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CrossMark
Abstract
We study singularity confinement phenomena in examples of delay-differential
Painlevé equations, which involve shifts and derivatives with respect to a single
independent variable. We propose a geometric interpretation of our results in
terms of mappings between jet spaces, defining certain singularities analogous
to those of interest in the singularity analysis of discrete systems, and what it
means for them to be confined. For three previously studied examples of delay-
differential Painlevé equations, we describe all such singularities and show they
are confined in the sense of our geometric description.

Keywords: Painlevé equations, singularity confinement, delay-differential
equations

1. Introduction

Singularity confinement is a phenomenon first proposed as an integrability criterion for dis-
crete systems [GRP91], and has been used to great effect to obtain discrete analogues of the
Painlevé differential equations [GR93, GRWS20, RGH91]. Its geometric interpretation has
led to novel connections between discrete integrable systems and birational algebraic geome-
try, most notably Sakai’s geometric framework and classification scheme for discrete Painlevé
equations [Sak01]. We study delay-differential equations, for which a kind of singularity con-
finement test has been used to isolate integrability candidates and obtain delay-differential
equations of Painlevé-type [GRM93, RGT93]. These so-called delay Painlevé equations pos-
sess analogues of many integrability properties of their discrete and differential counterparts,
and it is natural to ask whether a geometric theory may be developed for them.
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Compared to the discrete case, the understanding of singularity confinement in this class of
equations is in its infancy. In particular, we do not have available to us the definition of singu-
larity confinement in second-order discrete systems as the iteration mappings of the systems
lifting to isomorphisms between rational surfaces. Further, even for heuristic observations in
the absence of a proper definition of confinement, the presence of derivatives leads to chal-
lenges, as different multiplicities with which solutions take singular values lead to infinitely
many behaviours to be checked. We consider the following three examples of delay Painlevé
equations

u(it —u) = au — bu', (1.1)
V(0 —v) = pv+qv, (1.2)
ww = w (Azw + aw'), (1.3)

where u, v and w are functions of the complex independent variable z, we take p, g, a, b, \, &
to be complex parameters, and we denote up- and down-shifts by u(z) = u(z+ 1),
u(z) = u(z — 1) etc.

For the purpose of isolating integrability candidates in the class of delay-differential
equations, it seems to have been sufficient to require only that the simplest singularities exhibit
confinement-type behaviour, and all three of the examples above may be obtained by such
means. However, if singularity confinement is to lead to a geometric theory in this case, a
more detailed analysis is required. It is the first steps in this direction that we take in this paper,
by extending previous observations to account for different multiplicities with which solutions
take singular values, as well as giving a geometric description of singularities that may arise
in delay-differential equations and what it means for them to be confined.

The equation (1.1) was obtained by Quispel, Capel and Sahadevan [QCS92] as a simi-
larity reduction of the Kac-van Moerbeke differential-difference equation, also known as the
Manakov equation or Volterra lattice. They also showed that it has a continuum limit to the first
differential Painlevé equation and that it exhibits some singularity confinement-type behaviour.
The equation (1.2) is a symmetry reduction of a known integrable differential-difference mod-
ified Korteweg—de Vries equation, and extensions of it have been studied by Halburd and
Korhonen from the point of view of Nevanlinna theory [HK17]. Further, it has a continuum
limit to the first Painlevé equation and may be obtained from Bécklund transformations of the
third Painlevé equation [Ber17], or alternatively using singularity confinement tests adapted
from those in [TRGO99]. The third equation (1.3) was isolated as an integrability candidate
by Ramani, Grammaticos and Moreira [GRM93] using a kind of singularity confinement test
(which also recovered equation (1.1)), and has a continuum limit to the first Painlevé equation.
We also point out that other integrability properties analogous to those of differential and dis-
crete Painlevé equations have been studied in equations (1.1), (1.2) and (1.3), for example the
fact that they may be rewritten in bilinear forms [Car11] and that degenerate cases admit elliptic
function solutions [Ber17], in parallel with the discrete case where autonomous degenerations
of discrete Painlevé equations are Quispel-Roberts—Thompson (QRT) mappings [QRT8S,
QRT89], solved by elliptic functions.

We also remark that we are considering examples of so-called three-point delay-differential
equations, which are of the form

A, )+ fr(ud, . u
)+ faGtts o’ (1.4)
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where f; are polynomials in u and its derivatives. There are known integrable delay-differential
equations of other forms, for example the so-called bi-Riccati equations [Ber18, GRM93], but
studies of singularity confinement in these more closely resemble classical Painlevé analy-
sis than birational geometry, and will not be discussed in this paper. The class of three-point
equations is the one considered by Halburd and Korhonen through the Nevanlinna theoretic
approach [HK17], and fits into the family for which Viallet defined algebraic entropy in the
delay-differential setting [Vial4].

1.1. Background

The differential Painlevé equations P;—Py; are six nonlinear second-order ordinary differen-
tial equations (ODEs), the study of which has become one of the cornerstones of the field of
integrable systems. Painlevé, Gambier, Fuchs and their collaborators considered a large class
of second-order ODEs, and isolated those for which all solutions are single-valued about any
movable singularities (those whose locations depend on the initial conditions). This condi-
tion is now known as the Painlevé property, and of all the equivalence classes of equations
obtained, the six Painlevé equations arose as representatives whose general solutions could not
be expressed in terms of known functions. These new special functions, known as the Painlevé
transcendents, play a central role in modern nonlinear physics, see e.g. [Cla06, FINK06] and
numerous references within.

The differential Painlevé equations admit a geometric description in terms of rational sur-
faces obtained by blowing up certain singularities of the equations. Discovered by Okamoto
[Oka79], for each equation this comes in the form of a bundle over the independent variable
space whose fibres are rational surfaces with certain curves removed. The bundle, known as
Okamoto’s space, admits a foliation by solution curves of the ODE system transverse to the
fibres, and each fibre can be regarded as a space of initial conditions for the system. Further,
the curves which were removed from each fibre (the inaccessible divisors) have irreducible
components whose intersection configuration is encoded in a Dynkin diagram of affine type,
also known as an extended Dynkin diagram. It was also shown that Okamoto’s space for each
P;—Py; essentially determines the differential equation [Mat97, MMT99, ST97], and can be
used to explain many of their properties (see [KNY 17] and references within).

Beginning in the 1990’s, important steps were made towards defining and understanding
discrete analogues of the Painlevé equations, through the proposal by Ramani and Grammati-
cos, together with Papageorgiou, of singularity confinement [GRP91] as the discrete counter-
part to the Painlevé property. We will illustrate the singularity confinement phenomenon in the
second order difference equation

(fn - k)(fn + k)fnfl
k2 —f,lz+2tfnfn—l ’

for1 = (1.5)

with parameters k # 0, +1 and 7 # 0. The initial value problem for this equation requires two
values of the solution, say fy, fi, which in almost all cases will allow the values f, f3 and so
on to be determined recursively. The system (1.5) has singular values f,, = £k, in the sense
that if while iterating the solution takes one of these values, f,+; is zero independent of the
value of f,_; (provided f,_; # 0). This is usually referred to as a loss of a degree of freedom
occurring while iterating the system. For generic (non-integrable) discrete systems, the singu-
larity propagates, in the sense that the subsequent values f,12, f,+3, . . . . will all be determined
independently of f,_; and the lost degree of freedom is never recovered. In our case, we may
compute the next iterate f,+,» = Fk, but then, importantly, arrive at an indeterminacy of the
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rational function giving f,+3, namely at (f,,+1, fut+2) = (0, Fk). If, however, we consider a per-
turbation of the singular value f, = £k by introducing a small parameter €, we may compute
the following in the small € limit:

fu1 7& 0, fo==xk+ O(e), fn+1 = O(e),
for2=Fk+0@©),  furz = fu1+O().

If we define the values of the iterates as the limits of the above sequence as € — 0, the lost
degree of freedom is said to be recovered in the value of f, 3, and the singularity at f, = £k
is said to be confined. The singularity confinement property for second order discrete systems
can be understood as the existence of a space of initial conditions for the system: a family
of rational surfaces to which the birational iteration mappings lift to isomorphisms. In fact,
defining the values of the solution by iterating and taking limits as above implicitly lifts the
system under certain blow-ups. The example (1.5) is in fact an example from the family of
QRT mappings [QRT88, QRT89], the definition of which ensures they have a space of initial
conditions given by a rational elliptic surface.

The equation (1.5) can be considered as a birational mapping ¢ : P! x P! — P! x P!, Let-
ting 1 =y, fu = x =Y, fur1 = X, theiteration (f,, f,—1) — (fu+1, fn) gives a birational map
(x,y) = (%,y). We consider this on P! x P! via the usual charts. That is, we use x, y as affine
coordinates in the P! factors, and introduce X = 1/x,Y = 1/y, so P! x P! is covered by the
four charts (x, y), (X, y), (x,Y), (X, Y). This mapping

p: Pl x P! - P! x P!

(=R + Ry (1.6)
’ = ’ = 79 9 AL
(x,y) (x,) (kz—x2+2txy x
preserves each member of a pencil of elliptic curves on P! x P!, and the space of initial con-
ditions is obtained from P! x P! by resolving its basepoints through a number of blow-ups.
This is ensured by the definition of the QRT map in terms of this pencil, which we outline now.
Consider the matrices

-1
0 0 - 100

A=|o0o 1 0|, B=(0 0 0], (1.7)
-1 K 000
— 0 =
2 2

where again k# 0,+£1 and f# 0, which define a pencil of biquadratic curves
{Tp : [a: Bl € P} in P! x P!, written in the affine coordinates (x, y) as

%(18 — X =y 4 26xy) + By =0, (1.8)

[ia:p) : X Ay + SX"By =
where x" = (x> x 1),y"= (> y 1). The QRT mapping is defined as follows. A
generic point, say given by (x,y), lies on exactly one curve I'j,.5; in the pencil. There is then
exactly one other point (X, y) on I'|,.5 with the same y-coordinate, from which we can define
the involution r, : (x,y) — (X, y). Similarly we have another involution ry : (x,y) — (x,¥), and
their composition r, o ry is the QRT mapping. Following [CDT17] we introduce the involution
Oy i (x,¥) = (v, x) and work with the map ¢ = oy, - r,, which for the pencil (1.8) is precisely
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(1.6), and can be thought of as a ‘half QRT mapping’ due to the fact that ¢* = r, o r,. The
pencil (1.8) has four basepoints, given in coordinates by

pri(y) =(k0),  pri(xy) = (=k0),

p3:(6y) =(0,k),  py:(xy) = (0, k). (1.9)
Blowing these up, we denote the blow-up projection by

71 By py pypy (P x Py — P! x P

and denote the exceptional curves by 7, ! (p)) = E;fori = 1,2,3,4. The proper transform of the
pencil under 75 still has four basepoints ps € E|, ps € E», p; € E3, pg € E4, after the blow-ups
of which the proper transform of the pencil is basepoint-free and we obtain a rational elliptic
surface X. Denote the projection under the second four blow-ups by

T2t X = By, py s (P' x P,

and the exceptional curves by 7, Y(pi) = E; for i = 5,6,7,8. Composing the projections we
obtain

T=mom: X — P x P,

and X is a rational surface fibred by the proper transform of the pencil. Under 7, we have the
preimage of each basepoint p,, ..., p, given by the union of two irreducible curves:

7 '(p1) = (E; — Es)UEs, 7 '(p2) = (E> — Eg) U Es,
7 '(p3) = (B3 — E))UE;, 7 '(ps) = (E4 — Es) UE;s,

where we have used the usual notation for divisors to denote by E; — E5 the proper transform
of Ej under 7, and so on, which we illustrate in figure 1. The iteration mapping (1.6) lifts
uniquely under the blow-ups to give a birational map

p:X =X,

which is in fact a true isomorphism, and the singularity confinement observed earlier can be
understood in terms of this space of initial conditions as follows. Lifted under the blow-ups,
the initial data f;, | # 0, f, = k correspond to a point on the proper transform H, — E| of the
line x = k on P! x P!, while the pairs (f,, f,11) = (k, 0), (fos1, fur2) = (0, —k) correspond to
the basepoints pjy, p, respectively. Further, the recovery of the degree of freedom (f,2, fu43) =
(—k, fu—1) corresponds to a one-to-one correspondence between H, — E; and H, — E4 under
the iterated mapping &3, as we illustrate in figure 2.

The loss of a degree of freedom when f, = £k can now be understood in terms of curves
on P! x P! being blown down to points under the mapping ¢: a codimension one subvariety
being blown down to one of codimension two. The recovery of the lost degree of freedom
occurs precisely when, while iterating after a blow-down, we arrive at an indeterminacy of
the forward iteration map ¢ (in the case of the singularity f, = k, this is p,), so the point is
blown back up to a curve. As remarked before, for a generic (non-integrable) system, after a
blow-down we will not arrive at an indeterminacy of the forward mapping and the lost degree of
freedom will never be recovered. In other words, we cannot lift the mapping to an isomorphism
through a finite number of blow-ups. This description of singularity confinement in terms of
codimension increasing under the mapping, followed by a return to the same as the generic
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Figure 1. Configuration of curves on X arising from the blow-ups of the basepoints.

H, - E; E; Es Hy - E,
¥ @ @ @
gl gl
P! x Pt
1;3 17.2
=k y=—k

Figure 2. Confined singularity pattern as isomorphisms between exceptional curves.

case, is the main reference point for our geometric formulation of singularity confinement for
delay-differential equations in section 3.

Ramani, Grammaticos and collaborators have obtained a plethora of discrete Painlevé
equations via the process of ‘deautonomisation by singularity confinement’ applied to members
of the QRT family. This involves considering non-autonomous generalisations of a given QRT
map by introducing n-dependence into the coefficients of the mapping, then isolating examples
for which the singularity confinement behaviour persists. The definitive framework for discrete
Painlevé equations was provided in a seminal paper by Sakai [Sak01]. Sakai defined a class
of rational surfaces generalising both those associated with differential Painlevé equations via
Okamoto’s space and the rational elliptic surfaces giving spaces of initial conditions for QRT
mappings. Certain surfaces from this class come in families that admit actions of extended
affine Weyl groups by birational transformations, with translation elements defining discrete
Painlevé equations. The theory of Sakai has had a huge impact on both the general theory of
discrete integrable systems, as well as on the applications in which they arise. While this theory
provides a classification scheme for discrete Painlevé equations in terms of the surfaces they
are associated with, it has also led to a suite of geometric tools for their analysis (see [KNY 17]
and numerous references within), which are invaluable in cases where a discrete system from
an applied problem fits into the discrete Painlevé framework [DFS19]. Sakai’s construction
recovers many of the examples obtained by singularity confinement methods, but we make an
important remark here that lifting to isomorphisms under a finite number of blow-ups is not
sufficient for integrability, and the geometry of the space of initial conditions plays a defining
role. In particular, an example given by Hietarinta and Viallet [HV98] admits a space of initial
conditions but exhibits exponential degree growth, which was explained in terms of its geom-
etry by Takenawa [TakO1]. It has since been shown [Mas18] that if a second-order discrete
system with the singularity confinement property (in the sense that it admits a space of initial
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conditions) is nontrivially integrable (in the sense of quadratic degree growth), then it must
arise from the surfaces defined by Sakai.

As mentioned previously, the theory of delay-differential Painlevé equations is in its infancy
compared to the differential and discrete cases, but there is already a body of evidence show-
ing its promise, which we hope to add to with this work. Delay-differential equations of the
kind we consider arise in a range of fields of applied mathematics, most notably in mathe-
matical biology, for example as equations for steady states of systems of partial differential
equations with a spatial delay [FBM19]. Thus the possibility of a geometric framework for
Painlevé equations in the delay-differential class is an exciting prospect not only for the theory
of Painlevé equations itself, but for widening the range of equations whose integrability can be
exploited in applications.

1.2. Outline of the paper

We will begin our analysis working on the level of equations, without invoking geometric
language. In section 2 we recall previous observations of singularity confinement behaviour in
the three equations, and extend them to include infinite families of confined singularity patterns
in each case. The proofs of these are deferred to the appendix A. In section 3 we shift to the
geometric setting, first recasting our equations as mappings between jet spaces and defining
‘blow-down type’ singularities, and propose a notion of confinement for them. Rephrased in
these geometric terms, we use the results of section 2 to show that in the three examples, all
such singularities are, in the sense of our definition, confined. We conclude with a discussion
of how the geometric framework and the techniques developed for proving the singularity
confinement property may be utilised and built upon in the study of other examples, as well as
some open questions that arise from our work.

2. Singularity analysis of delay-differential equations

‘We begin by recalling previous observations of singularity confinement phenomena in the three
examples we consider. Beginning with equation (1.2), the forward iteration, which gives v in
terms of v, v and v is given by

1 v
v=v+p-+qg—, 2.1
v v

so if we take, as initial data, a pair of Laurent series expansions of v, v about z = 7y, then (2.1)
and its upshifts determine all subsequent iterates o, v, . . . as Laurent series about zq. If we only
wish to iterate a finite number of steps forward from generic initial data, we need only finitely
many coefficients. For example, we could begin by giving initial v, v as Taylor expansions in
¢ = z — zp about some z = z:

v=ay+a;(+a,*+..., (2.22)
v=ay+a+a*+.... (2.2b)

If we assume that the iterates 7(z) = v(z + 1), 9(z) = v(z + 2), . ..,v®(z) = v(z + k) are all
regular and nonzero at zy, it is clear from the form of the equation (2.1) that the value v(zy + k)
depends only on the following coefficients from the expansions (2.2a) and (2.2b):

Go @ - G . 2.3)
a ay ... d4r-1 A4
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We will be iterating systems arbitrarily many times forward, so we will use this kind of notation
for the iterates, i.e. v¥(z) = v(z + k), throughout the remainder of the paper. Further, the form
of the right-hand side of the forward iteration (2.1) ensures that if we start from v, v given by
Taylor series, the only way that a pole may develop is through some iterate having a zero first.
If while iterating, some iterate v develops a zero of order one, say at ( = z — zo = 0, with

v=agyta(+..., (2.4a)
v=ai(+al®+..., (2.4b)

where a; # 0, then we have by direct calculation that

R ()} (2.50)

1

v=—a (' + O, (2.5b)

- 7p? 2 4qa? 6

5— (56_10 TR q;“) +O0). (2.5¢)
qa aj ajy aj

We summarise the observations above by saying that the equation (1.2) admits the singularity
pattern

(rg,0',00%, 0", rg) .

where rg indicates a regular iterate with generic coefficients. We note here that this behaviour is
exceptional for the following reason. In the computation of © here, it is natural to expect a zero
of order one, as this is what happens generically when v and @ are of order ¢, {2 respectively.
However, while 7,7 having orders ¢ 2, ¢! respectively would generically lead to ¢ having
another pole of order 2, in this singularity pattern we note that two terms have vanished as ©
regains regularity. In the language of previous studies of singularity confinement behaviour,
the information lost when entering the singularity is recovered in the iterate v, in the form of
the coefficient g, from the initial data. Though this behaviour has not, to our knowledge, been
reported explicitly, we note that the equation (1.2) may be obtained by singularity confinement
tests along the lines of [GRM93, TRGO99].

We next consider equation (1.1), which was first observed in [QCS92] to exhibit the
following singularity confinement behaviour. The forward iteration is given by

u/
i=u+ta-b—, (2.6)

so again it is clear that the only way that a pole may develop while iterating from formal Taylor
series is following a zero. Suppose that while iterating, the solution u develops a zero of order
oneat( =z—z9 =0, so

ﬂ:£o+£1C+~-~, (2.7a)
u=cC+el*+..., (2.7b)

where ¢ # 0. Then direct calculation shows that

M”:—g+<a+%—b%>+0@% (2.82)
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b
u® = ¢ + <2a +co— b?) + 00, (2.8b)
1
24a? 22 2b (3 —2c3
¢$:<“-—%+ ”%—3g+(c”§%)—%ﬂc+0@% (2.8¢)
b b i &l
u(4) = F(Q()’ Qla£2a C1,C2, C3,C4) + O(C)a (28d)

where F is a known rational function of the generic initial data, which we omit for conciseness.
Again, this behaviour is exceptional as u"’, u® both having simple poles would generically
lead to u® also having a simple pole, but here two terms have vanished as u‘® instead has a
zero of order one, so equation (1.1) admits the singularity pattern

(rg,Ol,ool,ool,Ol,rg).

We next turn to equation (1.3), which was obtained in [GRM93] by singularity confinement
tests, though details were not given explicitly. The forward iteration mapping is given by

o =w (Az+a3,>. 2.9
w

Say, while iterating, we arrive at a pair w, w given by expansions in { = z — z9 by

w=c, +¢e(+e,C+ ., (2.10a)
w=co+c{+e+. .., (2.10b)

with
ac; +Mzo — Deg =0, 2ac, +Aci(zo—1D#0, ¢, #0, ¢, #0. (2.11)

This means that w will have a simple zero at z = z9, and by direct calculation we find the
following:

_ gyl —20) (2ac, + Acy(z0 — 1))

w ¢+ 0(42), (2.12a)
acy

o ﬂ —1 0

ST N o

A -1D(2 A -1

0 gO(ZO )( afZ + QI(ZO )) + O(Cl)’ (2.12¢)
=1

UE] _ G(go, glagz?gl’QZ’g3)2 + O(Cl)a (212d)

o (20¢, 4+ Acj(zo — D)

where G is a polynomial function of the generic initial data as well as z. Again, this behaviour
is exceptional as a simple pole of @ with @ regular and nonzero would generically lead to w
having another simple pole, whereas in this case a term has vanished and the iterate 1w is regular.
Again, we summarise this observation by saying that the equation (1.3) admits the singularity
pattern

(rg,gé,ol, oo, E},,rg) ,
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where ¢ él) indicates that the iterate w satisfies the condition for w to develop a simple

zero, namely ac; + A(zo — )¢y = 0, 2ac, + Acj(z0 — 1) # 0, and E(l) indicates the iterate
W =Co+ ¢1C + (% + ... satisfies ae; + \(zg + 2)¢p = O.

2.1. Infinite families of singularity patterns

In the previous section, we outlined certain singularity patterns admitted by the equations (1.1),
(1.2) and (1.3) which involved zeroes of order one developing while iterating the systems. We
now extend these observations to higher order zeroes, and show that each of the equations
admits an infinite family of singularity patterns with similar confinement behaviour.

For equation (1.2), we have observed the singularity pattern (rg,O', oo‘z,O',rg), which
corresponds to v being regular and v having a zero of order one at z = zp. Similarly, if v has a
zero of order two, then we pass through the following sequence of orders, which is generic until
three terms vanish as v> becomes regular instead of a pole (with leading coefficient depending
on data from v):

v = O(CO), v~ CZ, ,U(l) ~ C_3’ ,U(Z) ~ CZ, ,U(3) ~ C_3’ ,U(4) ~ CZ, ,U(5) — O(CO)
From above, we see that equation (1.2) admits the singularity pattern
(rg, 0%, 00%, 0%, 00?, 0%, rg) ,

and because of the return to regularity and the iterate v® depending on the generic initial data
from v, the singularity is confined in a similar sense to that which we observed in the case
of a zero of order one. More generally, if v has a zero of order m > 1, and v is regular, say
v = (" + O, with ¢, # 0, and v = O(1), then it can be seen from the equation (1.2)
that

oD = _?(WI T O™, (2.13a)
v = —%"cm +0", (2.13b)

—1
o® = m(m )q
Cm

O™, (2.13¢)

and more generally, it can be shown by induction that for k < m,

—1)kk!
U(Zk) _ (=D

T T em(" + O™, (2.14a)
i=0

_1VKTTR .
petn - & H,-;!o G l)cig—"l" + O™, (2.14b)

What we deduce from this is that a singularity sequence beginning with v regular and v with
a zero order m will contain a sequence of m + 1 zeroes of order m alternating with m poles of
order m + 1. We know that the coefficient of ¢! in the iterate v+ ! will vanish according
to the formulae (2.14), but it turns out that the entire singular part of the expansion vanishes,
so regularity is regained at the iterate v+ 1.

Theorem 2.1. For each integer m > 0, equation (1.2) admits the singularity pattern
(rg, 0", 00", 0", 00", ..., 00"t 0™, 00"t 0", 1g) (2.15)

10
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which includes m + 1 zeroes of order m alternating with m poles of order m + 1.

The proof of this theorem is provided in the appendix A, along with those of similar results
for the equations (1.1) and (1.3):

Theorem 2.2. For each integer m > 0, equation (1.1) admits the singularity pattern

1 1 1 1 1 1

m 1 m
(rg,O 5 OO0 )5 0015 00 s« + + 5 Ops O0% _pps « - - » OO, 00,,, 0 ,rg) , (2.16)

which includes 2m simple poles with residues alternating between positive and negative
multiples of 3, which we denote
ool = B4 o, 2.17)
Z—20

Theorem 2.3. Equation (1.3) admits the singularity pattern
(rg. Go(—=1)™, 0", 00", 0™ 00?, ..., 00,077, ..., 0%, 00" !, 0", 00™, o(2m)", 1g) , (2.18)

o : : 3
where Cy(—1)" indicates that the iterate w = w'™V satisfies (;17 (Mz—Dw +aw') =0 ar
z=zofork=0,....,m—1, and (;(2m)" indicates that the iterate w® satisfies

dt :
e ()\(Z + myw® + aw®™ ) =0,

atz=1zyfork=0,....,m— 1.

3. Geometric description of singularity confinement

We now rephrase the results of the previous section geometrically, and propose a character-
isation of singularity confinement in the delay-differential setting in terms of the birational
geometry of jet spaces. Our guiding principle in developing the theory in parallel with the
discrete setting will be that of generic information loss, in particular the ways in which iter-
ating a delay-differential equation may result in a departure from this, and in what sense it is
recovered. To explain the motivations for this analogy, we first note that a birational mapping
between smooth projective algebraic surfaces is an isomorphism between Zariski open subsets
given by the complement of proper subvarieties that are blown down by either the mapping
or its inverse. Almost all curves are mapped bijectively to curves, and in this sense no infor-
mation loss occurs generically while iterating the corresponding discrete system. Singularities
of a second-order discrete system occurring when curves are blown down to points may be
interpreted as more information loss occurring than normal. The system having the singularity
confinement property means that, in such a case when iterating the system results in more than
the generic amount of information loss, we may compose the mapping a finite number of times
to recover the generic behaviour: an isomorphism from a curve to a curve.

We will formulate a concept of generic information loss for our delay-differential equations.
In terms of this we will define singularity confinement as being able to, in the case when iter-
ating the system results in more than generic levels of information loss, compose the iteration
mapping of the system a finite number of times to recover the generic amount. This concept of
generic information loss has two elements: first is the amount of initial data required generically
to iterate the system forward a given number of times, which we will phrase in subsection 3.1
in terms of the orders of jet spaces on which the systems give well-defined mappings. Second
is the behaviour of subspaces under the these mappings in terms of their codimension, which

1
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will be used to describe phenomena analogous to degrees of freedom being lost, which we
define as ‘blow-down type’ singularities in subsection 3.2. We then outline what it means for
such a singularity to be confined, and finally verify that this geometric description fits with our
analysis of the three examples, and that they confine all singularities in this sense.

3.1. Delay-differential equations as mapping between jet spaces

Similarly to how second-order discrete systems are described by birational mappings between
algebraic surfaces, we will recast our delay-differential equations as mappings between jet
spaces. We consider jets associated with the trivial bundle over C with fibre P! x P'. We use
the same coordinate charts for P! x P! as in the discrete case, namely (x,y), (X,y), (x, V), (X, Y)
where X = 1/x,Y = 1/y. The space J; of r-jets about zo is the set of equivalence classes of
local holomorphic sections about some zy € C under the following equivalence relation. The
sections 01,0, define the same r-jet if, when written in coordinates, their derivatives at zo
coincide up to and including order r.

We will be always considering jets at zo, so we omit the subscript. We will use coordinates
for J” induced by writing sections as expansions in our coordinates for P! x P!, For example,
if a section about zj is visible in the (x, y)-chart, it may be written in coordinates as

(x@) _ (xo +x1C+ 0+ ) 3.1
(@) Yo+nC+nC+... )" '
where ( = z — zp as before, so we have one part of J” covered by the chart with coordinates
(XO X1 X2 ... x,) ’ (32)
Yo Yo Y2 ... Yr

and J” can be thought of as four copies of C**? with coordinates being coefficients from
expansions of sections in the four charts for P! x P!, with gluing determined by that of P! x P!
itself, namely X = 1/x, Y = 1/y.

Consider a three-point delay-differential equation of the form (1.4) given in the introduction,
with [ being the highest order of derivative that appears. Similarly to how the scalar difference
equation (1.5) is recast as a QRT mapping on P! x P!, we let (x,y) = (u, u) and (X, 9) = (i, u)
given by series expansions about zy, so we have a mapping on sections near zy, which in the
(x, y)-charts for both domain and target copies of P! x P! is written as:

x(2) x(2)
(y(z)> ~ (y@) ’
fiee, Xy, 0% /07 + folx, X', ..., 0 /07 )y
f3e,x, ..., 0% /07 + falx,x/, ..., 0x/07)y’

(3.3)

X = y =X

We now introduce a space of jets on which we consider this, corresponding to generic initial
data. Consider a section written as a series expansion in one of the four coordinate charts for
P! x P!, for example (3.1) in the (x, y)-chart. Denote the numerator and denominator of the
function giving x(z) in this chart by P(z), O(z), so for example in the (x, y)-chart we use (3.3)
and consider

P=fi(x,x,...,0'x/0) + folx, ¥, ..., 0'x/07)y,
(3.4)
0= fi(x,x,...,0'x/0Z) + fa(x, X, ..., 0'x /).

12
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Substitute expansions giving (x(z), y(z)) into these, to obtain formal expansions of P(z), Q(z)
about zo, which we denote

PR =Py+Pi+P+..., 0@=Q0+0Qi(+0(+..., (3.5)

where Py, Q, are polynomials in xo, . . . , x;, ¥, because of the highest order derivative appearing
in the equation (or the equivalent for an expansion of a section in another coordinate chart).
Consider the rational function Py/Q, on J™+/, using the transition functions between x;, X; etc
being defined by the P! x P! gluing as before, and denote its indeterminacy locus (where the
numerator and denominator simultaneously vanish) by 7;. We then have a well-defined map

o TN = T (3.6)

The reason we do not have to worry about indeterminacies of rational functions giving later
coefficients in the expansion of P/Q to obtain a well-defined map is the following. All of the
rational functions giving expansions of P/Q have denominator being a power of Q. Similarly,
all rational functions giving coefficients in the expansion of Q/P are powers of Py. Thus if
0, = 0 but Py # 0, we get a well-defined expansion of Q/P, in which none of the coefficients
have indeterminacies (their denominators cannot vanish as Py # 0) so we have a well-defined
a section visible in the (X,y) chart. Similarly, if Py = 0 but Q, # 0, we get a well-defined
expansion of /P, in which none of the coefficients have indeterminacies (their denominators
cannot vanish, as Py # 0).

Example 3.1. If we consider the mapping induced by equation (1.1) applied to a section
visible in the (x, y)-chart, written as an expansion (3.1), direct substitution yields

- axy — bx; + xoyo b bx% — 2x0x2 + x%yl (3.72)
0 X0 > 1 X% 5 cee .

Yo = Xo, yi = X1, e (3.7b)

so when x( # 0 we have a section visible in the (X, y) chart for the target bundle. Similarly, if
we have a section written in the (x, y)-chart as an expansion with coefficients X;, ¥;, we may
use the chart (x, Y) and calculate

aXoYo + bX1Yy + Xo 2bX>X0YE — bX3Y: — X3Y)
X1 =

XoYo ’ X212 S
Yo = Xo, Y, =X, ... (3.8b)

o = (3.8)

sowhen XY # 0 we have a section visible in the (X, Y) chart for the target bundle. Calculating
in the other charts, we find the subset I; € J™t! is defined by

Iy = {(x0, x1) = (0,0)} U {(Xo, X1) = (0,0)} U
{(x0. ¥o) = (0,0)} U {(Xo, Yo) = (0,0)} . (3.9)
So we have, for each r > 0, a map
o TN = T (3.10)

We note that the domain J" ! corresponds to the lowest order of jets to which the equation (1.1)
gives a well-defined map from J""'\/; to J".

13
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Returning to the general case, we also have, for each r > 0, a map
® = 0, 0@mp1... 0ot 2 JTHNL T (3.11)

defined on the Zariski open subset of J* ) where the numerators and denominators of the
rational functions giving leading coefficients of successive iterates do not simultaneously
vanish.

Example 3.2. To illustrate this, in the case of equation (1.1) being iterated twice, we obtain
in the (x, y)-chart rational functions giving (Xo, yo) as

_ azx% —abx;xg + ax%yo + axg +2b%xx0 — bzxf — bx%yl — bxlx% + xgyo
Xo (axo — bx1 + xoy0)

. (3.12a)

- axo— bxi + xoyo

Yo (3.12b)

X0

Computing the indeterminacy loci of these rational functions in all charts and taking its
union with 7;, we obtain

L = {(x0,x1) = (0,0)} U {(Xo0, X1) = (0,0)}U
{(x0,Y0) = (0,0)} U {(Xo, Yo) = (0,0)} U

(3.13)
{axo — bx1 + xoy0 = bx% — 2bxoxy + x(z)yl = 0} U
{Xo=0,X, =—-1/b} U{Yy =Y, =0},
and we have a well-defined map
D =g 004 JPL T (3.14)

We interpret this map ¢® in (3.11) on the set specified above as the generic behaviour of
the system, and in particular the initial data that is required to iterate the system k times in
almost all cases. We now consider the parts of the jet spaces where the rational functions we
have considered above have indeterminacies. For example, if we consider a jet in the charts
coming from (X, Y), (X, Y), if (Xo, Yo) = (0, 0) then we have

Y 5, X (Y2 —aY}) — bXoY?
1+by,;” 72 Xi(1+bY,)
Yo=0, Yi=X, Yy =X, ... (3.15b)

Xo=0, X;=

. ... (3.15)

and so on. By direct calculation using formal series expansions, it can be seen that as long
as X; # 0,1+ bY; # 0, the jet in (X,Y) coordinates is determined up to the same order
as the one in (X, Y) coordinates. Thus, on the part of J"(r > 1) where (Xy, Yo) = (0,0) but
X1 # 0,1+ bY; # 0, the system induces a mapping J" — J" and we have less information
loss than in the generic case. Comparing this to the discrete case, we see a parallel to the fact
that indeterminacies of the iteration mappings are blown up to curves.

3.2. Blow-down type singularities

After considering a concept of generic information loss in terms of the amount of initial data
generically required to iterate k times, we turn to parts of jet spaces on which the system induces
maps with more information loss. We will refer to these as blow-down type singularities, in

14
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parallel with the discrete case where information loss corresponds to curves being blown down
under iteration mappings.

Consider the mapping ¢, : J”"'\I; — J” induced by equation (1.1) as derived above. We
will be interested in the behaviour under this mapping of subvarieties defined locally by a finite
number of algebraic constraints. For most codimension m subsets of this part of J”*! (where
r is chosen large enough such that it includes all the variables appearing in the constraints
defining the subset), the image under ¢, will be of codimension < m in J".

For example, we can see a variety of behaviours of subspaces as follows. The subspace
defined in the (x;,y;) chart by the single algebraic constraint y, = ¢, where i < r+ 1 and ¢ # 0
is some constant, is of codimension one, and its image under ¢, is of codimension zero. Another
subspace defined by x; = ¢, for some i < r and ¢ again a nonzero constant, will have image
under ¢, of codimension one. The codimension two subspace where (X, Y¢) = (0, 0) with the
rest of the coefficients X;, Y; generic can be quickly seen from (3.15) to have image again of
codimension two.

Definition 3.3. A blow-down type singularity of a delay-differential equation of the form
(1.4) is a codimension m subvariety of J . for some r > 0, (locally defined as the vanishing
locus of a number of polynomials in coordinates introduced above) whose image under the
induced map ¢, is of codimension greater than m.

We emphasise again that this is in analogy with the discrete setting, where singularities
are defined in the sense of an increase in codimension, namely where curves are blown down
to points under the iteration mappings. Again we note that in the following examples, r is
taken large enough such that J"*! includes all variables appearing in the algebraic constraints
defining the blow-down singularities.

Example 3.4. The equation (1.1) has a blow-down singularity in J"*!\/; given in coordi-
nates by xo = 0 which is of codimension one (with all other x;, y; generic) but has image of
codimension three in J”, given in coordinates as follows:

{xo=0} — {Xo=0, X;=-1/b, 3 =0}

codim 1 —  codim3

Similarly, we see that the development of double and triple zeroes correspond to the following
blow-down singularities:

{X()ZO, X1:O} — {XOZO, Xlz—l/Zb, yo =0, }7120}

codim2 —  codim4

{XOZO, x1 =0, XQZO}%{XOZO, X1=—1/3b, yo=0, y; =0, 5)220}

codim 3 — codim 5

and more generally the development of a zero of order m corresponds to the following blow-
down singularity:

{x;i=0, Vi=0,....m—1}—={Xo=0, X,=-1/mb, y;=0, Vi=0,...,m—1}

codimm —  codim (m+ 2)

15



J. Phys. A: Math. Theor. 53 (2020) 435201 A Stokes

Example 3.5. The equation (1.2) has a blow-down singularity given in coordinates by xo =
0 which is of codimension one (with all other x;, y; generic) but has image of codimension five
given in coordinates as follows:

(xo=0} — {Xo=0, Xi=0, 5%=0, 3 =¢X2 pyi=—¢%Xs}

codiml —  codim5
We also have a blow-down singularity corresponding to the development of a double zero

XOZO, X:I:Oa X2:O375}0:Q? 5)120
{x0=0, x=0} — 2 —2qX3 =0, y3—2pX;—49X4 =0,
PPX5 4 2pgXsXy + 2¢° X5 — 2¢°X3X5 = 0
codim2 —  codim8

and more generally the development of a zero of order m corresponds to the following blow-
down singularity:

{ X, =0 Vi=0,..., m, y,=0, Vi=0,..., m—1 }

codimm —  codim (3m + 2)

Here F'; are polynomial in their variables that give m + 1 independent algebraic constraints,
which may be identified by substituting series expansions for x(z), y(z) and noting that X, | »
is the first coefficient in which any y; appears.

Example 3.6. The equation (1.3) has a blow-down singularity in (x;, Y; coordinates)
corresponding to x(z) developing a zero of order one. This is given by

{@o— Dxyg+ax; =0} = {x0=0, (20— DAyo+ay; =0}

codim 1 —  codim?2

and more generally the development of a zero of order m corresponds to the following blow-
down singularity, which for conciseness we write in terms of derivatives of the sections, as
opposed to explicitly in terms of coefficients:

i xl:() VZZO,,m—l

d /
i = d’

V=0 ml Vi=0,...,m—1

codim m —  codim 2m

3.3. Singularity confinement in equations (1.1)—(1.3)

We now formulate a geometric description of the confinement type behaviour we observed
in our three examples. Again, the analogy with the discrete case is that if, when iterating the
system, we arrive at a blow-down type singularity we only need to iterate a finite number of
times further to recover the generic level of information loss, both in terms of orders of jet
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spaces between which the system induces maps, and the behaviour of the singularity under
these in terms of codimension.

Definition 3.7. Consider a three-point delay-differential equation of the form (1.4) with iter-
ation mappings ¢,., which has a blow-down type singularity B,, of codimension m. We say the
singularity B,, is confined if there exists some k > O such that iterating the system k times
induces a map from B,, C J"* whose image is of codimension < m in J'.

We note that this definition captures both the recovery from the increase in codimension of
B,, as well as the amount of initial data required to iterate k times generically. Take B,, as a
subset of the same order jet space J" X as for the generic behaviour ¢® : J*HH\ [, — J". We
will consider accessible blow-down singularities: those which may develop while iterating the
system from regular nonzero initial data, which can be understood in terms of the iteration
mappings as follows.

Definition 3.8. For a three-point delay-differential equation as above, a blow-down type
singularity B C J" is said to be accessible if it is not contained in the image under ¢, of the
part Z C J't! (with coordinates from the (x,y)-chart) corresponding to zeroes or poles, i.e.
Z={x) =0} U{X, =0} U{y, =0} U{¥, =0}

This restriction eliminates, for example in the case of equation (1.1), the problem of con-
sidering when u has a pole while u is regular and nonzero, which as discussed in section 2
cannot happen while iterating from regular and nonzero initial data. For the three equations
we consider, we first describe the set of all such singularities and then use our results concern-
ing infinite families of singularity patterns to deduce that they are all confined in the above
sense.

3.3.1. Equation (1.1).

Lemma 3.9. The only accessible blow-down type singularities of equation (1.1) are
By={x;i=0 Vi=0,....m—1}.

Proof. We will first show that the only blow-down singularities visible in the x;,y;
chart are contained in {xo = 0}. Suppose B C J'"! is of codimension m, so dimension
d =2(r+ 1) —m, defined locally by Fy =-.--=F, =0, where F; are polynomial in
X05 - +sXr41, Y05 - - -2 Y,41> and that xo # 0 on B. Then near p € B (at which B is nonsingu-
lar) given in coordinates by p: (x;,y;) = (x{,y}), we have a parameterisation of B by d free

parameters. That is, there exist iy,...,ip, ji,...Jja—p C {0,...,r+ 1} such that we have a
parameterisation
"
S1 Xip =X + 81
s X, =xt+s
L I (3.16a)
t Yi =Yy, th
la—p Viaep = y;d,,, +la—p
with the rest of the variables x;, y g given by analytic functions of s1,...,5,, t1,...,1lq—p:
X=X +Fi(s1,. .., Sp.t, o tap), Vi = y; +Gi(S15- - Spa sy tap), (3.17)
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fori ¢ {ir,....ip5 j & {J1s.- s jap}, With F;, G; analytic and zero when all s;, ¢, are zero,
and the Jacobian of this parameterisation at p is of rank d. We now show, using this parame-
terisation, that the image of B in J" under ¢, is of dimension > 2r — m as long as xy # 0 on
B. In coordinates, the mapping is of the form

_ N P.(x0, ..., Xn+1)
VYn = Xn, Xp =Yn— % (3.18)
0

Here P, is a homogeneous polynomial of degree n + 1, which follows from the repeated appli-
cation of the quotient rule in computing expressions for derivatives of x =y + @ We
obtain a local parameterisation of the image of B:

Vi = Xj, + 51 Xj, =Y; +h+H
: : (3.19)
Vip = Xi, FSp Xj, =Y, , tlapt+Hip
where Hy,...,H,_, are analytic in si,...,s, (as xo # 0 on B), with the rest of the coordi-

nates y;, X; being analytic functions of the parameters. The Jacobian of this parameterisation
can be seen to have rank at least d — 2, with linearly independent columns corresponding to
partial derivatives with respect to s, ..., 8p, 1, - . ., t4—p—1 (t4—p Will not contribute to the rank
ifd — p=r+1,ie.if y,, is one of the free variables in the parameterisation of B). The pos-
sibility that the image is of codimension less than m has already been illustrated at the start of
subsection 3.2, where constraints on y; may not induce constraints on the image.

Similarly, if we consider a subvariety of codimension m in the chart (X,y) away from
{Xo = 0}, we see that its image under o, must be again of codimension < m. This is done
in exactly the same way as above, noting that the mapping in charts is of the form

- P,(Xo, ..., X,
Y, =X, Xn:yn_w
XO

, (3.20)
where again P, is a homogeneous polynomial of degree n + 1. Regarding the part of the jet
space with Xy = 0, we remark that Xy = 0 with y, # 0 is not an accessible singularity in the
sense of definition 3.8, as for a pole to develop while iterating, it must follow a zero. Further, the
only parts of {X, = 0,y9 = 0} accessible from regular and nonzero initial data are those com-
ing from one of the blow-down singularities B,,. Similar calculations in the charts (x, Y) and
(X, Y) show that it suffices to consider blow-down singularities visible in the (x, y)-chart where
at least xo = 0. If we take x(z) = x,¢" 4 X1 ¢" '+ ... form > O0andy = yy +y,C + ...,
then direct calculation shows that we have

_ _ 1 - bxm+1 —axy Yo
Xo=0, Xi=—, = — e 3.21
0 ! bm 2 b2m?x,, b2m? ( )
and more generally that
X _ Pn(xmw~~a-xm+n,y0,~~~ayn71) o Yn—2
n bnmnx%—l b2m2’ (322)

v, =0 for n<m, y,=x, for n>m,

where P, is polynomial in its arguments. By again considering parameterisations and their
Jacobians, it is straightforward to show that we cannot have blow-down singularities away
from x,, = 0. Applying this argument inductively completes the proof that the only accessible
blow-down singularities are as claimed. (]

18



J. Phys. A: Math. Theor. 53 (2020) 435201 A Stokes

We now show how the singularity patterns pointed out in subsection 2.1 correspond to
confinement of blow-down singularities for equation (1.1).

Example 3.10. The singularity B, which corresponds to the beginning of the singularity
pattern

(rg,0', 00", 00", 0", rg),

is confined after five iterations. We calculate as we did in section 2 but keep track of orders of
jets and codimensions to find that composing the iteration on sections gives maps as follows:

B, CJ  codim(B)) =1 x?9,yO) = (0", rg)
DBy = codim(eP(B) =3 @, yV) = (c0!,0h
@: B = codim(e@B) =5 x?,y?) = (00!, 00h)
®: B - codim(e®B) =3 @*P,yP) = (0!,
@: B = codim(e@(B) =1 (xW,y?) = (rg,0")
e By —=J" codim(@®(B1) =0 (x°,y) = (rg,re)

For each iteration, we have indicated the order of jet space to which we have well-defined
mappings from By, as well as codimensions of the images of B and the corresponding parts of
the singularity pattern. We note that the exceptional behaviour we observed in the singularity
pattern, namely that when computing x®, three terms vanished as it developed a zero rather
than a pole, is reflected in the codimension falling from 5 to 3.

More generally, if we take the blow-down singularities B,, as in lemma 3.9 as subsets of
JPH347 with the rest of the coefficients generic, from theorem 2.2 we see that iterating the
system (1.1) induces a map ¢>"+3 : B,, — J", where the image of B,, is a jet visible in the
(x, y)-chart. To see that this image is of codimension zero, we must make some observations of
how the initial data from the section (x*’, y@) enters into the subsequent iterates, and in par-
ticular how it is recovered in (x®”+3), y@m+3)) This will require detailed but straightforward
analysis of the mapping on jets in three cases, corresponding to different points in the singular-
ity pattern. Firstly, when the first pole develops and how the coefficients from (x?, y©) enter
into X, X@, secondly, how the initial data is propagated through the sequence of simple poles
XM, .., X?™ then how it reenters x?"+2) xm+3) after the zero develops at x>, The key
technique for our analysis here is essentially identifying and counting free variables, which we
illustrate in detail in this example.

We first consider the map from (x@, y©) to (X1, y()) corresponding to the development of
the first simple pole in the sequence. Here we omit the superscripts for conciseness, working
with the mapping in the charts (x, y) and (X, y). Beginning with initial data corresponding to B,,,,
namely sections in the (x, y)-chart with xo = x| = ... x,,—; = 0, with the rest of the coefficients
Xi, Y generic, by direct calculation we have

_ _ 1
Xo=0, Xj=——,
0 ! mb
= yn—2 Pn(xm,~-~,xm+n—1,y0,-~-,))n—3)
X, = — , forn>2
m2b? Xl -~
Yo=:""=Yu1=0, y,=x, forn=>m,
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where P, is polynomial in its arguments. From this, we see that the coefficients X;>, y > are
algebraically independent functions of the initial data, which follows from the way in which the
free variable y, , (n > 2) appears linearly in X,, but not at all in X,,_; and so on. In particular
we have the image of B,, under a single iteration being of codimension m + 2, as noted in
example 3.4. Similarly, we see that the next iterate is obtained from X;, y; above as

= = 1 = _ _
XOZO, Xlzz, Xj:Pj(Xo,...,Xj), for 2§]§m—|—1,
Xy = =22 4 0o KT Faa) for nzm+2,
= = 1 = _
YOZO, Y1 2—7, Yn:Xn, for n>2
m

Here P; is again polynomial, linear in X ;, and Q, is polynomial in its arguments. From this, we
see that the image of B,,, is of codimension m + 4, with X;, ¥ ; having the following dependence
on the initial data x;, y J:

= 1 =
0:0, Xl :Z, Xn:Fn(y(),-~-,}’n—2,xm,-~-,xm+n—l) for n>m+25

0:0, Yl :_m_ Yn:Gn(yo,-~-,}’n—2,xm,-~-,xm+n—l) for n>m+25

where, importantly, F, is linear in y,_, with constant coefficient, and also linear in x,,,_; with
coefficient being a constant multiple of 1/x,,.

We now consider the iterates X¥, ..., X" which correspond to simple poles, and show
that we have the same kind of dependence of coefficients on the initial data. Building on our
calculation (3.15) in the charts (X, Y), (X, Y), we see that sections with (X, Yo) = (0, 0) have
images under the iteration mapping given by

X O (U e [ PuXys .. X Y1, Y, ))
S eyt TN bny XAy 7 303

Yo=0, Y1 =X, Y,=X,, forn>2,

where P, is polynomial in its arguments, and we note that these expansions are valid for
determining all iterates (X®, Y@), ..., (X", Y®") as we have X\ 0,1+ by +# 0, for
k=0,...,2m — 1, which we know from our explicit expressions of the residues of the simple
poles in the singularity pattern, given in theorem 2.2. Iterating through this sequence of sim-
ple poles, we have well-defined maps J2" 34\ {X;(1 + bY;) = 0} — J*" 377 and a simple
calculation using the Jacobian as in the proof of lemma 3.9 shows that the image of B,, cannot
change codimension in J>"*3*" under this sequence of maps, so we have the images of B,,
under @, ..., p®™ are all of codimension m + 4.

Further, from (3.23) and our observations of (X, ¥) we see that for k = 2, .. ., 2m, the coef-

ficients X®, YO have the same kind of dependence on the initial data, and in particular the last

20



J. Phys. A: Math. Theor. 53 (2020) 435201 A Stokes

iterate before the zero develops is of the form

1
(2m) __ (2m) __
Xgm =0, X —= —

mb’
X,{lzm) - F,(‘[zm)(y05 . 5yn—2, xma . ,xm—‘,—n—l) fOr n 2 m + 2,
1
Y(()Zm) — 0, Y{Zm) -z,
b
Yff’”) — Gﬁf’”)(yo, s Y02y Xy e ooy Xman—1) for n>=m+2,

where again F), is linear in y, , with constant coefficient, and also linear in x,,,_; with
coefficient being a constant multiple of 1/x,,.

We now consider the final step, when the map (X, Y@®™) s (x@n+D y@m+Dy shows a
drop in codimension of the image of B,,, with the development of a zero of order m. Omit-
ting the superscripts for conciseness and writing (X", Y®") = (Xo + X, + ..., Yo + Y ( +
...), we know that the coefficients for the image of the B,, under the iterations up to this point
in the singularity pattern must satisfy at least

Yo=0, Yi=-b"' Xo=0, X, =mb) . (3.24)

Similarly writing (x®?"+D_ y@m+Dy — (xg + %1 + ..., Yo+ Y( +...), we see the mapping
on coefficients from jets satisfying (3.24) gives

X=0, xj=a+ bsz2 — b2Y2, Xy = —b? (bm2X§ + bY22 —2mX5 + Y3) s
Xn :bz(nan+l _Yn+l)+Pn(X2a~-~,Xn, YZ,"'aYn), for n> 1, (325)

_ - 1 - .
Y()ZO, Y]Z%, Yj:Xj fOI‘]}Z,

where we have again used P, to denote a polynomial in its arguments. We know from theorem
2.2 that if (X®™, Y®™) are obtained by iterating from B,,, then the coefficients X;, ¥; must sat-
isfy the algebraic conditions for X, . . . , X,,—1 given by (3.25) to all vanish, and we know exactly
what relations must exist between the coefficients (Xi(zm), Y;zm)), which have evolved through

the singularity pattern from those defining B,,. Further, from the dependence of X*™, Y;zm)

on the initial data, and the way in which Xi(z"’), YEZ"’) enter into xl(z"’“), Y;Z’"H)
(3.25), we see that the image of B,, under "1 is of codimension m + 3 in the jet space
corresponding to (x@"+1 y@®m+Dy Finally, another calculation on the exact same lines shows

that after one more step, we have the image of B, under ¢>"*+? being of codimension zero.

according to

3.3.2. Equation (1.2). The analysis in this case proceeds in exactly the same way as the pre-
vious one, so we omit details for conciseness. In particular, the following may be proved using
the same techniques and approach as for lemma 3.9:

Lemma 3.11.  The only accessible blow-down type singularities of equation (1.1) are

By={xi=0 Vi=0,...,m—1}.
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We may also use the same techniques to examine the behaviour of blow-down singularities
in terms of codimension, beginning with that associated with a simple zero:

Example 3.12. The singularity By of equation (1.2), which corresponds to the start of the
singularity pattern

(rg,0',00%,0", rg),

is confined after four iterations, with the following behaviour under compositions of the
iteration maps:

B, CJ* codim(B)) = 1 x?, ) = (0!, rg)
oM By — codim(eP(B) =5 (x1,yV) = (002, 0"
0P By — g codim(p®(B) =5 (x?@,y?) = (0!, %)
e B 5T codim(ePB) =1 «,y?) = (rg,0")
¢V By =T codim(@?(B))) =0 (x¥,y?) = (rg, rg)

We note here again that the drop in codimension occurs when two terms vanish in the expansion
for x¥ as it regains regularity as opposed to having a double pole.

Again, considering the blow-down singularities B,, from lemma 3.11 as subsets of J2"+2+7

theorem 2.1 and tracing the dependence on initial data of the iterates through the sequence using
exactly the same techniques as in the previous example, we see that we have "+ : B, — J”
under which the image of B,, is of codimension zero, so all accessible blow-down singularities
of equation (1.2) are confined.

3.3.3. Equation (1.3). In this case we begin with an example, as the blow-down singularities
for equation (1.3) occur not after x develops a zero at 7y, but under the mapping applied to the
Jets in x, y coordinates satisfying the condition for a zero to develop.

Example 3.13. The condition on (x,y) for a simple zero to develop while iterating
equation (1.3), namely

By = {ax; + Mzo — 1)x, = 0},

with the rest of the coefficients generic, corresponds to the start of the singularity pattern which
we denoted in section 2 by

(rg,gé, 0', 00!, E(I), rg) .

We observe a jump in codimension not from (x@, y©) to (xV, y), but one step earlier, and
we observe the following behaviour under compositions of the iteration maps:

Bi I codimB)=1 Ny =g
PV By codim(pV(B) =2 0,y ?) = (0',¢)
©?: By = J codim(@®(B)) =2 (xV, D) = (0!, 0")
¢ B =T codim(@P(B) =2 (x?,yP) = (¢}, 00")
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e B 5 7 codim(e@B)) =1 (D,y) = (g, ¢

e B =T codim(@®(B) =0 (xP,y?) = (rg,rg)

We note here again that a drop in codimension occurs when x® regains regularity as opposed
to a simple zero.

Again by the same approach, the following may proved by local calculations in charts:

Lemma 3.14. The only accessible blow-down type singularities of equation (1.3) are

di
B, = {d. (Mex(@ +0x'@)| _, =0, ¥i=0,...,m- 1}
Zl =z
In the same way as the other two examples, we see from theorem 2.3 that for regarding B,,
as a subset of J@"*2_iterating the system gives a map @3 : J@m+3+0 5 j) under which
the image of B,, is of codimension zero.

4. Conclusions

We now summarise our work and discuss questions that follow it naturally, again organised
into two parts: firstly singularity analysis on the level of equations and secondly its geomet-
ric interpretation. On this first level, we have significantly extended previous studies of delay
Painlevé equations and discovered new confinement type behaviour, which is interesting in
its own right. In the process we have developed techniques for the analysis of singularity
patterns of arbitrary length and proving confinement, which we hope will be useful in tack-
ling one of the main difficulties in the singularity analysis of delay-differential equations. It
would be interesting to adapt our methods to other integrable delay-differential equations, for
example extensions of the examples considered in this paper such as the families generalising
equation (1.2) isolated by Halburd and Korhonen by imposing Nevanlinna-theoretic integrabil-
ity criteria [HK17]. Though preliminary calculations show that these equations admit some of
the same confined singularity patterns as equation (1.2) (namely those associated with single,
double and triple zeroes) it is a natural next step to determine whether these admit the same
infinite families and whether this behaviour fits into our geometric framework.

Another question that arises from our work on the level of equations relates to the use of
singularity analysis techniques to isolate integrability candidates. The fact that each of these
three examples may be obtained by requiring confinement of only the simplest singularity in the
family associated with zeroes of different orders prompts the question of whether and how this
could ensure confinement of all singularities in the family. Further, there may be applications
of our results to the search for elliptic function solutions of degenerate cases of delay Painlevé
equations. For example, the a = 0 and p = 0 cases of equations (1.1) and (1.2) respectively
are known [Ber17] to admit elliptic function solutions. Degree 2 elliptic function solutions
were identified with the help of singularity analysis, and in particular that these degenerate
cases admit the singularity patterns associated with simple zeroes outlined in section 2. These
patterns are compatible with elliptic function solutions in the sense that the numbers of poles
and zeroes in a pattern are equal (counted with multiplicity), and also that the residues of poles
in the sequence sum to zero. We note that our proofs of the infinite families of singularity
patterns are also valid for the degenerate cases, and we observe the same kind of compatibility
with elliptic functions in all of them, so it would be interesting to determine whether they may
be used to isolate higher degree elliptic function solutions.
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The other aim of this work was to initiate the geometric study of delay Painlevé equations.
We have put forward a geometric description of singularity confinement in these three exam-
ples, and we hope to have worked in convincing parallel with the discrete case, and in particular
captured in our description the exceptional nature of these equations in terms of the recovery of
initial data when a singularity is confined. By no means, however, is this geometric framework
complete or definitive, and we hope that our ideas are refined and built upon through singu-
larity analysis in more examples. In particular, aside from the methods we have introduced for
proving confinement in singularity patterns associated with solutions taking singular values
with arbitrary multiplicity, the calculations required for our geometric approach are essen-
tially the same as those for the usual singularity analysis of delay-differential equations, with
the added consideration of codimension, so we hope that they can be easily utilised by other
researchers.
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Appendix A. Proofs of infinite families of singularity patterns

We now give proofs of the results of subsection 2.1 relating to infinite families of singularity
patterns.

A.1. Proof of theorem 2.2

For equation (1.1), our strategy is to consider a singularity pattern beginning with (rg, 0™),
then derive and analyse recurrences for the coefficients in the expansions of the next (2m + 1)
iterates, to deduce that the singularity pattern is as claimed.

Because the equation (1.1) is autonomous we can take without loss of generality the zero
of order m to be at the origin, and start with the formal expansions

u=> uz (A.la)
j=0

w=> ug, un#0. (A.1b)
Jj=m

Inserting these into the equation, we immediately see that u has a simple pole:

m
i=—"5 1 o). (A2)
z
The iterates of interest to us are u = u©®, u = uD, u®, ..., u®™ u®"+D By inspection of the

terms on the right-hand side of the forward iteration (2.6), these will be either regular or poles
of order at most one, so we introduce the notation
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(o]
u® = 3"z, (A3)
n=-—1
fori =0,...,2m + 1, where any number of the #”) may be zero. A
By deriving recurrences for the coefficients u”, we will show firstly that u(_’)l # 0 fori=
1,...,2m, then that u(f;"H) = uézmﬂ) =...= uf,ff’frl) = 0, from which we will deduce that

u®m1 = O(z™), and in particular has a zero of order m if the rest of the initial data is generic.
It will be helpful to introduce some notation to deal with the logarithmic derivative «'/u in
the forward iteration map.

o0

Lemma A.1. Let r be a nonzero integer. If u = Zj:r

u -
; = E Unzn7

n=-—1

ujz’ with u, nonzero, then

where the coefficients U, are given by U_y = r, Uy = u,4+1/u,, and so on according to the
recurrence

1 n
Un = 1 r+n - r ‘Un—‘
w (n+ Dtyinia ;“ﬂ j

We first deduce from the recurrence that following the zero of order m, the next 2m iterates
have simple poles:

Proposition A.2. The iterates u” have simple poles atz = 0 foralli = 1, ...,2m, and we
have

u(_ZIf) =kp, for k=1,...,m, (A.4a)

Ut =k —m)B  for k=0,...,m. (A.4b)

Proof. We already have that u(_oi =0and u(_l)l = —mf. We then insert the expansions (A.3)
for the iterates u'” into the relevant upshifts of the equation, making use of lemma A.1 with
r = —1, which gives

WD =0+ 8, (A5)

for all i such that ¥ has a simple pole. Iterating this from i = 1 from the initial values for
u(f)i, u(fi, we see that u”) have simple poles for all i = 1,...,2m, and we obtain the formulae

(A4). O

It will now be helpful to introduce the following notation for the iterates:

o0
2k k k k 2k
W = fO =" pPz 0= ulh, (A.6)
n=—1
(o]
2k+1 k k k 2k+1
ul +):g(): Zg;)zn’ g;):u; +h, (A7)
n=-—1
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fork = 0,...,m. Aswenow know thatu", . .., 4> have simple poles at 7 = 0, we use lemma
A.1 to write the logarithmic derivatives of f®, g&=D fork =1,...,mas

[o¢] / (o @]

S ® k) n g(k) k) n
W:ZFH, @=2an. (A.8)

n=-—1 n=-1

Further, we have from (A.4) that fork = 0, ..., mthat F’ (_k} = kp3, G(_k)l = (m — k)j3, so we have
the following recursive formulae for F®, GV:

1
FP =5 |+ D50 - Zf}"%F(“ : (A9a)
j=1
G = ﬁ (n+ gl — Zg(“ G- (A.9b)
—m

valid for all k such that f®, ¢® have simple poles. Using this notation, the forward iteration
then leads to the recurrences,

fO = £ 4o - BGED, (A.10a)

ggc) _ ggc D4q— ﬁF(k), (A.10b)
and

fo = fo= _ gGh-D), (A.11a)

gl = gk=b _ gpk) (A.11Db)
forn > 1,and k = 1,...,m. Using (A.9) with n = 0, we see that the recurrences (A.10) are a

linear system of dlfference equations for f; @ gg‘):

e g (A122)

g =g " +a ]1€ b, (A.12b)

subject to the initial conditions " = O and g} = u{’ = a + uy — fu; /uo determined by the
initial data u, u. The unique solution of (A.12) subject to these initial conditions is given by

(k) = k(o + O), (A.13a)

gy =m—hcC, (A.13b)

where C = uél) /m. Similarly, after using the formula (A.9), the recurrences (A.11) become

] A zg<k Kol PG EY
—1—m
1
g,(zk) _g’(lk n_ - (n+ l)f(k) E :f](k)lF(k) , (A.14Db)

k =
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subject to the initial conditions (%) = 0 forn = 0, . — 1, and g fixed by the initial data

, u. Given the solution (A.13), the n = 1 case is then a hnear system of recurrences in k for
f l(k), g(lk), which may be solved by elementary methods. With both n = 0, 1 solutions in hand
the system for fz(k), gg‘) can be solved, and so on. Observations of these solutions lead us to the
following proposition:

Proposition A.3. The unique solution to (A.14) subject o the initial conditions is given by
(P, 8% n=0,....,m—1,k=0,...,mof the form
fO = kp® (A.15a)
g% = (k — m)Q®, (A.15b)
where P, O are polynomial in k of degree at most n.

Proof. We have from formulae (A.13) that the statement is true for n = 0, so we proceed by
induction. Suppose that fék), .. fék)l and g(k) ces g;k) , are of the form (A.15). The recursive
formulae (A.9) then imply that F( s F ,(lk_) , and Gg‘), R Gflk_)l are polynomial in k, of degree
at most n — 1. We then see that the following terms from (A.14) are polynomial in k of degree
atmostn — 1:

n

kZ (k) F(k) _ Z po F<k) Z A &/ (A.16a)

j=1

n n—1
1 .
= m) (k) (k) Z Q(k) G(k) Z ok, (A.16b)
so we have
FUED — 0 _ n + g+ Z“ i, (A.172)
1
gt = gt _ ’]:1‘ lf(k)Z)\ &, (A.17b)

We write our ansatz (A.15) for the solution to this equation as
fn(k) _ kz ajkj (A.18a)
P = (k — m)Zb k. (A.18b)

We note that one initial condition #¥’ = 0 is satisfied automatically, but imposing the other
requires us to set

by = —u') /m. (A.19)

We now insert the ansatz (A.18) into the equation (A.17) and equate coefficients of powers of
k to obtain a linear system in 2n + 1 variables ay, . .., dn, by, ..., b,:

0=a,+b,, (A.20a)
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A=+ Da+ G+ Db+ 3 (—1) ((J“: 1) +m ({)) bj, (A.20b)

J=it1
pi=>y ({) aj+ (n+ Db, (A.20c)

Jj=i
Ao = (n+ Dag+ (m+ 1) (=1)’b;, (A.20d)

j=1

o= _aj+ (n+ Dby, (A.20e)

j=0
for i=1,...,n—1. We write this as M,v=c¢, where v = (ao,...,anbi,...,b)T,

c=(0,0,-sAns 1Oy - - - u,,)T and M, is the square matrix of size 2n + 1 giving the right-
hand side of the system (A.20). A simple sequence of row and column operations yields an
upper-triangular matrix and we obtain

det M,, = (n)*(m — n),, (A.21)

where (a), = Hf’;& (a + i) is the usual Pochammer symbol, so the matrix is nonsingular for
n < m — 1, showing that the unique solution of the recurrence (A.17) is of the form (A.18) and
the inductive step is complete. (]

Together with proposition A.2, this allows us deduce that u*" ™D = 0 for m > n, and thus
that @7+ = O(z™).
A.2. Proof of theorem 2.1

While we may proceed along the same lines as in subsection A.1, a shortcut is provided by
a known Miura-type transformation between equations (1.1) and (1.2). This may be easily
detected given the well-known transformation between the differential-difference systems that
give these equations as similarity reductions, and is proved by direct calculation:

Lemma A.4. Ifvsolves (1.2) with parameters p, q, then u = vv solves (1.1) with parameters
a=2p,b=—q.

So, we consider a singularity pattern for equation (1.2) beginning with (v, v) = (rg,0™),
and we also assume that the zero has developed while iterating through regular and nonzero
iterates, so v is also regular. Then under the transformation to a solution of (1.1), we have

(u,u) = (v, vv) = (1g,0"),
so the transformation gives us a singularity pattern for (1.1), which by theorem 2.2 must be
L1 1

m 1 nm
(rg,O ,00,00,00,...,00 ,00,0 ,rg),

with u® ~ ¢ fork = 1,...,2m, then u®* D ~ ¢, and u®"**+? regular. So this implies that
the iterates v® in the singularity pattern must satisfy:

v*Dp® =y ® =1 for k=1,...,2m, (A.22a)
@M @mED) _Cmt) o, (A.22b)
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,U(2m+l)v(2m+2) — u(2m+2) — O(CO) (AZZC)

Beginning with our assumption that v'® ~ ¢, we see from the k = 1 case of equation (A.22a)
that v ~ ¢+ and then using the k = 2, .. ., 2m cases successively that

@0 ¢", for k=0,...,m, pBD o C’(’"“) for k=0,...,m—1. (A.23)

Then using equations (A.22b) and (A.22c) we have that v®"*+D ~ ¢® and v®"+? = O(¢°) and
the proof is complete.

A.3. Proof of theorem 2.3

Again, while the strategy and techniques from the proof of theorem 2.2 are available for this
case, a shortcut is provided by the following transformation between equations (1.1) and (1.3),
which was pointed out in [GRM93]:

Lemma A.5. If w solves (1.3) with parameters \,«, then u = w/w solves (1.1) with
parameters a = 2\, b = —q.

Similarly to in the previous section, we consider a singularity pattern for equation (1.3)
beginning with (w, w), where dd—;,- ()x(z — Dw(z) + 0@’(1)) =0atz=zofori=0,....m—1
and w ~ ™. And we also assume that the zero has developed while iterating through regular
and nonzero iterates, SO w,w are also regular and nonzero. Then under the transformation to
a solution of (1.1), we have

(w,u) = (&=, =) = (g, 0"),

SRS

w

so the transformation gives us a singularity pattern for (1.1), which by theorem 2.2 must be

1

1 1 1 1
(rg,O’",oo ,00 ,00,...,00,00 ,Om,rg),

with u® ~ ¢! for k=0,...,2m — 1, then u®® ~ ¢™, and u®"*+? regular. So this implies
that the iterates w® in the singularity pattern must satisfy:

w(k+l)
W:u“mg—‘ for k=0,...,2m—1, (A.24a)
w
w(2m+l) .
e = U~ (A.24b)
w(2m+2)
— = u®mt = 0. (A.24¢)
w' m

Beginning with our assumptions that w® ~ ¢ and w'"" is regular, we see recursively from
equation (A.24a) that

w® ~ "k for k=0,..m—1, w*tYV~(¢* for k=0,...,m. (A.25)

Then using equations (A.24b) and (A.24c) we see that w®" 1 ~ ¢ and w®*+? = O(¢") and
the proof is complete.
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