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ABSTRACT  

 

Conventional GNSS positioning in dense urban areas exhibits errors of tens of meters due to non-line-of-sight (NLOS) reception 

and multipath interference. Inertially-aided extended coherent integration within the GNSS receiver, as in the case of 

supercorrelation or S-GPS/GNSS, mitigates these effects by making the receiver more sensitive to directly received signals than 

reflected signals whenever the receiver is moving. This reduces multipath interference and makes NLOS signals easier to detect 

using signal-to-noise measurements. 3D-mapping-aided (3DMA) GNSS uses predictions of which signals are NLOS to enhance 

the positioning algorithms. 3DMA GNSS ranging algorithms can be combined with shadow matching, which uses the signal-to-

noise measurements. Both supercorrelation and 3DMA GNSS can improve positioning accuracy in dense urban areas by more 

than a factor of two. As supercorrelation takes place at the receiver signal processing stage while 3DMA GNSS operates at the 

positioning algorithm stage, the two techniques are potentially complementary. This paper therefore investigates the benefits of 

combining them. 

GNSS signals were recorded using a Racelogic Labsat 3 GNSS front end on a trials van in the Canary Wharf area of London 

and subsequently processed to generate conventional and supercorrelated ranging and signal-to-noise measurements from the 

GPS and Galileo satellites. These are then input to several different positioning algorithms, including conventional positioning, 

shadow matching and likelihood-based 3DMA ranging and a combination of shadow matching and  likelihood-based 3DMA 

ranging.  

 

Single-epoch positioning results using code-only pseudo-ranges clearly demonstrate the benefit of supercorrelation with position 

errors using S-GNSS measurements 40% smaller than those using conventional least-squares positioning techniques. 3DMA 
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GNSS improves the position accuracy by about 25% in the denser environments, but does not bring any benefits in the more 

open areas. When supercorrelation is combined with filtered carrier-smoothed pseudo-ranges using outlier detection to reject 

code components that  inconsistent with the carrier-based component, the least-squares position errors are reduced by a factor of 

5.7 in the densest of environments and a factor of 3.5 elsewhere. With these filtered measurements, 3DMA GNSS techniques 

have little impact on the positioning accuracy. Thus, 3DMA GNSS techniques are likely to be more useful for snapshot 

positioning techniques and potentially for the initialization of filtered solutions than for continuous positioning. 

 

1. INTRODUCTION 

 

Conventional GNSS positioning in dense urban areas can exhibit errors of tens of meters, sometimes more than a hundred meters. 

The two main causes of this are non-line-of-sight (NLOS) reception and multipath interference [1]. NLOS reception is due to 

complete blockage of the direct line-of-sight (LOS) GNSS signals by tall buildings, other structures (e.g. walls), or passing 

vehicles. Signals are then often received via reflected paths leading to a ranging error equal to the extra path delay, i.e. the 

difference between the reflected and direct paths. Multipath interference is due to reception of signals via multiple paths from 

the satellite to the receiver, including the direct path. Ranging errors due to multipath interference can be positive or negative 

and depend on the relative amplitude of the reflected signal(s), their path delay and the receiver design.  Metallized glass is a 

much stronger reflector than brick and stone. NLOS reception and multipath interference are often grouped together and referred 

to simply as “multipath”. However, to do so is highly misleading as the two phenomena have different characteristics and can 

require different mitigation techniques. There are several different strategies to mitigate these vulnerabilities [2]. Here, the 

synergy between super-correlation, or S-GPS/GNSS and 3D-mapping-aided (3DMA) GNSS will be investigated. Operating at 

different stages of the GNSS processing chain, the two techniques offer distinct enhancements in key performance parameters 

of GNSS receivers. 

S-GNSS operates at the receiver signal processing stage, enabling extended coherent integration by using a low-cost inertial 

measurement unit (IMU) to measure the antenna motion, which is then corrected for. Compared with noncoherent integration, 

this increases the receiver sensitivity, enabling it to operate at lower signal-to-noise levels. Extended coherent integration also 

makes the receiver more sensitive to changes in Doppler shift. Consequently, when the receiver is moving, reflected signal 

components, which experience a different Doppler shift from their direct counterparts, can be attenuated. Thus, the antenna’s 

effective gain pattern becomes directional and is different for each signal tracked. Attenuating reflected signals reduces the 

ranging errors due to multipath interference and makes it easier to distinguish NLOS signals from LOS by their signal-to-noise 

levels. S-GNSS is described further in Section 2. 

 

3DMA GNSS operates at the subsequent navigation solution computation stage. In conventional GNSS positioning algorithms, 

all signals are assumed to follow a direct path from the satellite to the user equipment antenna, which leads to errors when signals 

are received by a reflected path. In 3DMA GNSS, 3D building mapping is used to predict which signals are directly visible and 

which are blocked by buildings at any given location. In some implementations, path delays are also predicted. The positioning 

algorithms are then modified to take this information into account. There are many different ways of implementing 3DMA GNSS 

and individual algorithms may be configured in different ways. This leads to a three way trade-off between the positioning 

accuracy, the size of initial position uncertainty that can be handled and the computational load. The two main approaches are 

shadow matching, which determines position by comparing measured and predicted satellite visibility, and ranging-based 

positioning algorithms; these may be combined. Section 3 reviews the different approaches to 3DMA GNSS and summarizes 

the positioning algorithms assessed here. A full description of the algorithms is presented in Appendix A. 

 

GNSS signals were recorded using a Racelogic Labsat 3 GNSS front end in the Canary Wharf area of London, which contains 

many tall glass-covered buildings similar to those found in North American and Asian cities. This data was subsequently 

processed to generate conventional and S-GNSS ranging and signal-to-noise measurements from the GPS and Galileo satellites. 

These were then processed using different position algorithms. Section 4 presents a comparison of single-epoch conventional 

and 3DMA GNSS position solutions using both conventional and S-GNSS ranging measurements, followed by a comparison of 

single-epoch and filtered conventional positioning solutions using the S-GNSS measurements. Section 5 presents conclusions 

and Section 6 recommends topics for future work. 

 

Applications that could benefit from this work include situation awareness of emergency, security and military personnel; 

emergency caller location for both people and vehicles; navigation for the visually impaired; visitor guidance through cities; 

tracking vulnerable people and valuable assets; location-based charging; mapping environmental features; enforcement of 

curfews, restraining orders and other court orders; intelligent transport systems and autonomous vehicles; location-based 

services; mobile gaming and augmented reality. 
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2. SGPS/GNSS 

 

The Focal Point Positioning S-GPS/S-GNSS technology [3][4] is a suite of methods, protected by patents, that provide software-

based improvements to GNSS receivers. All methods build upon a core technology called supercorrelation. Further techniques 

such as ultracorrelation and SkyScan build upon this core technique [5]. 

 

The core S-GNSS technology, supercorrelation, provides improvements to the delay lock loop (DLL), frequency lock loop (FLL) 

and phase lock loop (PLL) control feedback stages of a GNSS receiver [6][7] by extending the coherent integration time. 

Coherent integration is where the in-phase (I) and quadraphase (Q) correlator outputs within the receiver are summed separately, 

preserving the phase information, while noncoherent integration sums I2 + Q2, destroying the phase. The DLL used for code 

tracking performs noncoherent integration implicitly. For coherent integration, the post-correlation signal-to-noise ratio increases 

in proportion to the number of samples accumulated, whereas for noncoherent integration the signal-to-noise ratio is only 

proportional to the square root of  the number of samples. 

 

Current generation GNSS receivers perform a small amount of coherent integration, typically less than 20 milliseconds, and then 

noncoherently integrate to boost acquisition sensitivity if required. The reasons for this ~20ms limit are historical limitations of 

data modulation bits, crystal oscillator stability, and receiver motion during the integration period. S-GNSS overcomes these 

limitations to provide over a second of coherent integration, while undergoing complex motions, on low cost platforms. The 

benefit is high sensitivity coupled with unique multipath mitigation capabilities providing a high accuracy and high integrity 

solution for positioning in traditionally difficult environments, such as dense urban areas.  

 

A major problem with using noncoherent integration instead of coherent integration is the susceptibility to multipath interference. 

Noncoherent integration destroys the phase information stored within the captured data before combining it, resulting in LOS 

and NLOS signals accumulating within the same correlation peak, even if their Doppler shifts are different. This distorts the 

correlation function, leading to erroneous code phase estimates, which in turn leads to erroneous positions estimates [8][9][10]. 

Supercorrelation employs motion compensation of the correlation process itself to separate out in the frequency domain the 

energy from different incoming directions, allowing the LOS energy to be isolated and allowing a LOS-only correlation peak to 

be formed, regardless of the number of incoming reflected signals at the same moment that would normally cause distortion of 

the desired correlation peak 

 

2.1. Building a Supercorrelator 

 

 
 

Figure 1: As the velocity of the receiver changes, the Doppler shift of the directly received signal changes (top). Supercorrelation 

enables the receiver-generated replica signal that is correlated with the incoming signal to match this  change (middle).  Reflected 

signals in the local environment suffer different Doppler variations than the desired line-of-sight signal (bottom). This means 

that the supercorrelator that is created for a given satellite broadcast couples strongly to the desired line of sight version of the 

signal, but attenuates any reflected signals arriving from different directions. (Figure reproduced from [5]) 

 

Coherent integration requires GNSS data to be combined with both perfect code-phase alignment, and perfect carrier-phase 

alignment. The latter is traditionally challenging due to the level of knowledge required of the non-linear variations of the user 

clock and user motion during the integration period. Inertial processing is required to reconstruct non-linear motion of the GNSS 

antenna and non-linear oscillator variations must also be modelled correctly. The degree of multipath mitigation provided 
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increases with both the speed of the receiver through space (relative to the reflecting surfaces in the environment) and the coherent 

integration time. Figure 1 illustrates this. 

 

Coherent integration has traditionally been limited by the navigation data message bits that are modulated onto all of the legacy 

GNSS signals. In order to provide extended coherent integration times beyond this, either modern pilot (i.e., data-free) signals 

should be used, or the navigation bits must be stripped from the data stream. The latter requires either onboard prediction of the 

data bits based on previous messages or an external assistance stream containing the data message. It is possible to strip the 

navigation bits through a signal squaring method that involves multiplying the complex sample by itself rather than by its 

complex conjugate. This squares the signal but maintains a complex phase in the output signal which is free of BPSK modulation. 

 

To build a supercorrelator, the component of the receiver motion in the direction of interest is used to produce a motion-

compensation phasor sequence. A phasor sequence corresponding to the estimates of the local oscillator variations is also 

constructed. When these phasors are added to the incoming radio data they align the phases of successive GNSS data such that 

they can be summed in phase, with motion and clock errors compensated. The complex phasors can be applied directly to the 

incoming samples from the analog-to-digital converter (ADC), or can be applied directly to the receiver-generated pseudo-

random-noise (PRN) sequence in the correlator bank. A third option is to maintain the existing front-end architecture of a receiver 

and to collect the complex correlator taps from the correlation engine (the early set, late set, and prompt correlator outputs that 

are passed to the DLL and PLL to track code phase and carrier phase) and to apply the supercorrelator phasor to these taps. 

 

Whichever method is implemented, the result is that the correlator output taps have been rotated by the supercorrelator phasor 

to a new set of angles before they are coherently integrated. The result is a correlation peak corresponding only to the energy 

that has arrived from a selected direction. This beamforming technique is sometimes referred to as synthetic aperture GNSS 

[11][12]. Supercorrelation is an extension of synthetic aperture processing that simultaneously solves for non-linear motion and 

non-linear oscillator errors via a probabilistic joint estimator that processes data all of the satellites simultaneously to estimate 

motion and clock states. This is an important step beyond traditional synthetic aperture processing (which does not solve for high 

order oscillator error states), and is required when using the very low quality oscillators such as those found in low-cost consumer 

GNSS receivers and smartphones.  

 

The selected directions for motion compensation are typically the expected directions to each given satellite in the sky, but any 

direction can be selected. Thus, a reflected signal component may be selected, which can be useful where 3D mapping can be 

used to predict the path delay. When a bank of supercorrelators is built for a given measurement epoch in order to sky the full 

range of azimuth and elevation of the sky above the receiver the resulting data are referred to as Skyscans and can be imaged as 

shown in Figure 2. The angles of arrival of LOS and NLOS signals from each satellite can therefore be directly measured.  

 

 
 

Figure 2: Skycan outputs for 7 GPS satellites a San Francisco urban canyon running from North West to South East. Each disc 

is an azimuth-elevation plot of the sky, with a red mark showing the position of a given satellite (the PRN number is given in 

each title). The colours in the plots represent the energy being detected from all azimuths and elevations for each satellite. PRN 

22 for example is a strong overhead satellite. PRN 23 however is exhibiting a strong non-line-of-sight signal on the North side 

of the receiver at moderate elevation, whereas only a weak signal is being detected from the true satellite direction in the West 

at moderate elevation. No line-of-sight energy is detectable at all for PRN 26, although there are more than three weak versions 

of the signal being received from the Northern side at various elevations. (Reproduced from [5]) 
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SkyScan technology uses a bank of supercorrelators to produce a skyplot of received signal strength as a function of azimuth 

and elevation. This can be used to determine the strengths and angles of arrival reflected signal components as well as the desired 

line of sight signal. Figure 2 shows some examples.  

 

2.2. Performance Benefits 

 

Some of the performance benefits of S-GPS/GNSS may be illustrated using GPS data collected from a vehicle test in London 

during 2016. Figure 3(a) shows the measured C/N0 of one of the GPS satellites with S-GPS on and off. Satellite visibility 

predictions obtained using 3D mapping and the truth reference are also shown. It can be seen that the C/N0 during NLOS reception 

is lower when S-GPS processing is on, demonstrating that S-GNSS can attenuate reflected signals. Figure 3(b) then presents the 

Cumulative distribution function (CDF) of the same C/N0 data,showing a slight shift towards lower C/N0 values when GPS is 

on. 

 

(a) (b)  

 

Figure 3: (a) C/N0 time series for GPS PRN09 with S-GPS on and off, overlaid to satellite’s visibility predicted (grey = LOS; 

white = NLOS) and (b) Cumulative distribution function of the measured C/N0 for GPS PRN09, both obtained from test trials in 

Canary Wharf area, London 

 

Figure 4 shows the carrier-power-to-noise-density ratio, C/N0, measurement distributions for LOS and NLOS signals from all of 

the GPS satellites with and without supercorrelation. Again, the truth reference and 3D mapping were used to determine which 

signals were NLOS and which were direct LOS. With supercorrelation on, there is less overlap between the LOS and NLOS 

distributions. This makes it easier to infer from the C/N0 measurements whether a signal is LOS or NLOS. Thus, GNSS shadow 

matching can be expected to perform better with supercorrelated measurements than with the corresponding conventional 

measurements. The same applies to conventional GNSS positioning algorithms that use C/N0 to weight the measurements. 

 

         
Figure 4: C/N0 histograms for LOS/NLOS values when S-GPS is on (left) and off (right), for all tracked satellites using data 

collected in the city of London. 
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Figure 5 shows the pseudo-range residuals of a conventional least-squares positioning algorithm using LOS and NLOS signals 

from the GPS satellites with and without supercorrelation. The standard deviation for both the LOS and NLOS signals is much 

smaller using the superorrelated measurements than the conventional measurements. Thus, any ranging-based GNSS positioning 

algorithm, whether aided by 3D mapping or not, can be expected to perform better with supercorrelated measurements than with 

the corresponding conventional measurements. 

 

         
 

Figure 5: Empirical distributions of LOS and NLOS pseudo-range residuals when S-GPS is on (left) and off (right) using data 

collected in the city of London. 

 

3. 3D-MAPPING-AIDED GNSS 

 

Over the past decade, there has been a lot of interest in 3D-mapping-aided (3DMA) GNSS. The simplest approach, which 

originally dates from the 1980s when there were only a few satellites, is terrain height aiding [13]. This uses a digital terrain 

model (DTM), also known as a digital elevation model (DEM) to constrain the position solution to the terrain surface.  More 

recent 3DMA GNSS technique improves performance in dense urban areas by using maps of the buildings to predict which 

signals are directly visible at any given location. Many different approaches have been demonstrated, but each may be broadly 

classified as either ranging or shadow matching. The simplest 3DMA ranging algorithms use predicted satellite visibility from 

3D mapping to discard or downweight those signals predicted to be NLOS at a known location [14][15]. More sophisticated 

approaches use LOS/NLOS predictions over a range of candidate positions, reflecting the uncertainty of initialization from 

conventional GNSS positioning in a dense urban environment [16].  Some researchers use the 3D mapping to correct those 

signals predicted to be non-line-of-sight (NLOS) [17][18][19]. This should enable higher accuracy, but computing NLOS 

corrections using 3D mapping is more computationally intensive than just predicting satellite visibility, limiting the number of 

candidate positions that can be considered if corrections are to be computed in real-time. In [20], precomputing NLOS corrections 

over a grid of candidate positions, satellite azimuths and elevations is proposed, which would require around 10GB of data per 

km2. Alternatively, the processing load can be reduced by using predicted pseudo-ranges based on the satellite elevation angle 

and distance to the reflecting surface [21][22]. 3DMA ranging algorithms have also been applied to the components of multipath-

contaminated signals, separated using Doppler-domain signal processing when the receiver is moving [23]. 

 

Shadow matching determines position by comparing the measured signal availability, carrier-power-to-noise-density ratio, C/N0, 

or signal to noise ratio (SNR) measurements with satellite visibility predictions from 3D mapping over a grid of candidate 

positions [24][25][26][27][29][30][31]. Shadow matching tends to be more accurate in the across-street direction due to the 

building geometry. Conversely, ranging tends to be more accurate in the along-street direction because there are more direct 

LOS signals in this direction. Thus, in general, best performance is obtained by using both 3DMA ranging and shadow matching 

[16]. 

 

As well as the algorithm design, 3DMA GNSS performance is also affected by the receiver design, the environment, and the 3D 

mapping quality. For both 3DMA GNSS and conventional GNSS, geodetic receivers give better performance than consumer-

grade receivers, which in turn give better performance than smartphones, mainly due to the polarization discrimination of the 

antenna. Environmental factors that impact performance include sky visibility, building height and street width, building 

materials and passing vehicles. All positioning methods exhibit poorer accuracy in environments dominated by glass and steel 

buildings, as these buildings produce stronger reflected GNSS signals, increasing multipath errors and making it more difficult 

to distinguish LOS and NLOS signals using C/N0. In terms of 3D mapping quality, using full 3D city models (level of detail 2) 

can be expected to give better performance than simple block models that do not account for variations in building cross section 
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with height (level of detail 1). Out-of-date mapping is also a problem. The impact of these factors on shadow matching is further 

discussed in [32]. 

 

Many of the applications that benefit from 3DMA GNSS can run on a smartphone. A smartphone platform also provides a 

convenient means of downloading building boundary or 3D mapping data from a server, a potential augmentation to assisted 

GNSS [7]. The Android application program interface (API) now provides “raw GNSS measurements” in the form of pseudo-

range and C/N0 measurements from compatible GNSS chipsets, enabling advanced GNSS positioning algorithms to be hosted 

on the device’s CPU [34]. Thus, 3DMA GNSS algorithms can be implemented in real-time on an Android smartphone, as has 

already been demonstrated for shadow matching [35]. Alternatively, the GNSS measurements may be uploaded to a server for 

remote computation of the position solution [31]. 

 

3.1. UCL’s 3DMA GNSS Positioning Algorithms 

 

At UCL, the focus has been on 3DMA GNSS algorithms that can potentially operate in real-time over a wide search area, 

handling a large initialization uncertainty. Therefore, satellite visibility is predicted using pre-computed building boundaries [33] 

for a grid of candidate positions. These describe the minimum elevation above which satellite signals can be received at a series 

of azimuths and are precomputed for each candidate position. A signal can then be classified as LOS or NLOS simply by 

comparing the satellite elevation with that of the building boundary at the corresponding azimuth. Note that data storage 

requirements for precomputed building boundaries are about 100 times less than for precomputed NLOS corrections. 

 

UCL’s implementation of 3DMA GNSS comprises five stages, as shown in Figure 6. A terrain-height-aided least-squares ranging 

(LSR) algorithm with outlier detection is used for initialization [36]. The residuals are then used to determine the size of the 

search area for the subsequent stages. Next, a likelihood-based ranging (LBR) algorithm scores candidate position hypotheses 

according to the correspondence between measured and predicted pseudo-ranges. Different error distributions are assumed at 

each candidate position according to which signals are predicted to be NLOS at that location [37]. A shadow matching (SM) 

solution [29] is computed and then integrated with the LBR solution in the hypothesis domain before extracting a position 

solution from the combined likelihood surface. Further details follow. An alternative approach based on extracting multiple 

position hypotheses from the LBR and SM distributions and integrating the best matching hypotheses has also been investigated, 

but is not presented here. Currently, only single-epoch 3DMA positioning has been implemented. 

 

 
 

Figure 6: Single-Epoch 3D-mapping-aided GNSS algorithm components 

 

UCL 3DMA GNSS results published between 2016 and 2019 have been found to be unreliable, so the relevant publications are 

not cited here. These papers may eventually be withdrawn. The results presented here should therefore be treated as the first 

published results from UCL of the LBR and hypothesis-domain integration algorithms. 

 

The least-squares ranging algorithm weights the pseudo-range measurements according to the corresponding C/N0 

measurements. Inter-constellation timing bias corrections from the navigation data messages are applied. Outliers are removed 

with a sequential elimination loop. If the detection threshold is exceeded, the measurement with the largest residual is eliminated 

and the solution re-calculated. This continues until either the threshold is met or only four measurements remain. 

 

Once an initial position solution has been obtained using pseudo-ranges only, the terrain height at the corresponding position is 

obtained from a digital terrain model (DTM), also known as a digital elevation model (DEM). This is used to generate an 

additional virtual range measurement, comprising the distance from the center of the Earth to the user antenna [38]. The LSR 

2. Search area determination  

3. Shadow Matching 4. Likelihood–Based 
3DMA Ranging 

5. Hypothesis-Domain 
Integration 

3DMA GNSS Single-Epoch Position Solution  

1. Least-Squares Ranging with Terrain Height 
Aiding and Outlier Detection 
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algorithm then computes a terrain-height-aided position solution using the pseudo-range and virtual range measurements. An 

incorrect horizontal position solution leads to an incorrect terrain height, so the terrain height determination and LSR positioning 

algorithms are iterated up to 20 times to minimize these errors. Full details are given in Appendix A.1. 

 

The next step is to determine the search area for 3DMA GNSS as both the likelihood-based ranging and shadow matching 

algorithms score candidate positions according to the correspondence between measurements and predictions. If the search area 

is too small, it will not include the true position, making a correct solution impossible. Conversely, if the search area is too large, 

there may be multiple locations where there is a good match between measurements and predictions. Such ambiguous solutions 

can be a common feature of shadow matching in particular due to repeating building geometry. Therefore, the search radius is 

scaled according to the quality of the LSR solution, which is estimated from the residuals. Once the search area has been 

determined, a regular grid of candidate positions is set up with spacing proportional to the search area to maintain a constant 

processing load. The DTM is used to associate a terrain height with each horizontal position, removing the need for a three-

dimensional search space. Terrain-height aiding is thus implicit in 3DMA GNSS. Full details are given in Appendix A.2. 

 

Shadow matching comprises the following steps [29]: 

• For each candidate position in the search area, the satellite visibility is predicted using the building boundaries precomputed 

from the 3D city model. 

• The probability that each received signal is direct LOS is determined from the C/N0 measurements using an appropriate 

statistical model. 

• Each candidate position and satellite is scored according to the match between the predicted and measured satellite visibility; 

visibility predictions are no assumed to be perfect 

• An overall likelihood score is computed for each position by multiplying the scores for each satellite. 

Full details are given in Appendix A.3. 

 

The likelihood-based 3DMA ranging algorithm, comprising the following steps [37]: 

• For each candidate position, the satellite visibility is predicted using the building boundaries. 

• At each candidate position, one of the satellites predicted to be direct LOS is selected as the reference. 

• At each candidate position, the direct LOS range to each satellite is computed and then measurement innovations are 

calculated by subtracting the computed ranges from the measured pseudo-ranges and then differencing with respect to the 

reference satellite. This eliminates the receiver clock offset. 

• At each candidate position, the measurement innovation for each satellite predicted to be NLOS is re-mapped by using a 

skew normal distribution to determine the cumulative probability and then substituting the corresponding direct LOS 

innovation with the same cumulative probability. This enables the NLOS measurements to be scored using an asymmetric 

distribution which accounts for the error due to NLOS reception always being positive, but treated like Gaussian-distributed 

measurements in the next step. 

• A joint likelihood score for each candidate position is computed using the measurement innovations and their error covariance 

matrix, noting that all innovations are correlated with each other due to the common reference satellite. 

Full details are given in Appendix A.4. 

 

Finally, the likelihood-based ranging and shadow matching solutions are combined. This exploits the fact that shadow matching 

tends to be more accurate in the cross-street direction in dense urban areas, while ranging based position solutions tend to be 

more accurate in the along-street direction. Hypothesis-domain integration is used, which combines the shadow-matching and 

3DMA ranging scores to give a single score for each candidate position. This down-weights any parts of the search area that are 

given a high score by shadow matching and a low score by likelihood-based ranging, or vice versa. Finally, the position solution 

is obtained by using the combined scores to weight the candidate positions. Full details are given in Appendix A.5. 

 

4. EXPERIMENTAL TESTS 

 

GNSS signals were recorded using a Racelogic Labsat 3 GNSS front end on a trials van in the Canary Wharf area of London 

and subsequently processed to generate conventional and supercorrelated ranging and signal-to-noise measurements from the 

GPS and Galileo satellites. A truth reference was obtained from a Novatel iMAR INS/GNSS system [39]. Figure 7 shows the 

van trajectory from the truth reference data and Figure 8 shows the equipment. The van travelled clockwise on the route and the 

northmost section was traversed twice. The central area, highlighted in red, contains many tall buildings (the highest is 235m) 

clad in metalized glass and steel, which presents a very challenging reception environment for GNSS. Such buildings are 

common in North American and Asian cities. The rest of the route is much lower density and is typical of European cities outside 

the central business district. Separate positioning performance statistics are provided for the central area and the other areas. 
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Figure 7: True trajectory of van trial in Canary Wharf, London. Background map © Google. 

 

 

Figure 8: Test equipment in the back of the trials van. 
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Using the positioning algorithms described in Appendix A and summarized in Section 3.1, four position solutions were computed 

with both the conventional and S-GNSS measurements. These are a conventional least-squares ranging (LSR) solution with 

terrain-height aiding and outlier detection, and three 3DMA GNSS solutions: shadow matching (SM), likelihood-based ranging 

(LBR) and hypothesis domain integration (HDI) of the SM and LBR solutions. Note that terrain-height aiding is implicit in 

3DMA GNSS. Two different types of S-GNSS pseudo-range measurements were used, simple code-based pseudo-ranges and 

filtered carrier-smoothed pseudo-ranges with outlier detection applied to reject the code component where it is inconsistent with 

the carrier-based component. This can correct NLOS reception errors in cases where the reflected signal has the same Doppler 

shift as the direct, such as where the reflecting surface is parallel to the direction of travel. Carrier-smoothing also significantly 

reduces multipath errors when the multipath environment is rapidly changing. The basic S-GNSS measurements are 

representative of a one-time position fix while the filtered measurements are representative of continuous positioning. 

 

Table 1 presents horizontal radial position error statistics for all 12 solutions. Figures 9, 10, 11, 12, 13 and 14 show the position 

error as a function of time and the position error distribution for the Central and other areas for, respectively, the LSR solution 

using conventional measurements, the HDI solution using conventional measurements, the LSR solution using S-GNSS 

measurements, the HDI solution using S-GNSS measurements, the LSR solution using filtered S-GNSS measurements and the 

HDI solution using filtered S-GNSS measurements. 

 

The results show a large improvement from using supercorrelation. With conventional least-squares positioning, using S-GNSS 

reduces the root mean square (RMS) position error by 39%, both in the central high-density area and elsewhere. The smaller 

impact in the central area is likely due to the limited number of direct LOS signals as supercorrelation has more impact on 

multipath interference than NLOS reception. Using the filtered pseudo-range measurements reduces the RMS position error by 

a further factor of 3.5 in the central high-density area and a factor of 2.1 elsewhere. 

 

Comparing the 3DMA GNSS solutions with the LSR solutions, it can be seen that a shadow-matching-only solution does not 

improve the position accuracy. This is to be expected as shadow matching was always intended to be used alongside ranging-

based positioning, primarily to improve accuracy in the cross-street direction. With conventional GNSS measurements, the RMS 

position error of the LBR solution generally performs slightly better than the LSR solution in the central area, but performs worse 

in the other areas. However, the HDI solution performs consistently better than LSR, with a 27% reduction in RMS position 

error in the central area and a 9% reduction elsewhere. This demonstrates the synergy of shadow-matching with ranging. With 

basic S-GNSS, the benefits of 3DMA GNSS are smaller with the LBR solution consistently worse than the LSR solution and the  

HDI solution reducing the RMS position error by 23% , compared with LSR, in the central area, but increasing it elsewhere. 

 

Using the filtered S-GNSS pseudo-ranges, the LBR solution performs consistently worse than the LSR solution, while the HDI 

solution is of a similar accuracy to the LSR solution. Because the filtering of the measurements already reduces the impact of 

NLOS reception, there is much less scope for 3DMA GNSS techniques to improve position accuracy. 

 

Table 1: Horizontal radial position error statistics for single-epoch positioning in Canary Wharf 

Measurements  Conventional Basic S-GNSS Filtered S-GNSS 

Positioning algorithm LSR SM LBR HDI LSR SM LBR HDI LSR SM LBR HDI 

Root mean square (RMS) error, m 47.9 53.1 47.6 36.1 29.1 37.4 32.1  26.4  9.2 11.3 10.4 9.2 

Mean absolute deviation (MAD) 

error, m 

20.6 27.3 24.9 14.3 14.8 20.7 18.0  14.9  5.7 8.5 6.4 5.7 

Central area RMS error, m 85.3 93.2 76.9 62.2 52.0 66.1 54.9  39.9 14.9 17.4 15.9 14.6 

Central area MAD error, m 52.2 64.1 49.9 31.5 36.3 47.7 37.0  24.7  9.0 13.4 10.6 9.3 

Central area minimum error, m 1.2 0.8 0.2 0.6 0.4 0.3 0.3  0.6  0.4 0.9 0.4 0.5 

Central area maximum error, m 506.6 504.3 516.7 403.4 231.1 227.2 187.3  240.9  138.9 115.3 116 119.9 

Other areas RMS error, m 19.7 24.0 29.5 17.9 12.0 16.6 16.7  18.9  5.6 7.7 7.2 6.0 

Other areas MAD error, m 8.5 13.2 15.3 7.8 6.7 10.6 10.8  11.2  4.4 6.6 4.8 4.3 

Other areas minimum error, m 0.2 0.3 0.3 0.2 0.1 0.3 0.1  0.1  0.1 0.3 0.2 0.2 

Other areas maximum error, m 174.9 173.6 203.3 190.8 97.1 109.4 158.6  155.6  39.8 29.9 53.4 54.7 
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Figure 9: Horizontal radial position error using least-squares ranging with conventional GNSS measurements 

  
Figure 10: Horizontal radial position error using HDI 3DMA GNSS with conventional GNSS measurements 

 
Figure 11: Horizontal radial position error using least-squares ranging with basic S-GNSS measurements 
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Figure 12: Horizontal radial position error using HDI 3DMA GNSS with basic S-GNSS measurements 

 

 
Figure 13: Horizontal radial position error using least-squares ranging with filtered S-GNSS measurements 

 
Figure 14: Horizontal radial position error using HDI 3DMA GNSS with filtered S-GNSS measurements 

 

At individual locations, 3DMA GNSS improves positioning accuracy in some cases and not others. Two case studies are included 

in Appendix B. Further investigation of selected individual results is needed to understand why this is. Different reasons are 

likely to apply in different places. Mapping errors will sometimes lead to 3DMA GNSS positioning errors as will large passing 

vehicles that block and reflect GNSS signals. The LSR algorithm currently includes outlier detection while the 3DMA GNSS 
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algorithms do not; adding this should help to reduce the impact of vehicles and mapping errors. Also, Lastly, in open areas where 

conventional GNSS positioning works well, 3DMA GNSS can’t be expected to improve on it. 

 

5. CONCLUSIONS 

 

The single-epoch positioning results have clearly demonstrated the benefit of supercorrelation with position errors using S-GNSS 

measurements. Using conventional positioning techniques, using supercorrelation on its own reduces position errors by 40% 

using conventional positioning techniques. However, combining supercorrelation and filtered carrier-smoothed pseudo-ranges 

using outlier detection to reject code components that are inconsistent with the carrier-based component reduces the position 

errors by a factor of 5.7 in the densest of environments and a factor of 3.5 elsewhere. 

 

For single-epoch positioning, using pseudo-ranges from code tracking only with both conventional and supercorrelation, 3DMA 

GNSS improves the position accuracy by about 25% in the denser environments, but does not bring any benefits in the more 

open areas. However when filtering with outlier detection is used to produce carrier-smoothed pseudo-ranges, 3DMA GNSS 

techniques have little impact on the positioning accuracy with S-GNSS processing because the impact of NLOS reception has 

already been reduced. Thus, 3DMA GNSS techniques are likely to be more useful for snapshot positioning techniques and 

potentially for the initialization of filtered solutions than for continuous positioning. 

 

6. FUTURE WORK 

 

There is clearly a need for substantial improvement in the 3DMA GNSS algorithms before this approach can be recommended 

for use. Areas to investigate include 

• Improved scoring models for LBR and SM that take into account additional factors, such as satellite elevation, street width, 

building height and relative azimuth of the satellite and street direction. 

• Optimizing the satellite visibility prediction. 

• Finding the best way of combining the LBR and SM likelihood distributions to get an optimal overall positioning solution. 

• Outlier detection. 

• Improved search area determination, potentially considering non-circular search areas. 

• The impact of higher-resolution 3D mapping. 

• Multi-epoch 3DMA positioning using Bayesian filtering techniques. 

 

In addition, using S-GNSS Skyscan data to estimate the signal strength, Doppler shift, and pseudo-ranges for all of the different 

paths the signal takes between the satellite and receiver antennas for each epoch, increases the information per measurement 

epoch that can be combined with knowledge of the 3D building model 
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APPENDIX A: DETAILED DESCRIPTION OF POSITIONING ALGORITHMS 

 

This appendix provides more details of the positioning algorithms used to generate the results presented in the paper. Due to the 

limited duration of the dataset, the same data was used for both tuning and testing of the algorithms. In general, it is better to 

separate the tuning and testing data. 

 

A.1 LEAST-SQUARES RANGING 

 

A position solution may be computed from a set of pseudo-range measurements using least-squares estimation. This is given by 

[10][36] 

 ( ) ( )−
−

−+ −+= zzWHHWHxx ˆ~ˆˆ
T1T


e

G

e

G

e

G
 (1) 

where +
x̂  is the estimated state vector, comprising the position and time solution, −

x̂  is the predicted state vector, z~  is the 

measurement vector, −
ẑ  is the vector of measurement predictions from −

x̂ , W is the weighting matrix and e

GH  is the 

measurement matrix. Assuming the interconstellation timing bias is known, the state and measurement vectors are given by 
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where e

ear  is the Cartesian position, resolved about and with respect to an Earth-centred Earth-fixed (ECEF frame), a

c  is  the 

receiver clock offset, expressed as a range, 
,

j

a R  is the raw pseudo-range from satellite j and m is the number of satellite used. 

The measurement matrix is given by  
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where e

aju  is the line-of-sight vector from the user antenna to satellite j, given by 

 ( )ˆ ˆ ˆ ˆˆ ˆe e e e e

as ej ea aj aj ej ear r− − − − − = −u r r r r , (4) 

where e

ejr̂  is the position of satellite j and −e

ear̂  is the predicted user position. The predicted raw pseudo-ranges, used to generate 

−
ẑ , are given by 

 ( ) ( )
T

,
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where dr̂
c

j-
 is the predicted satellite clock offset including the relativistic clock correction, dr̂

trop

j-
 is the modeled tropospheric 

delay, dr̂
ion

j-
 is the modeled ionospheric delay , ˆ a

c −
 is the predicted receiver clock offset (set to zero here) and I

eC  is the Sagnac 

effect compensation matrix, given by 
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where ie is the Earth rotation rate and noting that (5) and (6) are solved iteratively. 

 

The weighting matrix is given by 
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where 

 
( )0 10

10 j

j

C N
a

−
=  , (8) 

where (C/N0)j is the measured carrier-power-to-noise-density ratio of the jth satellite signal in dB-Hz and a = 1.1104 m2 is a 

constant. 

 

A Leave One Out approach [40] is used for outlier detection and elimination. The observation vector is assumed to be composed 

of m completely uncorrelated elements, and the number of unknowns in the state vector is n=4. Assuming that there is an outlier 

in the measurements, the solution calculated from the remaining observations is used to estimate the suspected outlier. The 

difference between this estimated value and the actual value is then fed to a hypothesis test of an F distribution with 1 degree of 

freedom in the numerator and m-n-1 degrees of freedom in the denominator. The confidence level is set to 0.99. Where all 

measurements pass the F-tests, the position solution is accepted. Otherwise, the measurement with the largest difference is then 

eliminated as it is least consistent with the others and a new least-squares solution calculated. The process repeats until either all 

observations pass the hypothesis tests or only 4 measurements remain.  
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The terrain height is obtained from an Ordnance Survey DTM with a 5m horizontal resolution by taking the orthometric height 

from the database at the nearest 4 points to the least-squares position solution and performing a linear interpolation. The height 

of the receiver from the ground was set to 1.5m. The sum of terrain and receiver height was then converted to a geodetic height 

and added to the geocentric Earth radius to obtain a virtual range measurement, which was added to the measurement vector, z, 

as the m+1th component. Where the height from the DTM is used to compute the predicted user position, −e

ear̂ , the m+1th 

component of the measurement innovation will be zero. The m+1th row of the measurement matrix will be 

 ( ), 1 , , , 0e e e e

G m ea x ea y ea zu u u+ =H , (9) 

where e

eau  is the unit vector describing the direction from the center of the Earth to the predicted user position, given by  

 ˆ ˆe e e

ea ea ea

− −u r r . (10) 

The variance of the height-aiding measurement, forming the inverse of the m + 1th diagonal element of W, was assumed to be 

10 m2 for the results presented here. 

 

A.2 SEARCH AREA DETERMINATION 

 

To determine the search area for shadow matching and likelihood-based ranging, a test statistic based on the residuals of the 

height-aided least-squares ranging solution is used: 

 
T

s
m

 + +

=


z z . (11) 

where m is the number of measurements after removal of outliers. The test statistic is then used to determine the search area 

radius and candidate position grid spacing, as shown in Table 2. 

 

Table 2. Search area and grid spacing 

Test statistic Search radius Grid spacing 

s  15m 40m 1m 

s > 15m 200m 5m 

 

The horizontal error of the least squares ranging solution using the filtered S-GNSS measurements is mostly within 40m. 

Therefore, for these S-GNSS measurements, the search radius and grid spacing are determined to be 40m and 1m, respectively.  

 

A.3 SHADOW MATCHING 

 

Once a grid if candidate positions has been set up, shadow matching comprises the following steps [29]: 

1. For each candidate position, the probability that the satellite is predicted to be direct line-of-sight, p(LOS|BB), is determined 

using the building boundaries precomputed from the 3D city model.  p(LOS|BB) is set to 0.8 where the satellite elevation is 

above the building boundary and 0.2 otherwise. These values account for the possibility that predictions may be wrong due 

to errors and resolution limitations in the 3D city model and unpredictable factors such as passing vehicles. 

2. The probability, p(LOS|C/N0), that each received signal is direct LOS is determined from the GNSS receiver’s C/N0 

measurements using the following statistical model: 
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. (12) 

where the coefficients are given by Table 3 

3. Each candidate position and satellite is scored according to the match between the predicted and measured satellite visibility.  

 ( ) ( )0 01 | / ( | ) 2 | / ( | )mP p LOS C N p LOS BB p LOS C N p LOS BB= − − + . (13) 

4. An overall likelihood score, Sp, for each position, p, is obtained by multiplying the scores for each satellite. 

 

Table 3. Tuning parameters for determining LOS probability from measured C/N0 

Elevation,  Satellites  smin, dB-Hz smax, dB-Hz pmin, dB-Hz a0, dB-Hz a1, dB-Hz a2, dB-Hz pmax, dB-Hz 

  20 All 16  32  0.2 -0.417 0.03735 0 0.8 

20   60  GPS 26 40 0.2 -0.8369 0.04062 0 0.8 

20   60 Galileo 21 34 0.2 0.6333 -0.06324 0.002019 0.8 

60  All 33 40 0.2 -2.785 0.08968 0 0.8  
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A.4. LIKELIHOOD-BASED RANGING 

 

Once a grid if candidate positions has been set up, the likelihood-based 3DMA ranging algorithm, comprising the following 

steps [37]: 

1. For each candidate position, predict the satellite visibility using the building boundaries. 

2. At each candidate position, the satellites are scored based on the elevation angle, measured C/N0 and surrounding buildings, 

and the one with the highest score is selected as the reference. The score is calculated by  

 ( )( )0

1

1
( ) 5 5

n

j j p j
p

score elev BB round C N
n

=
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where 

1

1
( )

n

j p

p

elev BB
n

=

−  is the average value of the difference between the satellite elevation, elev
j
, and the corresponding 

building boundary, BB
p

, at the candidate point, p = 1, and its immediate neighbors, .  

3. At each candidate position, the direct LOS range to each satellite is computed as described in Appendix A.1. Measurement 

innovations are obtained by subtracting the computed ranges from the measured pseudo-ranges and then differencing with 

respect to the reference satellite.  

4. The error standard deviation of all errors except for the NLOS path delay is computed as a function of C/N0 using. 
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where a and b are empirically determined constant. The mean and standard deviation of the NLOS path delay, N and N, are 

listed in the Table 4. 

5. At each candidate position, the measurement innovation for each satellite predicted to be LOS is modeled by a normal 

distribution with a mean of L. The NLOS innovation is re-mapped by using a skew normal distribution to determine the 

cumulative probability and then substituting the corresponding direct LOS innovation with the same cumulative probability. 

First of all parameters describing the skew-normal distribution are computed: 

 w =
s
j

2 +s
r

2 +s
N

2( )
2

s
j

2 +s
r

2 + 1- 2
p( )s N

2
x = m

L
+ m

N
-

2s
N

2 s
j

2 +s
r

2 +s
N

2( )
p s

j

2 +s
r

2( )+ p - 2( )s N

2
a =

s
N

2

s
j

2 +s
r

2
, (16) 

where r is the error standard deviation of the reference satellite, which is a constant. The cumulative probability, F, of the 

NLOS measurement innovation, zpj, is then computed using 
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where erf is the integral of the normal distribution and T is Owen’s T function. These are given by 
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and can be calculated using open-source software. Finally, a modified measurement innovation, 
pjz  , is obtained from F 

by solving 
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Again, open-source software can be used. For measurements predicted to be direct LOS, 
pj pjz z  = . 

6. To prevent excessively large innovation producing very low likelihood scores, limiting is applied to each innovation 

 d ¢z
pj

= max -d z
max

,min d z
max

,d ¢z
pj

- m
L( )( ) . (20) 

where zmax = 22 m in the conventional dataset and zmax = 18.5 m in the basic and filtered S-GNSS dataset, based on 3 

standard deviations for the case where j = 5.2 m and j = 4.4 m, respectively. 

7. A likelihood score for each candidate position, p, is then computed using 

 ( )T 1

,expRp p p p −  = − zz C z , (21) 
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where zp is the vector of re-mapped measurement innovations and Cz,p is the measurement error covariance matrix, given 

by. 
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noting that the reference satellite ranging error is correlated across all measurement innovations. 

 

Table 4. Parameters used in the likelihood-based ranging (LBR) 

Dataset a, m2 b, m2 N, m N, m L, m r, m 

Conventional 1.41104  28.1  26.06  31.76  -5.25  2.36  

Basic S-GNSS 5751   40.388  9.533   16.48  -6.051   3.15   

Filtered S-GNSS 2091 13.68  0.5  4.36  -4.935 4.4 

 

A.5. HYPOTHESIS-DOMAIN INTEGRATION 

 

Hypothesis-domain integration combines the shadow-matching and 3DMA ranging scores to give a single score for each 

candidate position: 

 pW

p Rp Sp p =    , (23) 

where Wp is the shadow-matching weighting factor, which is a constant of 2.9 in the filtered S-GNSS. But in the conventional 

and the basic S-GNSS datasets, it is a value related to the number of LOS signals in the current epoch.  
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where a is an empirical constant. Finally, the position solution is obtained using 
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where Ep and Np are the easting and northing coordinates of the pth candidate position. 

APPENDIX B: CASE STUDIES 

 

Figures 15 and 16 show scoring maps from likelihood-based ranging (LBR) and shadow matching (SM) at points P1 and P2, 

respectively. The location of these is shown in Figure 17. P1 is in the high-density central area while P2 is in a more open area. 

In both cases, the shadow-matching solution includes a high-scoring area on the correct side of the street close to the true position. 

However, both show an additional high-scoring area at an incorrect location. Because of this solution ambiguity, simply taking 

a weighted average of the candidate positions leads to a relatively poor position solution. At P2 (figure 16), it can be seen that 

the zero scores for the indoor candidates effectively push the position solution away from the highest scoring areas, in this case 

actually bringing it closer to the truth. 

 

At P2 (figure 16), the LBR algorithm provides a good position solution a few meters away from the truth. However, the high-

scoring areas of the SM and LBR likelihood distributions do not overlap, so multiplying both distributions together leads to an 

ambiguous solution with multiple peaks in the combined likelihood surface. At P1 (figure 15), the situation is worse; here, the 

LBR solution is wrong, with the high-scoring region not matching either the true position or the shadow-matching distribution. 

Note that the maximum score is much higher for the P2 LBR solution than it is for the P1 solution, so this can potentially be 

used as a quality indicator, enabling poorer solutions to be rejected in favor of the conventional LSR solution. 

 

Clearly, more work is needed to improve the 3DMA GNSS algorithms, considering the candidate position scoring models for 

both SM and LBR, the way in which the two distributions are combined to produce an integrated 3DMA GNSS solution, and 

how a position solution is then extracted from the distribution. 
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Figure 15: Scoring maps from likelihood-based ranging (LBR, left plot) and shadow matching (SM, right plot) at point P1, epoch 

1113, in a dense urban area (white areas denote buildings) 

 

 
Figure 16: Scoring maps from likelihood-based ranging (LBR, left plot) and shadow matching (SM, right plot) at point P2, epoch 

240, in a relatively open area (white areas denote buildings) 
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Figure 17: Locations of points P1 and P2. Background map © Google 
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