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Abstract—Neuromorphic sensors, a.k.a. dynamic vision sensors
(DVS) or silicon retinas, do not capture full images (frames)
at a fixed rate, but asynchronously capture spikes indicating
changes of brightness in the scene, following the principles of
biological vision and perception in mammals. DVS sensing and
processing produces a data representation where the scene can
be represented with a very high time resolution with a limited
number of bits (an inherent data compression is performed
at the time of acquisition). Such representation can be used
locally to derive actionable responses and selected parts can
be transmitted and then processed in another network location.
Due to these features, such sensors represent an excellent choice
as visual sensing technology for next-generation Internet-of-
Things, e.g. in surveillance, drone technology, and robotics. It
is in fact becoming evident that in this framework acquiring,
processing, and transmitting frame-based video is inefficient in
terms of energy consumption and reaction times, in particular
in some scenarios. Hence, we explore here the feasibility of
advanced Machine to Machine (M2M) communications systems
that directly capture, compress and transmit spike-based visual
information to cloud computing services in order to produce
content classification or retrieval results with extremely low
power and low latency.

I. INTRODUCTION

In the next ten years, most of the envisaged services for
the analysis of sensor data for event, action, object or person
recognition/classification, and context awareness will utilize
advanced communications and networking solutions for the
transport of sensor data (or aggregates of such data) to cloud
storage and computing servers that perform the analysis,
detection or reconstruction tasks. Due to the utilization of
the internet protocol stack for this process, see for instance
Message Queuing Telemetry Transport (MQTT) application-
layer messaging [1] and 6LoWPAN [2] for the network layer,
the wider context of such applications has been termed as
the Internet of Things (IoT). A key enabler of future IoT
deployments is the achievement of the equivalent to high
frame-rate visual sensing and processing for surveillance and
monitoring (e.g., vehicles, drones) at very low power. Conven-
tional high-speed visual sensing results in very high bandwidth
and processing requirements, hence new paradigms inspired by
biological vision are now emerging that challenge the classical
notion of video frames. The human vision system detects
details of reflectance and movement in scenes (predominantly
via cone and rod photoreceptor cells in mammals) in an asyn-
chronous manner (and at very high speed), while the visual

cortex is filling in the remaining information. Inspired by this
behaviour, hardware designs of neuromorphic sensors, a.k.a.
dynamic vision sensors (DVS), have been proposed recently.
DVS devices output data as coordinates and timestamps of
reflectance events, triggering on or off in an asynchronous
manner, i.e., when the logarithm of the intensity value at a
pixel of a planar CMOS sensor changes beyond a threshold.

Figure 1(a) shows the acquisition of data via both a con-
ventional frame sensor and a DVS. Unlike a conventional
frame based sensor, the DVS camera captures the on/off
triggering of the fast motion events in the scene. Remarkably,
DVS achieves this with an order of magnitude reduction
in power consumption (10-20 mW of power consumption
instead of hundreds of mW) and two orders of magnitude
increase in speed (e.g., when the events are rendered as video
frames, 700-2000 frames per second can be achieved). Unlike
compressive sensing cameras, DVS cameras are commercially
available, (see e.g., the iniVation DVS240, DVS346 and the
ProPheSee Onboard device). Exciting new applications have
already begun to emerge for implants for visual stimulation
of the visually impaired [3], robotic reflexes with superhuman
capabilities, visual surveillance capable of detecting very high-
speed events, and specific methods for DVS data analysis have
been developed, including feature detection and tracking [4].

To accommodate these applications, a scalable and hier-
archical representation for multipurpose usage of DVS data,
rather than a fixed representation suitable for an individual
application (such as motion analysis or object detection)
would be required. Instead of constraining applications to on-
board processing, in our Internet-of-Silicon Retinas (IOSIRE)
framework illustrated in Figure 1(b), we propose layered data
representations and adaptive M2M transmission frameworks
for DVS data representations, which are mapped to each
application’s quality metrics, response times, and energy con-
sumption limits, and will enable a wide range of services by
selectively offloading the data to the cloud. In this paper, we
summarize our results and perspectives in these domains and
present indicative application results for spike-based sensing
in visual IoT applications.

II. CURRENT CHALLENGES

1) Conventional frame-based video and IoT applications:
Current Internet of Things (IoT) systems for visual data anal-



Fig. 1. (a) DVS camera acquisition. (b) The IOSIRE framework bundling multimodal sensors and transceivers into an IP-based framework for sensor-to-
aggregator-to-cloud processing.

ysis extend the current video delivery paradigms to wireless
networks amenable to IoT deployments and/or apply visual
data analytics to low-end conventional cameras (see e.g. [5]).
Even though there is potential in such approaches, the severe
bandwidth and energy consumption requirements imposed by
the needed spatio-temporal resolution become insurmountable
even in low frame-rate capturing transmission [6].

2) Low-energy visual data capturing and processing: The
recent paradigms of compressive sensing (CS), distributed
compressive sensing and distributed video coding (DVC), as
well as energy- and information-optimal data acquisition and
transmission protocols have been proposed as a solution to the
bandwidth and energy burden imposed by conventional frame-
based sampling and processing. However, such approaches
present two main issues: Despite more than a decade since
the introduction of the first CS hardware and recent prototypes
[7], no commercially-viable CS cameras have been achieved
to date; In addition, data reconstruction requires the solution
of a dynamic programming problem (or the execution of
an estimation process for DVC), which is computationally
intensive, especially when high frame rate is pursued.

3) Dynamic vision sensing and transmission systems: DVS
applications have begun to emerge in the last few years, mostly
for motion analysis and optical flow estimation but also, to a
limited extent, for on-board processing with a coupled neural
network for neuromorphic system development [8]. Relevant
research works focus on biological aspects of vision and on
using the acquired data for computer vision applications, rather
than on sensing and transmission of events within IoT-oriented
systems. At the moment, encoding and transmission of DVS
data to back-end servers for analysis and processing remains
an open problem. In particular, in order to design appropriate
transmission systems, it is important to be able to estimate the
traffic produced by such sensors, as well as to represent the
data to be transmitted in the most compact way possible using
limited resources.

4) Machine-to-machine communications for visual data
gathering: Efficient data aggregation through uplink M2M
networks has recently attracted interest; optimisation of uplink
transmit power for energy-efficient Machine-to-Data aggre-
gator communication has been investigated under multi-node
interference [9]. Physical layer parameters and protocols are

designed for hierarchical uplink M2M aggregation networks
with sequential and parallel data communication. These PHY-
layer methods are oblivious of the higher layers. Also MAC
channel access schemes and Network-layer routing protocols,
suited for intermittent low-data-rate communication between
machines and data collectors, have been considered in the
literature [10] [9]. However, these limited works on uplink
M2M communication schemes and protocols are not designed
or optimised for DVS-based applications.

III. RECENT RESULTS AND PERSPECTIVES

A. Generated data traffic and data compression

Neuromorphic vision sensors asynchronously transmit
pixel-level relative intensity (brightness) changes, with micro-
second time resolution, using the Address Event Represen-
tation (AER) protocol for exchanging data. Following the
protocol, each event is represented by a 4-tuple (x, y, t, p),
where x and y are the coordinates of the pixel which has
undergone a brightness change, t is the timestamp, and p is the
polarity of the event. The polarity of the event represents either
an increase (positive sign) or a decrease (negative sign) of
the gray-level intensity change. Events are triggered whenever
there is either motion of the neuromorphic vision sensor or
motion / change of illumination in the scene or both. In other
words, no data is transmitted for stationary vision sensors and
static scenes. These unique properties enable neuromorphic
vision sensors to achieve low-bandwidth, low-latency, and low-
power requirements.

Figure 2 shows, for the Diving scene in dataset [11], the
neuromorphic spike events rendered as frames, in the first row,
and the corresponding conventional pixel based frames, in the
second row. The green color represents events with positive
change in brightness, whereas events with negative change in
brightness are represented by the red color.

In order to compare the bandwidth requirements for neuro-
morphic and conventional vision sensors, let us consider the
data rate of the Diving sequence shown in Figure 2. The eight-
second long sequence, with spatial resolution 320×240, results
in an average neuromorphic event rate of 28.67 Keps (kilo-
events per second). According to the literature, eight bytes
are needed to represent the data associated to an event (see
e.g. [12]) With such assumption, the data rate of the diving



sequence is approximately 1.83 Mbps. On the other hand,
the data rate required to transmit raw video (grayscale only),
assuming 30 fps, is 320×240×30×8 = 18.43 Mbps. The rate
of DVS data is approximately 10 times lower, with a much
higher temporal resolution.

In order to design appropriate transmission strategies, it is
important to estimate the expected data rate output by neu-
romorphic visual sensors. In [13] [14] we proposed a model
for the estimation of such data rate by considering the scene
content and the motion speed of the visual sensor. The model
was developed and tested for scenarios with a moving vision
sensor. According to the study, the neuromorphic event rate
varies exponentially with the scene complexity, with the Sobel
and Prewitt based mean gradient approximations resulting as
the best estimators for the complexity of the video sequence.
In addition, we studied the relationship between the sensor
speed and the event rate, that we found to be linear. Based on
this analysis, we proposed a two parameter exponential model
for the dependency of the event rate on scene complexity and
sensor speed. According to the results, the model has a bit-rate
prediction accuracy of approximately 88.4 % for the Outdoor
dataset and an overall prediction accuracy of approximately
84 %. Such model will enable the selection and design of the
appropriate transmission strategy and will also facilitate the
performance evaluation of neuromorphic-based IoT systems
via simulation.

One of the key challenges for resource constrained networks
is managing high data rates, hence the need for compression.
As highlighted before, dynamic vision sensors already provide
inherent data compression in the acquisition phase. However,
further compression is required in many IoT scenarios to
reduce the bandwidth requirements. A natural solution is to
compress the data at the sensing device. The authors in [12]
exploit the unique characteristics of event data and propose a
lossless compression strategy where each neuromorphic event
is represented after compression by a variable number of bits
(lower than the eight bytes needed before compression), de-
pending on the considered dataset . With the scenes considered
by the authors (although not all of them are realistic) each
event is represented in average with 3.3 bits (see Table 1 in
[12]), with a compression ratio of 19.5. However, with the
dataset on intelligent driving [11], the same authors report in
[15] a compression ratio of approximately 2.65. The authors in
[16] compared several lossless compression strategies for static
DVS scenarios. These strategies include dictionary based com-
pression, IoT specific compression, Integer based approaches
and DVS specific compression algorithms. According to the
detailed experimental analysis, the LZMA strategy achieves
the best compression ratio among all the considered strategies.
On the other hand, the Brotli compression method achieves
the best trade-off between (compression and decompression)
speed and compression ratio.

While the aforementioned studies provide an excellent start-
ing point for the design of tailored compression strategies, it is
important that future approaches for the compression of data
acquired by neuromorphic sensors address the complexity and

Fig. 2. Rendered frames from DVS data (above) and video frames acquired
via camera (below).

delay limitations of the current approaches, besides aiming at
reducing further the data rate. Our current work is addressing
both these directions.

B. Low latency data transmission

Future wireless communication systems are required to be
able to comply with emerging data traffic with diversified
functionality characteristics, in order to promote use cases
like massive machine-type communications (MTC) and ultra-
reliable and low-latency communications (URLLC). Unlike
throughput-oriented legacy wireless networks, the new net-
work needs to support a range of applications, such as indus-
trial spiking dynamic vision sensors (DVS) and virtual reality
with ultra-reliable and low-latency demands. Specifically, in
5G MTC URLLC use cases, the end-to-end (E2E) latency
is required to be less than 1 milliseconds. The E2E network
latency is affected by several network components. Therefore,
several techniques are required to be applied and involved at
a different levels of the network to enable the low latency
target. Significant latency improvement can be achieved at the
processing level by employing proactive computing, and coded
computing where redundant on-demand computing is avoided
and dependency of task processing is eliminated respectively.
At the communication level, minimizing the spatial distance
between the edge and the application is a key low latency
enabler. This concept is inspired by the idea that reducing
the transmitter and the receiver distance will be effective
in improving the network capacity. Network densification,
the principle of dense small cell deployment, relay heads
(RH), remote radio units (RRU), mobility assisted multi-edge
computing (MEC), Computing location swapping are some of
the attractive proximity-based computing methods.

High capacity link is another communication layer low
latency enabler that plays significant roles in decreasing of-
floading latency from application to servers by offering large
bandwidth. Motivated by the sub 6 GHz spectrum shortage,
the spectrum from 30 to 300 GHz, or the mmWave band,
has been acquiring growing attention, to the level that it
is currently regarded as the most significant enabler to of-
fer the 10 Gbps data rates expected for the 5G networks.
However, at these frequencies signal propagation is severely
affected and naturally distinctive from that at the sub 6 GHz
band frequencies. These differences include higher penetration



losses, higher path loss for equivalent antenna gains and higher
transmit power required to maintain a similar signal-to-noise
ratio (SNR) at lower bands unless enhanced signal processing
techniques that feature massive input massive output (MIMO)
and beamforming (BF) are deployed effectively.

To this end, machine learning methods can be implemented
for latency-oriented joint antenna selection and beamform-
ing algorithms. In these solutions the learning-based antenna
assignment and beamforming power control policy can be
adaptive to the users’ energy state information (ESI), the users’
queue state information (QSI) and/or the uplink/downlink
channel state information (CSI). The work in [17] developed
an analytical framework for the latency-optimal control prob-
lem based on the theory of infinite horizon partially observable
Markov decision process (POMDP). In this POMDP method,
the proposed optimal protocols optimize the transposition
delay of the user while limiting the energy consumption by
users and the aggregator. Furthermore, this work presents a
multi-objective optimization framework to study the trade-off
between uplink transmit power minimization, downlink power
minimization, and latency minimization. To reduce the com-
plexity, the infinite-horizon POMDP problem is transformed
into an equivalent value Bellman program and solved by the
near-optimal point-based heuristic search value iteration (PB-
HSVI) method under specific standard conditions.

C. Object recognition

Object recognition finds numerous applications in visual
surveillance, human-machine interfaces, image retrieval and
visual content analysis systems. With the rapid evolution
of CMOS active pixel sensing (APS) and advancements in
deep learning [18], [19], researchers have already achieved
impressive gains in APS-based object recognition accuracy.
However, neuromorphic vision sensing (NVS) provides al-
ternative to APS for energy-saving and computation-efficient
object recognition systems [20].

Feature descriptors with classifiers for object recognition
have been widely used by the NVS community. These de-
scriptors include corner detectors and line/edge extraction
[21]–[23], optical flow [24]–[26], spatio-temporal time-surface
feature descriptors [27]–[29]. While these efforts were promis-
ing early attempts for NVS-based object recognition, their
performance does not scale well when considering complex
datasets such as N-Caltech101 and CIFAR10-DVS [29]. More-
over, optical flow and time-surfaces feature extraction have
very high computational requirements, which diminishes their
usability in real-time applications.

Another avenue for NVS-based object recognition is via
frame-based methods, i.e., converting the neuromorphic events
into synchronous frames of spike events, on which conven-
tional computer vision techniques can be applied [30]–[32].
For example, Zhu [30] introduced a four-channel image form
with the same resolution as the neuromorphic vision sensor:
the first two channels encode the number of positive and
negative events that have occurred at each pixel, while last
two channels as the timestamp of the most recent positive

and negative event; then CNNs are leveraged to perform
the downstream recognition task by inputting constructed
images. However, these methods do not offer the compact and
asynchronous nature of NVS, as the frame sizes that need to
be processed are substantially larger than those of the original
NVS streams.

The third type of neuromorphic object recognition consists
of event-based methods. The most commonly used architec-
ture is based on spiking neural networks (SNNs) [33]–[36].
While SNNs are theoretically capable of learning complex
representations, they have still not achieved the performance
of gradient-based methods because of lack of suitable train-
ing algorithms. Essentially, since the activation functions of
spiking neurons are not differentiable, SNNs are not able to
leverage on popular training methods such as backpropagation.
To address this, researchers currently follow an intermediate
step [37]–[40]: a neural network is trained off-line using
continuous/rate-based neuronal models with state-of-the-art
supervised training algorithms and then the trained architecture
is mapped to an SNN. However, until now, despite their sub-
stantial implementation advantages at inference, the obtained
solutions are complex to train and have typically achieved
lower performance than gradient-based CNNs.

The final type is our recently-proposed end-to-end graph-
based framework [41], which represents events as graphs and
couples this with graph convolution neural networks for object
recognition. By representing events as graphs, we are able
to maintain event asynchronocity and sparsity and, by using
graph convolutional neural networks, we can perform training
with traditional gradient-based backpropagation. As shown in
Table 1 and Table 2 of [41], graph-based methods acquired
superior results to the state-of-the-art in various datasets.
Moreover, Table 3 of [41] compares the complexity of graph
convolutional networks with conventional deep CNNs in terms
of the number of floating-point operations (FLOPs) and the
number of parameters, and the results show that proposed
graph CNNs have a smaller number of weights and reduces the
computation to one-fifth of ResNet 50 [19]. Therefore, graph-
based object recognition approach for NVS can be seen as a
way to bridge the compact, spike-based, asynchronous nature
of NVS with the power of well-established learning methods
for graph neural networks.

IV. CONCLUSION

The paper presented recent developments in spike-based
compression, transmission and recognition aspects for visual
IoT systems. The description of the various solutions proposed
by the authors and collaborators can help as a reference point
for further developments in the field of spike-based visual
sensing and processing.
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