + c2 ^

Y  (a2 -  2c2)Va2 + c2 + y  (fc2 -  2c2)V&2 + c2

_ -L(a2 + b2-2 c 2)^la2 + b2 + c2 + j - c 3

(  ^   ̂ ^
^  V(a2 + c2)(62 + c2) ^  /

Formula for the Mutual Inductance Between Two Parallel 

Rectangles

As for the self inductance, the mutual inductance between two parallel rectangles is 
computed by combining equations G.21, G.53 and G.60. The first rectangle has its centre 
at the origin of co-ordinates, with a length of 2^ and a width of 2J\. The x component of 

the vector potential, A* at the point (x,y,z) is given in a similar way to equation G.61 as

4  = / ( -  fl! ax - x, -  -y, -y, z) (G.87)

The second rectangle has its centre at fo, yo, z), with a length of 2o* and a width of 26* The 
mutual inductance between the two rectangles is then found as
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i rxo+a2 f*>+*a

For /(jq, ylt y2, z) in the above integration, the values of xl etc. are

-  «! -  02 -  ̂ 0 < x{ < -  Ox + 02 -  ̂ ) Oj -  02 -  ̂ 0 < Jfc < Oj +02” ^
~b\~~t>i~y0— yx < - b x + b2 - y Q bx- b 2 - y Q< J2 ^ l  + ̂ z-Jo

To clarify the notation, some constants are introduced for the limits above. These are

X  = -  ax -  0 2 -Xq X  = - h - b z - y o
IL, = - a x + C h - X n  = ~bl +b1-yo
A J u u  <G -9 0 >X  =  0 ! - 0 2 -Ab X  =  bl - b 1 - y 0

= ax +a?,-Xq + ^  -  Jo

With J{x,y,z) and g(x,y,z) as defined in equations G.64 and G.74, the integral of /  can be 
written in a similar way to equation G.75 as

f  f I dy dx =  p  Pjfl&y,z) dy dx -  f^  p fo to ^ )  dy dx 
J-aJ-b \  \  \  X

-  P  l^AxyiZ) dy dx + p  \ %f(x,y,z) dy dx

+ P  P Kx,y,z)dydx -  P  f ^ ,y ,z )  dy dx
\  \  \  %

-  P  [ ^ f tx y j )  dy dx + p  { \ x , y , z ) d y d x

C\ fSi f1̂
g(x,y,z)dydx + g(x,y,z) dy dx

+ J I g(x,y,z)dydx -  J I g(x,y,z) dy dx

(G.91)

As for the self inductance, the integrals in the above equation are given by equations G.53 
and G.60. The resultant expressions are rather more complicated than before, since none 
of the limits on the integrals are zero. They are therefore broken down into various sets of 
terms, grouped by type. The first of these groupings is the logarithmic terms, themselves 
divided into four sets. The first of these groups, I*, is the terms from equation G.53 
corresponding to the first four integrals in equation G.91, leaving out the terms involving 
multiplication by z.
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^  = ̂ 2( ‘̂ ln( ‘̂  + ̂ 2 + “)iJ + z J ) - ^ t a ^  + V ^ 2 + «)i2 + z2 ) ^  

- ^ 2( « ^ l n ( ^  + ) - < ^ l n ( ^  +

-  i^ 2^ l n ( « ll + 'N/«ll2 + i 2̂ + z2) - 4 [l 111(4, H - V ^  + ̂  + z2) ^

+<̂ 2( “..ln( “«,+^ 2+442+z2) - 4lto(4i+'x/412+422+z2^
)  ,----------------------------  ,------  (  (G.92)

-  ̂ ( ^  ln( ‘̂ +^ 2 + 4i2 + z2)  -  ̂  to( ^ +^ 2+“>i2 + z2 )^) 

+412(^ln(i^+'\/^2+412+z2) ^ t a ^  + V ^  + d^+z2) ^

+ ̂ 2( ^ l n ( u s W ^ 2+ ^ 2+z2 ) - 4 i l n ( 4 i W 4 12 + ^ 2+z2 ) ^

- 4,2( “̂ +V +z2) - <k 1̂ (4 ,+A 2+4,2+z2) )

The second of these groups, Ẑ , is the terms from equation G.53 corresponding to the second 

four integrals in equation G.91, leaving out the terms involving multiplication by z. This 
is the same as I*, but with x and y interchanged.

^ = ■“* ? (“* ta( v +^  + 4 / + ^ )  - 4 * )  

- ^ ( ^ m ^ W ^ + ^ + z 2) - ^ ( ^ W ^ + ^ + z 2) )

- “»i2( 4 1ln( 4 1+ ^ 4 J2+ 4 12+z2 ) - 4 , ln( 4 l + ^ “»i2+ 4 i2+z2) )

+ 4 22( ^ 1n ( ^ 1+ V 4 i2+«)12+ z2 ) - 4 1t a ( 4 i + V 4 22+ 4 i 2+ z2) )

/  1----------------------------  /  \  (G 93)
-  ^ 2( s  > "(“».+^ 2+ 4 ,2+z2 ) - 4 i  ̂ 2+ 4 . 2+ z2)  )

^ 2( ^ ( u , +X 2w ^ ) - ^ ( ^ X 2w ^ 2) )

+ ^ 2( “y,ln( 4 1+ ^ “«l2+ 4 12+z2 ) - 4 1ln( 4 i + ^ “«12+ 4 i2+z2) )  

- 4 2( “y,ln( 4 l + ^ 2+ 4i2+z2 ) - 4 l ln( 4 1+ ^ 4 I2+ 4 i 2+z2) )
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The third of these groups, L3, is the terms from equation G.53 involving multiplication by z 

corresponding to the first four integrals in equation G.91. These are combined with similar 

terms from equation G.60 (ie. those multiplied by or jq) corresponding to the last four 

integrals in equation G.91.

2L3
2 = ^ ( V h ^  + u^ + z2 - û  -  d  ̂ln(V d^2 + u^2 + z2 - 4 ,

-  ln("N/«^2 + 4 j2 + z2 ~«^) + 4,ln(V<^2 + 4 22 + z2 - 4 ,

-  u ^ l n ^ l u ^  + u ^  + z2 + 4 , ln( ^ 4 12 + “>i2 2 . 
+ z

i ^ ln ( V k̂  + ̂  + z2 -  4 l l n ( V ^ 2 + 4 !; +z - 4 ,

+

“^ ln ( V i^ 2 + i^ 2 + z2 + 4 2ln ( V 4 22 + un2 + z2 - 4 ,

^ l n ( V ^ 2 + 4 ,2 + z2 - ^ )  -  ^ ( V d ^  + d , 2 , 2 , 
+z -4*

“^ln('s/Mtl2 + i^ 2 + z2 - u , , )  -  4 l ln (V d ^2+ ^ 2 , 2  , 
+  z

-  ut i l n ^ V «Xi2 + ^ i2 + z2 - w ^  + X h l( ^ X 2 + dh 2 + z2

(G.94)

The final group of logarithmic terms, Z*, is the terms from equation G.53 involving 

multiplication by z corresponding to the second four integrals in equation G.91. These are 

combined with similar terms from equation G.60 (ie. those multiplied by y3 or y4) 

corresponding to the last four integrals in equation G.91.



The result is the same as L,, but with x and y interchanged:

(G.95)

= % 'n ( y % 2+% 2+z2 - “* )  -  4*ln( ’N̂ 2 + 4 22+z2 - 4 i )

-  ^ l n ( V ^ 2 + ̂ 2 + z2 - ^ )  + d ^ l n ( X * W  + S  - “» )

-  uyii n ( X J + u J + ^ - % )  + 4 , ln( ^ 2 + 4 I2+z2 - 4 . )  

+ ^  i n ( X j W + S  - % )  -  4 . m ( ^ 4 i2+ 4 12 + z 2 - 4 1)

-  ^ ( ^ l ^  + u ^  + z2 - u ^  + 4 Jl n ( V ^ 2+ ^ 2+ 7 - 4 2̂

+ ^ i n  ( V ^ + ^ + z 2 - ^ )  - 4 2m ( ^ 4 12+ 4 i 2 + z 2 ~ 4 z)

+ «,,1n ( A/«x12+ “yi2+ z2 — 4 [ )  -  4 , ln( ^ 2 + 4 ,2+z2 ~ 4 i )  

- 4 1i " ( A 2 + 4 I2 + z 2 - “y1)  + 4 ln( ^ 4 2+ 4 .2 + z 2 - 4 1)

The next set of terms is the algebraic terms, P. When terms corresponding to the first and 

second four integrals in equation G.91 are combined, the following cancellation takes place

4 -  ( U t 2 -  2y42 -  2Z2) +  (y42 - 2 z 4 2 - 2 z 2) ) V ^ 2 +  y42 +  z2
° ,------------------- (G.96)

=  - - g - ( x 42 + j 42 +  4 z 2) \ ^ 42 +  y42 +  z 2

and when the appropriate term from the final four integrals is added in, another cancellation 

takes place

-  (j^2+ y42 + 4z2)V x42 + y42 + z2 + z2V ^ T 7 7 7

= -'jr(X t2 + y42-2 z2)yJxi2 + y42 + z2

To make the notation slightly more compact, introduce the function q

(G.97)

riOt.y.z) =  - ^ ( x2 + 4 - 2 z2) V z2 + y2 +  z2 (G.98)
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With the use of the three equations G.96, G.97 and G.98, the algebraic terms P can be 
written as

p = -  TiO ,̂ û , z) + Uyj z) + z) -  q ( d^ z)

+ ^ l^ i’ Uy? z) — !l(^» Uy2l Z) ~ dyf Z) + ^ 2’ z)
+  1̂ ,  z) -  T 1 ( z) -  < ^ , z) +  q ( ^ ,  d ^ ,  z)

z) 4" z) z) n(4tj» ^ 1' z)

The final terms to be incorporated from equation G.53 are

■ j ( - - W  + ^ 4 2 + W  “  %y32) (G.100)

for each of the first four integrals in equation G.91, and the same for the second four 
integrals with x and y reversed. When the actual values for x, and jq are applied for each 
set of four integrals, these terms all cancel out

The final terms to be incorporated from equation G.60 are the arcsin terms T, corresponding 
to the final four integrals in equation G.91. To make the notation more compact, introduce 
the function X

X(x,y,z) = xyz arcsin (  , *  1 (G.101)

^  V  + j V

In terms of this function, the arcsin terms T are

+ z2) ^

T Uyg z) + X(dj ,̂ Uyj, z) + dyg z) XidjQ dyj, z)
>̂2*z) z) dŷ t z) + X(d^t dyg z)

uy\tz  ̂ ŷj» z) + z)
Mŷ, z) + m̂ , z) + Â û , z) 7ddx̂> dŷ i z)

(G.102)

Equations G.87 - G.102 can now be combined to give the mutual inductance M as
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R A D IO  F R E Q U E N C Y  S IM U L A T IO N  O F A  C O M P L E X  
P R IN T E D  C IR C U IT  B O A R D  L A Y O U T  B Y  T H E  Q U A S I

ST A T IC  B O U N D A R Y  E L E M E N T  M E T H O D
R. F. MILSOM AND K. J. SCOTT 

Philips Research Laboratories, Redhill, Surrey RH1 5HA, U.K.

SUMMARY
A method for analysing the electrical effect of a set of conducting strips is presented. This method is applied 
to modelling the electrical behaviour of conducting tracks on a printed circuit board (PCB). Unlike most 
other published work, this analysis is not restricted to the case where the tracks are parallel. The problem 
is formulated in terms of an admittance matrix. A  boundary element method incorporating image theory is 
used to produce a system of linear equations. These are solved to yield the required admittance matrix, 
which can then be incorporated into a standard circuit analysis package. Comparisons between measured 
and predicted circuit performance for a complex layout show close agreement up to at least 1 GHz.

INTRODUCTION

The electrical behaviour of a radio frequency (RF) circuit implemented on a printed circuit board 
(PCB) is typically quite different from that expected from the schematic circuit. One reason for 
this discrepancy is that the circuit does not take account of the printed substrate, which is itself a 
multi-terminal component with very complex transfer characteristics rather than the set of ideal, 
lossless, uncoupled connecting strips assumed at the initial design stage. The ideal model may be 
a reasonable approximation at audio frequency (AF), but is a poor approximation at RF. The 
outline of an admittance matrix model based on electromagnetic field analysis is presented here. 
This model is applicable to a randomly orientated set of conducting strips printed on one or both 
surfaces of a dielectric substrate, and is very accurate up to 1 GHz and reasonably accurate up to 
10 GHz. The 3D geometries under consideration are too complex for analytical solutions to 
Maxwell’s equations, so the field problem must be solved by numerical analysis. Such computer 
simulations are usually very CPU-intensive, even for much simpler boundary conditions. The 
solution described here uses the boundary element method1 (BEM), which requires a very much 
smaller number of linear equations than the more common finite difference method2 (FDM) i)r 
finite element method3 (FEM) as applied to the same problem. The number of equations is further 
reduced by using image theory and building in a number of assumptions about the expected form 
of the current density and potential distributions. Some of these assumptions follow from a quasi
static approximation to Maxwell’s equations.

PROBLEM  DESCRIPTION

A PCB (without its components soldered on) consists of alternating layers of dielectric sheet and 
conductor pattern, typical features of which are shown in Figure 1. There is usually a conducting 
plane, either coincident with or parallel to the PCB, which can be regarded as ground. The 
metallization patterns are predominantly tracks and solder pads, the latter forming the points at 
which the external components (either surface mounted devices — SMDs — or wire-ended devices) 
are soldered to the board. O ther features such as vias and partial ground planes are not considered 
here. Published methods of analysis of printed tracks are applicable only to parallel tracks,4- 5 
whereas the method described here applies to tracks of arbitrary orientation relative to each other.

0894-3370/88/030165-06$05.00 
©  1988 by John Wiley & Sons, Ltd.

R eceived 26 A p ril 1988 
Revised 18 A u g u st 1988
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C irc u la r  p a d SMD p a d
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Via

M e ta llisa tio n
la y e rs

D ie lec tr ic  la y e rs

G ro u n d  p la n e

Figure 1. Features of a PCB

If there are N  solder pads and a ground plane, the board is a passive N-port device. In this 
analysis the ground plane is assumed to be parallel to, but not necessarily coincident with, a 
surface of the PCB. The influence of incident radiation is ignored. Since the materials are, to a 
good approximation, linear, this device may be represented electrically by an N x N  complex 
admittance matrix [Y], When the external circuit is operating, a set of voltages Vt (i = 1,2,. . . ,N) 
relative to ground will appear at the pads, and currents /, (/ = 1,2,. . ,,N) will flow into the tracks 
connected to these pads. The solution for the current in the tracks implicitly gives the current 
distribution in the ground plane by the appropriate choice of image series in the G reen’s function, 
as described below. The column vectors of voltages [V] and currents [I] are related by

[I] = [Y][V] (1)

Note that [Y] is a unique electrical description of the PCB which depends only on its geometry, 
materials and frequency, but is independent of the external components. The solution for [Y] is 
used, along with external component values, in a standard analogue circuit simulator to determine 
the behaviour of the circuit, including layout effects.

CHOICE OF SOLUTION M ETHOD

Inspection of equation (1) shows that the yth column of [Y] is given by the currents at all N  pads 
when there is unit alternating voltage between the yth pad and ground, with all other pads shorted 
to ground. The currents are found by solving Maxwell’s equations subject to these applied voltages 
and the boundary conditions imposed by the geometry. The net currents are extracted from the 
field solution.

Standard methods of numerical analysis such as FEM and FDM discretize the field problem by 
transforming the continuum partial differential equations into a finite set of linear equations, each 
equation typically corresponding to one node of a mesh in 3D space. Because of the rapid spatial 
variation of the field in the problem of interest, hundreds of millions of such equations would be 
required. Although the left-hand side matrix is sparse, such solution methods based on differential 
formulations are not really feasible. An integral formulation is therefore used. This leads to the 
numerical solution known as the BEM. To reduce the number of equations for a large complex 
layout to a manageable level, some special assumptions are still required. The essentials of the 
method are described here.
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INTEGRAL EQUATION FORM ULATION

Maxwell’s equations6 are first expressed in terms of scalar potential <J> and vector potential A:

d2<l> = p 
dt2 €

T7O I ° T  H //%\V“<J> ~ e = -  :  (2)

d2A
V2A ~ e |x = -  |xj (3)

where e and p. are the permittivity and permeability, p and J  are charge and current density, and 
t is time.

The time-dependent terms in equations (2) and (3) are now neglected. This amounts to ignoring 
radiation from the board, which has little effect on the couplings in most PCBs. The solutions of 
equations (2) and (3) for <|> and A can now be written as

J jG * ( r |r ') p ( r ') d V  (4)

A(r) = JJj C A(r lr ') J(r')d3r' (5)

where the G reen’s functions G$ and GA are respectively the scaliar and vector potentials at position 
r due to a point charge and point current at position r \  These are considered further below. A
harmonic time dependence of angular frequency w is now assumed. The current continuity
condition, which relates charge and current, can be written as

V J  = -  jwp (6)

The electric field E is now given by

E = — V <j> — jcaA (7)

Equations (6) and (7) couple together the static potentials, and result in the quasi-static approxi
mation. Substituting equations (4)—(6) into equation (7) gives the integral representation of the 
induced electric field E,(r) as

E,(r) = JJJd GE(rir ')J<r ') d V .

where the integral is over the domain of the conductors Dc, and the Green’s function GE is given
by

GE(r|r') = -  j[wGA(r|r') + -  VG^(r|r')V.] (9)
to

There is also an applied field Ea(r) due to the external power source. The total field Et(r) is given 
by

Et(r) = Ej(r) + Ea(r) (10)

This field and the current density field must satisfy the continuum equivalent of Ohm’s law in the 
conductors. Therefore

E,(r) = ^  (11)

where cj(r) is the conductivity at r. Substituting equations (9) and (10) into equation (11) and
rearranging gives

C E ( r | r ' ) J < r ) d V  =  E a ( r )  ( 1 2 )

in the domain of the conductors.
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Equation (12) constitutes the electric field integral equation7 (EFIE) which contains only one 
unknown variable, the current density J(r). The EFIE is used in the BEM to obtain the solution 
for this current. As with other numerical methods, the continuum equations are transformed into 
a set of linear equations. However, because the current is non-zero over only a small finite volume, 
the total number of these equations is relatively small.

First, J (r) is expanded over a set of known real vector basis functions j*(r) defined in the 
conductors. Thus,

K

J(r) = 2  CJ*(r) (13)
* = 1

where Ck are unknown complex constants. A set of weighting functions W„(r) (n = 1,2,. . . ,K') 
are also introduced to multiply equation (12). Thus, substituting equation (13) into equation (12), 
multiplying by the weights and integrating over Dc gives

£ C*JJ L w"(r)-iĴ ) ~ I I L GE(r,r')Mr')d3r' d3r  (14)

W„(r)-Ea(r)d3r, n = 1,2,. . . ,K
Dc

This equation is used to derive two sets of linear equations. The first set enforces the boundary 
condition of zero longitudinal electric field on the tracks. Each W„(r) in this set is the product of 
a unit vector in the local axial direction of the track with a Dirac delta function, and the set of 
weighting functions is defined on a grid within the tracks. Since there is no incident radiation, 
Ea(r) is zero for this set. For the second set, equation (14) is integrated along a line normal to 
the PCB surface at each port, with the W„(r) directed parallel to this line. Here the integral of 
Ea(r) is equal to the applied voltage at the port. These linear equations are solved for the Ck. 
Then the net current at each pad, and hence the entries in the admittance matrix [Y], are found 
by analytical integration of equation (13).

QUASI-STATIC BOUNDARY ELEM ENT M ETHOD

In the BEM the pattern of conductors is divided into elementary domains and a separate current 
density basis function set defined in each element. This set is also constrained to satisfy the 
continuity equation (6) at boundaries between elements. Strictly, the domains should be on the 
conductor surfaces (hence boundary elements). However, since conductors are thin, use of volume 
elements together with the concept of surface impedance8 reduces the equations to boundary 
element form.

Figure 2 shows the subdivision of the PCB layout for a mobile radio antenna filter. Rectangular 
elements are used to approximate all the conductors, which in this example are on both surfaces. 
There is also a ground plane, the package surface, parallel to the PCB. The need for subdividing 
this ground plane into elements, which would very greatly increase the number of elements, is

Figure 2. Layout of mobile radio antenna filter: tracks on back surface shown dotted
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Figure 3. Infinite image series for PCB with coplanar ground

avoided by including its effect in the G reen’s function GE. In fact both the ground plane and the 
discontinuities in e between the PCB and free space are taken into account by using image theory, 
as described by Chow,9 in the solution for G which is the scalar potential due to a point charge 
on one PCB surface. There are an infinite number of images, the first four of which are shown 
schematically in Figure 3 for the simpler case where the ground plane is on one of the PCB 
surfaces. The actual point charge Q is shown on the left, and the equivalent series of image 
charges, valid for the potential within the PCB or on its surface, is shown on the right; e0 is the 
permittivity of free space, and er (=  e/e0) is the relative permittivity of the PCB. The more complex 
case of a remote ground gives a doubly infinite set, but this can normally be truncated after about 
20 terms. The series for G A has only two terms because there is no discontinuity in |x.

A quasi-static approximation can be made when the ground plane is much closer than a 
wavelength at the highest relevant frequency. This approximation has a very significant bearing 
on computational efficiency because the integrals in equations (14) are then frequency independent 
and real valued.

As well as the reduction in the required number of linear equations through this use of image 
theory, an additional reduction is achieved by building knowledge of the expected behaviour into 
the current density expansion per element, as referred to in equation (13). In local co-ordinates, 
this expansion is of the form

i* = V ( f f - y 2) 2  2  . Jy = iz = 0 (15)

where jc, y and z are the local longitudinal, transverse, and thickness directions, and b is the half
width of the element. The current is assumed to be in the x  direction since it has been shown that 
the other components of current are negligible at the frequencies of interest.10 The edge singularity 
factor removes the need for multiple elements across the width of a track. In addition, the 
coefficients Ck are constrained to enforce the continuity of both j x and djx/dx at junctions between 
elements.

COMPARISON WITH EXPERIMENT

The BEM solution has been built into a suite of computer programs and used to simulate a variety 
of circuits. These simulations have been compared with measurement and also with circuit analysis, 
ignoring layout effects, for example using SPICE.

One such circuit is the filter whose layout is shown in Figure 2, and which contains three printed 
spiral inductors. The filter response predicted with a standard circuit simulator using the design 
values of printed and discrete components, but ignoring parasitic effects, is shown dotted in Figure
4. When the admittance matrix of the PCB, which includes the inductors, is included in the analysis 
the predicted response is that shown by the continuous line. This shows a substantial deviation 
from the original design. The response measured on a network analyser is shown by the broken 
line. Clearly, there is a high level of agreement between this measurement and the new simulation

Q

ground plane

a  =
£r~ 1

£r+ l
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Figure 4. Mobile radio antenna filter: measured and simulated responses

method described here. The number of linear equations used in the BEM was about 800, and the 
CPU time was about 1 h on an IBM 4381 computer. This computing time is dominated by the 
integrations, rather than the solution of the linear equations. For a number of other geometries 
similar or even better levels of agreement between simulation and measurement have been 
obtained, in some cases up to 5 GHz, with agreement to within a few dB up to 10 GHz.

CONCLUSIONS

A method of circuit analysis which takes PCB layout effects into account has been developed. 
This method, based on an integral equation formulation of Maxwell’s equations, requires the 
solution of many hundreds or even thousands of linear equations. This compares with the hundreds 
of millions of equations that would be needed using FEM or FDM for the same problem. High 
accuracy has been achieved, despite a number of assumptions made in order to reduce the amount 
of computation. Circuit designers can now be confident that layout effects are known to good 
accuracy before PCBs are made and tested. Therefore, with this model, many time-consuming 
and costly design iterations in hardware will be avoided.
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S u m m a ry

A B o u n d a ry  E lem ent M ethod  (BEM) so lu tion  for 
th e  3D e le c t ro m a g n e t ic  f ie lds  in a  v a r ie ty  of p r in ted  

circuit b o a rd  s t ru c tu r e s  is p r e s e n te d .  T h ese  
s t ru c tu r e s  inc lu d e  m ulti- layer b o a rd s ,  with o r  
w ithout a para l le l  co n d u c t in g  p lan e ,  w hich  n e e d  not 
b e  co in c id en t  with a  su r fa ce  of th e  PCB. Any 
n u m b e r  of m e ta l l isa t io n  la y e r s  with different 
con du c tiv i t ie s  a r e  a llow ed , an d  t h e s e  m ay  con ta in  

a  la rg e  n u m b e r  of no n-para lle l  t r a ck s ,  r e c t a n g u la r  
o r  c i r cu la r  s o l d e r  p a d s ,  a n d  p r in te d  c o m p o n e n t s  
su ch  a s  sp ira l  in d u c to rs  o r  in te rd ig ita l  c a p a c i to r s  
G ood  a g r e e m e n t  b e tw een  th e  m o d e l  an d  
m e a s u r e m e n t  is d e m o n s t r a te d .

In troduction

CAD to o ls  a r e  co m m on ly  u s e d  to c re a t e  the  

iayout of a  p r in ted  circuit b o a rd ,  but to d a te  tools  
fo r th e  e lec tr ica l  s im ula tion  of a  PCB a r e  very  

limited. The m a jo r  r e a s o n  for th is  is th e  n e e d  for 
an  efficient n u m er ica l  so lu tion  to M axw ell 's  

e q u a t io n s  w h e re  th e  3D fie lds a n d  b o u n d a ry  

co n d it ion s  a r e  v e ry  com plex .  H e re  w e  p re s e n t  a 

nu m erica l  m o d e l  which allow s th e  s im ula t ion  of a 

varie ty  of PCB s t ru c tu re s .  Only in te rna l  paras i t ic  
effects inc lud ing  e le c t ro m a g n e t ic  coup ling  a r e  
m o de l led .  The effect of ex te rn a l  rad ia t io n  is not 

c o n s id e re d .

A p rin ted  circuit b o a rd  ( w ithout its c o m p o n e n ts  

so ld e re d  on ) c o m p r is e s  a l te rn a t in g  lay e rs  of 

d ie lec tr ic  s h e e t  a n d  co n d u c to r  p a t te rn .  T here  is 

usual ly  a  co n d u c t in g  p lane , e i th e r  co inc id en t  with 
o r  paralle l to it. The m eta ll isa tion  p a t t e rn s  a re  

p red o m in an t ly  t r ack s  an d  re c ta n g u la r  o r  circular 
p a d s ,  th e  la t te r  forming th e  po in ts  at which the  

ex te rna l  c o m p o n e n t s  a r e  s o ld e re d  to th e  b o a rd

M any p u b l i sh e d  m e th o d s  of a n a ly s is  of p r in ted  

t r a c k s  a r e  a p p l ic ab le  only to para l le l  t r a c k s  [1.2J. 
w h e r e a s  th e  m e th o d  d e s c r ib e d  h e re  a p p l ie s  to a  set 

of arb i tra r i ly  o r i e n ta te d  t racks .  An ou tl ine  of the 
th e o ry  is p r e s e n te d ,  with sp ec ia l  a t ten t ion  g iven  to 

a n u m er ica l  stabil ity  p ro b lem  at the  f r e q u e n c ie s  of 
m os t  in te res t .  C o m p a r i s o n s  with m e a s u r e m e n t s  
a r e  a lso  d e sc r ib e d .

Solution

The re q u i re m e n t  is for a n  e lec tr ica l  m o d e l  of the  
PCB, w hich is co m p a t ib le  with SPICE-like circuit 

s im u la to rs .  Su ch  a  m odel  m u s t  th e r e fo re  ult im ately 

b e  d e r iv e d  in te r m s  of th e  circuit v a r iab le s ,  vo l tage  

a n d  cu rre n t .  H o w ever  it is n e c e s s a r y  to first ob ta in  
a  so lu tion  to a  field p ro b lem . The so lu tion  

d e s c r ib e d  h e re  is b a s e d  on th e  BEM [3] ( B o u n d a ry  
Elem ent M ethod  ), which u s e s  a n  in tegral 
fo rm ula t ion  of th e  field eq u a t io n s .  M axw ell 's  

e q u a t io n s  a r e  first e x p r e s s e d  in te rm s  of sca la r  

po tentia l (p a n d  v e c to r  po ten t ia l  A. Thus, at 
posi t ion  r,

2 d 2<p{ r)
V 0 ( r )  -  e(r) fj{r) ------ —

dt

2 d 2A(r)
V A(r) -  e(r)/y(r)

P(r)
( 1)

dt
M r ) J ( r )  (2)

w h e re  € a n d  j j  a r e  permittivity a n d  p erm eab il i ty ,  p  

a n d  J a r e  c h a rg e  a n d  cu r ren t  d en s i ty  a n d  t is time 
At f r e q u e n c ie s  of g re a te s t  in te re s t  e le c t ro m a g n e t ic  

w av e len g th  is of th e  o r d e r  of te n s  of c e n t im e t re s ,  

w h e r e a s  spa t ia l  v a r ia t io ns  of f ie lds d u e  to 
d iscon tin u i t ie s  a t  c o n d u c to r  e d g e s  o c c u r  o ve r  

d is ta n c e s  of a  few m ill im etres .  Therefore ,  to a  g o o d  

ap p ro x im a t ion ,  th e  s e c o n d  te rm  in e a c h  of 
e q u a t io n s  1 an d  2 m ay  be  ig n o re d



-255 -

-  6 4  -

G re e n 's  fu nc t io n s
Solving e q u a t io n s  1 a n d  2 fo r  <p a n d  A g ives  th e  

in tegra l  fo rm ula t ion ,

<P( r) = J  J  j*G0(r|r')p(r')cfV  (3)

A(f) =  I I  | GA ( H r ' ) J ( r ' ) d V  (4)

w h e re  th e  G r e e n ' s  func t ions  G0 a n d  Gfi a r e
re sp ec t ive ly  th e  s c a l a r  a n d  v e c to r  po ten t ia l s  d u e  to 
a po in t  c h a r g e  a n d  point cu r re n t  in th e  
configu ra t ion  a p p r o p r ia t e  to th e  vert ica l  s t ru c tu re  
of th e  PCB u n d e r  c o n s id e ra t io n .

F igure  1 s h o w s  th e  co n f ig u ra t ion  of in te re s t  
G ^ (r | r ' )  is th e  s c a l a r  po ten t ia l  a t  r =  (x. y . z ) d u e  to 
unit poin t c h a r g e  a t  r' =  (x ' ,y ' ,z ') , w h e re  bo th  
po in ts  a r e  within o r  on  th e  d ie lec tr ic  sh e e t ,  which 
h a s  th ic k n e s s  c. An idea l c o n d u c t in g  p la n e  is 
para l le l  to , a n d  at a  d i s t a n c e  d from  th e  d ie lec tr ic .  
If h a rm o n ic  t im e  d e p e n d e n c e  of a n g u la r  f r eq u e n c y  
uj is a s s u m e d ,  th e n  from  th e  M ethod  of Im a g e s  [4] 
it c an  be  sh o w n  that ,

OO 00

G*(r ir/) = Yj Y k™ x
m = 1 n = 1

e —jwt (5)

V (x -x ')2 +  (y - y ' f  +  (hm n ± z ± z '?

w h e re  Kmn a r e  c o n s t a n t s  w hich  d e p e n d  only on th e  
permittivity  of f r e e  s p a c e  e0 a n d  th e  co m plex  
re la tive  permittivity  er of th e  PCB m ate r ia l ,  a n d  
a r e  c o n s t a n ts  w h ich  d e p e n d  only on  c a n d  d. The 
s ig n s  of z a n d  z '  d e p e n d  on  m  a n d  n.

S in ce  th e r e  is no  d isco n tinu ity  in an y  c o m p o n e n t  
of th e  m a g n e t ic  field a t  th e  in te r fa ce s  b e tw e e n  free 
s p a c e  a n d  d ie lec tr ic ,  only  a  s in g le  im ag e  
r e p r e s e n t in g  th e  effect of th e  c o n d u c t in g  p lan e  is 
r e q u i re d  for th e  m a g n e t ic  v e c to r  po ten t ia l  G r e e n ' s  
function. Thus,

0*(rlO = £ 1
r - r '

1

V ( x - x ' ) 2 +  ( y - y ' f  +  (z +  z ' ) 2

( 6 )—jiui

w h e re  /v0 is th e  pe rm e ab i l i ty  of f r e e  s p a c e .  The 
d e r iv a t ion  of e q u a t io n s  5 a n d  6 is a  g e n e ra l is a t io n  

of a  m e th o d  r e p o r te d  e a r l ie r  [5]. The d o u b le  

su m m a t io n  in e q u a t io n  5 c a n  no rm ally  b e  t r u n c a te d  
to a b o u t  5 x 5  t e r m s  w ithout s ignificant lo s s  of 
a c cu ra c y .

free space
Z / k y

»r =  ( x,y,z )

didcctnc r y* z* )

free space

„ 7 7 / 7 7 7 7 7 7 7 7 7 7 /7 7
conductor

t
c
I
fd

Fig.1: PCB conf igura t ion  sh o w in g  g e n e r a l  s o u r c e  
a n d  o b je c t  po in t loca t io n s  r' a n d  r

The o m is s io n  of th e  t im e - d e p e n d e n t  t e r m s  in 
e q u a t io n s  1 a n d  2 is eq u iv a le n t  to ignor ing  r e t a r d e d  
po ten t ia ls ,  w hich  l e a d s  to th e  a b o v e  o m is s io n  of 
spa t ia l  v a r ia t ion  of th e  p h a s e  te rm  in e q u a t io n s  5 
a n d  6. This is  a  b e t t e r  ap p ro x im a t io n  if all 
c o n d u c to r s  a r e  c lo s e  to th e  co n d u c t in g  p la n e .  If 
(c +  d) is l e s s  th a n  a  ten th  of a  w a v e le n g th  a t  th e  

h ig h es t  f r e q u e n c y  of in te re s t  ( s ay  2 GHz for m ob ile  
co m m u n ic a t io n s  e q u ip m e n t  ), th e n  t h e r e  is rap id  
spa t ia l  a t te n u a t io n  of G0 a n d  GA s u c h  th a t  the  
m a g n i tu d e  is v e ry  sm all a t  d i s t a n c e s  | r  — r ' |  for 
w hich th e  p h a s e  of th e  r e t a r d e d  po ten t ia l  w ou ld  be 
s ignificantly  different from z e ro .  The e r r o r  in the  
so lu tion  d u e  to th is  a p p ro x im a t io n  is usua l ly  
c o m p a r a b le  to  th e  e r r o r  re su l t in g  from  t ru n ca t io n  
of th e  s e r i e s  in e q u a t io n  5.

D esp ite  th is  q u a s i - s ta t ic  a p p ro x im a t io n  it is still 
n e c e s s a r y  to  c o n s i d e r  cou p lin g  b e tw e e n  the  
e lec tr ic  a n d  m a g n e t ic  fie lds. E q u a t io n s  3 a n d  4 a r e  
c o u p le d  firstly by th e  c u r r e n t  con tinu ity  eq u a t io n ,  
a n d  s e c o n d ly  by th e  re la t io n sh ip  b e tw e e n  e lec tr ic  
field E a n d  th e  two p o ten t ia ls .  Thus.

V . J  =  -
dp_
dt

E =  —V <p —
dt

(7)

( 8 )

A d m it ta n ce  m atrix
The e lec tr ica l  m o d e l  of th e  PCB d e s c r ib e d  h e re  

is a  f r e q u e n c y -d e p e n d e n t  o r d e r  N a d m i t t a n c e  
matrix  CY] g iven  by,

(9)

w h e re  [ • ]  a n d  [ V ]  a r e  th e  co lu m n  v e c to r s  of 
c u r r e n ts  a n d  v o l t a g e s  a t  th e  N s o l d e r  p a d s .  [Y  ] is 
in d e p e n d e n t  of th e  d is c re te  c o m p o n e n t s  o r  ICs 
s o ld e r e d  to th e  p a d s .
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T h e s e  v o l ta g e s  a n d  c u r r e n t s  a r e  d e f in ed  by,

'2k
-d

w h e r e  (Xk,Yk Zk) is th e  c e n t r e  of th e  k,h p a d ,  a n d

%  f \(x*,ytz)dzJ A ( 1 0 )

h = SJJ J  d  S (11 )

w h e re  th e  s u m m a t io n  is tak e n  o v e r  all t r a ck s  
c o n n e c t e d  to th e  k,h p ad ,  e a c h  s u r fa c e  in tegra l  is 
ta k e n  o v e r  th e  c ro s s - s e c t io n  of th e  t rack  a t  its 
junc t ion  with th e  p a d .  S is d i r e c te d  para l le l  to th e  
t r a ck  e d g e s  a n d  aw ay  from  th e  p ad .  If th e r e  is no 
idea l co n d u c t in g  p la n e  d  is infinite.

S in c e  all c o n d u c to r s  of th e  PCB a r e  thin, J is 
a s s u m e d  para l le l to th e  x — y p lan e ,  so  from 
eq u a t io n  2, th e  z -c o m p o n e n t  of A is ze ro .  Thus, 
from e q u a t io n s  8 a n d  10,

V* =  <P(*k'Yk.Z,f ) ( 12)

at all f r e q u e n c ie s .  P a d s  a r e  e lec tr ica lly  very  shor t ,  
so  v o l ta g e  is a s s u m e d  c o n s ta n t  on  e a c h  pad .

Q u as i- s ta t ic  BEM
The so lu tion  for J  is o b ta in e d  by th e  BEM , with 

an  im p ortan t  q u as i -s ta t ic  m odifica tion . It is known
[6] tha t  su ch  in tegra l  m e th o d s  a r e  nu m erica l ly  
u n s ta b le  at f r e q u e n c ie s  fo r w hich  typical fea tu re  
s ize  is e lec trically  sm all .  This is b e c a u s e  only a 
sm all c o m p o n e n t  of J  co n t r ib u te s  to V . J , th e  
re m a in in g  co n tr ibu t ion  be ing  a  so len o id a l  field. 
T here fo re ,  a  small e r r o r  in J  m ay  g ive  a  la rg e  e r r o r  
in V . J  a n d  h e n c e  in p .  This n u m e r ica l  p ro b lem  is 
d ea l t  with h e re  a s  follows.

Equation  9 s h o w s  tha t  th e  m ,h co lu m n  of [ Y ]  is 
eq u a l  to Ql] , a s  found  from eq u a t io n  11, w h e re  th e  
so lu tion  for J h a s  b e e n  found  for a p p l ie d  vo lta g e s .

Vn =  0 (n  =  1..../77 — 1, m +  1..../V )
V =  1 ' 'v m 1

The q u as i -s ta t ic  so lu tion  p r o c e e d s  by first f inding a 

so lu tion  for the  c h a rg e  d en s i ty  p.  This is o b ta in ed  

by m ak ing  an  e s t im a te  <t> for th e  s c a l a r  poten t ia l  on 

th e  t r a c k s  from the  known po ten t ia ls  ( 1 a n d  0 ) on  
the  p a d s ,  a n d  th e  e x p e c te d  slow spat ia l  varia tion  

of <p on  co n d u c to r s .  On tracks ,  a  p iece w ise  l inear  

fit to (p a long  the  leng th  a n d  c o n s ta n t  (p in the  

c ro s s -se c t io n  is a go o d  a p p ro x im a t io n  if p a d s  a r e  
s e p a r a te d  by track  se c t io n s  no m o re  th a n  a  tenth  
of a w ave leng th  long at th e  h ig h e s t  f r eq u en cy  of 

in te res t .  If long er  t r a c k s  o r  jun c t io ns  a r e  p re s e n t .

th e n  t h e s e  a r e  s u b d iv id e d  by th e  c re a t io n  of N' 
in f initesimal p s e u d o - p a d s ,  w hich  a r e  t r e a te d  in th e  

s a m e  w ay  a s  p a d s  e x c e p t  th a t  ex te rn a l  c o m p o n e n t s  
a r e  not c o n n e c te d .  A la r g e r  a d m i t t a n c e  matrix  of 

o r d e r  N +  N' is th e n  o b ta in e d ,  bu t th is  is 
c o m p r e s s e d  do w n  to th e  r e q u i r e d  o r d e r  N by 

ap p ly in g  th e  c u r r e n t  con tinu ity  con d it ion  a t  th e  

p s e u d o - p a d s  to e l im in a te  th e  a p p r o p r ia t e  N' row s 
a n d  co lu m n s .

The c u r r e n t  d e n s i ty  is now  co n v en ien tly  

s e p a r a t e d  into s o le n o id a l  a n d  d iv e rg e n t  
c o n tr ib u t io n s ,  J s a n d  J D re spec t iv e ly .  Both 

co n tr ib u t io n s  a r e  a p p ro x im a te d  by e x p a n d in g  over- 
finite s e t s  of v e c to r  b a s i s  func t ions .  Thus.

o

JsM = X V i M
/= 1 
R

JD (»•) = ^S /f l / ( r)

(14)

/=l

w h e re  th e  fu nc t ion s  f, a n d  g, h a v e  ze ro  a n d  

n on -ze ro  d iv e r g e n c e  re sp ec t iv e ly ,  a n d  A, a n d  8, a r e  
unknow n coeff ic ients .

F rom  e q u a t io n s  7 a n d  14, th e  so lu t io n  for c h a rg e  
den s i ty  at a n g u la r  f r e q u e n c y  o j  is g iven  by.

n

<"= -  i r £ s ' v ' 9' (r)
i= 1

(15)

T herefore ,  su bs t i tu t in g  e q u a t io n  15 a n d  th e  

e s t im a te  (J) into eq u a t io n  3 in th e  d o m a in  of the  
c o n d u c to r s  Dc,

\ f f Ĝ r * r#) V.g;(r')cfV = <p (16)
J™  /=1 J  J  Dc
The coeff ic ients  8, a r e  now  found  by th e  M ethod  of 
W eigh ted  R e s id u a l s  [7], Thus,

/= 1  u c

J J  £  G0 (r| r')V.g/(r')c/V(/3r (17)

=  <t> f i t ' (r) d3r

w h ere  wt ( j  = 1 , 2 . .R)  is a  defined  se t  of R 
w eigh ting  functions. After ev a lua t io n  of the  

in teg ra ls ,  th e  R lin ea r  e q u a t io n s  17 a r e  so lv ed  for 

B,
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The rem a in in g  u n k n o w n s  Ai a r e  th e n  found a s  

follows. In th e  d o m a in  Dc,

E(r) = J(r)
a(r)

;i8)

w h e re  a(r) is th e  conductiv ity  at r. S ubst i tu ting  

eq u a t io n  4 a n d  th e  e s t im a te  0  into eq u a t io n  8 a n d  

th e n  into e q u a t io n  18 g ives ,  in Dc,

J(r)
a(r) GA(r| r') J(r') cfV =  0 (19)

C u rren t  d e n s i ty  J is now  s e p a r a t e d  into th e  
e x p a n s io n s  in eq u a t io n  14, a n d  th e s e  a r e  
su b s t i tu ted  into e q u a t io n  19 w hich is r e a r r a n g e d  

with known q u an t i t ie s  on  th e  right h a n d  s id e .  Thus.

/= 1 
R

UP 
’ <7(r)

g*(0
<7(r)

- j w j  |  J  G A( r | r ' ) f , ( r ' )  d V

+  juiH I  G A ( H r ' ) g k( r ' ) d V

( 20 ) 

+  V <]>

The M ethod  of W eigh ted  R e s id u a l s  is th e n  ap p lied  
to e q u a t io n  20 to find th e  A,.

E lem ents ,  b a s i s  func t ions  a n d  w eigh ting  funct ions 
In th e  g e n e ra l  BEM d o m a in  b o u n d a r i e s  a r e  

d iv id ed  into e le m e n ta ry  su b - r e g io n s  ( e le m e n ts  ). 
an d  b a s i s  function  s e t s  a r e  de f ined  in e a c h  e lem e n t  

with a p p ro p r ia t e  field con tinuity  con d it io n s  
e n fo rced  a t  e le m e n t  junc t ions .  H ere  th e  c o n d u c to r s  
of th e  PCB a r e  su b d iv id e d  into th r e e  ty p e s  of 

e le m e n t  c h a ra c t e r i s e d  by g eo m e tr ic a l  s h a p e  an d  
b a s i s  function  se t  a s  follows:

1. R e c ta n g u la r  t rack  e le m e n t  - c u r r e n t  d en s i ty  

v e c to r  para l le l  to pr inc ipal track  e d g e s  with 

am p l i tu d e  d is tr ibu t ion  g iven  by b i-varia te  

po lynom ia l in x — y p lan e ,  e d g e  s ingu la r i ty  fac to r  

[8] in th e  width, a n d  skin-effect fac to r  [9] in the  
th ick n ess .

2. R e c ta n g u la r  p a d  e le m e n t  - so len o id a l  cu r re n t  
a s s u m e d  z e ro ,  a n d  c h a r g e  d en s i ty  g iven  by 

b i-varia te  po lynom ia l  in x  — y p lan e  with e d g e  

s ingu la r i ty  factor.

3. C ircu la r  p a d  e le m e n t  - so len o id a l  cu r ren t  
a s s u m e d  ze ro ,  a n d  c h a rg e  d en s i ty  g iven  by 

h a rm o n ic  funct ion  of a n g le  in x — y p la n e  with e d g e  
s ingu la ri ty  factor.

The b a s i s  function s e t s  a r e  a ls o  c o n s t ra in e d  su ch  

that c u r r e n t  d e n s i ty  a n d  its first d e r iv a t iv e  a r e  

co n t in u o u s  b e tw e e n  track  e le m e n ts .  The u s e  of 
h igh o r d e r  p o ly n o m ia ls  r e d u c e s  th e  n u m b e r  of 

e le m e n ts  b e c a u s e  long  track  e le m e n ts  c a n  th e n  b e  
u s e d .  Strictly, all e le m e n ts  h a v e  finite th ic k n e s s  

H ow ever,  th e  v e ry  sm all  th ic k n e s s  of c o n d u c to r s  

c o m p a r e d  to  o th e r  d im e n s io n s  a llow s all in te g ra ls  

to b e  r e d u c e d  to su r fa c e  in te g ra ls  so  th e  so lu t ion  

h a s  th e  s a m e  form a s  th e  BEM. The u s e  of th e  e d g e  
s ing u la r i ty  fac to rs  e n s u r e s  tha t  th e  sp a t ia l  
con vo lu t ion  of b a s i s  func t ions  a n d  G r e e n ' s  

fun c t ion s  g iv es  s m o o th  a n d  slowly v a ry in g  
p o ten t ia l s  on  th e  c o n d u c to r s ,  a n d  th is  a l lo w s  the  

u s e  of s c a l a r  a n d  v e c to r  Dirac de l ta  function  

w e ig h ts  ( Point C o lloca tion  M ethod  [10])  to multiply 

e q u a t io n s  16 a n d  20 respec t ive ly .

C o m p a r i s o n  with m e a s u r e m e n t

The n u m er ica l  m o d e l  d e s c r ib e d  h a s  b e e n  built 
into a  su i te  of c o m p u te r  p ro g r a m s  linked to a  PCB 

layout CAD sy s te m  a n d  a  SPICE-like circuit 

a n a ly s is  p ac k ag e .  F igu re  2 sh o w s  a  layout 
d e s i g n e d  to te s t  th e  a c c u ra c y  of the  m e th o d  for 

n o n -p a ra l le l  t rack s ,  w hich  is th e  c a s e  not t r e a te d  
by a v a i la b le  PCB s im u la to rs .  Two n on -pa ra l le l  

t r a n s m is s io n  l ines  e a c h  co m p r is in g  a  p a i r  ol 
para l le l  t r a ck s  a r e  p r in ted  on o p p o s i te  fa c e s  of the  
PCB w hich  is m o u n te d  a b o v e  a  c o p p e r  g ro u n d  

p lane .  S -p a r a m e te r s  b e tw e e n  th e  two p o r t s  sh o w n  
w e re  m e a s u r e d  a n d  s im u la te d .  The u n u s e d  po r ts  
w e re  t e rm in a te d  with 50 O hm  ch ip  re s i s to r s .  F igure  

3 s h o w s  th e  level of a g r e e m e n t  for th e  m a g n i tu d e  
of ref lection  | S n | a n d  t r a n s m is s io n  | S ?I|. 
C o r r e s p o n d in g  a g r e e m e n t  w a s  o b ta in e d  for the 

p h a s e .

chip res is to r

so lder  tog bolt to 
ground plane

P ort 2 P ort  1

Fig.2: L ayout of non -p a ra l le l  t r a n s m is s io n  l ines  on  
d ifferent la y e r s
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Fig.3: M e a s u re d  a n d  s im u la te d  S - p a r a m e t e r s  of 

n on -pa ra l le l  t r a n s m is s io n  lines

F igure  4 s h o w s  th e  layou t fo r a m o re  prac t ica l  

app lica tion  of th e  a n a ly s is ,  n am e ly  a  P riv a te  Mobile 
R ad io  ( PMR ) a n t e n n a  filter. This PCB a lso  h a s  
c o n d u c to r s  on  bo th  faces .  T h e re  a r e  th r e e  

n o n - s ta n d a rd  sp ira l  in d u c to r s  a n d  a n u m b e r  of p ins  
which allow  th e  m o d u le  to be  p lu g g e d  into its 
socke t .  The la t te r  a r e  no t strictly p a r t  of th e  p r in ted  
c o n d u c to r  p a t te rn ,  but m ay  n e v e r th e le s s  be 
inc lu ded  in th e  s im u la t io n .  The p ins  u s e d  a r e  th o s e  
ind ica ted  for th e  t r a n s m i t t e r  o u tp u t  a n d  a n te n n a

Transmitter 
o/p  ...

•Rntenna

Transmitter o/p

Rntenna

Fig.5: A n ten n a  fi lter sc h e m a t ic  circuit
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c
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20

4-0

60
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-  Circuit analysis
-  Field analysis

80
o 200 400 600 800 1000

Fig.4: A n ten na  filter PCB Layout, with two lay e rs  
s u p e r im p o s e d

Frequency ( MHz )

Fig.6: M e a s u re d  a n d  s im u la te d  f r e q u e n c y  
r e s p o n s e s  of a n te n n a  filter

c o n n e c t io n s .  Filled c irc les  in d ica te  w h e re  th e  
c o n d u c to r s  a r e  c o n n e c te d  to d i s c r e te  c o m p o n e n t s  
o r  to o th e r  m o d u le s .  In th e  s im u la t ion  the  

co nd u c tin g  p lan e  is tak en  a s  th e  c lo s e s t  su r fa c e  of 

the  m etal p ack ag e .  Vias a r e  m o d e l le d  a s  small 

d i s c re te  ind u c to rs  b e tw e en  a p p ro p r ia t e  p a d s .

F igure  5 sh o w s  th e  sch e m a t ic  circuit fo r  this  
filter, an d  F igure  6 i l lu s tra tes  th e  r e s p o n s e s  
o b ta in ed  by m e a s u re m e n t ,  circuit a n a ly s is  of the  

s ch em a t ic  circuit , a n d  by field a n a ly s is  taking 

ac co u n t  of the  layout. The la t te r  c lea r ly  g iv e s  a 

m o re  a c c u ra te  r e p re se n ta t io n  of th e  p a s s b a n d  an d  

the  g e n e ra l  s to p b a n d  level.
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C o n c lu s io n s

A n ew  m e th o d  of a n a ly s i s  of a n  a n a lo g u e  circuit 

o n  a  PCB h a s  b e e n  d e s c r ib e d .  This is a  quas i -s ta t ic  
im p le m e n ta t io n  of th e  B o u n d a ry  Elem ent M ethod  

w hich e l im in a te s  th e  p ro b lem  of num er ica l  
instabili ty  in th e  f r e q u e n c y  r a n g e  a p p l ic ab le  to 
m o b i le  c o m m u n ic a t io n s .  C om plex  layou ts  

inc lud ing  n o n -p a ra l le l  t r a ck s  a n d  multi - layer 

b o a r d s  ca n  b e  s im u la ted .  It is well know n tha t th e  
n u m b e r  of l in e a r  e q u a t io n s  re q u i re d  for th e  BEM is 

m uch  fe w e r  th a n  s a y  fo r  th e  Finite E lem ent M ethod .  

H ow ever ,  th e  m e th o d  h e re  r e d u c e s  th e  n u m b e r  
fu r th e r  by u s in g  h ig h -o rd e r  b a s i s  func t ions  wilh 

sp ec ia l  funct ional form b a s e d  on  e x p e c te d  

b e h a v io u r  of th e  c u r r e n t  a n d  c h a rg e  d is tr ibu t ions ,  
a n d  by th e  u s e  of th e  M ethod  of Im a g e s  which 
e l im in a te s  th e  n e e d  for e le m e n ts  on  th e  ideal 
co n d u c t in g  p la n e  a n d  o n  th e  d ie lec tr ic / f ree  s p a c e  

in te r faces .  The q u as i - s ta t ic  ap p ro x im a t io n  h a s  the  
a d d i t io n a l  a d v a n ta g e  of e n s u r in g  th a t  all th e  
n u m er ica l  in teg ra ls  a r e  f r e q u e n c y - in d e p e n d e n t ,  
a n d  th is  g rea t ly  i n c r e a s e s  n u m er ica l  efficiency 
S im u la t io n s  h a v e  b e e n  c o m p a r e d  with 

m e a s u r e m e n t  a n d  g o o d  a g r e e m e n t  w as  o b ta in e d

A ck n o w le d g e m e n ts

The a u th o r s  w ould  like to a c k n o w le d g e  the  
co n tr ib u t io n  of Phil ips  ISA-UK CAD G ro u p  w ho 
d e s i g n e d  a n d  c o d e d  m u c h  of th e  sof tw are ,  a n d  the 

s u p p o r t  of P h il ips  R a d io  C o m m u n ic a t io n s  S y s te m s  

Ltd.
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Abstract
FACET, a CAE sy s te m  for RF an a lo g u e  simulation is 
d escr ibed .  L ay ou t-d ep end en t  effec ts  such  as  paras it ic  
e le c tro m ag n e tic  coupling a re  included. The m ethod  of 
ana lys is  p ro v id es  a c c u ra te  e lec trica l modelling of 
multi layer PCB s t ru c tu re s  with a la rge  n u m b er  of 
a rb i tra r i ly -orien ta ted  tracks  and p rin ted  co m ponen ts ,  
without e x c e s s iv e  d e m a n d s  on CPU and  m em ory .  This is 
a ch ieved  by building in know ledge of th e  frequenc ies  of 
in te res t  and the  exp ec ted  c h a rg e  and cu rren t 
distributions. FACET is linked au tom atica lly  to a layout 
CAD sy s te m  and  a circuit ana lys is  packag e .

Introduction
In m any  a r e a s  of e lec tron ics  th e re  is a n e ed  for h igher 
f requenc ies  than h a v e  b een  u se d  in the past . For 
exam ple  in mobile  com m unica t ion  s y s te m s  1 GHz is now 
com m on and freq u en c ie s  up to 3 GHz a r e  p robab le  in the 
next d e c a d e  '. In such sy s te m s  the layout of co m p o n e n ts  
and con nec t ions  in the  equ ip m en t  is of p r im e  im portance . 
At th e s e  f r equ enc ies  the  effects of e le c tro m agn e tic  
coupling in th e  in te rcon nec t io ns  can  ser iously  d e g ra d e  
perfo rm ance ,  and  lead  to m any  r e p e a t e d  a t tem p ts  at 
layout if not proper ly  unders tood .  FACET, Functional 
Analysis of Circuits by E lec trom agnetic  Theory, is a CAE 
pack age  for an a lo g u e  simulation taking account of PCB 
layout. In c o n tra s t  to o th e r  PCB s im ula to rs  FACET can  
model the  mutual coupling of a v e ry  la rg e  nu m b er  of 
conductors ,  e.g. 10,000 non-paralle l track sec t io ns  with 16 
Mbytes of main m em ory . This p a c k a g e  allows RF 
en g in e e rs  to o b s e r v e  lay ou t-d epen den t  e lec trom ag ne tic  
effects and m ak e  ap p rop r ia te  co rrec t io ns  to the  layout, 
v/ithout t im e-consum ing  ite ra t ions with h a rd w are  
Mask-making p ro c e e d s  only when FACET indica tes  
accep tab le  perfo rm ance .

Figure 1 show s how FACET in te g ra te s  with o ther  
CAE/CAD tools. The g eo m e try  of the conduc to r  p a t te rn s  
is e x trac ted  from MEDUSA which is a CAD sy s tem  vised
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Fig. 1 FACET environm ent

for layout. Additionally, the  u s e r  inputs the  sch em a tic  
circuit, the  physical p ro p e r t ie s  of the  c o n du c to rs  and 
insulating m ateria l  of the  PCB, th e  u pper  frequency  limit 
of the  simulation and  th e  req u ired  ou tpu t options. FACET 
then u s e s  th e  geom etr ica l ,  physical and f requency  d a ta  
to c re a t e  an electrical equ iv a len t  circuit model of the  
printed board  which is autom atica lly  m e rg e d  with the 
schem atic  circuit and  loaded  into a circuit ana lys is  
package,  PHILPAC, which ru ns  th e  simulation. Graphical 
outpu t options allow the  u s e r  to inspect the  layout 
ge o m e try  sub-division and  eq u iva len t  circuit,  no de  
positions before  simulation, and  the  spatial distribution 
of e lec tro m agn e tic  field q uan ti t ie s  after the  simulation.

Figure 2 show s typical fe a tu re s  of an  an a lo gu e  PCB, which 
in g ene ra l  co m p r ise s  a lte rna t ing  d ielectric s h e e t s  and  
printed conductor  pa t te rns .  C onduc to rs  include tracks, 
junctions, pads, vias, and  polygonal partial g round  p lanes . 
FACET m odels  all the  fe a tu re s  shown including an 
optional continuous g round  p lan e  parallel to the  PCB, 
which typically r e p r e s e n ts  the  c lo se s t  su r face  of a m eta l  
package. Only the track  con du c to rs  a re  co n s id e red  here .  
Printed co m p o n en ts  such a s  spiral inductors  and  
interdigital capac i to rs  a re  special c a s e s  of this gen e ra l  
model for tracks.

Layout CAD sy s te m s  typically p ro du ce  geom etr ica l  outpu t 
des igned  primarily for the  m anufac tur ing  p ro c e s s  i.e. 
mask-making, machining, so ldering and  com p on en t  
p lacem ent,  and not for simulation using e lec tro m agn e tic
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Fig. 2 PCB features simulated

field analysis. In particular,  many  fea tures  of the 
conductor p a t te rn s  a re  built into th e  photom ask  using 
overlapping primitive shapes ,  which if u sed  directly would 
lead to simulation errors.  FACET therefore  h a s  a 
geom etric  p re -p rocesso r  which o p e ra te s  on the ex trac ted  
geom etry  to rem ov e  unw anted  overlap  and transform the 
p a tte rn s  into a se t of e lem en tary  sh a p e s  and connectivity 
information tha t  the analysis  p rogram  can  use. A large 
se t  of ru les  is u sed  to handle  the  subdivision and 
trimming for the  many c a s e s  tha t  can  arise. Figure 3 
shows the p ro ces sed  geom etry  of two superim posed  
metallisation layers  on the  PCB of a portable  radio 
an tenna  filter. Small circles indicate positions of the 
n odes  used  in the  equivalent circuit.

The Electromagnetic Model
The combination of conductors  and insulators shown in 
Figure 2 form a p ass iv e  linear multi-terminal component. 
Solving for the 3D fields in such a  com ponent dem a n d s  
exceptionally large  com puter m em ory  and processing 
power if a s tandard  method of numerical analysis  such 
a s  the Finite Element Method 2 is used. The Boundary 
Element Method h a s  been  u sed  successfully to reduce  
computing requ irem en ts3. However in o rder  to fully 
model a com ple te  analogue PCB using, for exam ple  a  VAX 
8800 computer, further efficiency im provem en ts  are  
required. At frequencies  of g re a te s t  in te res t  ( le s s  than 
3 GHz ) th e  spatial variation of the  e lec trom agnetic  field 
resulting from discontinuities at conductor e d g e s  is much 
g re a te r  than  that d u e  to w ave propagation. T herefore  a 
quasi-sta tic  approximation to Maxwell's equa t ions  is 
made, and this is shown to lead automatically to a lumped 
equivalent circuit model of the PCB, the  coupling betw een  
electric and magnetic  fields being effectively provided by 
the network topology. Such lum ped models  h av e  been 
repor ted  earl ier  4-5. However, to improve the numerical 
efficiency, the  m ethod  descr ibed  h e re  takes  account of 
both the  h ighest frequency required  in the  simulation and 
the expec ted  cu rren t and cha rg e  distributions for the  type 
of physical s truc ture  employed.

The quasi-sta tic  approximation is initially e x p re s se d  in 
integral form,

0 <r) =  | |  jG,(rlr')p(r')dV «)

A(r) =  11 j*GA(r I r') J(r') d' V' (2)

w here  0  and A a re  respectively  sca lar  and vec to r  
potentials, p  and J  a re  ch a rge  and curren t density , and  r 
and r '  a re  position vectors.  The G reen 's  functions and 
Ga d ep en d  on the  layer s truc ture  of the PCB 6 7. The 
in tegrals  a re  ov e r  the  dom ain  of the  conductors ,  
excluding the  continuous ground p lane  which is allowed 
for in the  G reen 's  functions. Harmonic t im e-dep end ence  
of angular frequency o j  is a s s u m e d  throughout. In the  
domain of the  conductors, the  field v ariab les  in equa t ion s  
1 and 2 a re  also required  to satisfy,

E =  —V 0  — /orA =  — (3)

w here  E is electric field and o is the  local v a lu e  of 
conductivity. J  and p  must a lso  satisfy the  curren t 
continuity condition. The following analys is  co n s ide rs  all 
PCB tracks. The o th e r  conductors  a re  dealt  with by a 
genera l isa tion  of the  method. Voltage V on conduc to rs  is 
defined as  being equal to sca lar  potential 0 ,  and  cu rren t 
I is th e  surface  integral (over the  conductor c ross-sec t ion) 
of J, which is a s s u m e d  parallel to the  longitudinal 
direction in e ach  track. The en tire  layout of tracks  is 
divided into N two-terminal sections, w here  e a c h  terminal 
is e i ther a multiple junction or a pad. At frequenc ies  of 
in te res t  the  spatial variation of both V and / along tracks 
is much slower than the  gen e ra l  variation of field 
quantities. Therefore, by express ing  the  solution in te rm s 
of approximations to th e s e  two quantities, re latively  few 
unknowns a re  required. It is also shown that only a small 
part of the  field solution is frequency-dependent,  so only 
o ne  CPU-intensive 3D field analysis  is perform ed for the 
entire  frequency range.

Antenna

Transm itter
output

Fig. 3 Processed layout geometry
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V aind / a r e  ap p ro x im a ted  by p iecew ise  co n s ta n t  functions 
a long  th e s e  sec t ions .  The co n s ta n t  cu rren t  and  c o n s tan t  
volttage in te rv a ls  overlap ,  and  a re  c h o se n  to b e  about 
0.1 Am in length, a p a r t  from a 0.05/tm co n s ta n t  cu rren t  
in te rva l  a t  e a c h  en d  of a section, w h e re  Am is w ave leng th  
at t h e  m ax im u m  f requency  of in terest .  The  ne t  c u r re n ts  
an d  v o l t a g e s  on  th e s e  in te rva ls  a re  respec t iv e ly  
lk ( k  =  and  Vk ( k =  1,2. ,/Vf^) . C urren t  and
c h a r g e  dens i ty ,  on  the  kth c o n s tan t  cu rren t  and  vo ltag e  
in te rv a ls  respec t ive ly ,  a re  ap p rox im a ted  by,

(4)

(5)

J(r) =  th n(r) r fc(r) 

p{  r) =  Qk v k(r)

w h e re  n is a  unit vec to r  paralle l to the  local longitudinal 
d irec tion , Qk is th e  n e t  c h a rg e  on the  kih c o n s ta n t  vo l tage  
in terval ,  a n d  rk and  tpk a r e  a s s u m e d  no rm a lise d  spatial 
d is t r ibu t io ns  such  that,

Ti, d  r =  1
..-C

f[ tpk d  r =  1

(6 )

(7)

w h e re  th e  su r fa c e  integral in equa t io n  6 is o v e r  the  c ro s s  
secttion S£ of th e  kth c o n s ta n t  cu rren t  in terval and the 
v o lu m e  in teg ra l  in e qu a tion  7 is o v e r  th e  dom ain  of 
c o n d u c to r s  D% of the  kth co n s ta n t  v o l tag e  interval. 
S u bs t i tu t ing  eq u a tio n  5 into 1 and  applying th e  Method 
of W e ig h ted  R es id ua ls  2,

Mu
= ( / - 1 . 2 ... Mv) (8 )

k = 1

w h e re

(9)-1JI, Wr(r) 11L1G*(r 111r' > ■v(,,)"v rf3f 18
andi w h e re  V, is the  w eigh ted  m e a n  potentia l in Df  g iven 
by,

V, =  J J J v W,(r)  0 (r) d \  (10)

a n d  W, ( l  =  1,2 ...Mv ) a r e  c h o se n  weighting functions for 
which,

d r  =  1 ( 1 1 )

Inverting  eq u a t io n  8,

Q t= 'Z ci'iv‘ =  Mv> < 1 2 )

1= I
C is  a c a p a c i ta n c e  matrix equa l to the  in v e r se  of H.

Subst i tu ting  e qu a tion  5 into the  cu rren t  continuity 
eq u a t io n  in the  dom ain  D£ of the  co nd uc to rs  of the  k1h 
c o n s ta n t  c u r r e n t  interval,

V J = - j ( d  Qk tpk (13)

Applying the  D ivergence  T h eo rem  to the  left han d  side  
an d  substi tu ting  e q u a t io n s  7 and  12 into th e  right han d  
s ide  of equa t ion  13,

'2k Uk ~ -  j a j J ^ C u V ,  ( k  =  1,2 Mv ) (14)
/ =  1

Now, s ince  track s  h a v e  electrically  small c ro ss -sec t ion ,  it 
is a s s u m e d  tha t  th e  longitudinal tangentia l  c o m p o n en t  of 
E is approx im ate ly  c o n s ta n t  a ro u nd  th e  p e r im e te r  of the  
c ross -sec t ion ,  an d  th e re fo re  tha t  it is sufficient to e n fo rce  
eq u a tio n  3 in an a v e r a g e  s e n s e  o v e r  this  pe r im e te r .  
Thus, taking th e  ap p ro p r ia te  line in teg ra ls  in the  
c ro ss -sec t io na l  p lan e  at d is ta n c e  ak m e a s u r e d  along the  
kth c o n s ta n t  cu rren t  interval,

|  J dp(ak) |  A dp{ak)

P(3k) +  V0(a*) +  jcj   =  0 (15)
f  o  dp(ak)

w h e re  p(ak) is th e  pa th  a round  the  p e r im e te r  at ak . and  
0  is a s s u m e d  c o n s ta n t  on p(ak). Now, substitu ting  
e q u a t io n s  2, 4 and  6 into 15 and  in teg ra t ing  along the  k,h 
c o n s ta n t  cu r ren t  interval,

Zk +  V2k — Vyk +  Lkt 1/ =  0 ( k =  1,2,.MC ) (16)

w h e re  Vyk and  a re  th e  vo l ta g es  at th e  e n d s  of th e  
interval,

i rk(ak) n{ak) dp(ak)

z , - r  J'<“>Jlr
1 trk(ak) dp(ak)
p(*k)

. d a k (17)

and

- 1

f  f f f GA(r J  r / J r ^ r / J n ^ / )  d 3r, 'dp(aA) 
jpk)j j j0;________________________

f  dp(ak)
JP(a*)

d  a.

(18)

Zk is the  internal im p ed an ce  ( re s i s t a n c e  p lus internal 
r e a c t a n c e  ) o f th e  k01 c o n s tan t  cu rren t  interval , and Lf, is 
m utua l in duc tance  b e tw een  sec t io ns  k an d  / ( o r  the  
ex te rna l  co m p o n e n t  of self induc tance  if k =  I ). 
Equations 14 and  16 a re  equ iva len t to K irchoffs  network 
eq u a t io n s  and  d e te rm in e  th e  lum ped  equ iva len t  circuit 
topology. The solutions ob ta ined  for th e  co m po nen t  
v a lu e s  d ep e n d  on th e  choice  of ipk , rk and  Wk. For 
exam ple ,  ipk and  rk a re  c h o sen  to exhibit th e  Maxwell 
distribution 8 in the  t r a n s v e r s e  direction in tracks. The 
varia tion  of rk in the  th ickness  d irection  is 
f r equency-dependen t ,  d u e  to skin-effect , and  FACET 
ap p ro x im a te s  this d e p e n d e n c e  to tha t  in an  infinite meta l
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layer of the s a m e  composition and thickness a s  the  track 
Zk a re  therefore  also frequency-dependent.  However , the 
frequency-dependence  of rk h a s  negligible effect in 
equation  18, so  both Ck, and Lf, a re  independent of 
frequency. This is very  significant for CPU time.

FACET com pu tes  both the  equivalent circuit topology and 
the lumped equivalent com ponen t values, and then 
c re a te s  a file in the  format requ ired  for PHILPAC. This is 
automatically m erged  with a  second  file containing the 
information on the com ponen ts  to be  soldered  to the  PCB. 
Node numbering is o rgan ised  so that e ach  terminal of 
such a com ponent is connected  to the node associa ted  
with its so lder pad.

Application of FACET
Figure 4 il lustrates the schem atic  circuit of the an tenna  
filter w hose  PCB layout w as  shown in Figure 3. Three of 
the  inductors w ere  im plem ented  using non-s tandard  
printed spirals. FACET, in effect, b reaks  all the 
connections in this schem atic  circuit, and rep laces  the 
ideal inductors and connect ions with the  additional 
com ponen ts  gene ra ted .  In Figure 5, the  FACET simulation 
is com pared  with the  ideal r e sp o n se  of the  schem atic  
circuit and with the m e a s u re d  response .  The filter input 
and output a re  respectively  the transm itter  output pin and 
the an tenna  pin as  indicated in Figure 3. The 
corresponding nodes  of the  schem atic  circuit a re  shown 
in Figure 4. Both th e  m e asu red  width of the  p a ssb an d  and 
genera l  s topband  level differ significantly from the ideal 
w anted  behaviour indicated by the  schem alic  circuit 
response . FACET predicts  the  non-ideal behaviour well.

TronB m ltter output

Fig. 4 Schem atic circuit of filter 

Summary
FACET, a new CAE package  for electrical simulation of an 
analogue circuit on a PCB h as  been  described. The effect 
of the  layout on perform ance  is included. FACET is 
interfaced to a layout CAD sy s tem  for extraction of the 
geometry , and automatically in terpre ts  this geom etry  for 
the simulation. A lum ped equivalent network model for 
the printed dielectric is derived, and this is m erged  
automatically with the network of com ponen ts  soldered 
to the board. There  is an autom atic  in terface to a circuit 
analysis package. Complex layouts including non-parallel 
tracks and multi-layer boards  can  be  simulated. The 
num ber of linear equations required  for the m ethod is

much fewer than in commonly u sed  numerical analysis  
techniques for 3D fields. The computing requirem ent is 
therefore  m odes t  for such a complex boundary value  
problem. The model is accura te  throughout the frequency 
ran ge  applicable to civil mobile  communications, but 
would not be  valid at higher microwave frequencies  
w here  line widths a re  m ore  com p arab le  to wavelength. 
FACET can  graphically display the power or sto red  energy  
distribution in the  layout to help u se r s  d iagnose  c au se s  
of layout-re lated problems.
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Fig. 5 F ilter response 
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