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ABSTRACT

Context. Accreting supermassive black holes are sources of polarized radiation that propagates through highly curved spacetime be-
fore reaching the observer. Accurate and efficient numerical schemes for polarized radiative transfer in curved spacetime are needed
to help interpret observations of such polarized emission.
Aims. We aim to extend our publicly available radiative transfer code RAPTOR to include polarized radiative transfer, so that it can
produce simulated polarized observations of accreting black holes. The RAPTOR code must remain compatible with arbitrary space-
times and it must be efficient in operation, despite the added complexity of polarized radiative transfer.
Methods. We provide a brief review of various codes and methods for covariant polarized radiative transfer available in the literature
and existing codes, and we present an efficient new scheme. For the spacetime propagation aspect of the computation, we developed a
compact, Lorentz-invariant representation of a polarized ray. For the plasma-propagation aspect of the computation, we performed a
formal analysis of the stiffness of the polarized radiative-transfer equation with respect to our explicit integrator. We also developed a
hybrid integration scheme that switches to an implicit integrator in case of stiffness in order to solve the equation with optimal speed
and accuracy for all possible values of the local optical/Faraday thickness of the plasma.
Results. We performed a comprehensive code verification by solving a number of well-known test problems using RAPTOR and com-
paring its output to exact solutions. We also demonstrate convergence with existing polarized radiative-transfer codes in the context
of complex astrophysical problems, where we found that the integrated flux densities for all Stokes parameters converged to excellent
agreement.
Conclusions. The RAPTOR code is capable of performing polarized radiative transfer in arbitrary, highly curved spacetimes. This
capability is crucial for interpreting polarized observations of accreting black holes, which can yield information about the magnetic-
field configuration in such accretion flows. The efficient formalism implemented in RAPTOR is computationally light and conceptually
simple. The code is publicly available.
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1. Introduction

Many low-luminosity active galactic nuclei (LLAGN) display
prominent jets and compact cores that are sources of highly non-
thermal continuum radio emission (see, e.g., Heeschen 1970;
Wrobel & Heeschen 1991). The observational signatures of the
compact cores have been reproduced using models that pro-
duce self-absorbed synchrotron emission in the jet (Falcke &
Biermann 1995; Falcke et al. 2004) or in a magnetized accretion
flow (Narayan et al. 1998; Yuan et al. 2003; Broderick & Loeb
2006; Moscibrodzka et al. 2009; Dexter et al. 2009; see also
Falcke et al. 2001). This radiation is emitted by relativistic
electrons gyrating around magnetic field lines. In the opti-
cally thin limit, the emission is significantly polarized (Jones
& Hardee 1979), an effect that has been observed in higher-
luminosity AGN sources (Gabuzda et al. 1996; Gabuzda &
Cawthorne 2000; Lyutikov et al. 2005). The polarized emission
from an accreting AGN can therefore yield information about
the magnetic-field morphology of the source, which may be cru-

? The public version of RAPTOR is available at the following URL:
https://github.com/tbronzwaer/raptor

cial to the evolution of the accretion flow of the AGN. The Event
Horizon Telescope (EHT) is a worldwide millimeter-wavelength
array capable of resolving the black-hole shadow (Goddi et al.
2017; Event Horizon Telescope Collaboration 2019); this is
a characteristic feature of the radio-frequency emission from
optically thin AGN at the scale of the event horizon (Falcke
et al. 2000; Broderick & Narayan 2006), although the black-
hole shadow may be obscured or exaggerated in certain accretion
scenarios (see Gralla et al. 2019 and Narayan et al. 2019). The
EHT can also determine the polarization state of such emission:
Johnson et al. (2015) report 1.3 mm observations (230 GHz)
that indicate partially ordered magnetic fields within a region of
about six Schwarzschild radii around the event horizon of Sagit-
tarius A* (Sgr A*), the supermassive black hole in the center of
the Milky Way. Bower et al. (2003) reported stable long-term
behavior and short-term variability in Sgr A* rotation measure,
implying a complex inner region (within 10 Schwarzschild radii)
in which both emission and propagation effects are important to
the observed polarization. Hada et al. (2016) studied the cen-
tral black hole in the galaxy M 87, and observed a bright fea-
ture with (linear) polarization degree of 0.2 at 86 GHz at the jet
base. Observations in infrared by Gravity Collaboration (2018)
were consistent with a model in which a relativistic “hot spot” of
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material, orbiting near the innermost stable circular orbit (ISCO)
of Sgr A* in a poloidal magnetic field, emits polarized syn-
chrotron radiation.

To study accreting supermassive black holes, general-
relativistic radiative transfer (GRRT) codes are used (see, e.g.,
Jaroszynski & Kurpiewski 1997; Bromley et al. 2001; Broderick
2006; Noble et al. 2007; Dexter & Agol 2009; Younsi et al. 2012).
The GRRT codes solve the geodesic equation in curved spacetime
to compute null geodesics, and then solve the radiative-transfer
equation along the null geodesics to produce an image. This
computation requires the evaluation of emission and absorption
coefficient of radiation along the geodesics. In our case, the
emission and absorption coefficients are computed using the
state variables of a radiating plasma, that is, the black-hole
accretion flow, generally consisting of both a disk and a jet.
Plasma variables needed to compute the emission and absorption
coefficients, such as density, magnetic fields, and temperature,
are either provided by analytical or semi-analytical models, or
by fully numerical, general-relativistic magnetohydrodynamical
(GRMHD) plasma simulations. Some models, such as the
thin-disk model of an accreting black hole in a black-hole binary
system (Shakura & Sunyaev 1973; Novikov et al. 1973), consist
of a geometrically thin, optically thick disk, meaning that the
emissivity function along a ray is a delta function; other models,
such as those based on GRMHD data, may be geometrically thick
yet optically thin, necessitating the use of volumetric rendering
techniques, specifically, solving the radiative-transfer equation
along a ray.

In order to interpret and complement polarized observations,
it is important that the numerical radiative-transfer tools used to
study accreting supermassive black holes are capable of includ-
ing polarization. In a previous paper (Bronzwaer et al. 2018),
we presented RAPTOR, a publicly available GRRT code capa-
ble of performing time-dependent radiative transfer in arbitrary
spacetimes. In the present paper, we develop a novel formalism
and algorithm for polarized radiative transfer to extend RAPTOR’s
capabilities. Two things affect the polarization state of radia-
tion propagating through a plasma in a strong gravitational field,
namely: propagation through curved spacetime itself (which may
rotate the polarization vector around the propagation direction
of the ray), and interaction with the plasma (which may affect
the polarization state in a general way). In order to model these
two processes quantitatively, several equivalent formalisms for
covariant polarized radiative transfer have been proposed in the
literature; these formalisms differ in the ways in which they
represent polarized radiation and in the method of integration.
Broderick & Blandford (2004), Shcherbakov & Huang (2011),
Dexter (2016), and Younsi et al. (2020) represented polar-
ized radiation using the Stokes parameters plus a polarization
basis vector, integrating the Stokes parameters through curved
spacetime and any plasma that may be present while parallel-
transporting the basis vector. Moscibrodzka & Gammie (2018)
also represented polarized radiation using the Stokes parameters
for computing the plasma interaction. But their formalism, which
is based on Gammie & Leung (2012), transforms back and forth
between the Stokes parameters (which are convenient for com-
puting the interaction of the ray with a radiating plasma) and a
covariant description of the polarization state. This polarization
state is a tensor called the coherence matrix, which is convenient
for propagation through spacetime. In this work, we choose to
develop a novel formalism for RAPTOR to match our previously
chosen numerical methods (Bronzwaer et al. 2018) and to opti-
mize computational efficiency and accuracy of RAPTOR.

This paper is organized as follows: in Sect. 2, we discuss the
theory of polarized radiative transfer in curved spacetime as well
as various methods for solving the governing equations. We also
present the representation of polarized radiation by RAPTOR. In
Sect. 3, we construct a numerical algorithm that solves the polar-
ized radiative-transfer equation and analyze the stiffness of that
equation with respect to our integrator, using the results to opti-
mize the accuracy of our algorithm. We demonstrate the correct-
ness of our algorithm by comparing RAPTOR output to previous
results, as well as to the output of other codes, in the context of
complex, astrophysical problems in Sect. 4. We summarize our
results in Sect. 5.

2. Polarized radiative transfer in curved spacetime

Electromagnetic radiation is the most ubiquitous messenger of
information in astrophysics. Emitted by sources widely dis-
tributed in space and time, this kind of radiation pervades the
universe and interacts with matter, most of which exists as a
plasma. Some of this radiation is emitted in a highly polarized
state, such as synchrotron radiation. Some of this radiation is
(de)polarized after emission, for example, by interaction with
magnetized plasmas (Aitken et al. 2000) or dust grains (Davis &
Greenstein 1951). Besides interaction with matter, propagation
of polarized radiation through curved spacetime can also affect
the polarization state of the radiation (Misner et al. 1973).

In Bronzwaer et al. (2018), we represented an “unpolarized”
ray of light by its intensity Iν (where ν is the radiation frequency),
position xµ, and wave vector kµ; the wave vector describes the
traveling direction and frequency of a ray to solve the radiative-
transfer equation along null geodesics. In the case of polarized
radiative transfer, we must additionally keep track of the polar-
ization state of the ray, which describes the orientation and phase
of the electromagnetic oscillations associated with the ray. In the
case of an ensemble of photons with identical polarization states,
the polarization state is said to be pure, while in the case of an
ensemble of photons with multiple polarization states, the polar-
ization state is mixed. As before, RAPTOR functions in the regime
of geometrical optics, in which the radiation wavelength must be
much smaller than the typical length scales of plasma features
and spacetime curvature.

2.1. Descriptions of a polarized ray: Propagation through a
curved spacetime

Various descriptions of the polarization state of radiation are
used in the literature. These descriptions differ in three key ways:
(i) whether or not they encode the phase of the polarization state,
(ii) whether or not they can describe mixed states or only pure
states, and (iii) whether or not they are Lorentz covariant.

In the present context, we neglect all information about the
phase of the polarization state. This is because ray tracing is
valid only in the regime of geometrical optics, in which the
phase is omitted, so that wave effects (such as interference and
diffraction) are neglected. We do, however, choose to incorpo-
rate a description of mixed states, as astrophysical sources can
emit polarized radiation in such states. Additionally, a partic-
ular description may be more suitable than others, depending
on the circumstances. For example, interaction with a radiat-
ing plasma is commonly described using the Stokes parameters,
while the effects of propagation through curved spacetime are
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more easily calculated using a Lorentz-covariant description. It
is therefore necessary to be able to convert between the different
descriptions. In this section we describe the two descriptions of
a polarized ray used in RAPTOR, as well as the transformation
equations between these two descriptions. We then present the
equations of motion through curved spacetime for a polarized
ray.

2.1.1. Stokes parameters

The Stokes parameters, denoted I,Q,U,V , describe the polar-
ization state of a ray by encoding the total intensity of radiation,
the intensities of the two types of linear polarization, and the
circularly polarized intensity, respectively. The Stokes parame-
ters must be defined in a particular coordinate system such that
the wave vector of the associated radiation is parallel to the z-
axis of the coordinate system. Their signs are then determined
by choosing a convention, that is, a handedness and orienta-
tion of the observer coordinate frame. This paper follows the
International Astronomical Union (IAU) convention, in which
the angle χ = 1/2 arctan (U/Q), called the electric vector posi-
tion angle (EVPA), is defined as an angle east of north, and
the sense of circular polarization is called right-handed (left-
handed) if the direction of rotation of the EVPA is clockwise
(anti-clockwise) for an observer looking in the direction of prop-
agation. For a detailed description of this convention, see, for
example, Hamaker & Bregman (1996).

The Stokes parameters are often represented as a vector, the
Stokes vector, denoted S = (I,Q,U,V)T. They may also be writ-
ten in terms of specific intensities, which is convenient for our
purpose, as follows: Sν = (Iν,Qν,Uν,Vν)T. The Stokes parame-
ters represent quantities that can be readily measured, hence they
are generally used to report observational results.

The Stokes parameters can encode both pure and mixed
polarization states; we can distinguish between the two using
the degree of polarization, p, which is calculated as follows:

p =
Iν,pol

Iν
=

√
Q2
ν + U2

ν + V2
ν

Iν
, (1)

where Iν,pol is the intensity of polarized radiation (which is in a
pure state, described by Qν,Uν,Vν) and Iν the total intensity. For
pure polarization states, this results in p = 1 and Iν,pol = Iν;
for mixed states, we have 0 ≤ p < 1 and Iν,pol ≤ Iν. The
Stokes parameters omit phase information, and the Stokes vector
is not Lorentz covariant. Consequently, to transport the Stokes
parameters through curved spacetime consistently, it is neces-
sary to transport a basis vector along the geodesic, even in the
case of propagation through a vacuum. Shcherbakov & Huang
(2011) present an algorithm that integrates the Stokes parame-
ters directly through curved spacetime in this manner.

Just as the Lorentz-invariant quantity I = Iν/ν3 was
employed during integration of the radiative-transfer equation in
Bronzwaer et al. (2018), Lorentz-invariant Stokes intensities are
defined as follows:

S :=
Sν
ν3 , (2)

where ν represents the frequency of a ray in the frame in which
Sν is evaluated. It is convenient to use these Lorentz-invariant
quantities during integration, when constantly shifting between
frames.

2.1.2. Polarization four-vector

The polarization four-vector, f µ, is a complex-valued vector that
describes a pure polarization state. As it is a four-vector, it is
Lorentz covariant. The polarization four-vector is a unit vector
written as

f µ f ∗µ = 1, (3)

where the asterisk denotes complex conjugation. The polariza-
tion vector associated with a ray is parallel-transported along the
null geodesic of the ray as follows:

kα∇α f µ = 0. (4)

When expressed in a suitable tetrad frame (see Sect. 2.2) and
provided the frame is inertial, meaning that its acceleration vec-
tor vanishes, the components of the polarization vector represent
normalized, projected electric-field amplitudes along the x and
y-axes of the frame, respectively. Using Roman indices framed
by parentheses to indicate tetrad-frame coordinates, we have

f (a) = e(a)
µ f µ =


0

Êx

Êy
0

 , (5)

where e(a)
µ are the components of the ath tetrad-basis vector

expressed in coordinates µ, and Êx and Êy are components of
a unit vector pointing along the electric field. In the most general
case, both Êx and Êy are complex, and the polarization vector
encodes the overall phase of the polarization state. It is also pos-
sible to restrict one of the components to be real; only the overall
phase information is then lost.

The polarization four-vector only describes pure polariza-
tion states; it cannot describe mixed states. However, by keeping
track of both the intensity of polarized radiation, Ipol, and the
total intensity I in addition to f µ, it is possible to represent rays
with a mixed polarization state.

Given the triplet
(
I,Ipol, f µ

)
, plus a suitable tetrad in

which to express the Stokes parameters, the transformation(
I,Ipol, f (a)

)
→ S is given by

S =


I

Q

U

V

 =


I

Ipol

(
f (1) f (1)∗ − f (2) f (2)∗

)
Ipol

(
f (1) f (2)∗ + f (2) f (1)∗

)
iIpol

(
f (1) f (2)∗ − f (2) f (1)∗

)
 . (6)

The reverse transformation, S →
(
I,Ipol, f (a)

)
, is degenerate,

as the latter quantity contains an additional degree of freedom
(the overall phase of the polarization state of the ray). The degen-
eracy is lifted by choosing a phase, that is, by demanding that
f (1) ∈ R. f (a) is then computed as follows:

Ipol =
√
Q2 +U2 +V2, (7a)

f (1) =

√
1 + Q̃

2
, (7b)

f (2) =


1 if f (1) = 0,
Ũ − iṼ
2 f (1) otherwise,

(7c)

where Q̃ ≡ Q/Ipol, and similarly for Ũ and Ṽ (we note that I
retains its identity when transforming).
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2.1.3. Spacetime propagation equation

In our model, the polarization state of a ray is affected by two
processes: propagation through spacetime and interaction with a
plasma. Given Eqs. (1) and (4), we can express the equations of
motion for propagation of a polarized ray through curved (vac-
uum) spacetime as

d
dλ

∣∣∣∣∣∣
S

f µ = −Γ
µ
αρkα f ρ, (8a)

d
dλ

∣∣∣∣∣∣
S

I = 0, (8b)

d
dλ

∣∣∣∣∣∣
S

Ipol = 0, (8c)

where λ is the affine parameter expressed in units of length
(GM/c2), which parameterizes the null geodesic. The subscript
S implies that we only consider effects due to propagation
through curved spacetime, ignoring the plasma. Equations (8a)–
(8c) show that the degree of polarization p remains constant
along a ray when propagated through a curved (vacuum) space-
time. This is a consequence of the fact that Iν,pol and Iν trans-
form in the same way between different frames, so that their ratio
remains a constant from frame to frame, and thus throughout a
(vacuum) spacetime integration. Equivalently, the corresponding
Lorentz-invariant intensities, I and Ipol, are themselves constant
along the ray, as is the ratio between these quantities.

2.2. Constructing suitable tetrad frames to express the
Stokes parameters

As in the case of unpolarized radiative transfer, it is convenient
to perform the radiative-transfer computations in a suitably cho-
sen frame. Unlike in the case of unpolarized radiative transfer,
in which transforming between frames is accomplished simply
by computing the frequency of a ray seen by an observer co-
moving with the frame of interest, this frame must now be con-
structed explicitly, as polarized radiative-transfer computations
depend on the orientation of the frame. This must be done both
at the observer’s location (the camera) and also at any location
where the ray interacts with radiating matter. It is also necessary
to specify the handedness of the tetrad frame, which is achieved
by ordering its basis vectors.

We employed a generalized version of the tetrad described
in Gammie & Leung (2012); as is the case for those authors,
our tetrad-frame indices (t, ‖,⊥,K) correspond with (t, x, y, z),
respectively, defining a right-handed coordinate system. As pre-
viously, we adopted the (−,+,+,+) metric convention, and
we denoted the tetrad-frame coordinates with Roman indices
enclosed in parentheses. In what follows, it is assumed that
the wave vector of the ray is null (kαkα = 0), that the veloc-
ity four-vector of the frame is time-like with norm −1 (i.e.,
uαuα = −1) and that dα is a space-like vector (dαdα > 0).
When the ray resides inside the volume for which GRMHD
data is available, uα is given by the local plasma four-velocity,
and we may use the local magnetic-field four vector (bα) for
the space-like vector dα; bα is space-like (except for the patho-
logical case in which it vanishes, in which case the integration
step may be skipped), and orienting the tetrad this way simpli-
fies calculations because all coefficients related to Stokes U van-
ish. Under these circumstances we refer to the tetrad frame as
the plasma frame. When no magnetic-field vector is available,
or when we wish to orient the tetrad in a specific way (e.g., to

represent a particular observer’s position and attitude), the trial
vector dα must be constructed in such a way that it is space-like.
This generally happens at the observer’s location, in which case
we refer to the tetrad as the observer frame; the velocity four-
vector in such cases is generally chosen to be stationary, so that
uµ,obs = (ut, 0, 0, 0). Since ut is a constant, the observer frame
is an inertial frame. We note that the tetrad must be constructed
so as to respect the IAU/IEEE observer convention (Hamaker &
Bregman 1996).

To construct a tetrad frame for a ray, we start by defining the
intermediate quantities

d2 B dαdα, (9a)
β B uαdα, (9b)
ω B −kαuα, (9c)

C B
kαdα

g
− β, (9d)

N B

√
d2 + β2 − C2. (9e)

The tetrad is then constructed, using the Gram-Schmidt
orthonormalization procedure, as follows:

eµ(t) = uµ , (10a)

eµ(K) =
kµ

ω
− uµ , (10b)

eµ(‖) =
dµ + βuµ − Ceµ(K)

N
, (10c)

eµ(⊥) =
εµναβuνkαdβ

ωN
, (10d)

where

εµναβ = −
1
√
−g

[
µναβ

]
(11)

is the Levi-Civita tensor,
[
µναβ

]
is the permutation symbol, and

g ≡ det
(
gµν

)
. We note that the general metric tensor gµν acts on

coordinate-frame indices, while the Minkowski metric tensor ηµν
acts on fluid-frame indices, e.g., gµν → ηµν in the fluid frame.

2.3. Plasma interaction: Synchrotron emission, absorption,
and Faraday rotation coefficients

The interaction of the ray with a plasma is most conveniently
expressed using the Stokes parameters. Given the plasma frame,
we require a set of emission, absorption, and rotation coeffi-
cients j, α, and ρ, respectively. The coefficients used in RAPTOR
are adapted from Dexter (2016). These are recapitulated in
Appendix C. We note that the coefficients must be expressed
in their Lorentz-invariant form (Sect. 2.1.1). The effect of the
plasma on the invariant Stokes parameters is given by

d
dλ

∣∣∣∣∣∣
P


I

Q

U

V

 =


jI
jQ
jU
jV

 −

αI αQ αU αV
αQ αI ρV −ρU
αU −ρV αI ρQ
αV ρU −ρQ αI



I

Q

U

V

 , (12)

where the subscript P implies that only the interaction of the ray
with the plasma is taken into account (ignoring the effects due to
spacetime propagation).
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3. Implementation

In this section, we develop algorithms to implement the polar-
ized radiative-transfer formalism described in Sect. 2 in RAPTOR.
The main challenge in this implementation lies in the fact that
the polarized radiative-transfer equation (Eq. (12)) may become
stiff with respect to explicit integrators depending on the plasma
conditions. To mitigate this problem, we analyzed when stiff-
ness occurs and developed an implicit integrator for such integra-
tion steps. Precise knowledge of where stiffness occurs is crucial
when it comes to minimizing the number of implicit steps, which
are less accurate, although much more stable.

3.1. Integration strategy

As in the case of unpolarized radiative transfer through curved
spacetime, the integration can be thought of as consisting of
two parts: vacuum integration, which takes care of the effects
on a polarization state of the ray due purely to traveling through
curved spacetime; and plasma integration, which describes the
interaction of the ray with the plasma through the emission of
the plasma, absorption, and rotation coefficients (Sect. 2.3). The
two sub-problems are handled with separate routines. During an
integration step and when the ray resides in a radiating plasma,
the plasma interaction is computed first, after which a spacetime-
propagation step is taken (as if through a vacuum). When the ray
resides in vacuum, the plasma-integration step is omitted.

3.2. Numerical scheme for plasma integration

To take the interaction of a ray with the radiating plasma into
account, we must solve Eq. (12) numerically. As a consequence
of aligning the frame so that the Stokes U polarization mode
is parallel to the magnetic-field vector of the plasma, we have
jU = αU = ρU = 0. Depending on the local values of the
emission, absorption, and rotation coefficients, Eq. (12) may be
a stiff equation for explicit integration schemes. The condition
for stiffness is different for each explicit integrator and does not
directly depend on any particular physical quantity, but rather
on the product of the local step size taken by RAPTOR and the
largest eigenvalue of the matrix appearing in Eq. (12) (see, e.g.,
Gautschi 2011). The RAPTOR code uses the fourth-order Runge-
Kutta (RK4) explicit integrator (see below); an analysis of when
Eq. (12) becomes stiff for the explicit RK4 integrator is presented
in Appendix A. The result of that analysis is a numerical stiffness
check that is performed at each integration step.

Stiff equations are practically impossible to solve using for-
ward integration methods on the order considered so far in
RAPTOR; the solution becomes unstable and prohibitively small
step sizes are required. Implicit integration methods are much
more stable and can be applied even to stiff problems. However,
they tend to dampen rapid oscillations, which increases the sta-
bility, but which comes at the cost of less accuracy. In order to
integrate Eq. (12), Dexter (2016) employs three integration strate-
gies: an implicit-explicit integrator routine from the LSODA pack-
age, an implementation of the DELO method (Rees et al. 1989),
and an explicit quadrature method based on the work of Landi
Degl’Innocenti & Landi Degl’Innocenti (1985). Mościbrodzka
et al. (2016) employed a semi-analytical solution also based on
Landi Degl’Innocenti & Landi Degl’Innocenti (1985), along with
a three-step numerical integration routine. We choose to develop a
novel implicit-explicit integrator for RAPTOR. Since stiffness con-
ditions vary throughout the plasma, using only implicit methods
may needlessly sacrifice accuracy in regions where Eq. (12) is not

stiff. Switching to an explicit integration scheme in such regions
improves the overall accuracy of the computation.

For explicit integration steps, our algorithm uses the follow-
ing RK4 integrator:

C1,S = ∆λ · F
(
S
)
, (13a)

C2,S = ∆λ · F
(
S +

1
2

C1,S

)
, (13b)

C3,S = ∆λ · F
(
S +

1
2

C2,S

)
, (13c)

C4,S = ∆λ · F
(
S + C3,S

)
, (13d)

where F represents the right side of Eq. (12). A single explicit
integration step proceeds as follows:

Snew = S +
1
6

(
C1,S + 2C2,S + 2C3,S + C4,S

)
. (14)

For implicit steps, our algorithm uses the (second-order) implicit
trapezoid method given as

Snew = S +
∆λ

2

[(
j − MSnew

)
+

(
j − MS

)]
, (15)

where j =
(
jI , jQ, jU , jV

)T and M is the 4-by-4 matrix appearing
in Eq. (12). Since Eq. (12) is linear, the implicit trapezoid method
for this equation yields an explicit equation for Snew using an
LU-decomposition, so that there is no root-finding penalty even
for implicit steps (see Appendix B).

3.3. Numerical scheme for vacuum integration

Previously we integrated the position of the ray, xα, as well as its
wave vector, kα, through arbitrary, curved spacetimes. We must
now also keep track of the description of the polarization state of
the ray, which is captured in the polarization vector f µ; in other
words, we must solve Eq. (8a).

As before, we use a RK4 scheme to integrate the ray back-
ward, that, starting at the camera. After a stopping condition has
been reached (e.g., the ray plunges into the horizon or reaches
the outer boundary of a GRMHD simulation), polarized radia-
tive transfer proceeds in the forward direction, that is, toward the
camera. We extend Eqs. (7)–(14) from Bronzwaer et al. (2018)
(noting that forward integration, i.e., from the plasma toward the
camera, is employed) to include the polarization vector as fol-
lows:

C1, f α = ∆λ · Fα
(
xi, ki, f i

)
, (16a)

C2, f α = ∆λ · Fα
(
xi + 1

2C1,xi , ki + 1
2C1,ki , f i + 1

2C1, f i

)
, (16b)

C3, f α = ∆λ · Fα
(
xi + 1

2C2,xi , ki + 1
2C2,ki , f i + 1

2C2, f i

)
, (16c)

C4, f α = ∆λ · Fα
(
xi + C3,xi , ki + C3,ki , f i + C3, f i

)
, (16d)

where, as in Bronzwaer et al. (2018), underlined indices are a
notational shorthand to indicate that all coordinate indices occur
on the right-hand side of these equations and Fα represents the
right-hand side of Eq. (8a). Given these coefficients, an integra-
tion step proceeds as follows:

f αnew = f α +
1
6

(
C1, f α + 2C2, f α + 2C3, f α + C4, f α

)
. (17)

A126, page 5 of 13



A&A 641, A126 (2020)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
liz

e
d
 S

to
ke

s 
p
a
ra

m
. 
S

I, RK4

Q, RK4

I, exact

Q, exact

0.0 0.5 1.0 1.5 2.0 2.5 3.0

s

-4e-12

-4e-12

-3e-12

-2e-12

-2e-12

-2e-12

-1e-12

-5e-13

0e+00

5e-13

S
n
u
m
−
S

ex
ac

t

Q, RK4-exact

I, RK4-exact

Fig. 1. Stokes I and Q (in normalized units) as a function of distance
traveled s, using the explicit RK4 integration routine, for the first flat-
spacetime plasma-integration test.

4. Code verification

In this section we aim to verify the correctness of the output
of RAPTOR by comparing it to analytical results and to the out-
put from various codes. For this purpose, a number of verifica-
tion tests were selected from the literature and reproduced via
RAPTOR. Convergence tests were also performed for all integra-
tors described in the previous section.

4.1. Plasma-integration test: Comparison to analytical
solution

As a first step, we test our numerical integrator for Eq. (12), that
is, the interaction of the ray with the radiating plasma. We note
that the two tests reproduced in this section were also reproduced
by Dexter (2016) and Moscibrodzka & Gammie (2018), the lat-
ter of which performed the test using nonstandard “snake” coor-
dinates, which means that the space-time integration routine is
tested simultaneously in their case, making it a more challenging
test. In each case, the initial conditions are I = Q = U = V = 0
and the step size is ∆s = 0.003.

In the first plasma test, jI = 2, jQ = 1, αI = 1, and αQ = 1.2
(all other coefficients vanish). Figure 1 shows the integration
results for this test using the RK4 algorithm, while Fig. 2 shows
the results for the implicit trapezoid algorithm. In the second
plasma test, jQ = jU = jV = 0.1, ρQ = 10, and ρV = −4
(again, all other coefficients vanish). Figure 3 shows the integra-
tion results for this test using the RK4 algorithm, while Fig. 4
shows the results for the implicit trapezoid algorithm. We note
the difference in the scale of the errors for the implicit trape-
zoid scheme versus the explicit RK4 scheme – the RK4 scheme,
being of a higher order, produces a more accurate result in both
cases. On the other hand, the implicit trapezoid scheme is much
more robust with respect to increasing the step size, as shown
in Fig. 5. Figure 5 repeats the calculation shown in Fig. 4 with
a step size that is 100 times larger. Using these settings, the
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Fig. 2. Stokes I and Q (in normalized units) as a function of distance
traveled s, using the implicit trapezoid integration routine, for the first
flat-spacetime plasma-integration test.
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Fig. 3. Stokes Q, U, and V (in normalized units) as a function of dis-
tance traveled s, using the RK4 integration routine, for the second flat-
spacetime plasma-integration test.

RK4 scheme fails to produce a meaningful result and the error
diverges; the trapezoid scheme, on the other hand, remains sta-
ble, although the accuracy is affected by the large stepsize.

Error-convergence plots for both routines are shown in
Figs. 6 and 7; to compute the error for these plots, the absolute
difference between the exact and numerical solution was taken
at the end of integration, where λ = 3. The fact that the leftmost
data point of Fig. 6 is slightly offset from the convergence line
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tance traveled s, using the implicit trapezoid integration routine, for the
second flat-spacetime plasma-integration test.
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Fig. 5. As in Fig. 4, but with a stepsize that is 100 times bigger, so the
range of s is 100 times larger as well.

suggests that the machine precision, which is of order 1e−16 for
the double-precision arithmetic used in RAPTOR, is reached.

4.2. Spacetime-integration test: Thin-disk model

Next, we test our integrator for Eq. (8a), that is, the equation for
propagation of a polarized ray through spacetime. We do so in a
spacetime devoid of matter, save for a geometrically thin, opti-
cally thick accretion disk in the equatorial plane, based on the
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Fig. 6. Stepsize-convergence plot for the RK4 plasma-integration rou-
tine, for the second plasma test (see Sect. 4.1). The error is proportional
to to ∆λ4, as expected.
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Fig. 7. Stepsize-convergence plot for the implicit trapezoid plasma-
integration routine for the second plasma test (see Sect. 4.1). The error
is proportional to to ∆λ2, as expected.

description by Shakura & Sunyaev (1973) and Novikov et al.
(1973). The blackbody radiation emitted by the disk is scat-
tered by electrons in the atmosphere of the disk. The radiation
is limb-darkened by the atmosphere of the disk and it is par-
tially, linearly polarized in the plane of the disk, perpendicular
to both the wave vector and the disk normal, as in the model
presented in Chandrasekhar (1960) and studied in Connors et al.
(1980) and Schnittman & Krolik (2009). The disk’s atmosphere
is not represented in the geometry of the model, but atmospheric
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Fig. 8. Polarized image of the thin-disk model from Schnittman & Krolik (2009) in terms of the Stokes parameters. The image size is 200 by 200
pixels. Flux is given in Jy px−1 (Jansky per pixel). Stokes V is omitted, as it vanishes owing to the symmetry of the problem.

Table 1. Integrated flux densities for all Stokes parameters for the thin-
disk test (Sect. 4.2) and the low- and high-flux versions of the GRMHD
test (Sect. 4.1).

Flux Thin disk GRMHD low GRMHD high

S ν,I
(
Jy

)
6.869 × 106 0.0102 0.494

S ν,Q
(
Jy

)
−1.586 × 105 −0.000312 −0.00722

S ν,U
(
Jy

)
1.057 × 104 0.00032 −0.00328

S ν,V
(
Jy

)
0 −6.96 × 10−6 0.00333

Notes. Images of these tests (albeit at a modified field of view and cam-
era resolution) are shown in Figs. 8, 11, and 12.

Table 2. Settings used to reproduce the thin-disk test (Sect. 4.2) as well
as the low- and high-flux versions of the GRMHD test (Sect. 4.1).

Parameter Thin-disk test value GRMHD test value

a 0.99 0.94
MBH 10 M� 6.2 × 109 M�
dsource 0.05 pc 16.9 Mpc
νcam 2.417989 × 1017 Hz 230 GHz
rcam 104RG 104RG
θcam 75 deg 163 deg
φcam 0 0
DX = DY 40 RG 44.17RG
NX = NY 80 px 160 px
Ṁ 1.399 × 1017 g s−1 −

Mlow − 1.672 × 1026 g
Mhigh − 2.739 × 1025 g

Notes. The test results are recapitulated in Table 1.

effects are taken into account by modifying the emission coeffi-
cient. In this model, the emission coefficients are delta functions
along the ray; they are evaluated once, after which the polar-
ized light is transported through the vacuum, allowing us to test
the vacuum-integration routine; this result was previously repro-
duced in Dexter (2016).

Figure 8 shows the results obtained using the settings spec-
ified by an EHT internal note on polarized radiative transfer;
these settings are listed in Table 2. The integrated flux densi-
ties for all Stokes parameters are reported in Table 1. Although
we report the results in units of Jansky per pixel for continu-
ity with the rest of the paper, the camera frequency for this
result was in the X-ray part of the electromagnetic spectrum.
Figure 9 shows the same result but should be compared with
Fig. 1 in Schnittman & Krolik (2009) in the polarization vector
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Fig. 9. Polarized image of the thin-disk model from Schnittman &
Krolik (2009) shown with polarization vectors.
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Fig. 10. Stepsize-convergence plot for the RK4 spacetime-transport rou-
tine, for a particular ray in the thin-disk test (see Sect. 4.2). The error is
proportional to to ∆λ4, as expected.

representation. Figure 9 also uses a value of 0.9 for the black-
hole spin, as did those authors.

Figure 10 shows the stepsize-convergence plot for the RK4
spacetime-integration routine (which integrates Eq. (8a)). The
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Fig. 11. Polarized image of the GRMHD-based third test for the high-accretion-rate scenario. A different field of view from the original test (see
Table 2) enhances the clarity of the images; the camera size for these images is 20 by 20 RG, and the image size is 1024 by 1024 pixels. Flux is
given in Jy px−1 (Jansky per pixel). The integrated flux densities, useful for code-comparison purposes, are recapitulated in Table 1.

error was computed by tracking the norm of the polarization
vector, which should be conserved after integration of the ray;
the ray passes close to the black hole through a strongly curved
region of spacetime.

4.3. Spacetime-and-plasma (GRMHD) integration test

Finally, we tested the combination of the vacuum and plasma-
integration routines. To do so, the rays must propagate through
a radiating plasma that is of finite extent (i.e., not infinitesi-
mally thin), so that plasma interaction takes place as the rays
are propagating through curved spacetime. This may be achieved
using data from a GRMHD simulation of an accreting AGN;
a particular data dump, created using the HARM code (Gammie
et al. 2003), was used for these tests, which are part of the
EHT internal code comparison for polarized radiative transfer, a
forthcoming publication. The radiative model uses the thermal-
synchrotron emission, absorption, and rotation coefficients listed

in Appendix C, and a constant proton-to-electron temperature
ratio of 3, making this a disk-dominated emission model. To
reproduce the results listed in this paper, please refer to Table 2,
which shows the RAPTOR settings used to generate the test results
for two scenarios (the low-accretion-rate and high-accretion-
rate scenarios, respectively); the GRMHD dump that was used
to generate these results is distributed along with RAPTOR. The
resulting images (Figs. 11 and 12) show a low-luminosity AGN
at a low inclination angle (163 degrees or 17 degrees from the
southern pole). A radial pattern is observed. Table 1 lists the flux
densities obtained for the thin-disk and GRMHD tests.

4.4. Convergence with other polarized radiative-transfer
codes

The thin-disk and GRMHD tests discussed in the previous two
sections were adopted by the collaborative effort by the EHT to
establish convergence between polarized GRRT codes, which is
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Fig. 12. Polarized image of the GRMHD-based third test for the low-accretion-rate scenario. A different field of view from the original test (see
Table 2) enhances the clarity of the images; the camera size for these images is 20 by 20 RG, and the image size is 1024 by 1024 pixels. Flux is
given in Jy px−1 (Jansky per pixel). The integrated flux densities, useful for code-comparison purposes, are recapitulated in Table 1.

to be published in a forthcoming paper. At the time of publica-
tion, comparison to ipole output for the same tests yielded an
agreement to order 1% in terms of mean squared error. Experi-
ence has revealed a few possible sources of error, such as the pre-
cise camera setup used, or the approximations used to compute
Bessel functions in the emission/absorption/rotation coefficients.
However, since there are uncertainties that are larger than 1% in
such aspects of the computation as the microphysics (e.g., the
energy-distribution functions of the radiating electrons, which
is affected by magnetic reconnection, fine-scale turbulence, and
shockwaves), the agreement that has been achieved is sufficient
for current EHT science goals. Nevertheless, these results may
be refined further and are to be published in a forthcoming EHT
paper comparing methods for polarized GRRT.

5. Summary

We have developed a code capable of performing efficient
polarized radiative transfer in arbitrary spacetimes to deepen

the understanding of polarized observations of astrophysical
phenomena originating in strong gravitational fields. Our imple-
mentation can represent a polarized ray using both the Stokes
vector and the polarization vector (plus relevant intensities) and
can switch between the two. The former description is appropri-
ate for plasma interactions, whenever the ray is inside a plasma,
while the latter presents a better description for spacetime propa-
gation. This formalism is conceptually simple and uses the min-
imum number of degrees of freedom.

The polarized radiative-transfer equation, which describes
the interaction of a ray with a plasma, may become stiff in some
regions of the integration volume, while being much easier to
integrate in others. We developed a computationally efficient,
yet robust, implicit-explicit scheme to integrate this equation.
Our algorithm switches between implicit and explicit integration
schemes to maximize accuracy and efficiency. We determined
when the polarized radiative-transfer equation (as expressed in
our particular tetrad frame) becomes stiff for the RK4 integrator
to establish the switching criterium.
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We demonstrated the correctness of our new algorithms for
spacetime propagation and plasma interaction separately as well
as together. A comparison of RAPTOR output for the thin-disk and
GRMHD tests described in Sects. 4.2 and 4.3 to that of ipole
show excellent agreement; this strongly suggests that the two
different implementations agree on the physics to a sufficient
degree of accuracy for the EHT in the context of a relevant, com-
plex astrophysical problem. The value in that result lies both in
adding credence to the theoretical calculations of the EHT per-
taining to polarized sources such as M87, and in providing a
new, public tool for the efficient production of simulated, polar-
ized observations.

Polarized observations have the potential to allow observers
to determine the structure of magnetic fields in the accretion
disks and jets of black holes. Meanwhile, theoretical investiga-
tions probe the observational effects produced by various plasma
models (see, e.g., Jiménez-Rosales & Dexter 2018; Palumbo
et al. 2020) and even different theories of gravity (Mizuno et al.
2018). The RAPTOR code can be used as an efficient and flex-
ible tool with which to explore the radiative properties of var-
ious plasma models in arbitrary spacetimes. Such simulations
can be compared with current and future observations of polar-
ized radiation emitted by the orbiting black holes, neutron stars,
and potentially other, more exotic objects.
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Appendix A: Stiffness analysis of the polarized
radiative-transfer equation

The stiffness of a linear system of differential equations, such as
the polarized radiative-transfer equation (Eq. (12)), with respect
to a particular explicit integration scheme (such as the RK4 inte-
grator used here), depends on the eigenvalues of the matrix that
appears on the right-hand side of that equation, M; our first step
is to compute these eigenvalues.

In a frame in which jU = αU = ρU = 0, M’s characteristic
polynomial is given by

|M| = z2 + a2z + a0 = 0, (A.1)

where

z = (αI − Λ)2 , (A.2a)

a2 = ρ2
Q + ρ2

V − α
2
Q − α

2
V , (A.2b)

a0 = −2αQαVρQρV − α
2
Qρ

2
Q − α

2
Vρ

2
V , (A.2c)

where Λ us an eigenvalue of M. In other words, M’s characteris-
tic polynomial is a biquadratic equation in (αI − Λ), which may
therefore be obtained by solving the quadratic equation

z± =
−a2 ±

√
a2

2 − 4a0

2
. (A.3)

There are then four possible values for (αI − Λ), that is,

(αI − Λ) =


+
√

z+,

−
√

z+,

+
√

z−,
−
√

z−,

(A.4a)

so that

Λ = αI ±
√

z±, (A.5)

where either plus/minus symbol may be interpreted in either
way.

Now that M’s eigenvalues are known, the stiffness of Eq. (12)
for the explicit RK4 integrator can be computed. Defining

ζ = ∆λΛ, (A.6)

where ∆λ is integration step size of RAPTOR, the explicit RK4
integration routine is stable when∣∣∣∣∣1 + ζ +

1
2
ζ2 +

1
6
ζ3 +

1
24
ζ4

∣∣∣∣∣ < 1. (A.7)

Whenever this condition is not met for any one of M’s four
eigenvalues, it is necessary to switch to the implicit trapezoid
integration routine.

Appendix B: Implicit trapezoid integrator

Rewriting Eq. (15), we obtain a system of equations for Snew as
follows:(
11 +

∆λ

2
M

)
︸         ︷︷         ︸

A

Snew = S +
∆λ

2

(
2j −MS

)
︸                  ︷︷                  ︸

b

. (B.1)

The matrix A, evaluated in a frame in which jU , αU , and ρU
vanish, is then given by

A =


1 + ∆λαI/2 ∆λαQ/2 0 ∆λαV/2

∆λαQ/2 1 + ∆λαI/2 ∆λρV/2 0
0 −∆λρV/2 1 + ∆λαI/2 ∆λρQ/2

∆λαV/2 0 −∆λρQ/2 1 + ∆λαI/2

 .
(B.2)

Next, we express A as a product of two triangular matrixes, L
and U:

A = LU =


1 0 0 0

l21 1 0 0
l31 l32 1 0
l41 l42 l43 1



u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

 , (B.3)

whose elements are given by

u11 = 1 + ∆λαI/2, (B.4a)
u12 = ∆λαQ/2, (B.4b)
u13 = 0, (B.4c)
u14 = ∆λαV/2, (B.4d)

l21 =
∆λαQ

2u11
, (B.4e)

u22 = 1 + ∆λαI/2 − l21u12, (B.4f)
u23 = ∆λρV/2, (B.4g)
u24 = −l21u14, (B.4h)
l31 = 0, (B.4i)

l32 = −
∆λρV

2u22
, (B.4j)

u33 = 1 + ∆λαI/2 − l32u23, (B.4k)
u34 = ∆λρQ/2 − l32u24, (B.4l)

l41 =
∆λαV

2u11
, (B.4m)

l42 = −
l41u12

u22
, (B.4n)

l43 = −
∆λρQ/2 + l42u23

u33
, (B.4o)

u44 = 1 + ∆λαI/2 − l41u14 − l42u24 − l43u34. (B.4p)

This allows us to obtain Snew explicitly, from two linear sys-
tems of equations, that is,

Ly = b, (B.5a)
USnew = y, (B.5b)

where y’s components are given by

y1 = b1, (B.6a)
y2 = b2 − l21y1, (B.6b)
y3 = b3 − l32y2, (B.6c)
y4 = b4 − (l41y1 + l42y2 + l43y3) . (B.6d)

Snew is then computed as follows:

Snew,1 =
y1 − u12x2 − u14x4

u11
, (B.7a)

Snew,2 =
y2 − u23x3 − u24x4

u22
, (B.7b)

Snew,3 =
y3 − u34x4

u33
, (B.7c)

Snew,4 =
y4

u44
. (B.7d)
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Appendix C: Emission, absorption, and rotation
coefficients for a thermal electron population

This appendix lists the emission, absorption, and rotation coef-
ficients employed in RAPTOR. These coefficients pertain to a
(relativistic) thermal distribution of electrons. They are adapted
from Dexter (2016) (nonthermal (power-law) coefficients are
also listed in that paper), with a number of modifications of
numerical fit functions by Moscibrodzka & Gammie (2018), as
well as minor notational rewrites in Eqs. (C.6b) and typographi-
cal corrections in Eq. (C.10) (cf. B14 in Dexter 2016).

The emission coefficients are given by

jI =
nee2ν

2
√

3cθe
2

II (x) , (C.1a)

jQ =
nee2ν

2
√

3cθe
2

IQ (x) , (C.1b)

jV =
2nee2ν

3
√

3cθe
3 tan θB

IV (x) , (C.1c)

where ne is the electron number density, e is the electron charge,
c is the speed of light, θe is the dimensionless electron tempera-
ture, θB is the angle between the wave vector and the magnetic-
field vector, and x is the ratio of the frequency of the ray over the
critical plasma frequency as follows:

x =
ν

νc
, (C.2)

where

νc =
3eB sin θBθ

2
e

4πmec
, (C.3)

with B being the magnetic-field amplitude (in Gaussian-cgs
units).

The expressions II , IQ, IV represent numerical fit functions,
and are given by

II (x) = 2.5651
(
1 + 1.92x−1/3 + 0.9977x−2/3

)
e−1.8899x1/3

,

(C.4a)

IQ (x) = 2.5651
(
1 + 0.93193x−1/3 + 0.499873x−2/3

)
e−1.8899x1/3

,

(C.4b)

IV (x) = (1.81348/x + 3.42319x−2/3 + 0.0292545x−1/2+

2.03773x−1/3)e−1.8899x1/3
. (C.4c)

Absorption is computed using Kirchoff’s law, as the distribu-
tion is thermal, so that the absorption coefficients may be written
as

αν = jν/Bν, (C.5)

where Bν is the blackbody function.
Finally, the rotation coefficients are given by

ρQ =
ω2

pω
2
0 sin2 θB

16cπ3ν3 fm
(
X̃
)

+

K1

(
θ−1

e

)
K2

(
θ−1

e
) + 6θe

 , (C.6a)

ρV =
ω2

pω0 cos θB

4cπ2ν2

K0

(
θ−1

e

)
− ∆J5

(
X̃
)

K2
(
θ−1

e
) , (C.6b)

where

ω2
p = 4πnee2/me, (C.7)

X̃ =

(
3

2
√

2
10−3 ν

νc

)−1/2

, (C.8)

and

ω0 =
eB
mec
· (C.9)

The functions fm and ∆J5 again represent fit functions. They are
given by

fm
(
X̃
)

= 2.011 exp
(
−

X̃1.035

4.7

)
− cos

(
X̃
2

)
exp

(
−

X̃1.2

2.73

)
−

0.011 exp
(
−

X̃
47.2

)
+

(
0.011 exp

(
−

X̃
47.2

)
−

2−1/33−23/6π104X̃−8/3
) 1

2

1 +
tanh

(
log X̃ − log 120

)
0.1

 (C.10)

and

∆J5

(
X̃
)

= 0.4379 log
(
1 + 0.001858X̃1.503

)
, (C.11)

respectively.
We note that during a RAPTOR run, the Lorentz-invariant

versions of these coefficients are employed. Transforming the
emission, absorption, and rotation coefficients to their Lorentz-
invariant forms proceeds as follows:

jinv = j/ν2, (C.12a)
αinv = αν, (C.12b)
ρinv = ρν. (C.12c)
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