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Abstract—In this article, we discuss a novel signal
processing technique for adaptive radar that permits joint
target-matched illumination and interference avoidance in
dynamic spectral environments. This approach allows for
spectral coexistence between a radar system and a primary
user of the radio frequency space. Spectral coexistence is
exploited to allow use of higher bandwidths than would
otherwise be available to conventional radar systems. The
technique proposed exploits the relative simplicity of the
error reduction algorithm, and also provides a novel use
of the masking procedure to allow for target-matched illu-
mination. Practical constraints such as constant modulus
are considered in the waveform design procedure, while
providing an implied signal-to-interference-plus-noise ratio
improvement via the error reduction algorithm. Results
for full simulation and hardware-in-the-loop experiments
are presented and analyzed. We are able to show a
signal-to-interference-plus-noise ratio gain of 40 dB is
achieved for the target-matched waveform as compared
with a linear frequency modulated waveform. However, the
signal-to-interference-plus-noise ratio gain comes at a cost
of degraded autocorrelation characteristics of the target-
matched illumination waveform, despite only modest levels
of primary user spectrum occupancy. Spectral notch depths
achieved by the modified error reduction algorithm are
approximately 25 dB.

I. INTRODUCTION

The radio spectrum is a strictly limited resource, with
highly regulated access leading to substantial compe-
tition for available space [1]-[4]. Bandwidth allocated
exclusively to radar operations is under threat. It is being
eroded in favour of alternative user communities, such
as mobile communications. Sale of the rights to use any
released spectrum will raise significant revenues [S]—
[7], leading to further pressure on the radar community
to relinquish frequency allocation. The electromagnetic
environment in which future radar sensors will be re-
quired to operate will be ‘congested, cluttered, con-
tested, connected and constrained’ [8]. The result of

these combined influences will be a significant drop in
performance for conventional radar systems operating
in increasingly complicated environments with reduced
resource availability.

In addition, small unmanned aircraft systems (SUAS)
provide an attractive option as a sensor platform for
operation in hostile environments, due to their relatively
low cost, and the avoidance of hazardous environments
for manned platforms. One disadvantage of SUAS is the
restrictions placed on payload size and weight, and on
available power (SWaP) within the airframe.

The challenge faced by radar designers is to provide
systems with the required levels of performance given
the likely hostile conditions, reductions in bandwidth,
and SWaP constraints from deployment on SUAS plat-
forms. To negate the loss of dedicated radar bandwidth,
techniques can be employed to allow the radar to coexist
with primary users (PU) of the radio spectrum [9],
intelligently exploiting unused bandwidth, while com-
plying with both access restrictions, and the conflicting
requirements of high capability and SWaP.

We assume the spectral occupancy behaviours ex-
hibited by the PU of the radio frequency (RF) space
are dynamic, and potential targets manifest dynamic
impulse responses. We propose the adoption of a fully
adaptive radar (FAR), sometimes known as cognitive
radar, solution [10]-[12] capable of adapting appro-
priate radar system operating parameters within the
closed loop of a perception-action cycle (PAC) [10].
The PAC of a FAR provides the framework to ob-
serve environmental conditions, and tailor the system
behaviour to provide improved performance by match-
ing the operating characteristics to the perception of
the environment and target. In this article we describe
the Fast Fully Adaptive Signalling for Target matching
(FFAST) algorithm. FFAST is a computationally low-
cost and straightforward framework for radar waveform



design. We implement functions within the context of
the PAC, to achieve reduced levels of interference to
the PU, and increased target signal-to-interference-plus-
noise ratio (SINR), as compared with a fixed radar
signal. This is achieved through the exploitation of the
increased availability of bandwidth, currently unused by
the PU. Finer range resolution is achieved and, with that,
extended target responses that provide the possibility to
match the illumination signal to the target.

This strategy produces a dynamically adaptive solu-
tion capable of operating in non-stationary, spectrally
congested environments. As we will show the SINR is
improved compared with a linear frequency modulated
(LFM) waveform. We consider a single target whose
range profile response evolves over time. Preliminary
results were first reported in [13]. The approach taken
trades some level of performance against a reduced
computational load, with the aim of power and weight
savings and reducing the computational burden of the
adaptive algorithm. We accomplish this while consider-
ing the practical waveform design constraints of limited
bandwidth and constant modulus. The negative impact
of the waveform design on the ambiguity function are
illustrated, but solutions are not addressed.

Straightforward models of the PU transmissions and
target responses are utilised to ensure adequate repro-
duction of the signals when implementing the framework
on an experimental hardware platform. This provides for
repeatability and consistency between the simulation and
over-the-air results.

The scenario described in this work relies on the appli-
cation of waveform diversity, [14]-[17] in two respects.
Firstly in the form of spectral coexistence, aimed at
allowing multiple RF systems to operate in the same
geographical locality and spectral region. Secondly in
the design of transmit waveforms matched to the target
response to achieve an increase in SNR. Haykin er al.
[18] recognise the connection between the perception-
action cycle found in cognitive radar and optimal wave-
form design based on matching the waveform to some
characteristic of the sensed environment on an on-going
basis. This has become a central theme explored in
cognitive radar research.

Waveform design has attracted interest over a long
period. Bell [19] considers waveform and filter design
for optimum detection of extended targets, and contrasts
the result with a mutual information design scheme for
information extraction. Setlur et al. [20] expand on the
mutual information approach taken by Bell to create
a two transmission epoch design process which results
in an improved distribution of the available energy.
In [21] the authors address the problem of waveform
design in the context of a spectrally crowded envi-
ronment. Selesnick et al. [22], [23] describe iterative
algorithms for creating notched and multiple notched

chirp-like waveforms allowing transmissions on selected
frequencies to be controlled. Spectral notching in FM
noise radar in the presence of narrowband noise is
analysed in [24], and experimentally demonstrated in
[25]. Aubry et al. [26] employ an optimisation based
approach to waveform design in the spectral coexistence
context, the perception element of the cognitive process
relying on external environment knowledge provided by
a radio environment map (REM). The authors provide a
useful summary of the merits and drawbacks of various
optimisation based waveform design approaches. Huang
et al. [27] introduce the notion of bandwidth quality to
the coexistence problem, again using a REM to provide
the cognitive sensing element of the architecture.

The performance cost of introducing spectrally dis-
joint radar waveforms is considered in [28], and in
[29] the impact of spectral notching on beamforming
performance in phased array architectures is assessed.

The principles of waveform design for target-matched
illumination (TMI) are described by Gjessing [30]. The
authors in [31] derive performance bounds for the op-
timisation of transmit waveform, channel, target and
receiver. In [32] specifically designed radar waveforms
are compared with LFM waveforms for target detection
and discrimination. Orthogonal frequency division multi-
plexing waveform design is examined in [33] for adapt-
ing to an extended target response and non-stationary
interference, which maximises the mutual information
between the target response and the received signal. The
joint implementation of spectral coexistence with TMI is
investigated in [34] for the maximization of target SINR
while adhering to external spectral costraints, and [35]
undertakes the design of transmit waveforms by con-
sidering the transmit signal - target mutual information
in a spectral coexistence context. The use of TMI, in
addition to being applied to improve target detection, is
also applied to the target identification objective [36]-
[39].

Aubry et al. [40] extend the scenario described in [21]
to include signal dependent interference. Zhang et al.
[41] consider the joint transmit waveform and associated
receive filter design in signal dependent interference,
employing an iterative algorithm to maximise the tar-
get SINR. The development of a practical testbed is
described in [42] and used to experimentally demonstrate
an improvement in signal to clutter ratio given an a
priori estimate of target response, in addition interfer-
ence avoidance is addressed given a priori environmental
spectral knowledge. In [43] and [44] knowledge of the
target SNR and mutual information are used to match the
designed waveform to targets in cluttered environments.

Many other works address waveform design under
various constraints including [45]-[51]. The design of
a cognitive radar architecture with application to the
problem of matched illumination is described in [52].



In order to design suitable waveforms for spectral co-
existance, the environmental conditions must be known
or estimated. The mechanisms to attain knowledge of
spectral and temporal behaviour of RF radiators can be
static, derived from information defining fixed frequen-
cies and bandwidths of PUs such as radio stations, or
a priori knowledge of dynamic PU behaviour. For less
predictable radiators, a REM [21], [40] can supply live
information regarding RF behaviour in the environment.
For our scenario, operating on a remote, self contained
sensor platform, in an unknown spectral environment,
assessment of third party transmissions will be from
continuous or periodic monitoring of the environment,
[53], [54], providing a live description of the prevailing
conditions, without the necessity for third-party involve-
ment. Alternative advanced spectrum sensing techniques
might also be applied [55], [56].

The remainder of this article is structured as follows.
Section II addresses the formulation of the problem of
interference avoidance and TMI. The proposed solution
is presented in Section III. Section IV describes the
hardware and software frameworks employed in the ex-
perimentation. Section V describes the results obtained.
Section VI completes the paper with conclusions.

The notation used in this work is as follows. We
denote column vectors as lower-case, bold-face letters.
The n'" entry of a column vector s is characterised s,.
Matrices are shown using boldface upper-case letters.
Scalar quantities are denoted by upper-case letters. The
Hermitian operator is given as (-)*, while the Fourier
transform and inverse Fourier transform are represented
as .F and .Z ! respectively. The Hadamard operation
is given by the ® symbol, the convolution operation is
*, correlation is represented by %, and Z is the angle
operator. Finally, the absolute value is denoted by
and the vector norm by ||-||.

II. PROBLEM FORMULATION

Consider a scenario in which a monostatic radar is
operating in a dynamic, congested spectral environment,
where the radar is a secondary user of the RF space.
A single static target which exhibits a dynamic range
profile over time exists within the scene. The goal is
to observe the environment, and use the perception of
current conditions to design a waveform which avoids
transmitting unacceptably high levels of power at the
instantaneous frequencies occupied by the PU. Further,
the frequency restricted waveform is used to probe
the dynamic target, such that a new waveform, jointly
optimised for both PU avoidance and target matched illu-
mination is designed. The process exists as part of an on-
going perception-action cycle, whereby the target probe
and environmental observation are repeated at intervals
such that the system adapts to the dynamic behaviours of

target and PU. Signal dependent interference, or clutter,
could also be estimated from data derived from range
cells neighbouring the target, however, clutter processing
is not considered in this work.

Consider the continuous time, pulsed radar waveform,
srr(t), which is non-zero over t € [0,7] for pulse
duration 7"

sre(t) = a(t) exp{j(wet + ¢(1))} (1)

where «(t) is the pulse envelope, w. the carrier fre-
quency in radians per second and ¢(t) the waveform
phase, measured in radians.

The equivalent baseband waveform can be expressed
as:

s(t) = a(t) exp{jo(t)} 2)

Critically sampling the baseband transmit waveform,
we can represent the signal in a complex-valued vector
form, s € Cyix1,

s=a®exp{jop} 3)

where « is the amplitude vector of the baseband wave-
form, ¢ the phase components, and M the number of
samples within the pulse length.

The signal, r, received by the radar in response to the
transmit signal, s, interacting with the target, along with
the PU interference signal and noise, collected from each
processing interval can be represented by:

r=sxw-+i+n @)

where w is the range profile response of the target, i
is the PU interference, and n € CN(0,c?) represents
the additive white Gaussian noise. The target range is
assumed known allowing the collection of returns to be
limited to only the vicinity of the target location.

The received signal, r, is correlated with the trans-
mitted signal, s, resulting in the filtered receive signal
r¢ which could be the input to a detection process, but
here provides for SINR estimation :

rf=8S*rT (&)

The problem to be addressed is, given the signal from
the radar receiver r, how should we design the waveform,
s, to be transmitted during the following coherent pro-
cessing interval (CPI) to achieve improvement in SINR?
Our proposed solution is discussed in Section III, but
first we describe the modelling of the PU interference
signal, i, and the target response, w. The CPI consists
of the period over which a single transmit waveform is
employed. In this work all data collection and processing
occurs over the period of a single CPI.

The PU emulation waveform, considered as interfer-
ence to the radar, is implemented through a straight-
forward signal model consisting of the sum of multiple



non-overlapping, increasing frequency, LFM waveforms.
Although this is not a realistic model of PU behaviour,
it provides for reproducibility in the hardware test plat-
form. The PU is made dynamic by the addition of
two different signal model instantiations, each consisting
of a number of LFMs with selected frequencies and
bandwidths. The first model instantiation represents the
PU occupancy at the start of the experiment which begins
at its maximum amplitude and decreases in amplitude
over the course of the experiment. The second instan-
tiation is the PU occupancy at the termination of the
experiment, which starts at zero amplitude and increases
to its maximum level over the experiment.

Defining n = [0,1,2...(M — 1)] as the vector of
sample number within the signal, and f; the sampling
frequency, t; = n/ f, the time sample vector, each LFM
is defined in discrete form as:

I(t,, fo. B,T) = {eXp{jQﬂ(fots FartOho<t<T
0, otherwise
(6)

where f is the initial LFM frequency, B the bandwidth,
and T the duration of the LFM sweep, equal to the pulse
extent.

The total PU evolution at time step k, denoted iy, is
therefore represented by:

U
i = au Y ayl(ts, f1,, By, T)
u=1

v
+ B> arl(ts, fr,, Br,, T) ™)
v=1

subject to the following, assuming f; and fg represent
ascending ordered lists of LFM start frequencies, to
enforce the non-overlapping LFM constraint:

fi, = fi, = By,,Vu e {2.U}
fr, = feo = Br,,,Yv € {2.V}

where oy and Sy represent linear increasing and decreas-
ing factors respectively applied to the each PU model
instantiation over the duration of the experiment and
given by :

_ _k if0<k < K.
oy = 1 Kgim’ if 0 < k < Ksim (8)
0, otherwise
k .
x—, if 0 <k < Kgm
By = { Ksim . s 9)
0, otherwise

k and K, are the current CPI number, and total
number of CPIs in the experiment duration respectively.
The value of k starts at zero and increments by one
after each processing interval to a maximum value of
K im—1. Further, Equation (7) consists of the summation

of two signals, each the addition of the number of LFM
components, U and V, used to construct the initial
and final PU signal model instantiations respectively.
Subscripts I and F' indicate either initial or final PU
model parameters respectively. The factor a, subject
to the above subscripts, is the amplitude of the LFM
component. The frequency characteristics of the PU are
assumed to be constant over the period of one CPL

The target response, wy, is modelled by similar means
to the PU interference. The target evolution can be
represented by:

X
Wi = Q Z ar,l(ts, f1,, By, T)
rx=1

%
+ Bk Z ag,l(ts, fr,, Bg,, T)

y=1

(10)

subject to the following:

fi, — fi, > Bi,,Vz € {2..X}
fr, = fr. > Br,,, Yy € {2.Y}

where oy and [y are defined by (8) and (9) respectively.
X and Y represent the number of LFM components in
the initial and final target response model instantiations.
Subscripts I and F' represent initial and final values of
LFM parameters. The frequency characteristics of the
target are assumed to be constant over the period of
one CPI. As for the PU model described earlier, this
model does not represent a realistic target response, but
provides a straightforward and reproducible solution for
the early assessment of the framework.

III. PROPOSED SOLUTION

In this section we describe the FFAST framework, and
specific algorithms employed to implement elements of
the solution.

The FFAST algorithm provides a fully adaptive radar
solution by implementing a multi-loop PAC framework.
An outline of the framework is provided in Algorithm
1. Our proposed solution, while certainly not unique,
includes the basic structure consisting of three sequential
loops, two PACs and one non-PAC loop as follows:

« Environment Sensing PAC (ESPAC)
o Target Interrogation PAC (TIPAC)
« Exploitation cycle (EC)

The ESPAC exists to sense, and adapt to, the back-
ground environment. The perception element of the PAC
consists of collecting signals from the radar receiver
over a period of a CPI, and creating an estimated
occupancy mask of the frequencies at which the PU
is currently transmitting. The data collection is carried
out with the local radar transmission inactive to avoid



RF contamination. The action component of this PAC
is the design of an initial target interrogation waveform,
SINT, containing notches at the locations of estimated PU
occupancy, to avoid causing interference to the PU, for
use in the second PAC. Ideally the environmental sensing
process is repeated at intervals matched to the dynamic
behaviour of the PU such that the required response to
PU occupancy changes is achieved. In this work constant
update intervals are used.

The second algorithm phase, called TIPAC, instigates
the transmission of a series of pulses of the syt wave-
form, collecting radar returns from the target, plus PU
transmissions and noise over a CPI. The perception
gained from this process consists of a description of the
target estimated frequency response, outside of current
PU occupied frequencies. The action is to design a
waveform, sy, which both avoids the PU occupancy,
and matches the signal to the target characteristics
by combining the previously estimated PU occupancy
with the estimated target response to form a composite
frequency mask. The TIPAC should repeat at intervals
in some way matched to the target response dynamic
behaviour. In practice we use constant update intervals.

The final, non-PAC, loop is the EC, which exploits
the waveform designed from the previous phases, over
multiple CPIs, to provide improved SINR for the target,
compared with a non adaptive system, while still avoid-
ing the PU occupancy. No further adaptation currently
takes place in this phase.

As noted the nature of the dynamics of the PU
frequency occupancy and target response defines the
required repetition interval for the PACs. In the current
framework constant repeat intervals are chosen, although
adaptive control based on performance metrics could be
included.

Algorithm 1 FFAST algorithm outline

1: while Mission Active do
2: Input R, matrix of measurements from receiver
> PAC1-Environment Sensing PAC

i, < Estimate Interference(R,)

sint < Design Interrogation Waveform(iy,)

while Interference Estimate OK do

Input R, <—target«— s|NT > PAC2-Target

Interrogation PAC

AN

7: t, < Estimate Target Response(R,,)

8: stvr < Design TMI Waveform(t,, i,)

9: while Target Estimate OK do

10: Input R, «target« sty > Exploitation
Cycle

11: Calculate Metrics(R.,,)

12: end while

13: end while

14: end while

The algorithms employed in the estimation of the
RF environment, and the waveform design process are
described in the following sections.

A. PU Environment estimation

Under the assumption of Gaussian distributed sig-
nals, estimation of the spectral occupancy of the PU is
achieved by making use of the Minimum Description
Length (MDL) algorithm [57] to evaluated the number
of interference signals present in the sampled data.

The environmental estimate enables the creation of
a spectral, or Fourier Transform mask (FTM), which
provides the waveform design constraints in the Fourier
domain.

From [57], the MDL is evaluated as:

p 1 (p—k)N
impop1 i7F
MDL(k) = — log | ===kt

i=1 l;

(an

where N is the number of observations, p is the number
of samples in each observation, k is the number of sig-
nals being modelled, and [ represents ordered estimates
of the eigenvalues of the sample covariance matrix,
formed from the sampled interference and noise data.

The M DL(k) value given by Equation (11) is eval-
vated for each value of k. The estimate for the number
of signals contained in the sampled waveform is given
by the value of k for which the M DL(k) is minimised.
The k largest values from the average estimated power
spectral density (PSD) calculated over N observations
are taken as the frequency components containing the
interference signals. The allowable spectral occupation
for the radar waveform can then be formulated as the
FTM based on these components, q = [q1,q2..-Gx>
where ¢; € [0,1], 0 and 1 representing estimated PU
occupied frequency bins, and noise-only frequency bins
respectively.

An example interference PSD and the associated es-
timated binary signal mask, created by the application
of (11) are shown in Fig. 1. The plot represents an
instantaneous snapshot of the dynamic environment. In
this example the two interference peaks are defined with
equal bandwidths. The second peak, and therefore the
associated masked region is seen to be wider than the
first peak, this is due to leakage of energy into adjacent
frequency bins in the FFT processing. The use of longer,
zero filled, FFTs removes the issue. Alternative rank
estimation techniques could be applied in place of the
MDL [58], [59].

+ %k(?p — k)log(N)

B. Waveform design

Phase-only transmit signal design allows for the cre-
ation of a waveform with approximately the required
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Fig. 1: Example interference (ESPAC) estimate and cor-
responding frequency mask computed with rank estimate
provided by MDL for length 576 baseband signal

spectral character keeping the modulus of the signal
constant.

Error Reduction Algorithm (ERA) [60], [61] is used
as an efficient design technique to shape the spectrum
while meeting the phase-only constraint. The algorithm,
described previously in many references, is repeated here
for convenience in Algorithm 2.

In our scenario, the frequency domain constraints from
the environment sensing phase, require that nulls be
placed at the locations defined by the FTM to create
the target interrogation waveform, siyt. Secondly, these
nulls are overlaid with the target frequency domain
characteristics from the target interrogation to create
the TMI waveform sty. In this work the algorithm is
initialised with a constant modulus LFM waveform (6).

Algorithm 2 ERA waveform design

1: s < Constant modulus LFM
20 § ¢+ 9(5)

3: q < Spectral mask

4: repeat

5: V <+ q O exp{jLs}

6 v+ F7LHV)

7 s «+ exp{j4v}

8 §+ Z(s)

9

: until convergence

The ERA iteratively computes a new waveform while
alternately meeting the constraints in the Fourier (spec-
tral mask) and time (modulus) domain. The design
process terminates when the convergence criterion is
met. Convergence is assumed if the difference between
the squared errors between the designed waveform and

T (a) T
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Fig. 2: Waveform design convergence time comparison
(a) Quasi-Newton method and (b) ERA, showing more
than an order of magnitude lower mean convergence time
for the ERA in this scenario

the specification, on two successive passes, is within
1x 1076,

A statistical analysis of the convergence time for
the ERA compared against the quasi-Newton method
motivates continued use of the ERA. The analysis is
based on the computational cost of solving a similarity
constraints waveform design problem [62], [63] using
Monte-Carlo simulation. The optimisation is formulated
to create the waveform s as :

min(z 115(v)| — al?) subject to [s| =1 (12)

(%]
where s is initialised with a constant modulus, random
phase waveform, § = #(s), and q is the required
waveform spectral mask specification.

The optimisation is implemented using the Matlab®
unconstrained optimisation function ‘fminunc’. To en-
sure a fair comparison with the ERA results, an addi-
tional constraint is added to the objective function in the
fminunc formulation. This constraint allows the minimi-
sation process to be considered as complete should the
error achieved be equal to, or less than, that achieved by
the ERA solution.

Results from this comparison are illustrated in Fig.
2, for 1000 iterations of the Monte-Carlo simulation.
The measured times are derived from the Matlab® ‘tic’
and ‘toc’ functions. Observed convergence times for the
similarity waveform optimisation have a mean 1.9 s,
while the ERA is approximately 0.03 s. Approximately
5% of the similarity solution iterations did not achieve
the convergence criteria within the 120,000 function calls
set as the upper limit.

As the most computationally costly aspect of the ERA
is the calculation of a forward and reverse FFT pair, the



practical implementation of the ERA for deployment on
SUAS will benefit from the efficient implementation of
FFTs in field programmable gate arrays (FPGA).

C. Target response estimation

The waveform designed from the environmental esti-
mation phase is transmitted to interrogate the extended
target response. Returns collected from a number of
transmissions of the pulsed waveform are processed in a
similar manner to the PU evaluation data using the MDL
procedure from III-A above. The procedure diverges
from the PU estimation in the formation of the FTM.
Whereas the PU processing creates ¢; € {0, 1}, the target
response estimation creates ¢; € [0, 1] corresponding to
the normalised PSD of the k largest PSD estimates. This
new FTM will include frequency components from the
PU transmissions in addition to the required target re-
sponse. To ensure the FTM is restricted to the estimated
target response it is scaled by the FTM from the PU
estimation process which eliminates the contributions
from the PU:

gT™I1 = GTARGET © GPU (13)

where gqqvp is the FTM required for creating the TMI
waveform, grarcer is the FTM created by the target
response estimation and qpy is the FTM created from
PU estimation.

D. TMI waveform design

The TMI waveform design follows precisely the pro-
cedure described in III-B above. The use of the com-
posite FTM from III-C enables the ERA to create the
required waveform.

IV. SIMULATION AND EXPERIMENTAL
CONFIGURATION

A common framework for simulation and hardware-
in-the-loop (HITL) experimentation has been developed
in Matlab® running under the Windows® operating sys-
tem. The framework start-up parameters dictate whether
transmitter, environment, target, receiver interactions are
achieved by simulation, or are carried out over-the-air
using hardware transmitters and receivers. The func-
tionality is abstracted such that consciousness of the
mode of operation is restricted to the interface func-
tions which either communicate with, or simulate the
hardware components. In simulation mode no attempt is
made to simulate the over-the-air path losses between the
hardware components, or distortion effects introduced by
the transmitter and receiver chains. These effects could
easily be added to the simulation components in the fu-
ture. However, delays due to the cable length connecting
the system rack to the radar heads are included such

Timing Control |

Radar
Control

Target PU
Control Control

I

Target Simulator

R
"y

PU Simulator

Radar

Fig. 3: Physical layout representation for joint spectral
coexistence and TMI experiments

that range delay measurements are common between
simulation and HITL operation.

Fig. 3 illustrates the components of the simula-
tion/HITL framework. The Timing Control system is
responsible for coordinating all activities. The remaining
three control blocks implement the control and pro-
cessing activities required by the radar, target and PU
simulation components.

It can be seen that the target simulator is represented
as a transmitter-receiver pair. In both full simulation and
HITL modes no physical target is employed. Instead, the
target is either fully simulated in software, or in HITL, by
receiving the over-the-air radar transmission in a separate
receiver, convolving this signal with the current target
response in software, and re-transmitting the results over-
the-air for reception by the radar. This allows for flexible,
repeatable control of the target behaviour across both the
full simulation and HITL experiments.

Details of the dynamic PU emulation, and the dynamic
target response employed in the target simulator are
described in section II.

The mapping of the framework from pure simulation
to HITL requires a hardware solution providing highly
flexible, highly capable functionality. To provide this
capability, the framework is designed around the use of
the Cognitive Radar Experimental Workspace (CREW)
[64] at The Ohio State University ElectroScience Lab-
oratory. However, by replacing the components specifi-
cally related to interfacing with the CREW hardware, it
is equally applicable to alternative hardware platforms.

The CREW system consists of four transmitting chan-
nels plus four receiving channels, each operating at
94 GHz, with an instantaneous bandwidth of 1 GHz.
Real value sampling is carried out at 3 GHz, and the
Hilbert Transform applied to create complex samples



Fig. 4: CREW Monostatic radar (foreground), target and
PU simulators (background). The blue phased-matched
cables connect the transmit and receive heads to the main
control rack

over 1.5 GHz with a usable bandwidth of 1 GHz. Each
of the channels has its own transmitting or receiving
head, containing the final up/down RF conversion stages,
connected to the main system rack by cables, allow-
ing geographically diverse transmit/receive scenarios to
be constructed under laboratory conditions. The main
system rack contains four channels of arbitrary wave-
form generation and digitisers. Control of the system is
provided by an integrated personal computer, running
the Windows® operating system, and Matlab® software.
Algorithms to create waveforms, process received data,
and any other processing requirements, are run within
the Matlab® environment, which has full access to the
hardware subsystems, enabling real-time control of the
entire system.

The radar sensor in the HITL experiments consists of
a CREW receiver/transmitter pair. The target simulator
is formed from a second receiver/transmitter pair. The
interference is generated in a third CREW transmitter.
The physical layout is shown in Figure 4, with target
simulator receiver and transmitter, along with the inter-
ference simulation transmitter seen at the far end of the
laboratory. The two heads seen in the foreground form
the primary radar.

The detailed sequence of events which takes place
over the course of the experiment are illustrated by
the flow chart in Fig. 5. As previously described, the
environment sensing phase and target interrogation phase
are both PACs, where actions are taken based on the
perception of current conditions. Each cycle of the PACs
and EC persists for the duration of multiple transmit
pulses constituting a complete CPI, providing multiple
observations of the environment or target. The PU gener-
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Fig. 5: Flow chart representation of the FFAST frame-
work

ated interference, and the target response are updated on
each new CPIL. Both are pre-calculated prior to the exper-
iment. As previously stated the environmental observa-
tion interval, and the target interrogation interval are both
predefined in the current experiments. If the PU obser-
vation time has arrived, as detected by the ‘Environment
Sense Required?’ block based on the number of pro-
cessing intervals since the previous assessment, the radar
transmitter is switched off, the environment assessed to
create an estimate of PU occupancy, and the new target
interrogation waveform designed. Always following an
environment assessment, and possibly more frequently as
assessed by the ‘Target interrogation Required?” block
based, as above, on the number of intervals since the
previous assessment, the target interrogation phase takes
place. The target interrogation phase is responsible for
estimating the latest extended target response by em-
ploying the previously designed interrogation waveform.
From the resulting data an updated TMI waveform is
designed. During all remaining CPIs, the TMI waveform
is employed to detect the target with SINR and other
performance metrics being assessed. This is known as
the exploitation cycle.

Due to the high processing loads imposed by simula-
tion oriented tasks, particularly transfer of data to/from



the personal computer, and target simulation processing,
the experimental framework does not run in real time. A
stop-frame approach is taken whereby each function is
initiated, such as radar transmission, and all functions
which depend on that, for example target simulator
reception, are synchronised such that they gather the
correctly timed real-time data. The most significant bot-
tleneck to real-time operation however, is caused by the
archiving of data to hard disk. All data collected by the
radar and target simulator receivers, in addition to control
data, and waveform designs, is stored for later off-line
analysis. Real-time operation would be achievable if the
algorithms were implemented in hardware close to the
digital interfaces, a physical target replaces the target
simulation, and data archiving suspended.

The framework produces various performance assess-
ment graphs during experiments, examples of which can
be seen in Section V.

TABLE I: Radar operating parameters

Parameter Value
Experiment centre frequency 94.28 GHz
Tx/Rx bandwidth 1 GHz
Max. Tx power 25 dBm
Antenna gain 33 dB
Antenna beamwidth (Az) 9°
Antenna beamwidth (EI) 11°
Sample frequency 3 GHz
Sample type 12 bit, Real
IF 800 MHz

300 — 1300 MHz
3.84-10~7 s (1152 samples)

Operating band
Transmit pulse length

PRF 10 kHz
Pulses per CPI 128
Listen interval 5 CPIs
Target interrogation interval 5 CPIs
Experiment length 200 CPIs

TABLE II: Interference and target parameters

Parameter Value
Interference update interval 1 CPIL
Number of LEMs in interference - QstarT 2
Interference start LFM base frequencies - fo | 497, 697 MHz
Interference start LFM bandwidths - B 6, 6 MHz

Number of LFMs in interference - Qgnp 1

Interference end LFM base frequency - fo 1194 MHz
Interference end LFM bandwidth - B 12 MHz
Target response update interval 1 CPI

Number of LEMs in target - PsTarT 1
Target start LFM base frequency - fo 420 MHz
Target start LFM bandwidth - B 60 MHz

Number of LFMs in target - Ppnp 1

Target end LFM base frequency - f 1010 MHz
Target end LFM bandwidth - B 80 MHz
Target range 5m
Target range profile duration 384 nS

V. RESULTS AND ANALYSIS
A. Metrics

Results from each experimental run, simulation and
HITL, are presented in the form of eight data plots.
See Fig. 6 for an example. During each experimental
run the plots are updated on a CPI basis. Subplots (a-
d) show a snapshot of data for the current CPI against
frequency. Subplots (e-g) show historical results over
the course of the experiment. Subplot (h) again shows
a snapshot for the current CPI, in this case plotting
waveform autocorrelation against time shift (lag).

The contents of each subplot is now described in
detail.

Subplot (a) shows the normalised true and estimated
instantaneous interference spectrum. The true values,
Ipy, are derived directly from the pre-calculated inter-
ference table which contains the time domain definitions
of the interference waveforms from which i is the PU
waveform for the current processing interval. The esti-
mated data, ipU, is calculated from the noise corrupted
data gathered during the environment sensing phase of
the experiment, averaged over a number of observations.
The estimate can only be updated during the environment
sensing phase. For a set of observations, the values are
calculated as follows:

_FOL
max(|.7 (1))

i wy LenplZ (tev)] as)

T max(E Yy, |7 (o))

where Np is the number of observations in the as-
sessment, and rpy is the received signal from each
observation in this phase. Equation (14) represents the
actual normalised frequency content of the PU at the
current processing interval. Equation (15) calculates the
average normalised frequency content of the received PU
waveforms.

Subplot (b) illustrates the interrogation waveform,
Z (sinT), along with both the mask used to create the
notch positions, q, from Section III-A, and the interfer-
ence estimate from subplot (a) above.

Subplot (c) shows the Fourier domain versions of
the signal incident at the target, the pre-defined target
response, and the re-radiation of signal from the target.
The signal arriving at the target is identical to the
interrogation waveform in the simulation case, or, in
HITL, its the interrogation waveform subjected to the
signal transmission, through the air effects, and the
reception process. These plots correspond to Fourier
domain versions of (3) and (10), and the s*xw component
of (4) respectively.

Subplot (d) shows the Fourier domain versions of the
designed TMI waveform, styy, along with the target
response and interference.

Iy = (14)
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Fig. 6: Performance of non-adaptive waveform in dynamic environment - Simulation. Note the interrogation and
TMI waveforms are not modified for environment or target response. The autocorrelation sequence of the transmitted
waveform shows good similarity to the basic LFM despite being processed through the ERA.

Subplot (e) shows the sum of the squared estimation
error between the estimated interference and the known
interference from the interference definition table. The
interference estimate can only be calculated during the
environmental sensing phase, the error in that estimate
approaching zero. During other phases the interference
estimate error increases as the actual interference evolves
away from the estimated value.

Ige = Z| Tpy — Ipy|?
ENE

(16)

where Ny is the number of Fourier bins, Ipy and ipU
are defined by (14) and (15) respectively.

Subplot (f) shows the estimated spectral occupancy
of the interference, O, as estimated by the environment
sensing phase processing.

q
OleOx(l—ﬁ

N a7)

where Q is the spectral mask from Section III-A.

Subplot (g) illustrates the estimated SINR for each
CPI over the course of the experiment. The estimated

SINR is calculated as:

1 lsxr||? — X
ENp

(18)

where

e Np is the number of PRIs in the CPI

e s is the transmit waveform for the CPI

o 1 is the received signal collected from each PRI

« X = NLPZENPHS * rpy||?, the mean of the
estimated interference plus noise, rpy, measured
during the environment sensing phase, cross cor-
related with the current transmit waveform s.

It can be seen in subplots (f-g) the values periodically
returning to zero. These correspond to the time region
of the environmental sensing phase, where the values are
not available.

The final Subplot, (h), provides a comparison of the
resolution and sidelobe performance between the ERA
processed full band LFM waveform and the designed
waveform, by way of their respective autocorrelation
sequences.

B. Results

The following results are based on the radar operating
characteristics defined in Table I and the characteristics



of the interference and target defined in Table II. All
parameters apply to both simulation and HITL experi-
ments.

To facilitate the comparison of the FFAST algorithm
with non-adaptive, and PU avoidance adaptive tech-
niques, three experimental configuration are considered
which employ different waveforms in the exploitation cy-
cle. Namely, a fixed, full bandwidth LFM-like waveform,
a notched waveform designed to avoid the PU transmis-
sions, and the FFAST algorithm incorporating TMI. The
non-adaptive transmission option is created by setting the
spectral mask such that the full bandwidth is available to
the radar transmission. The resulting frequency domain
representation of the waveform, along with that for the
original LFM are shown Fig. 7. It can be seen that the
spectral containment at the band edges is sharper for
the designed waveform than for the pure LFM. The PU
avoidance transmission configuration allows the spectral
mask estimated by the MDL to restrict the transmission
in areas of PU occupancy, but does not implement TMI.
Finally, the FFAST transmission experiment implements
the full algorithm.

The subplots (e)-(g) are constructed over the full
course of the experiment so are only fully populated at
completion. The example plots are snapshots from the
end of each experiment.

1) Simulation - non-adaptive transmission: The ERA
processed full band LFM waveform case represents a
baseline against which the adaptive waveforms may be
assessed. Simulation results employing this waveform
are shown in Fig. 6. It is clear from subplots (c) and (d)
that waveforms with flat frequency content are employed
in both the target probe and the TMI phases. The mean
SINR attained, excluding the environment sensing phase
CPIs, is 2.7 dB. It can be seen in Subplot (h) that
the designed transmit waveform exhibits higher sidelobe
levels then the original LFM waveform. This increase
being due to the non-adaptive waveform being subjected
to the same ERA design process as the notched and
TMI versions resulting in spectral containment and phase
modifications. The sharp spectral cutoff at the required
band edges is clearly illustrated in the frequency domain
in Fig. 7.

2) Simulation - adaptive notched transmission: The
adaptive notched mode uses the notched waveform,
created for target interrogation, in the exploitation phase.
The target SINR is significantly higher, at a mean of
23 dBs, than the non-adaptive case, Fig. 8 (g). The
autocorrelation sequence is degraded by the inclusion
of the notches in terms of sidelobe levels, although
resolution is only marginally affected as the waveform
continues to exploit the wide bandwidth. It can be seen
in Fig. 8 (b) that the notch depth achieved by the ERA
is limited to approximately 25 dB.
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Fig. 7: Frequency character of (a) the original LFM
waveform and (b) the full bandwidth ERA waveform
based on the same LFM

3) Simulation - fully adaptive transmission: The TMI
waveform created by the FFAST algorithm produces an
increase in SINR over the probe waveform, a mean
of 40 dBs, as the majority of the energy contained
in the transmitted signal is concentrated within regions
of significant target response. The autocorrelation is
degraded in sidelobe terms, but also in resolution as
the frequency content of the waveform is significantly
reduced, Fig. 9.

4) HITL - non-adaptive transmission: The over-the-
air transmissions suffer degradation as seen in the signal
incident at the target, Fig. 10(c). The SINR is lower,
-6.8 dB, than in the equivalent simulation case. The
bandwidth restriction caused by the hardware system can
be easily observed in plot (a), where the low and high
frequency components of the interference estimate are
attenuated by the hardware response.

5) HITL - fully adaptive transmission: Fig. 11 shows
results for the full FFAST algorithm with TMI, within
the HITL context. The TMI provides an improved SINR
of mean 25.5 dB. The autocorrelation sequence suffers
both higher sidelobes and decreased resolution.

C. Discussion

Comparing the three simulation scenarios, the SINR
varies from approximately 3 dB for the LFM case, to
23 dB for the notched waveform, up to greater than
40 dB for FFAST, showing that significant gain is
available from the adaptive waveform design process.
The disadvantage, in addition to increased computation,
and the requirement for flexible transmitting hardware,
is in the autocorrelation characteristics of the waveform,

1500
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Fig. 8: Performance of notched LFM waveform in dynamic environment - Simulation. The notch in the interrogation
waveform is clearly visible, along with SINR improvement. The inclusion on the waveform notch compromises the

autocorrelation sequence side lobe performance.

which exhibits a wider main lobe, resulting in decreased
range resolution, and increased sidelobe levels, with the
likely consequence of a fall in detection probability or
increased false alarm rate. Table III summarises the
autocorrelation characteristics for a single snapshot of
the ERA processed LFM, the notched LFM and the TMI
signals, taken from the final CPI of each simulation run.
Each result is normalised to the LFM value. Although the
peak sidelobe level remains fairly constant, the integrated
sidelobes increase as the waveform design becomes more
specialised. The 3 dB width of the main lobe of the
autocorrelation is stable between the LFM and notched
waveforms, but is significantly degraded in the TMI case.

The SINR for the LFM is reduced to approximately
-6 dB in the HITL scenario. A drop of 9 dB from the
simulation case. For TMI, the SINR decrease between
simulation and HITL is from approximately 40 dB to 30
dB. The decrease in SINR is not unexpected due to that
fact the hardware aspects and physical effects, such as
range attenuation, were not modelled in the simulation
cases.

Fig. 12 summarises the SINR results for the three
waveform cases over the duration of the experiments for
(a) simulation and (b) HITL cases. In the simulation
case it can be seen that the LFM provides almost

constant SINR over all CPIs. The notched waveform
rejects the PU interference to gain approximately 20
dBs of SINR. The results from the target matched
waveform provides an additional 20 dBs of SINR, but
with significant variability between CPIs. As expected
the HITL results provide reduced SINR over the three
waveforms as transmission/reception effects are not in-
cluded in the simulation results. However, similar gains
are observed across the waveforms, although individual
values are more variable. It should be stressed that the
gain achieved by FFAST is at the cost of reduced range
resolution. The zero values seen periodically on the plots
are due to target SINR being unavailable during the
environmental sensing phase.

The results of an assessment of the effects of PU
occupancy extent on SINR can be seen in Fig. 13. The
target is defined to exist outside of the PU occupancy.
Identical total interference power is employed across the
occupancy bandwidth in all cases. The SINR result for
the non-adaptive waveform is constant over the range
of occupancy extent. The adaptive notched waveform,
benefits from increasing PU occupancy. This is to be
expected as the designed waveform is normalised such
that constant power is transmitted independent of the
bandwidth covered. This results in the transmit power
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TABLE III: Waveform Autocorrelation Results Normalised to the LFM

Waveform type
Characteristic LFM | LFM-ERA | Notched | TMI
Peak Sidelobe Levels (dB) 0 0 —0.3 —-0.9
Integrated Sidelobe Levels (dB) 0 1.0 6.5 13.6
Mainlobe (3dB) Width 1.0 1.1 1.1 16.4
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Fig. 11: Performance of FFAST algorithm in dynamic environment - HITL. Transmitting the TMI waveform over-
the-air is seen to result in a significant rise in SINR showing that the waveform design techniques can be applied

in practical systems.

being more concentrated in the region where the target
exists as the PU occupancy increases, resulting in the
superior SINR. The FFAST algorithm achieves addi-
tional gains in SINR as the available power is further
focused on the target occupancy region. The SINR is
relatively constant with PU occupancy as the power is
always directed towards the target response, irrespective
of PU occupancy.

VI. CONCLUSION

In this work we describe simulation and practical
experimentation investigating the use of a closed loop
processing architecture for the spectral coexistence of a
cognitive radar with a spectrally dynamic primary user of
the RF spectrum. The scenario requires the implemen-
tation of environmental sensing and waveform design
based on the perception of environmental and target

characteristics. The problem is further constrained by
requiring a phase only design technique, and critically,
low computational cost.

Significant SINR gains have been demonstrated in
both simulation and hardware-in-the-loop regimes, with
notched waveforms providing approximately 20 dB of
SINR gain over the non-adaptive case. The same algo-
rithm has been applied to perform TMI, which provides
in excess of 20 dB of additional gain.

The framework employed allows repeatable testing
when using hardware-in-the-loop, by simulating both the
primary user interference signal, and the target using
components of a flexible experimental radar system.

The cost of the additional gain, in addition to the
extra processing load to assess the interference and to
design the waveform, can be seen in the degradation
in the autocorrelation performance of the PU avoidance
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Fig. 12: Comparison of SINR over 200 CPIs for LFM,
Notched and FFAST waveforms for (a) Simulation and
(b) HITL experiments. The range extent of each plot
is 60 dB, offset by -20 dB between the simulated and
HITL results. Similar trends of increasing SINR are seen
across the three waveform types in both the simulation
and HITL cases.

and target matched waveforms. For the example case
analysed, the peak sidelobes show small improvements
for the Notched and TMI cases. The integrated sidelobe
levels degrade by 6.5 dB and 13.6 dB for the Notched
and TMI waveforms respectively. The mainlobe width
for the TMI is over 16 times greater for the TMI
waveform as compared with the other three. Future work
should consider the application of additional constraints
to improve sidelobe performance and range resolution.
The 25 dB notch depth achieved by the ERA is shal-
low compared to other known methods, such as Reitera-
tive Uniform Weight Optimization (RUWO) [65]. Future
work should therefore consider employing RUWO or
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The percentage PU occupancy shows little effect on
the FFAST waveform performance assuming the target
response is outside of the occupancy region.

similar methods within the framework presented here,
with the aim of increased notch depth. In addition,
the replacement of the simulated target with a physical
target model, placed on a turntable would provide further
evidence of the gain achievable.
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