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Background 

The term "metagenome" was coined in 1998 to describe the collection of genomes from  

microbes present in environmental soil samples, using approaches previously employed to 

study single genomes (1). The sequencing of genetic material recovered directly from 

samples has now become common practice in research on clinical microorganisms. In this 

context, ‘metagenomics’ refers to the application of sequencing methods that can identify 

coexistent genomic material from any organism present in patient samples (i.e. 

microorganism as well as host nucleic acid), usually with the aim of pathogen identification 

for clinical diagnostics or research (2-4). Examples of real-world applications include 

pathogen detection and discovery, species characterisation or subtyping, antimicrobial 

resistance (AMR) detection, virulence profiling, and studies of the microbiome and 

microecological drivers of health and disease (5-12). Metagenomics is also being introduced 

as a diagnostic tool in aetiological studies of clinical syndromes such as encephalitis (13, 14), 

for exploring the microbiome (15, 16), and tracking disease outbreaks (17, 18). A topical 

example of the transformational impact of direct sequencing of clinical samples has been the 

recent application for rapid investigation and dissemination of information on SARS-CoV-2 

(11, 12).   

Metagenomics data are generated using high-throughput sequencing methods, also referred to 

as deep, next-generation, massively-parallel or shotgun sequencing. Here, for simplicity, we 

refer to all these approaches as ‘sequencing’. For the purposes of this statement, we also 

include capture probe enrichment-based sequencing methods that use nucleotide ‘baits’ to 

increase sensitivity (4), as well as targeted amplicon sequencing (e.g. sequencing the 16S 

ribosomal ribonucleic acid (rRNA) gene to identify bacteria) (19). Although the latter two 

approaches might not be viewed as ‘true’ examples of metagenomics, and are not the focus of 

our review, some similar considerations about reporting of results apply. 

Metagenomic sequencing has advantages for pathogen identification over conventional 

methods such as culture or targeted PCR because many or most microbial species present 

within a sample may be detected simultaneously with greater taxonomic resolution. More 

detailed characterisation of microbial community composition and population dynamics also 

enables the study of ecological interactions. Furthermore, this avoids culture, thereby 



5 
 

including species that are difficult or time consuming to grow. This is particularly relevant 

for diagnostic applications, where routine culture is seeing a decline (20, 21).  

However, appropriate study design remains in a state of relative infancy and metagenomic 

technologies raise important technical challenges, ranging from methodological artefacts 

introduced by wet laboratory methods to the impact of different computational approaches 

used to analyse and interpret multivariate and complex data. Furthermore, the ethical 

implications of sequencing are significant, and privacy considerations are increasingly 

recognised. The multiple steps and different expertise required to generate and interogate 

metagenomic sequence data involves numerous decision points, each of which may introduce 

bias and affect downstream inference about the presence and abundance of species. 

A metagenome result should therefore be considered with caution as one possible 

representation of the true sample composition of a given microbiome. Understanding and 

reporting the sources of bias and the limitations to valid inference should improve protocol 

performance, and enable metagenomic research to proceed with transparent recognition of the 

real-world limitations. However, existing reporting statements for epidemiology studies, 

including STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) 

(22) and its infectious disease molecular epidemiology extension, STROME-ID 

(Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases) (23), do 

not fully address issues specific to metagenomics. For this reason, journals, and their readers, 

might not be adequately equipped with a standardised set of guidelines to evaluate and 

critically appraise clinical and epidemiological studies applying metagenomics. 

 
Aims of the STROBE-metagenomics extension statement 

We aimed to improve the clarity and consistency of metagenomics research reporting, 

ranging from clinical diagnostics to microbiome studies, with suggestions for optimal 

practice and recommendations for robust and accurate reporting. 
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Search strategy 

A STROBE-metagenomics working group was established in 2018, identified through 

notable researchers in the field, including a geographically diverse group of epidemiologists, 

statisticians, bioinformaticians, neurologists, virologists, microbiologists, and specialists in 

public health and infectious diseases. Participants met to agree the structure and content of 

the statement, and the proposal was registered with the Equator Network (24). Specific issues 

to be covered were identified, see Table 1. A systematic approach was taken to gather 

evidence to support the recommendations, with literature searches performed in PubMed (see 

appendix A1 for search terms), searching references of articles, and supplemented by expert 

opinion. Articles were limited to those in English language published between January 2000 

and June 2019.Areas that were adequately addressed in existing STROBE (22) and 

STROME-ID (23) statements were not covered. Iterative versions of the guidelines and 

manuscript were circulated to develop a consensus. 

The STROBE-metagenomics extension has been developed to complement the STROBE and 

STROME-ID statements, with the new recommendations organised alongside the existing 

table. The guidelines discussed below therefore cover only the new proposals for reporting.  

 

Table 1 Key issues to be addressed in publications applying metagenomics 
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STROBE-metagenomics extension statement 

1 Title and abstract  

1.1 The term metagenomic/s should be included in the title or abstract and the 

keywords of the study when these methods contribute substantially to the results 

reported 

Clear and concise language incorporating standardised terminology, with references if 

appropriate, enables the accurate indexing of published studies in recognised databases. This 

is crucial for easy information retrieval and knowledge dissemination. For example, a 

systematic literature review conducted for studies applying metagenomics in encephalitis 

utilising MESH and keyword searches for “sequencing” or “metagenomics” in four databases 

(PubMed, Embase, Web of Science and Cochrane) (13) failed to identify two relevant studies 

that did not report the terms (25, 26). In this case, the studies were identified by experts in the 

field who were directly involved with the studies. 

4 Methods/ study design 

4.1 Describe specimen collection, handling and storage processes, and nucleic acid 

extraction methods 

Steps involved in sample collection, handling and processing are frequently poorly reported 

in publications and yet they will have considerable impact on the results and reproducibility 

of a study and may introduce method-induced variability artefacts (27-30). In particular, 

many studies use material banked and collected originally for other purposes. Important 

potential sources of error are described below and their contribution to bias detailed in section 

9.1. 

Nucleic acids, particularly RNA, are labile. Consequently, collection methods, the addition of 

nucleic acid stabilisers, and the time to processing can impact the results obtained (31). To 

address these issues, reporting should include durations, volumes, temperatures and methods 

used before, during and after the storage of samples (section 9.1) (32, 33). Extraction 

methods contribute to another major source of method-induced variation, and can be 

deoxyribonucleic acid (DNA)- or RNA-specific, or tailored to specific organism types, so 

should be described (34). Other details of sample preparation methods should also be 
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reported, including filtration, centrifugation, DNA digestion, rRNA depletion, separation in 

RNA/DNA or viral/ bacterial workflows or random amplification. Standardized protocols 

should also be followed, if available and appropriate, and documented clearly in the 

publication methods. Authors should also consider submitting to standardized protocol 

repositories (e.g. www.protocols.io/). 

4.2 Describe sequencing methods, including sequencing depth 

Different metagenomic sequencing platforms may produce different types of reads, for 

example, single vs. paired-end, and short (100-300 bp) vs. long (>1,000 bp). Sequencing 

platforms have different error rates, with the probability of a base being read incorrectly 

ranging from <0.01% for Illumina® (Illumina, Inc.) to >10% for Oxford Nanopore 

Technologies (current figures as of May 2019 (35)). Additionally, sequencers often cope 

poorly with large homopolymer repeats, GC-rich, structurally repetitive and other complex 

regions of the genome. Consequent false positive and false negative errors need consideration 

when reporting species composition (36) (section 9.1 and 9.2). 

Sequencing depth refers to the number of times a particular base is represented within reads, 

or the redundancy of coverage (37). This has implications for identification of low abundant 

transcripts, and confidence in sequencing data. However, sequencing depth must be balanced 

according to the question at hand and the available resources. There are a number of factors 

that affect sequencing depth, including the sequencing platform and the sequence that is 

being read (e.g. species diversity of the sample) (37-39). 

4.3 Describe methods used for bioinformatics analysis 

For the purposes of this statement, the term ‘bioinformatics’ applies to all analysis steps 

downstream from the raw sequencing data, including base calling, de-multiplexing, trimming 

and removal of reads (e.g. those of low quality, low complexity, adapters and indexes, or of 

human origin), as well as read normalisation, alignment/mapping of sequence reads to 

reference databases, de novo assembling of genomes and taxonomic assignment of reads 

and/or assembled contigs. There are multiple viable options for many of these tasks, with 

ongoing debate in the community about optimal methods, which may depend on the scientific 

question at hand. The field is under rapid development and methods considered ‘best 

practice’ at one stage can be superseded following new analytical advances. 

http://www.protocols.io/
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There should be clear descriptions of the bioinformatics methods used, including, at a 

minimum, the software name, version, and the main commands run with values for the 

essential parameters/flags. It is also advisable to make data and programming code open 

access, whether as supplementary files or shared, e.g. via Github or Figshare. Where possible, 

a version-controlled container, package or easily installable version of the complete analytic 

pipeline (including all dependencies and required databases) could be made available for 

download and review. The open source release of bioinformatics workflows should be 

encouraged wherever possible to improve transparency and reproducibility, and should 

include adequate validation datasets, meaningful documentation and examples of expected 

outputs and reports. Appendix A2 provides further discussion of bioinformatic analysis and 

taxonomic profiling.  

4.4 Describe quality assurance methods, including internal and external quality controls 

An important strength of metagenomics studies is their ability to detect any genomic material 

present in a sample. However, detection applies equally to ‘true’ sample material and to any 

contaminating nucleic acids present in a sample, which may be introduced at any stage from 

sample collection to processing. For example, contamination may come from the extraction 

kit, the ‘kitome’ (40), or at the point of specimen collection. Sampling is rarely performed 

under completely sterile conditions, and tissues obtained from tissue banks are therefore often 

contaminated. Low biomass, low abundance sites (for example tumors, the brain, and fetal 

tissues such as the placenta) are particularly prone to the risk of misclassifying contaminants.  

To demonstrate attempts to ensure internal validity and reproducibility and identify potential 

contamination, internal controls for all extraction and sequencing processes should be 

reported as part of standard operating procedures (4, 27). Positive controls are usually spiked-

in DNA/RNA e.g. synthetic nucleic acid standards such as sequins (47), and negative controls 

are usually a blank/water sample or ideally a similar or identical matrix (tissue, body fluids, 

etc) that are expected to lack microorganism nucleic acid based on patient factors and test 

results. For clinical metagenomics, formal laboratory implementation involves a system of 

external controls. This is more difficult to arrange, however, publicly and commercially 

available controls and mock community samples are now available, and we recommend that 

their use should be reported (48, 49). 
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4.5 Describe use of orthogonal methods to confirm pathogen identity, function and 

viability 

The conventional methods in microbiology for confirming the presence of a pathogen are 

culture or growth of the pathogen from a clinical sample and immunohistochemistry, the 

histological localisation of candidate species in tissue biopsies. However, traditional culture 

can be difficult when antibiotics have been administered before sampling, or for pathogens 

which are slow-growing, fastidious, present in low-concentration or as-yet undescribed. 

Sequencing has high discriminative power and may have higher sensitivity than culture-based 

methods. For example, in a polymicrobial sample, growth can be affected by presence of 

other competing bacteria or by inadequate growth conditions. Metagenomics methods have 

consistently demonstrated higher classification accuracy when comparing taxonomic profiles 

of synthetic polymicrobial samples obtained from extended quantitative culture with 

nonselective media (50). 

Confirmatory assays appropriate to the study setting should be reported, and a justification 

for the methods employed and a description of their limitations should be provided. For cases 

in which confirmatory assays are not possible (e.g. due to high cost or low volume of 

samples) an explanation should be provided. Rigorous validation of the method used, 

particularly for pathogens and proficiency testing, especially in clinical laboratories should be 

described. Further explanation is provided in appendix A3.  

4.6 Describe the criteria used to assess the role of pathogens in disease aetiology 

Confirming the presence of microbial DNA or RNA in association with disease is an 

important step in establishing a causal relationship between a microorganism and disease (51, 

52). A major challenge for metagenomics-based research and diagnostics is distinguishing 

pathogens from commensals or contaminants (53, 54). Interpretation of microbiome 

investigations can be further complicated if a misbalance in variation and abundance of 

different bacteria (sometimes referred to as ‘dysbiosis’) is suspected to be the cause of the 

condition (55). It is also worth considering that the aetiology of some diseases may involve 

multiple sequential or interacting species, which may be collectively important (56, 57). 

Furthermore, sequencing investigations may identify novel organisms, for which the clinical 

significance will be unknown. These issues are particularly relevant in the investigation of the 

aetiology of central nervous system (CNS) infections. 
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A number of criteria to establish causality have been proposed over the years, detailed in 

Appendix B, including the incorporation of metagenomic technologies (58, 59).  

4.7 State the time from collection to results and cost considerations  

The time from sample collection to processing (‘transport time’), discussed in section 4.1, 

including cold-chain and transit, can affect the compositional profile of microorganisms 

inferred from metagenomics. Overgrowth or degradation may occur during the period 

between collection and (cryo-)storage with the result that the sequencing profile may not 

accurately reflect the composition of the sample at the time of collection. An extended 

duration of storage can result in a shift in the relative representation of bacterial taxa and 

result in significant variability in metagenomics data. For example, faecal samples stored for 

longer than three months at -80°C experience selective loss of Bacteroides spp. (6, 60, 61).  

If the sample is obtained post-mortem, it is critical to report the time from death to sample 

acquisition given extravasation of gut bacteria into the bloodstream that can complicate 

interpretation of metagenomic data. For some applications, it may be relevant to report the 

overall turnaround time of the bioinformatic analyses, i.e. including computational time for 

bioinformatics analysis. For example, Oxford Nanopore technology may be deployed in the 

field or at point of need, allowing sequencing to be performed rapidly in near ‘real-time’; 

still, actionable results are also dependent on the time required for computational analysis 

(62, 63). The turnaround time of bioinformatic analyses is critical in the context of clinical 

applications, when metagenomics is used to help guide or tailor patient treatment. Variables 

such as sequencing run time and total computational analysis time (with system specifications 

e.g. number of cores and amount of memory utilised) should be stated clearly, as should the 

sequencing depth discussed in section 4.2 (64). 

5 Setting 

5.1 State whether sample collection was retrospective or prospective  

As described in the STAndards for Reporting of Diagnostic accuracy (STARD) guidelines, 

clarity is needed regarding the sequence of events in diagnostic testing to ensure that sources 

of bias are addressed (65). Samples analysed long after collection (see section 4.1), as well as 

the performance of the reference standard assays, may lead to degradation of the analyte. 

Retrospective sampling may also lead to bias in the samples tested. For instance, when 
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comparing studies of unidentified encephalitis, samples retrospectively selected for 

metagenomics may be those that are ‘difficult to diagnose’, for example with a low titre, be 

taken at later time points in the course of infection, and therefore be more likely to be non-

infectious (66). 

6 Participants 

6.1 Consider factors influencing microbiota compositions when selecting participants 

At the time of writing, most routine diagnostic and public health laboratories do not yet use 

metagenomic technologies routinely. As such, patients included in metagenomics studies are 

often from tertiary referral or specialist centres, which are unlikely to be representative of the 

wider population, as discussed in STROBE and STROME-ID (22, 23). This can also 

introduce challenges for appropriate selection of controls for case-control studies, and for 

studies assessing the strength of disease associations. 

Species composition of human microbiomes are affected by a variety of host factors, 

including age and sex, as well as behaviour (e.g. diet and lifestyle) and environment (67, 68). 

Exposure to pharmacalogical agents may also profoundly influence microbiome composition. 

For example, a single standard course of antibiotics has been shown to alter species 

composition of the gut and oral microbiomes for over a year (69, 70). Matching of cases and 

controls is particularly challenging for metagenomics studies given the broad range of 

microbes considered (71). Metagenomics studies should aim to minimise and/or statistically 

control for host-confounders, or at a minimum, list those that may impact the interpretation of 

results.  

9 Bias 

Bias is a source of error that remains constant with replication affecting trueness (72); it is 

separate to random error, which affects the precision of an experiment. Together, these 

sources of error contribute to measurement uncertainty which, when conducting 

metagenomics sequencing, has a large number of potential sources (see Figure 1). 

Replication, including replication of the whole process, provides a means to estimate random 

error, which can differ when using different sequencing strategies (72). Adherence to strictly 

described laboratory protocols may improve random error and reproducibility (21), but it 

cannot be used alone to remove bias.  
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9.1 Address potential sources of bias (sampling, transport, storage, library preparation, 

and sequencing) 

Bias can occur at each step of a diagnostic sequencing pipeline (Table 2) and is more difficult 

to evaluate than random error. When conducting metagenomics studies, different categories 

of bias may manifest. Selection bias, where researchers unconciously treat groups of samples 

differently, can affect many areas of research, and investigator blinding is a simple way to 

mitigate against this and should be reported where used. For metagenomics studies, 

microbiological contamination of samples can introduce bias. Experimental bias that is 

caused at different stages of a metagenomics experiment is more challenging to control for 

than sources caused by selection bias or contamination. The fact that the microbiome is by 

definition a composed of multiple different microorganisms means that a given protocol may 

lead to certain groups being over-represented in the processed samples. For example, 

enrichment protocols may introduce bias for pathogen detection (73). Capture probe-targeted 

sequencing will limit detection to targeted sequences, and 16S has limitations with regard to 

the level of taxonomic classification. While this precise form of bias does not exist in 

untargeted metagenomics, other experimental bias can occur at different protocol stages, 

including sampling, nucleic acid extraction (74) or during post-extraction steps (75). Studies 

using 16S rRNA gene sequencing, should consider that different primers amplify different 

bacterial families to differing degrees due to mismatches, resulting in potential bias in 

abundances and diversity metrics (76), which cannot be completely corrected 

bioinformatically (77). 

By reporting the potential sources of bias for a given study, as outlined in Figure 1, their 

likely influence can be considered with mitigation or compensation strategies suggested or 

caveats made to interpretation. Due to the complexity and multistep nature of microbiome 

measurement, it is advisable that any metagenomics experiment should be considered and 

reported as a representative result, rather than assuming that it perfectly reflects the microbes 

present and their abundance. It is also why the term ‘unbiased’, which is a popular term when 

describing metagenomic experiments that do not employ enrichment, should be used with 

caution (or not at all). ‘Untargeted metagenomics’ could be used instead. Further details are 

provided in appendix A4. 
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Table 2. Examples of potential sources of bias in metagenomics studies and implications for result interpretation. 

This list is not comprehensive, but illustrates how results may be affected by collection, processing and analysis 

methods. 

 

 

Figure 1. Uncertainty (fishbone) diagram describing potential contributing sources of uncertainty in the multistep 

protocol required for metagenomics experiment.  

 

 

9.2 Address potential bias introduced by bioinformatics analysis 

Classification algorithms rely on alignment of sequencing reads and/or contigs obtained from 

overlapping reads against reference genomes (see Section 4.3). In the case of the alignment of 

assembled contigs, in principle, reads that cannot be built into contigs (unassigned reads) are 

discarded, leading to a potential loss of information (78). Classification of reads may be slow, 

and a smaller database may be built with unique sequences representing certain taxa (79). 

However, this may lead to bias in the assignment of homologous sequences and should be 

clearly reported. 

Samples containing low abundance pathogens may give rise to false negatives by not 

classifying something as relevant, or false positives if reads are non-specific (80). Subsequent 

alignment of sequence reads against a reference genome of the candidate pathogen(s) 

identified by the metagenomics analysis can provide necessary further validation: wide and 

distributed coverage of the reference genome and high mapping identity is unlikely to be a 

false positive. The level of coverage may be limited in samples with low pathogen load, but 

still can be a true positive result. Sufficient read depth is not always available for 

metagenomics data from clinical samples, which often contain a majority of reads from the 

host. Additionally, high read depth can generally be achieved only for microbes present at 

high-copy number. Authors should report where these considerations are relevant. 

Assessing the quality of reads before downstream classification is crucial for ensuring 

accuracy of taxonomic assignment. This quality control usually includes removal of adapters, 

human/host/known background sequences, low-complexity sequence reads, trimming of low-

quality bases at the ends of reads, and removal of primer sequences. The total number of 

reads in each sample can be affected by factors including DNA extraction methods, sample 

handling, library-prep, differences in sequencing depth, etc (see section 9.1). As such, it is 

generally advisable to normalise read abundance between samples prior to any analysis and 
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report where this is done (81). More sophisticated statistical modelling approaches can deal 

with variation in read numbers between samples without loss of data (e.g. DESeq2 (82)). 

9.3 Describe/address limitations of reference database(s)  

The use of reference databases should be clearly described. It is critical that the reference 

database used is clearly presented, together with a genomic data download date, and a 

description of the procedures behind the inclusion of reference sequences and their indexing. 

Limitations of reference databases may interfere with correct assignment of sequences, as 

illustrated in Figure 2. Curated reference databases may not include all the relevant microbial 

diversity. Conversely, non-curated databases may comprise incorrectly named, incomplete, 

low sequencing quality or artefactual sequences (83). Studies have shown that contamination 

from various sources or incompleteness (e.g. of a region of a genome that contains an 

important mutation) are frequent features of reference databases, particularly when draft 

genomes are included. For example, over 1,000 published microbial genome sequences have 

been identified as contaminated with PhiX174, a bacteriophage used as a control in Illumina 

sequencing (24), and 2,250 NCBI GenBank draft bacterial and archaeal genomes contain 

spurious human sequences (84). Additionally, false negatives may occur due to a focal 

species missing taxonomic representation in the databases, which have an inherent curatorial 

bias to known human associated pathogens (85). This is elaborated in appendix A5. 

Figure 2: The importance of reference database choice, design and versioning in taxonomic profiling of clinical 

metagenomics samples..  

 

 

10 Study size 

10.1 Describe clearly how power calculations were undertaken 

Whenever comparisons in metagenomic species composition between two or more groups are 

performed, authors should report relevant parameters such as significance level and power 

threshold, sequencing depth, effect size, number of comparisons and methods used to correct 

for multiple comparisons, and provide details of the statistical methods used to perform 

power calculations. It should be clearly stated how an effect size was derived and a rationale 

for the clinical relevance of the specific effect size should be given. If no power calculation 
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was performed, an explanation should be given about why this was not considered feasible or 

useful. This section is elaborated in appendix A6.  

 

12 Statistical methods 

12.1 State the limit of detection, including analytical sensitivity and specificity 

The limit of detection (LOD) refers to the minimum quantity of genomic material from an 

organism required for its detection and should be stated. Determination of the LOD for a 

metagenomics study is dependent on the sequencing technology, sequencing depth, read 

length, representation of genomes related to the taxa of interest in the reference database, as 

well as the complexity of the community and amount of host nucleic acid in the sample. 

Simple calculations give estimates for the LOD e.g. for 106 reads per sample, the LOD is one 

read per sample which corresponds to a relative abundance of the order of magnitude of 10-6 

i.e. ~0.0001%. Formal calculations of LOD that are needed for clinical validation should be 

performed using probit analysis (86). In practice, the LOD will be considerably higher 

because a single read from a taxon (a ‘singleton’) is very likely to be due to contamination or 

misclassification. Rather than trusting such calculations, the use of positive spike-in controls 

and negative controls in the sequencing run allows assessment of sensitivity and specificity 

(also see section 9.1). With a single infection, the number of on-target reads will be correlated 

with the signal in the sample, but mixed infections and co-infections will influence sensitivity 

(87). Experimentally validating these for model organisms that represent the specific 

pathogens of interest (e.g. a DNA virus, an RNA virus, Gram-negative and Gram-positive 

bacteria, etc) is recommended, particularly for diagnostic tests. 

19 Discussion/ limitations 

19.1 Attempt, or acknowledge the need for functional and/or phenotypic validation 

Genotypic data do not always correlate with clinical phenotype; for instance, mechanisms 

that involve inducible resistance, gene expression and regulation or post-translational 

modifications. In studies investigating mixed microbial communities it may not always be 

possible to determine which taxon a particular gene belongs to (88, 89). This is also relevant 

in the establishment of causality, as discussed in section 4.6. 
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Efforts should be made to undertake phenotypic and functional validation to assess the 

inferred results. If this is not possible, or beyond the scope of the study, the limitations of 

inferring results solely from genotypic data should be acknowledged and discussed, including 

known caveats and restrictions on making key assumptions. 

19.2 Consider the need for species or strain resolution 

Different strains or lineages within a species can differ widely in regard to their phenotypic 

characteristics. For example, sequencing with strain-level resolution enabled identification of 

specific strains of E. coli associated with necrotizing enterocolitis in preterm newborns (90) 

and lineages of S. enterica associated with varying clinical phenotypes (91). Therefore, 

profiling microbial communities with sub-species resolution can be useful, although de novo 

assembly of metagenomic reads remains a methodological challenge.  

The strain and species resolution capacity of the assay used should be clearly stated with 

consideration of how this level of resolution yields relevant epidemiological or clinical 

information for the study in question. In particular, microbial community profiling using 16S 

rRNA gene PCR cannot identify individual species within some genera, and should never be 

used to identify to the strain level. As recommended in STROME-ID, a definition or 

reference to published definitions of a strain should be provided (23). 

23 Other information 

23.1 Report any ethical considerations with specific implications for metagenomics 

Metagenomics produces a vast amount of host and pathogen data, which is untargeted and 

sometimes not of immediate interest (92). Molecular methods to deplete human genomic 

material exist, however they remain imperfect and may lead to bias. Alternatively, it may be 

sufficient to detail in a protocol that the host data will be removed, and not analysed, although 

this may also lead to bias in microbial reads caused by the in silico host-depletion method; 

host genomes can contain viable viral genomes as well as non-viable genetic material derived 

from or shared with microorganisms. In these cases, the method used to identify and exclude 

host reads, for example through mapping of all reads to the host reference genome, should be 

detailed, including the choice of mapping algorithm and program parameters.  



18 
 

Even if data analysis is restricted to non-human reads, it may still unveil potentially sensitive 

information (93), such as a new diagnosis of HIV. It has also been demonstrated that >80% 

of individuals can be identified from populations of hundreds using their gut microbiome 

alone (94). These issues pose real concerns, particularly with the increasing requirement for 

data to be made publicly available. For all these reasons, specific ethical implications relating 

to metagenomics data and corresponding approvals should be stated, and appropriate ethical 

approval should be obtained.  

Conclusions 

Metagenomics has already made a significant impact on pathogen detection and 

characterisation, and we probably still underestimate its full potential. Increasing use of 

metagenomics has been accompanied by recognition of complex issues at every stage in the 

pipeline. Standards for reporting are therefore needed, to ensure clarity, consistency and 

robustness of research. The guidance given in this paper constitutes a set of 

recommendations, and we recognise that research studies need to be pragmatic, utilising 

resources available. Nonetheless, reporting known and potential limitations should minimise 

misrepresentation. It is inevitable that the field will continue to advance steadily, and these 

guidelines will need to be updated. 
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