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Abstract Airport capacity limitations have been suggested to lead to reduced pass-through of 

airline cost changes, and increased airline profits. Theoretically, these outcomes arise from    

limited supply leading to profit-optimal passenger fares determined only by available capacity. 

Practically, however, outcomes depend on real-world airline networks, fleet and costs. In this 

paper we model airline competition across an existing network (Australian intercity domestic 

flights) with endogenously-generated fares and frequency to investigate this. Consistent with 

theory, we find less pass-through at airports with more stringent capacity constraints and where 

airlines are unequally-affected by cost changes. Per-passenger airline profit increases roughly 

linearly with constraint stringency.   

 Key words Airline competition; Airline costs; Cost pass-through; Scarcity rents; Profit 

optimization; Airport Capacity. 
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1. Introduction 

Airline decisions about fares, frequency and aircraft utilisation are typically made on a 

profit- (or market share-) maximisation basis. This includes decisions about how best to react 

to cost increases and to what extent increases in operating costs should be passed through to 

the customers in terms of increased ticket prices as opposed to reducing own operating margins. 

At one extreme, 0 per cent cost pass-through indicates that airlines keep ticket prices constant 

when costs increase, accepting lower profit per passenger. At the other extreme, 100 per cent 

pass-through indicates that airlines add the full extra cost per passenger onto ticket prices, 

accepting a demand decrease and drop in overall ticket revenue. The level of pass-through can 

be important in evaluating the outcomes of policies that seek to change airline or passenger 

behaviour via airline operating costs (for example to promote new technology adoption or 

decrease demand) or evaluating fiscal policies such as fuel taxation.  

 

Generally, cost pass-through depends on the relative elasticities of supply and demand. 

Because the cost of supply changes when airports reach capacity, cost pass-through will differ 

between congested and uncongested airports (Ernst & Young and York Aviation, 2008; 

Burghouwt et al. 2017). In 2008, up to 15 per cent of all global flights were from capacity-

constrained airports, and this number is projected to rise significantly over time (Gelhausen et 

al. 2013; Boeing, 2018). A simplified depiction of this situation is shown in Figure 1.  
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Figure 1. Variation of ticket prices with constrained supply. When the airport is at capacity, the supply curve 

becomes effectively vertical, so prices are set by the capacity rather than by the cost of supply.  

 When the airport is below capacity, extra passengers can be accommodated at similar 

per-passenger costs to current ones and the supply curve is roughly horizontal. If the cost of 

supply changes from P1 to P2 via the addition of an extra cost, X, this cost change is fully 

passed on to passengers and reduces demand (D1 to D2 in Figure 1). Once the airport is at 

capacity, extra passengers cannot be added, the supply curve is close to vertical, and no costs 

are passed through1. In this case the airline profit-optimal ticket price is set only by the 

constrained airport supply instead of marginal costs. Because the profit-optimal ticket price is 

above marginal costs, airlines can make extra profit (the scarcity rent) from operating at a 

constrained airport than they could if the airport was unconstrained (Button, 2005; ITF, 2009; 

Gillen & Starkie, 2016; Burghouwt et al. 2017)2. Although airports, in theory, could increase 

landing charges to take advantage of this, the extent to which airports can set landing charges 

 
1 In practice, the average cost of supply will increase somewhat as the airport becomes close to capacity due to 

increases in average delay and delay-related costs. For simplicity, this effect is omitted from the diagram. 
2 Separately, Faber & Brinke (2007) argue that pass-through at Heathrow Airport, which is highly capacity-

constrained, is effectively 0 per cent because landing and take-off slots at the airport can be traded; increases in 

costs for operating at Heathrow will be offset by a reduction in slot costs rather than a change in ticket price. 

However, EC (2011) found that slots change hands only infrequently at Heathrow, limiting this effect. 
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above their own operating costs is often constrained by regulation (Burghouwt et al., 2017). 

When airline operating costs change from P1 to P2, the profit-optimal fare remains constant, 

leading to 0 per cent pass-through (Ernst & Young and York Aviation, 2008). Instead, the 

scarcity rent (and airline profit) decreases. Demand remains unchanged.  

 

Real-world aviation systems, of course, experience more complex conditions than this 

simple theoretical picture. Many other factors affect ticket pricing, and hence both levels of 

cost pass-through and scarcity rents. In particular, airlines consider profit on a whole-network 

basis rather than on an individual route basis; there are varying amounts of competition per 

route; scheduling must take into account fleet constraints and the requirements of both origin 

and destination airports; passenger ticket prices relate to itineraries rather than individual flight 

segments; and airlines with diverse fleets have some capability to increase seat capacity at 

constrained airports by switching their larger aircraft onto routes to and from that airport, 

potentially at the cost of using smaller-than-optimal aircraft elsewhere.  These factors affect 

the extent to which the presence of capacity constraints influences fare.  

 

Empirically, the amount by which airline profit margins and pass-through change at 

capacity-constrained airports is uncertain. Some studies of aviation cost pass-through suggest 

levels close to 100 per cent (Duplantis, 2010; Toru, 2011) and this is often used as an 

assumption in policy modelling (SEC, 2006). Anger & Köhler (2010) review literature 

examples of pass-through for emissions trading and find assumptions from 0-100 per cent, with 

several studies using values in the 30-50 per cent range. Wang et al. (2018) model pass-through 

as an elasticity-type term to total costs, implying rates of pass-through for a $100 cost increase 

per passenger typically 40-70 per cent. Evidence for logistical constraints leading to pass-

through close to 0 per cent is found by other studies (Borenstein & Rose, 2014) and under some 
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circumstances rates of over 100 per cent are implied (Vivid Economics, 2007). Pass-through 

per route is also affected by the number of competitors (Ernst & Young and York Aviation, 

2008), the price-sensitivity of passengers, airline business model (Vivid Economics, 2007), 

cross-subsidisation between routes (Scheelhaase & Grimme, 2007), whether airline costs 

increase or decrease (Wadud, 2015), and route closeness to break-even load factor (Koopmans 

& Lieshouwt, 2016). There is evidence that capacity-constrained airports have higher fares 

(Dresner et al., 2012; Burghouwt et al. 2017, Fukui, 2019). For example, it has been estimated 

that capacity constraints may increase fare by 10-40 per cent (Frontier, 2017). Greater delay-

related costs may also apply at capacity-constrained airports, complicating outcomes (Zhang 

& Czerny, 2012). In contrast, CE Delft (2005) argue that empirical evidence suggests near-100 

per cent pass-through at capacity-constrained airports, similarly to non-constrained ones. 

 

Both cost pass-through and scarcity rents arise naturally from the assumption of airline 

profit maximisation. In real-world systems airlines may respond to changes in operating costs 

by changing fares or by other strategies, such as adjusting aircraft size or frequency on a route 

or even abandoning it completely. Modelling pass-through in realistic aviation systems 

therefore requires competition modelling which can jointly assess fare, frequency and fleet 

utilisation decisions. Several studies have been able to reproduce airline flight frequencies by 

modelling network-wide profit maximisation by competing airlines (Hansen, 1990; Wei & 

Hansen, 2007; Evans, 2014), including the impact of capacity constraints on frequency (Vaze 

& Barnhardt 2012, Evans & Schäfer, 2014), and other studies have considered the interaction 

of fare and frequency decisions (Brueckner 2010; Adler et al, 2010; Hansen & Liu 2015). 

However, only recently have models which are able to optimise profit accounting jointly for 

both airline fare and frequency decisions been developed and validated against real aviation 

systems (Doyme et al. 2019). Using these modelling advances, it is now possible to simulate 



 6 

airport capacity constraints in a real network and evaluate their impact on pricing, revenues 

and profit. Considering each airline’s full network allows the examination of factors that are 

not possible to evaluate when considering only a single route. For example, an airline may 

respond to an increase in landing costs by switching to less frequent flights with larger aircraft, 

and moving its smaller aircraft to other routes. Ticket prices on multiple routes may change as 

a result.  

   

How airlines respond to cost changes has an important impact on the outcomes of 

policies that directly or indirectly affect airline costs, such as emissions trading, mandatory 

offsetting or biofuel requirements. For policies which aim to affect passenger behaviour by 

changing airline costs, knowledge of pass-through rates is vital in projecting policy outcome. 

As fuel can account for 30 per cent or more of airline costs (BTS, 2019), airline behaviour 

around fluctuations in oil prices also depends on the extent to which airlines pass on costs. In 

this paper, we apply a recently-developed, globally unique model of airline competition which 

endogenously generates fares and flight frequencies across networks of competing airlines 

(Doyme et al. 2018) to explore how airport capacity constraints affect pass-through and scarcity 

rents. This allows us to assess how theoretical outcomes are affected by real-world airline 

constraints in a way that has not previously been possible in the literature. Section 2 describes 

the airline competition model and how it is applied in this case, using the specific example of 

the Australian domestic aviation system and different scenarios for how much domestic 

capacity will be added by the 2025 expansion of Melbourne airport. By applying different types 

and levels of cost increase to different capacity and demand growth scenarios, we explore how 

the extent of capacity constraints affects airline profits and response to changes in cost. Section 

3 discusses in detail how system fares, demand, pass-though and profits vary across the 

different scenarios modelled, and section 4 draws conclusions.  
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Figure 2. The route and airport network modelled in this study, showing flight frequencies in 2014. Airports are 

identified by 3-letter IATA Code (IATA, 2020) 

 
2. Airline Competition Model 

 
2.1 Baseline model 

 
The Australian domestic aviation network is used as the baseline system in this study. 

This network is a useful environment for testing airline response to cost and capacity changes 

because it contains a mix of airport sizes, including airports with and without capacity 

constraints; the number of airports and carriers is relatively small, allowing rapid run times; 

the network is already highly connected, so network change is likely to have only a small 

impact; and it is largely self-contained, with relatively few journeys having both a domestic 

and international component. The modelled route network is shown in Figure 2. We model 

flights between cities and/or regions included in the AIM2015 database (Dray et al. 2019) and 

neglect smaller routes which are often subject to public service obligations and so have 

different competition characteristics. The detailed development and validation of the airline 
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competition model in this context for 2014 is described in Doyme et al. (2018). In summary, 

airline competition is modelled via a n-player non-cooperative game. In Australia, domestic 

flights are dominated by four airlines and/or their subsidiaries: Qantas, Virgin, and the two 

low-cost carriers Tigerair Australia and Jetstar Airways3. Each of these airlines in turn attempts 

to maximise its own profits across its network by changing two types of decision variable: 

itinerary-level fares, and segment-level flight frequency by aircraft of nine different size classes 

(detailed in Dray et al. 2019). In turn, passengers may choose to switch itinerary or carrier, or 

not to fly. The network-wide profit of airline A is modelled as: 

 𝑃! = # 𝑓𝑎𝑟𝑒" ∙ 𝑝𝑎𝑥" +	𝑎𝑟𝑒𝑣! ∙ 𝑝𝑎𝑥! − # # 𝑜𝑝𝑐𝑜𝑠𝑡#,% ∙ 𝑓𝑟𝑒𝑞#,%
#∈!'!%∈()*""∈+,-"

− # # 𝑝𝑎𝑥𝑐𝑜𝑠𝑡#,% ∙ 𝑝𝑎𝑥#,%
#∈!'!%∈()*"

, 

 

 

(1) 

 

and consists of passenger fare revenue for each itinerary i plus per-passenger average 

ancillary revenues arevA, minus per-flight costs (opcosta,j) and per-passenger costs 

(paxcosta,j)for each flight segment flown j with aircraft type a at frequency freqa,j . Optimisation 

for each airline is carried out sequentially using IBM’s CPLEX solver (IBM, 2017) and is 

repeated until changes in decision variables per iteration stability to below threshold values, 

allowing each airline to fully react to the choices of the other airlines.  All costs are modelled 

in year 2015 US dollars.  

 

This optimisation is subject to constraints, as detailed in Doyme et al (2018). In 

particular, airlines cannot schedule more flights out of an airport than there is capacity for:  

 
3 These low-cost carriers are owned by Virgin Australia and Qantas, respectively. However, baseline operations 

are more accurately reproduced when they are modelled as independent entities, likely reflecting networks that 

have been structured to separate each airline’s operations from those of its parent company.  
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 # # 𝑓𝑟𝑒𝑞#,% ≤	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦.,
#∈!'!%∈()*#

 (2) 

where SEGp is the set of all flight segments to or from airport p. Airport capacities for 

slot-controlled airports (8 of the 16 airports modelled, including the 6 busiest; IATA, 2019) are 

derived from typical hourly allocations of slots (Dray, 2020). For non-slot controlled airports 

they are derived from the airport’s own hourly capacity assessment or typical capacities for 

airports with a similar runway layout (where no other assessment of capacity is available). 

However, the non slot-controlled airports modelled have available capacity well above current 

usage, and operate effectively without constraint. Spare capacity is allocated to airlines 

iteratively during the solution process until the capacity limit is reached or no more flights are 

required. In practice, this means that allocation of free slots for domestic flights at capacity-

constrained airports is roughly in line with an airline’s current presence at the airport. Although 

IATA slot guidelines specify that half of free slots should be offered first to new carriers and/or 

routes (IATA, 2019), this is likely to mainly affect international routes as most domestic 

airlines/alliances in Australia already operate at most major airports, and the domestic network 

is already highly-connected.  

 

Additionally, airlines are limited by their fleet:  

 # 𝑓𝑟𝑒𝑞#,% ∙ 8𝑡𝑖𝑚𝑒% + 𝑔𝑟𝑜𝑢𝑛𝑑#> 	≤ (365	 × 	24) ∙ 𝑓𝑙𝑒𝑒𝑡#,!,
%∈()*"

 (3) 

where SEGA is the set of all segments operated by airline A, timej is the flight time on 

segment j, grounda is the typical ground time between flights for aircraft of size a, and fleeta,A 

is airline A’s available fleet of aircraft of size a. This means that airlines can respond to changes 

in cost or capacity by changing the aircraft size they use on different routes. However, changes 

in aircraft size on a given flight segment may require compensatory changes in aircraft size on 

other routes. Although airline fleets are typically planned years in advance (FlightGlobal, 
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2016), shorter-term changes in fleet are possible via leasing or second-hand aircraft purchase. 

We assume that airlines are able to anticipate broad trends in demand and will obtain new 

aircraft as needed, but that new aircraft are primarily chosen for fleet commonality (of the same 

broad type as those already in the airline’s fleet or, for future years, as those on order) rather 

than being tailored to per-route cost minimisation (Brüggen & Klose, 2010).  

 

Airline response is also affected by passenger response. Overall passenger demand for 

a given city-pair i, between origin city oi and destination city di is modelled using the gravity-

type model  

 𝐷" = 𝑒/8𝑃0$𝑃1$>
28𝐼0$𝐼1$>

3𝑓𝑎𝑟𝑒JJJJJJ
0$,1$
4 𝑡𝚤𝑚𝑒JJJJJJ0$,1$

5 𝑑𝑟𝑖𝑣𝑒0$,1$
6 𝑒78∙:.;<"#=%$,'$>, (4) 

where the variables P and I indicate greater metropolitan area population and income 

of the respective cities, fare and time give average (over all passenger-weighted itineraries) 

fare and time per city-pair journey, drive gives the drive time between the city pair, special is 

a binary variable indicating whether or not both cities have special characteristics that are likely 

to increase demand (capital cities, major tourist/business destinations), and coefficients a-h 

are determined via linear regression. For each city-pair, multiple itineraries may be available 

with different carriers. The market share MSk of each itinerary k is given by  

 𝑀𝑆? = 𝑒@(
∑ 𝑒@)=∈+,-$
O  (5) 

 where ITNi is the set of all itineraries for city-pair i. The utility of each itinerary Uk is 

given by 

 𝑈? = 𝜃 ∙ 𝑓𝑎𝑟𝑒? + 𝜅 ∙ 𝑡𝑖𝑚𝑒? + 	𝜆 ∙ 𝑙𝑛(𝑓𝑟𝑒𝑞?) + 	𝜇 ∙ 𝑛𝑠𝑒𝑔? + 𝑓𝑓𝑥!, (6) 

where farek and timek are the itinerary-specific fare and time of itinerary k; freqk is the 

itinerary frequency (for multiple-leg itineraries, the smaller of the individual leg frequencies is 

used); nsegk the number of flight legs; and ffxA is an airline-specific fixed effect which captures 
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consumer preference for specific airlines (arising from, for example, reputation or frequent 

flyer programmes) which, along with coefficients q-µ, is found by using linear regression via 

the Berkson-Theil method. These models are estimated and validated using data from the Sabre 

(2017) airline reservation dataset and city-level data as described in Dray & Doyme (2019); 

parameters for both regressions are given in Doyme et al. (2018). In practice, passengers may 

respond to changes in airline fare and frequency by switching itinerary (to another route or 

carrier) or not flying, and airlines take account of this in their profit optimisation. For example, 

an airline with a monopoly on a direct city-pair route can increase prices to a greater extent 

because passenger itinerary-switching options are limited. 

Airline costs per segment are modelled by per-passenger (for example, per-passenger 

landing costs, marginal fuel costs), and per-flight components (for example, routing charges, 

cabin and flight crew costs, maintenance, capital costs, fuel costs for flying empty). Year-2014 

enroute and landing costs by aircraft size are derived from RDC (2016), adjusted for typical 

discounts (Intervistas, 2018); other costs by aircraft size and carrier type are derived from US 

airline cost data (BTS, 2019) adjusted for Australian airlines (Qantas, 2015; Virgin Australia, 

2015). Typical ancillary revenue per passenger (of around $40 USD) is also derived from 

airline financial reports. The model maximises gross airline profit and does not adjust for 

overhead-type costs4. 

 
2.2 Demand and capacity scenarios 

 
Whether or not capacity constraints affect system outcomes depends on the level of 

demand. Melbourne airport (MEL) is currently (pre-Covid19) close to capacity. An extra 

runway is planned for 2025, taking overall hourly capacity from 50 to 90 flights (Melbourne 

 
4 For comparison, US airline overheads on a per-passenger basis were around $33 in 2015 (Bureau of 

Transportation Statistics, 2019). 
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Airport, 2013). Slot control regulations in combination with the small number of Australian 

domestic carriers likely mean at least half of this new capacity will be taken by international 

flights (IATA, 2019). The current capacity available for domestic flights at MEL is around 34 

flights per hour (Sabre, 2017), suggesting between 34 and 54 slots per hour may be available 

for domestic operations in 2025. At the same time, many projections exist for how fuel prices 

and Australian city-level population and income will change to 2025, implying a range of 

possible demand outcomes from stagnation to near-immediate full use of the new capacity 

(UN, 2017; OECD, 2019; ABS, 2017; O’Neill et al. 2013; EIA, 2019). To capture demand 

uncertainty, we take lower, upper and mid-range values from the range of socioeconomic 

projections available and use them to generate three demand scenarios for the Australian 

domestic network in 2025. We use this combination of uncertainty in demand with the range 

of possible year-2025 capacity values to generate a grid of possible future scenarios across 

demand and capacity, as illustrated in Table 1. The year-2020 third runway at Brisbane 

airport is included in all scenarios. The late-2026 anticipated opening of a second airport in 

Sydney is not included in this study but will be a factor in how demand and operations 

develop after the study year. In the baseline grid, all other costs are assumed to remain 

constant in real terms, and airline network structure and business models are also assumed 

unchanged. To estimate year-2025 fleets, we apply age-related retirement curves (Dray et al., 

2019) to existing fleets and add known pre-2025 aircraft orders by airline and aircraft size 

(FlightGlobal, 2017). Any shortfall in total fleet size is assumed to be made up by the 

purchase and/or lease of second-hand aircraft of a similar size and age distribution to those 

already in each airline’s fleet, as discussed above. For the Low, Mid and High demand 

scenarios these additional aircraft represent an extra 0, 7 and 20 per cent of the total fleet.  
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Table 1. Year-2025 scenario assumptions and baseline (no cost change) RPK outcomes.  

Demand 

Scenario 

Melbourne 

population, 

ratio with 

2014 

Melbourne 

GDP/capita, 

ratio with 

2014 

Fuel price, 

year 2015 

USD/ 

gallon 

MEL 

domestic 

capacity, 

flights/hr 

Model 

system RPK 

at no cost 

change, blna 

References 

Low 1.21 1.034b 4.8 34-54 46.4c UN, 2017; O’Neill et 

al., 2013; EIA, 2019 

Mid 1.26 1.15 2.7 34-54 61.8-65.1 UN, 2017; ABS, 2017; 

OECD, 2019; EIA, 

2019 

High 1.31 1.29 1.3 34-54 77.4-82.8 ABS, 2017; O’Neill et 

al., 2013; EIA, 2019 
a For comparison, the year-2014 system RPK travelled (excluding charter, freight and PSO flights and domestic 

travel by international passengers) is 53 billion  
b Given growth between 2014 and 2019, this scenario represents a recession in the 2020-2025 period (for 

example, an extended economic impact of Covid19). 
c All scenarios are below capacity at low demand growth, so RPK is the same for each 

 
In the Low Demand scenario, capacity limits at MEL are not reached even when 

domestic capacity remains at current levels. For the Mid Demand scenario, MEL is 

unconstrained at domestic capacity of 45 flights per hour and above, and in the High Demand 

scenario MEL is capacity-constrained even at 54 flights per hour.  

 
2.3 Cost change cases 

 
Cost pass-through may vary with the specific type of cost increase (Wang et al. 2017). 

Airline response may depend on what basis the additional costs are charged (for example, per 

flight, per passenger or per gallon fuel), their perceived volatility, and whether the charge is 

applied to all airlines equally (Koopmans & Lieshout, 2016). They may also be affected by 

harder-to-quantify factors, for example whether airlines receive incentives to operate at a 

specific airport, whether a route is being operated at a loss to gain market share from 

competing airlines, or whether the airline is hedging fuel costs. In this study we consider 

three main test cases: 
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• Case LC: an increase in per-passenger landing charges is applied at the constrained 

airport only. This mimics a situation where landing charges are increased before or during an 

airport expansion project to fund the construction work (FlightGlobal, 2018). We model a 

range of cost increases from $2.5- $17.5 USD per passenger. The lower end of this range is 

more likely for actual charge increases at MEL. The higher end is close to the upper end of 

values projected for London Heathrow (PWC, 2014).  

• Case FP: an increase in fuel prices is applied across the entire network. This mimics 

situations where fossil Jet A prices increase, a carbon price is applied, or use of biofuels at 

higher cost than Jet A is mandated. The proportional impact of this cost change also depends 

on the baseline fuel price, which differs by scenario. We model a range of cost increases from 

$0.3-2.1 USD/gallon fuel ($0.1-0.7 USD/kg; equivalent to carbon prices of $30/tCO2-

$220/tCO2; the upper end of the range is similar to 2014-2018 fuel price fluctuations). 

• Case FP1: an increase in fuel prices across the network applied only to one specific 

airline. This mimics a case where a policy is applied on a basis which targets some operators 

but not others (for example, nationality or size of operator), or where airlines are differently-

affected by a universal cost change because of different strategies (for example, hedging). 

The same range of values is used as in case FP, but we apply the extra charge only to the 

largest operator.  

 

Each cost change case is applied to each scenario described in Section 2.2, leading to 

a 4-dimensional grid of models by socioeconomic scenario; capacity at MEL; level of cost 

increase; and type of cost increase. We neglect time lag and transition effects, and only 

consider the case where the system has reached a new equilibrium with the charge applied.  

 
3. Results and Discussion 
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Airline revenue is primarily determined by number of passengers and typical fare per 

passenger. When airline costs change, both are affected. Figure 3 shows how airport-level 

demand, in terms of million passenger movements per annum (mppa), changes as costs, 

socioeconomic scenario, and capacity change5. Figure 4 shows corresponding changes in ticket 

price. Because airlines optimise profit over their whole networks, capacity or cost changes at a 

constrained airport also have second-order impacts at other airports within the system. Figure 

3 and Figure 4 show outcomes at Melbourne airport (the capacity-constrained airport which is 

being expanded; (a) – (c)), Perth airport (an airport which is not capacity-constrained under 

any scenario; PER, (d)-(f)) and across the Australian domestic system ((g)-(i)). Demand varies 

by up to a factor of two for different socioeconomic scenarios, mainly due to the wide range in 

GDP modelled. In contrast, the cost changes modelled affect demand by under 10 per cent. The 

impact of cost increases on fare at an itinerary level is diverse and depends on factors such as 

the number of competing airlines per route, typical aircraft types used, and distance. Both fare 

and demand impacts are usually smaller when there is a capacity-constrained airport in the 

system. This is illustrated in Table 2 for scenarios at the upper end of cost change values.  

Table 2. Illustrative average metrics for system response to different types of cost change with and without 

capacity constraints 

Cost change Airport MEL is not capacity-constrained MEL is capacity-constrained 

Demand 

reduction, 

% 

Fare 

increase, 

% 

Effective 

pass-

through, % 

Demand 

reduction, 

% 

Fare 

increase, 

%  

Effective 

pass-

through, % 

$17.5 landing 

change 

increase (Case 

LC) 

MEL 4.4-6.0 6.2-7.7 47-67 0.1-4.1 0.1-5.5 1-42 

MEL 7.1-7.2 11.8-12.8 79-81 0.2-6.9 2.8-12.0 25-75 

 
5 Note that a single direct passenger journey counts as two passenger movements, one at the 

origin and one at the destination airport. For readability, not all scenarios modelled are 

plotted.  
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$2.1/gal fuel 

cost increase 

(Case FP) 

PER 3.9-5.2 10.5-11.0  79-85 2.6-6.0 9.5-11.0 66-78 

System 6.3-6.5 11.3-12.4 82-84 3.1-6.3 5.6-11.8 42-79 

$2.1/gal fuel 

cost increase 

to one airline 

only 

(Case FP1)a 

MEL 1.4-3.6 2.9-6.6 23-45 -0.7-3.0 0.3-4.5 0-66 

PER 1.0-1.7 4.9-6.0 36-52 -0.9–3.3 0.0-7.2 5-45 

System 1.3-2.0 3.1-3.6 31-34 0.1-2.4 0.4-5.3 3-36 

a Pass-through in this case is shown only for the affected airline; other metrics are across all airlines. Demand 

increases arise in two model runs from non-charged LCCs decreasing average fare on key routes. 
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Figure 4 demonstrates the fare impact of cost changes, capacity constraints and 

underlying base cost levels per socioeconomic scenario. Across all scenarios, variation of up 

to around $100/ticket is observed. Average fares are higher when MEL is capacity-constrained 

(both at MEL and at other airports in the system), when baseline fuel costs are higher (for 

example, in the Low Demand Scenario), when additional charges are larger, and when those 

charges apply to more flights. In the case of fuel cost changes, impacts are also higher at 

airports, such as PER, with a greater average flight distance. However, even in the absence of 

extra charges fares are higher when MEL is capacity-constrained. Given the smaller impact on 

demand, this implies an increase in airline profit due to capacity constraint - scarcity rents, as 

discussed below in Section 3.2.  
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Figure 4. Average fares at Melbourne airport [(a)-(c)], Perth Airport [(d)-(f)] and the whole Australian domestic 

system [(g)-(i)] for each of the three cost change cases. 
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is 18 per cent higher for ‘severely constrained’ airports, and Frontier (2017) find fares at 

London Heathrow to be 24.4 per cent above those at less-congested European hub airports. 

These values are broadly consistent with those found here. A 24 per cent fare premium in the 

models used here maps roughly to capacity (in terms of slots/hour) which is 26 per cent short 

of what would be required to operate without constraints. Burghouwt et al. (2017) find a 10 per 

cent more stringent capacity constraint to be associated with a 1.4-2.2 per cent increase in fares 

at European airports, with a likely exponential relationship between capacity constraint and 

fare; however, they define the constraint level in terms of the Capacity Utilisation Index (CUI), 

a measure of how busy the airport’s off-peak schedules are, which cannot be directly mapped 

onto the metrics used here6  

 
3.1 Cost pass-through 

 
Combining per-passenger increases in airline costs with changes in ticket price allows 

cost pass-through to be estimated. Because the model optimises profit across each airline’s 

network, a change in fuel or landing costs may change frequency, load factor or aircraft type 

used per route as well as fare. This means that pass-through estimates are not presented under 

‘all-else-equal’ conditions, and are prone to fluctuation due to corresponding changes in other 

elements of airline cost. Similarly, pass-through as a standalone metric does not fully capture 

system response, because airlines and routes which are not directly affected alter fares to take 

account of cost changes elsewhere.  

 
6 As CUI approaches 1 at high constraint levels, an exponential relationship of fare to CUI may be fully 

consistent with a linear relationship between fare and shortfall in slots/hour. 
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Figure 5. Effective cost pass-through rate at Melbourne airport [(a)-(c)], Perth Airport [(d)-(e)] and the whole 

Australian domestic system [(f)-(g)] for each of the three applicable cost change cases. 
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use of the smallest (regional jet) aircraft sizes – that is, cost increases and associated demand 

decreases move the profit-optimal solution for MEL to one with smaller aircraft with higher 

per-passenger cost. Where MEL is moderately constrained (for example, Mid scenario, low/no 

capacity expansion) and all airlines are charged the same, pass-through at MEL decreases into 

the 0-50 per cent range. In the case that one airline experiences greater cost increases than 

others (Case FP1), pass-through for the affected airline is typically 50 per cent or below without 

constraints at MEL and 0-30 per cent with moderate constraints.  These levels of pass-through 

are broadly consistent with expectations from economic theory (Figure 1). As discussed above, 

when an airport is at capacity, the supply curve becomes close to vertical and optimal ticket 

prices are determined by the level of constraint rather than by airline marginal costs. Therefore, 

changes in landing charges or fuel prices that impact on marginal costs are expected to have 

limited effect on ticket prices at congested airports.  

 

In the case of extremely stringent capacity constraints at MEL and high cost changes, 

however, apparent pass-through level rises above 50 per cent once more. This somewhat 

counterintuitive outcome reflects the complex interaction of fare, flight frequency, costs and 

demand. When MEL is extremely capacity-constrained, it becomes profit-optimal to use twin-

aisle aircraft on high-density short-haul routes rather than single-aisle aircraft at higher 

frequency. This effect has occurred, for example, on short-haul routes in Japan (Givoni & 

Rietvald, 2008). Under these circumstances, supply at the constrained airport has effectively 

increased; when using twin-aisle aircraft becomes part of profit-optimal solutions the supply 

curve is no longer vertical and a relationship between supply and demand is re-established. 

This, in turn, increases the apparent pass-through. For example, for MEL in Case FP at high 

demand, moving from 54 movements/hour capacity to 34 movements/hour increases pass-

through from 31 per cent to 66 per cent, average seats per aircraft increase by 13 per cent, and 
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average fare increases by 43 per cent. However, this effect is somewhat dependent on the 

available fleet of the modelled airlines and the extent to which aircraft can be swapped between 

domestic and international routes, so it is unclear whether it is more widely applicable.  

 

 
Figure 6. Fares by socioeconomic scenario, capacity, location and level of fuel charge for case FP1, comparing 

airlines which were subject to extra charges (solid lines) to those that were not (dotted lines).  

Case FP1 also demonstrates the limitations of cost pass-through as a standalone metric. 

Figure 6 shows underlying fare trends by airline, separated into airlines which were subject to 

extra charges (solid lines), and those that were not (dotted lines). As the extra charge increases, 

fares increase at the affected airline. However, fares also typically increase at airlines which 

are not subject to extra charges. These airlines are taking the chance to increase their profits 

whilst still remaining cost-competitive. For example, in the High demand scenario with 

$2.1/gal fuel cost increase for one airline only at Melbourne, fares increase by up to 6.6 per 
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are equally affected by the fuel cost increase (Case FP), fare increases are up to 12.8 per cent 

and are similar across all airlines.  

 
3.2 Scarcity rents 

 
As discussed above, fares are typically greater, and cost pass-through lower, in the 

presence of capacity constraints. This is reflected in airline profits. Because airlines optimise 

profits across their networks, we compare system-wide profit per passenger in each situation. 

However, this is strongly influenced by capacity constraints at MEL. Around 20-30 per cent of 

domestic passenger movements across the different year-2025 scenarios are to or from MEL; 

in the High scenario, Sydney airport also experiences capacity constraints, so over half of 

system passenger movements are affected by capacity issues. Simulated outcomes are shown 

in Figure 7. Across the different cases modelled, the variable with the most notable effect on 

profit per passenger is capacity. For the range of extra charges and capacity examined, capacity 

limits have a much greater impact on profit per passenger than the level of pass-through of 

extra charges. In the Mid demand scenario, moving from unconstrained operation at MEL (44 

movements/hour) to 10 movements/hour short of unconstrained operation (34 

movements/hour) is associated with a whole-system increase in profit per passenger of 17 per 

cent. Because we assume no new domestic carrier enters the market to operate new domestic 

slots at MEL, this effect is purely associated with capacity constraints and does not reflect 

changes in the number of competing operators.  
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Figure 7. System gross profit per passenger with demand scenario, capacity, charge type ((a), all-airline landing 

charge increases at MEL; (b), all-airline fuel/carbon cost increases; (c) fuel/carbon cost increases for the busiest 

airline only, charged and non-charged airlines shown) and charge level.  

Profits are also affected by the extra charges assumed in each case. This is because 

pass-through rates are typically below 100 per cent. Any costs not passed through lead to 

reductions in airline profit. When MEL is moderately capacity-constrained, pass-through rates 

are lower and there is a greater reduction in airline profits. Similarly, profits are lower when 

extra charges affect more flights. If extra costs apply unevenly to airlines, as in case FP1, profits 

for airlines with more extra costs decrease significantly due to the low pass-through rate. Profits 

for airlines which do not have extra costs increase in this situation, as they can increase fares 

and remain competitive. However, even in this case capacity still has a greater impact on per 

passenger profit than the range of extra charges modelled.  

Airline net profit per passenger is typically small, cyclical, and frequently negative 

(Jiang & Hansman, 2006). Between 2013 and 2019, global average net airline profit per 

departing passenger for IATA member airlines was in the $3-10 range, although variation 
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between individual airlines can be considerably higher (IATA, 2019b). Because we do not 

model airline overhead costs in detail, Figure 7 reports gross profit per passenger. Overhead 

costs can vary significantly by airline, but if they are close to 13 per cent of total operating 

costs (ICAO, 2017), the baseline net profit per passenger modelled here is around $0-

7/passenger depending on capacity constraints. Under these circumstances, airline profits may 

be dominated by scarcity rents, potentially leading to a reluctance to support expansion. 

Similarly, the higher levels of fuel charge modelled (more than doubling fuel costs in the High 

demand scenario) may completely wipe out airline profit, particularly in case FP1 where only 

one airline experiences them. This is a similar situation to that which airlines with unsuccessful 

hedging strategies were faced with in 2014-15 due to oil price fluctuations (Merkert & Swidan, 

2019).  

 
4. Conclusions 

 
In this paper, we applied a simulation model of airline profit maximisation to 

projections of the Australian domestic aviation system in 2025 to explore the interaction of 

airport capacity constraints with airline profit and cost pass-through, the first time that such a 

model has been used to examine these issues in real-world aviation systems with constraints 

derived from existing airlines. If airlines are assumed to set fares and frequency purely to 

optimise their profits, then the existence of a capacity-constrained airport in their network has 

a strong impact on both pass-through and profit. Under real-world conditions, pass-through of 

both increased landing charges and extra fuel costs is typically in the 50-100 per cent range 

when there are no capacity constraints and all airlines experience the same cost increase, 

although the exact value on a given route depends on route-specific factors such as the level of 

competition. When capacity constraints are introduced, or when only one of the competing 

airlines experiences the cost increase, pass-through is more typically in the 0-50 per cent range. 

When a single airline experiences a cost increase at a capacity-constrained airport, pass-
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through is close to 0. These results are consistent both with economic theory and empirical 

studies of congested airports. We find a potential increase in pass-through with fuel cost 

increases in the case that capacity constraints become severe, due to airlines adopting high-cost 

methods which free up extra capacity (in particular, using twin-aisle aircraft on short-haul 

routes). However, pass-through on its own cannot fully reflect the underlying dynamics of 

situations where airlines can respond to cost changes by changing their operations as well as 

their fares. Similarly, pass-though is a flawed metric in the case that airlines are unequally 

affected by cost changes. In this case, airlines which experience no additional cost may still 

change their fares in response to action taken by their competitors, a response which cannot be 

captured by simple pass-through rates but requires a more nuanced consideration of the level 

of competition on each route.  

 

Similarly, we find a strong linear relationship between the extent of system capacity 

constraints and overall gross profit per passenger; under the situations modelled here, airport 

capacity constraints are associated with significant scarcity rents. The modelling carried out 

here finds fare premiums for flying from a capacity-constrained airport of around 24 per cent 

for an airport which would need to add an extra 26 per cent to existing slots to operate without 

capacity constraints. These levels are broadly similar to those inferred for capacity-constrained 

airports from empirical fare data (PWC, 2013; Frontier, 2017). The extent of capacity 

constraints typically has a much greater impact on per-passenger profit than the level of cost 

pass-through under the range of capacities and cost increases modelled here.   

 

The modelling in this research is simplified in a number of ways. We have assumed 

that the Australian domestic and international aviation systems can be fully separated; we have 

considered only a single class of air passengers, rather than dividing by socioeconomic status 
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or trip purpose; we have not modelled new carriers entering the system; and we have assumed 

that airlines base their decisions entirely on profit rather than, for example, seeking to optimise 

for market share or utilising non-profitable slots rather than lose them to a competitor.  These 

assumptions in turn may affect system response. Although relatively few international 

passengers take an additional domestic flight leg compared to the numbers of purely domestic 

passengers (Sabre, 2017), excluding international-domestic and domestic-international 

passengers will lead to underestimates in flight frequency on routes to and from major 

international hub airports. A similar effect applies to domestic hub demand from domestic 

passengers who connect into the network modelled here via non-modelled small regional/PSO 

flights. This in turn likely leads to (small) underestimates in required domestic capacity, 

although general system behaviour should remain similar. Airlines faced with cost increases 

may also choose whether to pass on a greater amount of those costs onto routes and/or ticket 

types favoured by business passengers, who typically have lower price-sensitivity. This in turn 

may affect pass-through at airports which have higher-than-usual proportions of business or 

leisure passengers. The most likely case that an airline would optimise for market share is one 

in which a new airline is looking to expand its network. Although this does not apply in the 

specific situation modelled here, it may in other situations where airport capacity is a factor, 

particularly in airport expansions in rapidly-growing aviation systems where IATA new entrant 

slot preference rules apply (Dray, 2020). The intercity Australian domestic system is operated 

by relatively few carriers and is composed primarily of short- and medium-haul routes, so 

outcomes for systems with more carriers and/or longer-distance routes may also vary.  

 

Broadly, however, we would expect the outcomes modelled here to be reflected in other 

aviation networks containing airports with capacity constraints. This has implications for 

aviation policy which seeks to influence airline or passenger behaviour by introducing extra 
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airline costs. For example, due to lower cost pass-through, demand reductions may be lower 

than anticipated for policies which increase costs at congested airports or which increase costs 

more for some airlines than others. Similarly, the impact of capacity expansion on reducing 

fares may lead to larger than anticipated increases in demand at expanded airports if it is not 

accounted for.  

 
5. References 

 
Adler, N., E. Pels, and C. Nash (2010): ‘High-Speed Rail and Air Transport Competition: 

Game Engineering as Tool for Cost-Benefit Analysis’, Transportation Research Part B, 44, 

812–833.  

Anger, A. and J. Köhler (2010): ‘Including aviation emissions in the EU ETS: much ado 

about nothing?’, Transport Policy, 17(1), 38-46. 

Australian Bureau of Statistics (2017): ‘Population projections’, 

https://www.abs.gov.au/ausstats/abs@.nsf/latestProducts/3222.0Media%20Release12017%2

0(base)%20-%202066. 

Berster, P., M. Gelhausen, and D. Wilken (2015): ‘Is increasing aircraft size common 

practice of airlines at congested airports?’, Journal of Air Transport Management, 46, 40-48. 

Boeing (2018): Global Airport Congestion Study: 2015 Study Update, Boeing, Seattle.  

Borenstein, S. and N. Rose (2014): ‘How airline markets work… or do they? Regulatory 

reform in the airline industry’, in Rose, N. (ed.), Economic Regulation and Its Reform: What 

Have We Learned?, University of Chicago Press, Chicago.  

Brueckner, J. (2010): ‘Schedule Competition Revisited’, Journal of Transport Economics 

and Policy, 44, 261–285.  

Brueckner, J., D. Lee, and E. Singer (2013): ‘Airline competition and domestic US airfares: 

A comprehensive reappraisal’, Economics of Transportation, 2(1), 1-17. 



 29 

Brüggen, A. and L. Klose (2010): ‘How fleet commonality influences low-cost airline 

operating performance: Empirical evidence’, Journal of Air Transport Management, 16(6), 

299-303. 

BTS (2019): ‘Form 41 Financial Data’, 

https://www.transtats.bts.gov/Tables.asp?DB_ID=135.  

Burghouwt, G., T. Boonekamp, P. Suau-Sanchez, N. Volta, R. Pagliari and K. Mason (2017): 

‘Impact of airport capacity constraints on air fares’, http://sasig.org.uk/wp-

content/uploads/2017/01/2017-The-Impact-of-Airport-Capacity-Constraints-on-Air-

Fares.pdf.  

Button, K. (2005): ‘A simple analysis of the rent seeking of airlines, airports and politicians’, 

Transport Policy, 12(1), 47-56. 

CE Delft (2005): ‘Giving wings to emissions trading’. 

https://www.cedelft.eu/en/publications/334/giving-wings-to-emission-trading. 

Doyme, K., L. Dray, A. O’Sullivan and A. Schäfer (2019): ‘Simulating airline behaviour: 

application for the Australian domestic market’, Transportation Research Record, 2673(2), 

104-112.  

Dray, L. (2020): ‘An Empirical Analysis of Airport Capacity Expansion’, Journal of Air 

Transport Management, 87, 101850. 

Dray, L., P. Krammer, K. Doyme, B. Wang, K. Al Zayat, A. O’Sullivan and A. Schäfer 

(2019): ‘AIM2015: validation and initial results from and open-source aviation systems 

model’, Transport Policy, 79, 93-102. 

Dresner, M., R. Windle and Y. Yao (2002): ‘Airport Barriers to Entry in the US’, Journal of 

Transport Economics and Policy, 36(3), 389-405.  

Duplantis, R. (2010): Estimating and predicting merger effects and pass-through rates, PhD, 

Northeastern University.  



 30 

EC (2011): ‘Impact assessment of revisions to regulation 95/93’, 

https://ec.europa.eu/transport/sites/transport/files/modes/air/studies/doc/airports/2011-03-

impact-assessment-revisions-regulation-95-93.pdf.  

EIA (2019): ‘Annual Energy Outlook’, https://www.eia.gov/outlooks/aeo/.  

Ernst & Young and York Aviation (2008): ‘Inclusion of aviation in the ETS: Cases for 

Carbon Leakage’, https://www.verifavia.com/bases/ressource_pdf/112/AN-EY-FULL-

TEXT-OCT08.pdf.  

Evans, A. (2014): ‘Comparing the Impact of Future Airline Network Change on Emissions in 

India and the United States’, Transportation Research Part D, 32, 373– 386.  

Evans, A., and A. Schäfer (2014): ‘Simulating airline operational response to airport capacity 

constraints’, Transport Policy, 34, 5-13.  

Faber, J. and L. Brinke, (2011): The inclusion of aviation in the EU Emissions Trading 

System, ICTSD, Geneva.  

Fageda, X. and L. Fernández-Villadangos (2009): Triggering competition in the Spanish 

airline market: the role of airport capacity and low-cost carriers, Journal of Air Transport 

Management, 15(1), 36-40. 

FlightGlobal (2017): ‘Global fleet database’, www.flightglobal.com. 

FlightGlobal (2018): ‘IATA warns Singapore on pre-funding Changi expansion’, 

https://www.flightglobal.com/news/articles/singapore-iata-warns-singapore-on-pre-funding-

chang-445514/. 

Frontier Economics (2017): ‘Competition and choice 2017’, 

https://www.caa.co.uk/uploadedFiles/CAA/Content/Accordion/Standard_Content/Commerci

al/Airports/HAL%20-%20Frontier%20Competition%20and%20Choice.pdf. 

Fukui, H. (2019): ‘How do slot restrictions affect airfares? New evidence from the US airline 

industry’, Economics of Transportation, 17, 51-71. 



 31 

Gelhausen, M., P. Berster and D. Wilken (2013): ‘Do airport capacity constraints have a 

serious impact on the future development of air traffic?’, Journal of Air Transport 

Management, 28, 3-13. 

Gillen, D. and D. Starkie (2016): ‘EU slot policy at congested hubs, and incentives to add 

capacity’, Journal of Transport Economics and Policy, 50(2), 151-163. 

Givoni, M. and P. Rietvald (2008): Comparing the environmental impact from using large 

and small passenger aircraft on short haul routes, University of Oxford Transport Studies 

Unit: Oxford.  

Hansen, M. (1990): ‘Airline Competition in a Hub-Dominated Environment: An Application 

of Noncooperative Game Theory’, Transportation Research Part B, 24, 27–43.  

Hansen, M., G. Gosling, J.-D. Margulici and W.-B. Wei (2001), Influence of Capacity 

Constraints on Airline Fleet Mix, NEXTOR, Berkeley. 

IATA (2019a): ‘Worldwide Airport Slots’, 

https://www.iata.org/policy/slots/pages/index.aspx. 

IATA (2019b): ‘IATA Industry Statistics Fact Sheet’, 

https://www.iata.org/publications/economics/Reports/Industry-Econ-Performance/Airline-

industry-economic-performance-Jun19-data-tables.pdf. 

IATA (2020): ‘Airline and Location Code search’, 

https://www.iata.org/en/publications/directories/code-search/. 

IBM (2017): IBM ILOG CPLEX 12.7 User’s Manual, IBM ILOG CPLEX Division, Incline 

Village, NV. 

ICAO (2017): ‘Airline operating costs and productivity’, 

https://www.icao.int/MID/Documents/2017/Aviation%20Data%20and%20Analysis%20Semi

nar/PPT3%20-%20Airlines%20Operating%20costs%20and%20productivity.pdf. 



 32 

Intervistas (2018): ‘The impact of airport charges on airfares’, 

https://www.pc.gov.au/__data/assets/pdf_file/0013/231430/sub050-airports-attachment3.pdf 

ITF (2009): ‘Competitive interaction between airports, airlines, and high-speed rail (ITF 

Round Table 145)’ OECD: Paris. 

Jiang, H., and R. Hansman (2006): ‘An analysis of profit cycles in the airline industry’, in: 6th 

AIAA ATIO Conference, AIAA, Reston.  

Koopmans, C. and R. Lieshout (2016): ‘Airline cost changes: To what extent are they passed 

through to the passenger?’, Journal of Air Transport Management, 53, 1-11. 

Lenoir, N. (2016): ‘Aircraft slots and aircraft size at EU airports’, 

http://www.europarl.europa.eu/RegData/etudes/IDAN/2016/585873/IPOL_IDA(2016)58587

3_EN.pdf. 

Melbourne Airport (2013): ‘Melbourne Airport Master Plan’, 

https://www.melbourneairport.com.au/getmedia/672d0a02-c629-4391-9f6d-

23d2ac623b81/Melbourne_Airport_Masterplan.pdf.aspx?ext=.pdf. 

Merkert, R. and H. Swidan (2019): ‘Flying with(out) a safety net: Financial hedging in the 

airline industry’, Transportation Research Part E, 127, 206-219. 

OECD (2019): ‘Economic Outlook: Real GDP long-term projections’, 

https://data.oecd.org/gdp/real-gdp-long-term-forecast.htm. 

O’Neill, B. C., E. Kriegler, K. Riahi, K. Ebi, S. Hallegatte, T. Carter et al. (2013): ‘A new 

scenario framework for climate change research’, Climatic Change, Vol. 122(3), 387-400 

PWC (2013): ‘Fare differentials. Analysis for the Airports Commission on the impact of 

capacity constraints on air fares’, http://www.seo.nl/uploads/media/2017-

04_The_impact_of_airport_capacity_constraints_on_air_fares.pdf. 



 33 

PWC (2014): ‘Cost and Commercial Viability: Funding and Financing’, 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data

/file/372807/funding-and-financing.pdf. 

Qantas (2015): ‘Annual Report, 2015’, www.qantas.com.au/infodetail/about/ 

investors/2015AnnualReport.pdf. 

RDC (2017): ‘RDC Aviation airport and enroute charges databases’, 

http://www.rdcaviation.com/. 

Sabre (2017): ‘Market Intelligence database’, 

https://www.sabreairlinesolutions.com/home/software_solutions/product/market_competitive

_intelligence/. 

Scheelhaase, J. and W. Grimme (2007): ‘Emissions trading for international aviation – an 

estimation of the economic impact on selected European airlines’, Journal of Air Transport 

Management, 13(5), 253-263. 

SEC (2006): Proposal for a Directive of the European Parliament and of the Council 

amending Directive 2003/87/EC so as to include aviation activities in the scheme for 

greenhouse gas emission allowance trading within the Community, EC, Brussels. 

Toru, T. (2011): ‘How do sustained changes in cost of airlines influence air traffic’, 

https://www.eurocontrol.int/eec/gallery/content/public/document/eec/report/2010/Account%2

0Paper-TT290910.pdf. 

United Nations (2017): ‘World Urbanization Prospects: the 2017 Revision’, 

https://population.un.org/wup/. 

Vaze, V. and C. Barnhart (2012): ‘Modeling Airline Frequency Competition for Airport 

Congestion Mitigation’, Transportation Science, 46, 512–535.  



 34 

Virgin Australia Group (2015): ‘Annual Financial Report’, www.virginaustralia. 

com/cs/groups/internetcontent/@wc/documents/webcontent/ ̃edisp/annual-financial-report-

2015.pdf. 

Vivid Economics (2007): ‘A study to estimate ticket price changes for aviation in the EU 

ETS’, http://www.vivideconomics.com/wp-

content/uploads/2015/03/Vivid_Econ_Aviation_Tickets.pdf. 

Wadud, Z. (2015): ‘Imperfect reversibility of air transport demand: Effects of air fare, fuel 

prices and price transmission’, Transportation Research Part A, 72, 16-26. 

Wang B., A. O’Sullivan, L. Dray and A. Schäfer (2018): ‘Modelling airline cost pass-through 

within regional aviation markets’, Transportation Research Record, 2672(23), 146-157. 

Wei, W., and M. Hansen (2007): ‘Airlines’ Competition in Aircraft Size and Service 

Frequency in Duopoly Markets’, Transportation Research Part E, 43, 409–424.  

Zhang, A., and A. Czerny (2012): ‘Airports and airlines economics and policy: An 

interpretative review of recent research’, Economics of Transportation, 1, 15-34. 


