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Abstract

This paper uses resilience as a lens through which to analyse disasters and other major

threats to patterns of criminal behaviour. A set of indicators and mathematical models are

introduced that aim to quantitatively describe changes in crime levels in comparison to what

could otherwise be expected, and what might be expected by way of adaptation and subse-

quent resumption of those patterns. The validity of the proposed resilience assessment tool

is demonstrated using commercial theft data from the COVID-19 pandemic period. A 64 per

cent reduction in crime was found in the studied city (China) during an 83-day period, before

daily crime levels bounced back to higher than expected values. The proposed resilience

indicators are recommended as benchmarking instruments for evaluating and comparing

the global impact of COVID-19 policies on crime and public safety.

1. Introduction

Crime patterns vary by place and can fluctuate over short time periods. Studies on the tempo-

ral patterns of crime have focused on seasonal patterns such as time of year, day of week, holi-

days, and hours of darkness [1–3]. Event generated perturbations in crime patterns have been

less studied. These can be brought about by large-scale disruption to the public safety of com-

munities and to the infrastructure upon which they rely. While exceptional in scale, such

events are not rare. Across the globe, natural disasters (epidemics, hurricanes, volcanic erup-

tions, earthquakes, cyclones, etc.), man-made catastrophes (terrorist attacks, industrial acci-

dents, fires, etc.), and even mega sporting events (Summer and Winter Olympics, Football

World Cup, etc.) that radically disrupt everyday life are not uncommon [4]. COVID-19 com-

prises a major source of global disruption, whose scale is unprecedented.

Reports both in the media and by police already suggest that COVID-19 is having a substantial

and immediate impact on criminal behaviour across diverse jurisdictions [5, 6]. With the impor-

tant exception of domestic violence, most types of offence appear to have fallen steeply. The lon-

ger-term consequences for crime patterns are clearly not yet known at the time of writing but we

anticipate crime rates for offences that dropped will likely increase once lockdown measures are
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lifted. This paper provides a methodological framework and a set of metrics for analysing the

effect of COVID-19 and associated (individual and formal) responses on crime, within and across

cities. The framework used is grounded in ‘resilience’ theory and the metrics draw upon what

might be expected on the basis of analogous disruptive events of different kinds, and their imme-

diate and longer-term impacts on institutions and behaviours as they normalise.

We begin by explaining our rationale for using resilience as a lens through which to analyse

the immediate disruption of criminal activity and what might be expected in the longer term

assuming the criminal behaviour has resilient qualities. Next, we describe indicators and math-

ematical models devised to measure the characteristics of the disruption to, and resilience of

the criminogenic ecosystem. Finally, we briefly illustrate the application of these metrics using

empirical data from an anonymous city in China (M1-city) that unlike much of the developed

world, has gone through a complete wave of the COVID-19 pandemic and the majority of rou-

tine activities have now resumed.

2. Background

2.1 Resilience

Resilience in the social-ecological context relates to the ability of human agents to learn and

innovate, to manage shocks, and to also find new trajectories for communities and social-tech-

nical systems. More specifically, it focuses on (a) the amount of change a system can undergo

(and, therefore, the amount of disturbance it can sustain) while still retaining the same controls

on structure and function); (b) the degree to which the system is capable of self-organization

and (c) the degree to which the system can build the capacity to learn, adapt, and ultimately

offer a ‘soft landing’ for the organisation or system [7, 8]. Systems are resilient to the extent to

which they can adapt to and survive an event that threatens to disrupt them. Such threats can be

internal or external. They can arise as a result of human actions (such as war) or natural disas-

ters (such as hurricanes and disease outbreak). The threats can apply, for example, to commer-

cial organisations, families, economies, religious groups, or political systems. Resilience studies

explore ways in which (eco)systems are initially thrown off course, then adjust to disruptive

events and ultimately revert to their previous state, fail gracefully, or some new normal [9–11].

Much national planning has been concerned with resilience in the face of expected threats

including those that spring from pandemics of the kind being experienced in the case of

COVID-19 [12]. Most discussions of what is and can be done relate to the public interest in

maintaining organisations and behaviours in the face of potentially disruptive threats with the

majority of this work focusing on natural hazards and human error. Similarly there has been a

focus on security and the ways in which threats can be absorbed if encountered or anticipated

in advance and therefore geared up for when they occur [13–15]. The latter is sometimes

referred to as ‘antifragility’, following Taleb [16]. Strong organisations are those that have

increased capacity to withstand successive threats by building on lessons learned from each

and preparing accordingly [17]. Studying the impact of the 7/7 terrorist attack, Cox et al. [18],

for example, attempted to measure resilience as a function of the speed and extent to which the

London Underground was able to adapt and resume its core functions. They considered the

number of daily journeys as a measure of performance and found that resilience was a function

of not just the public transport system, but also individual users.

2.2 Disruption, resilience and patterns of criminal behaviour

In contrast to the literature on disruptive threats to public interest and how they might be miti-

gated, here we are concerned specifically with changes in criminal behaviour patterns gener-

ated as a consequence of the disruption created by exceptional events.
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There is a small literature on what has been observed in the short term in relation to pat-

terns of criminal behaviour following disruptive natural and man-made disasters. In what fol-

lows previously established disaster categories and peril terminology for operational purposes

are utilised to classify studies conducted in the criminological and sociological literature [19].

Summarised in Tables 1 and 2 previous studies found no one-to-one relationship between

major types of disaster and their crime patterns consequences. However, they do show that

effects are produced. A more nuanced discussion is required to fully unpack what happens

within individual disasters and responses to them to understand the short and longer term

impacts on crime and public safety.

Table 1. Main categories of natural disasters and findings about crime pattern consequences.

Group Definition Type Crime Went Up Crime Went

Down

Geophysical Events originating from solid earth Earthquake, Volcano, Mass

Movement (dry)

[20]–Murder [25]–All

crime

[21]–DV1 [21]–All

crime

[22]–DV [22]–All

crime

[23]–DV [23]–All

crime

[24]–Child Abuse [26]–Property

crime

Meteorological Events caused by short-lived/small to meso-scale atmospheric

processes (in the spectrum from minutes to days)

Storm (hurricane, typhoons) [24]–Child Abuse [28]–All

crime

[27]–Residential and

commercial burglary

[29]–All

crime

Hydrological Events caused by deviations in the normal water cycle and/or

overflow of bodies of water caused by wind set-up

Flood, Mass Movement

(wet)

[30]–Contractor fraud [31]–All

crime

[32]–All

crime

Climatological Events caused by long-lived/meso- to macro-scale processes (in the

spectrum from intra-seasonal to multi-decadal climate variability)

Extreme Temperature,

Drought, Wildfire

[33]–DV and dowry murder [33]–All

crime

Biological Disaster caused by the exposure of living organisms to germs and

toxic substances

Epidemic, Insect Infestation,

Animal Stampede

[34]–Violent and property

crime; stranger homicides

Extra-

terrestrial

Events caused by extra-terrestrial bodies or phenomena Meteorites, Asteroids, Solar

Flares

1 DV is the abbreviation for domestic violence.

https://doi.org/10.1371/journal.pone.0240077.t001

Table 2. Main categories of man-made disasters and findings about crime pattern consequences.

Group Definition Type Crime Went Up Crime Went

Down

Malicious Events maliciously caused by individuals or groups (incl.

offenders, non-states actors and states).

Terrorist attacks, sabotage, arson, riots, threats posed

by the presence or actions of armed groups

[35]–Looting and

property crime

[36]–Looting and

property crime

Accidental Unforeseen events not maliciously caused by individuals

or groups (accidents) and technological failures.

Technological failure, human error [37]–All crime

Legitimate Events intentionally organised non-malicious individuals

or groups for a different purpose.

Sporting event, strike, political rally [38]–Violent offences [40]–All

crime

[38]–All

crime

[39]–Property and

violent offences

https://doi.org/10.1371/journal.pone.0240077.t002
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Taking COVID-19 as an example, the following discussion sketches a theoretical model,

rooted in notions of resilience, of what would be expected in relation to crime pattern changes

following a pandemic.

There is good reason to believe that many patterns of criminal behaviour have been disrupted

by the COVID-19 pandemic and/or subsequent public-health measures. Indeed, between 1 Janu-

ary 2020 and 5 May 2020, police data shows there has been a significant and unusual drop in

rape, theft, and assault to name a few in many cities including New York (-29%; -10%; -5%), Chi-

cago (-15%; -7%; -22%) and Los Angeles (-25%; -25%; -4%) when compared to counts from the

previous year [6, 41, 42]. These changes are not altogether surprising as crime is a function of pat-

terned opportunity that arises from the routine activity of everyday human life [43]. Moreover,

the fundamental organising principles of society revolve around tasks that require people to act

jointly in collective efforts related, for example, to work, school, and various forms of leisure. As

restrictions inhibiting the movement potential of individuals to engage in the activities that

underpin community structure are altered, so too will be the rhythm associated with them.

Indeed, even precautionary behaviours in anticipation of a pending disruptive event can disturb

this periodicity. In turn, the ecological conditions required for many different crime categories

shaped by the coordination of these rhythms will be thrown into disarray.

Take residential burglary, for example. This requires a motivated offender to identify a suit-

able target in the absence of a guardian that can intervene. The scarcity of guardian-free resi-

dences during the lockdowns introduced in response to COVID-19 coupled with offenders’

inability to ‘forage’, as doing so may draw unnecessary attention thus undermining the ano-

nymity desired, combine to increase the risk of committing a burglary. However, this pattern

will likely be temporary and levels of residential burglary and other crimes will return to previ-

ous (or higher) levels for several reasons. For instance, some offenders may adapt to these new

conditions, finding new and innovative ways to take advantage of drastically reduced footfall

and the natural surveillance it provides along with other elements of the criminogenic ecosys-

tem. Alternatively, a return to ecological equilibrium, brought about by lifting stringencies on

behaviour, may lead back to the previous rhythms that naturally afforded offenders opportuni-

ties they could exploit.

3. Measuring and modelling resilience

Fine-grained data that can be used to capture empirical nuances of resilience across crime

types and sub-types during and following COVID-19 will soon become available. At that

point, a common set of indicators will be necessary to perform a global analysis of crime dur-

ing the pandemic period.

3.1 Measuring resilience

Numerous analytic methods and indicators have been used in different sectors to evaluate and

measure resilience [44]. Shin et al. [45] reviewed quantitative approaches for measuring the

resilience of water infrastructure systems and evaluated 21 indicators for assessing major fea-

tures of resilience. However, continuous variables (quantity and flow of water) cannot be used

in the analysis of crime. Furthermore, concepts found in supply and demand problems (such

as reserve capacity and availability) are not directly applicable to public safety problems

because offenders and victims have competing goals.

A useful review from the transportation sector by Sun et al. [46] pointed to metrics that are

more relatable to criminogenic ecosystems by making a distinction between functionality and

resilience metrics:
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Functionality metrics (or performance measures) provide information about the (static or

dynamic) state of a system, whereas resilience metrics are used to evaluate the continued func-

tionality of a system during a disturbance. The former include metrics related to the topologi-

cal features of a system as well as metrics related to traffic flow and system capacity such as

travel time, throughput, and congestion. In the public safety domain, crime incidence (number

of crimes) or the amount of harm (e.g., financial loss, environmental damage) caused by these

events can serve as functionality metrics [47].

Along the same public safety vein, resilience metrics can use the above-mentioned metric

values to quantify a system’s functional resilience. In other disciplines a common approach has

been to compare the performance measure before and after a disruptive event, or to quantify

the social and economic impact. The resilience triangle is a tool proposed by Bruneau et al.

(2003) for the purpose of modelling the loss of resilience after the occurrence of disruption to

a system (Fig 1). The results are normalised, enabling the loss in performance, Δy(t) = y1—y(t),
to be more readily interpreted in relation to loss in the worst case scenario, max(Δy(t)) = 1.

More specifically, the resilience triangle provides a measure of both the loss of functionality

in a system in the wake of disaster (tDE) and the amount of time required for a system to

recover. Several metrics have been proposed that include the recovery time, the slope of the

recovery speed (α), the length of the recovery path, which in combination quantify the area of

the ‘resilience triangle’ (Eq 1) along with the ‘resilience index’ that captures the average func-

tionality level until the end of the study period (th) (Eq 2):

RL ¼
R tRP

tDE
½1 � YðtÞ�dt; ð1Þ

R thð Þ ¼

R th
tDE

YðtÞdt
th � tDE

; ð2Þ

where, Y(t) is the system functionality at time t, tDE is the time when the disruptive event

occurs, tRP is the recovery point, and th is the time horizon of the analysis.

Other metrics have been created to follow the evolution of resilience over time. For exam-

ple, Ouyang and Wang [49] proposed a metric that compares actual functionality (YA) with a

target functionality (YT) between t0 (the start of the prevention stage) and th. (Eq 3):

R thð Þ ¼

R th
t0

YAðtÞdt
R th

t0
YTðtÞdt

: ð3Þ

Socioeconomic resilience metrics have also been used to capture the economic impact of

disruption. Focusing on short term impact, Rose [50] presented a metric called Direct Static

Fig 1. Resilience triangle adapted from Bruneau et al [48].

https://doi.org/10.1371/journal.pone.0240077.g001
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Economic Resilience (DSER) that represents ‘the extent to which the estimated direct output

reduction deviates from the likely maximum potential reduction given an external shock’ (Eq

4):

DSER ¼
%DY � %DYm

%DYm
; ð4Þ

where, %ΔYm is the maximum percent change in direct output and %ΔY is the (estimated)

actual percent change in direct output.

3.2 Resilience indicators for crime analysis

The selection of an appropriate functionality metric or performance measure depends on the

system under analysis. For a commercial organisation, the Y(t) function may be based on sales,

profit, return on investment, and market share [51]. For criminals, different variables are

required as metrics. A lone offender may be regarded as analogous to a sole tradesman; a small

group of offenders to a small organisation; and a large criminal network (e.g., the mafia) to a

multinational firm. In the case of common crimes such as burglary, most offenses are commit-

ted by single offenders or small groups of co-offenders [52]. Naturally, daily crime counts for a

given area may be considered an appropriate performance metric in this case. An alternative,

and closely linked to the economic models of resilience, would be the daily revenue generated

from offenses [53].

There are reasons to believe that crime-related performance measures during a pandemic

period, or other disasters, may not match the idealised resilience triangle, but rather resemble

the dipper-shaped function depicted in Fig 2.

This point is developed further in what follows:

1. Resilience curves often assume that functionality and performance start to decrease imme-

diately after the disruptive event occurs. This may not always be the case with crime. As an

example, the predicted increase in domestic abuse may only begin several days after house-

holds began to be confined to their homes. Consequently, it is reasonable to consider that

there may be a lag (τ^) between the disruptive event (tDE) and departure point (tDP) from

the normal state of a system.

2. Resilience curves assume that the loss of functionality/performance happens after the dis-

ruptive event. While true for most systems, humans are often able to anticipate and pre-

empt disrupting events [54]. COVID-19 prompted many people to begin stocking up on

essential products. In turn, this anticipation by individual actors and the associated

Fig 2. Crime levels following a disruptive event.

https://doi.org/10.1371/journal.pone.0240077.g002
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response to stock up on essential products appeared to generate, at least according to media

reports, a series of physical and/or verbal assaults prior to a single observable case of

COVID-19 [55]. For this reason, the analysis window also includes an Initial Phase, starting

at ti, considered the earliest point when performance could have been affected by the dis-

ruptive event. The time between ti and tDP is referred to as τs.

3. Resilience curves often represent loss of functionality as a quasi-instantaneous effect, such

as when a light goes off during a blackout. This is, however, not always the case (c.f., [49, 50,

56]). While many systems might experience a sharp drop in functionality or performance,

the criminogenic factors that influence crime frequency during exceptional times are

unlikely to change instantaneously. In the case of pandemics, for example, it is known that

public-health measures affect biological and socio-technical systems (i.e., virus, individuals,

communities, infrastructures) gradually. Therefore, the damping period (τ-) starting with

the departure point (tDP) and leading to the landing point (tLP) before the trough may last

several days or even weeks.

4. Resilience curves commonly found in the literature generally assume that disruptive events

are punctual instances (such as an earthquake) and that a recovery phase starts almost imme-

diately thereafter. However, some disruptive events can transpire over a longer interval caus-

ing sustained disruption to the environment as noted in other recent resilience studies on this

pandemic [57–59]. In the case of COVID-19, various different contagion prevention measures

were introduced and enforced across several weeks in a staggered pattern as opposed to a sin-

gular instance (see [51]). For this reason, ti should be regarded as the potential start of a dis-

ruptive process, with the maximum performance loss occurring over a sustained period (τmin)

between what we refer to as the landing point (tLP) and ascent point (tAP).

5. The duration of the recovery phase (τR) is also an interesting feature to observe as it pro-

vides information about the ability of criminogenic ecosystems to ‘bounce back’. Unlike the

resilience triangle in Fig 1, it is possible that the system finds an alternative equilibrium

point with a lower or higher crime level. In the case of the latter, a restoration Point (trP)

demarcates the time when performance returns to its normal level and further delineates

two sub-phases: the pre-restoration phase (τ+) and the post-restoration phases (τ++). The

duration of these phases provide additional information for understanding the trajectory of

a new equilibrium.

Fluctuating rates are an additional motivation for adapting the resilience triangle to crime

phenomena. More specifically, the assumption that underpins this particular indicator is the

stationarity of performance under normal times, a condition violated by the inconstant pat-

terning of crime events across time. To overcome this violation of assumption we propose

indicators that take account of the difference between crime levels under two scenarios: with

and without the disrupting event (Eq 5):

DðnÞ ¼ YFðnÞ � YAðnÞ; ð5Þ

where, D(n) is the difference between YF(n) and YA(n), the forecasted crime (under normal

conditions) and actual crime time-series (daily crime counts), and n is the (temporal) index of

the time-series.

The Relative Difference in crime levels, RD(n), represents the number of crimes that were

not committed relative to the number of crimes expected to occur on any given day (Eq 6):

RD nð Þ ¼
YFðnÞ � YAðnÞ

YFðnÞ
: ð6Þ
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RD(n) provides a useful measure to monitor the operating level (%) of offenders. However, it

cannot be used directly to calculate cumulative losses in performance, that is the total number

of offenses that did not occur. With varying forecasted crime levels (YF), the difference, D(n),

in crime levels is a more appropriate measure for this.

Another measure more closely aligned with the concept developed by Bruneau et al. [48] is

the Normalised Difference in crime levels. ND(n) describes the difference in crime levels rela-

tive to the mean of the forecasted crime level (Eq 7):

ND nð Þ ¼
YFðnÞ � YAðnÞ
meanðYFðnÞÞ

: ð7Þ

Represented in Figs 3 and 4, this non-performance measure (see [52]) can be used to quan-

titatively describe the resilience of different criminogenic ecosystems. In these two models, ti,
tDE, tDP, tLP, tAP, trP, and tRP correspond to the onset of the different phases described above.

The principal resilience indicator, the Normalised Difference Resilience Indicator (NDRI),

is an estimate of crime reduction over the period of interest as a proportion of the total number

of crimes expected in that period (Eq 8):

NDRI ¼
Pnh

ni
ðYFðnÞ � YAðnÞÞ
Pnh

ni
YFðnÞ

; ð8Þ

where, ni is the index of the initial point (the earliest reasonable opportunity for crime to

change as a result of the disruptive event) and nh is the index of the time horizon of the

analysis.

Six associated indicators described in Eqs 9–14 can be used to characterise ecosystem resil-

ience during the damping, trough, recovery and post-recovery phases, separately.

Similar to the NDRI, the Damping Phase Resilience Indicator (DPRI) focuses on the second

phase of Figs 2 and 3. This indicator is concerned with the area of the lightest coloured orange

triangle in the damping phase and can be calculated using Eq 9:

DPRI ¼
PnLP � 1

nDP
ðYFðnÞ � YAðnÞÞ
PnLP � 1

nDP
YFðnÞ

: ð9Þ

The Trough Phase Resilience Indicator (TPRI) is used to assess an ecosystem’s resilience.

Represented in Eq 10, it quantifies the relative loss in performance sustained by the ecosystem

Fig 3. Loss in crime performance following a disruptive event (μ1<μ6).

https://doi.org/10.1371/journal.pone.0240077.g003
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during the third phase and relates to the rectangular orange coloured area in Fig 3:

TPRI ¼
PnAP � 1

nLP
ðYFðnÞ � YAðnÞÞ
PnAP � 1

nLP
YFðnÞ

: ð10Þ

The Recovery Phase Resilience Indicator (RPRI) in Eq 11 can be used to measure the eco-

system’s resilience during the recovery phase and corresponds to the brown coloured triangu-

lar area in Fig 3:

RPRI ¼
PnRP � 1

nAP
ðYFðnÞ � YAðnÞÞ
PnRP � 1

nAP
YFðnÞ

: ð11Þ

In the case where the crime level in this phase exceeds the pre-Disruptive Event (tDE) level

(μ7�μ1), two sub-indicators can be used to measure the ecosystem’s resilience during the

recovery phase. They are, the pre- and post-restoration Phase Resilience Indicators (pre-rPRI

and post-rPRI) in Eqs 12 and 13, and correspond to the coloured triangular areas in phases 5

and 6 in Fig 3:

pre � rPRI ¼
PnrP � 1

nAP
ðYFðnÞ � YAðnÞÞ
PnrP� 1

nAP
YFðnÞ

; ð12Þ

post � rPRI ¼
PnRP � 1

nrP
ðYFðnÞ � YAðnÞÞ
PnRP � 1

nrP
YFðnÞ

: ð13Þ

The Posterior Phase Resilience Indicator (PPRI) estimates the relative loss in the new equi-

librium phase when th� tRP (Eq 14). It corresponds to the brown coloured rectangular area in

Fig 3:

PPRI ¼
Pnh

nRP
ðYFðnÞ � YAðnÞÞ
Pnh

nRP
YFðnÞ

: ð14Þ

4. COVID-19 case study

This section empirically illustrates the above indicators by using anonymised and aggregated

crime data from during the COVID-19 pandemic period.

Fig 4. Loss in crime performance following a disruptive event (μ1�μ7).

https://doi.org/10.1371/journal.pone.0240077.g004
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4.1 M1-city (China)

The People’s Republic of China is considered the first country to experience COVID-19 [60].

It also happens to be one of the first places in the world where authorities not only introduced

public-policy measures aimed at slowing or stopping contagion, but has also lifted them [61–

63]. The exact beginning of the pandemic is difficult to trace. According to reports, the earliest

indication of a pending epidemic available to members of the public (at the time) was a post

on a Chinese social media platform (WeChat) issued from a hospital in Wuhan on 1 January

2020 indicating that there was a pneumonia-like disease of unknown origins. The same day,

Chinese authorities shut down Huanan Seafood Wholesale Market, from which a number of

cases were found to have emanated from (BBC News, 2020). The People’s Daily, a Chinese

newspaper, referred to COVID-19 for the first time on 21 January and measures being intro-

duced by the government in an effort to curb its spread. Lockdown measures (expected to be

the greatest source of societal disruption) followed shortly after (late January, early February)

for most Chinese cities. The measure experienced a high degree of compliance owing to strict

enforcement supported by multiple means of detection and deterrence [64]. China began eas-

ing restrictions in a staggered approach with, for example, the majority of schools reopening

on 16 March, public transport returning on 28 March, and the restriction on internal travel

being lifted on 8 April 2020. Thus routine activity has largely resumed across China with few

localised exceptions [61]. Although life has not completely returned to normal, many of the

criminogenic conditions that were disrupted appear to have recovered to pre-COVID-19 pat-

terns. Consequently, various cities in China provide a suitable setting to draw data from in an

effort to illustrate the proposed concepts and metrics.

For our illustrative example, victimisation data for retail theft was compiled from one of the

largest cities (11 m. pop., 8000 km2, urbanization rate: 80%) in China. Before the pandemic,

the city had one of the highest GDP in the country and an unemployment rate around 3%. For

anonymity, it is referred to as ‘M1-city’ throughout. According to Chinese criminal law retail

theft is a form of theft that involves entering and stealing from business premises [65]. (Not to

be confused with the Western category of the same name, this crime type is referred to as

‘commercial burglary’ in China.) It was selected for analysis specifically because the number of

potential theft opportunities is known to have greatly reduced during the COVID-19 outbreak

period.

4.2 Material and method

The dataset contains the daily number of retail thefts recorded by the police in M1-city

between 26 September 2017 to 29 April 2020 (N = 947 days). Twelve different forecasting

models (Mean, Naive, Drift, Auto Regressive Integrated Moving Average (ARIMA), Seasonal

Naive, Holt-Winters, Seasonal Auto Regressive Integrated Moving Average (SARIMA), State

Space Error, Trend, Seasonal Exponential Smoothing (ETS), Exponential Smoothing State

Space Model with Box-Cox transformation, ARMA errors, Trend and Seasonal components

(TBATS), a Neural Network (NNETAR), as well as KNN-multiple input multiple output, and

KNN-recursive) were tested to identify the approach with the greatest predictive accuracy for

this particular time-series. The time-series data was partitioned into training (26 September

2017–2 August 2019, 707 days) and test (3 August 2019–31 December 2019, 120 days) datasets

and the forecasting model that produced the least error over this 120-day test time horizon

was identified for use. A novel ranking procedure for forecasting approaches using Data Enve-

lope Analysis [66] identified TBATS [67] as the model which generated the least error

(RMSE = 6.7, MAE = 5.4, MASE = 0.31) and was then applied to a subset of the data (the first

827 days) to generate the counterfactual (YF) between 1 January 2020 and 29 April 2020 (120
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days). The theoretical model presented in Fig 3 was then fitted to ND(n), the difference

between YF and YA. No smoothing filter was applied to the data as this would have affected the

pattern of crime. Without definitive knowledge of what caused crime to drop in this period, it

was not possible to specify the date of the Disruptive Event (tDE). However, 1 January 2020 was

selected as the initial point (ti) because of the potential coincidence between the public’s aware-

ness of an outbreak in a hospital in Wuhan as indicated above. The time horizon for the analy-

sis, th, was selected based on the availability of data at the time of writing and also because it

yielded a four-month long study period. All other dates for the theoretical model (tDP, tLP, tAP,

trP and tRP) were estimated by applying a multiple change points detection method [68] and fit-

ting the seven-phase model described above to the crime difference, ND(n). The result was

then used to estimate the six indicators that were also introduced in the previous section.

4.3 Results

Fig 5 shows the daily number of retail thefts dropped to almost zero in January 2020 before

recovering several months later. The unprecedented magnitude of the reduction along with

the timing strongly suggests that the COVID-19 crisis had a major effect on offenders in

M1-city. Furthermore, the resemblance with the dipper-shaped curve in Fig 2 provides sup-

port for the theoretical model presented in the first section. This pattern should, however, not

be taken at face value and the drop entirely attributed to COVID-19 and associated measures.

Indeed, closer analysis of the time-series reveals a general trend with decreasing annual crime

levels (-20 per cent between 2018 and 2019). In addition, a more localised dip was found to

occur each year at the time of the Spring festival, potentially related to the low crime levels in

the same month (-16 and -12 per cent compared to the following month in 2018 and 2019,

respectively). This annual dip is a critical feature of the time-series as the introduction of strin-

gency measures across cities in China coincided with the official dates for the 2020 Spring fes-

tival (25 January– 4 February). The generation of a realistic counterfactual time-series that can

capture secular trends and seasonal components is therefore essential for estimating the net

effect of the COVID-19 pandemic and associated measures. The forecasted time-series (YF)

was considered a good model for this. Not only was the accuracy within the acceptable domain

Fig 5. Normalised daily counts of theft in M1-city (1 January 2019–29 April 2020): Actual (YA/max(YA)) and

predicted (YF/max(YF)).

https://doi.org/10.1371/journal.pone.0240077.g005
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but it also predicted a drop in crime at roughly the same time as the 2020 Spring festival holi-

day (25–30 January).

The normalised difference in crime levels (Eq 7) was then examined more closely to deter-

mine the different inflection points in the time-series. The stochastic models generated from it

by the multiple change points detection method provided both a range of possible dates for

each discontinuity and the shape of the resilience curve. The shape of the resilience curve gen-

erated from the stochastic method is provided in S1 Fig. A consequence of the large variance

during both the first and third phases meant that finding the precise time that difference levels

departed from their previous state with absolute certainty was not achievable. The algorithm

provided a range of dates from as early as 16 and as late as 22 for the departure point (tDP).

Sensitivity analysis led us to adopt the 20 January 2020 for model fitting (τS = 19 days). The

same strategy was adopted for identifying tLP, tAP, and, tRP from the stochastic models. How-

ever, the overall shape of the resilience curve was less sensitive to small variations of these

points. Of particular interest is the ascent point (31 March 2020) when crime levels started to

increase again.

Fig 6 is a graphical display of the resilience curve generated from the data derived from the

stochastic model. The period between the departure point (tDP) and recovery point (tRP) lasted

from day 20 to 103 (τDR = 83 days). Within this period, the damping phase was the shortest

one (τ− = 3 days), suggesting the criminogenic ecosystem was poorly resilient. However, this

result should be interpreted with caution because, as noted above, there were multiple alterna-

tives identified as a potential departure point. For example, the classification of tDP to an earlier

date (e.g., 18 January) would imply a slightly more gradual effect on crime. The trough was the

longest phase of the model (τmin = 66 days), with the recovery phase only starting more than

two months (τ−+τmin = 69 days) after the departure point. The recovery phase (τR = 14 days)

was split between a pre-restoration phase (τ+ = 7 days) where crime levels returned to the pre-

tDP level, and a post-restoration phase (τ++ = 7 days) prior to a new equilibrium being found.

The resilience indicators (summarised in S1 Table) calculated based on the resilience curve

generated from the stochastic method, hereafter referred to as the linear ND model, are very

close to those directly estimated from the data, and easier to visually interpret. Comparison

Fig 6. Resilience difference indicator and corresponding indicators and measures in M1-city (1 January 2020–29 April 2020).

https://doi.org/10.1371/journal.pone.0240077.g006
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between τ− and τ+ shows it took significantly longer for crime to drop than to return to its

expected level. The large difference between DPRI (0.33) and pre-rPRI (0.4) further suggests

that the cumulative loss in crime performance was higher during the restoration phase than in

the damping phase. The high value of TPRI (0.78) shows the criminogenic ecosystem had lim-

ited resiliency during the trough phase. While some thefts were recorded during this period,

the numbers fell to 30 per cent of the expected level (μ4 = 0.7).

Although the number of thefts is expected to stabilise in the near future (if they have not

already), it is worth noting that the average post-recovery level is 47 per cent higher than pre-

COVID-19 levels corresponding to a negative change Δμ1–7 = -0.60. This phenomenon may be due

to several factors discussed in the section that follows. Despite this, the cumulative counts suggest

there was an overall reduction in theft, with an estimated 883 incidents that did not occur (36 per

cent fewer than the expected total) during this period. Assuming retail theft rates stay at the level

seen in the post-recovery (posterior) phase, the cumulative loss in crime would be null by the 177th

day (26 June). However, this is not certain as it may return to its pre-tDP level before that date.

4.4 Interpretation and limitations

Several criminogenic factors influencing retail theft risk were likely affected by communica-

tions regarding the COVID-19 outbreak and/or the lockdown measures imposed to tackle it.

While it is not possible to draw any definitive conclusions regarding these from this data, a

number of plausible explanations exist. It is conceivable, for example, that some store manag-

ers decided to fit stores with additional, or more effective security, during this period.

Increased natural surveillance inside stores that remained open, primarily grocery and other

essentials, might have had a suppressing effect on levels of theft as customers were afforded

fewer opportunities for deception. Reduced in-store footfall and greater inter-customer dis-

tance might have facilitated detection of shoplifters. Formal surveillance by the authorities is

likely to have increased too, as part of their general public order activities. This is especially

likely as many Chinese municipalities have recently deployed dense CCTV networks that can

be used for public safety and security [69, 70]. With few people in the streets, those who

attempted to steal may have been more easily identified and arrested (or deterred) by the

police. Similarly, the number of individuals commuting from outside the city able to commit

theft would be diminished with restrictions on travel.

The crime drop observed after the point of departure supports the general hypothesis that

the COVID-19 crisis had a significant impact on retail theft and potentially public safety more

generally. The fact that COVID-19 cases in China are traced back to late 2019 suggests the

main source of disruption to offenders was not the virus itself, but rather awareness of the out-

break (unofficial announcement of a respiratory disease of unknown origins occurred on 1

January while an official announcement of human-to-human transmission was made on the

20 January 2020) and/or contagion measures imposed to control the spread of the virus.

The overall shape of the resilience curve suggests it may take time for offenders to adapt

their behaviour, and provides further empirical support for the notion that offenders are (rela-

tively) rational agents who weigh the associated costs and benefits of committing an offense.

Routine activity and the perception of risk, reward and effort associated with offending are

therefore likely to have played an important role in the damping and recovery phases. Police

agency and media reports suggest that similar drops have occurred in other countries. How-

ever, scientific inquiry is necessary to compare patterns in different places. While restrictions

on travel and various other prevention measures meant to curb the spread of COVID-19

remain in place in most countries around the world, it is too early to compare the restoration

phase found herein with developments elsewhere.
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5. Discussion

5.1 Potential applications of the resilience indicators

While on the one hand the limited research conducted in relation to criminality in the face of

disaster may be positive as it is an indicator of how infrequently as a species we have had to

face potential existential crises, on the other, it has limited the efforts made by the security and

safety science community of researchers to quantify and better understand the crime and dis-

order patterns that emerge during such disasters so that measures can be put in place to pre-

vent particular suboptimal outcomes. This article, including the resilience indicators

contained within it, provides one of the first efforts (of which the authors are aware) to

describe, quantitatively, how a given criminogenic ecosystem functions throughout such a

disaster. Of course, describing what has occurred creates a set of expectations grounded in

empirical evidence. The indicators provide a way to capture a return to optimal functionality,

as illustrated in the case of retail theft in M1-city. Further, they can inform policy-makers

responsible for the allocation of resources during disaster periods, police and private security

professionals, and business owners, that they may face a bounce-back in criminal activity,

which they may be able to pre-empt with security measures before restrictions on public life

are eased.

Retail theft in M1-city in China, is one of any number crime categories that can be exam-

ined using the indicators developed in this paper. Indeed, these non-performance metrics are

applicable to any category of crime and disorder during a disaster and can be used to analyse

the same category of crime within cities, and across other geographic scales. Thus, they enable

comparisons to be made between different urban environments such as M1-city, but also com-

pare urban patterns with rural ones. The metrics developed in this paper are crime-, disaster-,

and resolution-agnostic enabling any category of crime, for any disaster, at any geographic

scale to be described. The approach opens up the opportunity for cross-national comparisons

of the impact of COVID-19 and the associated stringency measures, as well as at the state-,

province-, or county-level, and even at the city- and neighbourhood-levels.

Interestingly, the indicators also offer a unique opportunity to analyse the resilience of

offenders and the other constellation of actors that exist within the criminogenic ecosystem

(e.g., human victims, property targets, guardians, and other types of informal and formal con-

trollers). These metrics may give rise to more complex questions related to what has ultimately

driven particular patterns to emerge throughout the disaster period. For example, if the rate of

crime receded over a longer period of time in A1-City than in B1-City, was it a function of vic-

tims in A1-City not modifying their behaviour in relation to the stringencies that impacted the

ecosystem; or, conversely, was it that offenders in B1-City adapted to the new ecological equi-

librium more rapidly.

Similarly, and in line with what was found in M1-City, is the bounce-back that was described

found elsewhere? While the indicator cannot provide a clear indication of whether the bounce-

back was the result of offender adaptation or a lack of preparedness on the part of business

owner to modify or adopt new public safety and security measures, the latter seems the more

likely of the two. The coincidence of stringency orders being lifted that opened up internal

mobility, coupled with the reopening of schools and public transport, suggests that it was a lack

of preparedness on the part of commercial businesses in relation to their susceptibility to retail

theft in this new normal that emerged from the disaster period. An alternative explanation may

be that with the lifting of stringencies comes a period of hyper-criminality among hardened

offenders who perhaps felt pressure to make up for lost opportunities to offend emanating from

the disaster. Either scenario suggests that this is something that will have to be followed closely

as disaster periods end across the globe and a return to normalcy (or a new normal) sets in.
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It is important to recognise the limitations of the findings reported here. It is possible that

the pattern observed in M1-City is unique, describing a trend that is not found anywhere else

in China, or other cities around the world. We believe this is unlikely given the magnitude,

spread, and nature of the COVID-19 stringency measures that have been adopted throughout

the world and the associated anecdotal evidence that has repeatedly trickled into media reports

about the general decline of many crimes during this period. This being said, it may be that

some of the metrics are misleading.

Let us consider the recovery of retail theft in M1-city as an example. It may be that what we

describe is not a function of offender adaptation, hyper-criminality after a period of crimino-

genic deprivation, or even a lack of preparedness by commercial businesses to retail theft, but

rather a reporting error generated as a function of a return to normalcy. More specifically,

much has been written about the temporal nature of crime reporting and the challenge of iden-

tifying the period in which a criminal event occurs. In fact, methods have emerged in the crim-

inological literature in an effort to overcome this limitation (see, for example, [71]). Hence, the

apparent bounce-back may be an artefact of a large number of businesses reporting incidents

they learned of when stringencies were lifted. However, we believe that the large disparity in

the cumulative count of expected versus actual retail theft events that occurred during the

disaster period makes this unlikely. Future studies of the same crime category across different

scales and geographies should be conducted to more formally test this potentiality.

Further possible limitations relate to recording practices and the confluence of stringency

orders. Like the crime reporting bounce-back artefact noted above it may be that a large, dispro-

portionate number of arrests were made during the ‘lockdown’ period when individual move-

ment was largely prohibited. Future studies examining changing patterns of arrest to explore the

extent to which these individuals have existing criminal records, may throw some light on this.

The phenomenon of offender self-selection [72], whereby those committing more serious

offences also commit more minor ones, may mean that those liable to commit crimes such as

retail theft receive enhanced police attention as breaches in restrictions in everyday activity are

vigorously enforced during lockdowns. Again research on police activity and arrest patterns

may be able to examine whether this is the case.

Finally, as noted earlier in this paper, domestic violence appears to have increased rather

than decreased during lockdown, due to the enforced confinement of families in contrast to of

types of offence. This will require its own analysis.

6. Conclusion

The resilience indicators introduced in this paper provided a set of tools to quantify the (in)

ability of an ecosystem to maintain a certain level of criminal activity. Demonstrated through a

case-study, it constitutes an important benchmark for an area of public safety research that

requires significant attention as recently called for in the resilience literature as it relates the

current pandemic (see [73]). Indeed, it fills a gap as no unifying theoretical framework existed

prior to this work for describing the impact of disasters on criminogenic ecosystems and pub-

lic safety (see [74]). What is gleaned from the approach can ultimately aid in the development

of a greater understanding of what can be expected during disasters and consequently will

enable those involved in the practice and policy of public safety to better anticipate needs.

The extant public safety literature that has focused on criminality during disasters has relied

heavily upon more ubiquitous inferential methods that ordinarily hinder like-for-like compar-

isons. Herein lies the novelty and contribution of what has been developed herein. These indi-

cators are reproducible, replicable, and comparable regardless of setting or scale.

Consequently, the framework will enable a more refined understanding of the evolution (and
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resilience) of criminogenic ecosystems and public safety during the COVID-19 pandemic and

may be useful for other future disasters.
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