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Eigenfunction concentration via geodesic beams

By Yaiza Canzani at Chapel Hill and Jeffrey Galkowski at London

Abstract. We develop new techniques for studying concentration of Laplace eigen-
functions ¢, as their frequency, A, grows. The method consists of controlling ¢, (x) by decom-
posing ¢, into a superposition of geodesic beams that run through the point x. Each beam is
localized in phase-space on a tube centered around a geodesic whose radius shrinks slightly
slower than A~2. We control ¢;.(x) by the L?-mass of ¢, on each geodesic tube and derive
a purely dynamical statement through which ¢, (x) can be studied. In particular, we obtain esti-
mates on ¢, (x) by decomposing the set of geodesic tubes into those that are non-self-looping
for time 7 and those that are. This approach allows for quantitative improvements, in terms
of T, on the available bounds for L°°-norms, L?-norms, pointwise Weyl laws, and averages
over submanifolds.

1. Introduction

On a smooth, compact, Riemannian manifold (M”, g) with no boundary, we consider
sequences of Laplace eigenfunctions {¢, } solving

(8¢ =293 = 0. ldall2any = 1.

From a quantum mechanics point of view, |¢; (x)|? represents the probability density for find-
ing a quantum particle of energy A? at the point x € M. As a result, understanding how ¢;
concentrates across M is an important problem in the mathematical physics community.

In this article, we construct tools to examine the behavior of ¢, by decomposing it
into geodesic beams. To study how ¢, concentrates near x € M, we rewrite ¢; as a sum
of functions, each of which is microlocalized to a shrinking neighborhood of a geodesic that
runs through x. The analysis of this decomposition, including a precise description of the
L°°-behavior of each geodesic beam, yields a bound on ¢, (x) in terms of the local struc-
ture of the L2-mass of ¢, along each of the geodesic tubes starting at x. In addition, through
an application of Egorov’s Theorem, we obtain estimates on the growth of ¢, (x) that rely only
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on the dynamical behavior of geodesics emanating from x, and not on any other geometric
structure of (M, g). Throughout the article, we refer to the tools developed here as geodesic
beam techniques.

The term geodesic beam is inspired by Gaussian beams. Recall that, on the round sphere,
these are eigenfunctions that concentrate in a A2 neighborhood of a closed geodesic that
have a Gaussian profile transverse to the geodesic. Gaussian beams have been extensively
studied in the math and physics literature (see, e.g., [2,4, 5,19, 36,42, 43, 58, 64]). Notably,
Ralston [41] constructed quasimodes associated to stable periodic orbits modelled on Gaussian
beams. These references concern modes associated to a single closed geodesic. In contrast,
the methods developed here decompose functions into linear combinations of what we call
geodesic beams. Each building block is similar to a Gaussian beam in that it is associated to
a geodesic and concentrates in a small neighborhood thereof. However, three facts crucial to
our construction are: that geodesic beams are only locally defined, that the geodesic need not
close, and that they do not need to have a Gaussian profile transverse to the geodesic.

In this article we build the geodesic beam tools and illustrate their application by obtain-
ing quantitative improvements to L.°°-norms for eigenfunctions on certain integrable geome-
tries (see Section 5).

In addition, the techniques developed in this paper have remarkable implications in the
study of L°°-norms and averages of eigenfunctions, L?-norms, and pointwise Weyl Laws. (See
Section 1.2, Section 1.3, Section 1.4, respectively.) However, all of these applications require
some additional non-trivial input, e.g., controlling looping behavior of geodesics in [12], under-
standing the local geometry of overlapping tubes in [14], and reduction of Weyl remainders to
quasimode estimates in [15]. We stress that the crucial technique in each application is that
of geodesic beams, which are developed in this article. We briefly describe the applications to
L®°-norms, averages, L?-norms, and Weyl Laws now.

L*°-norms. Beginning in the 1950s, the works [3,32,40] of Levitan, Avakumovié, and
Hormander prove the estimate

n—1
[rllooary = O(A 27) as A — oo;

known to be saturated on the round sphere. This bound was improved to 0()&”2;1) by Sogge,
Toth, Zelditch and the second author [25,26,47,49-51] under various dynamical assumptions
at x. Notably, [49] was the first to study L°°-bounds under purely local dynamical assumptions.
When (M, g) has no conjugate points, a quantitative improvement of the form

n—1

ol = 0 =)
Viog A
has been known since the classical work of Bérard [6, 10,44]. However, until the present time,
no quantitative improvements were available without global geometric assumptions on (M, g).
In Section 1.2 we present applications of our geodesic beam techniques giving such improve-
ments.

Averages. Another measure of eigenfunction concentration is the average over a sub-
manifold H C M of codimension k. In this case, the general bound

[ o1 dow = 0T
H
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was proved by Zelditch [63] and is saturated on the round sphere. This generalized the work
of Good and Hejhal [28,31]. Chen and Sogge [17] were the first to obtain a refinement on the
standard bounds. This work has since been improved under various assumptions by Sogge, Xi,
Zhang, Wyman, Toth, and the authors [13,16,48,59-62]. As before, none of these results obtain
quantitative improvements without global geometric assumptions on (M, g). In Section 1.2 we
present applications of our geodesic beam techniques giving such improvements.

L?-norms. Since the seminal work of Sogge [46], it has been known that

Iéallrary = OAPP™),

where 6(p,n) depends on how p compares to the critical exponent p, = % Namely,
8(p,n) = ”T_l—% if p> pc and 8(p,n) = %—% if 2<p < p.. When (M, g) has
non-positive sectional curvature, Hassell and Tacy [30] gave quantitative gains over this esti-
mate of the form OA¥®@™ /(1og 1)?PM)) when p > p. and with o(p,n) = % Blair and
Sogge [8, 9] also obtained an improvement when 2 < p < p. for some o(p,n) > 0 smaller
than % In Section 1.3 we will present applications of our geodesic beam techniques which
yield /log A improvements for L?-norms with p > p., generalizing those of [30].

Weyl Laws. Let {)L]z.} ; be the Laplace eigenvalues of (M, g). It is well known that

vol(B™) vol(M)
2m)"

B A <Ay = A"+ EQQ)

with E(A) = O(A""!) as A — oo, where B” C R” is the unit ball. Indeed, this is the inte-
grated version of the more refined statement proved by Hérmander in [32] which says that

Z P, ()] = ngf;:))&” + E(A,x) forallx e M,

Ajfl

with E(A, x) = O(A"~!) uniform for x € M. This estimate has been improved by Sogge and
Zelditch [49] and Bérard [6] under various dynamical assumptions. In Section 1.4 we present
improvements of these results based on geodesic beam techniques.

1.1. Main results: Localizing eigenfunctions near geodesic tubes. In this subsection
we present Theorems 1 and 2, which are our main estimates for Laplace eigenfunctions. In
Section 2 we present much more general versions of these two results, Theorems 10 and 11,
that hold for quasimodes of more general operators.

In fact, we work in the semiclassical framework, writing A = A~! and letting 7 — 0.
Then, relabeling ¢; = ¢y,, we study

(1.1) (—h*Ag — Dy = 0. lgnllz2ar) = 1.

This rescaling is useful because it allows us to work in compact subsets of phase space, and in
particular, near the cosphere bundle S* M where geodesic dynamics naturally take place.

Our main results give an estimate for ¢; near a point x € M. We now introduce the
necessary objects to state these estimates. We will work with a cover of S} M by short geodesic
tubes A7 (R(h)) C T* M. This notation roughly means that the geodesic tube, AL (R(h)), is the
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flowout of a ball of radius R (%) around p for times ¢ € [—t — R(h), T + R(h)]. We will, in fact,
take T > 0 small. This is similar to an R(%) thickening (with respect to the Sasaki metric on
T*M) of the geodesic of length 27 centered at p € S} M (see (2.12) for a precise definition).
We say that {A;j (R(h))}]]-\;h1 isa (t, R(h))-cover of S} M if it covers AE‘;M (%R(h)) (see Def-
inition 3 for the definition of a cover and (2.11) for the definition of AE; M (%R(h))).

In addition, a §-partition of SgM associated to the (z, R(h))-cover is a collection of
functions {y; ]N="1 C Ss(T*M:; 0, 1]) so that each y; is supported in the tube Afoj (R(h)) and
with the property that Zszhl xj = 1on Ag; M(%R(h)). (See Appendix A.2 for a description
the symbol class Sg, and Definition 3 for the definition of a §-partition.)

The functions y; are used to microlocalize ¢ to the tubes A;j (R(h)). We refer to
Opn(xj)¢n as a geodesic beam through x. They are constructed in Proposition 3.4 and have
the additional property that Opj,(x ;) nearly commutes with (—h%2 A4 — 1) near x (so that these
localizers do not destroy the property of being a quasimode locally near x). (See also Step 2 in
the proof of Theorem 10.) The fact that Opj,(x;) nearly commutes with (—h% A4 — 1) requires
that we work with geodesic tubes of positive length, 7, independent of / rather than localizing
to balls of radius R(/) centered in S§ M.

In the following result, we control ¢, (x) by the L2-mass of the geodesic beams through x.

Theorem 1. Let x € M. There exist 1o = to(M,g) >0, Ry = Ro(M,g) >0,C, >0
depending only on n, so that the following holds.

Let 0 <t <719 0<6 < % and 8h% < R(h) < Ro. Let {y; jV:hl be a §-partition for
S¥M associated to a (t, R(h))-cover. Let N > 0. Then there are hg = ho(M, g.{y;}.§) >0

and Cy > 0 with the property that for any 0 < h < hg and ¢y, satisfying (1.1),
1.1 1 Na
PnllLoo(Bx,ny) < Cnt 2h 2 R(h) 2 Z 10Pr (X))l 2, + CNhN||¢h||Lz(M)-
j=1

Moreover, the constants ho and C are uniform for y; in bounded subsets of Sg.

Crucially, this estimate makes no assumptions on the geometry of M or the dynamics
of the geodesic flow. Information on the dynamics of the geodesic flow will later allow us to
control the L?-mass of the geodesic beams (see Theorem 2).

This result is a consequence of the more general and stronger result given in Theorem 10
below. (See Remark 6 for the proof.) Indeed, the latter is stated as a bound for [ g undoy,
where H C M is a general submanifold and u, is a quasimode for a pseudodifferential opera-
tor with a real, classically elliptic symbol with respect to which H is conormally transverse.
Note that when H = {x}, we have [, u, dog = uj(x). See Section 2 for a detailed descrip-
tion.

One can conclude from Theorem 1 that, in order to have maximal sup-norm growth at
a point, an eigenfunction must have a component with L2?-norm bounded from below that is
distributed in the same way as the canonical example on the sphere (up to scale h% for all
8 < %). Indeed, if one restricts attention to (z,r) covers of Sy M without too many overlaps
(see Definition 4) it follows from Theorem 1 that there exists C,, > 0, so that for all £ > 0, if

.2 n—1 2 R(h)"! 2
#0J e RN = 0P (x)dnll72ar) = —2 (=F Ny,

1—n
2,

_1
then ”(Ph“LOO(B(_x,hS)) S SCnT 2h



Canzani and Galkowski, Eigenfunction concentration via geodesic beams 201

To understand Theorem 1 heuristically, one should think of || Opy,(x;)$nllL2(pr) as mea-
suring the L2-mass of ¢, on the tube of radius R(h) around a geodesic that runs through the
point x. Since vol(supp x;) < R(h)"~!, an individual term in the sum in Theorem 1 is then

1OPR (X h1IZ 2 a1
vol(supp x,)

2
n—1
R(h) 2 |Opn(x)énll L2 X( ) vol(supp x;),

where vol is the volume measure on S} M induced by the Sasaki metric on 7* M . In particular,
the sum on the right of the estimate in Theorem 1 can be interpreted as || SEM |% |% d vol,
where p is the measure giving the distribution of the mass squared of ¢, on S M. This state-
ment can be made precise by using defect measures (see [13, Theorem 6]), but the results using
defect measures can only be used to obtain o(1) improvements on eigenfunction bounds.

We emphasize now that Theorem 1 is the key estimate for the proofs of all the appli-
cations to L°°-norms, L?-norms, and Weyl Laws stated in Sections 1.2, 1.3, 1.4, respectively.

At first sight it may seem that it is not easy to extract information from the upper bound
provided in Theorem 1. However, the strength of this bound is showcased in our next result,
Theorem 2. The latter combines the analytical bound of Theorem 1 together with Egorov’s
Theorem to obtain a purely dynamical statement. Indeed, ¢y (x) is controlled by covers of
Agi‘ Y (%R(h)) by “good” tubes that are non-self-looping under the geodesic flow,

Qr = exp(tH|g|g)

(where H)g|, is the Hamiltonian vector field of |€[g), and “bad” tubes whose number is small.

Definition 1 (non-self-looping sets). For 0 < t9 < Ty, we say that A C T*M is [tg, To]
non-self-looping if

To =10
(1.2) UJena=0 or ) e()na=o.
1=tg t=—To

The goal of our next result is to obtain quantitative control of ¢y (x) by splitting the
geodesic tubes into “good” tubes {A;j (R(h))};eg, that are [tg, T¢] non-self-looping and “bad”
tubes {A;j (R(h))}, ep that may be self-looping. The quantitative control is then given in terms
of 1y, Ty, 9|, and | B|. Recall that T > 0 is a small parameter so the tubes A7 (R(h)) do not see
the global dynamical structure of the geodesic flow. It is only when 7, >> t that one encounters
this information.

It is convenient to work with covers by tubes for which the number of overlaps is con-
trolled. Indeed, we say that a (7, R(h))- covering by tubes is a (D, t, R(h))-good covering, if
it can be split into © > 0 families of disjoint tubes. See Definition 4 for a precise definition. In
Proposition 3.3 we prove that one can always work with (D, t, R(h))-good coverings, where
9, only depends on 7.

In what follows we write A, for the maximal expansion rate of the flow and T, (k) for
the Ehrenfest time
logh™!

(see (2.14)).
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Theorem 2. Letx e M, 0<§ < % There exist positive constants hg = ho(M, g, 8),
70 = 10(M, g), Ro = Ro(M, g), and C,, depending only on n, so that for all 0 < t<to and
0 < h < hy the following holds.

Let 8h% < R(h) < Ry, and {Ar (R(h))} | be a (D, 7, R(h))-good cover for S¥ M for
some D > 0. Let 0 <o < 1—2lim suph -0 log R(h) /log h and suppose there exists a parti-
tion of {1,..., Ny} into B and {G;}yesy such that for every £ € L there exist Ty = Ty(h) > 0
and ty = tg(h) > Owithty(h) < Ty(h) < 2aT,(h) such that

U A;j (R(h)) is [tg, Ty] non-self-looping.
J€%,
Then, for all N > 0, there exists Cy = Cy(M, g, N,t,8) > 0so thatfor ¢y, solving (1.1),

16|21
¢nllooBxnt)) < Cn DT Sht RS (Iiv’l2 + Z IDall, 200,

leg T2

Remark 1. Note that, since the tubes A;j (R(h)) are essentially time t flowouts of balls
around p; with radius R(h), if the ball of radius R(h) around p; is [t — 7, T + 7] non-self-
looping, then Ar (R(h)) is [t, T] non-self-looping. Therefore, we could replace the non-self-
looping assumptlon on A’ (R(h)) in Theorem 2 by an analogous non-self-looping assumption
on B(p;, R(h)). Note, however that these balls cannot be replaced by balls inside S; M. We
need them to have full dimension so that smooth cutoffs can be supported inside A;(R(h)).
Moreover, it is necessary that they encode quantitative information on how geodesics near the
center of A7 (R(h)) return close to x.

This result is a consequence of the more general and stronger result given in Theorem 11.
See Remark 7 for the proof. As with the previous theorem, the generalization is stated for
averages over submanifolds of quasimodes of general operators. See Section 2 for a detailed
explanation. For examples where Theorem 2 is applicable see Section 1.2.2 and Section 1.5.

We note that Theorem 2 distinguishes much finer features than that of self-conjugacy with
maximal multiplicity. Indeed, the theorem can be used to obtain estimates at points a// of whose
geodesics return; provided the geodesics through the point have some additional non-recurrent
structure (e.g., the umbilic points on the triaxial ellipsoid; see Section 1.5). In particular, this
estimate distinguishes recurrent structure and non-recurrent structure as in Definition 2. At this
point, we do not know to what extent it distinguishes periodic structure from recurrent structure.

Theorem 2 reduces estimates on ¢y, (x) to the construction of covers of A, 7 (1 > R(h)) by
sets with appropriate structure. Here A% M(2 R(h)) denotes a + 5R(h) thlckenlng of the set of
geodesics through x, see (2.11). If there 1s a cover of A%, (2 R(h)) by “good” sets {Gy}yer
and a “bad” set B, with every Gy being [t;(h), T¢(h)] noric—self—looping, the estimate reads

L
_1 1= 1 [vol(Gy)]2t;
16 oo (Bx o)) < Cn DT 212 ([vol(B)]z 3 il

Lel T2

where vol denotes the volume induced on S M by the Sasaki metric on 7* M, and where we
write vol(A4) = vol(A N Sy M) for A C T*M. The additional structure required on the sets
G and B is that they consist of a union of tubes A7 (R(h)) and that Ty (h) < 2(1 — 28) T (h).
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With this in mind, Theorem 2 should be thought of as giving a non-recurrent condition on
S¥M which guarantees quantitative improvements over the standard bounds (see Definition 2
for a precise explanation of what we mean by non-recurrent structure). In particular, taking 7,
t¢, Gy and B to be h-independent can be used to recover the dynamical consequences in [13,25]
(see [24] and Section 1.6).

In Section 5 we illustrate how to build covers by good and bad tubes in some inte-
grable geometries, and how to use them to obtain quantitative improvements over the known
L®°-bounds. In the figure we illustrate how to cover Sy M with “good” tubes (green) and
“bad” tubes (orange) for a point x on the square flat torus. The grid represents the integer lat-
tice on the universal cover of the torus. In Figure 1, there is only one index i.e. £ = 1, and
we chose ty =t =1.6, Ty =T=2.7, 7 =0.2, and R = 0.01. In the figure, the length of
the green/orange tubes is 2(t + R). Note that some of the green tubes are not [3t, T] non-
self-looping but are [¢, T'] non-self-looping, e.g., the tube at angle /4. In practice, to obtain
quantitative gains, one needs to work with 7" — oo. The figure is drawn for one relatively small
T because choosing a larger T makes the figure illegible. A tube is “bad” if the geodesic gen-
erated by it returns to x in time between ¢ and T'. Note, in addition, that 7, must be positive
since our tubes have finite, positive width in the flow direction. Also, a set may be [tg, T'] self-
looping, but not [fo, 7] self-looping for some 7o > fo, €.g., a neighborhood, U \ V C T*M,
where U is a neighborhood around an unstable hyperbolic closed geodesic in phase space and
V is a slightly smaller neighborhood. While, at the moment we do not have examples where it
is necessary to send ty — oo with &, we anticipate this will be useful in the future.

To understand why it is in general useful to have families of tubes &, with different
looping times, [t;, Ty], we consider the following setup. We assume that the geodesic flow is
exponentially contracting in the sense that

-C
ldeelsyall < Ce™".

For simplicity, let dim M = 2. The way in which we work with the assumption on the geo-
desic flow is that the flow out of an arc of length R in Sy M will have length ¢~ CT R upon
return to Sy M at time 7. We, in general, do not have information about the place to which
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the arc returns. Suppose we want to cover Sy M with tubes of radius R and divide them
into [tg, T (h)] non-self-looping collections &, such that Theorem 2 gives a log h~! gain. Note
that, for simplicity, we identify each tube with the arc of length R that is formed by its inter-
section with Sy M. Since R > hg, and, in order to get a log hl improvement, we must take
T(h) ~logh~!, we have R > e~ €T,

To simplify the situation further, we discretize the time and imagine that the return map,
®, has the properties above. To produce a non-self-looping collection, we start with an arc Ag
of length ~ 1. To construct a [tg, T (h)] non-self-looping set, G, we let

A= | o) nAo. Goi= Ao\ A1
to<k<T(h)

Since we do not know the directions in which A returns, A; a priori consists of intervals of
sizee €, e 2C . e €T Hence, Aj has volume ~ ¢~€ and is [to, T (h)] self-looping. In
order to get a T'(h)~! improvement with only one Ty(h) = T(h), any set which is [tg, T (h)]
self-looping must have volume < C T'(h)~!. Since A;’s volume is > T'(h)~!, we must iterate

this process by putting

Ag = U QK (A N A1, Gooy = Ay \ Ay
to<k<T(h)

A priori, Ay has volume ~ e Cl s [to, T (h)] self-looping, and consists of intervals of size
e‘ce,e_c(“'l), c. ,e_C(T(h)"'K). Therefore, in order to gain T(h)_1 in our estimates, we
must iterate until e=€¢ ~ T'(h)~L. That is, £(h) ~ log T'(h). Note that in this case the smallest

arc in Ay(p) has length
e—C(T(h)—I—Z(h)) ~ hC T(h)_c.

Now, depending on C, this may be < h¥, which is the scale of our cover. There are a two
ways around this. We could shrink 7 (%) so that this scale is above R. However, this would be
somewhat unnatural since then our dynamical gain would necessarily depend on the contraction
rate. So that we may use our original 7' (%), while still having a scale above h?®, we shrink
the non-self-looping times at each step so that Gy is e~ 2 T'(h) non-self-looping. In doing
this, we have that Gy is [z, e T (h)] non-self-looping and has volume ~ ¢~€*. In addition,
the minimum size of an interval in Ay is e~ Xj—o¢~ /T () Tterating until £ ~ log T'(h), then
enables us to obtain our estimates.

In the following subsections, Section 1.2, Section 1.3, Section 1.4, we showcase a few
of the many applications of Theorem 2 in obtaining quantitative improvements for L °°-norms,
L?-norms, pointwise Weyl laws, and averages over submanifolds.

1.2. Improvements to L °°-norms and averages. In this subsection we introduce some
of the applications of geodesic beam techniques to the study of the L°-norms of ¢y, and
of the averages || g $rndog over a submanifold H C M. The goal is to obtain quantitative
improvements on the known bounds [32, 63]

(1.3) on(x) = O(hl%n) and /H¢h(X) dog = O(h%)’

where k is the codimension of H . These bounds are sharp since they are, for example, saturated
on the round sphere. Note that the right-hand estimate includes the left if we take H = {x}.
In Section 1.2.1 we present applications of our geodesic beam techniques to studying eigen-
function growth on manifolds with no conjugate points, or whose geometries satisfy a weaker
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condition. These results, and many more, can be found in [12]. In Section 1.2.2 we present
applications to obtaining quantitative improvements of L°-norms in integrable geometries.
The proofs of these and more general results are presented in Section 5.

1.2.1. Results under conjugate point assumptions. It is known that the L°°-bound
in (1.3) is saturated on the round sphere if one chooses ¢, to be a zonal harmonic that peaks
at the given point x € S”. This phenomenon is possible since all geodesics through x are
closed. In addition, on the sphere every point is maximally self-conjugate. In general, a point
x € M is said to be conjugate to y € M if there exists a unit speed geodesic y joining x
and y, together with a non-trivial Jacobi field along y that vanishes at x and y. The number
of such Jacobi fields that are linearly independent is called the multiplicity of x with respect
to y and is always bounded by n — 1. When the multiplicity equals n — 1 the point x is said to
be maximally conjugate to y. As a consequence of our geodesic beam techniques, we obtain
quantitative improvements on the L°°-norm of an eigenfunction near a point x that, loosely
speaking, is not maximally self-conjugate.

Consider the set E of unit speed geodesics on (M, g) and define

(1.4) ert .= {)/(t) :y € B, y(0) = x, In—1 conjugate points to x in y(t—r,t—i—r)},

where we count conjugate points with multiplicity. Note that if r, — 0 as |¢| — oo, then
saying that x € el for ¢ large indicates that x behaves like a point that is maximally self-
conjugate. This is the case for every point on the sphere. The following result applies under
the assumption that this does not happen and obtains quantitative improvements in that set-
ting. The obvious case where our next theorem applies is that of manifolds without conjugate
points, where et =gfor0<r < |£]. In addition, the theorem applies to all non-trivial prod-

uct manifolds M = M; x M, (see Section 1.5).

Theorem 3 ([12, Theorem 1]). Let V C M and assume that there exist tyg > 0 and
a > 0 so that
inf d(x, €L >r, fort > 19
xeV

with r; = %e_“t. Then there exist C > 0 and hg > 0 so that for 0 < h < hg andu € D' (M)

[ Nl V9ogh~!
V9ogh=1 h

For a definition of the semiclassical Sobolev spaces H;, see (A.3). Here and below, when
we write [|v]| g, for some v € D’ withv ¢ H,, we define [vllzs, = oo.

Before stating our next theorem, we recall that if (M, g) has strictly negative sectional
curvature, then it also has Anosov geodesic flow [1]. Also, both Anosov geodesic flow [37] and
non-positive sectional curvature imply that (M, g) has no conjugate points.

—_— 2 —_—
”( h Ag 1)u||HS(C,l1—3)/2(M)>‘

Theorem 4 ([12, Theorems 3 and 4]). Let (M, g) be a smooth, compact Riemannian
manifold of dimension n. Let H C M be a closed embedded submanifold of codimension k.
Suppose one of the following assumptions holds:

(A) (M, g) has no conjugate points and H has codimension k > %

(B) (M, g) has no conjugate points and H is a geodesic sphere.
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(C) (M, g) is a surface with Anosov geodesic flow.

(D) (M, g) is non-positively curved and has Anosov geodesic flow, and H has codimension
k> 1

(E) (M, g) is non-positively curved and has Anosov geodesic flow, and H is totally geodesic.

(F) (M, g) has Anosov geodesic flow and H is a subset of M that lifts to a horosphere in the
universal cover.

Then there exists C > 0 so that for all w € C2°(H) the following holds. There is hg > 0 so
that for 0 < h < hg andu € D' (M),

1—k ]|
< Ch2||w||oo(ﬂ

V9iogh—1
N V3iogh™1

2
h ”(_h Ag - l)ulle(c(lc—s)/z(M))'

(1.5) ‘/ wu dog
H

Remark 2. Note that while C > 0 in (1.5) is independent of w, the choice of g > 0
depends on high order derivatives of w.

To the authors’ knowledge, the results in [12] improve and extend all existing bounds on
averages over submanifolds for eigenfunctions of the Laplacian, including those on L°°-norms
(without additional assumptions on the eigenfunctions; see Remark 8 for more detail on other
types of assumptions). Our estimates imply those of [13] and therefore give all previously
known improvements of the form

f udoy = o(h'2).
H
Moreover, we are able to improve upon the results of [6, 10,44,48, 60, 62].

1.2.2. Integrable geometries. Next, we present a class of integrable geometries for
which log 4~ improvements over the standard bounds are a consequence of Theorem 2 and
its generalization, Theorem 11. We apply Theorem 11 to the case of Schrodinger operators,
—h?Ag + V, acting on spheres of revolution where the bicharacteristic flow is integrable.
When V' = 0, these examples give manifolds with many conjugate points where we are able to
obtain quantitatively improved L°-bounds away from the poles of S2.

To state our results, we identify the surface of revolution M with [0, 7] x S! endowed
with the metric g(r, 8) = dr? + «(r)?>d6?. We then consider operators of the form

P(h) = —h*Ag =V
with V' > 0. The Hamiltonian for this problem is then

1
a(r)?

p(0.1.89. ) = & + & -V

and we assume that the map r — a(r)+/V(r) has a single critical point at r = rg which is
a non-degenerate maximum. In order that M be equivalent to a sphere, «(r) must satisfy
@) (0) = 0 and «@®) () = 0 for all non-negative integers k.
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Since {p, &g} = 0, it follows that the pair (M, p) yields an integrable system on 7* M.
Let (©, 1) € T? x R? be action-angle coordinates so that 7* M = |_|;cg> Ty is the foliation
by Liouville tori (possibly with some singular elements). That is, in the (®, /) coordinates
p = p(I) and hence the Hamiltonian flow is given by

9:(©.1) = (O + 10 p(I). I).
There is a single singular torus corresponding to the closed Hamiltonian bicharacteristic
Vs = AT =T
In addition, we make the following assumption:

(i) The map {p =0} > I — 97 p(I) € RPP? is a diffeomorphism. When this is the case
at Iy, we say p is iso-energetically non-degenerate at Iy on {p = 0}.

Theorem 5. Let o and V satisfy the assumptions above. Then, for
(1.6) P =—h*Ag —V(r) +hQ

with Q € W2(M) self-adjoint, and K C [0,27] x (0, ) compact, there exists C > 0 with the
following properties. For all L > 0 there exists hg > 0 so that for0 < h < hg, andu € D' (M),

o Lylogh='|[Pul _,,
1( Lan H )

scl (M)
L/logh™! h

N

|ullpooxy < Ch™

In particular, if

hlju]

L2(M)
”Pu”H_Uz =0 -1 )
scl (M) logh

then

h
logh_l ||u||L2(M) .

Remark 3. Note that we make no assumptions on u. In particular, ¥ need not be a joint
eigenfunction of the quantum completely integrable system. Furthermore, the addition of the
perturbation 4 Q (for Q general) destroys the quantum complete integrability of the operator.

D=

ooy = o(

1.3. Logarithmic improvements for L?-norms. Since the work of Sogge [46] it has
been known that

n—1 n
_ T T p 2 pC’
IgnllLony = OGE™), s(p.my =12, P
& T 3p 2<p=pe,
where p, = % This bound is saturated on the sphere by zonal harmonics when p > p,

and by highest weight spherical harmonics (a.k.a. Gaussian beams) when p < p.. (See, e.g.,
[52] for a description of extremizing quasimodes.)

It is then natural to look for quantitative improvements on this bound under different
geometric assumptions. When (M, g) has non-positive sectional curvature, a bound of the form

lpnllLr ey = O (W)
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was proved by Hassell and Tacy [30], with o(p,n) = % for the case p > p.. In the same
setting, Blair and Sogge [8, 9] studied the 2 < p < pc case and obtained a logarithmic im-
provement for some o (p, n) that is smaller than 5

An application of Theorem 2 gives (logh™ 1)2 improvement when p > p. under very
weak assumptions on the set of conjugate points of (M, g). Indeed, given x € M, r > 0, and
t > 0, we continue to write f;’t for the set of points defined in (1.4). Note that if r; — 0T
as |t| — oo, then saying that y € el for t large indicates that y behaves like point that is
maximally conjugate to x.

Theorem 6 ([14]). Let p > pc. Let V. C M and assume that there exist ty > 0 and
a > 0 so that

inf d(y € ’t) >ry fort>ty,
x,yeV

Le=at Then there exist C > 0 and ho > 0 so that for 0 < h < hg, and ¢y, satisfy-

with ry = a
ing (1.1), -
—o(p,n

I¢nllLr vy < C———=.
v Viogh—1

One should think of the assumption in Theorem 6 as ruling out maximal conjugacy of the
points x and y uniformly up to time oo.

Remark 4. There are estimates in terms of the dynamical properties of covers by tubes
similar to Theorem 2 for each of the bounds in Theorems 3, 4, and 6. In particular, these
estimates do not require global geometric assumptions on (M, g), instead only using dynamical
properties near Sy M or SN*H.

1.4. Logarithmic improvements for pointwise Weyl Laws. Let {hj_z} ; be the eigen-
values of (M, g). It is well known that

vol(B™) vol(M)
2m)"

with E(h) = O(h'™™). Indeed, this result is the integrated version of the more refined state-

ment proved by Hormander in [32] which says that for all x € M,

(17) S g, )2 = 280

hl<p—1 (2 )n
=

h™" + E(h)

#jhil<hTl) =

22 2hm 4 E(h, x),

with E(h, x) = O(h'™) uniformly for x € M. When the set of looping directions over x has
measure zero, Sogge and Zelditch [49] proved that E(h, x) = o(h'™"). Also, Duistermaat and
Guillemin [20] proved an integrated version of this result by showing that E(h) = o(h!™")
if the set of closed geodesics in M has measure zero. In terms of quantitative improvements,
Bérard [6] and Bonthonneau [10] proved that E(h,x) = O(h'™"/logh™!) if (M, g) has no
conjugate points. As before, another application of geodesic beam techniques is that log 2!
improvements can be obtained under weaker assumptions than having no conjugate points.

Theorem 7 ([15]). Let V C M and assume that there exist ty > 0 and a > 0 so that

inf d(x, € >r, fort > t,
xeV
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with ry = %e“”. Then there exist C > 0 and hg > 0 so that for 0 < h < hg and E(h, x) as
in (1.7),

Chl—n
sup E(h,x) < —-
xeV logh

We remark that there are generalizations of this result to Kuznecov sums estimates, where
evaluation at x is replaced by an integral average over a submanifold H (see [63] for the first
results in this direction). In addition, in the same way that Theorem 2 can be used to obtain
quantitative improvements in L°°-bounds in concrete geometric settings, the dynamical version
of the estimate in Theorem 7 can be used to obtain improved remainder estimates for pointwise
Weyl laws. We show, for example, that all non-trivial product manifolds satisfy the assumptions
of Theorem 7 at every point in Section 1.5.

1.5. Examples. We now record some examples to which our theorems apply. We refer
the reader to [12] for many more examples. First, note that Theorem 3 applies when M is
a manifold without conjugate points. The following examples may (and typically do) have
conjugate points.

1.5.1. Product manifolds.

Lemma 1.1. Let (M;, g;), i = 1,2, be two compact Riemannian manifolds, and let
M = My x My be endowed with the product metric g = g1 ® g». Then et =9 for all
xeM,|t|>0,and0 < r <t.

Proof. Letx = (x1,x2) € M and let y(¢) be a unit speed geodesic on M with y(0) = 0.
Then there are unit speed geodesics Y1 and y» in M| and M, respectively, such that y1 (0) = x1,
y2(0) = x», and there exists 6y € R such that

y(t) = (y1(t cos Op), y2(t sinp)) € My x M5.

Moreover, for every 6 € R, the curve yy := (y1(t cos 8), y2(f sin 0)) is a unit speed geodesic.
In particular, one perpendicular Jacobi field along y = yg, is given by

J(t) = 0gyg }9=00 = t(—sin By (¢t cos bp), cos By (¢ sin By)).

Thus, ||J(¢)|| = t, and hence J vanishes only at = 0. In particular, since there exists a Jacobi
field vanishing only at r = 0, €%' = @ forall 0 < r < |z]. u]

We point out that although el s empty for 0 < r < |t|, M may, and often does, have
self-conjugate points. For example, this is the case if M; = S™! forn; > 2.

Corollary 8. Let (M;,g;), i = 1,2, be two compact Riemannian manifolds of dimen-
sionn; > 0. Let M = M| x M, endowed with the metric g = g1 @ g». Then there is C > 0
such that for all x € M and u € D' (M),

1—(ny+ny) ||u||L2 M logh_l
ol = ch ( ) | v |(=h?Ag — Du
Vlogh=1 h H

(nq +112—3)/2(M)) .

scl
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1.5.2. The triaxial ellipsoid. We consider the triaxial ellipsoid
M :={xeR>:a?>x2+b%y2 + %222 =1}

with 0 < a < b < c. It is well known that the four umbilic points (i.e. points at which the
normal curvatures are equal in all directions) on M are maximally self-conjugate. In fact,
for an umbilic point xg, there is 7 > 0 such that every geodesic through x¢ returns to xg
at time 7. Nevertheless, Theorem 2 and its generalization, Theorem 11, are useful at these
points. The reason for this is the presence of a hyperbolic closed geodesic through x¢ to which
every other geodesic through x¢ exponentially converges forward and backward in time (up to
reversal of the parametrization). In particular, letting (xo, £+) and (x¢, £—) be the initial points
of the hyperbolic geodesic, we have that the stable direction for £ is given by T, SYM and
the unstable direction for £_ is given by Te_ S *M (see [38, Theorem 3.5.16]). Thus, for each
§ > 0 there is C > 0 such that if (£, £¥) > §, then in for all F¢ > 0 one has that

+C
ldeelr sz mll < Ce=".

This type of exponential convergence can be used (see [27], [12, Lemmas 3.1-3.2]) to generate

covers and obtain
u V9ogh~1
[u(xo)| < Ch_é(” 2 V8
Vl9ogh1 h

1.5.3. The spherical pendulum. One example to which Theorem 5 applies is that of
§2 = {x € R3: |x| = 1} the standard sphere equipped with the round metric, g, and func-
tion V € C°°(S?) given by V(x1,x2, x3) = 2x3. The quantum spherical pendulum is then the
operator

J— 2 J—
12 = Dl )

P=—h*Ag + V.
Identifying the sphere with M = [0, 7], x [0, 27r]g. The Hamiltonian is given by

pO.rEg &) = 2+ —

sin? r
with £ € R. This Hamiltonian describes the movement of a pendulum of mass 1 moving with-
out friction on the surface of a sphere of radius 1.

By [33] for E > 14/+/17, p is iso-energetically non-degenerate for all I on {p = 0}. It
is easy to check by explicit computations that £ —2cosr > 0 for £ > 2 and the map given
by r + sinr+/E — 2 cosr has a single non-degenerate maximum on [0, 7z]. Therefore, taking
E = Ey > 14/J/17 and Q = h~'(E¢ — E}) in Theorem 5 yields the following Corollary 9.

Eg—i—ZCosr—E,

Corollary 9. Let B > 0, Eg > 14/v/17 and § > 0. There exists C > 0 such that for all
L > 0 there exists hg > 0 so that the following holds. For all u € D'(S?), 0 < h < ho and
Ey € (Eo— Bh, Eg + Bh),

1 ( ull L2(s2) N L/logh=||[(P - Eh)””HS;l/Z(sz))

oo _5y < Ch™2
]| Lo (fx5]<1-8) =< L Jiogh1 ;
In particular, if ||u|[12(s2y = 1 and Pu = o(h/log h™Y;2, then
h

T =o(—).
(Ix3]<1-6) \/IOgT

(Sl
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Note that if we define ¢ = g//Eo —2x3 with Eg > 14/4/17, then Theorem 5 shows
that the eigenfunctions ¢, for (—h?A g — D¢y = 0 satisfy the bound

1
h™2
n¢muwunkv%>—”(:ﬁ§§?T)

for any § > 0.

1.6. Relations with previous dynamical conditions on pointwise estimates. In this
subsection, we recall the previous dynamical conditions guaranteeing improved pointwise esti-
mates [25,45,47,49,50,50,56]. We first define the loop set at x by

Ly :={p € SFM : there exists ¢ € R such that ¢;(p) € Sy M},

and recall that a point x is said to be non-self-focal if volgx ps (£x) = 0. It is proved in [45,49]
that if x is non-self-focal, then

(1.8) [pn () = o(h 2").
Next, define 74 : Sy M — [0, oo] by
T+(p) := £inf{£r > 0: ¢;(p) € S;M}
and @4 : T1(0,00) - SFM by

@1 (p) = o1y (0)(P)-

We then define R as the recurrent set for ®. In [25,47,56], it is shown that if vol SEM (Rx) =0,
then (1.8) continues to hold. In that case x is called non-recurrent. Finally, in [25, 50, 56] it is
shown that there need only be no invariant L?(vol s ») function for (1.8) to hold.

Definition 2. For the purposes of the present subsection, we will say that a point x is
(to, T'(h)) non-looping via covers if there is a (t, R(h)) cover for S} M, {Af,j (R(h))}j.vzhl, and
BUE ={l,..., Ny}, such that

R(h)l—n

U A;j (R(h)) is [tg, T (h)] non-self-looping and |B| < W

je$g
(See also [15, Definition 2.1].) We will say that x is T (h) non-recurrent via covers if there are
sets of indices §; C {1, ..., Ny} and pairs of times (¢, Ty) such that {1,..., Ny} = (J, &, and

11 1—n
G12t7 R(h) =z
U A;]_ (R(h)) is [tg, Ty] non-self-looping and Z %l - t < () —.
i TorE T

(See also [15, Definition 2.2].)

First of all, we point out that x being 7' (&) non-looping via covers implies that it is 7'(h)
non-recurrent via covers and that Theorem 2 states that if x is 7'(4) non-recurrent via covers
for some T'(h) < T, (h), then there is C > 0 such that

ch'z"

|n (x)] < T
T(h)?
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In order to relate these two concepts to the concept of a non-self-focal point and a non-
recurrent point respectively, we prove the following two lemmas in Appendix B

Lemma 1.2. Suppose that the point x is non-self-focal. Then there are to > 0 and
T :(0,1) — (0, 00) such that limy, o T'(h) = oo and x is (to, T'(h)) non-looping via covers.

Lemma 1.3. Suppose that x is non-recurrent. Then there is T : (0, 1) — (0, 00) such
that limy, o T (h) = oo and x is T (h) non-recurrent via covers.

In particular, Lemmas 1.2 and 1.3 recover the fact that x being non-recurrent implies
equation (1.8).

1.7. Outline of the paper. In Section 2 we present Theorems 10 and 11 which are the
generalization of Theorems 1 and 2 to quasimodes of general pseudodifferential operators P.
In Section 3 we perform the analysis of quasimodes for P and in particular prove Theorem 10.
In Section 4 we give the proof of Theorem 11. In Section 5 we construct non-self-looping
covers on spheres of revolution and prove Corollary 9. Finally, in Section 6, we prove that the
Hamiltonian flow for |& |§, — 1 can be replaced by that for |§|; — 1. In Appendix A we present
an index of notation and background on semiclassical analysis.

Acknowledgement. Thanks to Pat Eberlein, John Toth, Andras Vasy, and Maciej
Zworski for many helpful conversations and comments on the manuscript. Thanks also to the
anonymous referees for many suggestions which improved the exposition.

2. General results: Bicharacteristic beams

Our main estimate gives control on eigenfunction averages in terms of microlocal data.
The ideas leading to the estimate build on the tools first constructed in [25] for sup-norms and
generalized for use on submanifolds in [13].

Since it entails little extra difficulty, we work in the general setup of semiclassical pseudo-
differential operators (see, e.g., [65] or [22, Appendix E] for a treatment of semiclassical
analysis, see Section A.2 for a brief description of notation). Indeed, instead of only working
with Laplace eigenfunctions, all our results can be proved for quasimodes of a pseudodiffer-
ential operator of any order that has real, classically elliptic symbol. We now introduce the
necessary objects to state this estimate.

Let H C M be a submanifold. For p € S™(T* M) define

2.1 EH,p={p=O}ﬂN*H,
where N* H is the conormal bundle to H and consider the Hamiltonian flow
2.2) @r = exp(tHp).

Here, and in what follows, H), is the Hamiltonian vector field generated by p. In practice, we
will prove our main result with A replaced by a family of submanifolds { H}; such that for
all & multiindex there exists Ky > 0 such that for all 4 > 0,

(2.3) |0%Rpy,| + 0% g, | < Kq
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where Ry, and I1g, denote the sectional curvature and the second fundamental form of Hj,.
Next, we assume that there is & > 0 so that for all 7 > 0, the map (—¢,¢6) x X, — M,

(2.4) (t, p) > (s (p)) is a diffeomorphism.

We will say that a family of submanifolds {Hp}j, is regular if it satisfies (2.3) and (2.4). In
addition, we will prove uniform statements in a shrinking neighborhood of Hj,. In particular,
we prove estimates on Hj, where Hj, is another family of submanifolds such that

(2.5) sup d(p, T ) <h®, [OFRy |+ [Ty | <2Kq

PEXHy . p

for all &7 > 0. Note that when Hp, is a family of points, the curvature bounds become trivial,
and so in place of (2.5) we work with d(xj,, ¥) < h® and we may take K to be arbitrarily
close to 0. It will often happen that the constants involved in our estimates depend on {Hp}
only through finitely many of the K constants.

For p € S™(T*M), we say that p is classically elliptic if there exists K, > 0 so that

§1™
6) P = =, 18] = Ky, x € M.
P
In addition, for p € S®(T*M;R), we say that a submanifold H C M of codimension k is
conormally transverse for p if given f1,..., fr € CZ°(M;R) locally defining H i.e. with
k
H = m{ fi =0} and {df;} linearly independent on H,
i=1
we have
k
N*H C {p # 0y U J{Hp fi # 0},
i=1
where H), is the Hamiltonian vector field associated to p, and N*H is the set of conormal
directions to H. Here, we interpret f; as a function on the cotangent bundle by pulling it back

through the canonical projection map. In addition, let rg : M — R be the geodesic distance
to H;rg(x) = d(x, H). Then define |Hyry| : X, — R by

ex) | Hyra|(p) = lim | Hyrir (g (p)).

A family of submanifolds { H};, is said to be uniformly conormally transverse for p if Hy is
conormally transverse for p for all & and there exists 3o > 0 so that for all 4 > 0,

2.8) inf | Hyri, () > %.
PEXH,p

When p(x,§) = |§|§(x) —1,then Xy , = SN*H and |Hprg|(p) =2forall p e SN*H.

Let {H}p},C M be a regular and uniformly conormally transverse family of submani-
folds. Then we may fix a family of regular hypersurfaces depending on /2, £, C T* M such that

(2.9) &Ly, is uniformly transverse to H, with Xy, , C &£,

and so that with W : R x T*M — T*M defined by W(t,q) = ¢;(q), there is 0 < 7p; < 1
(independent of /) so that

(2.10) W (— g, mm) £, 18 INjeCtive
forall & > 0.
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Remark 5. Working with a family {H},};,, and obtaining uniform estimates for it, is
needed in Theorem 1. In this case, Hy = {x} for every h and Hy, is a point X € B(x, h?).
Moreover, it is often useful to allow Hj, itself to vary with & (see, e.g., [14]). Note that any
h-independent submanifold H C M that is conormally transverse is automatically regular and
uniformly conormally transverse. While in some applications it is useful to have i-dependent
submanifolds Hj, as well as uniform estimates in a neighborhood of Hj,, the reader may wish
to ignore the dependence of Hy on /h as well as letting H = H for simplicity of reading.

Given A C T*M , define

5= e,
lt|<t
For R > 0and A C X pg,, we define
(2.11) G = ALY A= {pe Xy dp.A) <1},

where d denotes the distance induced by the Sasaki metric on 7*M (see, e.g., [7, Chapter 9]
for an explanation of the Sasaki metric). In particular, the tube

(2.12) AL = | @i(&nN Blp.r)).
lt|<t+r
See Figure 2.

bicharacteristic
through p;

Figure 2.  The tubes A;j (R(h)) through X g .

Definition 3. LetA C Xy ,,r > 0,and {p; (r)}j.vél C A. We say that the collection of

tubes {Af,j (r)}]].v:”1 isa (t,r)-cover of aset A C Xy, , provided

1 Nr
A (Er) c JAg, 0.
j=1
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In addition, for 0 <4 < % and R(h) > 8h%, we say that a collection X }j.v=”1 C Ss(T*M:;[0,1])
is a §-partition for A associated to the (t, R(h))-cover if {; }jV:h ; is bounded in Ss and

(i) supp x; C A (R(R)),

i) XM 1 = 1on A2 (AR().

The main estimate is the following.

Theorem 10. Ler P € W™ (M) have real, classically elliptic symbol p € S™(T*M ; R).
Let {Hy}y, C M be a regular family of submanifolds of codimension k that is uniformly conor-
mally transverse for p. There exist

70 = T10(M, p, Tinj, So. {Hp}n)> 0, Ro = Ro(M, p,k, Ko, Tinj, S0)> 0,

Cn.k > 0depending only on (n, k), and Co > 0 depending only on (M, p), so that the follow-
ing holds.

Let 0 <t <7109,0<6 < % and 8h% < R(h) < Ro. Let e, }>jN=”1 be a §-partition for g p
associated to a (t, R(h))-cover. Let N > 0 and {Hp};, C M be a family of submanifolds of
codimension k satisfying (2.5). There exists a constant C > 0, so that for every family {wy},
with wy, € Sg N CC"O(I:I;,) there are Cy > 0 and

ho = ho(M, P.{x;}.8,30,{Hp}n) >0
with the property that for any 0 < h < hg andu € D' (M),

k—1 C k n—1
W3 [ wdog,| < Sl RS 10p ]2,
Hy 235 J€Fn(wn)
-1
+ Ch ”wh”oouPu”Hs(C/f—zmH)/z(M)
N
+ Cnh (llu”Lz(M) + ”Pu“HS(C/lcfszrl)/z(M))’
where
(2.13) Fn(wp) = {j : A), QR(h) N ™" (supp wy,) # 0},

andm : ¥ g 7 I:Ih is the canonical projection. Moreover, the constants C, Cy , ho are uni-
form for x; in bounded subsets of Ss. The constants t9,C,Cn, ho depend on {Hp}j only
through finitely many of the constants Ky in (2.3). The constant Cy is uniform for {wy}y in
bounded subsets of Sg.

Remark 6 (Proof of Theorem 1). We emphasize now that Theorem 10 is the key analy-
tical estimate of this article. In particular, Theorem 1 is a direct consequence of it. Indeed,
we work with P = —h?Ag — I, Pu = 0. Let H, = {x} and Hj, = {x},} with x;, € B(x, h%).
Let wy = 1 for all A. In particular, §5(wp) = {1,..., Nj}. Note that since Hy = {x}, it fol-
lows that SN*H = SYM. Also, in this case 7iyj({x}) can be chosen uniform on M, and
we have Hyrg = 2 and 39 = 2. Moreover, Ky can be taken arbitrarily small. This yields
70 = 10(M, g), Ro = Ro(M, g) and hg = ho(M, g,{y;},8). Theorem 1 follows.

We will next present Theorem 11 which combines Theorem 10 with an application of
Egorov’s Theorem to control eigenfunction averages using dynamical information at X g 5. In
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fact, all the applications to obtaining quantitative improvements for L °°-bounds and averages
described in the introduction are reduced to a purely dynamical argument together with an
application of Theorem 11.

As explained before Theorem 2, it will be convenient for us to work with covers by tubes
without too much redundancy. We therefore introduce the following definition.

Definition 4. Let A C Xg ,, 7,© > 0, and {p; (r)}j.";l C A. The collection of tubes
{A;j (r)}j].v:’1 is a (D, 1,r)-good cover of a set A C X , provided that it is a (z, r)-cover
for A and there exists a partition {g@}le of {I,..., N;} so that forevery £ € {1,..., D},

AL GBr)NALGBr)=0. i.j€gdei#)

In Proposition 3.3 we prove that there exists a (Dy, 7, )-good cover for X g, where Dy
only depends on n. Thus, one can always work with such a cover.

We define the maximal expansion rate and the Ehrenfest time at frequency h~!, respec-
tively:

, 1 logh™!
(2.14) Ama = limsup —log sup [|de(x,8), Te(h) = —20

|t]—>o00 | {|p|5%} 2 A max

Note that Apax € [0, 00) and if Apax = 0, we may replace it by an arbitrarily small positive
constant.

The next theorem involves many parameters; their role is to provide flexibility when
applying the theorem. This theorem controls averages over uniformly conormally transverse
families of submanifolds in terms of families {§; }¢ of tubes that run conormally to the submani-
folds and are [tg, T;] non-self-looping. For an explanation on the roles of these tubes and non-
looping times, see the text after Theorem 2.

Theorem 11. Let P € V(M) be a self-adjoint operator with classically elliptic sym-
bol p. Let {Hy}, C M be a regular family of submanifolds of codimension k that is uniformly
conormally transverse for p. Let {I—?h tn be a family of submanifolds of codimension k satis-
fying (2.5). Let 0 < § < %, N > 0 and {wy}p, with wy, € Sg N CCOO(I:I;,) There exist positive
constants o = t1o(M, p, Tinj, S0, {Hp}1n), Ro = Ro(M, p, Ko, k, Tinj, 30), and C, i depend-
ing onlyonn and k, ho = ho(M, P, 6,30, {Hp}p), and for each 0 < t < 1¢ there are

C=CWM,p,t,8,30.{Hp}p), Cn =CnN(M,P,N,t.8 {wp}p, So. {Hp}p),

so that the following holds.
. R(h N,
Let 8h% < R(h)< Ro,0 <o < 1 —2lim SUpy, 0 loigz ), and suppose {A;j (R(h))}ji1
isa (D, 1, R(h))-good cover of X g p for some D > 0. In addition, suppose there exist a subset

B c{l1,..., Ny} and a finite collection {§p}pce C {1,..., Ny} with

Fn(wp) c BU ) %.
ltek

where $(wy,) is defined in (2.13), and so that for every £ € L there exist t; = ty(h) > 0 and
Ty = Ty(h) with ty(h) < Ty < 2aTe(h) so that

U A;i (R(h)) is [tg. Ty] non-self-looping.
j€se
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Then, foru € D' (M) and 0 < h < hy,

n—1 1
Cr ik OllwpllooR(h) 2 1 (1G¢lt0)2
/ﬁ whudagh‘ — 1 oz | B2 + Z—L ||u||L2(M)
h te T}

123
n—1 1
Cr i DlwplloR(R) Z (1GelteTy)2
+ = > p

75,5

723 led

k—1

W

[Pl

L2(M)

-1
+Ch ||wh||00||Pu||H(k—2m+l)/2

scl

N
P .
+ CNh (”u”Lz(M) + ” uHHs(c/lc_Zerl)/z(M))

(M)

Here, the constant Cy depends on {wy,}y, only through finitely many Sg seminorms of wy,.
The constants to, C, Cn, ho depend on {Hy,}j, only through finitely many of the constants Ky
in (2.3).

Remark 7 (Proof of Theorem 2). Note that making the same observations in Remark 6
it is straightforward to see that Theorem 2 is a generalization of Theorem 11. The only con-
sideration is that the tubes are built using the geodesic flow, which is generated by the symbol
p(x.§) = [§|g(x) — linstead of po(x.§) = |§|§(x) — 1. We explain how to pass from one flow
to the other in Section 6.

Remark 8. Note that in this paper we study averages of relatively weak quasimodes for
the Laplacian with no additional assumptions on the functions. This is in contrast with results
which impose additional conditions on the functions such as: that they be Laplace eigenfunc-
tions that simultaneously satisfy additional equations [27,34,53,55]; that they be eigenfunctions
in the very rigid case of the flat torus [11,29]; or that they form a density one subsequence of
Laplace eigenfunctions [35].

Remark 9. We also note that the norm C || Pu||;¢-2m+v/2(,,, in Theorems 11 and 10
may be replaced by C¢|| Pul| ptk—2mtar2y for any e > 0. However, for notational convenience
we have chosen to use a sub-optimal Sobolev embedding to produce the || Pu|| HE2mED2 )
term.

3. Estimates near bicharacteristics: Proof of Theorem 10

The proof of Theorem 10 relies on several estimates. In what follows we give an outline
of the proof to motivate three propositions that together yield the proof of Theorem 10.

A note on notation. Throughout this section to ease notation we write
H, I:I, w, instead of Hyp, I:Ih, wy.
Proof of Theorem 10. Let 0 < § < % In what follows 79, Ro, €9 and hg are the con-
stants given by Proposition 3.5. Let 8% < R(h)<Ry, and N > 0. Let T with 0 < 7 < 79 and

{pj }jvzhl C X4, p be so that the tubes {A ] (R(h))}j-\’:h1 forma (z, R(h))-covering of X g7 _,. We
divide the proof into three steps, each of which relies on a proposition.
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Step 1: Localization near conormal directions. Let yo € C°(R; [0, 1]) be a smooth
cut-off function with yo(t) = 1 for t < % and yo(t) =0 forz > 1. Let K > 0 be defined as
in (3.8) below and define

/
(3.1 Bs(x'.€) = xO(Kfs'H),
where |£’| 5 denotes the length of £ as an element of T * H with respect to the Riemannian
metric induced on H. In Proposition 3.2 we prove that forwe SsNC C>°(H ) there exists
Cy > 0, depending on P, finitely many seminorms of w, and finitely many of the constants Ky
in (2.3), so that for all 4z > 0
(3.2)

wu do 5
‘/ﬁ H

Step 2: Coverings by bicharacteristic beams. Let R(h) = %R(h) and let 7 = 7.

In Proposmon 3.3 we prove that there exist a constant ©,, depending only on 7, points
{p,} =1 C XH,p,and a partition {; }1—1 of {1,..., Ny}, so that

¢ AL, (R0 C UM AT (R(),

AL GROD) 1AL GROD) = 0. )£ € 1) £ .
That is, we work with a (D, T, R(h))- -good cover. In Proposition 3.4 we prove that there
ex1sts Co > 0 so that for 0 < & < g9 and 0 < h < hg there is a partition of unity {XJP }; for

( 2R(h)) with

. xj € S5 NCX(T*M; [—Coh' 23,1 + Coh'2%)),

» supp xf C ALIE(R(h)),

* MSW(IP, Opr(x] D NAS, (e) = 0.
Indeed, this follows from applying Proposition 3.4 since R(h) = %R(h) > %8]18 > 2h%. From
now on we fix & > 0 so that ¢ < &g and ¢ < 7. See Appendix A.3 for background on micro-
supports.

= ”woPh(ﬂS)u”Ll(ﬁ) + CNhN(||u||L2(M)+”Pu||HF/1c72m+1)/2(M))'

Step 3: Estimates near bicharacteristics. In Proposition 3.5 we prove that there exist
an >0,Cn >0, ho>0,and C > 0 so that forall w € S N CX°(H) and 0 < h < ho, if
{x: f P is as before, then

k=1 n—1
(33) hZ wOpk(Bsull,, ;) < CogllwllocR) = Y
jedn(w)
+ Ch_l”w”OO”Pu”H(k72m+l)/2
scl

72|Hp”H(Pj)|2

(M)

+ O [wllooJu]

L2(M)’

where Jj,(w) = {j : AL (R() N~ (supp(w)) # 0},

Remark 10. Itis crucial that the cutoffs y; supported in disjoint tubes act almost ortho-
gonally. This allows for efficient decomposition and recombination of estimates based on tubes
and we use this fact throughout the text.
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Next, let {)(e}e , be aé- -partition associated to the (7, R(h))-cover {A] (R(h))}é\;”1
of £y, ,. We claim that for each j € Jh(w)

(3.4) =2
eeAj

where

= {£: AYP(R() N AL, (R(h)) # 8.

Indeed this follows from two observations. The first one is that supp )( C Ar/ (R(h)) since
e < 7. The second observation is that on AT 2(R(h)) we have

Zx«= D=1
=1

Le;

since Ze L X¢ = lon AT/2 (R(h)) and supp g C A7, (R(h)). Combining this with the fact
that )( <14 Coh'~ —28 ylelds the claim in (3.4).
Next note that if j € Jh(w) then A; C g5 (w), where
Fn(w) = {€: AL, 2R(h) N 7w~ (supp(w)) # B}.

This follows from the fact that if £ € ;. then Ag 2(R(h)) C AL, (2R(h)).
To complete the proof, we claim that there exists C,, > 0 depending only on #n so that for
every £ € {1,..., Ny},

(3.5) #je dp(w): L e Aj} < Cp.
Assuming the claim for now, we conclude from (3.4) that

0

jedy @) | Hprr (3712 jedn(w) LeA;
_1
J€Fn(w)

Combining this with (3.3) and (3.2) finishes the proof of Theorem 10.
We now prove (3.5). Suppose that £ € +4;. Then

B(p¢. R(h)) N B(p;. R(h) N Ly, # 0.

In particular, 3
B(pj. R(h)) N &y C B(pg. 2R(h)) N L.

Therefore, A’j (R(h)) C A’ ,(2R(h)). Thus, since the tubes {A’ (3R(h))}jegl are disjoint for
eachi =1,...,9,, there ex1sts a constant C, > 0, dependlng only on n, such that for every
le {1,...,Nh},

S ol(AL (2R(h
Bt e Ay} < D, ROl GRID) .
inf; Vol(A%j (R(h)))

We proceed to state and prove all the propositions needed in the proof of Theorem 10.
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3.1. Step 1: Localization near conormal directions. Our first result is quite general,
and it shows that in order to study integral averages over H of a function v it suffices to restrict
ourselves to studying the conormal behavior of v. That is, the non-oscillatory behavior of v
along H is encoded in Opy,(Bs)v.

Lemma 3.1. Let0<§ <3, N >0, and w € S5 ﬂCOO(H) Then there is Cy > 0,
depending on finitely many semmorms of w € Sg and finitely many of the constants K in (2.3),
so that for all v € D'(H),

‘ /H w(l = Ops(Bs) () dog| < NIV vl 20z,
Proof. Let h > 0. Here, we work in coordinates (¥, x") € RF x R"* where
H=H,={x=0).

Let N be so that N <k —n + N (1- 28) Let gz denote the metric induced on H . Then inte-
grating by parts with L := 7 (ZJ é/thj) gives

/g w(x) (1 — Opa(Bs))v(x) do g (x)

i

(Znh)” k[/[ 7 {x—x’ E)w(x)(l—ﬁ(g(x E))v(x)\/|gH(xl)||gH(X)|dde d%.

= G 4!
x [wE) (1= B 0 lg g (g g (o] | dx dx’ dg’

< Cyh N0 .

Here, C depends on the C N norm of w as well as finitely many of the constants K. The
second fact follows since the transition maps for the coordinate change which flattens H have
C N -norm bounded by finitely many of the constants K. O

We next apply Lemma 3.1 to the setup of Theorem 10.

Proposition 3.2. Let P be as in Theorem 10. Let § with 0 < § < L let N >0, and
let we Ss NC°(H). Then there exists Cy > 0, depending on P, finitely many seminorms
of w € Sg, and finitely many of the constants K¢ in (2.3), so that for all u € D'(M) and
all h > 0,

scl (M)

' / w(l = Opy(Bs)) @) do | < CahN (utl o) + IPUL o sinyn, )

Proof. In order to use Lemma 3.1, we first bound |[u/|; » () For this, observe that since
p is classically elliptic, by a standard elliptic parametrix construction (see, e.g., [22, Appen-
dix E])

lull o = Cull o, F 1P G2mia,,,)s
scl

(M)
Hsc12 (M)
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where the constant C depends only on P. In particular, the semiclassical Sobolev estimates
(see, e.g., [25, Lemma 6.1]) imply that

_k
lull 2y = Ch2lull, 5, + ||P”||H(1f—2m+1)/2(M))-
SC!

Using Lemma 3.1 then gives

‘ fH w(l — Op(Bs) W) dog| < Cwh™ ([ull 5y, + 1PUI o apirys, )- O

scl (M)

3.2. Step 2: Coverings by bicharacteristic beams. We first prove that there is a con-
stant ©, > 0, depending only on 7, so that for 7, small enough, there is a (D, t, r)-good
cover of X g ,,. We adapt the proof of [18, Lemma 2] to our purposes.

Proposition 3.3. There exist D, > 0 depending only on n, Ry = Ro(n, k, Koy) > 0,

and 0 < 15, , < % depending only on ty,j, such that for 0 <ry < Ro, 0 <rg < %1 and

0 <t <713, , there exist points {,oj}j;l1 C XH,p and a partition { g, }ii)z”1 of {1,..., Ny} so
that

Ny
« AL, (o) C UL AL (),
* AL Bri)NAL@Br) =0, j.tedi j#L
Ny, oy . .
Proof. Let {p; }j=1 be a maximal > separated set in X . Fix ip € {1,..., Ny, } and

suppose that B(pj,. 3r1) N B(pg.3r1) # @ forall £ € £ C{1,..., Ny, }. Then, forall { € £,
B(pe, %) C B(piy, 8r1). In particular,

Z Vol(B (pe, %1)) < vol(B(pi,, 8r1)).
Ee:ti,-o

Now, there exist D, > 0 and Ro > 0 depending on (n, k) and a lower bound on the Ricci
curvature of X g ,, and hence on only (n, k, Kp), so that for r{ < Ry,

vol(B(piy, 8r1)) < vol(B(pg., 14r1)) < Dy vol(B (pe, %1))

Hence,

r ) r
Z VOI(B(,()(,EI)) < vol(B(piy,8r1)) < |£”| Z VOl(B(pg,El))
Zei’,io to

ZG:C,'O

and in particular, |£;,| < Dy.
Now, suppose that
A;k (3ry) N A;io (3r1) # 0.

Then there exists gx € B(pg,3r1) N Ly, qiy € B(piy,3r1) N Ly and tx, t;, € [—7, 7] so that

(ptk—tio (Qk) = {qip-

Here, &£}, is the hypersurface defined in (2.9). In particular, choosing 75, , < %, this implies
that gx = ¢j,, tx = ti, and hence B(pg,3r1) N B(pj,.3r1) # 9. This implies that j € &£;, and

hence that there are at most D, such distinct j (including ig).
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At this point we have proved that each of the tubes A;j (r1) intersects at most D, — 1
other tubes. We now construct the sets {1, ..., §p, using a greedy algorithm. We will say that
i intersects j if

A, (r) N AR (1) # 0.
First place 1 € 1. Then suppose we have placed j = 1,...,£in Z1,..., o, so that each of
the sets ¢; consists of disjoint indices. Then, since £ + 1 intersects at most D, — 1 indices, it is
disjoint from g; for some i. We add £ to ;. By induction we obtain the partition ¢1,..., Jo,.

Now, suppose ro < r; and that there exists p € A’Zqu(ro) sothat p ¢ | J; Ag, (r1). Then
there are |t| < © + rp and g € £}, so that

p=w:i(q). d(q.Xnp) <ro. mind(q.pi)=r1.
In particular, by the triangle inequality, there exists p € X g, , such that

d(p.pi) =z d(q.pi) —d(q.p) > r1 —ro.

. . . . Ny, .
This contradicts the maximality of {p; } ; ;‘1 if ro < 3. m|

We proceed to build a §-partition of unity associated to the cover we constructed in Propo-
sition 3.3. The key feature in this partition will be that it is invariant under the bicharacteristic
flow. Indeed, the partition is built so that its quantization commutes with the operator P in
a neighborhood of X g .

Proposition 3.4.  There exist constants T1 = T1(Tinj)) > 0 and &1 = &1(11) > 0, and given
0<é< % 0 < & < &1 there exists hy > 0, so that for any 0 < T < 71, and R(h) > 2h5, the
following holds.

There exist C1 > 0 so that for all 0 < h < hy and all (t, R(h))-covers of £ g, p there
exists a partition of unity y; € SsNCX(T*M; [—C1h'=28 1+ C1h1=28)) on A’ZH , (%R(h))
for which

* supp x; C ALTE(R(h)),
* MSu([P, Opr(x)))) N Ag,, () =0,

and the y; are uniformly bounded in Sg.

Proof. Let £5 be as in (2.9) 11 < %rinj and fix 0 < 7 < 17. Then let &1 > 0 be so
small that AgH p(81) C AE (0), fix 0 < & < &1 and let h; be so small that h8 < & for all
0<h< hl.Fofeachj e{l,...,Np}let

Hj =Ly N A;j (R(h)).
Let {yrj} C C°(£y: [0, 1])NSs be a partition of unity on £ N A’ZH p(%R(h)) subordinate
to {H;} i | that is uniformly bounded in Ss. Then define a; o € Ss on }\EH , (¢) by solving
ajole, =Vj, Hpajo=00nAg, (e).

Clearly, a;,o defined in this way is a partition of unity for ATZH,,) (% R(h)). Furthermore, we can
extend a0 to T*M as an element of Sg so that

suppajo C | ) @i(H) CALTER(), 0 <ajp<1.
|t|<t+e+R(h)
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Note also that since P € W"(M) and Hpa;o = 0, for b € Sg with suppb C A’EH , (e),
Op(D)[P. Oph(ajo)l € B>~ Ws(M).

We define a; ;. by induction. Suppose we have a; ¢, £ = 0,...,k — 1, so that if we set

k—1
. £(1-26
Xjk—1'= Zh ( )aj,t’v
=0

then
N

A) M gjker = Ton g, (SR().

(B) ejx = o(h™ " FI2D[P Opy(xj k1)) € Sson AY, (e).
Then, for every k > 1, define a; ;. € S5 by

(3.6) aj,k|$h =0, Hpaj’k = —l'ej,k on AEH’p(S)-
Next extend a; x to T*M as an element of Sy so that
suppaje € ) @i(I) C AGFER()).

lt|<t+e+R(h)

Now, since Zszhl Xjk—1 = 1on Aqup(%R(h)), by (B) we see that for p € Aqup(%R(h)),

Ny, Np
Y eiklp) =0 (h—l—k“—zf” [P, Oph ( > xj,k_l)D (p) = 0.

j=1 j=1
In particular, (3.6) gives that vazhl ajr =0on A’EH , (%R(h)). Therefore, since

pk(1-26)

Xik = Xjk—1 1 Ajik

we conclude that

Np

Y k=1 onA%, (3R(h),

j=1
and hence (A) is satisfied for a; ¢ with £ = 0,...,k. To show that (B) is also satisfied, let
b € S with suppb C A’EH p(s). By assumption, we have

Opn(B)P. Opy(xjx—1)] € K2 w5 (a1).
Also, using once again that P € W™ (M) and that Hya;, = —ie;
Opn(B)[P. Opy(a;)] € hWs(M) + h> 25 ws(M).
Hence,
Opn(D)[P. Opp(xj 1)) = Opu(B)IP, Opy(x; WE=20 g, )] € W HRA=20 gy
Pr(D)[P, Opp(x)k)] pr(D)[P. Opp(xjk—1 + aj k)] € s(M),

and so, on A%H’p (¢),

U(h_l_k(1—28) Opr(D)[P, Opp(x; 1))
= o (h"' 02D 0py 1) ((P. Opn (=] + W >DIP, Opy(az)]))
=b(ejr —ejx) =0.
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In particular,
(3.7) Opn(B)[P. Opp(x; 1)) € W T EFDA=2)g, (ar),

ande;r 1 € Ss on A%Hip (&) as claimed.
Finally, let

o0
1~ th—za)aj,e_
=0
Then, using (3.7),
MSW([P. Opi(x))) N AL, () = 0.

Now, note that by construction {y; } remains a partition of unity modulo O(2°°) and by
adding an ~*° correction to teach term, we construct {; } so that it forms a partition of unity.
We also have by construction that y; € C(T*M; [—C1h'=28 1 + C1h'2%]) for some C)
depending only on (M, p) and finitely many of the constants . O

3.3. Step 3: Estimate near bicharacteristics. Let 4 > 0. Let (x’, ¥) be Fermi coordi-

nates near H = Hj, with corresponding dual coordinates (¢', £). Then, since H is uniformly
conormally transverse for p, H and on X 5 » there exists j so that H,x; # 0. In particular,

dp, {dx; }f-‘=1, {d&] }f’;{‘ are linearly independent near X g .

Thus, there exist y1,..., yu—1 € C®(T*M:R) so that (p, X, &', y) are coordinates on T* M
near Eﬁ,p for which Eﬁ,p ={p =0,X =0,& = 0}. In particular, there exists a constant
C > 0 depending only on (M, p, Kp) so that

d((x0.%0). =7, = C(p(x0,0)* + |%ol? + |§]%).

We define the constant K > 0 introduced in the definition (3.1) of B to be large enough so that
1 - 1
(38)  Ifd((x0.£0).Z5 ,) > 5h"”, (x).£}) € supp Bs. and d(x, H) < Eh‘?,
1
then | p(xo. §o)| = 21",

As introduced in Step 1 in the proof of Theorem 10, let xo € C°(R; [0, 1]) be a smooth cut-
off function with yo(z) = 1 for t < % and yo(¢t) =0 for t > 1. Let B5(x’, &) be defined as
in (3.1). In what follows 71, €1, i are the positive constants given by Proposition 3.4.

Our next proposition estimates the main contribution to averages. In particular, we con-
trol the average near zero frequency by the L2-mass along bicharacteristics co-normal to the
submanifold H. One of the main estimates used in the proof of Proposition 3.5 is found in
Lemma 3.8. In particular, p is factored as e(x, £)(§1 — a(x, §)) so that it can be treated using
elementary estimates. This idea comes from [39] where, to the best of the authors’ knowledge,
it was first used to control L°°-norms.

Proposition 3.5. There exist two constants 1o, 0 < 19 < 71, and g¢9, 0 < g9 < &1, with
T0 = T0(M, p. Tinj» S0) and g9 = €0(70), Ro = Ro(M, p.k, Ko, Tinj, So) > 0 and a constant
Cp i depending only on n,k, and for each 0 < § < % there exists 0 < hg < hy so that the
following holds.
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Let 0 <t <19, 0 <& < &g, 4h% < R(h) < Ry. Let ®,, be the constant from Proposi-
tion 3.3, let 0 < h < hg, and let {Ar (R(h))}]_1 be a (Dp. 7, R(h))-good cover for Ty p.
In addition, let {x; N_ be the partmon of unity built in Proposition 3.4. Then there exists
a constant C > 0 so that forall N > 0O there is C > 0 with the following properties. For all
w=w(x";h) € SgNCP(H),0<h<ho,andu € D'(M),

10pn Gl 2,

k=1 n—1
W2 [wOph(Bs)ull 1 gy < CrillwlleoRM) =2 Y — l
jedpw) T2 Hpra(pj)|?

—1
+Ch ”w”oo”P”“H(/l(—zm-q-l)/z
SC

(M)
+ CN AN [[w] ool
where Jp(w) = {J : At (R(h)) N~ Y(supp w) # @}. Moreover; the constants C,Cy , ho are

uniform for x; in bounded subsets of Sg, uniform in t, eg, J9 when these are bounded away
from 0, and uniform for Kq-bounded.

L2(M)’

Proof.  We define 79 > 0, &9 > 0 to be the constants given by Lemma 3.7 below. Let
X0 € CZ°(R; [0, 1]) be a smooth cut-off function with yo(#) = 1 for ¢t < % and yo(¢) = 0 for

t > 1. We first decompose ||wOpy, (ﬁS)””Ll(g) with respect to { x; }jvz"l We write

M)]Ophoﬂs)

hb’
Ny

e
XO(M) Opn(Bs) D Opn(x;) + Opu(x)

8
h =

Opn(Bs) = [1 _ m(

with

h®
First, note that [1 — XO(M)] Opy, (185)“|H =0. Therefore

d
Opn(x) = Xo(w) 0Ph(55)<1 - Z Opn(xj) )

3.9 0paBs)ul L1y < Oph(ﬁa)ZOphm)u + 10pn GOull L1 (-
j=1 LY(H)

We first study the || Opp ()ull; . (i) term. To do this, let Yy € CZ°(T* M) be so that

|p(x.§) = c|§]™  onsupp(l — ).

Then, by a standard elliptic parametrix construction (see, e.g., [22, Appendix E]) together with
the semiclassical Sobolev estimates (see, e.g., [25, Lemma 6.1]) there exist constants C > 0
and 0 < hg < hy so that the following holds. For all N there exists Cy > 0 such that for all
0<h < hy,

_k
10pk(1 = ¥)Opa (Dl 27y < CHE10pa (1= ) Op(GOUll oy

H_ 2 (M)

scl

L2(M)®

_k
< CH2NPUl g sz, + Cnh™N |Jull
Together with Lemma 3.6 (below) applied to ¥y and the fact that

1Pull,,,, = ||Pu||Hs(<;lf_2m+l)/2(M)
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this implies

_k_
(3.10)  10pa(0ul 2y < CHT2 TN PUL G amirysa,,, + CNA" ]
scl

L2M)”
Indeed, to see that Lemma 3.6 applies, let (xo, &) € supp ¥ x. Then observe that
supp x C (A%, (2h%))°

and hence
d((x0,£0). g ,) = h°.

Next, note that, since (xg, &) € supp s,
~ 1
d((x0,0), N*H) < Eh‘*.

Therefore, since d((xo, o), X 5 ) > hd, d(x, 1;—1) <1 h8 and (xg, &) € supp fBs, by the def-
inition (3.8) of K we obtain that |p(x0 £0)| = % for allO < h < hy. To see that |dp| > “SO >0
on supp ¥ x, we observe that |H,| > 3p > 0 on X g ,. It follows from (3.9) and (3.10) that

Np
(3.11) lwOpr(Bs)ull, 1 ) < ZWOPh(,BS)OP(Xj)u

L)

—k_g
+ Cllwllooh™ 27 [ Pull ami1y

scl (M)

+ O™ wlloolu]

L2(M)"

By Proposition 3.3, or more precisely its proof, there exist a collection of balls { B; }
in H of radius R(h) < Ro(n, k, Xo) and constants o, k depending only on 7, k, so that

i=1

and each x € H lies in at most a, x balls B;. Let {1; }l_1 be a partition of unity on H subor-
dinate to {B; } |- Then, by (3.11), forall 0 < & < hy,

My, Np

(3.12) lwOp(Bs)ull iy < D D IWiwOPa(Bs)Op(j)ull i )
i=1j=1
+ Ch™ 57 wlloo |l Pu|
o0 Hs(cllc—2m+1)/2(M)
+ CNhN”w”w”“HLz(M)-
We next note that on H , the volume of a ball of radius r satisfies
|vol 5 (B(x, 7)) — cp k7" F| < Cyer™ 1,

where Cy,, > 0 is a constant depending only on K¢ and ¢, x is a constant that depends only
on (n, k) (this can be seen by working in geodesic normal coordinates). Therefore, for some
Cnk > 0andany R(h) < Ro = Ro(Kop),

(3.13) [ Y wO0ps(Bs)Op ()l 1 g7y < en e RW "2 191 wOPR(Bs) Op(x)ull 217y
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We next bound ||wl-wOph(,Bg)Op()(j)uHLz(ﬁ). By Lemma 3.7 below there exist con-
stants C,, x > 0 depending only on (n,k), and C > 0 so that the following holds. For every
N > 0 there exists C & > 0, independent of (i, j),sothatforall 0 < h < hy,

(3.14) 1¥iwOpu(Bs) Opn (X))l 21y

1=k k1 (I1Opr(xj)ull, ,
= Cﬂ,k”w”ooh 2 R(h) 2 ( n L (1;1)
T2|Hpra (p))]2

+Cont ||0ph(x,->Pu||L2(M)) + Cih¥ [wlloollul,
Also, note thatif j ¢ J(y¥;w) for some i € {1,..., M}, then
A% (R(R)) N 7~ (supp Yiw) = 0.

Therefore, since supp y; C Afoi (R(h)) for all j, for all N’ there exists Cy+ > 0 so that the
following holds. For alli € {1,..., M} and j ¢ d,(V;w),

i wOPK(Bs) Opn(x )l 2y < Carh™ Twlloollull, 5.,

In particular, since Ny and M}, grow like a polynomial power of /&, we can choose N’ so that

My,
B15) Y Y iwOpn(Bs)Opa(X)ul 2y < CNEN [wlleollul, o,
i=1j¢ln(Yiw)

Putting (3.13), (3.14) and (3.15) into (3.12), we find that for some adjusted C, x and
0<h < hy,

”wOph(IB(S)u”Ll(ﬁ)

L 104 Gj)u

1—k n—1 Ph XJ u 2

< Cuxlwllooh 2 R Y S ( & L2an
i=1jel,(pw) © T2 Hpra(pj)]2

+Ch! ||0ph(Xj)P“||Lz<M>)

_k_g N
+ CH2 7 [wlloollPull  gmamsirsag,,, + CNEY Iwlloollul 2,

(M)

We have used that both M} and N; grow like a polynomial power of / to collect all the
C Ig,hN |l ||L2(M) error terms in (3.14). Furthermore, since the balls { B; } are built so that every
point in H lies in at most «,, x balls, and each ; is supported on B;, we have

(3.16)  [wOpn(Bs)ullp1 (i

1—k n—1
< Coslwlloh E R Y (

T 1
jedyw) N T21Hpra(pj)|2

10PA Gl 2,

+Ch Ophm)PuuLz(M))

_k_g§ N
+Ch™ 2 ”w”OO”Pu||Hs(Cllc—2m+l)/2(M) + Cnh ||w”°°”u”L2(M)'
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Now since x; is supported in AT (R(h)), and the tubes were built so that every point in
(h5) lies in at most B, x tubes we have Z 2 |%j1? < Bn.k- This implies

< 2Bu k|l Pul?

L2(m)”

h
> 1104 (xj) Pull?

L2(M)
Jj=1

Next, notice that since dimX g , =n — 1, we have |[J,(w)| < cn,kR(h)l_” vol(X g, p) for
some ¢, > 0 depending only on 7, k. Therefore,

. Np 3
> 100k Pull 2y, < uh(wnz(z | Opn ()P ||L2(M))

jedp(w) j=1
< ey ik R(A)™"Z vol(S )% | Pul

L2(M)
for some ¢, x > 0 depending only on n, k. Using this in (3.16) together with § < 1 gives
Z ”0ph(Xj)””L2(M)

1 1
jed,(w) T? |Hpre (pj)|2

1—k n—1
lwOPh(Bs)ull 1 g7y < Crlwlloch = R()"Z

(M)

_1+k
+Ch 2 wllooll Pull —2mi1y
scl

+ O wlloolu]

L2(M)’

as claimed. Note that the constants C, C, h¢ are uniform for y; in bounded subsets of Ss, and
are also uniform in t, &9, So when these are bounded away from 0. Furthermore, they depend
only on finitely many of the constants K. O

We now state the following result which gives elliptic estimates in regions that are h%
away from the characteristic variety of p.

Lemma 3.6. Let0 <§ < %, O0<k<n. Let ® : W C R® == M be coordinates on M.
Let y € Sgomp NCX(T*M; [—Coh'™2% 1 + Coh'~2%]) be so that there exist ¢, hy > 0 with
supp x C {|p| = ch®,|p| + |dp| > c}

for 0 < h < hy. Then there exists C > 0 such that for all y € Ss N CZ°(T* M0, 1]) with
X =1 on supp x, there exists 0 < hg < hy so that the following holds. For all N > 0 there
exists Cy > 0 such that for 0 < h < hy,

|Opn(Dull o2, < Ch™2 531 0ph(D) Pull g2 + CwhY ful 2.

where x = (x',X) € R x R¥ are the coordinates induced by ©. Moreover, C, Cy are uni-
form for x, x in bounded subsets of Sg, and for ® in bounded subsets of C*°.

Proof. First, let € C°(R) with = 1 on [—1, 1]. Then, using the standard elliptic
parametrix construction [22, Appendix E] there exists by € S5 7, sup |by| < 2¢71+C1h172,
such that

2
(3.17) OPh(X)OPh(l - W(EP)) = Opp(b1)Opp(D) P + O(h™)y—ocs.
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comp

Next, we show that there exists b, € 58 with sup |ba| < ¢ 4+ C 1h1_38 so that

2
(3.18) Opr(x)Opp (w(;p)) = Opp(b2) Opp(N) P + O(h™)g—oo.

Using that |p| > ch® on supp x, one can carry out an elliptic parametrix construction in the
second microlocal calculus associated to p = 0. Using a partition of unity, since |dp| > §
on supp y N supp W(% p), we may assume that there exist an s-independent neighborhood Vj
of supp y, V1 C T*R" a neighborhood of 0, and a symplectomorphism « : Vi — Vj so that
k*p = &1. Let U be a microlocally unitary FIO quantizing «. Then

P:=U*PU = hDy, + hOpF(r), re SO™(R"),

where Op{; denotes the left quantization of r. Moreover, there exist a,a € Sgomp (T*R™) so
that

2
Opf(a) = U*Opu(x)Opp, (w(;p))U
and
Opi(a) = U*Opp()U

with suppa C {|€1| > c¢h®} and 4 = 1 on suppa. Now, for b € Sgomp(T*R”) supported on
|&1] > ch?,
029 (67 "b)| < Cuph™(BIHIDI | =1,

Letbg = &. Then by € h~955°™ and

a

&
sup |bo| < e~ hs.

Observe that

Opi(bo)OpF (@)P = Opf(a) + Opk(e1) + O(h™®)gy—o

with suppe; C {|£1] > ch®)} and, since @ = 1 on supp by,

plel;lal o o loel+1; [er] o o
e ~ _ DE0)DEE) + Y~ DS (bo) DE (1),
lor>1 lor|>0
In particular, e; € ;128 Sgomp . Then, setting by = —g—f € pt(-28)-8 Sgomp , and

Opf(eg41) := Opf(by) Opi (3)P+Opi(er) + O(h™)y—oo

we have e/ € h(e+1)(1_28)S§°mp with suppeg; C {|&1] > ¢h®}. In particular, putting now

b~ 2be. L Lx L

It follows that
UOpF®U*Opy(7)P = UOpEb)U*U Op(@)U*UPU* + O(h™®)y-oo
= UOpE(d)OpE@PU* + O(h™) g
= UOpr(a)U* + O(h*)y—o

= Opp(x)Opp, (w (%p)) + O(h™)g—co.
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In particular, there exists b, € h~° Sgomp(T*M ) with sup |b2| < ¢~ h=8 4+ €11 738 5o that
Opp(ba) = UOpEM)U* + O(h*°)g—co.

Therefore, as claimed in (3.18) that

Opn(x)Opp, (¢(§P)) = Opp(b2) Opyr(N) P + O(h™)g—oo,

for all y supported in ¥, and some suitable b, with ||Opp(b2)| < 2¢~'h=5. Next, using that
Opp(y)Pu is compactly microlocalized, we apply the Sobolev Embedding [25, Lemma 6.1]
(see also [65, Lemma 7.10]) in the X coordinates. Writing b = by + b, we obtain using (3.17)
and (3.18) that there exists iy > 0, and for all N > 0 there exists a constant C > 0 such that
if 0 < h < hy, then for every X,

10PrGOu(x, )iz, = 10pr(B) Opr () Pu(x. )12, + Cnh"lull 2
k -
<2c7 ' Ceh™ 270 Opn(D) Pull 2 + Cn AN full 2.
Since this is true for any X, the claim follows. m)
The following lemma contains the key new ideas used to prove our main theorems. In

particular, it converts quantitative localization along a bicharacteristic into quantitative gains in
averages. This idea is at the heart of the bicharacteristic beam techniques and originated in [25].

Lemma 3.7. There exist Cy j > 0, depending only on n and k, and positive constants
T0 = ‘L’()(M, P> Tinjs 30, {Hh}h), g0 = 80(‘[0), Ry = R()(M, p,k, Tinj> 30) so that the following
holds. Let 0 < 1 < 19,0 <§ < %, and 2h% < R(h) < Ry. Let y be a bicharacteristic through
SH.p and y € Ss N CX(T*M; [~C1h' =28 1 + C1h'=28)) with p, := y N Ty, € supp 1,

(3.19) supp(x) C A5 (R(h)),
and
(3.20) MSw([P. Ops(0D) N A%, (e0) = 0.
Then there are C > 0 and ho > 0 with the following properties. For every N > 0 there exists

CN > 0 such that, if 0 < h < hy, then foru € D' (M),

R(h)k—l )
- ~Z 0
oo 1OPH0 s,

+ CRW* 2| 0py () Pull?

L2(M)
N 2
+ i ull?, .

W1 0pn(Bs) O (0|72 7 < Cnke

The constants to, C, Cn, ho are uniform for y in bounded subsets of Sg, uniform for t > 0 and
3o uniformly bounded away from zero, and only depend on { Hy };, through finitely many of the
constants Kq in (2.3).

Proof. The proof of this result relies heavily on Lemma 3.8 below. Let

O:WCR"->M
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be coordinates on M. Let h > 0. We may adjust coordinates so that H = Hj, C {x; = 0},
dxilx,=o0 € N*I:I, and %Her <0¢, p, and so that the C¥_-norm of the coordinate map O is
bounded by finitely many of the constants K. Therefore, since [0g, p(py )| > %30 by (2.8), we
may apply Lemma 3.8 with 3 := %Sg. Let ro, To, Co, depending only on (M, p, 3o, ®), be the
constants from Lemma 3.8. Note that they are uniform for ® in bounded sets of C k Therefore,
they depend on {Hy,}; through finitely many of the constants K. Let r; = ri(M, p, 3o, ®)
be small enough so that forall p € X g p,

infB(p,rl) |Her|
SUPg(p,r) [ HprH |

Let r = %min{rl, ro} and let {p; }l-Kz , € X H,p be a maximal r separated set. Then, for all

q € X H,p, there exists i so that d(gq,p;) <r and in particular, B(q,r) C B(p;,2r) C V),
where V), is the subset from Lemma 3.8 associated to p;.

Fix a point pg € {p; }I-K= 1- Without loss of generality assume that d(py, po) < r. Next,
let 0 <71 < %, Ro > 0, &g > 0 small enough (depending only on (M, P, 3y, Tjyj)) so that
Af,fs" (Ro) C Vp,. Next, by letting

1
321 >
(3.21) 7

(3.22) 70 = min{7o, 71},

we have
supp(y) C ApT*0(R(h)) C Vp,

for all 0 < t < 19 and /& small enough. This will allow us to apply Lemma 3.8 to our y.

We work in coordinates so that dg, p(py,) # 0, which we can assume since y is a bichar-
acteristic through X g , and p), = y N X g ;. In what follows we abuse notation slightly and
redefine X as the normal coordinates to A that are not x1. With this notation x = (x1, X, x’).

Given a function vy, € C*° (M), we may bound ||vh||L2(M) using the version of the
Sobolev Embedding Theorem given in [25, Lemma 6.1] which gives, after setting k = £, that
for all & > 0 there exists Cr > 0 depending only on k so that

(3:23)  oa(xr. %72, sCkhl"‘(ak‘lllvh(xl,-)llig /

k
+a—1—k2||(thi)kvh(x1")Hi% )

=2

We proceed to choose vy, so that

(3.24) 10Pr(Bs)(Opn(Ou)(x1, X, )Ml 2, = lop(xe. %) 2
and in such a way that the terms in (3.23) can be controlled efficiently. Let 0 < t < 79, and set
Tpo 1= T|0g, P(po)|.

Since y is a bicharacteristic through X g ,, we may define a function a = a(x1) so
that £ — a(x1) vanishes along y. This is possible since we are working in coordinates so that
Og, p(py) # 0, and hence y may be locally written (near py) as y(x1) = (x(x1),a(x1)) for a
and x smooth.

|(x1, X)] 3|x1]
e, = 2o 5 o (12 ),

Define
0 Tpo
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where g9 < 1 is so that the coordinates are well defined if |(x1, X)| < g¢. Let
vy = e~ 2@ O, (16) Oy ().

where a(x1) = (az(x1),...,ar(x1))issothata(xy) = (a1(x1),a(xy)). The reason for work-
ing with this function vy, is that not only (3.24) is satisfied, but also

(hDx)¥vy = e #EACO (hD . — a;)F(Opy (k) Opn (x)u)

fori = 2,...,k, and this will allow us to obtain a gain in the L2-norm bound once we use
that, by Lemma A.3, for (79, £9) small enough (depending only on p),

(3.25) sup  max [§ —a;(x1)| < 3R(h).
AT RMY)

We bound the terms in (3.23) by applying Lemma 3.8 with « and y. We first bound the
non-derivative term on the right-hand side of (3.23).
By Lemma 3.8 we have that

. 3
inf|0g, p| > 10g, p(po)l  on ALFO(R(h)).
Voo 4

This implies

(3.26) (ApTO(R() N (AT, (£0))) C {|x1| > %%}.

Leth e CZ°(R;[0,1]) withb =1 on {x; : |x1| < %}, suppb C {x1 : |x1| < %rpo}. By (3.19)
and (3.20) we have
MSK([P. Opi(1)]) € (AZF*(R() N (A, (£0))°).
Therefore, by (3.26),
(3.27) WE(b) N MSL([P, Opr(1)]) = 9.

Throughout the rest of the proof we write C, C for constants that are uniform as claimed.
We also note that when bounding || Opy, (a)u|| L2 by 2 sup |a|||u|| L2 h need only be taken
small enough depending on finitely many seminorms of a in Ss. Let Co = Co(M, P, Jp) as
above and 19 as in (3.22). Applying Lemma 3.8 with «, y, b, ¢ = 1, and using that b = 1
on |x1| < I‘%, lOpn(k)| <2 and 0 < T < 79, we have that there exists &g > 0 such that for
all0 < h < hyo,

1
(3:28) lonCer, )2 = 810’ 16 Opa(ul 2y,

1
+2Cotph ™! [[b POPR (1)Ul + Cn AN |u

L2(M) L2(M)*

Next, note that

b POpy(x) = bOpp(x) P + b[P, Opr(x)].

Therefore, since |b| < 1,

16 POPL(OUll, 5,y < 20000 COPUll 5, + 1BIP. Opp(GOLull 5, -
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Using the previous bound, equation (3.28) turns into
1 I
(3.29) [lon(xr, )2, < 1675, 10paGOU 5, + 4CoTaph "opu(GO) Pull, 5,

1
+2CothIBIP, Opr (Ol 2, + CN AN [

L2(M)”

We proceed to bound the derivative terms in (3.23). For this, we first note that
(DYoo (x1, )L, o = Qi Op() Opa GOU(x1, )L
after setting
(3.30) Q; := (hDy, —a))* fori =2,... k.

Writing Q; = Opp,(g;) we getq; = (& — a;)¥ and Q; commutes with Opy, (k) modulo O (f).
Note that there are no remainder terms since «; is a function of only x1. Then Lemma 3.8 gives
that there exists Co > 0, independent of 7, and some C, Cxy > 0 so that

1
(3D (hDx) vax1 )z, =850 1D Qi Opa(0ull, .,

1
+2Cotph b P Qi Opp(ull, 5.,
+ 1[0pn(). Qi]Opn(Ou(x1, )2
+ Cn AN Ju]|

L2(M)

for all 0 < h < hg, where hy was possibly adjusted. We proceed to find efficient bounds for
all the terms in (3.31). Throughout the rest of the proof we use Cy for a positive constant that
depends only on P and finitely may Sg seminorms of (¢, y), possibly bigger than that above.
We also write Cy, for a positive constant that depends only on k. These constants may increase
from line to line.

First, let y € S N C°(T*M; [0, 1]) with ¥ = 1 on supp y and supp y C AZ;LSO(R(h)).
Then note that by (3.25) and (3.30) there exists Cy > 0 such that

(3.32) 116 Qi Opa(ul,1,,, < 16 Qi Opa(DOPH(OUN .y, + CNEY Tl o,

< Ck RIW* | 0py ()ul| + Cyh

LZ(M) ||u||L2(M)

forall 0 < h < hg for ho small enough.
Second, using that

bPQiOpnp(x) =bQiOpy(x)P + D[P, Qi]Opp(x) + b Qi[P, Opr(p)],

we claim that there exists Cy > 0 such that
< Ck R | 0pa () Pull, 5, + Coh R (| Opy )ul
+ 116 QilP. Opu (Ml pyy, + C N [l

L2(M)

Indeed, the estimate on b[ P, Q;]Opy () was obtained as follows. We observe that

Hpqi = k(& —a)* Y Hy(& — ay),
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and since Hp(& — a;) vanishes on y, H,q; vanishes to order k on y. Therefore, using j as
in (3.31), on supp y we have |Hp,q;| < CoR(h)* and there exists Cy > 0 such that

160P. 0i10pn (0l 2y, < CoRRIF 0P (O, 2,

h
+| (.01 F omutttyan ) omipromion

L2(M)
N

Finally, observe that ([P, Q;] — ?Oph (Hpqi))Opn(}) € h2R(h)*=2Ss and hence the bound
follows since R(h) > 2h% and § < %
Finally, to bound the fourth term in (3.31) note that by [25, Lemma 6.1],

IOPA(k). QilOpn(u(x1. )l 2 |, = Cap. R 2 [Op1 (i) Qil0pr (Ul 2,y

Observe that [Opy,(k), Q:10pn(7) € hR(h)*~1Ss since for i = 2,. ..,k we have Ox;qi =0
for j # 1,0gk = 0,0¢,q; = Oforall j # i, and 0x;k € S5 because B is a tangential symbol.
We then obtain that there exists C > 0 such that

(3.34) IO k). QilOpn(Ou(x1. )2
1 _
< Ch2 R M10pr (ol 5, + C I [l
By combining (3.32), (3.33), and (3.34) into (3.31), it follows that
(335) RO (hDx) va(x1. )2

’

L2(M)”

4

1 1 1 _

1
+ CkCotzh 1| Opp(x) Pul|

L2(M)
1
+ Cotph 16 Qi[P. Opy (0)]ull

for some C > 0, Cy > 0, and for all 0 < h < hq with ho small enough.
By (3.27) we also know that there exists Cy > 0 and hy > 0 so that for all 0 < h < hy,

(336) 6P, Opr(OWull,»,,,, + 16Qi[P. Opu (Ol 5, < CNAN ull,5 -
Feeding (3.36) into (3.29) and (3.35), and combining them in to (3.23), we have
R W g (1. 3172,

+ Cn AN [u

L2(M) L2(M)

k
< ck<||vh(x1,-)||ig R TFY (D) o (x1.)117 )
X, X l=2 X, X

< C(tpy + Cotpy + ChR(W) ™) 0P (O)ul?

L2(M)

+Ch=20pa (O Pull?, ,, + Cxh™ |ul

L2(M)”
Taking 7o < Cq ' (supy,,  |Hpru|)~" and o small enough so that ChR(h)~? < ;! proves
the desired result because of (3.24). Also, note that, since p, € V), in view of (3.21), we have

1
519 P(po)l = 10g, P(py)| = 2|0g, p(po)l-

We may therefore rewrite the bound for [|vy, ||i2 (H) in terms of | H,rg (py)| which completes
the proof. m)
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In what follows we work with points x € R” and (x,§) € T*R". We will isolate one po-
sition coordinate x; and write (x, §) = (x1, X, &1, £). This lemma is based on [25, Lemma 4.3]
which in turn draws on the factorization ideas from [39].

Lemma 3.8. Let ® : W C R" — M be coordinates on M, let pg € T*R" and 3 > 0
be so that

|0g, P(po)| = 3 > 0.

Then there exist tg > 0, Co > 0, ro > 0 depending only on (M, p,3,0) and Vo C T*R"
neighborhood of po, so that B(pg,ro) C Vo,

3 . 4
Zlaslp(po)l < inf|0g, p| < sup[0g, p| = ~[0g, p(po)l,
Vo Vo 3

and the following holds.
Let0 <6 < % 0<71 <t Let I; = {x1: —T'% <x1 < t’%} with T, 1= t|0g, p(po)l,
and 3
K =K(x1,%, &) € SN CX(I, x T*R"™1).

Let y € Ss N CX®(Vo; [—2,2]) and ¢ = q(x1) € C®(R; S®(T*R"™1Y)). Then there is C > 0
such that for all N > 0, there is Cy > 0 and ho > 0 so that for all 0 < h < hy, and all x1,
10Pr(q) Opn () Opr ()u(x1,-)ll 12
_1
< 45,7 10p 1 0PR@) 0P (D] 12 1y < 12

1
+ Cotaph™ 0P () POPL@ OPH(OU I 12 (21 <010 /2
+ I1Opw k), Opn(]10pn ()u(x1, )12 + Cnh"lull 2.

Also, all constants are uniform when y,k,q are taken in bounded subsets of Sg, © is taken in

bounded subset of C k. and when 3, are taken uniformly bounded away from 0.

Proof. There exists an open neighborhood Vp of the point pg so that [dg, p| > % on
Vo. Therefore, we may assume that there exist functions e € C*°(7T*R") elliptic on Vp, and
a=a(xy,x,€) € C®R x SOT*R"1)) so that for all ¥ € C(Vp),

POV (x.§) = e(x.§)(E1 —a(x1. X.6)Y (x.§)
with e satisfying that for every «, 8,
(3.37) le™ oo < C1 = C1(M, P, 3),
[020f e(x.£)lloo < C = C(M. P.3. 0. p. O).

where C(M, P, 3, «, 8, ©) depends on © through finitely many C¥-norms. Moreover, there
exists ro = ro(M, p, ) so that B(pg, o) C Vo.
Using this factorization, we see that there is R € S°(T*R") so that for all v € Ss(Vp),

POpp(y) = Opp(e)(hDx, — Opp(a))Opp(¥) + hOpp(R)Opp(¥) + Roo,

where we write Roo for an O(h%°)y—co operator that may change from line to line but whose
seminorms are bounded by those of the functions P, y, e, e~ 1. Moreover, there exists an ele-
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ment a; € hC®(R x SO(T*R”1)) so that for each fixed x; the operator
Opn(a(x1) +ai(x1)) : L2 — L2

is self-adjoint. Abusing notation slightly, we relabel a+a; as a and Opy(R)—Opy(e) Opp(ay)
as Opp(R). Then, for all v € Sg(Vp),

POpp(Y) = Opp(e)(hDx, — Opp(a))Opp(¥) + hOpp(R)Opp(¥) + Roo.

Therefore, letting Opj,(e)~! denote a microlocal parametrix for Opj,(e) on V, we have for
all v € Ss(1o),

(3.38) (hDx,—Opy(a))Op () = Opp(e)~" POy () +hOpy(Ro) Opy(¥) + Reo,

where Ry is such that Opy(Rg) = —Opp(e)~1 Opy(R). From the symbolic calculus together
with (3.37) we see that for every «, 3,

(339) 10292 Ro(x. £)loo < C = C(M. P, 3., . ©),
where C depends on © through finitely many C¥-norms. Shrinking Vy (in a way depending
only on (M, p,3) and the C2-norm of ®), if necessary, we may also assume that
3 ) 4
<10, p(po)| < inf|0g, p| < sup |0, p| < 210, p(po)l.
4 Vo Vo 3
Define

(3.40) w = Opp(q)Opp(x)u,

with Opy (V) = Opy(q)Opy(x) we have by (3.38) that

(hDx, — Opp(@))w = f

for

(3.41)  f = [0Opn(e) ' POpu(q)Opy(x) + hOpy(Ro) Opn(q) Opy(x)u + Roout.

Defining the operator U(xy,t) by
(hDx, — Opp(a))U(x1,t) =0, U(t,t) =1d,

we obtain that for all x;,7 € R,

t

w(xy,X) = U(xy, Hw(t, X) — %/ U(x1,s) f(s,X)ds.

X1

Let ¢ = ¢(t) be defined as
. Tﬂ . f|a$1P(PO)|

3 3
and let ® € C2°(R; [0, 3e71]) with supp ® C [0, £] and Jg © = 1. Then, integrating in ,

(3.42) w(xy,Xx) = /};{CD(t)U(xl,t)w(t,fc) dt _%/Rq)(t) /t U(x1,5) f(s,X)dsdt.
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Let 7o satisfy

3 _ _
(3.43) 7o < \/;laslp(,oo)l Y Oopu(Ro)II,

where Opy(Rp) is as in (3.38). Note that by (3.39) 7o only depends on (M, P, 3, ®).
From now on, we write

C=C(M,P, 3, 50,7 x4,k 0)
and
Cy =CN(M,P,N,1,3,¢0, ,9,k,0)

for constants depending on finitely many seminorms of the given parameters. To bound the
first term in (3.42) we apply Cauchy—Schwarz and use that U(xy, t) is a unitary operator acting
on L% to get

/ D()Opp(k)U(xy, Hw(t, x) dt
R

< @ 00pn 0] 2 (<

2
LE Lz

To bound the second term in (3.42) we apply Minkowski’s integral inequality, use that the
support of ® is contained in [0, €], and that suppk C {|x1| < &} to get

”[ ¢(t)/t Opn()U(x1,5) f (s, X) ds dt
R -

o072
LY L2
1

2 2
/@(1)(/ (/ 1[_8,8](s)0ph(/c)U(x1,s)f(s,fc)ds) d)?) dt
R R7—1 R

< M, a0 21 Opr I f llL?,x(MSE)'

)

LS

Feeding these two bounds into (3.42), and using that ®(¢) < 3¢~! and Jg @(1)dt =1 give

1

1Pl 2@y < V3672,
we obtain
1
(3.44) 1Oprl)wCxr, )2 < V32 0pROIw L2 1y, <o)
1
+ V2R OpR (O 1| 2 1xy <o)
Finally, note that according to (3.41),
||f||L§(|x1|§£) = ||Oph(e)_lPOPh(Q)OPh(X)“||L§(|x1|58)
+ hllOpr(Ro) Opn(q) Opn (DUl L2 (1x,1<e)
+ CiV lull2
= CO”POPh(CI)OPh(X)“||L§(|x1|538/2)

+ hllOpr(Ro) | Opn(b) Opn(q) Opn (Ul L2 (1x,1<3¢/2)
+ Cn I ull 2.

Using (3.37), we see that Cy > 0 depends only (M, P, J). Therefore, since
Opr(@)Opu (k) Opi(x) = Opr(k)Opr(q) Opn(x) + [Opn(q). Opn()]Opu(X).
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we may combine definition (3.40) of w with (3.44) to obtain
10Pr(q) Opp (k) Opr (O)u(x1, )l 2
< V3672 | 0P ()1 Opr (@) Op (DUl 2 12, 1<y
+ Coh™ &2 | 0pw() |11 POPR(@) OPh (DUl L2 11, | <36/2)
+ \/58%||0Ph(RO)||||OPh(K)H||0Ph(Q)0Ph(X)”||L§(|x1|536/2)
+ Cn N [ull 2 + 1[0pa(9), Opn()]Opr(ux1,-)llz2-

To finish the proof, we combine the first and third terms in the bound above using that

=

\/58_% = 3rp_0
_1
and that (3.43) gives NGTS 10pr(Ro) |l < 7p,°- O

4. Non-looping propagation estimates: Proof of Theorem 11

The main result in this section is the proof of Theorem 11 which we present in what
follows. The proof is based on an application of Egorov’s Theorem (see Lemma 4.1) which in
turn uses that cutoffs with disjoint support act almost orthogonally.

Proof of Theorem 11. By Theorem 10 there are constants 7o, Ro, and C,, x > 0 so that if
0<1<719,0<6< %, N >0, 8h% < R(h) < Ry, then for {A;j (R(h))}; a (D, t, R(h))-good
cover of Xy 5, and {y;}; a d-partition associated to the cover, there exist C > 0, hg > 0,
so that for all w = w(x’;h) € Sg N Cc°°(l:l) there is Cy > 0 with the property that for any
0<h<hpandu € D' (M),

/H wudog| < %R(m”z‘ | D 10Ul o,

23, Jj€Fn(w)

-1
+ Ch ™ wloo| PUll o112

@1 KT

(M)

scl

N
+ Cnh (”u”Lz(M) + ||P“||H:C(lc—2m+1)/2(M))'

Suppose there exist B C {1, ..., Nj} and a finite collection {§;}yce C {1,..., Ny} satisfying
In(w) C BUJyeg G, and with {§;}sce having the non-self-looping properties described
in the statement of the theorem. Furthermore, since we are working with a (D, t, R(h))-good
cover, we split each gy into © families {; ; }?: , of disjoint tubes.

Note that
D
D (AP I N S W ()02 111 P
j€Fn(w) lefi=1jeg,
+ > 10ph Ul oy,
jeB

Since | ieg, A;j (R(h)) is [tg(h), Ty(h)] non-self-looping, and the tubes in gy ; are disjoint,
we may apply Lemma 4.1 below to § = §;; and (7;, T;) = (14, Ty) for all j € §; ; together
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with Cauchy—Schwarz to get

1 2 1
Wg\ [ 10PnGoI2, |, Tey s
Z 10Pr(x)ull, 2, < ( T 2:

t
J€Ge.i JE€SGe.i ¢

1%\ 2 T? 5
s 2 A 2
= 2( Ty ) (”u”L2(M) T h2 ”PM||L2<M>) ’

On the other hand, using Cauchy—Schwarz and the fact that there are © families of dis-
joint tubes,

1
Y 10paGull, 5y, < 221812 ull, 50, -
jEB
Therefore, after adjusting Cn,k in (4.1),

/ wudaH‘
H

n—I1 1 1
CpiDllwllooR(M) 2 G\ (.2 2o \2
s 1 EZJE ) (s, + 55 1Pul2,
€

1 =
15
‘E260

k—1

h 2

1
+ |£|2 ||u||L2(M)}

-1
+ Ch wlool Pull g—smsnya,,, + CN (Il 200y T 1PUN G—sminy 2
scl scl

M) (M))

1
3 1e|%¢] |2
T ”u”Lz(M)
L
lekt

1
[Gelte T\ ? 1
#30 (P) WPuly, + 131 o

Lel

—1
+Ch ||w||00||Pu||H(k—2m+l)/2
scl

n—1

_ Cus®lwlooR(h)2

o3
5 ¥
123,

+Cn(lull, o, + 1Pull, a—2mri2
SC!

M) <M>)' -

The next lemma relies on Egorov’s Theorem to the Ehrenfest time (see, e.g., [21, Propo-
sition 3.8] and [65]).

Lemma 4.1. Assume that P is self-adjoint. Let 0 < §o < % 0 <2g9 < 1—2680, and
let § be a set of indices with |§| < h—N for some N > 0. For each £ € § let 0 < §; < by,
0 <oy <1—28 —2eg, and yq € S5,(T*M) N CX(T*M;[~Cih' 2% 1 4 C1h'=2%]). In
addition, for each € € § let ty(h) > 0and 0 < Ty(h) < 2ay T (h) be so that

(4.2) |J supp xk N @ (supp x¢) = 0
keg
forallt € [tg(h), Tg(h)] ort € [=Ty(h), —t¢(h)], and suppose that
(4.3) U supp xx N supp y¢ = 9.
k#L

Then there exists a constant hg > 0 so that for 0 < h < hy,

10ph(xo)ul®,  Te(h) T, (h)2
L2(M) 2 ¢(h) 2
Z f((h) 54”””L2(M) +4Ilp€3;§ 2 ||Pu”L2(M)'

leg
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Moreover, the constant hy can be chosen to be uniform for yy in bounded subsets of Sg(T* M)
and N < Np.

Proof. Throughout this proof it will be convenient to write || - || for || - ||L2(M). Define y
by
- ikig P
Opn() =) Z eI Opu(roe
leg k_—Tz

2t¢
First, we claim that there exists s > 0 so that for all 0 < & < hy,
N 3
(44 [0pn(DulP = 3l

Indeed, Egorov’s Theorem [21, Proposition 3.9] gives that there exist Cy, > 0 and /9 > 0 so
that for every k,

iklgP _l‘kng 00
4.5) e " Opp(xepe” " = Opp(xie) + O(h™)g—oo,

Xk = Xt © Pkz, + T (h),
where ry g € h!~dk.e(h) =23 Sdi.o(h)/2+8;> SUPP Tk ¢ C Supp x¢ © wm,

rkg(R)| < Cyh' 4k e®W=23¢and g o(h) <

T, (h)
forall 0 < h < hyg. Note that since {y/}secg + X is a continuous map from
[ 1 8s5.(T"M) — 51, (T M),
Lteg

the constant C, can be chosen to be uniform for { y¢}¢cg in bounded subsets of I1,Ss,(T*M),
and that then the same is true for Ag.

Now, let £, m € § with £ # m and assume without loss that 7y < Ty,. Then, using (4.2)
and (4.3), we have for T‘(h) <k< T;g’), 72",?”5}1) <j< _T;qt}(:)’
Pk, (SUPP X¢) N @ jt,,, (SUPP fm) = SUPP X ¢ N Pty — jt,,, (SUPP ) = 0.

In addition, using (4.2), we have if £ = m, then for _g‘;;h) <k<j< Te(h)’

@z, (SUPP x¢) N @—jiz,(SUPP Xm) = SUPP x¢ N P(k— )z, (SUPP Ym) = 9.
Thus, it follows from (4.5) that

i
2ty
F=Y" > ok, +rh
leg k__m

with |r(h)| < Cyh?¢° for all 0 < h < ho, and Cy, ho can be chosen uniform for {Xf}ejzl in
bounded subsets of Ss,. We have used that the support of the functions r ¢ are disjoint, together
with the fact that 29 < 1 —ay —28; implies 269 < 1—d ¢(h)— 28, to get the bound on 7 (h).
This implies that

(4.6) €Sy, ad - Cyh®0 < § <1+ Cyh?®

&

forall 0 < h < hy.
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Note that by the sharp Garding inequality (4.6) yields
(1 + Cxh? = Opp(D)* Op(D)u.u) = =Cyh?® |17,
which in turn gives
4.7) 10pn(Oull? < (1 +2C,h**0)|lul?

forall 0 < h < hyg. Also, note that since g9 > 0, we may shrink A so that (4.7) gives

- 3
(4.8) lOpn(ull* = 5 lu)®

for 0 < h < hg as claimed in (4.4).
Next, note that since the supports of the compositions ym, © ¢z, and y¢ o ¢k, are dis-
joint for (j,m) # (k,£), Egorov’s Theorem also gives

ktp

iktgP oo 2
Y e Opp(ree u) = Oy (h™)|Jull?,

(4.9) (

where the constant in O, (W) depends only on the || < Cx n seminorms of y, where Cy is
a universal constant. It then follows from (4.8) and (4.9) that

2t€

@10 Sz Y 3 e 0pnGoe H ul + 0, (1 max T .
fegk__

2ty

as long as we work with 0 </ < hg and &y small enough so that r(h) can be absorbed
by %“u”z iktp P
On the other hand, since the propagators e 7 are unitary operators,

ikty P ikty P
(4.11) e H Opaeoe™ T ul* = [Opaeoe™ H
= 10pr(xoull? = Iie — Uy g

where P
_ikigP,
Iio = (Opn(x)lu —e™ 7 ul, Opp(xo)u),

iktp P

_ikigP Cikigp
Hyo = (Opn(xe)e™ 7 u, Opp(xo)lu —e™ 7 ul).
It follows from (4.11) that

2[@

iktp P
4.12) Z Z He i Oph()(g)e =i u”2
¢ k=— 2[[
Ty
TZ 5 21y
=2 N0pnGoul® =3 3 dee+ e
¢ ¢ Cp=—lr
4

Observe that

: kty .
1 _isP
I = Z/o (Opn(x)e™ 7 Pu, Opp(xe)u)ds = Ag ¢ + By,
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where

isP

i (ke ip isP isP
Ajei= 4 / (e Opy(xe)e™ i Pu.e i Opy(xe)e™ 7 u)ds,
0

isP
h

i (Kt ip _isP _isP
By = | (e Opn(xe)e™ " Pu,e n Opp(xe)(u—e™ 7 u))ds.

To deal with the Ay ¢ terms, note that

isP

1 kte —iop _isP isP _isP
PITEEDS e Opu(x)e™ T Pullle ™ Opy(xoe™ # ullds
k. kL

1

1 kty isP _isP 2
< (Z/O e Opn(xpe" Pu||2ds)
L.k

kt@ isP _isP %
< (D> lle™n Opa(xp)e™ 7 ul?ds | .
k70

In addition, observe that for v € L2,

=

kte isP isP
(4.13) > [ 15 Oputrre vl ds < (Lo.o)
0
L.k

with

ke isP * —isP
L :=Z/O e Opp(xe)” Opp(xe)e™ 7 ds.
£,k

Also, another application of Egorov’s Theorem gives

teon(3)

where 7 ¢(s, h) € h1—dk.e(h) =28, Sdy ¢ /2+8, With supp g ¢(s, h) C supp y¢ o ¢5 and

kte
el 0 g5 + Fe (s, h) ds) - Oh™) .

|Fro(s, )| < Cyh' =k e =26,

Next, we claim that (4.2) gives

kty
(4.14) '/ |11 © @5 + Free(s,h) ds| < tg(1 + Cyh' e =200)
0

To see this, let p € T*M, s,t € [—%, %], be so that ¢s(p) € supp y¢ and ¢;(p) € supp yy.

Suppose s > ¢ and note that

@s(p) € @s—¢(supp x¢) N supp xg.

Therefore, since 0 < s —t < Ty, we obtain 0 < s — ¢ <ty from (4.2). This proves the claim.
In addition, we claim that combining (4.14) with (4.3) gives

(4.15)

kty
Z/O xel? 005 + Fre(s,h)ds| < m?x To(h)(1 + thl—SO).
Lk
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ya

To see this, first observe that #{k € [ 5

kty
lxe|* o @5 + Fr (s, h) ds

2te]} < Tz . Together with (4.14) this implies

(4.16) < Ty(1 4+ Cyh'~%0),

Second, note that
Te/2

kty
SUPP(Z/ |xe? © @5 + Free(s.h) ds) c | e-sGuppxo).

A 0 s=—Tp/2
Therefore, by (4.3) for £ # j

kty
@.17) supp(( 3 [ 0 0 s+ st s
k

kt;
rsupp (Z/O 1012 0 @5 + (5. h) ds) =0
k

Combining (4.16) with (4.17), we obtain (4.15) as claimed.
Using (4.13) and (4.15) together with the same argument we used for j, for 4y small
enough (uniform for y, in bounded subsets of Sg,),

kte isP _isP 12 2
S [ e opuroe ol ds < amax Tl

In particular,
5 maxy Ty (h)

P :
o I1Pullul

We next turn to dealing with By ;. Note that

ke it=s)P i i
B = h_zf / (e i TPOph()(g)e S Pu,etTP Oph()(g)e_tTPPu)dt ds.
0 0
Therefore, by a similar argument this time using

kty kty
X012 0 @5 + Fr o (s, h) dt ds| < ktZ(1 + Cyh! ke =20¢)

we obtain

ZBke

1 kte
<) / / 1" Opn(ze)e™ % PullleE Opy(xe)e™"F Pull di ds

1 ktg ktg isP P
= ;TzZ/ / e % Opn(xe)e™ # Pul|*dsdt
0 0
2max@ Tz(h)
o h?
We have therefore shown that

1Pul|.

,maxg Ty(h) max 2

(4.18) I Pullull +2 pule.
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Next, note that

ikty P

Iy = (Opn(roe " w. Opp(ro)lu — e~ 1 u))

kte ki, p —iktyP iktyP isP
= E/ (e Opn(xp)e ™7 u,e 7 Opp(xe)e” 7 Pu)ds
0

kty e
< L[ om0 e

ik(tg—s)P i

el Oph()(g)e_¥ PuH ds.

Then, by unitarity of e~ 7 — and (4.13),

max g Ty

(4.19) | Pullflull.

In particular, from (4.18) and (4.19) we have

Ty axg T,
| Pull ] + 2t 7L £ | Pu|?

maxy
(4.20) <4 5

Z Ik’g + Hk’g
.k

é
< 2fu))? + 4L Tl i 1 Pu?.

By possibly shrinking /g, we may assume that the error term in (4.10) is smaller than %Hu 1%
for 0 < h < ho. We conclude from (4.10) together with (4.11), (4.12) and (4.20) that

h
N O R op ol = 2~ 4" "2 pup.

h2

Therefore, (4.21) gives

o 2Ty(h

t
leg ¢

for 0 < h < hg. As noted right after (4.5) the constant /1¢ can be chosen to be uniform for y,
in compact subsets of Sg,(T*M). m)

5. Quantitative improvements in integrable geometries

In this section, we focus on the special case of spheres of revolution
M =10,2x]g x [0, 7],

with Hamiltonian

p(0,r,E0.8) = £ +

and operate under the assumptions of Theorem 5.
In this setting, one can explicitly describe the Liouville tori intersected with {p = 0} as

( B & + V),

Te, = {(e,r,sn = V() - o )zée}
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In particular,

1

and for any § > O there is ¢ > 0 so that if ro € [§, 271 — §], the two intersections are separated
by at least

(5.1) e\ aro) VY (ro) — .

Let R; > 0 and define

Ax R, =1{0,r,89,&) € T M : £& > Ry}
Theorem 5 is a consequence of the following lemma which constructs non-looping covers

together with Theorem 11.

Lemma 5.1. Let the above assumptions hold. Fix § > 0 and let {A;j (R)}j-VZR1 be as in
Proposition 3.3. Then there exists B > 0 so that if ro € [6,2n — 8]l and H = {x} = {(ro, 6p)},
the following holds. For all 0 <t <719, 21 >0, 0< RKL 1, and 0 < T < cRY ™1 there
exists B C {1,..., NR} so that for R1 = R*1,

|°(B| < IBT?)RI—O{] + R—a]
and for j ¢ B with A;j (RN Azi e p(R) £ 0,
R s
d( ,Eli!lezH,p(R)’ U §0t(A;j (R))) > 2R.
te[1,T]

In particular,
U A;j (R) is [1, T] non-self-looping.
J¢B
Proof. We start by removing tubes covering the intersection of an R!~%! neighborhood
of &g = /V(ro)a(rg) with X g ,. This requires R™%! tubes of radius R. In particular, this
covers an R1~%! neighborhood of the singular torus and we may restrict our attention to At R,.

We claim that there is C > 0 so that if p;, p are at least &« away from the singular torus,
then

(5.2) 1©(p1) — O(p2)| + 11(p1) — I(p2)| < Ca™ d(p1, p2).

Indeed, by (e.g., [54, equation (3.37)], [57, Theorem 3.12], and [23, Theorem, p. 9]) there are
Birkhoff normal form symplectic coordinates in a neighborhood of the stable bicharacteristic
yssothat p = (t,x,7,£) € S! x R x R? with y; given by {(¢,0,0,0) : t € S'} so that

pt,x, 0.8 =1+ f(x* + &, 1),
f € C®((=8,8)%;R) for some § > 0 and
fu,v) = a@)u + 0(v?) + Oy (u?)
for some o € C®((=85,8); R).
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In particular, we may work with action-angle coordinates (®, /) given by

1
L=1, I,= E(x2 +£2), x = +/2Ic08(02), &= /2I,sin(0,).
In these coordinates
p(®.1)=1+ fQ2l5. 1),

the action coordinate function /5 (x, £) measures the squared distance from (x, ) to the singu-
lar torus, and we have

C
0 <-—_=cCa L.
[01,0p] < T

This yields (5.2) as claimed.
Next, suppose

d(pv EH,p N A:i:,R]) < 2Rv d(¢t(p)v EH,p N Ai,Rl) < 2R

There exists p € L g , N A4 g, with d(p, p) < 2R. Therefore, for some C > 0,

d(p:(p), ¢:(p)) < CRt

and hence, fort < T,
d(p:(p), XH,p N AL R) <(CT + 1)R.

Now, for RT <« R*!, by (5.1) since p is at least R~ away from the singular torus, the only
intersection of Ty, 5 with

lq:d(q.Xg,pNALR) < (CT + 1R}
happens at ¢ with d(¢, p) < (CT + 1)R. In particular,
d(e:(p),p) < (CT + DR,

and hence by (5.2),
d(tdr p(lo),2n2%) < CTRR™ 1T,

That is, p is C TR*! close to a rational torus of period 7. Thus, the same is true for the original p
with possibly a different constant.

Now, the points that are C TR*! close to the intersection of X g , N A+ with Ty, can
be covered by C TR!~%! tubes. Moreover, since p is isoenergetically non-degenerate, there is
¢ > 0 so that the rational tori of period < T, are separated by ¢ T ~2. Hence, there are at most
C T? such tori and we require C T3 R'~%! tubes. O

Proof of Theorem 5. Fi)li L >0, rge[8,2r —3], g €[0,n], and a1 = % Then, for
0<R<K1land 0 <T < R 2, we may apply Lemma 5.1. Let {A;j (R)}J{Vle be the cover
of X g, given by Proposition 3.3. Then there are §, 8 C {1, ..., N} so that

18| < (BT3+ DRz, {l,...,Ng}C gU S8,

and
U A;]_ (R) is [1, T'] non-self-looping.
j€g '
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Fix 0 <e <68 <3, let R=h®and T = L?logh™'. We next apply Theorem 11 with P as
in (1.6), §p =9, Ty = T and t; = 1 for all £. Then there exist C > 0 independent of L, for
any N > 0, Cy > 0, and kg > 0, so that for all 0 < & < hy,

h—5

1 £ —1.3,-¢&
h2 [ull oo (B((ro,80),1%)) = Ch> (|:(10gh )2h™+ + W]”U”sz)

h=3L\/logh™!
R
~1
+ChY Pl

scl
+ CNhN(”“” + ||P””H—1/2
scl

L2(M) <M>)

—1,\2, & 1
< c(ﬂ[aogh yEns + —LW}”“”LZ”‘”
N L/logh~1 )
wn )’

h ”PM”H5:11/2

6. Change of the Hamiltonian

When studying quasimodes for the Laplacian, it will be convenient to replace the operator
Py := —h?>A, — 1 by an operator whose dynamics agree with those of p = ||, — 1.

Lemma 6.1. There exists P € WO(M) with real, classically elliptic symbol p such that
{p=0}=S*M, p = ||y — | inaneighborhood of S* M and there exist Q € W~2(M) and
E € h°°U=%° (M) satisfying

P=0QPy+ E.
In particular, for all s € R there exists a constant Cs > 0 depending only on s so that for
all N > 0, there exist Cys = C(N,s,M,g) >0 and ho = ho(N,s, M, g) > 0 so that for
0<h<hygandu € D' (M),

I Pull s,y < CsllPoull s agy + Cnsh™ 1l = (agy-

SC!

Proof. Letyr; € CZ°(R; [0, 1]) with supp y1 C (—%, %) and ¥; = 1 on [—%, %] Next,

let Y € C(R;[0,1]) with 2 = 1 on [—4,—3] U [5.4] so that ¥ := ¥ + ¥, has ¥ = 1
on [—4, 4]. Define
P =P + P+ P3

with

- 1 )

Pl = Elﬂl(_h Ag)a

Py i= Yo (—h?Ag)/—h2Ayg,

P3:=2(1 — Y (—h%Ay)).
Note that by the functional calculus [65, Theorem 14.9], P € W(M) with symbol

|
pi= §W1(|EI§) +2(I519)1Elg +2(1 = v (El3)).
In particular, p = |£| in a neighborhood of S*M .
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Next, observe that
(P+1I)(P—1)= Py+h?’Ag + P>
= Po— (I — Y3 (—h*Ag))(—h*Ayg)
+ P24 P} + 2P| Py + 2P, P3+2P, Ps.
Now, there exists ¢ > 0 so that
WE,(P1) U WFy(P3) UWFy (I =3 (=h*Ag)) C {|o(Po)| > c(£)?}.

In particular, by the elliptic parametrix construction (see, e.g., [22, Appendix E.2]) there is
01 € ¥72(M) so that

(P+1)P—1)= Q1P+ O(h™®)g—oo.
Now, o(P + I) > 1 therefore, (P + I)~! € W(M) and we have that

P—1=(P+1)7'01Py+ O(h®)g-
which completes the proof of the lemma after letting Q = (P + I)"'Q;and P = P —I. «©

Applying Theorem 11 to P from Lemma 6.1, where Py := —h%A ¢ — 1, and then esti-
mating Pu by Lemma 6.1, we obtain the following theorem.

Theorem 12. Let {Hy}, C M be a regular family of submanifolds of codimension k
that is uniformly conormally transverse for p. Let {I:Ih}h be a family of submanifolds of
codimension k satisfying (2.5). Let 0 < § < 3, N > 0 and {wy}, with wj, € Sg N Cfo(ﬁh).
There exist positive constants to = to(M, g, Tinj, {Hp}n), Ro = Ro(M, g, Ko, k, Tinj), Cp k.
depending only on n and k, and hg = ho(M, g,8,{Hpy};,) and for each 0 < t < 1 there exist
C=CM,g,t,6,,{Hp}p) >0and Cny = Cny(M, g, N, t,8,{wp}n, {Hp}tp) > 0, so that the
following holds.

Let 8h® < R(h)< Ro,0 < a < 1 — 2limsup;,_,, lofogzh), and suppose {A[, (R(h))}]].vzh1
is a (D, t, R(h)) cover of SN*H for some © > 0. In addition, suppose there exist a subset
B C{l,..., Ny} and a finite collection {§¢}pece CA{l,..., Ny} with

Fn(wp) C BU ) %,
tet
where $(wy) is defined in (2.13), and so that for every £ € £ there exist ty = ty(h) > 0 and
Ty = Ty(h) < 2aT,(h) so that

U A;j (R(h)) is [tg, T¢] non-self-looping for ¢; := exp(tHyg|,)-
J€Y
Then, foru € D'(M) and 0 < h < hy,

n—1 1

k=1 Co ik DlwplleoR(R) = 1 (1G¢lte)2

h'> [ whudagh‘s : = B2 + Y~ )llull,»,,,,
Hpy T2 le& Tez

_l’_

L2(M)

n—1 1
Co ik OllwpllooR(R) 2~ (IelteTy)2
. — > lPoul
T2 el

-1
+ O fwillool Poul s,

N
NI (Wl + 1P 2,
SC!
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Here, the constant Cy depends on {wy,}y only through finitely many Sg seminorms of wy,.
The constants to, C, Cn, ho depend on {Hy,}j, only through finitely many of the constants Ky
in (2.3).

A. Appendix

A.1. Index of notation. In general we denote points in 7* M by p. When position and
momentum need to be distinguished, we write p = (x,§) for x € M and £ € T) M. Sets of
indices are denoted in calligraphic font (e.g., ). Next, we list symbols that are used repeatedly
in the text along with the location where they are first defined.

ert o (1.4) Hs, (2.9) Bs  (3.1)

XH,p (2.1 Tinj (2.10) ®,  Proposition 3.3
@ 22)  AY(r) (@11 vk (A

Ko (2.3 AT(r)  (2.12) sk

re (2.7) In(w) (2.13) Hk  (A3)

K, (2.6 To(h) (2.14)  MSy Definition 5

3o (2.8) Amax  (2.14)

For the definition of [¢, T'] non-self-looping, see (1.2). For that of (D, t, r)-good covers,
see Definition 4.

A.2. Notation from semiclassical analysis. We refer the reader to [65] or [22, Appen-
dix E] for a complete treatment of semiclassical analysis, but recall some of the relevant
notation here. We say a € C®°(T*M) is a symbol of order m and class 0 < § < 1, writing
a € S§"(T* M) if there exists Cog > 0 so that

- - 1
(A1) 0208 a(x. £)| < Coph™ @BV (£)m=IPl - (£) .= (1 + |£12)2.
Note that we implicitly allow a to also depend on /, but omit it from the notation. We then

define Sg(T*M) := U, S§"(T*M). We sometimes write S™(T*M) for Sg"(T*M). We

also sometimes write Ss for Sg". Next, we say that a € Sgomp(T*M ) if a is supported in an

h-independent compact subset of 7*M .
Next, there is a quantization procedure Opy, : S§* — L£(C*°(M), D'(M)) and we say
A € W' (M) if there exists a € S§"(T* M) so that Opj(a) — A = O(h®)g—oo, where we say
an operator is O (h*)g—oo if for all N > 0 there exists Cy > 0 so that
I Aull g ary < CNR* [l =~ (ary.-

and say an operator, A, is O(h®°)yg-oo if for all N > 0 there exists Cy > 0 so that

4wl ary < CNIN Nl - .
Fora € Sgn‘ (T*M) and b € Sg"z(T*M), we have that

(A2)  Opu(@)Opu(b) = Opp(c), c(x.§) ~ > I Lyj(a(x.£)b(y.n) pn
j =n

where L»; is a differential operator of order j in (x, &) and order j in (y, n).
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There is a symbol map o : W§"(M) — Sg”(T*M)/hl_szg"_l(T*M) so that

0(Opy(a)) = a, o(Opp(a)*) =a,
0 (Opp(a)Opp (b)) = ab, o([Opy(a). Opy(b)]) = —ihia, b},

and
_ _ o _ _
0— h'720w= (M) — WH(M) = S§'(M)/h' 25 S 1 (M) — 0
is exact.
The main consequence of (A.2) that we will use is thatif p € S (M) anda € S§ (T*M),
then

h
[0P1(p). Opn(@)] = = Opa(Hpa) + h*~* Opy (1)

with r € S TE=2(T* M).
We define the semiclassical Sobolev spaces HS, (M) by

(A.3) Hey (M) :={u € D'(M) : ||lull s,y < o0},

where

el mrs, ey == 10PA((E) IullL2ar)-

cl
A.3. Background on microsupports and Egorov’s Theorem.
Definition 5. For a pseudodifferential operator A € \Ilgomp(M ), we say that A is micro-
supported in a family of sets {}V/(h)}; and write MSy(A4) C V(h) if
A = Opp(a) + O(h®™)g—
and for all o, N, there exists Cy y > 0 so that

sup 0% a(x. )| < Canh?.
(x.6)eT*M\V (h)

For B(h) C T*M, will also write MSy(A4) N B(h) = @ for MSL(A) C (B(h))C.
Note that the notation MSy(A) C V(h) is a shortening for MSp(A) C {V(h)}.

Lemma A.1l. Ler0<§ < % and 8’ > 8, ¢ > 0. Suppose that A € \Ifgomp(M) and that
MSh(A) C V(h). Then
MSh(4) C {(x.§) : d((x.§). V(h)°) =< ch”).
Proof. Let A = Opp(a) + O(h®)g—o. Suppose that 2r(h) := d(p1, V(h)°) < ch®
and let pg € V(h)¢ with d(p1, po) < r(h). Then, for any N > 0,
0%aep)l = Y 10 Pateo)rP + Cyen sup [3%alr()N

|BI<N—-1 lk|<|a|+N,T*M
< Y suploBa(p)r ()l + Cuyh N r ()Y
1Bl<N-1"°

< Conmh™ + Cunh™Ner ()N

So, letting N > M(8' — §)~1,
0%a(p1)| < Canrh™. D
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LemmaA.2. Let0 <§ < %and A, B € \Ilgomp(M). Suppose that MSp(A) C V(h) and
MSh(B) C W(h).

(1) The statement MSy(A) C V(h) is well defined. In particular, it does not depend on the
choice of quantization procedure.

(2) MSL(AB) C V(h) N W(h)

(3) MSn(4%) C V(h)

4) If V(h) = 0, then WFL(A) = @.

(5) If A = Opp(a) + O(h®°)g—oo, then MSp(a) C suppa.

Proof. The proofs of (1)-(3) are nearly identical, relying on the asymptotic expansion
for, respectively, the change of quantization, composition, and adjoint so we write the proof for
only (2). Write A = Opp(a) + O(h®°)y— and B = Opp(b) + O(h*°)g—o. Then

Opi(a)Opp(b) = Opp(a#b) + O(h™)g—o,

where

a#b(x, )~y h Laja(x,£)b(y,n) x=
- =n

J
and L, are differential operators of order 2. Suppose that MSy(A) C V. Then, forany N > 0,

sup |0%a| < Conh™.
ve
So, choosing M > (N + 8|a|)(1 —28)71,

0%a#b| < |0* Y h'Lyja(x.£)b(y.n) + CophM=20)—lls < ¢ v h .

j<M

x=y
§=n
In particular,

sup [0%a # b| < Conh™.
ve

An identical argument shows

sup [0%a # b| < Canh™.
WC

Statement (4) follows from the definition since if V(h) = @, a € h®°Ss, and (5) follows
easily from the definition. |

Lemma A.3. Let ¢; :=exp(tHp) and ¥ C T*M compact. There exist 6 > 0 small
enough and Cy > 0 so that uniformly fort € [0, 6], and (x;,&;) € %,

%d((xl,él), (x2,£2)) — C1d((x1,£1). (x2, £2))*
< d(pr(x1,62). 01 (x2,61))
<2d((x1.£1). (x2,62)) + C1d((x1.&1). (x2.£2))%,

where d is the distance induced by the Sasaki metric. Furthermore, if ;(x;, &) = (x;(¢), & (1)),
then

dm (x1(1), x2(1)) = dpr(x1,x2) + C1d((x1, 1), (x2,62))8,
where dpy is the distance induced by the metric on M.
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Proof. By Taylor’s theorem,
@1 (x1,81) — @r(x2,82) = dxpr(x2,62)(x1 — x2) + depr(x2,82) (51 — §2)

+ Ocos (sup [d 20 (@) (11 — &217 + 1x1 = %217)).
qgex

Now,
0 (x.§) = (x.§) + (O p(x.6)1, —0x p(x.6)1) + O(t?)
SO
dei(x.6) = (0.1) + 12 p. 32, p) + O(1?)
dxei(x,§) = (1,0) + t(aﬁgp, —92p) + O(1?).

In particular,

@ (x1,61) —@r(x2,62) = ((0,1) + O()) (51 — &2) + ((1,0) + O(1))(x1 — x2)
+ O((51 — £2)* + (x1 — x2)?)

and choosing § > 0 small enough gives the result. O

B. Proofs of Lemmas 1.2 and 1.3

Lemma B.1. Letr t,T > 0 and suppose that G C Sx M is a closed set that is [t,T]
non-self-looping. Then there is R > 0 such that Br=p (G, R) is [t, T] non-self-looping.

Proof. We will assume that ¢3(G) NG = @ for s € [t,T], the case of s € [T, —t]
being similar. Let ¢ € G. We claim there is R; > 0 such that

| ¢(Br<m(q.Ry)) N Br=y(G. Ry) = 0.
s€(t,T]

Suppose not. Then there are g, — ¢ and s, € [t, T] such that d(¢s, (¢n), G) — 0. Extracting
subsequences, we may assume s, — s € [t,T] and ¢y, (g,) — p € G. But then ¢5(q) = p
and, in particular, G is not [¢, T'] non-self-looping.

Now, G C quG B(q, Ry) and hence, by compactness, there are ¢;,i = 1,..., N, such

that
N

G c | B@i. Ryy).
i=1
In particular, there is 0 < R < min; Ry, such that

N
B(G.R) c | B(gi. Ry)).
i=1

This implies that B(G, R) is [¢, T] non-self-looping. m]
LemmaB.2. Lert,®.,t,T >0, R(h) > 8h®, and {A;i (R(h))}jeg a(D, 7, R(h))-good

cover of S¥M. Suppose that G C S¥M is closed and [t, T] non-self-looping. Then, for all
e > 0, there is R > 0 small enough such that for R(h) < R,

§:=1{j €4 AL (RU) N Bs: 3¢ (G. R) # 0}
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satisfies
(B.1) |J Af, (R(h)) is [max(z, 37), max(t, 37, T)] non-self-looping
j€g
and
(B.2) 1G] < DR(h)' " (volgx pr (G) + ¢).

Proof. By Lemma B.1, there is Ry > 0 such that B(G, Ry) is [t, T| non-self-looping.
Furthermore, since G is closed, there is Ry > 0 such that

volgxpr (B(G, Ry)) < volgxp(G) + e.

Therefore, putting R = min(%, %), for R(h) < R,and j € G,

U AG (R() N SEM C Brsp (G, min(Ro, Ry)).
jesg

In particular, (B.1) and (B.2) hold. O

Proof of Lemma 1.2.  Suppose that x non-self-focal. Let :85 = T;l([O, T]) and note
that forall 7 > 0, ig is closed. Thus, by Lemma B.2 for all 7 > 0 there is Ry = Ro(7T") > 0

such that for R(h) < Ro, with B := {j : A;j (R(h)) N BS;M(cfZ;, Ro)}, one has
» R(h 1—n
|B| < L

T

Next, since G := Sg M \ B(éﬁzg, Ry) is closed and [insz, T] non-self-looping, there is
Ri; = Ry(T) > O such for R(h) < R; and

g =1{j : A}, (R(h) N B(G, R1)},

equation (B.1) holds with 7 = % and T = T'. Putting

R(T) := min(R{(T), R,(T)), B:=B\¥,
and defining

ho(T) = inf{h > 0: R(h) > R(T)}, T(h) = sup{T > 0: ho(T) > h),

inj M

5—» T'(h)) non-looping. i

we have shown that x is (

Proof of Lemma 1.3.  Let {R,jf’g’s be the set of points p € Sy M for which there exists

0 < ¢ < S such that ¢;(p) € Sy M and d(¢:(p), p) < . Then

Re=(J RS, RS =REPS.
§>0S8>0 +

Note that {Rﬁ’s is closed for all 8, S, and that for all ¢ > 0 there is § > 0 such that forall S > 0,

volgs a7 (R3%) < volgs pr (Ry) + e.
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Now, assume that x is non-recurrent. Then, for all & > 0, there is a constant § = §(¢) > 0
such that for all S > 0,
VolS*M(RS’S) <e.

Let {pi}lN:(f) C S¥M be such that SYM C | J; B(pi, 4) and N(§) < C8§'™".

Letting Go := RS , by Lemma B.2 there is a constant Ry = Rg(g, S) > 0 such that for
R(h) < Ry, defining €0 = {j: A;j (R(h)) N Bgxp(Gi, Ro)}, we have

|G| < DR(h) .

Next, let G; := Bgx p(pis %) \ BS;M(R){’S, Ro) so that G; is closed and [ianM, S] non-self-
looping. By Lemma B.2, there are R; = R; (¢, S) > 0 such that for R(h) < min; R;, if we set
={j: A;j (R(h)) N Bgxp(Gi, R;)}, then

18| < R(WTDs" L, i >1,

and fori > 1,
|J AL, (R(h) is [inj M/2, S] non-self-looping.
j€%;

Then we have

N P2 ..
[G;|R(h)*~1inj M Dinj M
< N@)S§ =z
BRIy (PR

Now, for ¢ := ﬁ let § := 6(e) and set
S :=2N?(5)§" 1'Dinj M.
Working with R; = R; (e, S) = R;(T) as defined before, we have

i \/|§,|R(h)” M _ [T
—_— T’

i=0

Defining

ho(T) = inf{h > 0: R(h) > min Ri(T)}, T(h) = sup{T > 0 : ho(T) > h),

inj M

we have shown that x is (=5—, T'(/1)) non-recurrent. m|
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