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Abstract 

 

Fatty liver associated with metabolic dysfunction is common, affects a quarter of the 

population, and has no approved drug therapy. While pharmacotherapies are in development, 

response rates appear modest. The heterogeneous pathogenesis of metabolic fatty liver diseases 

and inaccuracies in terminology and definitions necessitate a reappraisal of nomenclature to 

inform clinical trial design and drug development. A group of experts sought to integrate 

current understanding of patient heterogeneity captured under the acronym nonalcoholic fatty 

liver disease (NAFLD) and provide suggestions on terminology that more accurately reflects 

pathogenesis and can help in patient stratification for management. Experts reached consensus 

that NAFLD does not reflect current knowledge and metabolic (dysfunction) associated fatty 

liver disease “MAFLD” was suggested as a more appropriate overarching term. This opens the 

door for efforts from the research community to update the nomenclature and sub-phenotype 

the disease in order to accelerate the translational path to new treatments.  
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Introduction 

Why it is time to revise the fatty liver nomenclature? 

Since the term non-alcoholic fatty liver disease (NAFLD) was coined by Ludwig and 

colleagues in 1980 to describe fatty liver disease arising in the absence of significant alcohol 

intake 1, the nomenclature and criteria for a diagnosis has not been revisited. Yet, this disease 

has risen in prevalence, with a major impact on clinical and economic burden to society, such 

that nearly 1 billion people globally are affected2. Of concern, NAFLD is increasingly 

recognised and diagnosed in children and adolescents3, and this, when paired with the 

intimately associated hepatic as well as cardiovascular and oncological sequlae4, 5, places an 

enormous burden on individuals, families and health‐care systems6. The estimated annual 

medical costs directly attributable to NAFLD exceeds €35 billion in four large European 

countries (The United Kingdom, France, Germany and Italy) and $100 billion in the United 

States7. While reducing disease burden through prevention seems obvious, this have not been 

achieved. Further, while pharmacotherapies are expected to become available in the near 

future, none to date has been approved. Thus far, several phase 2b and phase 3 studies either 

have fallen short of meeting current required histologic endpoints, or have done so with a 

modest margin. Muted efficacy of various compounds in development are in part a reflection 

of the imprecise definitions and the lack of precision medicine including consideration of 

heterogeneity of the disease.  

Despite these alarming data, the nomenclature of the disease and the criteria for diagnosis have 

not been updated to reflect our expanding knowledge. The heterogeneity of the population with 

NAFLD with respect to its primary drivers and co-existing disease modifiers, represent an 

important impediment to the discovery of highly effective drug treatments. The phenotypic 

manifestation of fatty liver diseases likely reflects the sum of the dynamic and complex systems 
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level interactions of these drivers; it follows that effective treatment requires that they be 

targeted with precision, based on a person’s phenotype and genetic background8, 9. However, 

trial recruitment is currently based on histologic grading and staging – and that is a problem 

because many pathways lead to the same histologic phenotype, without dissection of the 

predominant pathogenic pathways 10, 11. Perhaps not surprisingly, the response rates to current 

investigational agents range from 20 to 40% with a difference from placebo of 10-20% 8. Thus, 

a “one size fits all approach” would seem inappropriate when dealing with a very 

heterogeneous liver disease.  

From the patient’s perspective, the term ‘non-alcoholic fatty liver disease’ not only trivialises 

the problem by including terms such as ‘non’, but is also pejorative as it introduces words such 

as ‘alcoholic’ potentially placing the blame on the patient as having caused their condition. It 

also implies that the treatment must entirely lie in the patient’s hand. This has enormous 

implications on how industry and policy makers choose to allocate resources for tackling the 

syndrome, which clearly is a major cause of death. Lessons can be learnt from cardiologists, 

diabetologists, neurologists and oncologists who have successfully distanced the disease they 

are trying to treat from the underlying obesity, smoking, alcohol abuse and drug abuse. Some 

of these factors have high genetic predisposition. In support of this idea, a meeting organised 

by the European Liver Patient’s Association (ELPA) with the European Commission in 2018 

suggested that a change in nomenclature was one of their key requirements. 

As a first step to tackle this challenge, revising the nomenclature and definitions of the disease 

is critical. Recently, concerns over the inaccuracies of the nomenclature of fatty liver disease 

have been raised by individual experts 12-14. In prior work, we called for a consensus to consider 

these aspects 15 and in this review, an international panel sought to integrate epidemiological 

knowledge about disease progression that includes steatosis and steatohepatitis associated with 

metabolic dysfunction, with information about risk prediction derived from genetic and 
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phenotyping studies. We suggest a new nomenclature based on consensus voting by 

participants to describe the disease that will allow us to properly sub-phenotype and stratify 

patients, via the application of more precise genetic, anthropometric and metabolic 

phenotyping approaches. In turn, detailed phenotyping will translate into individualised risk 

prediction and prevention strategies, and improvements in clinical trial design.  

Methods 

Following discussions, an initial concept sheet was circulated to the panel of contributors. This 

revealed widespread agreement and consensus that it was time to revisit the nomenclature of 

metabolic fatty liver disease as a critical initial step for improved patient sub-phenotyping, 

clinical trials design and ultimately, for personalisation of medicine. 

Subsequently, a manuscript was drafted, circulated to the panel, and feedback incorporated 

over several rounds of revision. To reach consensus on a nomenclature, the Delphi method was 

adopted in two rounds. This method is a recommended iterative process for use in the 

healthcare setting as a reliable means to solicit and distil the judgments of experts and to 

determine consensus via a systematic progression of repeated rounds of voting16.  A “closed” 

electronic survey URL was sent to participants providing a unique link that could only be used 

once. Survey data were collected and managed using REDCap (Research Electronic Data 

Capture).  In the first round of surveys members suggested one or more terms to describe 

metabolic fatty liver disease. In a second round (based on a summary of the experts’ 

suggestions), participants were asked to vote on the suggested terminology. To ensure a robust 

and transparent process, anonymity of the participants was maintained.  

Metabolic associated fatty liver disease: a heterogeneous phenotype 

We now recognise that metabolic fatty liver disease is a phenotype with complex and disparate 

causes; the current terminology (NAFLD) represents an umbrella term for the multiple 
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underlying sub-types 17, 18. This is evidenced by the wide spectrum of disease severity and 

natural history, as well as the substantial inter-patient variability across the spectrum. Although 

hepatic steatosis is highly prevalent, only a minority exhibit inflammatory injury at any time; 

more importantly, an individual can oscillate between steatosis and steatohepatitis even over a 

short timeframe 19. In addition, while there is convincing evidence that liver-related 

complications (i.e., cirrhosis and cancer) are more likely in those with steatohepatitis, 

progression is far from inevitable19-21. Further, there is growing evidence that hepatocellular 

carcinoma (HCC) can develop in a fatty liver in the absence of cirrhosis22. Even among those 

with steatohepatitis, there appear to be individuals with apparent rapid-fibrosis progression and 

those with inherently slow-fibrosis progression 23. Finally, disease evolution can be modified 

by exogenous interventions (for instance, life-style changes)24, superimposed disease states 

(e.g., type 2 diabetes mellitus)25, inherited predisposition26, and can even “spontaneously” 

regress, as has been demonstrated in placebo group participants in treatment trials and by 

observational dual-biopsy studies in secondary/tertiary care settings 23, 27, 28. Adding to the 

complexity, it is unknown if the propensity for metabolic fatty liver diseases progression can 

vary across the lifespan. For example, given the rapidly escalating prevalence of metabolic 

fatty liver disease in children and young adolescents, we still do not understand if their natural 

history follows a different trajectory from those who develop disease in adulthood, middle age 

or even old age 29. 

Sources of heterogeneity 

The heterogeneity in clinical presentation and disease course of fatty liver disease is likely 

influenced by multiple factors including age, gender, hormonal status, ethnicity, diet, alcohol 

intake, smoking, genetic predisposition, the microbiota and metabolic status. Thus, the final 

outcome will reflect the balance of these diverse inputs, each interacting with the other and 

modifying the ultimate manifestations and clinical course (Figure 1). It follows that effective 
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treatment will require systematic dissection of the pathways involved and likely multifaceted 

and personalised treatments30, 31. A brief summary of current knowledge about factors 

contributing to NAFLD heterogeneity is provided below. 

Age and gender 

NAFLD prevalence, the risk of hepatic and extra-hepatic complications, and the likelihood of 

overall and disease-specific mortality increases with advancing age 19, 21, 32, 33.  With ageing, 

substantial changes occur in the liver including a decline in hepatic blood flow, hepatic volume, 

and liver function, a reduction in bile acid synthesis and alterations in cholesterol metabolism, 

as well as a reduction in mitochondrial number with subsequent increases in oxidative 

respiration34. Cellular senescence has also been implicated35, 36.  Furthermore, ageing is 

accompanied by changes in body composition, including a decrease in muscle mass, an 

increase in abdominal adiposity and ectopic fat deposition, with increases in insulin resistance 

and prevalence of the metabolic syndrome37, 38. Emerging evidence suggests that sarcopenia is 

associated with both NAFLD and NAFLD-related advanced fibrosis, even after adjusting for 

BMI and insulin-resistance39, 40. Presumably, ageing also captures greater exposure to the 

drivers, which result in steatohepatitis and fibrosis. 

Equally, as recently reviewed 41, there is substantial sexual dimorphism in many aspects of 

fatty liver disease with regard to risk factors, prevalence, fibrosis pattern, and disease outcomes. 

Generally, prevalence tends to be lower in women predominantly at earlier disease stages, 

whereas, disease frequency increases in postmenopausal women 41. Similarly, fatty liver 

prevalence is lower in post-menarchal girls than in boys42. Among postmenopausal women, 

those not on hormone replacement therapy (HRT) tend to have higher disease prevalence 

compared to those on HRT43, and similarly, premenopausal women have less severe hepatic 

fibrosis and better survival compared to men and postmenopausal women44, 45. Consistently, a 
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longer duration of estrogen deficiency associates with a higher likelihood of fibrosis among 

postmenopausal women with fatty liver disease 46. By analogy, studies of diet induced mouse 

models suggests that males develop more severe steatosis and liver histology compared to 

females 47, 48. 

Although the mechanisms for these effects are not completely understood, sex differences in 

adiposity, metabolic risk factors and body fat distribution (which tends to shift towards 

abdominal obesity after menopause), likely play a role 49. A recent study in mice from ~ 100 

strains included in the hybrid mouse diversity panel (HMDP) demonstrated that multiple 

molecular pathways and gene networks implicated in lipid metabolism, insulin-signalling and 

inflammation show sexual dimorphism50. Similarly, another study demonstrated sexual 

differences in liver gene expression of regulators of multiple metabolic pathways using a mice 

computational model. Notably, some such as peroxisome proliferator-activated receptor 

PPARα, farnesoid X receptor (FXR) and liver X receptor (LXR), which are highly gender 

dependent, are currently being investigated as therapeutic targets for steatohepatitis 51. A 

further study demonstrated gender-related pathways contribute to steatosis and fibrosis in male 

and female mice (males mainly inflammation and females mainly alterations of redox state), 

despite similar endpoints52. Clearly, sex and menopausal status influence disease outcomes and 

require stratification as treatment responses can vary substantially. 

Ethnicity  

Population-based data show ethnic differences in the prevalence of fatty liver; a recent meta-

analysis demonstrated both NAFLD prevalence and risk of NASH were highest in Hispanics, 

intermediate in Whites, and lowest in Blacks. However, fibrosis risk did not differ according 

to ethnicity 53. Metabolic fatty liver disease is also rapidly increasing in Asian populations 54. 

Previous studies have demonstrated that Asians tend to accumulate liver fat at lower body mass 



11 
 

index (BMI) compared to those of other races55. The course of disease also appears to be more 

severe in Asians compared to non-Asians, and they tend to have more lobular inflammation 

and higher grades of ballooning compared to other ethnicities 56’57. While data regarding 

fibrosis are scarce in the studies above, Asians tended to have a higher risk of fibrosis, while 

Africans were at lower risk compared to whites; this did not reach significance, perhaps due to 

sample size limitations 56, 57. However, and notably, these biopsy-based studies might suffer 

from selection bias. For example, a community-based study in Hong Kong suggested that while 

NAFLD is detected in a quarter of the population, the prevalence of advanced fibrosis is low58. 

The reasons for racial disparities in fatty liver risk are not completely understood. Plausible 

explanations include variations in genetic predisposition, metabolic attributes, cultural and 

socioeconomic factors, dietary and exercise habits, access to health care as well as 

environmental risks. There are substantial differences in genetic heritage across ethnic groups; 

variation in the risk allele of the Patatin-like phospholipase domain-containing protein 3 

(PNPLA3) gene that is most frequent in Hispanics (49%), followed by non-Hispanic white 

(23%) and African Americans (17%) has helped, at least partially, to explain some of this ethnic 

variability59-61. In addition, the risk allele of the PNPLA3 rs738409 polymorphism was found 

to be more common in East Asians than Caucasians 62. Notably, because the effect size of fatty 

liver-related gene variants supports the existence of differences among races, the relative 

contribution of specific genetic and and environmental triggers (e.g. dietary factors) or 

modifying risk variants, toward disease pathogenesis is likely variable among ethnic groups 

(Figure 2).  

On the other hand, there are marked racial/ethnic socioeconomic disparities that are likely also 

reflected in differences in multiple disease risk factors. For example, there is a clear difference 

between European and Asian populations with regard to insulin resistance and body fat 

distribution, as discussed later. There are also disparities in physical activity; in 2016, a report 
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including 1·9 million participants across 168 countries suggested that women in Latin America, 

south Asia, and high-income Western countries have the highest prevalence of physical 

inactivity63. Likewise, data from the NASH Clinical Research Network (NASH CRN) reported 

less physical activity, increased carbohydrate consumption and lower income levels in 

Hispanics compared with non-Hispanic white patients with NASH 64. A role for gut microbiota 

could also be implicated, as discussed below. 

Light and moderate alcohol use 

Since its first description, metabolic has been considered distinct from alcoholic associated 

liver disease based on a cut-off of daily alcohol intake of 30 g daily for men and 20 g daily for 

women. The assumption underlying the cut off has been that alcohol intake below these 

thresholds does not induce hepatic steatosis or have deleterious impacts on liver disease 

progression and outcomes 65 . 

Due to the high prevalence of adults with NAFLD who drink at least in moderation (~ 4 

drinks/week)66, there is now much interest in the influence of light and moderate alcohol use 

on the prognosis of NAFLD, with debate on the protective effects 67, 68 and perceived harms 69, 

70. More recently, there has been evidence for and against safe limits for alcohol consumption 

in the setting of NAFLD 71. Some reports suggest that modest alcohol consumption, even after 

adjustment for previous heavy drinking, is associated with a reduction in vascular 

complications67, 72 or has no impact73. Other studies have demonstrated that moderate drinking 

(2 drinks a day for women and 3 drinks a day for men) is associated with a reduced prevalence 

of NASH and advanced fibrosis74. In contrast some studies highlight that even low alcohol 

intake in those with a fatty liver is associated not only with increased risk of disease 

progression, but also for advanced liver disease and cancer 75, 76,77, 78 and decreased rates of 

improvement in steatosis and NASH 79. The effect of alcohol use on liver disease evolution 
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likely has a dose-response, rather than a J-shaped association80, 81, with a synergistic 

detrimental effect with the presence of metabolic syndrome 75, 77 as has recently been reviewed 

74.  

Dietary intake, gut microbiota and bile acids 

For metabolic homeostasis, the neuroendocrine axis, dietary intake, muscle mass, physical 

activity, and the enterohepatic circulation, gut microbiota, bile acids and their related 

metabolites are intimately implicated in fatty liver pathogenesis (Supplementary Figure 1). 

The dietary pattern that characterizes the Western diet, including increased fat and fructose 

consumption that is fuelling the increase in obesity and fatty liver, is associated with a wide 

range of metabolic dysfunction, including insulin resistance and abnormal lipid profile82. In 

contrast, adoption of a Mediterranean dietary pattern is accompanied with a decrease in liver 

fat in patients with NAFLD and a decrease in cardiovascular risk83, 84.  

Microbiota composition can change rapidly and widely according to dietary patterns83, 85 and 

the involvement of the gut microbiome in fatty liver and steatohepatitis in both mice and 

humans is well recognised 86, 87. Emerging data suggest that the microbiome and gut 

microbiome-derived metabolites can predict advanced fibrosis and cirrhosis in NAFLD 88-91. 

Gut microbiota are also implicated in regulating bile acids and their metabolites, which in turn 

regulates glucose, lipid and choline metabolism, and energy homeostasis 92. Altered gut flora 

and intestinal permeability have also been shown in patients and murine models of NAFLD 93, 

94. This leads to increased circulating levels of bacterial products including lipopolysaccharide 

(LPS) as well as other bioactive compounds that may induce intra-hepatic activation of 

proinflammatory cells, hepatic stellate cells and hepatocytes via stimulation of toll-like 

receptors (TLRs; particularly 2, 4 and 9), a sensor for these products 95-97. However, it remains 

challenging to disentangle the effects of diet and its associated consequences for liver disease, 

from effects mediated by diet-induced alterations to the microbiome, and to ascertain causality 

https://www.sciencedirect.com/topics/medicine-and-dentistry/fructose
https://www.sciencedirect.com/topics/medicine-and-dentistry/lipid-metabolism
https://www.sciencedirect.com/topics/medicine-and-dentistry/lipid-metabolism
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under these same conditions. Notably, a role for human genetic variation and ethnicity in 

driving differences in microbiomes has recently been suggested 98-100 101.  

Obesity and metabolic health 

Although obesity intimately associates with liver fat, not all patients with obesity develop 

metabolic fatty liver disease2. Whereas obesity can be classified as metabolically healthy 

obesity (MHO) and metabolically unhealthy obesity (MUO), with the former affecting about 

45% of obese subjects, there is no consensus on a definition of metabolic health. Various 

definitions of metabolic syndrome include a combination of different metabolic components 

102, 103. Similarly, while insulin resistance is believed to play a pivotal role and is a 

pathophysiological feature of fatty liver104 it has not been included in several definitions of 

metabolic syndrome. Notably, multiple large-scale cohort studies do not clearly support the 

notion that metabolically healthy obesity subgroups, at least as currently defined, are protected 

from cardiometabolic complications compared with those with a stable normal weight who are 

metabolically healthy 105-107. Better classification based on molecular or genetic profiling could 

help dissect with high precision, metabolically favourable and unfavourable subtypes, with 

distinct metabolism, anthropometry and patterns of fat deposition, and likely differential 

responses to drug treatments 108. On the other hand, ~ 30% of normal‐weight individuals can 

be classified as metabolically obese normal weight (MONW) and they demonstrate an 

increased propensity for cardiometabolic risk; a fair proportion of patients with a fatty liver are 

also lean. 

Current consensus suggests that the distribution and the overall health of fat, rather than its 

amount is likely the major determinant of disease risk. For example, higher amounts of visceral 

relative to peripheral and subcutaneous adipose tissue is associated with greater metabolic risk 

109, 110 and is directly linked to liver inflammation and fibrosis, independent of insulin resistance 

and hepatic steatosis 109. Sex, sex hormones (as discussed above), ethnicity and genes obviously 
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play important roles in determining the location and health of adipose tissue. There is for 

example, strong evidence that ethnicity is implicated in determining fat distribution and health 

111. Thus, abdominal and visceral adiposity are greater among Asians compared with 

Caucasians, and lower in Africans 112-115 as is insulin resistance despite an equal or lower BMI 

116 117, 118. Genetic variants also play a role in the regulation of fat distribution 119, 120,121, with 

“favourable adiposity” genes have been recently identified 103, 122, 123.  

Although lipid accumulation in liver is a hallmark of NAFLD, there is emerging evidence that 

there is likely a variety of underlying mechanisms and routes for its development. For instance, 

a recent study has demonstrated that lipid composition in liver is very different in two proposed 

sub-types of NAFLD. In sub-type 1 based on insulin resistance, patients tend to have 

monounsaturated TAGs and free fatty acids enriched with ceramides in liver, while sub-type 2 

based on carrying the PNPLA3 risk genotype at rs738409, have polyunsaturated 

triacylglycerols (TAG)124. Similarly, another study suggested the existence of three NAFLD 

subtypes, with different metabolic phenotypes 125. In another study, regions with steatosis 

demonstrated distinct lipid composition, predominantly in the form of a loss of arachidonic 

acid-containing intracellular phospholipids, compared to non-steatosis liver tissue126. A further 

report used RNAseq analysis identified molecular subtypes with distinct gene expression 

pattern clusters that are implicated in lipid metabolism, interferon signalling and immune 

system pathways, according to different histological scores127. In total, these new datasets 

emphasize that there are likely multiple NAFLD subtypes characterized by unique 

metabolomic signatures. Based on subtype, it is likely that treatment responses will vary and 

hence defining the metabolic landscape of an individual is likely important in clinical trial 

design. 

  



16 
 

Lean NAFLD 

Currently, lean NAFLD, or NAFLD in lean individuals, is defined as hepatic steatosis with a 

BMI <25 kg/m2 (or <23 kg/m2 in Asians) in the absence of ‘significant’ alcohol intake.128 

Though first described in Asian populations, it is recognised that between 5% and 45% of 

patients with NAFLD are lean; even among Europeans, about 20% of patients are considered 

lean 129
.  Although those with lean NAFLD have a better metabolic and histological profile 

compared to their counterpart obese subjects, their natural history is poorly defined, with some 

data suggesting they may have a worse outcome and accelerated disease progression130, 131, 

while others suggest no difference or even better outcomes 132, 133. More recent data proposes 

that lean NAFLD comprises a distinct pathophysiological entity from that in obese subjects, 

which extends beyond just simple differences in BMI. In that study, lean patients had distinct 

metabolic and gut microbiota profiles compared to their obese counterparts and lean healthy 

controls. Specifically, they had intact metabolic adaptation in response to an obesogenic 

environment via increased bile acids and FXR activity that likely helped them to maintain an 

obesity-resistant phenotype. Notably, either this adaptation tends to be lost with advancement 

of disease or the failure to adapt promotes disease progression. Other intriguing aspects from a 

subset of the patients suggests that they have a distinct gut microbiota profile, with enrichment 

of species implicated in the generation of liver fat, and a genetic profile with an increased 

prevalence of the TM6SF2 risk allele134, as also observed by another study135. Further studies 

will be required to explore whether the metabolic adaptation observed in lean NAFLD is seen 

in other subtypes of patients.   

Familial Risk 

Data from well-characterized cohorts of twins who underwent imaging to quantify liver fat and 

fibrosis has shown that both are heritable traits136. Furthermore, retrospective family-based 

studies show that there is familial aggregation of NAFLD and cirrhosis137. Consistently, a 
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recent prospective study including probands with NAFLD-cirrhosis and their first-degree 

relatives indicated that the risk of advanced fibrosis among first-degree relatives of patients 

with cirrhosis is 18%138. This is substantially higher than the risk of cirrhosis in the general 

population and points towards further sub-stratification of the population by family history of 

cirrhosis due to NAFLD. 

Genetic variation 

Genome-wide association and large candidate studies have identified multiple loci associated 

with NAFLD and NASH. While in depth discussion is beyond our scope, the topic has recently 

been reviewed 139, 140. At least five common variants in different genes have been associated 

with NAFLD, namely PNPLA3, transmembrane 6 superfamily member 2 (TM6SF2), 

glucokinase regulator (GCKR), MBOAT7, and hydroxysteroid 17-beta dehydrogenase-13 

(HSD17B13)140. Multiple other genes have reported associations, including polymorphisms in 

inflammatory, immune and metabolism-related, oxidative stress, adipokine, and myokine-

related genes139-144. It is noteworthy however that all known variants explain only a small 

proportion of NAFLD, suggesting the existence of heritability factors that are yet to be defined 

145. Exploring the role of other types of genetic variation, gene-gene and gene-environment 

interactions, epigenetics, common variants that do not reach genome-wide significance, and 

rare and less common variants will help dissect the missing heritability146
’
140, 147. For example, 

a gene-environment interaction has been proposed for the PNPLA3 variant with dietary patterns 

148, increased intake of sugars 149, omega-6 poly-unsaturated fatty acids intake 150, obesity, and 

insulin resistance 151.   

Of interest, described NAFLD-related variants show divergent metabolic effects. Multiple 

reports indicate an association of a genetic variant of TM6SF2 (encoding p.Glu167Lys) with 

lower serum lipid levels and lower risk of coronary artery disease, but with increased risk of 
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fatty liver and advanced fibrosis 152-154, even in those with viral hepatitis155. Although early 

reports suggested that PNPLA3 rs738409 has no association with the metabolic profile156, more 

recent larger studies and a Phenome-wide association study (PheWAS) study indicate that it 

has similar metabolic effects to TM6SF2 rs58542926 157,158. An association of PNPLA3 

rs738409 and TM6SF2 rs58542926 with type 2 diabetes has also been demonstrated beside the 

known association of GCKR rs1260326 with diabetes 159. Variants in HSD17B13 and MBOAT7 

do not to date appear to have an effect on serum lipids, glycaemia or risk of coronary heart 

disease 160-163.  

Epigenetic factors  

Reversible epigenetic changes represent a plausible bridge between genes and the environment; 

their dysregulation is implicated in several diseases, including NAFLD 140. Numerous 

microRNAs (miRNAs) have been linked to NAFLD. A recent meta-analysis demonstrated that 

in particular, miRNA-122, miRNA-34a and miRNA-192 could be biomarkers of fatty liver 

disease 164, 165. miRNA-122 and miRNA-192 showed upregulation in NAFLD compared to 

healthy controls while miRNA-34a was upregulated in NAFLD and correlated with disease 

severity164, 165.   

Data on the role of long non-coding RNAs (lncRNAs) and other type of non-coding RNAs in 

NAFLD is limited. Some data suggests alterations in lncRNAs in NASH, such as a hepatic-

specific lnc18q22.2 166, a brown fat-enriched lncRNA 1 (Blnc1), 167 and metastasis-associated 

lung adenocarcinoma transcript 1 (MALAT1)168. A study using genome scanning with next 

generation sequencing has identified other candidates169.  The role of lncRNAs in 

steatohepatitis remains to be further elucidated in larger cohorts.  

Several studies show wide alterations in the methylation signature of hepatic as well as 

peripheral blood-derived DNA, including regulatory loci for key metabolic, inflammatory, and 
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fibrotic pathways, in patients with NAFLD. Some of these signatures appear to reverse 

following bariatric surgery 170, 171,172.  There is also evidence that DNA methylation can be a 

biomarker for fibrosis stratification in NAFLD 173 and that it regulates the expression of 

PNPLA3 174. For example, hypermethylation of the PPARγ promoter can be used to identify 

patients with advanced fibrosis173. More recently, a series of studies have shown evidence of 

methylation of the key mitochondrial urea cycle enzymes carbamoyl phosphate synthase-1 and 

ornithine transcarbamylase enzymes resulting in a reduction in their function and 

hyperammonemia in NAFLD patients175. Hyperammonemia activates stellate cells and is 

associated with progression of fibrosis in NAFLD176, 177; treatment of hyperammonemia using 

ornithine phenylacetate prevented progression of fibrosis in an animal model, suggesting a 

potential novel metabolic therapeutic strategy178. 

Importantly, epigenetic mechanisms play a crucial role in foetal metabolic programming of 

liver fat 179, 180, with growing evidence that the earliest origins of NAFLD extend to in utero 

experiences. Data from animals suggest that a maternal diet high in fat triggers widespread 

epigenetic alterations in foetal hepatic DNA, accompanied by metabolic maladaptation that 

favours an increase in the risk of developing NAFLD in the offspring181, 182. Even paternal diet 

patterns and prediabetes increase the risk of diabetes in offspring 183. Notably, these changes 

can be transmitted over generations, but can also be altered by exercise and lifestyle 

interventions 184-186.  Although data in humans are still limited, maternal obesity and patterns 

of infant nutrition are risk factors for the development of NAFLD in adolescence and 

adulthood. For instance, normal pre-gestational BMI and breast-feeding for more than 6 

months reduces the risk of developing NAFLD in the mother during mid-life 187 and during 

adolescence in offspring 188. Similarly, an increase in methylation of the peroxisome 

proliferator-activated receptor γ coactivator 1 (PGC1) gene that controls several aspects of 
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energy metabolism in liver 189 and in newborns, is correlated with increased maternal pre-

gestational BMI 190. 

Why do we need to consider NAFLD heterogeneity in clinical practice? 

Impact on the performance of non-invasive assessment of fibrosis   

Non-invasive fibrosis scores are commonly used to identify or exclude significant or advanced 

fibrosis in patients with fatty liver disease. However, a recent study suggested that the 

performance of scores such as the NAFLD fibrosis score (NFS) and fibrosis 4 (FIB-4) may 

vary across the life span, with lower specificity among older adults and lower accuracy in 

young adults191. The performance of non-invasive scores and the used Transient Elastography 

liver stiffness cut offs in different ethnic populations and in special subpopulations such as 

diabetic and obese individuals also need to be considered. For example, it has been shown that 

blood biomarkers are less accurate in South Asians compared to Europeans, regardless of 

metabolic indices 192. As it is likely that blood-based biomarkers  or imaging techniques will 

supplant liver biopsy for the diagnosis of disease in patients who would benefit from drug 

treatment, equally it implies that any future marker should be validated in more precisely 

defined cohorts. Thus, the consensus group suggests that the factors that shape the 

heterogeneity of NAFLD be considered when devising and applying risk-stratification scores 

and algorithms. This approach will continue to evolve as new contributors to disease variability 

are identified. 

Impact on the development of clinically-relevant animal models  

The complexity of human NASH is paralleled by the heterogeneity of animal models and the 

inability of these models to replicate the gamut of disease 193. This represents both a barrier to 

the development of novel therapeutics but also an opportunity to better understand 

steatohepatitis pathogenesis based on different drivers of disease. Considering that NAFLD as 
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described today is not a single entity, exploring the overlapping features of preclinical models 

with subtypes of NAFLD may help in overcoming these challenges. For instance, it has been 

reported that the Methionine adenosyltransferase 1A (Mat1a) deficient mouse can recapitulate 

a subtype of human NAFLD 125, while mice fed a high cholesterol or methionine/choline 

deficient diet seem to recapitulate several features of lean NAFLD194. Despite the range of 

available models, there remains a need to develop improved in vitro and in vivo model systems. 

Impact on clinical trials design and the ability to find treatments  

The growing magnitude of NAFLD and the lack of effective drug treatments is reflected in 

intense clinical trial activity that has jumped from just eight in 2013 to over 300 ongoing in 

2018195. Unfortunately, response rates remains modest, with <20-30% of participants 

demonstrating NASH resolution and fibrosis regression. This low response can be attributed to 

many factors, including heterogeneity in population selection, lack of stratification based on 

the underlying dominant driver mechanisms, and the Hawthorne (placebo) effect 8. Therefore, 

the standard clinical trial design that does not take into consideration disease heterogeneity may 

not be the best option for studying a complex disease. Thus, future clinical trials will likely 

target patients with specific characteristics (sex, hormonal status, genetic predisposition, 

metabolic and microbiota signatures and the presence or absence of comorbid conditions) once 

the relationships between the characteristics and the treatment targets are understood. Such trial 

design will likely include rational combination approaches 31. 

Considering alternative innovative trial designs might be a viable option (Figure 3). Recently, 

using overarching or master protocols designed to address multiple questions by investigating 

different drugs (more than one or two therapies that might even include direct comparisons of 

competing drugs) in different conditions (more than one patient type or disease), all within the 

same overall trial structure has been suggested 196. Adaptive trial designs that provide flexibility 
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for altering one or more aspects of the basic features of the study design based on responses in 

earlier phases is also an option197, although this will add substantial complexity to data 

interpretation.  Notably, given the heterogeneity of NAFLD according to ethnicity and 

geographic region, regional stratification or performing separate trials in different geographic 

regions should be considered for key trials.  

Is NAFLD the right name for metabolic liver disease?  

How do the above considerations influence our thinking on the need to revise the definition 

and nomenclature for NAFLD? It is clearly the time to do this. The suggestion of this consensus 

focusses on four aspects.  

First, NAFLD was described as a condition of “exclusion”, which means that it exists only 

when other conditions such as viral hepatitis B and C, autoimmune diseases or alcohol intake 

above a particular threshold are absent. However, with advancements in our understanding of 

the underlying pathological processes, it is clearly a disease that must be defined by inclusion, 

rather than by exclusion. Further, given its high prevalence in most affluent populations, 

especially those consuming a westernized diet, fatty liver disease is recognized to coexist with 

other conditions such as viral hepatitis, autoimmune diseases and alcohol198-200 and will have 

synergistic effects on disease progression 201, 202. The nomenclature for fatty liver disease and 

criteria for diagnosis need to reflect this new knowledge.   

Second, there remains debate about the safe limit of alcohol intake. Updating a diagnosis of 

NAFLD to zero or near to zero alcohol consumption as has been suggested by some is clearly 

impractical, as recently discussed15. Furthermore, there are significant methodological 

challenges in questionnaires used for measuring alcohol consumption including documenting 

prior and over life use, low amounts of intake, patient underreporting and recall bias, as well 

as marked variability in defining terms such as “social drinking” and “binging” in individuals 
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with NAFLD. Thus, linking metabolic fatty liver disease, a distinct entity, to alcohol in its name 

is problematic. Moreover, including the term “non-alcoholic” in the name is disappointing for 

abstemious patients and links this entity to the stigma of alcohol consumption. Confounding 

terms in the name of these diseases should be replaced as has already been done with primary 

biliary cirrhosis becoming primary biliary cholangitis, with sometimes redundant but more 

accurate and clear words, defining the entity203. More importantly, there is an urgent need to 

identify coexisting metabolic and alcohol liver disease so that they may be treated 

appropriately. This group of patients is distinct from those with pure or predominant alcoholic 

cirrhosis. Such patients are currently excluded from all NASH trials.  

Third, though in clinical practice we segregate patients into those with NASH and those 

without, whether this is appropriate is a matter of debate. As we know, there is tremendous 

plasticity in metabolic liver disease over the life span and strong evidence that fibrosis is the 

major determinant of adverse outcomes21. Hence, the current classification may be misleading 

and perhaps metabolic dysfunction associated fatty liver disease should be considered similar 

to other chronic liver diseases with some degree of activity and a stage of fibrosis, without 

dichotomous stratification into NASH and non-NASH. From a pathological perspective, this 

will result in improved disease classification, at least in the context of liver biopsy26.   

Fourth, the heterogeneous nature of fatty liver diseases suggests that they cannot be considered 

or managed as a single condition with a “one size fits all” approach to therapy. Lack of 

consideration of heterogeneity impacts and detracts from our ability to precisely define the 

natural history of fatty liver phenotypes, to appropriately select for clinical trials that are 

weighted to demonstrate meaningful benefits, and to compare or pool results from the trials. 

For these reasons, an updated and appropriate nomenclature for the disease is the first step in 

the long path to deconvolution of disease heterogeneity.    
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Based on the above, participants agreed on the need for a revised and updated terminology; the 

bulk of respondents in the first round of survey suggested that the words metabolism, fat and 

liver be included in some form in the name. The final vote favouring Metabolic Associated 

Fatty Liver ± Disease (MAFL/MAFLD) (supported by 72.4% of participants). The second 

preference Metabolic Fatty Liver +/- Disease (MEFL/MEFLD) was supported by 17.2% 

(Supplementary table 1). Thus, the panel suggests we eliminate the term “NAFLD” from the 

lexicon and replace it with metabolic associated fatty liver “MAFLD”. The term MAFLD 

represents the overarching umbrella of the common disease we treat and will have multiple 

sub-phenotypes, reflecting the dominant driver of disease. Obviously, many, if not most, 

patients will have overlapping contributions from other and distinct liver diseases that range 

from alcohol (regardless the amount) to viral hepatitis. The natural history of these latter groups 

is likely very different from those with pure metabolic dysfunction. 

 

Conclusion  

The outdated NAFLD/NASH acronyms, the criteria for diagnosis and a lack of adequate 

consideration of heterogeneity in risk profiles and treatment responsiveness represent barriers 

that hamper progress towards effective treatments. The consensus group has suggested an 

acronym (MAFLD) that we believe more accurately reflects current knowledge of fatty liver 

diseases associated with metabolic dysfunction that should replace NAFLD/NASH. In 

addition, we have identified gaps in current knowledge and highlight new strategies and tools 

to overcome the challenges (Supplementary table 2). A summary of suggestions is provided 

in Table 1.  The group acknowledges the many investigators in the field who have made similar 

well-reasoned pleas for a change in nomenclature. This work also opens up for wider 

consultation with the public, patients, regulators and non-hepatology health care workers, the 

necessity for a nomenclature update. Future studies will allow us to further characterise and 
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sub-phenotype the disease and its drivers as a necessary prerequisite for the design of more 

appropriate clinical trials and for patient management and to consider the implications of the 

updated of nomenclature on clinical practice and public health policy  (Figure 4). 
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Figures legends 

Figure 1: Heterogeneity of metabolic associated fatty liver disease. The heterogeneity in 

clinical presentation and course of fatty liver disease is influenced by a multitude of factors 

including age, sex, ethnicity, alcohol intake, dietary habits, hormonal status, genetic 

predisposition and epigenetic factors, the microbiota and metabolic status. It is likely that there 

is a differential impact in the contribution of the various factors in any individual over time and 

among individuals that then shapes disease phenotype and course.  

Figure 2: Inter-individual variation in the predominant drivers of metabolic associated 

fatty liver disease. Metabolic associated fatty liver disease is a complex phenotype shaped by 

the dynamic interaction of genetic predisposition with environmental factors and components 

of the metabolic syndrome. The effect size of genetic variants and the predominant drivers can 

exhibit marked inter-individual variation. As an example, disease in patient 1 is driven 

predominantly by environmental influences with less contribution from genetic predisposition; 

in patient 2, metabolic syndrome is the predominant driver, while disease in patient 3 is driven 

by genetic factors with a limited contribution from other factors. Identification of the 

predominant drivers in every patient can help in personalisation of medicine.  

Figure 3: Innovative clinical trials for metabolic associated fatty liver disease. The 

substantial heterogeneity of patients with metabolic associated fatty liver disease and the 

limited responses to investigational targets in current clinical trials imply that innovative trial 

designs are required. Trial designs such as umbrella, basket and adaptive designs have been 

suggested to overcome the challenges. However, such designs add complexity to the trial 

analysis. 

Figure 4: Implications of the proposed update to the metabolic associated fatty liver 

disease nomenclature. The growing burden of metabolic associated fatty liver disease in the 
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absence of effective therapies requires an updated process map to address the challenges. The 

first step is an update of nomenclature, as without precise terminology, neither patient care nor 

science can be adequately served. This update of nomenclature we expect will be a step towards 

further characterisation of disease heterogeneity. In turn, detailed phenotyping can guide the 

development of better preclinical models and identify novel therapies that are likely to be 

effective for particular patient subtypes, but not others. This will lead to improved clinical trial 

designs, allowing us to compare and pool results and thereby help reduce the impact of disease 

burden.  

Supplementary Figure 1: Conceptual framework of metabolic dysfunction and 

pathogenesis of metabolic associated fatty liver disease. For metabolic homeostasis, the 

neuroendocrine axes elicits multiple and complex responses that orchestrate with caloric 

intake, muscle mass and physical activity as well as with the enterohepatic circulation, 

including gut microbiota, bile acids and their metabolites. These circles are interconnected at 

various levels. For example adiponectin signaling from adipose tissue to liver, the liver (FGF 

21) to the central nervous system, the duodenum (Cholecystokinin) to the brain, etc. These 

various inputs are integrated in the liver. Dysfunctional homeostatic responses at any of 

multiple levels are implicated in the heterogeneous pathogenesis of metabolic associated fatty 

liver disease. 
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Table 1: Statements of the consensus panel 

 

 

  

Nomenclature and definition of metabolic associated fatty liver disease (MAFLD) 

 We suggest that the nomenclature of NAFLD should be updated to MAFLD. 

 The diagnosis of MAFLD should be based on the presence of metabolic dysfunction not the 

absence of other conditions 

 MAFLD can co-exist with other liver diseases 

 A reference to alcohol should not be included in the MAFLD acronym. 

 Patients with both MAFLD and a contribution from alcohol to their liver disease represent a 

large and important group that requires further investigation and characterisation.  

 

MAFLD heterogeneity  

 MAFLD is a heterogeneous entity 

  Appropriate patient stratification must be considered when non-invasive fibrosis scores are 

developed and in clinical trial design 

 Studies are required to map the landscape of MAFLD and to precisely define subtypes of the 

disease 

Clinical trials for  MAFLD  

 Detailed patient stratification and tailoring clinical trial inclusion criteria based on drivers of 

disease will likely yield more informative and meaningful results 

 Innovative designs for clinical trials and personalised combination therapy approaches will 

likely be required to overcome the challenges of disease heterogeneity and for optimal 

clinical efficacy. 
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