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Abstract. We prove a uniform lower bound on Cauchy data on an arbitrary

curve on a negatively curved surface using the Dyatlov-Jin(-Nonnenmacher)
observability estimate on the global surface. In the process, we prove some

further results about defect measures of restrictions of eigenfunctions to a

hypersurface.

1. Introduction

The purpose of this article is to prove a positive lower bound for L2 norms of
Cauchy data of Laplace eigenfunctions on curves of a negatively curved surface
(M, g) without boundary. The main results of this article are valid only on nega-
tively curved surfaces because they deploys the recent results of Dyatlov-Jin [DJ17]
and Dyatlov-Jin-Nonnenmacher [DJN19]; where it is shown that the microlocal
defect measures of eigenfunctions on negatively curved surfaces charge every open
set. However, we note that all of the intermediate steps of the proof are valid for
hypersurfaces H ⊂ M of manifolds of any dimension n. Therefore, until we need
to employ [DJ17, DJN19] we work with hypersurfaces in general manifolds.

Let (M, g) be a compact Riemannian manifold of dimension n, and {ϕj}∞j=0 be
an orthonormal basis of eigenfunctions of the Laplacian,

−∆gϕj = λ2jϕj , 〈ϕj , ϕk〉 = δjk ,

where 〈f, g〉 =
∫
M
fḡdV (dV is the volume form of the metric) Let H ⊂ M be a

smooth hypersurface. The semiclassical Cauchy data along H is defined by

(1.1) CD(ϕj) := {(ϕj |H , λ−1j Dνϕj |H)}

where Dν := −i∂ν and ν is a choice of unit normal to H. For technical reasons, we
also introduce the renormalized Cauchy data

(1.2) RCD(ϕj) = {(1 + λ−2j ∆H)ϕj |H , λ−1j Dνϕj |H)}.

Here, ∆H denotes the negative tangential Laplacian for the induced metric on H.
Hence, as a semiclassical pseudodifferential operator, the operator (1 + λ−2j ∆H) is
characteristic precisely on the glancing set S∗H of H and damps out the whispering
gallery components of ϕj |H .

In what follows, we use semi-classical notation hj = λ−1j , since we will be using
semi-classical pseudo-differential calculus. Our first result gives a lower bound on
the L2 norm of (1.2) along H, and in fact a lower bound for more general ‘matrix
elements’ relative to semi-classical pseudo-differential operators Oph(a) of order 0
on L2(H) with semi-classical symbol a ∈ S0(T ∗H) supported in B∗H. Here, we
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say a ∈ Sm(T ∗H) if a ∈ C∞(T ∗H) and for all α, β ∈ Nn, there is Cαβ such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ〈ξ〉m−|β|, 〈ξ〉 := (1 + |ξ|2)1/2.

(see also [Zw, Section 9.3]). Here, we denote by

B∗H := {(x, ξ) ∈ T ∗H : |ξ|H < 1}

the unit co-ball bundle of H; | · |H is the restriction of g to T ∗H. We also denote
by γHf := f |H the restriction of f ∈ C(M) to H.

Theorem 1.1. Let (M, g) be a compact, negatively curved surface without boundary
and H ⊂M a smooth curve. Then there exist h0 > 0 and CH > 0 so that,

‖(hjDνϕj)|H‖2L2(H) + ‖ϕj |H‖2L2(H) ≥ CH > 0.

More generally, this inequality can be microlocalized: for a ∈ S0(T ∗H), such that
Ophj (a) has principal symbol, a0(x′, ξ′), satisfying a0 ≥ 0 on B∗H and supp a0 ∩
B∗H 6= ∅, there exist h0 > 0 and Ca0 > 0 so that for 0 < hj < h0,〈

Op hj (a)hjDνϕj |H , hjDνϕj |H
〉
L2(H)

+
〈
Ophj (a)(1 + h2j∆H)ϕj |H , ϕj |H

〉
L2(H)

≥ Ca0 .

Note that the second inequality of Theorem 1.1 implies the same result for
Cauchy data.

Corollary 1.1. With the same assumptions and notations as in Theorem 1.1,〈
Ophj (a)hjDνϕj |H , hjDνϕj |H

〉
L2(H)

+
〈
Ophj (a)ϕj |H , ϕj |H

〉
L2(H)

≥ Ca0 > 0.

Indeed, this follows from the statement 1 ≥ (1 − |ξ′|2) on B∗H relating the
symbols of I and of (I + h2∆H). It is sufficient to consider this region since ϕj
concentrates on it in a strong sense (see [CHT15]).

Remark: It is argued in [BHT, p. 3063-3064] that the renormalized Dirichlet data
(1.2) with

〈(1 + h2j∆H)ϕj |H , ϕj |H〉L2(H)

is a closer analogue to the Neumann data ‖hjDνϕj‖2L2(H) than is the traditional

Dirichlet data. In fact, one can see that hjDν behaves similarly to (1+h2∆H)
1
2
+u [G16].

We give two proofs of the result, by two rather different approaches whose con-
trast seems to be of some independent interest. Both are based on the Dyatlov-Jin(-
Nonnenmacher) observability estimate [DJ17, DJN19]. The first proof is based on
the Rellich identity of [CTZ13] (adapted from [Bu]) relating interior and restricted
matrix elements and microlocal lifts of eigenfunctions. The second is based on hy-
perbolic equations and is closely related to results in [GL17]. It yields the following
version of Corollary 1.1.

Theorem 1.2. Let (M, g) be a negatively curved surface and H ⊂ M a smooth
curve. Then for all 0 6= b0 ∈ C∞c (B∗H), there is Cb0 > 0 and h0 > 0 such that if

‖(−h2j∆g − 1)ϕj‖L2 = o
( hj

log h−1j

)
‖ϕj‖L2 ,
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then for 0 < hj < h0

(1.3) 0 < Cb0‖ϕj‖L2 < ‖Ophj (b0)ϕj |H‖L2(H) + ‖Ophj (b0)hjDνϕj |H‖L2(H).

Moreover, for all U ⊂ H open, there is c > 0 such that for all ϕj satisfying

(−h2j∆g − 1)ϕj = 0,

we have

(1.4) 0 < c‖ϕj‖L2(M) < ‖ϕj |H‖L2(U) + ‖hj∂νϕj |H‖L2(U).

In Section 1.2, we state some further results on microlocal defect measures µ, in
particular on the possible case where µ(S∗HM) > 0. Here (and hereafter) S∗HM =
{(x, ξ) ∈ S∗M : x ∈ H}.
Remark: Henceforth, we follow the notational convention in semi-classical analysis
of not subscripting the sequence hj in ϕh, Oph, etc.

In a subsequent article [GZ20], the authors study the more difficult problem of
obtaining uniform bounds on Dirichlet (resp. Neumann) data alone. Such bounds
only exist when H satisfies a “geodesic asymmetry condition”, ruling out such as
examples as restrictions of odd eigenfunctions under an isometric involution ι to
the fixed set of ι.

1.1. Background. The first proof of Theorem 1.1 develops the Rellich identity
approach of [CTZ13] . In that article, it is proved that a sequence of renormalized
Cauchy data (1.2) of eigenfunctions is quantum ergodic along any hypersurface
H ⊂M if the sequence of eigenfunctions is quantum ergodic on the global manifold
M . It is not known whether the full orthonormal basis of eigenfunctions of a
negatively curved compact surface is quantum ergodic (QE), but a recent result of
Dyatlov-Jin(-Nonnenmacher) shows that its microlocal defect measures must have
full support, that is, they charge (give positive mass to) any open set. The Dyatlov-
Jin(-Nonnenmacher) theorem is a microlocal observability estimate for quasimodes
u of compact hyperbolic (or more generally negatively curved) surfaces: For all
u ∈ H2(M), and all a ∈ C∞0 (T ∗M) with a ≥ 0, a not identically zero on S∗M ,
there exists a constant C(a) > 0 so that

(1.5) ||u||L2 ≤ C(a)||Oph(a)u||L2 +
C(a) log(1/h)

h
||(−h2∆− I)u||L2 .

In particular, if u is an eigenfunction the second term is zero and one has a lower
bound on ‖Oph(a)u‖L2(M). Theorem 1.1 gives a similar full support property for
the restricted microlocal defect measures of the Cauchy data on a curve.

The results may be stated in terms of microlocal defect measures (quantum
limits). Several are involved: the global microlocal defect measures on M , and
restricted microlocal defect measures on H, both for Neumann data, Dirichlet data
and for renormalized Dirichlet data.

We denote by p(x, ξ) = |ξ|2g the principal symbol of the Laplacian −∆g. We
denote by Hp its Hamilton vector field, and by ϕt := exp(tH|ξ|2g ) its Hamiltonian

flow, i.e. the geodesic flow ϕt : S∗M → S∗M of (M, g) on its unit cosphere bundle.
We use some notation and background on the semiclassical calculus of pseudo-

differential operators as in the references [Bu, DZ, CTZ13, Zw]. On both H and
M we fix (Weyl) quantizations a → aw of semi-classical symbols to semi-classical
pseudo-differential operators. When it is necessary to indicate which manifold is
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involved, we use Fermi coordinates (x′, xn) with x′ coordinates on H (Section 2),
and we use capital letters Aw(x, hD) to indicate operators on M and small letters
Oph(a) = aw(x′, hDx′) to indicate semi-classical pseudo-differential operators on H
(denoted by Ψ∗sc(H)).

We recall that microlocal defect measures are the semi-classical limits of the
functionals a→ 〈aw(x, hjDx)uj , uj〉, which are often referred to as microlocal lifts
or Wigner distributions. Let Q∗ denote the set of all microlocal defect measures
for an orthonormal basis {ϕj} of eigenfunctions. That is, µ ∈ Q∗ if there exists
a subsequence S = {ϕjk} of eigenfunctions for which 〈Aϕjk , ϕjk〉 →

∫
S∗M

σAdµ.
The microlocal defect measures on the global manifold M are invariant probabil-
ity measures for the geodesic flow ϕt : S∗M → S∗M (see e.g. [Zw, Chapter 5]).
Throughout, we denote byM(X) the space of positive measures on a metric space
X, M1(X) the space of probability measures and MI(X) the space of invariant
measures under a flow on X.

The Dyatlov-Jin observability estimate for eigenfunctions implies the following:

Theorem 1. Let (M, g) be a compact negatively curved surface without boundary,
let {ϕj} be any choice of orthonormal basis of eigenfunctions, and let A ∈ Ψ0(M)
be a pseudo-differential operator of order zero with a non-negative principal symbol
σA not vanishing identically on S∗M . Then,

(1.6) inf
µ∈Q∗

∫
S∗M

σAdµ ≥ CA > 0.

From (1.6), it follows that all microlocal defect measures of eigenfunctions of
compact negatively curved surfaces have full support, i.e. charge every open set of
S∗M .

Given a quantization a→ Oph(a) of semi-classical symbols a ∈ S0
sc(H) of order

zero (see [Zw]) to semi-classical pseudo-differential operators on L2(H), we define
the microlocal lifts of the Neumann data as the linear functionals on a ∈ S0

sc(H)
given by

µNj (a) :=

∫
B∗H

a dΦNj := 〈Oph(a)hjDνϕj |H , hjDνϕj |H〉L2(H).

We define the microlocal lifts of the Dirichlet date by

µDj (a) :=

∫
B∗H

a dΦDj := 〈Oph(a)ϕj |H , ϕj |H〉L2(H).

also define the microlocal lifts of the modified Dirichlet data by

µRDj (a) :=

∫
B∗H

a dΦMD
j := 〈Oph(a)(1 + h2j∆H)ϕj |H , ϕj |H〉L2(H).

Finally, we define the microlocal lift dΦRCDj of the renormalized Cauchy data to be
the sum

(1.7) dΦRCDj := dΦNj + dΦRDj .

The weak* limits of the above microlocal lifts are termed microlocal defect mea-
sures, respectively, of the Neumann, Dirichlet or renormalized Dirichlet type.

The distributions µNj , µ
D
j are asymptotically positive, but are not normalized to

have mass one and may tend to infinity. They depend on the choice of quantization,
but their possible weak* limits as hj → 0 do not, and the results of the article are
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valid for any choice of quantization. We refer to [Zw] for background on semi-
classical microlocal analysis.

Theorem 1.3. Let (M, g) be a compact surface without boundary of negative cur-
vature. Suppose H ⊂M is a curve. Then, for any a ∈ S0

sc(H),

infµ∈Q∗(RCD)

∫
B∗H

adµ ≥ Ca0 > 0

and therefore,
infµ∈Q∗(CD)

∫
B∗H

adµ ≥ Ca0 > 0

One should be aware of an obstruction to obtaining lower bounds on (1.2)
from lower bounds on (1.1) for hypersurfaces in a general Riemannian manifold.
Suppose that the eigenfunctions ϕj are the highest weight spherical harmonics

Y NN (θ, y) ' eiNθe−Ny
2/2 on S2 along the equator γ. The normal y-derivative van-

ishes since Y NN is even under reflection across γ, i.e. y → −y in Fermi normal

coordinates. But the restriction is eiNθ and it is killed by (I+N−2 ∂2

∂θ2 ). Hence, the
renormalized Cauchy data vanishes. As this example shows, Rellich-type identities
for renormalized Cauchy data are not necessarily equivalent to bounds on Cauchy
data (1.1) because of the effects of concentration in tangential directions to H.
Theorem 1.1 nevertheless gives a positive lower bound for curves on a negatively
curved surface, because the Dyatlov-Jin lower bound (1.5) implies that restrictions
of eigenfunctions on such surfaces cannot concentrate entirely in the tangential
directions.

Remark: The proof of Theorem 1.1 using the Rellich identity is a continuation of
the proof in [CTZ13] in the case where the microlocal defect measure of a sequence
is Liouville measure µL. Since the calculations in the case of a general microlocal
defect measure of independent interest, we present most of the details in all dimen-
sions and in more detail than is strictly necessary for the proof of Theorem 1.1. We
only specialize to curves in a negatively curved surface at the end of the proof.

1.2. Results on microlocal defect measures. In the process of proving The-
orem 1.1 via the Rellich formula we will obtain some facts about the collection of
defect measures for eigenfunctions that are of independent interest. These results
are valid for hypersurfaces H ⊂M in manifolds of any dimension. First, we study
the restrictions of µ ∈MI ∩M1 to a hypersurface H

Theorem 1.4. Let H ⊂ M be a hypersurface and µ ∈ M1(S∗M) ∩ MI(S
∗M)

where the relevant flow is ϕt. Then,

• µ|S∗HM = µ|S∗H ;
• the support of µ|S∗H is is contained in the null-space of the second funda-

mental form Q(0, x′, ξ′), i.e. Q(0, x′, ξ′) = 0 for (x′, ξ′) ∈ Supp(µ|S∗H).
• Hence, µ|S∗H is supported on the subset of S∗H where the Hamilton vector

field Hp coincides with the Hamilton vector field Hp|S∗H of the submanifold

metric norm, gH(x′, ξ′) = |ξ′|2gH .

In fact, we will see in Section 4 that such measures have µ|S∗H supported where
Hp is tangent to H to infinite order.

The following immediate corollary was mentioned in [TZ17].

Corollary 1.2. If the second fundamental form of H is non-degenerate, µ|S∗HM =
0.
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Finally, we obtain an expression for µ ∈ Q∗(RCD).

Theorem 1.5. Suppose that ϕh has defect measure µ and that its renormalized
Cauchy data has defect measure µRCD ∈ Q∗(RCD). Then, for a ∈ C(T ∗H),

µRCD(a) =

∫
S∗HM\S∗H

a(π(ζ))|ξn(ζ)|dν⊥(ζ)

where for A ⊂ S∗HM \ S∗H,

ν⊥(A) := lim
T→0+

1

2T
µ
( ⋃
|t|≤T

ϕt(A)
)
,

and π : S∗HM → B∗H denotes the orthogonal projection.

1.3. Outline of the article. Section 2 contains some preliminary facts about the
Laplacian. This is followed by Section 3 which reviews the basic calculations for
Rellich’s formula. Section 4 then contains the study of invariant measures and in
particular, the proof of Theorem 1.4. Section 5 contains the proof of theorem 1.5
and the proof of Theorem 1.1 to from Theorem 1.5. Finally, Section 6 contains the
proof of Theorem 1.2 via a factorization method.

Acknowledgements. This work was largely written during the period when
both authors were research members at the Mathematical Sciences Research Insit-
tute. S.Z. would like to acknowledge support under NSF grant DMS-1810747. We
would also like to thank the referee for a very careful reading which improved the
exposition.

2. Laplacian in Fermi normal coordinates along a hypersurface

Let (M, g) be any Riemannian manifold. We recall that in any coordinate system,

∆g =
1
√
g

∑
i,j

∂

∂xi
(gij
√
g
∂

∂xj
),

where g = det(gij). Here gij = g( ∂
∂xi

, ∂
∂xj

) and gij is the inverse matrix.

Let H ⊂M be a hypersurface, and let x = (x1, ..., xn−1, xn) = (x′, xn) be Fermi
normal coordinates in a small tubular neighbourhoodH(ε) of H defined near a point
x0 ∈ H. Thus, H = {xn = 0} with coordinates x′ on H. Fermi coordinates use the
charts expx′ xnν where ν is a choice of unit normal field. In these coordinates we
can locally write

(2.1) H(ε) := {(x′, xn) ∈ U × R, |xn| < ε}.

Here U ⊂ Rn−1 is a coordinate chart containing x0 ∈ H and ε > 0 is small but for
the moment, fixed. We also denote by ξn, ξ

′ the symplectically dual coordinates on
T ∗H(ε).

In Fermi normal coordinates, the metric is given by

g = gH(xn, (x
′, dx′)) + dx2n.

where gH(xn, (x
′, dx′)) is a metric in x′ depending on xn. In particular, the metric

induced on H is gH(0, x′, dx′). Therefore,
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(2.2)

−h2∆g =
1√
g(x)

(hDxn

√
g(x)hDxn + hDxig

ij
H(x)

√
g(x)hDxj )

=
1√
g(x)

hDxn

√
g(x)hDxn +R(h, x′, xn, hDx′)

= (hDxn)2 +R(h, x′, xn, hDx′) + hr1n(x, hDxn)

where R is a second-order h-differential operator along H with coefficients depend-
ing on xn, r1n is a first order normal operator, and

R = R2(x′, xn, hDx′) + hr1(x′, xn, hDx′)

where r1(x′, xn, hDx′) is a first order operator along H with coefficients depending
on xn, and

(2.3) R2(x′, xn, hDx′) = R2(x′, 0, hDx′) + 2xnQ(x′, xn, hDx′),

Here, Q(x′, 0, ξ′) is the second fundamental form ofH andR2(x′, 0, hDx′) = −h2∆H

(the induced tangential semiclassical Laplacian on H). The semi-classical principal
symbol σ(−h2∆g) of −h2∆g is given by

(2.4) p(x, ξ) = ξ2n + |ξ′|2gH .

We recall that the second fundamental form II(X,Y ) of a hypersurface H is the
symmetric tensor on TH defined by II(X,Y ) = ∇MX Y − ∇HXY where ∇M is the
covariant derivative for (M, g) and ∇H is the covariant derivative for (H, g|H). The
second fundamental form defines a quadratic form on Tx′H for every x′ ∈ H. Hence
it is given by a quadratic polynomial Q(x′, 0, ξ′) in ξ′ at each x′.

The first order terms r1, r1n play no role in the calculations of this paper since
they only contribute to the O(h) remainder.

3. Rellich identity

The result of Theorem 1.1 is local on H, and with no loss of generality we may
assume that H is the boundary of a smooth open domain M+ ⊂ M , H = ∂M+,
and xn > 0 in M+. We then use a Rellich identity to write the integral of a
commutator over M+ as a sum of integrals over the boundary (of course the same
argument would apply on M− = M \M+). We follow the exposition of [CTZ13] in
the following and continue to use the notation ϕh for a sequence of eigenfunctions
and allow H ⊂M to be a hypersurface in a manifold of any dimension.

Let A(x, hDx) ∈ Ψ0
sc(M) be an order zero semiclassical pseudodifferential oper-

ator on M (see [Zw]). Also denote by γH the restriction operator γHf = f |H . If
ϕh is a Laplace eigenfunction of eigenvalue −h−2, then by Green’s formula,

− i
h

∫
M+

(
[−h2∆g, A(x, hDx)]ϕh(x)

)
ϕh(x) dx(3.1)

=

∫
H

(γH (hDν A(x′, xn, hDx)ϕh)) γH(ϕh) dσH

+

∫
H

(A(x′, xn, hDx) γHϕh) (γH(hDνϕh)) dσH .
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Here, Dxj = 1
i
∂
∂xj

, Dx′ = (Dx1
, ..., Dxn−1

), Dν = 1
i ∂ν where ∂ν is the interior

unit normal to M+. Henceforth we often abbreviate Dx′ by D′. Also, dσH is the
surface measure on H.

Let Oph(a) = aw(x′, hDx′) be a semi-classical pseudo-differential operator on
L2(H). We wish to chooseA(x, hDx) to so thatA(x′, 0, hDx) is close to aw(x′, hDx′)
and so that [−h2∆g, A(x, hDx)] has good positivity properties when aw(x′, hDx′) ≥
0.

We let χ ∈ C∞0 (R) be a cutoff with χ(x) = 0 for |x| ≥ 1 and χ(x) = 1 for
|x| ≤ 1/2. Given a ∈ S0,0(T ∗H× (0, h0]), we define the pseudo-differential operator
A on M by,

(3.2) A(x′, xn, hDx) = χ
(xn
ε

)
hDxna

w(x′, hD′)χ
(xn

3ε

)
.

Note that χ(xn3ε ) is identically 1 in a neighborhood of suppχ(xnε ). We now cal-
culate the two sides of (3.1) following [CTZ13], in particular showing that matrix
elements of the commutator [−h2∆g, A(x, hDx)] of this ‘extension’ of aw(x′, hDx′)
with −h2∆g have good positivity properties. Of course, A is not truly an extension
because it is not totally characteristic, i.e. it also contains normal derivatives hDxn .

3.0.1. The right hand side. Since χ(0) = 1, the second term∫
H

γH (A(x′, xn, hDx)ϕh) (γHhDνϕh) dσH

=

∫
H

γH
[
χ(
xn
ε

)hDxna
w(x′, hD′)ϕh

]
γHhDνϕhdσH

on the right side of (3.1) is the Neumann data matrix element,

(3.3)
〈
aw(x′, hD′)

(
hDxnϕh

)
|H , hDxnϕh|H

〉
.

We now show that the first term on the right hand side of (3.1) is the renormalized
Dirichlet data. Using that χ′(0) = 0 and −h2∆gϕh = ϕh, the first term equals

(3.4)

∫
H

γH (hDxn (χ(xn/ε)hDxna
w(x′, hD′)ϕh)) γH(ϕh) dσH

=

∫
H

γH
(
χ(xn/ε)a

w(x′, hD′)(hDxn)2ϕh
)
γH(ϕh)dσH

+

∫
H

( h
iε
aw(x′, hD′)γH

[
χ′(xn/ε)hDnϕh

])
γH(ϕh)dσH

=

∫
H

γH(χ(xn/ε)a
w(x′, hD′)(1−R(xn, x

′, hD′))ϕh)(γH(ϕh))dσH

+Oε(h)(‖γH(ϕh)‖2 + ‖γH(hDxnϕh)‖2)

=

∫
H

aw(x′, hD′)(1 + h2∆H)γH(ϕh) · γH(ϕh)dσH

+O(h)(‖γH(ϕh)‖2 + ‖γH(hDxnϕh)‖2).

In the last line we use that χ(0) = 1 and the expansions (2.2)-(2.3) together with
the fact that ϕh is a Laplace eigenfunction and

‖γHr1(x′, 0, hDx′)ϕh‖L2(H) ≤ C‖γHϕh‖L2 .
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3.0.2. Left hand side of (3.1). Since the semi-classical principal symbol of i
h [−h2∆g, A(x, hDx)]

equals the Poisson bracket {ξ2n +R2(xn, x
′, ξ′), χ(xnε )ξna(x′, ξ′)}, we have

(3.5)

− i

h

∫
M+

(
[−h2∆g, A(x, hDx)]ϕh(x)

)
ϕh(x) dx

= −
〈({

ξ2n +R2(x′, xn, ξ
′), χ(

xn
ε

)ξna(x′, ξ′)
})w

ϕh, ϕh

〉
L2(M+)

+Oε(h).

3.1. Some Poisson bracket calculations. Since ξ2n is only non-trivially paired
with xn,

(3.6)
−
{
ξ2n +R2(x′, xn, ξ

′), χ(xnε )ξna(x′, ξ′)
}

= − 2
εχ
′(xnε )ξ2na(x′, ξ′) + χ(xnε )P2(x′, xn, ξ

′, ξn),

where P2 = −{R2(x′, xn, ξ
′), ξna(x′, ξ′)}. In general dimensions,

(3.7) P2 = ∂R2(x
′,xn,ξ

′)
∂xn

a(x′, ξ′)− ξn{R2(xn, x
′, ξ), a(x′, ξ′)}.

When restricted to S∗H the second term is zero and one gets

∂R2(xn, x
′, ξ′)

∂xn
|xn=0 a(x′, ξ′) = 2Q(0, x′, ξ′)a(x′, ξ′).

In the case of a curve H and in Fermi normal coordinates,

(3.8) P2(s, 0, σ, η) = 2κν(s)a(s, σ)− 2ση
∂(a(s, σ))

∂s
.

The first term vanishes when y = 0, since g00(s, 0) = 1, while ∂g00(s,y)σ2

∂y a(s, σ) =

2κν(s)a(s, σ). Hence, The second term vanishes when η = 0, i.e. on S∗H.

3.2. Semi-classical limit of the Rellich formula. We consider any sequence
{ϕh} with a single microlocal defect measure µ ∈ Q∗. It will be convenient to
extend some integrals from M+ to M . For this, we introduce a cutoff χ̃ ∈ C∞c (R)
such that

(3.9) χ̃(xn) := 1xn>0χ
′(xn).

Also recall that P2 is defined in (3.7).

Proposition 3.1. Let (M, g) be a compact Riemannian manifold and let H ⊂ M
be a smooth, embedded, orientable hypersurface. Then,

(3.10)

∣∣∣∣∣ limh→0

( 〈Oph(a)hDνϕh|H , hDνϕh|H〉L2(H)

+
〈
Oph(a)(1 + h2∆H)ϕh|H , ϕh|H

〉
L2(H)

)
− I0(a, ε, µ)

∣∣∣∣∣
≤ II0(a, ε, µ).

where

(3.11)


I0(a, ε, µ) := −2

∫
S∗M

1
ε χ̃(xnε ) ξ2na(x′, ξ′)dµ,

II0(a, ε, µ) :=
√∫

S∗M
χ(xnε )2P 2

2 (x′, xn, ξ′)dµ..
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Proof. The Rellich identity and the calculations (3.1)-(3.4)-(3.6) in Section 3.1 show
that, for any hypersurface H ⊂M ,

(3.12)
〈Oph(a)hDνϕh|H , hDνϕh|H〉L2(H)

+ 〈Oph(a)(1 + h2∆H)ϕh|H , ϕh|H〉L2(H)

= Ih(a, ε) + IIh(a, ε) +Oε(h)

where

(3.13)
Ih = −

〈(
2
εχ
′(xnε )ξ2na(x′, ξ′)

)w
ϕh, ϕh

〉
L2(M+)

IIh =
〈(
χ(xnε )P2(x′, xn, ξ

′, ξn)
)w
ϕh, ϕh

〉
L2(M+)

and P2 is given by (3.7) - (3.8).
Now, χ′(xn/ε)|M+

= χ̃(xn/ε) where χ̃ is as in (3.9). Therefore, Since χ̃ and χ′

are supported inside M+,〈(
1
εχ
′(xnε ) ξ2na(x′, ξ′)

)w
ϕh, ϕh

〉
L2(M+)

=
〈(

1
ε χ̃(xnε ) ξ2na(x′, ξ′)

)w
ϕh, ϕh

〉
L2(M)

.

Sending h→ 0 in the right hand side yields I0(a, ε, µ).
Next, observe that by Cauchy-Schwarz,

IIh(a, ε) =
〈(
χ(xnε )P2(x′, xn, ξ

′)
)w
ϕh, ϕh

〉
L2(M+)

≤ ‖
(
χ(xnε )P2(x′, xn, ξ

′)
)w
ϕh‖L2(M).

Then,

lim
h→0
‖
(
χ(xnε )P2(x′, xn, ξ

′)
)w
ϕh‖2L2(M) =

∫
χ(xnε )2P 2

2 (x′, xn, ξ
′)dµ.

This completes the proof.
�

4. Decompositions of microlocal defect measures

The next two sections are devoted to the calculation of the limits I0(a, ε, µ) resp.
II0(a, ε, µ) ((3.11)) as ε→ 0. We first make the decomposition

(4.1) µ = µ|S∗HM + µ⊥, where µ⊥(S∗HM) = 0,

and where µ|S∗HM = 1S∗HMµ is the restriction of µ to S∗HM . Here, S∗HM is the
set of unit co-vectors to M with footpoint on H and S∗H ⊂ S∗HM are those (co-
)tangent to H. In this section, we first study the measure µ|S∗HM , showing that it is
supported in in S∗H at points which are ‘nearly’ totally geodesic (See Lemma 4.3
and Corollary 4.4). We then calculate the limits of (3.11) in Proposition 5.1.

4.1. Disintegration of µ with respect to the geodesic flow. We next briefly
recall the theory of disintegration of measures along a fibration [Du19, Theorems
2.1.22, 4.1.17].

Proposition 4.1 (Disintegration Theorem). Suppose that (Y,Y, µ) is a probability
space, X is a Borel subset of a complete separable metric space, endowed with the
Borel sigma algebra, and π : Y → X is measurable. Define ν := π∗µ. Then there
is a ν a.e. unique family of probability measure {µx}x∈X on Y such that

(i) for all Borel A ⊂ Y , x 7→ µx(A) is measurable.
(ii) µx(Y \ π−1(x)) = 0
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(iii) for any Borel measurable function f : Y → R+,

(4.2)

∫
Y

f(y)dµ(y) =

∫
X

(∫
π−1(x)

f(y)dµx(y)

)
dν(x).

In the case of interest, we fix δ > 0 small and define

Y = FLδ(S
∗
HM) :=

⋃
|t|≤δ

exp(tHp)(S
∗
HM),

and the map

πδ : FLδ(S
∗
HM)→ Gδ := Y/ ∼

where ∼ denotes the relation of belonging to the same orbit (that is, to the same
geodesic segment of length 2δ). Then, let µδx and νδ be the measures guaranteed
by Proposition 4.1.

Note that the quotient space Gδ is not equal to S∗HM ; e.g. H = γ is a closed
geodesic, then S∗γ is a single orbit and a single point in the quotient. There
is, however, a large subset of Gδ which can be easily identified with S∗HM . In
particular, if an orbit in Gδ intersects S∗HM only once, we may identify this orbit
with its intersection with S∗HM .

Lemma 4.2. Suppose that µ is invariant under exp(tHp) and ρ0 ∈ S∗HM such that
there is a neighborhood, U of ρ0 such that for ρ ∈ U⋃

|t|≤δ

exp(tHp)(ρ) ∩ S∗HM = ρ.

Then, identifying ρ ∈ S∗HM with its orbit in Gδ, for all ρ ∈ U , using [−δ, δ] ×
U 3 (t, ρ) 7→ exp(tHp)(ρ) ∈ FLδ(S∗HM) as coordinates on their image, µδρ(t, ζ) =
1
2δ1[−δ,δ]dtδρ(ζ) and in particular, for A ⊂ U Borel,

νδ(A) = µ
( ⋃
|t|≤δ

exp(tHp)(A)
)
.

Proof. First observe that the given coordinates are valid. Next, µδρ is clearly sup-

ported on π−1(ρ) and is Borel measurable. Therefore, we need only check that (4.2)
holds with f supported in

FLδ(U) :=
⋃
|t|≤δ

exp(tHp)(U).

For that, observe that on FLδ(U), µ = ν⊥(ζ)dt for some ν⊥. Therefore, for all
0 < T ≤ δ,

ν⊥(A) =
1

2T
µ
( ⋃
|t|≤T

exp(tHp)(A)
)

=
1

2δ
νδ(A),

and the lemma follows. �

For future use, we define

(4.3) ν⊥(A) :=
1

2δ
νδ(A) = lim

T→0+

1

2T
µ
( ⋃
|t|≤T

exp(tHp)(A)
)
.
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4.2. Disintegration of µ with respect to the normal fibration. It is also pos-
sible to disintegrate µ with respect to the Fermi normal fibration over H. Although
we do not use this disintegration below, it arises naturally in the Rellich identity
and we record it here for future reference. Let

S∗H(ε) := {(x′, xn, ξ) ∈ S∗M | |xn| < ε}.

Let Hξn = ∂
∂xn

be the Hamilton vector field of ξn on |xn| < ε. Its Hamilton

flow is given by ψt(x
′, xn, ξ

′, ξn) = (x′, xn + t, ξ′, ξn). In these coordinates S∗HM is
defined by xn = 0 and the integral curves of ψt define a fibration over S∗HM . Given
(x, ξ) ∈ S∗xM with x ∈ H(δ), parallel translate ξ along the normal geodesic from

x to H. Denote the result by P x
′

x ξ. Define

(4.4)

 πδ : S∗H(δ)→ S∗HM, πδ(x
′, xn, ξ) := (x′, P x

′

x ξ),

µδH = πδ∗dµ|S∗H(ε).

For δ very small, this map is well-approximated by the map,

(4.5) π̃δ : S∗H(ε)→ T ∗HM, π̃δ(x
′, xn, ξ

′, ξn) := (x′, 0, ξ′, ξn), .

which however is not normalized so that the image lies in S∗M .
Applying Proposition 4.1 there exist finite fiber measures dµερ on the fiber of

(4.4) over ρ ∈ S∗HM such that

(4.6)

∫
S∗H(ε)

fdµ =

∫
S∗HM

(∫
π−1
ε (ρ)

fdµερ

)
dµεH .

The principal defect of this disintegration is that the Fermi normal fibration is
not invariant under ϕt, and thus the disintegrated measures are more difficult to
compute. For instance, if µ = δγ is a periodic orbit measure, the fiber measure dµζ
is singular with respect to Lebesgue measure along the Fermi normal fibers, and
does not possess a derivative at xn = 0.

This type of fibration could be used in Section 5 for the proof of Lemma 5.3, but
we find it simpler to use the geodesic fibration.

4.3. The behavior of µ|S∗HM and µ|S∗H . The purpose of this section is to prove
Theorem 1.4

Proof. The proof consists of several Lemmas which yield stronger versions of the
conclusions.

Lemma 4.3. The measure µ|S∗HM satisfies

µ|S∗HM (T+) = 0

where

T+ := {ρ ∈ S∗HM | TS∗H(ρ) > 0}, TS∗H(ρ) := inf{t > 0 | ϕt(ρ) ∈ S∗H}.

Moreover,

µ|S∗HM (A) ≤ lim inf
T→0

|{t ∈ [min(0, T ),max(0, T )] | ϕ−t(A ∩ S∗H) ∩A ∩ S∗H 6= ∅}|
|T |

.
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Proof. Let A ⊂ S∗HM Borel measurable. Then, for any T > 0

(4.7)

µ(A) =
1

T

∫ T

0

µ(ϕ−t(A))dt =
1

T

∫ T

0

(∫
S∗M

1ϕ−t(A)(ρ)dµ(ρ)
)
dt

=
1

T

∫ ∫ T

0

1ϕ−t(A)(ρ)dt dµ(ρ)

≤ |{t ∈ [0, T ] | ϕt(A) ∩A 6= ∅}|
T

≤ |{t ∈ [0, T ] | ϕt(A) ∩ S∗HM 6= ∅}|
|T |

Now, define
(S∗HM)δ = {ζ ∈ S∗HM : TS∗HM (ζ) > 2δ},

where
TS∗HM (ζ) := inf

t>0
{ϕt(ζ) ∈ S∗HM}.

Then, since TS∗HM is lower semincontinuous, (S∗HM)δ is open and hence measurable.
Therefore by (4.7)

µ|S∗HM ((S∗HM)δ) = 0

and hence
µ|S∗HM ({ζ | TS∗HM (ζ) > 0}) = 0.

Note that S∗HM \ S∗H ⊂ {ζ | TS∗HM (ζ) > 0} and hence,

µ|S∗HM = µ|S∗H .
Therefore, arguing as in (4.7),

(4.8)

µ|S∗HM (A) ≤ lim inf
T→0

|{t ∈ [min(0, T ),max(0, T )] | ϕ−t(A ∩ S∗H) ∩A ∩ S∗H}6= ∅|
|T |

Now, with TS∗H as above, define

(S∗H)δ := {ζ ∈ S∗HM | TS∗H(ζ) > δ}.
Then (4.8) implies µ|S∗HM (TS∗H > 0) = 0.

�

Corollary 4.4. Define

Gk := {ρ ∈ S∗HM | [Hk
pxn](ρ) 6= 0, [Hj

pxn](ρ) = 0, j < k}.
Then,

µ|S∗HM
( ∞⋃
k=0

Gk
)

= 0.

In particular,
µ|S∗HM = µ|S∗H

and
µ|S∗HM

(
{(0, x′, ξ′) | Q(0, x′, ξ′) 6= 0}

)
= 0.

Proof. Observe that if ρ ∈ Gk, then,

|xn(ϕt(ρ))| ≥ ctk +O(tk+1)

and in particular, TS∗H(ρ) > 0. Therefore, Gk ⊂ T+ and the claim follows. �
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This concludes the proof of Theorem 1.4.
�

4.4. A conjecture. Theorem 1.4 and accompanying Lemmas leave open some
purely dynamical questions concerning the the restriction µ|S∗HM = µ|S∗H of an
invariant measure. We state a conjecture which we hope to explore in the future.

We denote by γ a geodesic of (M, g) and also (by abuse of notation) the corre-
sponding orbit of the geodesic flow in S∗M . When (and only when) γ is a periodic
geodesic, we denote by δγ the normalized periodic orbit measure δγ(f) = 1

Lγ

∫
γ
fds

where Lγ is the length of γ.

Conjecture 4.1. Suppose that µ is an invariant probability measure for the geo-
desic flow of a compact Riemannian manifold. Suppose that H ⊂ M is a smooth
hypersurface and that µ(S∗H) > 0. Then µ|S∗H is supported on a union of periodic
geodesics γ such that γ ∩ S∗H has positive arc-length measure and µ|S∗H∩γ � δγ
(i.e. is absolutely continuous).

The conjecture is simplest in dimension two, when dimH = dim γ. In that
case one consequence of the conjecture is that if µ(S∗H) > 0, then H has positive
measure intersection with a periodic geodesic. In the case where (M, g) is of negative
curvature, each invariant measure is an orbital averaging measure over the orbit
through a quasi-regular point. This orbit may touch S∗H repeatedly, in a quasi-
periodic fashion, or it may spiral in to S∗H over a part of the orbit. If the orbital
average charges S∗H, we conjecture that it must contain a periodic orbit measure
as an ergodic component.

5. Rellich proof of Theorem 1.1

We can now state the main ingredient in the proof of Theorem 1.5. Once that
theorem is proved, we will finish the section by proving Theorem 1.1.

Proposition 5.1. Let H ⊂ M be a hypersurface in a Riemannian manifold and
I0(a, ε, µ) and II0(a, ε, µ) be as in Proposition 3.1. Then,

(i) lim inf
ε↓0

I0(a, ε, µ) =

∫
S∗HM

a(ζ)|ξn(ζ)|dν⊥(ζ);

(ii) lim
ε↓0

II0(a, ε, µ) = 0.

where ν⊥ is defined in (4.3).

5.1. Proof of Proposition 5.1. By (3.11), Proposition 5.1(ii) asserts the follow-
ing:

Lemma 5.2. Let H ⊂M be a hypersurface. Then,

lim
ε↓0

∫
S∗M

χ2(
xn
ε

)P 2
2 (x′, ξ′, xn)dµ = 0.

Proof. Note that by the dominated convergence theorem,

lim
ε↓0

∫
S∗M

χ2(
xn
ε

)P 2
2 (x′, ξ′, xn)dµ =

∫
S∗HM

Q2(0, x′, ξ′)a2(x′, ξ′)dµ|S∗H = 0

where the last equality follows from Corollary 4.4. �

The following lemma completes the proof of Proposition 5.1.
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Lemma 5.3. We have

lim
ε→0

I0(a, ε, µ) =

∫
S∗HM\S∗H

|ξn|a(π(q))dν⊥(q).

where ν⊥ is defined in (4.3).

Proof. Let χ1 ∈ C∞c (−2, 2) with χ1 ≡ 1 on [−1, 1]. Then, recalling (3.11), we use
χ1 to decompose the integral in the definition of I0. Observe that by the dominated
convergence theorem, for any δ > 0,

lim
ε→0

∫
S∗M

1

ε
χ̃
(xn
ε

)
ξ2nχ1(δε−

1
2 ξn)a(x′, ξ′)dµ = 0.

since the integrand is bounded by δ−2 on S∗M . Next, observe that for (x(t), ξ(t)) =
exp(tHp)(x

′
0, 0, ξ

′
0, ξn),

(5.1) ẋn(t) = 2ξn(t), |ξn(t)− ξn(0)| ≤ C1|t|, C1 := sup
S∗M
|Hpξn|.

Therefore, the map

Ψ : (t, ζ) ∈ {(t, ζ) ∈ R× S∗HM | |t| < C−11 |ξn(ζ)|} 7→ exp(tHp)(ζ) ∈ S∗M

is one to one. Suppose that ζ0 ∈ S∗M with 0 < |xn(ζ0)| ≤ 1
3C1
|ξn(ζ0)|2. We will

show that ζ0 lies in the image of Ψ. Since the arguments in other cases are the
same, we assume xn(ζ0), ξn(ζ0) > 0. Then with (x(t), ξ(t)) = exp(tHp(ζ0)),

xn(t) = xn(ζ0) + 2

∫ t

0

ξn(s)ds, |ξn(s)− ξn(ζ0)| ≤ C1|s|.

Therefore, for − 1
2C1
|ξn(ζ0)| ≤ t ≤ 0,

xn(t) ≤ xn(ζ0) + ξn(ζ0)t

In particular,

xn(− 1

3C1
|ξn(ζ0)||) ≤ xn(ζ0)− 1

3C1
|ξn(ζ0)|2 ≤ 0,

and there is t ∈ [− 1
3C1
|ξn(ζ0)|, 0] such that xn(t) = 0 and ξn(t) ≥ ξn(ζ0)/2. There-

fore, ζ0 lies in the image of Ψ. In particular, (t, ζ) 7→ Ψ(t, ζ) can be used as
coordinates on

{|xn| ≤
1

3C1
|ξn|2}.

Choosing δ > 0 small enough these coordinates are valid on

supp
1

ε
χ̃
(xn
ε

)
ξ2n(1− χ1(δε−

1
2 ξn))a(x′, ξ′).

Next, recall that by Lemma 4.2 in these coordinates µ = dtdν⊥(ζ).∫
S∗M

1

ε
χ̃
(xn
ε

)
ξ2n[1− χ1(δε−

1
2 ξn)]a(x′, ξ′)dµ

=

∫
S∗HM

∫
R

1

ε
χ̃
(xn(t, ζ)

ε

)
[ξn(t, ζ)]2[1− χ1(δε−

1
2 ξn(t, ζ)]a((x′, ξ′)(t, ζ))dtdν⊥(ζ)
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Now, since on the support of the integrant c|ξn(0)| ≤ |ξn(t)| ≤ C|ξn(0)|, and
ẋn(t) = 2ξn(t), we can change variables w = ε−1xn(t, q) to obtain∫

S∗M

1

ε
χ̃
(xn
ε

)
ξ2n[1− χ1(δε−

1
2 ξn)]a(x′, ξ′)dµ

=
1

2

∫
S∗HM

∫
R
χ̃(w)|ξn(εw, ζ)|[1− χ1(δε−

1
2 ξn(εw, ζ)]a((x′, ξ′)(εw, ζ))dwdν⊥(ζ).

Then, sending ε→ 0 and applying the dominated convergence theorem, we obtain

lim
ε→0+

∫
S∗M

1

ε
χ̃
(xn
ε

)
ξ2n[1− χ1(δε−

1
2 ξn)]a(x′, ξ′)dµ

=
1

2

∫
S∗HM

∫
R
χ̃(w)|ξn(ζ)|1|ξn|>0a(π(ζ))dwdν⊥(ζ)

= −1

2

∫
S∗HM

|ξn(ζ)|1|ξn|>0a(π(ζ))dν⊥(ζ)

where π : S∗HM → B∗H denotes the orthogonal projection map. Note that in the
last line we use that ∫

R
χ̃(w) =

∫
w>0

χ′(w)dw = −χ(0) = −1.

Finally, recall (3.11) to complete the proof. �

Completion of the proof of Theorems 1.5. Observe that by Proposition 3.1,∣∣∣∣∣ limh→0

( 〈Oph(a)hDνϕh|H , hDνϕh|H〉L2(H)

+
〈
Oph(a)(1 + h2∆H)ϕh|H , ϕh|H

〉
L2(H)

)
− I0(a, ε, µ)

∣∣∣∣∣
≤ II0(a, ε, µ).

Therefore, since by Lemma 5.2, II0(a, ε, µ) −→
ε→0

0,

lim
ε→0

lim
h→0

( 〈Oph(a)hDνϕh|H , hDνϕh|H〉L2(H)

+
〈
Oph(a)(1 + h2∆H)ϕh|H , ϕh|H

〉
L2(H)

)
− I0(a, ε, µ) = 0

and, since the term in parentheses is independent of ε,

lim
h→0

( 〈Oph(a)hDνϕh|H , hDνϕh|H〉L2(H)

+
〈
Oph(a)(1 + h2∆H)ϕh|H , ϕh|H

〉
L2(H)

)
= lim
ε→0

I0(a, ε, µ)

=

∫
S∗HM\S∗H

|ξn|a(π(ζ))dν⊥(ζ).

where the last equality follows from Lemma 5.3. This completes the proof of The-
orem 1.5. �

5.2. Completion of the proof of Theorem 1.1. To complete the proof of
Theorem 1.1 we need to combine Theorem 1.5 the Dyatlov-Jin(-Nonnenmacher)
theorem. Suppose Theorem 1.1 is false. Then, there exists a ∈ C∞c (T ∗H) with
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a ≥ 0 and supp a∩B∗H 6= ∅, hj → 0 such that ϕhj is a Laplace eigenfunction with

eigenvalue h−2j and

lim
j→∞
〈Ophj (a)(1 + h2j∆H)ϕhj , ϕhj 〉L2(H) + 〈Ophj (a)hjDνϕhj , hjDνϕhj 〉L2(H) = 0.

Now, we can extract a subsequence such that u has defect measure µ and its
renormalized Cauchy data has defect measure µRCD. Then, by Theorem 1.5

lim
j→∞
〈Ophj (a)(1 + h2j∆H)ϕhj , ϕhj 〉L2(H) + 〈Ophj (a)hjDνϕhj , hjDνϕhj 〉L2(H)

=

∫
adµRCD =

∫
S∗HM\S∗H

a(π(ζ))|ξn(ζ)|dν⊥(ζ).

The proof of Theoerm 1.1 will be completed by the following lemma.

Lemma 2. Let (M, g) be a negatively curved surface, and let H ⊂ M be a smooth
curve. Then for any a ∈ C(B∗H) satisfying a ≥ 0 and a 6= 0, there exists Ca,H > 0
so that ∫

S∗HM\S∗H
|ξn|a(π(ζ))dν⊥(ζ) > Ca,H > 0.

Proof. By the Dyatlov-Jin(-Nonnenmacher)theorem, the support of µ is S∗M .
Hence, µ 6= µ|S∗H , and the support of µ⊥ is also S∗M . It then follows from the
invariance of µ under the geodesic flow that the support of dν⊥ is equal to S∗HM .
Since a is continuous, there is ζ ∈ supp a with |ξn(ζ)| > 0. In particular, there is
an open neighborhood U of ζ such that a(π(ζ))|ξn(ζ)| > c > 0 In particular, since
a ≥ 0, ∫

S∗HM\S∗H
|ξn|a(π(ζ))dν⊥(ζ) ≥ cν⊥(U)Ca,H > 0

.
�

6. Proof of Theorem 1.2 via hyperbolic equations

In this section, we use hyperbolic equations to prove Theorem 1.2. The idea is
that H is a Cauchy surface for a hyperbolic problem. In particular, when geodesics
intersect H transversally, we can think of H as a Cauchy surface for the problem

((hDxn)2 −R(x, hDx′))u = 0,

where H = {xn = 0}. Therefore, microlocally in this region, (u|H , hDνu|H) 7→ u is
a continuous map.

We start by factoring the operator −h2∆g − 1 in the hyperbolic region. This
lemma is a semiclassical version of [HoIII, Lemma 23.2.8]. Recall that we write a ∈
Scomp(T ∗Rn−1) if a ∈ S0(T ∗Rn−1) and a is supported in a compact, h independent
set. We write Ψcomp(Rn−1) for Oph(Scomp(T ∗Rn−1)).

Lemma 3. For all ε > 0 and δ > 0 small, there are

Λ± = Λ±(x, hDx′), Λ̃±(x, hDx′) ∈ C∞((−δ, δ); Ψcomp(Rn−1)),

with

σ(Λ) = σ(Λ̃) =
√

1− r(x, ξ′), r(x, ξ′) < 1− ε2
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such that for all b ∈ C∞((−δ, δ);Scomp(T ∗Rn−1)) with supp b ⊂ {r(x, ξ′) < 1− ε},

b(x, hDx′)(−h2∆g − 1) = b(x, hDx′)(hDxn − Λ−)(hDxn + Λ+) +O(h∞)L2→L2

= b(x, hDx′)(hDxn + Λ̃+)(hDxn − Λ̃−) +O(h∞)L2→L2

Proof. Fix χ = χ(x, ξ′) ∈ C∞c (R2n−1) with

χ ≡ 1 on {r(x, ξ′) < 1− ε2}, suppχ ⊂ {r(x, ξ′) < 1− ε2

2
}

and set

λ0 = χ
√

1− r(x, ξ′), Λ0 = λ0(x, hDx′).

Recall that

−h2∆g − 1 = Oph(|ξn|2 + r(x, ξ′)− 1) + h(a(x)hDxn + e(x, hDx′)).

Then,

b(x, hDx′)(hDxn − Λ0)(hDxn + Λ0)

= b(x, hDx′)(hD
2
xn − Λ2

0 + [hDxn ,Λ0])

= b(x, hDx′)(−h2∆g − 1− ha(x)hDxn − hr0(x, hDx′)) +O(h∞)L2→L2 .

To obtain a finer factorization for (−h2∆g − 1), we put

λ−1 = a(x) +
r0χ

2

2λ0
, λ+1 =

r0χ
2

2λ0

and write

Λ−1 = Λ0 + hλ−1 (x, hDx′), Λ+
1 = λ0 + hλ+1 (x, hDx′).

Then, we have

b(x, hDx′)(hDxn−Λ−1 )(hDxn+Λ+
1 ) = b(x, hDx′)(−h2∆g−1−h2r1(x, hDx′))+O(h∞)L2→L2 .

Define rj(x, ξ
′), j ≥ 1 iteratively by

b(x, hDx′)(hDxn−Λ−j )(hDxn+Λ+
j ) = b(x, hDx′)(−h2∆g−1−hj+1rj(x, hDx′))+O(h∞)L2→L2 .

Then, for j ≥ 2, define Λ±j by

Λ±j = Λ±j−1 + hjλj(x, hDx′), λj(x, hDx′) =
rj−1χ

2

2λ0
.

Letting Λ± ∼
∑∞
j=0 h

jλ±j (x, hDx′), the claim is proved for the first factorization.
The proof is nearly identical for the other factorization.

�

Next, we use the factorization from Lemma 3 to produce propagation estimates
for the Cauchy problem posed on {xn = 0}. In particular, we show that for U ⊂
B∗H open, the Cauchy data for u microlocalized to U controls u on the geodesic
flowout of π−1(U) where π : S∗HM → T ∗H is the orthogonal projection operator.
This is the crucial step in our proof since it shows that if the Cauchy data for u
vanishes microlocally on U , then if vanishes on the flow-out of π−1(U) and hence
on an open subset of S∗M .
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Lemma 4. Let b0 ∈ C∞c (T ∗H) with supp b0 ⊂ B∗H := {(x′, ξ′) | r(0, x′, ξ′) < 1}.
Then there is δ > 0 such that if a ∈ C∞c (T ∗M) with

supp a ∩ S∗M ⊂
⋃
|t|<δ

ϕt(π
−1({|b0| > 0}))

where π : S∗HM → T ∗H denotes the projection and ϕt := exp(tH|ξ|2g ), we have the
estimate

‖Oph(a)u‖L2(M) ≤ C‖Oph(b0)u|H‖L2(H) + C‖Oph(b0)h∂νu|H‖L2(H)

+ Ch−1‖(−h2∆g − 1)u‖L2(M)) +O(h∞)‖u‖L2(M).

Proof. Fix b0 as above and let ε > 0 such that supp b0 ⊂ {r(x, ξ′) < 1− ε}. Next,

let Λ±, Λ̃± as in Lemma 3 and λ =
√

1− r(x, ξ′). Finally, let b̃ ∈ C∞c (T ∗H) with

supp b̃ ⊂ supp b0, and c > 0 such that

(6.1) supp a ∩ S∗M ⊂
⋃
|t|<δ

ϕt(π
−1({|b̃| > c/2})).

We start by defining b− ∈ C∞((−3δ0, 3δ0);Scomp(T ∗Rn−1)) such that

(6.2) WFh([Oph(b−), Dxn − Λ−]) ∩ {|xn| < 2δ0} = ∅.

and b−(0, x′, ξ′) = b̃. To do this, define b̃0 = b̃0(x, ξ′) by

(6.3) b̃0(0, x′, ξ′) = b̃, (∂xn −Hλ)b̃0 = 0,

Next, define iteratively for j ≥ 1,

hjOph(ej−1) = ih−1
[
hDxn − Λ−, Oph

( j−1∑
k=0

hk b̃k

)]
,

(∂xn − λ)b̃j = ej ,

b̃j(0, x
′, ξ′) = 0.

Then, putting b− ∼
∑
j h

j b̃j , we have (6.2).

Note that there is δ0 > 0 depending only on ε > 0 such that a solution to (6.3)
exists for |xn| < δ0 and,

supp b− ∩ {|xn| < 3δ0} ⊂ {r(x, ξ′) < 1− ε2}.

By standard energy estimates (see e.g [HoIII, Lemma 23.1.1])

‖b−(x, hDx′)(hDxn + Λ+)u‖L2(|xn|<δ0)

≤ C(‖Oph(b̃)(hDxn+Λ+)u‖L2(H)+h
−1‖(hDxn−Λ−)b−(x, hDx′)(hDxn+Λ+)u‖L2(|xn|<δ0).

Next, observe that by (6.2), for χ ∈ C∞c ((−2δ0, 2δ0))

χ(xn)[hDxn − Λ, b−(x, hDx′)] = O(h∞)L2→L2
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and hence, letting χ ∈ C∞c ((−2δ0, 2δ0); [0, 1]) with χ ≡ 1 on [−δ0, δ0], and using
also Lemma 3 in the fourth line,

‖b−(x, hDx′)(hDxn + Λ+)u‖L2

≤ C(‖Oph(b̃)(hDxn + Λ+)u‖L2(H) + h−1‖χ(xn)(hDxn − Λ−)b−(x, hDx′)(hDxn + Λ+)u‖L2

≤ C(‖Oph(b̃)(hDxn + Λ+)u‖L2(H) + h−1‖χ(xn)b−(x, hDx′)(hDxn − Λ−)(hDxn + Λ−)u‖L2

+O(h∞)‖(hDxn + Λ+)u‖L2

= C(‖Oph(b̃)(hDxn + Λ+)u‖L2(H) + h−1‖χ(xn)b−(x, hDx′)(−h2∆g − 1)u‖L2

+O(h∞)‖(hDxn + Λ+)u‖L2 +O(h∞)‖u‖L2

≤ C(‖Oph(b̃)(hDxn + Λ+)u‖L2(H) + h−1‖(−h2∆g − 1)u‖L2

+O(h∞)‖(hDxn + Λ+)u‖L2 +O(h∞)‖u‖L2

Next, by the elliptic parametrix construction

‖(hDxn + Λ+)u‖L2 ≤ C‖(−h2∆g + 1)u‖L2 ≤ C(‖(−h2∆g − 1)u‖L2 + ‖u‖L2)

Therefore,

(6.4) ‖b−(x, hDx′)(hDxn + Λ+)u‖L2

≤ C(‖Oph(b̃)(hDxn + Λ+)u‖L2(H) + h−1‖(−h2∆g − 1)u‖L2 +O(h∞)‖u‖L2).

Next, we construct b+ ∈ C∞((−3δ0, δ0);ScompT ∗Rn−1), such that

(6.5) WFh([Oph(b+), Dxn + Λ̃+]) ∩ {|xn| < 2δ0} = ∅.

In particular, we start with b̃0 = b̃0(x, ξ′) such that

(6.6) b̃0(0, x′, ξ′) = b̃, (∂xn +Hλ)b̃0 = 0

and proceed as in the construction of b−.
Arguing as in the proof of (6.4), we obtain the estimate

(6.7) ‖b+(x, hDx′)(hDxn − Λ̃−)u‖L2

≤ C(‖Oph(b̃)(hDxn − Λ−)u‖L2(H) + h−1‖(−h2∆g − 1)u‖L2 +O(h∞)‖u‖L2).

Next, observe that on {∓ξn > 0} ∩ S∗M ,

(∂xn ±Hλ) = (ξn ∓ λ)−1H|ξ|2g−1.

Therefore, by (6.3) and (6.6), σ(b±) is locally invariant under the geodesic flow on
S∗M ∩ {∓ξn > 0}. In particular, there is δ1 > 0 such that

{|b±| > c > 0} ∩ S∗M ⊃
⋃
|t|<δ1

ϕt({(x, ξ) ∈ S∗HM | ∓ξn > 0, |b̃(x, ξ′)| > c/2 > 0}.

Therefore, there is c > 0 such that

[b+(ξn−λ)]2+[b−(ξn+λ)]2 > c > 0 on
⋃
|t|<δ1

ϕt({(x, ξ) ∈ S∗HM | |b̃(x, ξ′)| > c/2}

In particular, by the elliptic parametrix construction and (6.1) there are ei ∈
C∞c (T ∗M), i = 1, 2, 3 such that

(6.8) Oph(a) = Oph(e1)b+(x, hDx′)(hDxn − Λ̃−)

+Oph(e1)b−(x, hDx′)(hDxn + Λ+) +Oph(e2)(−h2∆g − 1) +O(h∞)L2→L2 .
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Therefore, by (6.4), (6.7), and (6.8)

‖Oph(a)u‖L2 ≤ C‖Oph(b̃)(hDxn + Λ+)u‖L2(H) +C‖Oph(b̃)(hDxn − Λ̃−)u‖L2(H)

+ Ch−1‖(−h2∆g − 1)u‖L2 +O(h∞)‖u‖L2

Finally, note that

‖Oph(b̃)(hDxn + Λ+)u‖L2(H) ≤ ‖Oph(b̃)hDνu‖L2(H) + ‖Oph(b̃)Λ+u‖L2(H)

≤ ‖Oph(b0)hDνu‖L2(H) + ‖Oph(b0)u‖L2(H) +O(h∞)‖u‖L2(H)

≤ ‖Oph(b0)hDνu‖L2(H) + ‖Oph(b0)u‖L2(H)

+O(h∞)(‖(−h2∆g − 1)u‖L2 + ‖u‖L2)

where in the next to last line we use that supp b̃ ⊂ supp b0 and in the last line, we
use that Sobolev embedding. Similarly,

‖Oph(b̃)(hDxn − Λ̃−)u‖L2(H) ≤ ‖Oph(b0)hDνu‖L2(H) + ‖Oph(b0)u‖L2(H)

+O(h∞)(‖(−h2∆g − 1)u‖L2 + ‖u‖L2),

which completes the proof. �

Proof of Theorem 1.2. Suppose (1.3) does not hold. Then,

lim
h→0
‖Oph(b0)u|H‖L2(H) + ‖Oph(b0)h∂νu|H‖L2(H) = 0.

In particular, by Lemma 4, there is a ∈ C∞c (T ∗M) with a ∩ S∗M 6= 0 such that

lim
h→0
‖Oph(a)u‖L2(M) = 0.

But, this contradicts the results of [DJ17, DJN19].
To prove the second claim, observe that by unique continuation, see e.g. [GL17,

Theorem 1.7], there is c > 0 such that for all h > 0,

(6.9) ‖u‖L2(M) < CeC/h(‖u|H‖L2(U) + ‖h∂νu|H‖L2(U)).

Combining (6.9) with (1.3) proves (1.4). In particular, taking 0 ≤ b0 ∈ C∞c (B∗H),
and χ ∈ C∞c (U ; [0, 1]) such that supp b0(x, ξ)χ 6= ∅ there is h0 > 0 and Cb0χ > 0
such that for 0 < hj < h0,

Cb0χ‖ϕj‖L2(M) < ‖Oph(b0)χ(ϕj |H)‖L2(H) + ‖Oph(b0)χ(hj∂νϕj)|H‖L2(H).

Now, there is C1 > 0 such that for all v ∈ L2(H),

‖Oph(b0)χv‖L2(H) ≤ C1‖χv‖L2(H)≤ C1‖v‖L2(U).

Therefore, for 0 < hj < h0.

Cb0‖ϕj‖L2(M) ≤ C1(‖ϕ|j |H‖L2(U) + ‖hj∂νϕj |H‖L2(U).

Now, for hj > h0, we have by (6.9) that

‖ϕj‖L2(M) ≤ CeC/h(‖u|H‖L2(U)+‖h∂νu|H‖L2(U)) ≤ ( sup
h>h0

CeC/h)(‖u|H‖L2(U)+‖h∂νu|H‖L2(U)).

Therefore, taking c = min(Cb0/C1, infh>h0 C
−1e−C/h), we obtain (1.4).

�
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