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Abstract—WiFi sensing has shown promising potentials in a
number of applications such as healthcare, smart transportation
and home automation. Human activity recognition without the
use of any cooperative device such as phones or wearable tech-
nologies can be achieved by two WiFi based approaches: Channel
State Information (CSI) and Passive WiFi Radar (PWR). CSI
systems rely directly on WiFi as a communications system, whilst
PWR treats the WiFi signal as an illuminator for use in a radar
signal processing. However, there has not been a comprehensive
comparative study on the similarities and differences between
the two systems. To examine the performance of both systems
we implement two hardware platforms for CSI and PWR, and
use them concurrently to capture the human movements. In
this paper, we present Doppler measurements from the two
systems and compare their performance using a dataset obtained
from five subjects undergoing six activity classes. It is observed
that both systems have very different Doppler signatures, and
are sensitive to the transmitter-target-receiver geometries. CSI
has a better performance in Line-of-Sight (LoS) configurations,
whereas PWR has better performance in bistatic configurations
where the WiFi access point and radar receiver are spatially
separated. It is envisioned that a more robust system should
leverage strengths of both the CSI and PWR systems jointly to
maximize their benefits in wireless sensing.

Index Terms—Activity Recognition, CSI, Passive WiFi Radar,
Wireless Sensing

I. INTRODUCTION

The increasing popularity of wireless devices has resulted in
WiFi experiencing a global and rapid growth. Recent research
has shown that wireless signals can also be used for short-
range detection [1]. The main idea behind WiFi sensing is that
a moving person will affect the communication channel of a
WiFi signal in terms of frequency shift, propagation paths and
signal attenuation [2]. As a result, the communication channel
becomes time-varying with the human activities and hence we
can exploit this fact for monitoring purposes. Compared to
other technologies used in activity recognition such as camera
systems and wearable sensors, WiFi-based sensing technology
does not raise privacy concerns, operates in all weather and
light conditions in contactless manner, and is widely available
in almost all indoor environments. Factors such as these make
the technology a highly attractive solution for real-world use-
cases.

In the field of activity recognition using wireless sensing,
there are two major approaches, namely, the Channel State

Information (CSI) system [1] and Passive WiFi Radar (PWR)
[3]. Both CSI and PWR use the same signal source and have
the same function but they have different working mecha-
nisms: CSI system are an extension of WiFi communications,
whereas the PWR system is based on the principles of radar.
CSI is used to estimate the communication channel between
the transmitter and receiver, and provides both amplitude and
phase information. With appropriate radio hardware, the phase
information can be used to extract the Angle of Arrival (AoA),
Time of Flight (ToF) and Time Difference of Arrival (TDoA).
Previous work has demonstrated the feasibility of CSI in
activity recognition [4], finger gesture recognition [5], crowd
counting [6] and fall detection [7]. In comparison, a PWR
system correlates the transmitted signal from a WiFi Access
Point (AP) and reflected signal from the surveillance area. It
calculates the relative distance and velocity between the object
and antenna. However, due to the relatively low bandwidths
of existing WiFi protocols, the range resolution for a PWR
system is rather coarse and as a result most applications make
use of the Doppler output, which is of a very high resolution
owing to the long integration times possible with receiver-
only systems. Moreover, as future WiFi standards evolve to
incorporate higher bandwidths e.g. 802.11ac and 802.11ad
the range resolutions of these systems will move towards
sub-meter precision opening-up new possibilities for indoor
sensing. PWR systems have already been used in several
sensing applications ranging from through-wall [3] and human
presence detection [8], to detecting signs-of-life [9].

In this paper, we carry out a comparative study of CSI and
PWR systems. We first outline the key operational concepts of
the two systems when processing WiFi signals. To verify the
concepts between the two systems, we have implemented two
hardware platforms to demonstrate and compare the perfor-
mance of each system for activity recognition. The CSI system
is implemented using the popular Intel 5300 Network Interface
Card(NIC) [10], and the PWR system is built using a Software-
Defined-Radio (SDR) [11] platform. We collect the Doppler
measurements from both systems for six different activities
classes across five human subject. Compared to previous work
on bot CSI [4]–[7] and PWR [3], [9], [12], this work makes
the following contributions:



• To the best of the authors’ knowledge, this is the first
work that compares the performance and outlines the
difference between the CSI and PWR systems for activity
recognition.

• The data sets generated in this work were collected by
a two separate CSI and PWR systems but were operated
simultaneously with synchronized measurements.

• Experimental results have shown that the two systems
have different performance in terms of Doppler spectro-
grams, system geometry and coverage area.

This paper is organized as follow: An overview of the CSI
and PWR systems is given in Section II; The signal processing
is described in Section III; Experimental results from a real
environment are presented in Section IV and conclusions are
drawn in Section V.

II. SYSTEM OVERVIEW

A. WiFi Signal

OFDM is widely used in many WiFi standards such as IEEE
802.11 a/g/n/ac. The bandwidth in an OFDM system is shared
among multiple overlapping but orthogonal subcarriers. The
transmitted OFDM signal is defined as:

x(t) =
1√
N

N∑
n=1

ane
j 2π
Ts
nt (1)

where N is the number of subcarriers, an is the nth symbol
in the constellation symbol sequence such as QPSK or QAM,
and Ts is the OFDM symbol period. The received signal y(t)
includes both the multipath reflections and the direct signal.
These reflections from a moving person and surrounding
stationary objects can be represented as a summation of the
delayed and phase shifted transmitted signal as follows:

y(t) =
∑
p

Ape
j2πfdtx(t− τ) + n(t), (2)

where Ap, τ , fd are the attenuation factor, delay and Doppler
shift for the p-th path, respectively, and n(t) is Additive
White Gaussian Noise (AWGN). The CSI signal, H(fc, t),
at carrier frequency fc can then be calculated as H(fc, t) =
Y (fc, t)/X(fc, t). Although the mechanisms of CSI and PWR
are different, however, the key idea of the two systems is to
capture the changes in the wireless signal caused by the mov-
ing personnel, and convert these into Doppler spectrograms.

B. Overview of CSI and PWR System Model

In this work, we have implemented two separate systems.
The overall system models for the CSI and PWR systems are
shown in Fig 1. The CSI system uses an Intel 5300 NIC [10] to
calculate the raw CSI signal based on a pre-defined preamble
sequence in each WiFi packet. The PWR system uses the
USRP-2921 [11] to acquire the raw wireless signal and has
no knowledge about the transmitted WiFi signal or router. The
PWR system treats the WiFi signal as a third-party signal.

There are many different types of signal processing for the
CSI system depending on the intended application [5]–[7].
Since we focus on activity recognition in this work, we decide
to use the Doppler spectrogram as the measurement, as it can
present meaningful information about the activity and it is

also insensitive to static objects in the background. The signal
processing for the CSI system consists of three parts. In the
first step, we adopt the Discrete Wavelet Transform (DWT)
technique to filter out in-band noise and preserve the high
frequency components. The next step is to reduce the size of
the massive CSI data using the Principal Component Analysis
(PCA), since the raw CSI data is logged for 30 subcarriers
and 3 receive antennas at a packet rate of 1 kHz. The final
step is to convert the PCA values into Doppler spectrograms
using the Short-Time Fourier Transform (STFT).

The signal processing for the PWR system also includes
three parts. Firstly, a Cross Ambiguity Function (CAF) is used
to generate a range-Doppler surface based on the transmitted
and reflected signals. Secondly, a CLEAN algorithm [3] has
been used to suppress the direct signal from transmitter which
is the major interference for the PWR system. Lastly, a
Constant False Alarm Rate (CFAR) is used to detect the noise
that is generated during the CAF process to further improve
the spectrogram quality.

In the CSI system, we collect the raw CSI data and store
it for offline processing. In the PWR system, we use a low-
complexity design [13] which can process the raw WiFi signal
and output the Doppler spectrogram in real-time. Details about
each signal processing block are given in Section III.

C. Understanding the Mechanisms

The mechanisms in time and frequency domains for the
CSI and PWR systems are presented in Fig 2. A complete
WiFi packet includes a preamble which is used to estimate the
channel and the data signal which carries the information for
communication. There is also a time gap (of varying length)
between two adjacent WiFi packets. As it can be seen in Fig
2, in the time domain, the CSI system does not take full
advantage of a WiFi packet, since it only uses the preamble
signal and ignores the data signal. In comparison, the PWR
system has no knowledge about the WiFi packet regarding the
preamble or data signal. The PWR system usually captures a
signal of much longer duration than the CSI system to ensure
sufficient amount of WiFi signal can be captured. As a result,
the PWR system uses the entire WiFi signal, however, it also
captures the time gap which could be a potential noise source.

In the frequency domain, the CSI system calculates the
channel information from each subcarrier. These measure-
ments can provide fine-grained features but depending on
the number of transmit and receive antennas as well as the
packet rate, they normally result in a considerable amount of
data. On the other hand, the PWR system does not process
the signal for each subcarrier but treats the entire OFDM
symbol as one signal. For this reason, the PWR system cannot
access the information within each individual subcarrier. The
bandwidth for the PWR system is adjustable depending on
the requirements and is limited by the computational power.
A 20 MHz bandwidth implies that 20 million data points need
to be processed every second which is beyond the processing
capability of a laptop. In this work, the PWR system uses only
a portion of the WiFi spectrum.
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Fig. 1: Block diagram overview of CSI (top) and PWR (bottom) systems
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Fig. 2: Block diagram overview of CSI (top) and PWR
(bottom) systems

III. SIGNAL PROCESSING

This section presents the signal processing techniques used
in this work, including noise reduction, dimension reduction,
spectrogram generation in the CSI system and cross ambiguity
function, CLEAN algorithm and CAR in the PWR system.

A. CSI System

1) Denosing and Smoothing: The raw CSI data is noisy
in nature due to the power and data rate changes in the
WiFi AP. Therefore, the DWT technique has been used to
filter out high frequency components and burst noises, while
avoiding significant distortion to the signal. The raw CSI signal
is passed through a set of high pass and low pass filters at
each level. The output from the high pass and low pass filters
provides the detailed and approximation coefficients, respec-
tively. These detailed coefficients in the first level contains
information about the noise and the abrupt changes caused by
human activity. Therefore, the detailed coefficients in the first
level are used to compute a threshold. The latter is adapted for
lower wavelets and the noise is removed in all levels without
introducing significant distortion to the signal. Afterwards, a
1-D median filter has also been applied to the signal to remove
any undesired transients in the CSI measurement which are not
caused by human motion.

2) Dimension Reduction in CSI measurement: The raw CSI
measurement collected from the Intel 5300 NIC results in
a significant amount of data. In this work, the CSI system

consists of one transmitting and three receiving antennas with
a packet rate of 1 kHz and this results in 1×3×30×1k = 90k
complex CSI values per second. The size of this data is
too large to be directly used as input to a machine learning
algorithm for classification. Therefore, dimension reduction is
required in the CSI system to reduce the overall computational
complexity. We adopt the PCA technique to identify the time-
varing correlations between the CSI streams which are then
combined to extract components that represent the variation
in the CSI measurements. The number of principal compo-
nents is selected to acquire a trade-off between classification
performance and computational complexity [14]. Usually, the
first two or three principal components capture 70 ∼ 80%
of the signal variance. Similar to [14], we extract the first six
principal components for the CSI system. However, we discard
the first one since it contains noise due to the reflection from
the stationary objects in the background. Therefore, only the
next five principal components are used for further processing.

3) Spectrogram Generation: CSI measurements are highly
sensitive to the surrounding environment and radio-frequency
reflections from the human body exhibit different frequencies
when performing different activities. Previous work [4] re-
quires a calibration process to scan the background. To avoid
this, we convert the PCA signal into spectrograms using the
STFT. STFT applies a sliding window to obtain equally-sized
segments of the signal and then performs FFT on the samples
in each segment. The STFT of a time-domain input signal x[n]
can be represented as [15]:

X(t, k) =

∞∑
n=−∞

x[n]w[n− t]e−jkn (3)

where k denotes the frequency index, and w[n] represents a
window function (e.g., Hamming window). The output spec-
trogram contains three dimensions, namely, time, frequency,
and amplitude of FFT. The CSI spectrogram is generated
from the five principal components which are then averaged
to obtain the final spectrogram.

B. PWR System

1) Cross Ambiguity Function: The CAF is an effective
tool used in passive radar field to extract target range τ and
Doppler fd information. It requires two channels, a surveil-
lance channel Ssur(t) collects the signal from the surveillance
area, while a reference channel Sref (t) measures the signal



directly from the transmitter. Due to the limited bandwidth
B of a WiFi signal, the range resolution ∆τ = C/2B is
not sufficient for indoor applications (between 7.5 to 1.875
meters). Doppler resolution is defined by the integration of
time Ti as ∆fd = 1/Ti. This allows the Doppler resolution to
be adjusted for detecting human activities. In this work, we use
a low-complexity version of CAF [13] which divides a long
sequence into several short batches so that the processing can
be faster. The low-complexity CAF equation can be written
as:

CAF (τ, fd) =

∫ Ti

0

x(t)y ∗ (t− τ)ej2πfdtdt (4)

where ∗ denotes a complex conjugate operation, Nb is the
number of batches, Tb is the batch length and n is the index
of the beacon.

2) Direct Signal Interference Cancellation: The main inter-
ference source for a PWR system is the direct signal from the
WiFi AP that goes directly to the surveillance channel. This
unwanted direct signal contains a higher energy than the signal
reflected from a moving target, and can mask the Doppler
pulse in the CAF surface. We employ a modified-CLEAN
algorithm [3] to remove the direct signal interference from
the CAF surface as a means of improving the target signal-
to-interference ratio. This CLEAN algorithm shares a similar
structure to the CAF process but generates a self-ambiguity
surface only from the reference channel. It’s operation is
described below:
CAF k(τ̂ , f̂d) = CAF k(τ, fd)−αkCAFself (τ−Tk, fd) (5)

where CAF k(τ̂ , f̂d) is the cleaned surface at the kth iteration,
CAFself is the self ambiguity surface, αk and Tk are the
amplitude and phase shift of the maximum peak in the kth
CAF surface, respectively.

3) Noise Reduction: The last step is to further reduce
the noise on the CAF surface. After the CLEAN algorithm,
residual noise exists which is attributed to the correlation over
the time gap, as shown in Fig 2. Additionally, the CAF surface
may be incorrectly processed due to the unstable reference
channel that recreates an incomplete transmitted signal. A
simple solution is to use CFAR to estimate the background
noise distributions and apply to the CAF surface as:

Λ =
1

Nτ ·Nfd

Rτ∑
i=1

Rfd∑
j=1

CAF (τi, fdj) (6)

where i and j are the indices for range and Doppler bin,
respectively, Nτ and Nfd are the training length in range
and Doppler bin, respectively, and Λ is the threshold for CAF
surface. The strong pulse above the threshold is representative
of human activity, otherwise it is inferred that no motion has
occurred.

PWR’s Doppler spectrogram is generated by selecting the
maximum Doppler pulse from each Doppler bin within a CAF
surface, and combined with a number of measurements.

IV. RESULTS

In this section, the activity recognition performance is
presented. A simple 2D Convolutional Neural Network (CNN)
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Fig. 3: Experiment layout

has been used as the classifier including one convolutional
layer, one max-pooling layer and two fully connected layers.
Since the spectrogram sizes from the two systems are different,
the parameters used in the two CNNs are also different.

A. Experimental Layout & Dataset

To assess and compare the CSI and PWR systems, we
carried out several simultaneous measurements to capture the
human motions. The experiment layout is shown in Fig 3
with a monitoring area of 3m x 3m, with computers and
furniture in the surroundings. The receive antenna location
was fixed and the transmitter position moved between three
different locations. Both systems were operated in the 2.4
GHz band but were kept on different channels to avoid
interference since the CSI system was performing a two-way
communication (pinging at 1 kHz) whereas the PWR system
was only receiving. Layout 1 refers to forward scatter (line-
of-sight) whereby the transmitter-object-receiver’s alignment
is around 180 degrees. Layout 2 is when the transmitter-
object-receiver is around 90 degrees and this forms a bistatic
geometry. Layout 3 is when the transmitter-object-receiver is
less than 45 degrees and this is known as the monostatic
geometry. Nine positions were tested during the experiment
inside the monitoring area, with 1.5m separation between the
positions.

Subjects were instructed to undertake six different classes
activity, namely, walking, sitting, standing from chair, laying
down, standing from the floor and picking up small items
from the floor. A sliding window has been applied to the
Doppler spectrogram with a length of 4 seconds. 5 volunteers
of different age groups were involved in this experiment.
Each activity was performed in a random fashion with no
specific orientation with respect to the receiver antenna. We
have collected a total of 1,122 data samples.

B. Comparison of Spectrograms

The system layout has a significant impact on the WiFi
sensing performance. Subjects were asked to walk periodically
forward and backward in one direction. Doppler spectrograms
from all three different layouts were then generated as il-
lustrated in Fig 4. Spectrograms from the CSI system have
similar Doppler signatures with strong pulse across the entire
frequency. The high frequency represents the fast torso move-
ments and the low frequency relates to the limb movements. In
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Fig. 4: Walking spectrogram from CSI in (a) layout 1, (b)
layout 2, (c) layout 3 and from PWR in (d) layout 1, (e)
layout 2, (c) layout 3

comparison, spectrograms from the PWR system have a more
varied Doppler profiles which resemble a sinusoidal-wave. The
PWR spectrogram in layout 1 (Fig 4(b)) shows low Doppler
shift due to the relative velocity between the transmitter-
object and object-receiver is almost zero on the line-of-sight.
The PWR spectrogram in layout 3 (Fig 4(f)) has the best
Doppler signature with the highest Doppler shit and clear
shape. Therefore, it is expected there will be some difference
in recognition accuracy for the different system layouts. In
addition, CSI spectrogram does not contain information about
the walking direction, while PWR’s spectrogram can show
the velocity and direction. This is because CSI measures the
signal over a short period of time, considering the duration of
a preamble signal, and this is not long enough to calculate the
direction. In comparison, the PWR system uses an integration
time of 1 second, which is sufficient to observe the direction
of the object.

Fig 5 presents the Doppler spectrograms for the other five
activities. As it can be seen, CSI’s spectrograms are with
lower Doppler frequency compared to that in Fig 4, as the
result of relatively slower body motion. For example, the
Doppler frequency when standing from chair (Fig 5(c)) has
a similar shape to standing from the floor (Fig 5(g)). More
patterns can be observed in PWR’s spectrograms. For example,
standing from chair (Fig 5(d)) and standing from floor (Fig
5(h)) both have a positive Doppler shape due to the upward
body movement. Similarly, sitting (Fig 5(b)) and laying down
on the floor (Fig 5(f)) both contain a negative Doppler shape
due to the downward body movement. Moreover, the picking
activity (Fig 5(j)) contains both downward and upward body
movements. Therefore, as expected, we can see a negative
Doppler shape followed by a positive Doppler shape.
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Fig. 5: Spectrograms obtained from layout 2 by CSI system:
(a) sitting, (c) standing from chair, (e) laying, (g) standing
from floor, (i) picking, and from PWR system: (b) sitting, (d)
standing from chair, (f) laying, (h) standing from floor, (j)
picking

C. Recognition Accuracy

Here we present the activity recognition results from both
systems. 80% of the dataset from all three layouts was
randomly chosen and used for training, while the remaining
20% was used for testing. The confusion matrices are shown
in Fig 6. The numbers 1 to 6 in the x and y axes refer to the
activities walking, sitting, standing from chair, laying, standing
from floor and picking up, respectively. The overall accuracy
for the CSI system is 67.3% and the PWR system has a similar
accuracy at 66.7%. This accuracy is lower compared to similar
previous work such as [4], [13], [14] where an accuracy higher
than 85% has been obtained. However, these studies have
only considered a single optimum layout, whereas we have
considered three different layouts consisting of a mixture of
forward scatter (LoS), bistatic and monostatic layouts (NLoS).
Moreover, the change of measurement position results in
variations in reflection power and Doppler signature at the
receiver side. Both systems have the best recognition result
in activity 1 (walking) where the accuracy is more than
90%. This is because the walking activity has higher Doppler
shifts/frequencies than other activities for any direction or
layout. The second best result is observed for activity 6
(picking up) which is more than 70%, while the other four
activities have relatively low accuracy. The CSI system has
the worst performance for activity 3 (standing) and activity
5 (standing from floor), whereas the PWR system has the
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Fig. 6: Confusion matrix on combined result on layout 1,2,3
from (a) CSI system and (b) PWR system
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Fig. 7: Recognition accuracy from each layout

worst performance for activity 2 (sitting) and activity 4 (laying
down). In addition, most wrong predictions in the CSI system
happen between activity 2 (sitting) and activity 3 (standing
from chair), and activity 4 (laying) and activity 5 (standing
from floor).

To further evaluate the performance in different layouts, we
train and test the dataset within each layout. The recognition
accuracy is shown in Fig 7. As expected, the CSI system has
the best performance in layout 1 with an accuracy as high as
90% and the worst performance in layout 3 with an accuracy
of only 62%. In comparison, the PWR system has the best
performance in layout 3 with an accuracy of 91.3% and worst
accuracy in layout 1 at only 60%. Both systems have almost
similar accuracy in layout 2 at around 70% which is still
better than the combined accuracy. As mentioned before, the
CSI system works better in a forward scatter (LoS) layout,
while the PWR system has better performance in a monostatic
layout (NLoS). These results demonstrate the coverage of the
two systems. The geometry problem represents a challenge for
WiFi sensing as in the real world, the distance/angle between
target and antenna is not always constant. A multiple channel
system with spatially distributed receiver nodes could be a
potential solution to address these geometrical limitations.
Fusing both types of system would permit data collection from
different aspect angles and leverage the advantages that both
CSI and PWR systems have to offer to achieve optimal sensing
performance.

V. CONCLUSIONS

In this paper, we have presented a pilot study on the com-
parison between two popular types of systems used in WiFi
sensing. We have demonstrated how the working mechanism,
signal processing and system layouts can all affect the detec-
tion performance of the CSI and PWR systems. Those systems

have been implemented using different hardware platforms
but they were deployed to simultaneously capture the Doppler
spectrograms as a result of human motion, which were then
used to verify the concepts. Experimental results have shown
that the two systems have varied performance in terms of
the coverage and layout, where CSI and PWR achieve the
best performance in the forward scatter (LoS) and monostatic
(NLoS) layouts, respectively.

Future works include the development of a multiple channel
system to address the challenge of system geometry. Also, a
system which can combine the benefits of the CSI and PWR
systems could be a potential solution in WiFi sensing.
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