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Abstract	
In	this	paper	we	discuss	how	samples	comprising	monozygotic	and	dizygotic	twin	pairs	
can	be	used	for	the	purpose	of	strengthening	causal	inference	by	controlling	for	shared	
influences	on	exposure	and	outcome.	We	begin	by	briefly	introducing	how	twin	data	can	
be	 used	 to	 inform	 the	 biometric	 decomposition	 of	 population	 variance	 into	 genetic,	
shared-environmental	and	non-shared	environmental	influences.	We	then	discuss	how	
extensions	to	this	model	can	be	used	to	explore	whether	associations	between	exposure	
and	 outcome	 survive	 correction	 for	 shared	 aetiology	 (common	 causes).	 We	 review	
several	analytical	approaches	that	can	be	applied	to	 twin	data	 for	 this	purpose.	These	
include	multivariate	structural	equation	models,	co-twin	control	methods,	direction	of	
causation	models	(cross-sectional	and	longitudinal),	and	extended	family	designs	used	to	
assess	 intergenerational	 associations.	 We	 conclude	 by	 highlighting	 some	 of	 the	
limitations	and	considerations	that	researchers	should	be	aware	of	when	using	twin	data	
for	the	purposes	of	interrogating	causal	hypotheses.			
	
Introduction	
Twin	 studies	 are	 most	 often	 associated	 with	 the	 estimation	 of	 heritability	 and	
understanding	the	extent	to	which	correlated	traits	share	common	genetic	causes.	This	
focus	on	genetics	often	means	that	the	role	of	twin	studies	in	understanding	non-genetic	
influences	on	human	behaviour	is	overlooked.	However,	twin	studies	have	demonstrated	
that	around	half	of	the	variance	in	human	traits	is	attributable	to	non-genetic	influences	
(Polderman	et	al.,	2015).	Furthermore,	as	well	as	partitioning	variance	into	genetic	and	
environmental	influences,	it	is	possible	to	use	twin	studies	to	ask	whether	associations	
between	exposure	and	outcome	remain	after	accounting	for	the	confounding	effects	of	
shared	 aetiology	 (common	 causes).	 In	 this	manner,	 twin	 studies	 can	be	 thought	 of	 as	
quasi-experimental.	By	controlling	for	common	causes	twin	studies	can	test	what	have	
been	referred	to	as	“quasi-causal	hypotheses”	(Turkheimer	&	Harden,	2014).	The	use	of	
phrases	 like	 quasi-causality	 and	 causal	 inference	 (as	 opposed	 to	 straightforward	
causality)	 highlight	 that	 twin	 studies	 (like	 other	 epidemiological	 approaches)	 cannot	
typically	demonstrate	causality	between	two	variables	–	they	cannot	prove	that	X	(the	
exposure)	causes	 Y	 (the	outcome).	They	 can	however	 show	 that	X	does	 (or	does	not)	
continue	 to	predict	Y	after	controlling	 for	shared	aetiology,	 thereby	strengthening	 the	
ability	of	researchers	to	make	causal	inferences.	This	is	the	primary	focus	of	our	review.		
	
The	Twin	Model	
Before	discussing	the	use	of	twin	studies	in	causal	inference	it	is	necessary	first	to	briefly	
introduce	 the	 logic	 underlying	 twin	 studies.	 The	 classical	 twin	 design	 typically	
decomposes	 phenotypic	 variance	 (Vp)	 into	 three	 components:	 additive	 genetic	 (A),	
shared	environment	(C)	and	non-shared	environment	(E)	 influences.	 	Additive	genetic	
influences	(A)	refer	to	effects	of	alleles	or	loci	which	act	in	an	additive	manner	(two	copies	
of	a	risk	allele	at	the	same	locus	confer	twice	the	risk	of	one	copy)1.		Shared	environment	

 
1 It	is	possible	to	model	dominant	genetic	effects	in	twin	models	(typically	denoted	by	a	D),	where	effects	
of	 risk	alleles	are	modelled	as	multiplicative	rather	 than	additive.	However,	a	 typical	 twin	dataset	only	
provides	 enough	 information	 (degrees	 of	 freedom)	 to	 decompose	 variance	 into	 3	 components,	 so	
researchers	need	to	choose	between	an	ACE	or	an	ADE	model.	Covariance	patterns	inform	this	choice:	If	
MZ	correlations	are	more	than	twice	the	size	of	DZ	correlations,	then	an	ADE	model	is	appropriate.	If	DZ	
correlations	are	more	than	half	the	size	of	MZ	correlations,	then	an	ACE	model	is	appropriate.	ACE	models	
tend	to	be	fitted	more	often	than	ADE	models,	but	all	concepts	discussed	in	this	paper	apply	to	both.	Some	
extended	family	designs/datasets	allow	for	ACDE	models	to	be	fitted.	 
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(C)	refers	to	environmental	effects	which	make	members	of	the	same	family	similar	to	
one	 another.	 In	 twin	 studies	 the	 shared	 environment	 is	 typically	 defined	 as	
environmental	 effects	 that	make	 twins	 similar	 to	 one	 another	 regardless	 of	 zygosity.2	
Because	 twins	 share	 fewer	 environmental	 experiences	 as	 they	 age,	 the	 effect	 of	 the	
shared	environment	diminishes	with	age	for	most	traits	(e.g.	Haworth	et	al.,	2010).	 In	
extended	 family	 studies	 it	 is	 possible	 to	 vary	 the	 definition	 of	 shared	 environmental	
effects	to	include	e.g.	siblings	or	entire	nuclear	families.	The	non-shared	environment	(E)	
refers	 to	effects	which	make	members	of	 the	same	 family	different	 from	one	another.	
While	 typically	referred	to	as	 the	non-shared	environment,	 the	E	component	 in	a	 twin	
model	 comprises	 the	 residual	 variance	 in	 a	 trait	 remaining	 after	 genetic	 and	 shared	
environmental	effects	are	considered.	As	such,	E	will	comprise	error	variance	and	the	
effects	 of	 random	 non-shared	 biological	 events	 (Smith,	 2011;	 Tikhodeyev	 &	
Shcherbakova,	2019),	as	well	as	true	non-shared	environmental	influences.		

In	Figure	1	we	present	 the	 classical	 univariate	 twin	model	used	 to	decompose	
variance	in	a	trait	into	A,	C	and	E	components.	The	method	involves	comparing	the	degree	
of	 resemblance	 between	 pairs	 of	 monozygotic	 (MZ)	 twins	 and	 dizygotic	 (DZ)	 twins.	
Resemblance	within	MZ	twin	pairs	(rMZ)	is	due	to	twins	sharing	all	genes	and	a	shared	
environment	(rMZ	=	A	+	C).		Resemblance	within	DZ	pairs	(rDZ)	is	expressed	as	rDZ	=	½(A)	
+	C;	as	DZ	twins	share	only	half	their	segregating	genes	on	average	but	they	are	assumed	
to	share	the	shared	environment	to	the	same	extent	as	MZ	pairs	(100%).			

In	the	twin	design,	heritability	is	calculated	as	twice	the	difference	between	MZ	
and	 DZ	 correlations:	 A	 =	 2(rMZ	 –	 rDZ).	 	 Shared	 environment	 can	 be	 estimated	 as	 the	
difference	between	the	MZ	correlation	and	the	heritability:	C	=	rMZ	–	A.		As	non-shared	
environment	 is	 the	 only	 influence	 which	 acts	 to	 make	 MZ	 twins	 different	 from	 one	
another,	it	can	be	calculated	as	the	total	phenotypic	variance	(often	standardised	to	1	for	
ease	of	interpretation)	minus	the	MZ	correlation:	E	=	Vp	–	rMZ.			

INSERT	FIGURE	1	AROUND	HERE	

Understanding	Confounding	using	Twin	Models	
In	their	“Top	10	replicated	findings	from	behavioural	genetics”,	2	of	the	most	replicated	
findings	highlighted	by	Plomin,	DeFries,	Knopik,	and	Neiderhiser	(2016)	are	of	crucial	
importance	 to	 researchers	 interested	 in	 drawing	 causal	 inference	 from	 associations	
between	variables	in	non-experimental	studies:	
1. Phenotypic	correlations	between	traits	often	show	substantial	genetic	influence.		
In	other	words,	when	2	traits	correlate,	it	is	often	because	they	share	common	genetic	
causes.	 This	 can	 be	 attributed	 to	 the	 joint	 influences	 of	 pleiotropy	 (whereby	 genetic	
variants	associate	with	multiple	traits)	and	polygenicity	(whereby	traits	are	associated	
with	many	 genetic	 variants).	 The	 possibility	 of	 shared	 genetic	 influences	 highlights	 a	
major	reason	why	associations	between	traits	should	not	be	interpreted	as	indicative	of	
causal	influences	of	one	trait	on	another.	Importantly,	this	applies	to	prospective	as	well	
as	 cross-sectional	 associations.	 That	 is,	 we	 cannot	 assume	 that	 genetic	 factors	 that	
influence	trait	X	(exposure)	at	time	point	1	will	not	influence	trait	Y	(outcome)	at	time	

 
2 This constitutes the Equal Environments Assumption (EEA): the assumption that environmental influences that 
operate on a trait are shared equally within MZ and DZ twin pairs. If environmental influences that make twins 
alike are more similar for MZ pairs than DZ pairs—for reasons besides MZ pairs being more genetically alike—
then twin model estimates will be biased. Studies of misclassified twins (MZ pairs labelled as DZs and vice versa) 
provide a powerful test of the EEA and lend support to the validity of this assumption (Conley, Rauscher, Dawes, 
Magnusson, & Siegal, 2013; Kendler, Neale, Kessler, Heath, & Eaves, 1993). 
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point	 2,	 and	 thus	 explain	 some	 or	 all	 of	 their	 covariance.	 For	 example,	 anxiety	 in	
childhood	is	predictive	of	later	depression,	and	while	this	may	be	because	anxiety	leads	
to	depression,	it	is	also	possible	that	genetic	influences	underlying	childhood	anxiety	may	
manifest	as	depression	later	in	life	(Rice,	van	den	Bree,	&	Thapar,	2004).		
	 It	 is	 worth	 considering	 here	 that	 the	 above	 discussion	 assumes	 horizontal	
pleiotropy,	 whereby	 genetic	 variants	 influence	 both	 X	 and	 Y	 and	 induce	 or	 inflate	
covariance	between	them.	However,	genetic	covariance	between	X	and	Y	can	also	come	
about	 though	vertical	pleiotropy,	whereby	X	causally	 influences	Y,	 resulting	 in	genetic	
variants	associated	with	X	becoming	associated	with	Y.	Horizontal	pleiotropy	constitutes	
a	source	of	confounding	on	the	association	between	X	and	Y,	whereas	vertical	pleiotropy	
does	not.	 In	practice	 it	 is	difficult	 to	distinguish	these	two	possibilities,	and	most	twin	
studies	 aimed	 at	 testing	 quasi-causal	 hypotheses	 do	 not	 attempt	 to	 do	 so,	 instead	
accounting	 for	 genetic	 covariance	between	 traits	 and	evaluating	whether	associations	
persist.	Where	genetic	covariance	is	attributable	to	vertical	pleiotropy,	associations	may	
therefore	be	overcorrected.	However,	provided	that	genetic	factors	do	not	explain	all	of	
the	variance	 in	X,	 then	controlling	 for	vertical	pleiotropy	as	 though	 it	were	horizontal	
pleiotropy	will	not	reduce	the	association	between	X	and	Y	to	zero,	because	the	residual	
variance	in	X	will	still	predict	Y.	Given	that	no	phenotypes	are	100%	heritable	(or	indeed	
100%	 familial;	 Plomin	 et	 al.,	 2016;	 Polderman	 et	 al.,	 2015),	 then	where	 a	 significant	
causal	effect	of	X	on	Y	exists,	their	association	should	not	reduce	to	zero	when	controlling	
for	potential	familial	confounds	using	twin	methods.	Implicit	here	is	the	expectation	that	
the	residual	covariance	will	be	large	enough	to	be	detected.	A	caveat	to	this	is	that	where	
heritability	of	X	is	very	high,	then	power	to	detect	a	residual	association	after	accounting	
for	genetic	correlation	may	be	limited.		
	
2. Most	measures	of	putative	‘environmental	exposures’	show	genetic	influence.		
Measures	that	 index	experiences	and	environments	such	as	 life	events,	social	support,	
and	 exposure	 to	 toxins	 (i.e.	 variables	 commonly	 conceptualised	 as	 environmental	
exposures	 that	 may	 influence	 human	 traits)	 correlate	 with	 (and	 may	 be	 under	 the	
influence	of)	genetic	factors	(Jaffee	&	Price,	2007;	Kendler	&	Baker,	2007).	This	is	referred	
to	 as	 gene-environment	 correlation	 (rGE)	 and	 has	 important	 consequences	 for	
researchers	interested	in	drawing	causal	inferences	from	associations	between	putative	
environmental	 exposures	 and	 outcomes.	 That	 is,	 if	 an	 environmental	 exposure	 is	
predictive	of	a	particular	outcome,	but	both	outcome	and	exposure	are	heritable,	then	it	
is	possible	 that	 the	association	 is	partially	or	entirely	accounted	 for	by	shared	genetic	
influences.	Again,	the	joint	influences	of	pleiotropy	and	polygenicity	mean	that	genetic	
correlations	 between	 putative	 environmental	 exposures	 and	 outcomes	 should	 be	
considered	likely.		

Three	forms	of	rGE	are	typically	distinguished	from	one	another	and	give	some	
insight	 into	 why	 putative	 environmental	 variables	 may	 be	 heritable:	 1.	 Passive	 rGE	
occurs	when	people	are	born	into	an	environment	that	correlates	with	their	genotype.	
For	example,	most	children	are	reared	by	their	biological	relatives,	so	many	elements	of	
their	environment	will	be	correlated	with	their	genotype.	Recently,	this	concept	has	been	
reintroduced	 into	 the	 literature	 in	 discussions	 surrounding	 “genetic	 nurture”	 and	
“dynastic	effects”–	 the	environmentally	mediated	genetic	effects	of	biological	 relatives	
(Eaves,	Pourcain,	Smith,	York,	&	Evans,	2014;	Fletcher,	2011;	Fletcher	&	Lehrer,	2011;	
Kong	et	al.,	2018;	Young,	Benonisdottir,	Przeworski,	&	Kong,	2019;	Ystrom	&	Eilertsen,	
2019).	(See	Cheesman	et	al.	(2020)	and	Hwang,	Davies,	Warrington,	and	Evans	(2020)	
for	more	discussion	on	this.)	2.	Evocative	rGE	occurs	when	an	individual’s	genetically	
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influenced	 traits	 evoke	 a	 particular	 response	 from	 the	 environment,	 leading	 to	 a	
correlation	between	genotype	and	environment.	For	example,	a	child	may	be	genetically	
predisposed	towards	characteristics	that	evoke	negative	responses	from	other	people.	In	
this	manner	evocative	rGE	can	lead	to	measures	of	parental	negativity	correlating	with	
the	 child’s	 genotype,	 and	 thus	 being	 heritable	 (e.g.	 Neiderhiser,	 Reiss,	 Lichtenstein,	
Spotts,	 &	 Ganiban,	 2007;	 Neiderhiser	 et	 al.,	 2004).	 3.	 Active	 rGE	 occurs	 when	 an	
individual	 seeks	 out	 an	 environment	 that	 matches	 their	 genotype.	 For	 example,	 an	
adolescent	may	actively	seek	a	peer	group	composed	of	adolescents	similar	to	them.	In	
this	manner	active	rGE	could	lead	to	a	measure	of	peer	group	deviancy	being	heritable	
(Kendler	et	al.,	2007).		
	 Crucially,	any	of	these	forms	of	rGE	can	lead	to	an	association	between	a	putative	
environmental	exposure	and	an	outcome	without	the	environmental	exposure	causally	
influencing	the	outcome.	Similarly,	when	an	environmental	exposure	does	have	an	effect,	
rGE	may	inflate	the	magnitude	of	the	association	between	environment	and	outcome.	To	
extend	the	3	examples	above:	1.	Passive	rGE	can	inflate	associations	between	parent	and	
child	traits.	For	example,	exposure	to	maternal	depression	during	childhood	is	predictive	
of	child	emotional	and	behavioural	problems,	but	this	association	is	inflated	by	genetic	
overlap	between	parent	and	child	traits	(Gjerde	et	al.,	2019).	2.	Evocative	rGE	can	lead	
to	associations	between	adolescent	behavioural	problems	and	parental	negativity,	even	
if	 parental	 negativity	 does	 not	 necessarily	 cause	 adolescent	 behavioural	 problems	
(McAdams,	Gregory,	&	Eley,	2013).	3.	Active	rGE	may	 inflate	 the	association	between	
peer	 group	deviancy	 and	 adolescent	 delinquency	 (Kendler,	 Jacobson,	Myers,	&	 Eaves,	
2008).		

Clearly	then,	accounting	for	rGE	is	important	where	researchers	want	to	know	the	
extent	 to	 which	 a	 putative	 environmental	 risk	 factor	 may	 have	 a	 direct	 effect	 on	 an	
outcome	of	interest.	That	said,	it	is	worth	noting	that	while	rGE	is	often	conceptualised	
and	 treated	 as	 a	 cause	 of	 confounding	 between	 exposure	 and	 outcome,	 there	 are	
situations	in	which	rGE	can	provide	a	tool	through	which	the	effects	of	environmental	
exposures	 can	 be	 assessed.	 For	 example,	 where	 variants	 are	 causally	 predictive	 of	
exposure	they	can	be	used	as	instrumental	variables	to	assess	links	between	exposure	
and	outcome	(Gage,	Smith,	Ware,	Flint,	&	Munafo,	2016;	Millwood	et	al.,	2019;	Richmond	
&	Davey	Smith,	2020).		
	
Multivariate	Twin	Models	and	Causal	Inference	
A	major	challenge	when	 testing	associations	between	exposures	and	outcome	 in	non-
experimental	 research	 settings	 is	 the	 effective	 identification	 and	 measurement	 of	
confounding	variables.	Confounders	may	be	unknown	and	when	not	accounted	for	they	
will	have	the	effect	of	biasing	estimates	of	associations.	Furthermore,	it	is	likely	that	most	
associations	 could	 be	 confounded	 by	 many	 shared	 influences.	 For	 example,	 the	
consumption	of	alcohol	has	been	shown	to	correlate	with	a	range	of	health	outcomes	in	
positive	 and	 negative	 directions.	 Most	 of	 these	 associations	 could	 potentially	 be	
confounded	by	 a	wide	 range	of	 socioeconomic,	 cultural,	 dietary	 and	health-behaviour	
related	 influences.	 Identifying	and	controlling	 for	all	of	 these	confounders	would	be	a	
huge	 (and	 essentially	 impossible)	 challenge,	 and	 including	 them	 all	 in	 a	 regression	
analysis	would	reduce	the	power	of	that	analysis	to	identify	any	remaining	effects.	Even	
if	 all	 relevant	 confounders	 could	 be	 included,	 error	 in	 the	 measurement	 of	 these	
confounders	could	still	vitiate	the	ability	to	statistically	control	for	them,	and	thus	lead	to	
biased	effect	estimates.	Twin	data	can	be	used	 to	circumvent	many	of	 these	 issues	by	
controlling	 for	genetic	and	shared	environmental	 influences	common	to	exposure	and	
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outcome.	 In	 this	 manner,	 multivariate	 twin	 models	 can	 control	 for	 common	 causes	
without	the	need	to	identify	and	measure	specific	confounders.		

It	 is	 beyond	 the	 scope	 of	 this	 paper	 to	 review	 all	multivariate	models	 to	 date	
applied	to	twin	data	but	suffice	to	say	that	such	data	can	be	used	to	explore	aetiological	
overlap	between	 traits,	 and	between	exposures	and	outcomes,	 in	many	ways.	For	 the	
purpose	of	this	review	we	focus	on	models	that	are	(or	can	be)	used	in	attempts	to	draw	
causal	inference.	We	do	not	claim	to	cover	all	such	models	but	the	underlying	logic	that	
we	discuss	will	typically	extend	to	twin	models	we	do	not	cover.		
	 Where	univariate	twin	models	are	used	to	decompose	the	variance	of	a	trait	into	
genetic	 and	 environmental	 influences,	 multivariate	 models	 are	 concerned	 with	
decomposing	 covariance	 between	 traits	 in	 a	 similar	 manner.	 Figure	 2	 shows	 how	 to	
specify	 a	 twin	 model	 such	 that	 the	 covariance	 between	 two	 variables,	 X	 and	 Y,	 is	
decomposed	into	A,	C	and	E	components	in	the	manner	of	a	Cholesky	decomposition.		
	
INSERT	FIGURE	2	AND	TABLE	1	AROUND	HERE	
	
The	 Cholesky	 decomposition	 disaggregates	 the	 variance	 in	 trait	 X	 into	 genetic	 (A1),	
shared-environmental	 (C1)	 and	 non-shared-environmental	 (E1)	 factors,	 which	 have	
their	effects	on	X	via	paths	a11,	 c11,	 and	e11.	These	 factors	are	also	able	 to	account	 for	
variance	 in	 trait	 Y	 via	 paths	 a21,	 c21,	 and	 e21.	 It	 is	 these	 paths	 that	 account	 for	 the	
covariance	 between	 trait	 X	 and	 Y.	 By	 comparing	 MZ	 and	 DZ	 cross-twin	 cross-trait	
correlations	(e.g.	correlations	between	trait	X	in	twin	1	and	trait	Y	in	twin	2)	it	is	possible	
to	decompose	the	covariance	between	traits.	The	residual	variance	 in	trait	Y	(that	not	
accounted	for	by	A1,	C1,	and	E1)	is	decomposed	into	A2,	C2	and	E2	factors.	In	Table	1	we	
illustrate	 this	 with	 a	 variance-covariance	 matrix	 that	 details	 how	 the	 Cholesky	
decomposition	is	specified.		

In	Figure	3	we	demonstrate	how	the	decomposition	of	covariance	between	traits	
can	 be	 used	 to	 assess	 whether	 an	 association	 remains	 and/or	 is	 attenuated	 after	
accounting	 for	 the	effects	of	 genetic	 and	 shared-environmental	 influences	 common	 to	
both	traits.	Figure	3.i	shows	a	standard	linear	regression	of	Y	(the	outcome	or	dependent	
variable)	 on	 X	 (the	 exposure	 or	 independent	 variable).	 This	model	 assumes	 a	 causal	
relationship	running	from	X	to	Y	via	Byx.	However,	this	relationship	may	be	confounded	
by	a	common	causal	variable.	In	Figure	3.ii	we	show	how	such	a	potential	confounding	
variable	 may	 operate,	 and	 how	 to	 model	 this	 possibility,	 wherein	 both	 X	 and	 Y	 are	
regressed	on	a	potential	confounding	variable,	Z.	In	this	model	Byx	is	the	effect	of	X	on	Y	
after	controlling	for	the	confounding	effects	of	Z3.	In	Figure	3.iii	we	show	the	partial	path	
diagram	 for	 the	previously	 introduced	bivariate	Cholesky	decomposition	 (for	 a	 single	
individual.	In	Figure	2	we	showed	how	the	same	model	is	specified	for	twin	pairs).	We	
have	rearranged	the	model	slightly	to	highlight	similarities	to	the	model	in	Figure	3.ii	and	
to	 demonstrate	 how	 it	 can	 be	 used	 to	 control	 for	 latent	 genetic	 and	 environmental	
confounders	 without	 the	 need	 to	 identify	 and	 measure	 them.	 Here,	 the	 covariance	
structure	 of	 the	 data	 combined	 with	 the	 logic	 of	 the	 twin	 model	 enables	 the	
decomposition	of	 covariance	 into	A,	C	and	E	components.	 In	 this	model,	A1	 correlates	
between	members	of	a	twin	pair	(1.00	for	MZ	twins	and	.50	for	DZs)	and	indexes	genetic	
influences	 on	 X	 and	 on	 correlations	 between	 X	 and	 Y	 (within	 and	 between	 twins,	 as	
specified	in	Figure	2	and	Table	1).	In	this	manner	A1	accounts	for	the	confounding	effects	

 
3 Note that simply regressing Y on both X and Z would have the same effect – Byx would be corrected for the 
confounding effects of Z. This is the approach most often taken in a linear regression framework.  
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of	common	genetic	influences	affecting	both	X	(the	exposure)	and	Y	(the	outcome).	C1	is	
perfectly	correlated	between	twins	of	both	zygosities	and	indexes	shared	environmental	
influences	on	X	and	on	correlations	between	X	and	Y	(within	and	between	twins).	As	such	
C1	 accounts	 for	 familial	 environmental	 influences	 that	 may	 confound	 the	 association	
between	X	and	Y.	E1	does	not	correlate	between	twins	so	only	indexes	the	within-person	
correlation	 between	 X	 and	 Y	 after	 accounting	 for	 the	 genetic	 and	 environmental	
influences	that	make	members	of	a	twin	pair	similar	to	one	another.	In	this	manner	A1	
and	C1	account	for	latent	genetic	and	shared	environmental	confounders	in	the	same	way	
that	 Z	 accounts	 for	measured	 confounders.	 The	 advantage	 in	 using	 twin	 data	 is	 that	
researchers	do	not	have	to	identify	all	of	the	potential	confounders	that	might	account	
for	 or	 inflate	 the	 association	 between	 X	 and	 Y.	 By	 using	 twin	 data,	 all	 potential	
confounders	 shared	 by	 members	 of	 a	 twin	 pair	 (genetic	 and	 shared-environmental	
influences)	can	be	accounted	for.		
	
INSERT	FIGURE	3	AROUND	HERE	
	

In	Figure	3.iv	we	show	how	twin	data	can	be	used	to	create	a	model	very	close	to	
that	of	3.ii.	Arguably,	given	that	Byx	is	not	recovered	from	a	Cholesky	decomposition,	the	
model	 in	3iv	provides	 the	 “cleanest”	 test	when	using	 twin	data	 to	assess	whether	 the	
association	 between	 X	 and	 Y	 survives	 correction	 for	 common	 confounders,	 although	
Cholesky	decompositions	are	more	often	applied	in	the	literature.	Importantly	though,	
the	models	shown	in	Figures	3.iii	and	3.iv	will	result	in	the	same	conclusions	being	drawn	
if	fitted	to	the	same	data.	That	is,	if	Byx	explains	covariance	between	X	and	Y	in	model	3.iv	
then	the	path	running	e11*e12	in	model	3.iii	will	also	do	so.	Either	of	these	paths	can	be	
used	to	evaluate	whether	the	association	between	X	and	Y	persists	after	accounting	for	
common	genetic	and	shared-environmental	influences	(Turkheimer	&	Harden,	2014).	It	
should	be	noted	however	that	such	a	residual	association	does	not	on	its	own	constitute	
evidence	of	causality	for	at	least	2	reasons:	First,	non-shared	environmental	confounders	
are	unaccounted	for	and	could	still	explain	some	or	all	of	the	association	between	X	and	
Y.	 It	 is	 of	 course	 possible	 to	 further	 control	 for	 additional	 observed	 non-shared	
environmental	 confounders	 (e.g.	 differences	 in	 birthweight	 or	 baseline	 levels	 of	 the	
outcome).	However,	challenges	encountered	in	identifying	and	measuring	specific	non-
shared	environmental	influences	may	make	this	a	challenging	task	(Neiderhiser,	Reiss,	&	
Hetherington,	2007).	Second,	reverse	causation	can	bias	estimates	resulting	from	these	
models,	i.e.	the	estimate	of	the	effect	of	X	on	Y	can	(partially)	reflect	the	effect	of	Y	on	X.	
Longitudinal	models	with	 clear	 temporality	 (e.g.	 birth	weight	 to	ADHD	 symptoms)	or	
repeated	measures	of	the	exposure	and	the	outcome	can	mitigate	but	not	always	fully	
account	for	reverse	causation.		
	
The	co-twin	control	design	
The	 application	 of	 structural	 equation	 models	 to	 decompose	 covariance	 between	
variables	is	one	technique	through	which	researchers	can	use	multivariate	twin	data	to	
ask	 the	 question	 “does	 the	 association	 between	 X	 and	 Y	 persist	 after	 accounting	 for	
genetic	and	shared-environmental	confounds?”	Another	method	involves	strengthening	
causal	inference	by	using	one	twin	in	a	pair	as	a	direct	matched	control	for	the	other.	This	
approach	is	known	as	the	'co-twin	control	design',	in	the	field	of	behavioural	genetics	and	
as	 one	 implementation	 of	 the	 'fixed	 effects'	 approach	 in	 econometrics.	 While	 the	
biometrical	decomposition	of	variance	discussed	above	is	most	often	used	to	dissect	the	
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aetiological	architecture	of	phenotypes,	the	main	purpose	of	the	co-twin	design	is	causal	
inference.	

The	 co-twin	 control	 design	 is	 best	 understood	 within	 the	 counterfactual	
framework	 for	 causal	 inference	 (Lynch,	 2020).	 In	 the	 (theoretical)	 counterfactual	
situation,	a	given	individual	receives	a	treatment	(or	 is	exposed	to	a	risk	factor	value)	
and,	at	the	same	time,	the	same	individual	does	not	receive	the	treatment.	In	this	ideal	
situation,	the	treated	individual	 is	 literally	the	same	as	the	control	 individual,	the	only	
difference	being	the	treatment.	It	thus	becomes	possible	to	estimate	the	causal	effect	of	
that	 treatment,	 even	at	 the	 individual	 level.	Naturally,	 in	 real	 life,	 the	 same	 individual	
cannot	at	the	same	time	receive	and	not	receive	a	treatment,	so	strict	causal	inference	is	
impossible.	 However,	 all	 causal	 inference	 designs	 can	 be	 conceived	 as	 aiming	 to	
approximate	 this	 ideal	 counterfactual	 situation	 (Pingault	 et	 al.,	 2018).	 One	 way	 to	
approximate	this	situation	is	to	find	the	best	match	possible.	This	is	when	twins,	and	in	
particular	MZ	twins,	come	into	play.		Indeed,	an	exposed	twin	shares	all	of	their	genetic	
material	and,	by	definition,	their	shared	environment,	with	the	non-exposed	co-twin.	At	
a	basic	level,	the	co-twin	design	involves	comparing	outcomes	between	the	exposed	and	
non-exposed	twin,	and	thus	controlling	for	genetic	and	shared	environmental	influences.	
If	the	risk	factor	(e.g.	smoking)	causes	the	outcome	(e.g.	lung	cancer)	we	should	expect	
that	on	average	smoking	twins	will	have	a	higher	incidence	of	lung	cancer	than	their	non-
smoking	 co-twins.	 If	 there	 was	 no	 difference	 in	 the	 incidence	 of	 lung	 cancer	 in	 the	
smoking	vs	non-smoking	twin,	then	this	would	suggest	the	relationship	between	the	risk	
factor	 and	 the	 outcome	 is	 non-causal	 and	 due	 to	 genetic	 or	 shared-environmental	
confounding.	

The	 co-twin	 control	 design	 is	 often	 referred	 to	 as	 the	 'discordant	 twin	 design'	
when	 the	 exposure	 is	 binary,	 and	 the	 'twin	 differences	 design'	when	 the	 exposure	 is	
continuous.	A	comprehensive	review	of	regression	models	used	to	fit	the	co-twin	design	
can	 be	 found	 in	 Carlin,	 Gurrin,	 Sterne,	 Morley,	 and	 Dwyer	 (2005).	 For	 continuous	
exposure	 and	 outcome,	 twin	 differences	 in	 the	 exposure	 and	 the	 outcome	 are	 first	
computed.	The	causal	effect	is	estimated	by	a	simple	regression	without	intercept	of	the	
twin	differences	in	the	outcome	on	the	twin	differences	in	the	exposure.	A	more	complex	
multilevel	 model	 can	 be	 fitted,	 modelling	 both	 the	 within	 family-estimates	 and	 the	
between-family	 estimates.	 The	 within-family	 estimates	 will	 give	 exactly	 the	 same	
estimates	of	the	causal	effect	as	the	aforementioned	simpler	approach.	This	type	of	model	
must	 allow	 for	 both	 an	 intra-class	 correlation	 (the	 within-twins	 correlation),	 which	
affects	the	estimate,	and	robust	standard	errors.	The	phenotypic	relationship	between	
the	 exposure	 and	 the	 outcome	 is	 a	weighted	mean	 of	 the	within	 and	 between	 family	
estimates.	They	can	be	fitted	in	a	variety	of	statistical	frameworks	which	provide	very	
similar	 estimates	 and	 confidence	 intervals,	 including	 mixed	 models,	 generalized	
estimating	equations,	and	structural	equation	modelling.			

The	co-twin	control	design	has	been	widely	used	for	causal	inference,	confirming	
for	example	the	causal	link	between	smoking	and	lung	cancer	(Hjelmborg	et	al.,	2017),	
demonstrating	the	impact	of	bullying	victimisation	on	childhood	mental	health	(Silberg	
et	 al.,	 2016),	 and	 suggesting	 that	 birth	 weight	 impacts	 the	 development	 of	 ADHD	
symptoms	(Lim	et	al.,	2018).	Findings	from	the	co-twin	design	can	shed	new	light	on	the	
role	of	risk	factors.	For	example,	simple	associations	suggest	that	bullying	victimisation	
is	 a	 risk	 factor	 for	 most	 mental	 health	 outcomes	 over	 the	 long	 term,	 whereas	 twin	
differences	 designs	 point	 towards	 more	 specific	 effects	 (e.g.	 prominently	 on	 anxiety,	
depressive	 symptoms	 and	 self-harm)	 and	 shorter-term	 effects	 (Singham	et	 al.,	 2017).	
More	 elaborate	 longitudinal	 models	 can	 also	 be	 built	 based	 on	 twin	 differences.	 For	
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example,	a	latent	growth	model	has	been	implemented	to	show	that	differences	in	birth	
weight	predict	ADHD	symptoms	from	childhood	to	adolescence,	but	that	the	size	of	the	
effect	decreases	with	age,	 consistent	with	a	partial	 ‘catch-up’	 effect	 (Lim	et	al.,	 2018).	
Cross-lag	 models	 can	 be	 implemented	 with	 twin	 differences	 to	 look	 at	 reciprocal	
influences	between	two	phenotypes	over	time,	while	controlling	for	genetic	and	shared	
environmental	confounding	(Cecil,	Barker,	Jaffee,	&	Viding,	2012).	
	
Comparing	the	co-twin	control	design	with	the	classical	twin	decomposition	
The	co-twin	control	design	and	the	classical	twin	decomposition	can	be	conceived	as	two	
approaches	to	decomposing	a	relationship:	The	former	decomposes	covariance	between	
variables	 into	 within	 and	 between	 family	 effects,	 the	 latter	 into	 genetic,	 shared-
environmental	and	non-shared-environmental	components.	In	the	majority	of	instances,	
when	using	 twin	 samples	 for	 causal	 inference,	 these	 two	methods	are	 equivalent	 and	
should	lead	to	the	same	conclusions.	That	is,	when	using	the	co-twin	control	design	to	
focus	on	differences	between	MZ	 twins	 (within	 family	effects),	 researchers	are	 in	 fact	
focussing	on	non-shared	 environmental	 variance	 (the	E	 component	 in	 biometric	 twin	
models).	When	asking	if	differences	in	X	predict	differences	in	Y,	they	are	asking	if	non-
shared	environmental	variance	 in	X	predicts	non-shared	environmental	variance	 in	Y.	
Such	 statistical	 equivalence	 does	 not	 mean	 that	 one	 or	 the	 other	 method	 should	 be	
considered	redundant.	Twin	decompositions	will	be	of	use	to	researchers	interested	in	
quantifying	 the	 relative	 effects	 of	 genetic,	 shared	 environmental	 and	 non-shared	
environmental	 correlations	 on	 covariance	 between	 variables.	 Conversely,	 co-twin	
control	 studies	are	not	appropriate	 to	examine	 the	genetic	architecture	of	 traits;	 they	
have	 been	 used	 and	 are	 most	 useful	 for	 causal	 inference	 research,	 as	 a	 particular	
implementation	of	fixed-effect	models.		

In	 the	 context	 of	 causal	 inference,	 both	 biometric	 decomposition	 and	 twin	
differences	approaches	suffer	from	the	same	two	major	limitations	of	unobserved	non-
shared	environmental	 confounders	 and	 the	possibility	of	 reverse	 causation.	However,	
while	twin	differences	and	biometric	decompositions	are	usually	equivalent,	there	may	
be	circumstances	in	which	one	design	is	appropriate	and	the	other	is	not.	For	example,	a	
version	of	the	twin	difference	design	has	been	applied	to	a	sample	of	genotyped	DZ	twins	
to	explore	the	extent	to	which	differences	 in	polygenic	scores	predicted	differences	 in	
several	early	life	outcomes	(Selzam	et	al.,	2018;	Selzam	et	al.,	2019).	The	intention	was	to	
control	for	the	potential	confounding	effects	of	those	influences	shared	within	DZ	twin	
pairs	including	population	stratification,	assortative	mating	and	indirect	genetic	effects	
from	 parents	 (genetic	 nurture).	 Genetic	 nurture	 occurs	 for	 example	 when	 genetic	
variants	 for	 education	 in	 the	 parents	 affect	 parental	 education,	 which	 in	 turn	
environmentally	 impacts	 child	 education.	 Such	 effects,	 although	 originating	 in	 the	
parental	 genotypes,	 are	 environmentally	 mediated	 and	 do	 not	 reflect	 direct	 genetic	
effects	of	 the	child	genotype	on	 the	child	phenotype	 (Eaves	et	al.,	2014;	Hwang	et	al.,	
2020;	 Kong	 et	 al.,	 2018;	 Young	 et	 al.,	 2018).	 Selzam	 et	 al.	 (2019)	 showed	 that	 twin	
differences	 in	 polygenic	 scores	 predicted	 differences	 in	 height,	 BMI,	 intelligence,	
educational	achievement	and	ADHD	symptoms.	However,	 the	within-family	prediction	
was	 attenuated	 for	 intelligence	 and	 educational	 attainment,	 indicating	 a	 degree	 of	
confounding.	This	finding	required	the	use	of	a	twin	differences	approach.	A		biometric	
decomposition	would	 not	 be	 appropriate	 	 here	 as	 it	 would	 be	 inappropriate	 to	 treat	
polygenic	 scores	 as	 phenotypes	 (as	 any	 polygenic	 score	would	 correlate	 1	within	MZ	
twins	and	0.50	on	average	in	DZ	twins,	resulting	in	A	=	100%,	which	would	not	capture	
and	adjust	for	the	genetic	nurture	effects).				
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Direction	of	Causation	in	Twin	Models	
Longitudinal	data	
In	the	models	we	have	discussed	thus	far	the	assumption	has	been	that	the	direction	of	
causation	runs	from	X	to	Y	and	not	vice	versa.	However,	often	it	is	not	possible	to	know	
with	certainty	whether	this	is	the	case.	For	example,	in	cross-sectional	data	it	may	well	
be	that	Y	causes	X	but	it	would	not	be	possible	using	the	models	we	have	discussed	to	
identify	the	true	direction	of	causation.	An	often-used	technique	to	identify	the	direction	
of	effects	is	to	use	longitudinal	data	in	which	variables	have	a	temporal	order	to	them.	
For	 example,	 in	 a	bivariate	Cholesky	decomposition,	 if	 X	was	measured	before	Y,	 one	
could	argue	that	the	data	should	be	modelled	such	that	X	predicts	Y	and	not	vice	versa.	
That	said,	temporal	ordering	of	measurement	is	often	not	justification	enough	to	assume	
that	a	variable	at	time	1	should	be	modelled	as	a	cause	of	a	variable	at	time	2.	For	example,	
if	school	performance	were	measured	at	time	1	and	IQ	at	time	2,	the	temporal	ordering	
of	 measurement	 would	 not	 justify	 modelling	 the	 data	 based	 on	 the	 assumption	 that	
school	 performance	 causes	 IQ.	 Ideally,	 IQ	 and	 school	 performance	 would	 each	 be	
measured	 at	 time	 1	 and	 time	 2,	 so	 that	 we	 can	 ask	 whether	 school	 performance	
prospectively	 predicts	 IQ	 after	 accounting	 for	 the	 correlation	 between	 IQ	 and	 school	
performance	at	time	1	and	stability	in	IQ	between	time	1	and	time	2.		

Autoregressive	 cross-lagged	 models	 are	 frequently	 used	 so	 that	 prospective	
associations	between	variables	can	control	for	the	combined	effects	of	contemporaneous	
associations	between	traits	and	across-time	stability	within	traits.	For	example,	in	Figure	
4i,	the	prediction	from	X1	to	Y2	controls	for	the	effects	of	Y1	on	Y2	and	the	covariance	
between	X1	and	Y1	(although	see	Hamaker,	Kuiper,	and	Grasman	(2015)	for	a	critique	of	
some	 misperceptions	 regarding	 autoregressive	 cross-lagged	 models	 and	 alternative	
specifications).	A	bivariate	Cholesky	decomposition	of	X1	predicting	Y2	would	potentially	
capture	 the	 confounding	 effects	 of	 Y1	 through	 the	 genetic	 and	 shared-environmental	
influences	 common	 to	 all,	 but	would	not	 capture	potential	 non-shared	 environmental	
confounders	indexed	by	Y1.		

Malanchini	 et	 al.	 (2017)	 introduce	 a	 biometric	 genetic	 version	 of	 the	
autoregressive	cross-lagged	model	in	which	four	variables	are	decomposed	into	genetic,	
shared	 environmental	 and	 non-shared	 environmental	 components,	 and	 each	 of	 these	
components	allowed	to	predict	one	another	in	the	manner	of	an	autoregressive	cross-
lagged	simplex	model	(see	Figure	4ii-4iv).	In	this	model,	the	cross-lagged	E	predictions	
tell	us	whether	e.g.	X1	predicts	Y2	after	accounting	for	genetic	and	shared-environmental	
influences	common	to	these	two	variables	and	those	influences—including	non-shared	
environmental	influences—shared	with	Y14.	Malanchini	et	al.	(2017)	demonstrated	the	
utility	of	this	model	by	showing	that	although	the	phenotypic	cross-lags	between	reading	
motivation	 and	 reading	 achievement	 in	 children	 were	 of	 equal	 magnitude,	 only	 the	
prediction	from	motivation	to	achievement	survived	correction	for	shared	aetiologies.		
	
INSERT	FIGURE	4	AROUND	HERE	
	

An	 alternative	 biometric	 autoregressive	 cross-lagged	 model	 to	 that	 presented	
here	comprises	a	combination	of	the	Cholesky	decomposition	and	the	correlated	factors	

 
4 Note that this model is distinct to previous autoregressive cross-lagged twin models such as those critiqued by 
Luo, Haworth, and Plomin (2010) in which correlations between X1 and Y1 and between the residual variances 
of X2 and Y2 are decomposed into A, C and E components, but cross-lagged paths are not decomposed.  
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model	(where	e.g.	in	Figure	4.ii	causal	effects	would	run	from	Ax1	and	Ay1	directly	to	X2	
and	Y2	rather	than	via	Ax2	and	Ay2.	See:	Torvik	et	al.,	2019;	Torvik	et	al.,	2017).	This	
model	has	been	used	to	show	that	social	anxiety	disorder	prospectively	predicts	alcohol	
use	disorder—and	not	vice	versa—after	accounting	for	shared	aetiology	(Torvik	et	al.,	
2019).		
	
Cross-sectional	data	and	Direction	of	Causation	(DoC)	twin	models	
While	 longitudinal	 data	 is	 typically	 considered	 ideal	 for	 identifying	 the	 direction	 of	
effects,	 it	 isn’t	 always	 available.	 In	 such	 cases	 cross-sectional	 twin	 data	 can,	 to	 some	
degree,	help	strengthen	causal	 inference	between	two	traits	X	and	Y.	The	Direction	of	
Causation	(DoC)	model	(Duffy	&	Martin,	1994;	Heath	et	al.,	1993)	is	distinct	to	most	of	
the	models	described	here	 in	 that	 the	 focus	 is	 not	 on	 controlling	 for	 the	 confounding	
effects	of	common	aetiologies.	Rather	it	is	on	determining	the	likely	direction	of	effects	
between	two	variables	where	temporal	ordering	is	not	present	or	is	unknown	(see	Figure	
5.i).	That	is,	the	extent	to	which	an	association	between	X	and	Y	is	driven	by	X	predicting	
Y	vs.	Y	predicting	X.	The	power	of	this	design	is	derived	from	the	differential	predictions	
that	 come	about	 regarding	 the	 cross-twin	cross-trait	 correlations	 for	MZ	and	DZ	 twin	
pairs	 when	 comparing	 the	 two	 potential	 causal	 models	 (X	 causes	 Y,	 vs	 Y	 causes	 X).	
Differences	in	the	covariance	structure	are	predicted	where	the	aetiological	structure	(i.e.	
the	relative	importance	of	A,	C,	and	E)	is	distinct	for	trait	X	vs.	trait	Y.	For	example,	where	
A	affects	trait	Y	but	not	X	and	C	affects	trait	X	but	not	Y.		
	
INSERT	FIGURE	5	AROUND	HERE	
	
Figure	5	contains	examples	in	which	trait	X	is	under	the	influence	of	C	and	E,	and	trait	Y	
is	under	the	influence	of	A	and	E.	In	5.ii,	trait	X	causes	Y,	in	5.iii,	Y	causes	X.	If	X	causes	Y,	
the	expected	cross-twin	cross-trait	correlation	(i.e.,	correlation	between	X	in	twin	1	and	
Y	 in	 twin	2,	or	Y	 in	 twin	1	and	X	 in	 twin	2),	can	only	be	explained	via	 the	variance	of	
variable	 X.	 Since	 variable	 X	 is	 influenced	 by	 C	 and	 E	 only,	 the	 cross-twin	 cross-trait	
correlations	will	be	driven	by	C.	If	C	is	the	only	thing	that	explains	correlations	between	
e.g.	X	in	twin	1	and	Y	in	twin	2,	then	these	correlations	will	be	the	same	for	MZs	and	DZs	
(because	C,	the	shared	environment,	by	definition	influences	MZ	and	DZ	twins	equally).	
However,	 if	 Y	 causes	 X,	 then	 the	 cross-twin	 cross-trait	 correlations	will	 be	 driven	 by	
variance	in	variable	Y.	Given	that	Y	in	our	example	is	under	the	influence	of	A,	the	cross-
twin	cross-trait	correlations	will	be	larger	for	MZs	than	DZs	(Gillespie	&	Martin,	2005).	
While	 our	 example	 involves	 traits	 of	 very	 different	 aetiologies,	 it	 is	 also	 possible	 to	
distinguish	 the	 direction	 of	 causation	when	 the	 two	 traits	 have	 a	 similar	 but	 distinct	
aetiology.	For	example,	where	trait	X	is	under	greater	genetic	influence	than	trait	Y.	In	
this	 manner	 it	 has	 been	 shown	 that	 for	 the	 relationship	 between	 autism	 spectrum	
disorder	and	other	mental	health	problems,	best-fitting	models	suggest	a	unidirectional	
phenotypic	 influence	 of	 hyperactivity	 on	 identification	 of	ASD.	Relationships	 between	
ASD	and	emotional	symptoms	and	conduct	problems	were	best	explained	by	correlated	
genetic	and	environmental	factors,	respectively	(Tick	et	al.,	2016).	

A	major	assumption	of	the	DoC	model	is	that	the	association	between	X	and	Y	is	
causal.	That	 is,	 that	 it	 is	not	attributable	to	common	causes	unmodeled.	 In	theory	 it	 is	
possible	 to	 allow	 for	 correlations	 between	 aetiological	 components	 of	 X	 and	 Y	 (i.e.	
between	A1	and	A2	or	C1	and	C2),	however	doing	so	will	reduce	the	ability	of	the	model	to	
distinguish	the	direction	of	effects.	In	practice	it	is	more	usual	for	researchers	to	compare	
e.g.	a	Cholesky	decomposition	of	Y	on	X	in	which	a	shared	aetiology	is	modelled,	with	a	
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DoC	model	and	then	select	 the	model	with	 the	best	 fit	 to	 the	data	 (e.g.	Gillespie	et	al.,	
2012).	

One	way	of	thinking	about	the	DoC	model	is	that	the	variance	components	of	one	
trait	are	being	treated	as	instrumental	variables	in	their	prediction	of	the	other	trait.	That	
is,	that	their	effects	only	operate	through	the	causal	effect	of	the	intermediate	trait.	For	
example,	that	A2	can	only	predict	Trait	X	through	Trait	Y.	This	is	an	assumption	of	the	
model	 and	 is	 analogous	 to	 the	 use	 of	 genetic	 variants	 and	 polygenic	 scores	 as	
instrumental	variables	in	those	methods	collectively	referred	to	under	the	umbrella	term	
Mendelian	randomization	(Davey	Smith	&	Ebrahim,	2003;	Davey	Smith	&	Hemani,	2014;	
Smith	&	Ebrahim,	2005)	Hwang	et	al.	(2020)	discuss	extensions	to	the	DoC	model	that	
incorporate	 Mendelian	 genetic	 tools	 to	 further	 strengthen	 the	 ability	 to	 draw	 causal	
inferences	using	this	model.	An	alternative	version	of	the	DoC	has	also	been	suggested,	in	
which	the	direction	of	causation	between	latent	C	and	E	factors	(as	opposed	to	between	
phenotypes)	 can	 be	 detected	 using	 datasets	 with	 non-normally	 distributed	 variables	
(Ozaki	&	Ando,	2009).			
	
Extended	Family	Designs	
Twin	models	make	use	of	the	fact	that	MZ	and	DZ	twins	differ	in	how	genetically	related	
they	are	to	one	another,	and	this	information	is	used	to	infer	how	important	genetic	and	
environmental	factors	are	in	explaining	variance	in	a	trait	and	covariance	between	traits.	
However,	the	logic	of	the	twin	design	is	not	confined	to	use	in	twin	samples	only.	Indeed,	
it	 is	possible	 to	 apply	biometric	ACE	models	 to	 any	datasets	 comprising	differentially	
related	relatives.	For	example,	it	is	possible	to	use	samples	comprising	siblings	and	half-
siblings,	or	cousins	and	half-cousins	to	estimate	heritability	and	to	explore	the	nature	of	
covariance	between	phenotypes5.	Various	extended	family	models	have	been	proposed	
that	make	use	of	multi-generation	data	to	examine	the	aetiology	of	traits	measured	in	two	
or	more	 generations	 (Keller	 et	 al.,	 2009;	Maes	 et	 al.,	 2009;	 Truett	 et	 al.,	 1994).	 Such	
models	allow	for	the	modelling	of	assortative	mating,	gene-environment	covariance,	and	
other	possibilities	not	feasible	in	a	single-generation	dataset.	Extended	family	data	also	
provides	 the	 opportunity	 for	 researchers	 to	 examine	 associations	 between	 family	
members.	That	is,	to	ask	questions	about	whether	family	members	have	an	effect	on	one	
another,	after	accounting	for	their	relatedness.	For	example,	using	data	comprising	twins	
and	 their	 children,	 it	 is	 possible	 to	 assess	whether	 associations	 between	 parents	 and	
children	persist	after	accounting	for	genetic	relatedness	(D'Onofrio	et	al.,	2003;	McAdams	
et	al.,	2014;	Silberg	&	Eaves,	2004).	
	
Children-of-Twins-and-Siblings	Models	
Often,	 researchers	 are	 interested	 in	 the	 potential	 for	 parents	 to	 influence	 the	
development	of	their	children.	For	example,	associations	between	parenting	behaviours	
and	child	behavioural	and	emotional	traits	are	often	interpreted	in	ways	that	imply	that	
parenting	causes	child	behaviour	(and/or	vice	versa).		And	intergenerational	similarities	
in	personality,	psychopathology,	and	behaviour	are	often	interpreted	as	though	exposure	
to	parent	 trait	 causes	 the	development	 of	 the	 child	 trait.	However,	 in	most	 instances,	
parents	and	children	are	genetically	related	to	one	another	and	share	an	environment.	As	

 
5 There	are	limitations	to	using	such	samples.	For	example,	the	lower	relatedness	coefficients	will	mean	
that	statistical	power	is	reduced	relative	to	similarly	sized	samples	of	twin	pairs.	Where	twins	are	always	
age	 matched,	 siblings	 and	 cousins	 may	 not	 be,	 so	 appropriate	 controls/adjustments	 may	 need	 to	 be	
included	in	models	where	necessary.	Assumptions	regarding	the	definition	of	the	‘shared	environment(s)’	
will	also	need	to	be	made	explicit.	 
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such	 parent-child	 associations	 are	 likely	 to	 be	 at	 least	 partially	 attributable	 to	 the	
confounding	effects	of	shared	genetic	and	environmental	influences.		
	 Using	samples	comprising	twins	and	their	children,	 it	 is	possible	to	decompose	
intergenerational	associations	into	genetic	and	environmental	components	in	much	the	
same	way	that	samples	of	twins	can	be	used	to	decompose	within-person	associations.	
Where	 twin	 studies	 use	 differences	 in	MZ	 and	 DZ	 cross-twin	 cross-trait	 correlations,	
children-of-twin	studies	use	differences	in	avuncular	correlations	(that	between	a	twin	
and	their	co-twin’s	child/ren).	As	with	twin	data,	children-of-twin	data	can	be	analysed	
using	a	variety	of	models	(Heath,	Kendler,	Eaves,	&	Markell,	1985)	and	can	be	extended	
to	include	siblings	(as	well	as	twins)	with	children	(Hannigan	et	al.,	2018;	Kuja-Halkola,	
D’Onofrio,	Larsson,	&	Lichtenstein,	2014),	multiple	offspring	per	parent	(McAdams	et	al.,	
2018),	 and	 spouses	 (Silberg,	 Maes,	 &	 Eaves,	 2010).	 In	 Figure	 6	 we	 present	 a	 simple	
version	of	a	children-of-twins	model	comprising	MZ	and	DZ	twin	pairs	with	one	child	per	
twin.	In	this	model,	both	parent	and	child	phenotypes	are	decomposed	into	genetic	and	
environmental	influences.	In	the	child	generation	this	is	possible	by	comparing	cousins	
whose	 parents	 are	MZ	 twins	 to	 those	 whose	 parents	 are	 DZ	 twins	 (rG=.25	 and	 .125	
respectively).	If	multiple	children	per	twin	are	included,	then	siblings	can	be	included	in	
these	estimations	(rG=.50).	Because	cousins	do	not	share	a	nuclear	family	environment,	
C	(as	typically	defined)	cannot	be	estimated	in	the	offspring	generation	without	the	use	
of	siblings.	The	intergenerational	association	between	parent	and	child	is	decomposed	
into	a	genetic	component	(A1’),	an	extended	family	component	(C1’)6	and	the	remaining	
residual	 phenotypic	 association	 (p).	 If	 this	 ‘p’	 path	 predicts	 the	 child	 trait,	 then	 this	
indicates	the	association	between	parent	and	child	phenotypes	remains	after	accounting	
for	shared	genetic	and	environmental	influences.		
	 	
INSERT	FIGURE	6	AROUND	HERE	
	
Models	 similar	 to	 that	 illustrated	 in	 Figure	 6	 have	 been	 used	 to	 examine	 a	 range	 of	
associations	between	parent	and	child	traits,	demonstrating	for	example	that	maternal	
depression	during	pregnancy	does	not	predict	later	childhood	emotional	and	behavioural	
problems	 after	 accounting	 for	 genetic	 confounding	 (Hannigan	 et	 al.,	 2018),	 	 and	 that	
maternal	 smoking	 during	 pregnancy	 predicts	 birthweight	 and	 preterm	 birth	 but	 not	
cognitive	abilities	or	externalising	behaviours	 in	offspring	after	accounting	 for	genetic	
confounds	(Kuja-Halkola	et	al.,	2014).	While	most	of	these	analyses	are	bivariate,	these	
models	are	just	as	flexible	as	other	twin	models,	so	where	appropriate	data	is	available	it	
will	be	possible	for	example	to	ask	questions	about	the	direction	of	causation	between	
parent	and	child	(Narusyte	et	al.,	2008),	 longitudinal	associations	between	parent	and	
child,	and	gene-environment	interplay.		
	
Twin	Data	and	Experimental	Design	
Thus	far	we	have	discussed	quasi-experimental	research	designs	using	samples	of	twin	
pairs.	 However,	 another	 (rarely	 employed)	 approach	 involves	 designing	 experiments	
using	twin	samples.	Typically,	experiments	involve	the	random	assignment	of	individuals	
to	treatment	and	control	conditions,	with	this	random	assignment	intended	to	account	
for	 any	 confounders	 that	 might	 exist	 in	 a	 non-experimental	 situation.	 Matched-pair	
designs	go	one	step	further	and	match	pairs	of	subjects	in	the	control	and	experimental	

 
6 In extended family data it is possible to model a range of different “shared environments”. For example, 
maternal effects can be modelled in studies including maternal and paternal half siblings.  



 14 

conditions	on	any	potentially	 important	 factors	 that	might	make	pairs	differ	 from	one	
another.	 Using	 twin	 data	 such	 that	 twin	 1	 receives	 a	 treatment	 and	 twin	 2	 does	 not	
provides	 an	 extreme	 example	 of	 this	 matched-pair	 design.	 Where	 twin	 1	 and	 2	 are	
members	of	an	MZ	pair	they	will	be	matched	on	all	genetic	and	shared	environmental	
influences.	Examples	of	this	method	include	studies	demonstrating	how	supplementation	
with	 vitamin	 C	 has	 no	 effect	 on	 self-reported	 incidence	 of	 the	 common	 cold	 (Carr,	
Einstein,	Lai,	Martin,	&	Starmer,	1981;	Martin,	Carr,	Oakeshott,	&	Clark,	1982).		

An	alternative	 take	on	 the	use	of	 twins	 in	 experiments	 comes	 from	a	 study	by	
Haworth	 et	 al.	 (2016),	 in	 which	 they	 estimated	 changes	 in	 aetiological	 influences	 on	
wellbeing	and	mental	health	in	response	to	an	online	intervention	delivered	to	all	twins	
in	a	sample.	They	found	that	mean	levels	of	wellbeing	and	mental	health	improved	across	
the	study,	and	that	changes	in	wellbeing	were	accounted	for	by	changes	in	non-shared	
environmental	 influences.	 However,	 while	 means	 changed	 and	 new	 non-shared	
environmental	 influences	 were	 evident	 post-intervention,	 estimates	 of	 the	 relative	
importance	of	A,	C	and	E	in	explaining	variance	did	not	vary	in	magnitude	pre-	vs.	post-
intervention.	These	 findings	highlight	a	 fundamental	 characteristic	of	biometric	 (ACE)	
twin	models:	such	models	focus	on	population	variance	in	traits,	not	population	means.	
Means	can	change	without	necessarily	affecting	the	relative	importance	of	genetic,	shared	
environmental	and	non-shared-environmental	components.		
	
Discussion	
In	the	preceding	review	we	have	covered	several	ways	in	which	twin	data	can	be	used	by	
researchers	 interested	 in	 testing	 quasi-causal	 and	 causal	 hypotheses.	 As	 with	 all	
statistical	 models,	 those	 we	 have	 presented	 require	 careful	 and	 considered	
interpretation.	 In	 the	 following	 section	 we	 explore	 some	 issues	 that	 we	 believe	 are	
important	when	attempting	causal	inference	with	twin	data.		
	
Non-shared-environmental	confounds	are	not	accounted	for	
Most	of	the	models	presented	in	this	chapter	are	focussed	on	controlling	for	genetic	and	
shared-environmental	 sources	 of	 confounding,	 and	 do	 not	 do	 anything	 to	 control	 for	
potential	non-shared	confounders.	As	such,	the	potential	for	non-shared	environmental	
influences	 to	 confound	 associations	 should	 always	 be	 considered.	 For	 example,	 in	 an	
analysis	in	which	smoking	is	the	predictor,	twins	who	smoke	more	than	their	co-twins	
may	 also	 drink	more	 alcohol,	 such	 that	 alcohol	 rather	 than	 the	 putative	 risk	 factor	 -
smoking-	may	be	responsible	for	adverse	outcomes.	It	is	possible	to	statistically	control	
for	twin	differences	in	covariates—e.g.	alcohol	consumption—but	the	models	presented	
will	 still	 assume	 that	 there	are	no	additional	 (unobserved)	non-shared	environmental	
confounders.	To	the	extent	that	there	are	non-shared	environmental	confounders	that	
are	not	accounted	for,	any	residual	association	between	predictor	and	outcome	will	be	
inflated.		
	
Some	environments	of	interest	do	not	differ	between	twins	
It	is	worth	noting	that	some	environmental	variables,	such	as	childhood	socioeconomic	
status,	 or	 neighbourhood	 characteristics	 during	 childhood,	 will	 not	 typically	 vary	
between	 twins.	 That	 is,	 where	 twins	 are	 reared	 by	 the	 same	 parents,	 in	 the	 same	
household,	go	to	the	same	school	and	live	in	the	same	neighbourhood,	then	they	may	not	
differ	in	terms	of	environmental	measures	related	to	parents,	households,	schools	and	
neighbourhoods.	This	precludes	the	estimation	of	heritability	of	such	variables	using	the	
twin	design	(i.e.	MZ	and	DZ	correlations	will	both	be	1	in	these	cases).	It	also	precludes	
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the	calculation	of	difference	scores	in	the	co-twin	control	design.	Importantly,	this	does	
not	necessarily	mean	that	such	variables	are	not	under	the	influence	of	genetic	factors,	it	
is	simply	a	limitation	of	the	twin	design	that	heritability	cannot	be	estimated	for	variables	
that	do	not	differ	within	twin	pairs.	As	such,	it	is	not	possible	to	correct	for	aetiological	
overlap	involving	such	variables.		
	 One	solution	to	this	problem	lies	in	the	use	of	intergenerational	multiple-children-
of-twins-and-siblings	models.	 If	 a	 dataset	 comprises	 twins	 and	 siblings	 in	 the	 parent	
generation	as	well	as	the	offspring	generation	(which	would	also	then	include	cousins),	
it	becomes	possible	to	model	the	aetiology	of	traits	that	can	differ	between	siblings	in	the	
parent	generation,	such	as	e.g.	parental	socioeconomic	status.	By	modelling	genetic	and	
environmental	 relatedness	between	parents	 and	 children	 it	 then	becomes	possible	 to	
account	for	genetic	overlap	between	parent	trait	and	child	outcome.	For	example,	 this	
method	has	been	used	to	demonstrate	that	parental	educational	attainment	is	predictive	
of	 child	 ADHD	 symptoms	 and	 academic	 problems	 at	 school,	 but	 not	 child	 depression	
symptoms,	after	accounting	for	genetic	relatedness	(Torvik	et	al.,	2020).		
	
Statistical	power		
Much	has	been	written	about	statistical	power	and	twin	studies	(e.g.	Ahmadzadeh	et	al.,	
2020;	Verhulst,	2017;	Visscher,	2004).	In	univariate	studies,	power	to	detect	A	(defined	
as	twice	the	difference	between	MZ	and	DZ	correlations)	is	contingent	upon	MZ	and	DZ	
correlations	being	significantly	different	 to	one	another.	Power	to	detect	C	 is	 typically	
lower	than	that	to	detect	A,	and	relies	on	DZ	twins	being	more	similar	to	one	another	than	
heritability	accounts	for.	E	will	always	be	non-zero	because	it	contains	error	variance.		

When	using	bivariate	and	multivariate	models	as	discussed	 in	 this	chapter,	 the	
focus	is	on	whether	residual	associations	remain	after	accounting	for	potential	genetic	
and	shared-environmental	confounds.	While	E	(residual	variance	after	accounting	for	A	
and	C)	will	always	be	non-zero	in	univariate	models	that	explain	variance	in	a	single	trait,	
this	is	not	the	case	for	covariance	between	traits,	where	residual	covariance	attributable	
to	 E	 can	 equal	 zero.	 As	 such,	 when	 decomposing	 covariance	 between	 traits	 for	 the	
purposes	of	causal	inference	there	should	be	2	primary	concerns	relating	to	power:		
1. How	much	power	is	there	to	detect	genetic	and	shared-environmental	influences	on	

the	covariance?		
2. If	 power	 to	 detect	 genetic	 and	 shared-environmental	 influences	 on	 covariance	 is	

adequate,	how	large	would	the	residual	covariance	need	to	be	to	be	detected?		
Where	covariance	between	traits	is	low,	or	sample	sizes	are	small,	power	to	detect	A	or	
C	influences	on	covariance	will	be	low,	and	this	may	lead	to	incorrect	conclusions	being	
drawn	 regarding	 the	 significance	 and/or	 magnitude	 of	 residual	 covariance	 terms.	
Researchers	 should	 therefore	 be	 careful	 when	 interpreting	 residual	 covariance	 and	
consider	how	much	power	they	have	to	detect	confounding.	Power	calculations	can	be	
performed	 by	 simulating	 a	 dataset	 in	which	 the	 sample	 composition,	 covariance,	 and	
proportions	of	covariance	attributable	to	A,	C	and	the	residual/E	are	known.	By	varying	
these	proportions	researchers	can	evaluate	the	power	they	have	in	their	own	data	(e.g.	
see	Verhulst,	2017,	and	associated	website).	
	
Measurement	error	
Measurement	error	is	aggravated	when	computing	difference	scores,	to	the	extent	that	
traits	 are	 correlated	within	 pairs.	 As	 a	 result,	 estimates	 from	MZ	 differences	may	 be	
attenuated	compared	to	estimates	 in	DZ	differences,	which	 themselves	are	attenuated	
compared	to	phenotypic	estimates,	even	in	the	absence	of	confounding.	This	may	lead	to	
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an	 underestimation	 of	 causal	 effects.	 Causal	 estimates	 can	 also	 be	 biased	 when	 the	
magnitude	of	measurement	error	is	different	for	the	risk	factor	and	the	outcome.	This	can	
be	dealt	with	by	directly	modelling	measurement	error	when	possible,	or	by	conducting	
a	 sensitivity	 analysis	 to	 estimate	 how	much	measurement	 error	would	 be	 needed	 to	
substantially	change	the	conclusions.		
	
The	importance	of	context		
When	 using	 twin	 data	 to	 account	 for	 genetic	 or	 environmental	 overlap	 between	 two	
traits,	 one	 can	 think	 of	 the	 estimate	 of	 shared	 genetic	 influences	 as	 a	 ‘bivariate	
heritability’	 estimate	 –	 an	 estimate	 of	 genetic	 influence	 on	 covariance	 (rather	 than	
variance).	 Like	 heritability	 estimates,	 these	 bivariate	 heritability	 estimates	 are	
population	 specific	 and	 should	 not	 be	 assumed	 to	 necessarily	 generalise	 to	 other	
populations.	Estimates	of	genetic	and	environmental	influences	on	variance	are	known	
to	vary	with	age	(Haworth	et	al.,	2010),	across	socioeconomic	gradients	(Tuvblad,	Grann,	
&	Lichtenstein,	2006),	and	between	countries	(Ball	et	al.,	2009;	Hur,	2008;	Xu	et	al.,	2015).	
In	other	words,	contextual	conditions	have	an	effect	on	how	much	variance	in	a	trait	is	
explained	by	genetic	and	environmental	variance	in	a	population.	This	is	also	likely	to	be	
true	 for	bivariate	estimates	and	 thus	has	 implications	 for	 the	use	of	 twin	data	 for	 the	
purposes	of	causal	inference:	if	we	find	that	the	association	between	X	and	Y	is	entirely	
attributable	 to	genetic	overlap	 in	our	 sample,	 this	does	not	necessarily	mean	 that	 the	
same	will	be	true	in	other	samples.	Indeed,	it	may	even	be	possible	that	the	nature	of	the	
association	varies	within	a	sample.	When	this	is	deemed	plausible,	it	is	worth	considering	
the	inclusion	of	moderators	in	models	where	feasible.	For	example,	it	is	conceivable	that	
parental	 socioeconomic	 status	 (SES)	 could	 moderate	 the	 nature	 of	 the	 association	
between	 maternal	 depression	 and	 child	 internalising	 such	 that	 at	 high	 levels	 of	 SES	
(where	 social	 and	economic	 resources	are	abundant),	 the	association	may	be	entirely	
genetic,	but	at	low	levels	of	SES	(where	support	may	be	less	available),	there	could	be	a	
causal	effect	of	maternal	depression	on	child	internalising.	Where	moderation	is	taking	
place	but	 is	not	modelled,	estimates	regarding	 the	association	between	X	on	Y	will	be	
biased.		
	
Summary	
In	this	chapter	we	have	described	some	of	the	ways	in	which	twin	data	can	be	used	to	
interrogate	 causal	 hypotheses,	 particularly	 where	 experimental	 manipulation	 is	 not	
possible.	The	advantage	of	using	 twin	and	 family	data	 lies	 in	 the	ability	 to	control	 for	
latent	genetic	and	shared	environmental	sources	of	potential	confounding.	This	provides	
researchers	with	 a	 powerful	 alternative	 to	 the	 often	 prohibitively	 challenging	 task	 of	
explicitly	 identifying	and	collecting	data	on	potential	 confounds.	We	would	argue	 that	
where	an	association	of	interest	survives	correction	for	the	potential	confounding	effects	
of	 common	genetic	and	shared-environmental	effects,	 then	 this	 should	strengthen	 the	
argument	for	drawing	causal	inferences	from	the	data	(always	bearing	in	mind	the	quasi-
experimental	nature	of	the	design	used).	For	example,	if	X	predicts	Y	after	controlling	for	
latent	genetic	and	shared-environmental	effects	that	influence	both	variables,	then	it	is	
possible	 that	X	causes	Y	and	 less	 likely	 that	 the	association	 is	attributable	 to	common	
causes.	If	so,	then	interventions	aimed	at	increasing	or	reducing	X	may	have	an	effect	on	
Y.	However,	if	the	association	between	X	and	Y	does	not	persist	after	controlling	for	latent	
genetic	and	shared-environmental	confounds,	then	it	is	unlikely	that	X	causes	Y.	It	should	
therefore	be	considered	less	likely	that	intervening	to	alter	X	will	alter	Y	also.	
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	 In	discussing	the	potential	inherent	in	using	twin	and	family	data	to	interrogate	
causal	 hypotheses,	 we	 have	 highlighted	 some	 of	 the	 limitations,	 assumptions,	 and	
nuances	that	researchers	should	consider	when	doing	so.	It	is	worth	noting	however	that	
many	of	these	limitations	are	shared	with	other	research	methods	and	broadly	relate	to	
the	generalisability	of	 findings,	and	 the	 importance	of	being	cognisant	of	assumptions	
when	interpreting	results.	Providing	these	issues	are	borne	in	mind,	twin	studies	provide	
an	extremely	powerful	tool	for	researchers	interested	in	teasing	apart	potential	causality	
from	the	effects	of	unknown	confounders	–	a	fundamental	and	central	goal	of	all	scientists	
concerned	with	the	study	of	human	beings.		
	
For	 readers	 interested	 in	 using	 twin	 data	 for	 causal	 inference,	 a	 list	 detailing	 twin	
registries	 around	 the	 world,	 with	 links	 to	 detailed	 overviews	 of	 each,	 is	 published	
periodically	in	the	journal	Twin	Research	and	Human	Genetics	(see	Hur	et	al.	(2020)	for	
the	most	recent).	
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Figure	1.	Path	diagram	of	the	univariate	twin	model.		
All	of	our	path	diagrams	 follow	standard	structural	 equation	modelling	 convention	whereby	measured	
variables	are	 represented	with	 squares	and	 latent	variables	are	 represented	with	 circles.	Although	not	
included	in	the	path	diagram,	the	variances	of	all	latent	variables	are	fixed	to	unity.	a1=Additive	genetic	
effects	 on	 phenotype;	 c1=	 shared-environmental	 effects	 on	 phenotype;	 e1=nonshared	 environmental	
effects	 on	 phenotype.	 A1=Additive	 genetic	 variance	 component;	 C1=	 shared-environmental	 variance	
component;	E1=nonshared	environmental	variance	component.	In	the	classical	twin	design,	the	predicted	
variances	of	each	trait	(a112	+	c112	+	e112)	and	the	predictions	for	the	covariances	(a112	+	c112	for	MZ	and	
.5a112	+	c112	 for	DZ	pairs)	are	fitted	to	the	observed	variances	and	covariances	to	obtain	the	most	 likely	
estimates	for	the	A,	C	and	E	effects.	
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Figure	2:	Cholesky	decomposition	twin	model.	
	
	
Table	1.	Variance-covariance	specification	for	a	bivariate	Cholesky	decomposition	
	 Trait	X	Twin	1	 Trait	Y	Twin	1	 Trait	X	Twin	2	 Trait	Y	Twin	2	
Trait	X	Twin	1	
	

a112	+	c112	+	e112	 a11*a21	+	c11*c21	+	
e11*e22	

.5*a112	+	c112	 a11*.5*a21	+	c11*c21	

Trait	Y	Twin	1	
	

a11*a21	+	c11*c21	+	
e11*e22	

a212	+	c212	+	e212	+	
a222	+	c222	+	e222	

a11*.5*a21	+	c11*c21	 .5*a212	+	c212	+	
.5*a222	+	c222	

Trait	X	Twin	2	
	

a112	+	c112	 a11*a21	+	c11*c21		 a112	+	c112	+	e112	 a11*a21	+	c11*c21	+	
e11*e22	

Trait	Y	Twin	2	
	

a11*a21	+	c11*c21	 a212	+	c212	+	
a222	+	c222		

a11*a21	+	c11*c21	+	
e11*e22	

a212	+	c212	+	e212	+	
a222	+	c222	+	e222	

Variances	are	highlighted	in	pale	blue	with	black	outline	on	the	diagonal.	MZ	twin	covariances	are	given	
below	 the	 diagonal,	 DZ	 twin	 covariances	 above	 the	 diagonal.	 Within-twin	 cross-trait	 covariances	 are	
highlighted	in	dark	blue.	Cross-twin	within-trait	covariances	are	highlighted	in	pale	green.	These	can	be	
used	to	decompose	variances	in	X	and	Y.	Cross-twin	cross-trait	covariances	are	highlighted	in	dark	green.	
These	 are	 used	 to	 decompose	 covariance	 between	 X	 and	 Y.	 Note	 that	 e	 paths	 are	 never	 involved	 in	
covariance	between	twins,	only	within.		
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a21 c21 e21 e21 c21 a21

rMZ=1.00
rDZ=.50

r=1.00

rMZ=1.00
rDZ=.50

r=1.00
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Figure	3.	Modelling	causality 
In	the	above	models,	Byx	is	the	causal	effect	of	X	on	Y.	In	model	i.	Vx	denotes	the	variance	of	X,	and	Ry	denotes	
the	residual	variance	of	Y	(the	variance	of	Y	remaining	after	regressing	out	the	effects	of	X).	In	model	ii.	Vz	
denotes	the	variance	of	Z,	and	Rx	and	Ry	denote	the	residual	variances	of	X	and	Y	(variance	remaining	after	
regressing	out	the	effect	of	Z	(on	X)	and	Z	and	X	(on	Y)).	Twin	models	shown	are	partial	path	diagrams	for	
a	single	individual.	All	latent	factors	have	variance	of	1	(not	shown).	
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Figure	4.	A	phenotypic	autoregressive	cross-lagged	model	and	partial	path	diagrams	of	a	
twin	autoregressive	cross-lagged	model	
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Figure	5.	The	Direction	of	Causation	(DoC)	twin	model	
	

	 	

Trait X
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i. DoC partial path diagram

ii. DoC path diagram where X causes Y iii. DoC path diagram where Y causes X

rMZ=1.00
rDZ=.50

rMZ=1.00
rDZ=.50

r=1.00 r=1.00



 23 

	

	
Figure	6.	Children	of	twins	structural	equation	model	
a1=additive	 genetic	 effects	 on	 parental	 phenotype;	 c1=	 shared-environmental	 effects	 on	 parental	
phenotype;	e1=nonshared	environmental	effects	on	parental	phenotype;	a1’=genetic	effects	common	to	
parental	 phenotype	 and	 offspring	 phenotype;	 c1’	 =	 extended	 family	 environment	 effects	 on	 offspring	
phenotype;	 a2=genetic	 effects	 specific	 to	 offspring	 phenotype;	 c2=	 shared-environmental	 effects	 on	
offspring	phenotype	(not	estimable	using	cousin	data);	e2=nonshared	environmental	effects	on	offspring	
phenotype;	p=phenotypic	effect	of	parent	on	offspring;	NB	the	pathway	between	A1	and	A1’	is	fixed	to	.50	
because	 parents	 and	 children	 share	 50%	 of	 their	 genome.	 To	 avoid	 over	 complicating	 path	 diagrams,	
variance	paths	have	been	omitted,	but	for	all	latent	factors	variance=1.	For	A1’	this	means	that	residual	
variance	(after	accounting	for	the	path	between	A1	and	A1’)	is	.75.	
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