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Abstract

THE research presented in this thesis explores the use of non-linear Fourier trans-
form (NFT) in long-haul optical fibre communication systems with digital

coherent receivers. It aims to improve the data rate limit caused by the strong non-
linear inter-channel interference at high signal powers.

The non-linear frequency-division multiplexing (NFDM) system using the
continuous spectrum of NFT was systematically assessed and compared with the
conventional WDM system. The per-sample capacity of NFDM was estimated via
the Blahut–Arimoto algorithm using statistics from a large number of system sim-
ulations of an EDFA-amplified optical fibre link of 1600 km. NFDM shows only
a marginal gain of 0.5 bit/symbol in achievable rate in comparison with the con-
ventional WDM system in the per-sample capacity sense. However, the spectral
efficiency (SE) of NFDM is not even comparable with SE of the current WDM
system due to the inefficient modulation approach.

In this context, efforts were made to find a better signal modulation scheme
using NFT. A dual-polarisation b-modulation scheme was proposed instead of
the conventional qc-modulation scheme. At the same time, a large number of
sub-carriers up to 1050 and the dispersion pre-compensation technique were also
adopted to improve the SE of the NFT-based system. The above modifications
resulted in the highest net rates among existing NFT-based systems of 400 and
220 Gbit/s (7.2 and 4 bit/s/Hz) on an EDFA-amplified fibre link of 960 km in single-
channel simulation and experiment, respectively.

In addition, progress was made on the modelling of spectral broadening of a
Gaussian process in optical fibre using the iterative Kolmogorov-Zakharov model.
The bandwidth expansion is observed to be related to the signal power, distance
and initial signal bandwidth in a certain form. The relation can be used to calcu-
late a tighter upper bound on the information-theoretic capacity of the optical fibre
channel.
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Impact Statement

AT the time of writing, many cities around the world have gone into lockdown
in response to an unprecedented pandemic. People are recommended to stay

and work at home. Behind the scenes the global telecommunication infrastructure is
running smoothly; ensuring that, at a time when people are physically disconnected,
they remain virtually connected. The backbone of that infrastructure is the optical
fibre communication network, where 99% of the data traffic run through.

It is hardly noticeable that, due to the non-linear nature of the optical fibre
channel, optical fibre networks are approaching a “capacity crunch”, i.e., optical
fibre systems not being able to increase their data carrying capability in line with
traffic demands. However, the trend of data traffic growth over the last 20 years is
evidently saying so. There are currently three unique paths to address the problem,
i.e., overcome the non-linearity, increase the usable bandwidth, and add more spatial
dimensions. Each path has its own set of challenges and should be pursued in
parallel. The research described in the thesis explored techniques to overcome the
non-linearity in the optical fibre channel.

In the thesis, transmission schemes based on non-linear Fourier transform
(NFT) were investigated from the initial proof-of-concept simplified system to the
fully evolved experimental set-up at Nokia Bell Labs. The data rates of such trans-
mission schemes have been increased from around 10 Gbit/s to 400 Gbit/s. Issues
that stop further improvements on data rate have also been identified for future re-
search. Additionally, other non-linear effects such as the spectral broadening was
modelled in the highly non-linear regime and its implication on the achievable spec-
tral efficiency of the optical fibre channel was also derived.

The main conclusion of the research is that, in their current form, transmis-
sion schemes based on NFT are still not beneficial to be implemented in practical
systems. It is unclear whether the low data rate of NFT-based systems is due to
some fundamental limits of NFT signal processing or simply just the insufficient
sampling rate. Using the highly non-linear regime of optical fibre channel for infor-
mation transmission remains infeasible, at least in the short term.
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1
Introduction

In 1975, when the world’s first commercial optical fibre communication system
was lit up, operating at a bit rate of 45 Mbit/s with distance up to 10 km [12], peo-
ple began to share the vision of Charles Kao that in a decade’s time, optical fibres
would be used for all major long-distance communications. Fast-forwarding more
than four decades to today, the global optical fibre communication networks have
grown way beyond anyone’s ambition. With in total over 3 billion km [13] of de-
ployed fibre, worldwide, in 452 submarine and countless terrestrial cables, optical
fibre communication networks carry 99% of the world’s digital information. In
Fig. 1.1 there are just two examples of how important optical fibres have become
to a continent’s and the world’s communication infrastructure. Optical fibre is sim-
ply the most efficient (in both economical and functional sense) and irreplaceable
transmission medium in the modern era. However, the optical fibre communication
network is also facing great challenges as the data traffic grows exponentially and
data transmission capacity per-fibre saturates. Research described in this thesis is
aimed to further improve the data rate of optical fibre communication systems by
investigating novel digital signal processing (DSP) techniques that can mitigate or
remove the non-linear distortion induced by the Kerr effect in optical fibre. Before
diving into the technical details of optical fibre communications, we will first walk
through the evolution of optical fibre networks and the urgent challenges they face.

21
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Figure 1.1: (left) Worldwide submarine optical fibre cable map provided by TeleGrogra-
phy. (right) African undersea and terrestrial fibre optic cable map provided by
the Network Startup Resource Center.

1.1 A brief history of optical fibre communications
In 1965, Charles Kao and George Hockham concluded, in their seminal paper [14],
that the fundamental limitation on the attenuation of light travelling in glass is below
20 dB/km, which is a key threshold value for optical communications with informa-
tion capacity in the excess of 1 Gbit/s. Since then, the optical fibre communication
systems have experienced rapid development due to the advance of laser and optical
fibre technologies. The first and second generation optical fibre systems operated
at the wavelength of 800 nm and 1300 nm, respectively. The prototype of the mod-
ern optical fibre system emerged in late 1980 as the third-generation optical fibre
systems. It operated at the wavelength of 1550 nm and the fibre had losses of 0.2
dB/km. Later on, the manufacture process of optical fibre improved and it opened
up a rather broad low-loss window, which is now mainly referred to as C band 1530-
1565 nm (≈ 4.4 THz1). Nevertheless, the low-loss wavelength was still restricted
by the attenuation peak around 1383 nm due to the OH ions; see the solid curve
in Fig. 1.2. In 1998, optical fibre and cable supplier Optical Fiber Solutions (OFS)
successfully developed the zero water peak fibre [15], opening up the possibility of
using the E band 1360-1460 nm region (≈ 15.1 THz) for long distance transmis-
sion; see the dashed curve in Fig. 1.2. Overall, the attenuation of fibre has reached
roughly one twentieth of the key threshold value for optical communications over a
very large bandwidth of roughly 53.5 THz.

While the reduction of attenuation of optical fibre played a significant role in
pushing the optical fibre communication system into commercialization, there are

1W = c/λ1− c/λ2 where c = 3×108 m/s is the speed of light in vacuum.) and L band 1565-1625
nm (≈ 7.1 THz).
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Figure 1.2: Fibre attenuation profile across wavelength with (solid) and without (dashed)
water peak, adapted from [1, Fig. 7].

three technological milestones that saw the soaring of transmission data rates and
the dramatic increase of transmission distance of commercial systems: Erbium-
doped fibre amplifier (EDFA), wavelength-division multiplexing (WDM) and co-
herent technology.

1.1.1 Optical amplifier
Before the invention of the optical amplifier, long-distance optical fibre communi-
cation systems usually required electronic repeater (or regenerator) every few kilo-
metres. A electronic repeater consists of a receiver, an electrical amplifier and a
transmitter. The electronic repeater converts the optical signal to a electrical one,
regenerates the signal and re-converts the electrical signal back to optical. The struc-
ture exposes three limitations of this technique: 1) highly cost-ineffective since the
repeater is effectively another set of transceiver, 2) the repeater interface rate, i.e.,
the net bit rate that transceivers in the repeater were able to support, limits the link
capacity, 3) for WDM systems, channels on different wavelengths have to be de-
multiplexed first, with each channel regenerated separately by its own electronics,
and then multiplexed together for further transmission. The number of transceivers
required at the repeater will be equal to the number of channels in the WDM system,
which will incur an unacceptable cost on the system.

In spite of the above limitations, the first optical fibre sub-sea communica-
tion systems deployed across the Atlantic Ocean (TAT8) in the late 1980s was
opto-electronically regenerated systems operating at 1.3 µm and carrying 280 Mb/s
on each of its three fibre pairs. The next-generation sub-sea link TAT9 was then
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changed to operate at 1.55 µm with doubled capacity of the previous systems, but it
was still opto-electronically regenerated.

In 1987, EDFA was proposed in two seminal papers [16, 17] around the same
time to tackle the limitations of the electronic repeater. It is very difficult to over-
estimate the importance of EDFA in modern optical communication systems due
to its superb properties. To start with, the EDFA amplifies the signal without any
opto-electronic conversion. Then, the amplified spontaneous emission (ASE) noise
added to the signal is negligible and can normally be modelled as a Gaussian noise.
Finally, the EDFA has a very large operating bandwidth that covers the entire C
band and the gain spectrum is almost flat. Based on EDFA, the dual-stage optical
amplifier [18] invented in 1995 paved way for cost-effective and large scale high
capacity WDM systems.

A modern EDFA, typically working in the 1550 nm band, consists of a length
of fibre doped with Erbium and a pump laser at 980 or 1480 nm. The pump laser
supplies the energy for the amplifier, while the incoming signal stimulates emission
as it passes through the doped fibre. A schematic of EDFA is shown in Fig. 1.3.
With the help of EDFA, optical fibre communication systems officially entered the
stage of wideband WDM systems.

1550 nm
Optical

input signal
→

Isolator
WDM
coupler EDF

→
Isolator

Pump
Laser

980/1480 nm

1550 nm
Amplified

output signal

Figure 1.3: EDFA block diagram.

1.1.2 Wavelength division multiplexing
The essence of WDM system is to offer extra degrees of freedom in the order of
hundreds for data transmission on different wavelengths of laser light. As shown in
Fig. 1.4, an optical multiplexer is placed at the transmitter to combine several optical
signals from individual transponders together and a de-multiplexer at the receiver
to separate them. Between 1995 to 2000, the data rate per fibre in WDM systems
has experienced 100% (due to the rapid increase of WDM channel count) annual
growth rate, and continued 20% annual growth in the following years [1, Fig. 4].
The initial problem of increasing the channel count was the variation of the EDFA
gain profile across wavelengths. It caused huge difference in optical signal-noise-
ratio (OSNR) for different channels at the output of the link, rendering some of
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the channels unusable. The effect is most significant in multi-span systems, where
the variation of the EDFA gain profile accumulates over distance. In 1992, with
the help of practical gain flattering filter technology, the problem was solved by an
algorithm [19, 20] that calculated the appropriate launch powers for all channels in
a WDM system so that their output OSNR are equal. This algorithm is commonly
referred to as the optical pre-emphasis.
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Transponders

TP2λ2

TP3λ3

TP4λ4

MUX DEMUX
TP5 λ1

Transponders

TP6 λ2

TP7 λ3

TP8 λ4

Figure 1.4: WDM system structure.

The other benefit of WDM systems comes from the optical networking and
bandwidth management perspective. In the mid-1990s, as the capacity of single
wavelength in WDM systems has surpassed the capacity of electronic switches and
routers, multiple electronic signals were aggregated into a single wavelength. It
became desirable to manage the bandwidth directly in the optical domain.

The device that aggregates, dis-aggregates, and switches data paths in the opti-
cal domain “colourlessly” and “directionlessly” is commonly referred to as the op-
tical add-drop multiplexing (OADM). “Colourless” refers to the ability of OADM
to flexibly allocate any wavelength or colour to any port, while “directionless” in-
dicates that the OADM allows wavelengths to be routed to any direction available
on the node without physical rewiring of fibres [21]. A typical fixed OADM sys-
tem was initially just a set of optical de-multiplexer and multiplexer with a recon-
figuration mechanism in between, e.g., a fibre Bragg grating with optical circula-
tors [2, 3] as shown in Fig. 1.5. The modern OADM has evolved into a remotely
re-configurable one with the help of wavelength selective switching module. It pro-
vides multi-degree mesh connectivity, flexible wavelength allocation, dynamic gain
equalisation to improve the OSNR and maximize reach.

1.1.3 Coherent receiver
Initially studied in the 1980s [22], coherent receivers were resurrected in 2000s
after 15 years of being unnoticed. It became an ideal solution for the trouble-
some problems caused by chromatic dispersion (CD) and polarisation-mode dis-
persion (PMD). At the same time, CMOS processing speed was catching up with
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Figure 1.5: Optical add-drop multiplexer implemented with fibre Bragg gratings (FBG)
[2–4].

10 GBaud symbol rate. With these advances, digital coherent receivers could bring
4 times increase in spectral efficiency (SE) through quadrature modulation (I/Q) and
polarisation-division multiplexing (PDM).

Before the introduction of coherent receiver, CD was compensated inline by
concatenating two types of fibre with opposite signs of dispersion so that the over-
all CD at the output of a link is nearly zero but the “local” CD everywhere along
the link is enough to suppress non-linear effects. This technique was referred to
as dispersion management [23, 24]. When the coherent receiver was re-introduced
in 2000s, it provided access to the full optical field in digital form and simplified
the link design by using only one type of fibre for the entire link and compensating
the chromatic dispersion entirely in the digital domain. This gives significant ad-
vantage over the dispersion-managed fibre link by reducing the network complexity
and costs. It also opened up the possibility of digital compensation of the PMD
effect and fibre non-linear distortion. The research focus of this thesis, digital com-
pensation techniques of non-linear effects, would not be possible without coherent
receivers.

The commercialisation of digital coherent receiver is very successful in long-
haul and even metro optical networks. The coherent receiver is also attractive for
the optical access network due to its high receiver sensitivity [25, Sec. II]. However,
because of its significantly higher cost than direct-detection receiver, digital coher-
ent receiver has not prevailed in the short-reach optical links, where the connectivity
and low cost is more important than high data rate. The high cost of a digital coher-
ent receiver comes from the need of a local oscillator (LO) laser at the receiver, two
90°-hybrid, four balanced photodiodes, four analogue to digital convertors (ADCs)
and an application-specific integrated circuit (ASIC) to run the powerful digital sig-
nal processing (DSP) for transmission impairment compensation. There have been
many endeavours to develop simplified coherent receiver targeting optical access
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network, e.g., [25]. Nevertheless, the cost of simplified coherent receiver has not
dropped below the threshold for massive deployment. Although there are numerous
quasi-coherent solutions [26,27] that use direct-detector and advanced DSPs and are
claimed to be low-cost, the author believes that in the future, coherent receivers will
become cost-efficient enough to replace any other types of transponders completely,
over all distance of optical fibre links.

The deployment of coherent receivers also changed network planning. At
the age of direct-detection with dispersion managed links, optical communication
systems had to be simulated using computationally expensive split-step Fourier
method (SSFM) to achieve an acceptable accuracy in performance prediction in net-
work management. For dispersion-unmanaged links with coherent receivers, semi-
analytical models such as the GN model [28, 29] or the enhanced GN model [30]
can predict the system performance quite accurately with little computational effort.
Such advantages have made them a great tool in flexible optical networks to provide
quick assessments of certain path’s transmission quality [31]. However, for novel
transceiver and link designs, SSFM is still indispensable.

1.2 The challenges in optical fibre communications
In the previous section, we have walked through the great progress and the en-
abling technologies of optical fibre communication systems in the last 55 years.
The achievable data rate transmitted in a single fibre has increased from 45 Mb/s
to over 100.5 Tbit/s [32]. The applications running on this global fibre communi-
cation infrastructure has evolved from just sending simple messages to streaming
videos or even virtual reality. The optical fibre communication systems have also
evolved from point-to-point links to networks with diverse structures, especially due
to the emerge of data centres in recent years. For a while, it seems that our work of
building fast and reliable optical fibre networks has been accomplished. However,
global data traffic trends in the past decade have suggested otherwise. In this sec-
tion, we will look closely into the exponential increase of the global data traffic and
the saturating capacity of current optical fibre networks.

1.2.1 Exponential increase of the global data traffic
Several review papers [1, 33–35] have reported various growth rate of data traffic
around the globe ranging from 30%-70%. The measurement are usually taken at
regional broadband internet providers, or at their internet exchanges, e.g., the Seattle
Internet Exchange or the AMS-IX. Fig. 1.6 shows the historical data traffic volume
gathered at AMX-IX and the Seattle Internet Exchange in the period of 2002-2019.
By simply connecting the start and end point, we can observe an annual growth rate
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of 46%. Assuming the same growth rate for the future prediction, we can easily
calculate the exhaust time of current system [1]

Csystem = Ccurrent(1+ rgrowth)Texhaust

where Ccurrent is the current traffic load on the system, rgrowth is the annual traffic
growth rate, and Texhaust is the time it takes to fully exhaust the installed system
capacity Csystem. For example, if the current system loading is 10% and the annual
growth rate is 46%, we have only 6 years until it is fully loaded.
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Figure 1.6: Data growth Amsterdam and Seattle Exchange at roughly 46% annual increase.

Of course, extrapolation to the future is by no means an accurate prediction.
The great growth of data traffic is mainly attributed to the upsurge of video on
demand (VoD) service such as Netflix and YouTube. As the VoD service matures,
we can already see from Fig. 1.6 that the data traffic growth is slowing down in the
recent years. However, the commercialisation of virtual reality technology or other
unknown applications might give another even greater drive to the data traffic. The
optical fibre networks must prepare for the future challenges. Also note that due to
the uprising of the data centre (DC) technology, the frequently accessed content are
often cached within the metro network, resulting in a 75% of the traffic terminated
within the metro network in 2017 as opposed to 25 % in 2012 [35]. This traffic flow
shift alleviates the pressure on the backbone optical networks but requires more
capacity for the DC-DC interconnect and DC-user connections.

1.2.2 Capacity limits of optically routed network
Given the challenge of accommodating the ever-growing data traffic in optical fibre
networks, network operators would ideally like to upgrade the optical fibre networks
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at a matching growth rate in terms of link capacity. However, the system capacities
of optical fibre links has been experiencing only 20 % annual increase since 2002.
Furthermore, we are approaching to the information-theoretic capacity limit of stan-
dard single-mode fibre channel. A comprehensive study [5] on the capacity limit
of long-haul optically routed networks (ORN) has shown that the capacity limit
is mainly imposed by the inter-channel interference caused by the fibre non-linear
Kerr effect. An ORN is normally defined as an optical fibre network running WDM
with reconfigurable OADM such as the network demonstrated in Fig. 1.7 (a). In
such a network, signals travel through the network via a path specified by a routing
algorithm from their respective transmitters to their respective receivers. Different
channels might partially share their paths, distort each others’ signals and head to
their own destinations. Therefore, a receiver only have access to its own channel
and cannot remove the distortion caused by the other co-propagating channels. As
a result, the SE of optical fibre link does not increase monotonically with SNR as
shown in Fig. 1.7 (b). In addition, as the transmission distance increases, the SE at
the optimal SNR also decreases. This non-linear phenomenon has been sometimes
termed as the “non-linear Shannon limit” [36]. Although the limit is theoretically
disputable [37] for it assumes Gaussian distribution on the input signal and consid-
ers only the conventional WDM scheme, no practical optical fibre communication
system has managed to surpass it.

1.2.3 Roadmap to the challenges
With the exponential explosion in global data traffic and saturating capacity of opti-
cal fibre communication system, we can undoubtedly forsee the “capacity crunch”
[5] of optical fibre network. To overcome the “capacity crunch”, one can resort to
Shannon’s capacity limit for the AWGN channel [38],

C =W log(1+SNR), bit/s (1.1)

where C, W and SNR denote the channel capacity, transmission bandwidth and
signal-to-noise ratio, respectively. Strategies can be derived from (1.1)

• Improve SNR with a variety of non-linear transmission schemes, e.g. support
vector machine, Volterra transfer function, digital backpropagation (DBP),
optical phase conjugation (OPC) and non-linear Fourier transform (NFT).
Among them, OPC and NFT both have theoretical foundation for the pos-
sibility of reducing inter-channel interference [39, 40], hence promise a sig-
nificant improvement in the data rate. However, they require rather substan-
tial changes in the network infrastructure. Other above-mentioned techniques
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Figure 1.7: (a) Typical ORN structure and (b) spectral efficiency (SE) estimation adapted
from [5]. SNR is the ratio of the signal power and the total noise power.

demand no changes in the infrastructure and are more straightforward to im-
plement, but their gains in SNR are also limited. This will be explained in
Sec. 2.4.4.

• Utilise larger transmission bandwidth W. The current transmission band-
width is constrained by the low-loss windows (O∼L band in Fig. 1.2, 1260
nm∼1625 nm, i.e. 53.5 THz) of standard single-mode fibre (SSMF) and
the availability of optical amplifiers at different wavelengths. With the re-
cent advances in fibre-doped amplifier technologies, extended transmission
bands become possible [41]. Conventional EDFA covers C+L bands (1530
nm - 1625 nm ≈ 11.5 THz), Bismuth-doped fibre amplifier (BDFA) operates
across O and S bands (∼1260 nm - 1530 nm, i.e., 42 THz) [42, 43]. U band
is normally avoided due to its high transmission loss. Ideally, a 12-fold in-
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crease in network capacity could be achieved by the full utilization of the
low-loss window (O∼L bands) as opposed to C band only, but it has been
argued [1, Sec. III. C.] that the ultra-wideband transmission would not live
up to our expectation but only provide roughly a 5-fold increase in network
throughput at a price of a more complicated network management.

• Exploit the spatial dimension. As SSMF has reached a very high level of ma-
turity, global efforts have focused on exploring new types of fibre that make
use of spatial degrees-of-freedoms (DoFs) in the same glass strand [44, Sec.
3], which is generically referred to as space-division multiplexing (SDM).
Besides the most obvious fibre bundle solution, other types of fibre, such
as multi-core fibre (MCF), few-mode fibre (FMF) and combined few-mode
MCF, have all demonstrated experimentally high data rate transmission in
both short and long ranges [45–48]. Some successful studies on the non-linear
propagation in FMF and MCF have also been reported in [49, 50]. In spite of
the impressively high data rate achieved by MCF or FMF, ideal spatial paral-
lelization requires not only new types of fibres but also integrated transceiver
arrays, spatial and wavelength selective switches and multi-core/mode am-
plifiers, whose progress lags behind the fast development pace of new fibres.
Note that, MCF or FMF does not seem to have clear advantages over fibre
bundle. The fair comparison of these SDM regimes will eventually come
down to the cost efficiency, development of in-line optical SDM amplifier,
and transceiver integration.

1.3 Problem definition and key contributions
The research described in this thesis focuses on the first challenge listed above: im-
prove SNR with non-linear transmission schemes. And in particular, two questions
are of interest, 1) whether it is possible to achieve a monotonically increasing SE
in the ORN, in contrast to the saturating behaviour shown in Fig. 1.7, 2) if such a
transmission scheme exists, whether it is viable in practice.

The research described in this thesis made contributions in three aspects. To
begin with, progress is made in finding a tighter information-theoretic upper bound
on the SE of the optical fibre channel through accurate and fast estimation of the
spectral broadening over large range of distance and power. This is evidence against
a monotonically-increasing SE in an ORN. Then, we explored the potential of
NFT-based transmission schemes in both simulations and experiments. Results in-
clude 1) the estimation of per-sample capacity of NFT-based optical network in both
ideal and realistic fibre infrastructure. Particularly, in the ideal fibre infrastructure,
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the NFDM scheme showed monotonically increasing SE over the simulated signal
power range. 2) the development of dual-polarisation b-modulated NFT scheme
using continuous spectrum. The proposed system achieved the highest data rate
among existing NFT-based systems in both simulation and experiment. Finally,
we developed an alternative method to assess a large-scale NFDM network without
running the time-consuming simulation of NFDM network.

The thesis has three original equations of my invention, i.e. (3.4), (3.6) and
(6.9). The rest of the mathematics involved here serves as a necessary background
as well as the guidance for the reproduction of relevant results.

1.4 Thesis outline
The remainder of the thesis is organized as follows. Chapter 2 introduces the pre-
requisites of optical fibre communication systems, including the structure of co-
herent transceivers, mathematical fundamentals of optical fibre channel, and the
information-theoretical tools for the evaluation of various digital signal processing
schemes.

Chapter 3 describes the results on the spectral broadening of Gaussian pro-
cesses in optical fibre channel. Iterative Kolmogorov-Zakharov model was used to
efficiently estimate the power spectral density at the output of the optical fibre. It
corresponds to the publication IV listed in Sec. 1.5.

Chapter 4 gives a brief introduction of NFT and its inverse. Numerical meth-
ods for NFT and inverse non-linear Fourier transform (INFT) are detailed and the
chapter is closed with a review of recent NFT-based optical communication sys-
tems.

Chapter 5 and 6 are comprehensive investigations of NFT-based communica-
tion systems, from the simplest and ideal case – one symbol per channel use and
lossless – to the realistic single-channel experimental verification with data rate of
220 Gbit/s. They correspond to the publications I, II, III and VII listed in Sec. 1.5.
The evolution of NFT-based communication system in this thesis is depicted in
Fig. 1.8.

The thesis is summarised in Chapter 7 with outlook into future research.

1.5 List of publications
Some of the research leading to this thesis has resulted in the following publications:
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2
The fundamentals of optical fibre

communications

This chapter establishes the fundamentals of optical fibre communication systems
and introduces information-theoretical tools for the evaluation of various digital
signal processing schemes. The goal is to provide firm technical ground for the
later contributional chapters so that their results can be reproduced with the help of
equations in this chapter. Readers should feel free to skip this chapter and will be
referred back later when more details are needed. We start with the fundamentals
of optical fibre communications, covering the aspects of system components, com-
ponent physics, signal impairments, and focus only on the coherent transmission
system. A coherent transmission system consists of an optical transmitter, an opti-
cal fibre channel, and a digital coherent receiver. A generic block diagram of such
a system is shown in Fig. 2.1. In the following sections, we explain the physical
mechanisms of each block.

2.1 Optical transmitter
A typical optical transmitter in a coherent optical communication system is com-
prised of four parts: a digital signal processing unit, DACs, a PDM IQM and a
semiconductor laser as shown in Fig. 2.2. To generate an optical signal, the DSP unit
provides the sampled complex-valued waveform in the base-band, then four DACs

35
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Figure 2.1: Generic block diagram of a coherent optical communication systems.

convert the signals into analog ones, corresponding to the in-phase and quadrature
signals in x- and y-polarisations, to drive the modulator to modulate the monochro-
matic optical signal from the laser. This section explains the working principles of
the optical parts in such a transmitter, i.e., the semiconductor laser and the PDM
IQM. Particularly for the semiconductor laser, the external cavity semiconductor
laser (ECSL) will be taken as an example because it will be used in the later exper-
iment in Sec. 6.7.
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Figure 2.2: The schematic of a polarisation diversity optical transmitter unit. It consists of
four DACs, a PBS, two optical IQM and a PBC.

2.1.1 External cavity semiconductor lasers
Here we give a short introduction of the ECSL assuming a basic understanding of
the principles of semiconductor laser operation [51, Chap. 3]. The ECSL is a type
of semiconductor laser that couples the laser cavity to an external cavity to reflect
a portion of the escaped light back into the laser cavity. A typical way to realise
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the external cavity is an external grating as shown in Fig. 2.3. To provide a strong
coupling between the laser cavity and the external cavity, one normally puts an anti-
reflection coating on the laser facet facing the grating to reduce its reflectivity. The
external cavity in an ECSL provides two advantages when compared with other
types of single-mode semiconductor lasers, i.e., wavelength tunability through ro-
tating the grating (typically 50 nm) and low line-width (∼ 100 kHz). The longer
resonator increases the damping time of the intracavity light and thus allows for
lower phase noise and a smaller emission linewidth. The wavelength tunibility is
achieved by turning the external grating that functions as a tunable bandpass filter.
Wavelength tunability is a desirable feature for lasers used in WDM communication
systems.

Output

Figure 2.3: A schematic of the external cavity laser with an external grating.

2.1.2 PDM I/Q modulator
A PDM-IQM is depicted in the dashed box in Fig. 2.2. A PBS split the light source
into two orthogonal polarised lights, each going into an optical IQM. The two
signals are then modulated by the IQM, and subsequently combined into one by a
PBC. The output of the PBC will then be fed into the optical fibre as the transmitted
optical signal. We open up the individual IQM and look closely into its working
principle. As shown in Fig. 2.4, an IQM is comprised of a π/2 phase shift and two

DPM = −+c/2 DQ(C)

DI(C)

�in(C) �out(C)

Figure 2.4: A schematic of an IQM that consists of two Mach-Zehnder modulators.
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Mach-Zehnder modulators (MCMs) for in-phase and quadrature components. The
MCMs are operating in push-pull mode and biased at minimum transmission point.
The transfer function of an individual MCM is

EMout(t)
EMin(t) = cos

(
u(t)
2Vπ

π

)
, (2.1)

where EMin(t) is the optical field from the laser source, EMout(t) is the output signal
of MCM, and u(t) is the electrical base-band signal. Together with the π/2 phase
shift, the overall transfer function of an IQM is

Eout(t)
Ein(t) =

1
2

cos
(
uI(t)
2Vπ

π

)
+ e j π2

1
2

cos
(
uQ(t)
2Vπ

π

)
, (2.2)

where Ein(t) is the input optical signal from the laser source, Eout(t) is the output op-
tical signal of the IQM, and uI(t) and uQ(t) are the electrical in-phase and quadrature
base-band signals.

2.1.3 Transmitter impairments

The various parts mentioned above in an optical transmitter introduce unwanted dis-
tortions to the signal. A careful analysis of these distortions will help to estimate the
transceiver noise and to design DSP techniques to compensate them. The following
discussion will form the basis of part of the DSP chain in Fig. 6.12.

DAC resolution The DAC introduces quantisation noise, timing error from its clock
jitter, and other distortion particularly for broadband signal. The combined effect is
measured through the signal-to-noise and distortion (SINAD) ratio

SINAD =
Psignal+Pnoise+Pdistortion

Pnoise+Pdistortion
, (2.3)

where Psignal, Pnoise, and Pdistortion stand for the power of signal, noise and distortion,
respectively. A more commonly-used figure of merit is the effective number of
bits (ENOB). It can be quickly converted from SINAD by

ENOB =
SINAD (dB)−1.76

6.02
, bit. (2.4)

Note that the ENOB/SINAD also depends on the bandwidth of the input signal [52].

Laser noise Even though a laser is biased at a constant current with negligible fluc-
tuations, its output still fluctuates in intensity, phase, and frequency [51, Sec. 3.3.3].
The noises originate from two fundamental mechanisms: spontaneous emission and
electron-hole recombination (shot noise). We are mostly concerned with the phase
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noise of the laser that causes a finite spectral line-width when lasers are operated at
a constant current. The fluctuation of central frequency of laser ∆v is described by
the changes in optical phase θ [53, Eq. (4)]

∆v =
1

2π
dθ
dt
. (2.5)

In numerical simulation, the laser phase noise is normally modelled as a GN with a
variance of 2πdt∆ f , where ∆ f is the laser line-width.
I/Q imbalance and delay skew If the IQM at transmitter is improperly biased,
the signals at I- and Q-ports have phase/gain mismatch in between. In addition,
the I/Q delay skew refers to the timing mismatch caused by the difference in the
physical path length of the circuitry. These effects can be summarised into one
equation [54, Eq. (1)]

d(t) =
[
gI Re

{
s(t − τIQ

2
)
}
+ oI

]
+

[
gQ Im

{
s(t + τIQ

2
)
}
+ oQ

]
e j( π2 +φIQ), (2.6)

where s(t) and d(t) are the ideal and distorted optical signals, gI and gQ the I/Q
gains, oI and oQ the offsets in I/Q paths, τIQ the timing mismatch and φIQ the quadra-
ture phase error. Each of the effects on the constellation is visualised in Fig. 2.5.
Compensating the IQ imbalance is normally the first step in the receiver (Rx) DSP,
and will be used in the experiment described in Sec. 6.7.

Figure 2.5: IQ imbalance at transmitter induced by (left) Gain Error gI, gQ, (middle) Offset
oI, oQ, and (right) Quadrature Error φIQ.

2.2 Physics of optical fibre channel
In this section, the mathematics of optical fibre channel and its effects on the pulse
propagation are introduced, with the hope that if one wishes to simulate optical fibre
systems in later sections, one can simply write the simulation codes according to the
equations in this section. The non-linear Schrödinger equation (NLSE), the coupled
non-linear Schrödinger equation (CNLSE), and the Manakov-PMD equation will be
described in the mentioned order as we include more effects in the channel model
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and approach the realistic optical fibre channel.

2.2.1 Wave propagation equations – NLSE

The NLSE describes the wave propagation of a single-polarisation signal in a ide-
alised single-mode, single-polarisation optical fibre with dispersion. We present the
NLSE without deriving it from the Maxwell’s equations.

∂A
∂z
= −β1

∂A
∂t
− j

β2
2
∂2 A
∂t2 −

α

2
A+ jγ |A|2 A, (2.7)

where j =
√
−1, A= A(z, t) denotes the slowly-varying complex envelope of the sig-

nal in base-band, z and t are the distance along the fibre and the time, respectively.
γ is the non-linear coefficient in the unit of (W · km)−1. α represents the attenua-
tion coefficient of optical fibre in the unit of km−1 or dB/km, with the conversion
relation α (dB/km) = 4.343α (km−1). For example, the industry standard Corn-
ing SMF-28 ultra optical fibre has an attenuation coefficient of 0.18 dB/km, which
means the optical signal loses 4.61% of its power every kilometre of propagation.
β1(ω) or its inverse vg = 1/β1(ω) specifies the velocity at which a specific spectral
component travels in the fibre. This velocity vg (m/s) is commonly referred to as the
group velocity. It can also be calculated from the refractive index n of fibre’s core
vg = c/(n+ω dn

dω ). Since the group velocity is frequency-dependent, the different
spectral component of an optical pulse will not arrive simultaneously at the optical
fibre output, leading to a pulse broadening in the time domain for unchirped pulses.
The extent of pulse broadening in a fibre of length L can be estimated by

∆T = Lβ2W, (2.8)

where W is the signal bandwidth, and β2 = dβ1/dω in the unit of (s2/m) is the group
velocity dispersion (GVD). The pulse broadening behavior could be changed into
contraction if the pulse has an initial frequency chirp. In the case of linearly chirped
Gaussian pulse, it has the form of

A(0, t) = exp
(
−1+ jC

2
t2

T0

)
, (2.9)

where T0 is the half-width of the Gaussian pulse and C is the chirp parameter. For
C < 0, the chirped Gaussian pulse will contract first and broaden again depending
on the propagation distance.
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Another commonly-used parameter for dispersion is the dispersion parameter

D = −2πc
λ2 β2, (ps/km-nm), (2.10)

where c denotes the speed of light in vacuum, λ represents the corresponding wave-
length of the spectral component. If the bandwidth of the optical signal is described
in terms of the range of wavelengths ∆λ rather than the range of frequencies, it is
convenient to use dispersion parameter to estimate the pulse broadening as shown
below

∆T = DL∆λ. (2.11)

In addition, it is a common practice to simplify (2.7) by introducing a reference
frame moving together with the central frequency component of the signal at the
speed of vg(ω0). This can be accomplished by a simple change of variables

t′ = t − β1z, z′ = z, (2.12)

and after cleaning up, the NLSE writes

∂A
∂z
= − j

β2
2
∂2 A
∂t2︸    ︷︷    ︸

chromatic dispersion

− α

2
A︸︷︷︸

attenuation

+ jγ |A|2 A︸   ︷︷   ︸
non-linearity

. (2.13)

(2.13) will be our master equation for single-polarisation channel analysis.

2.2.2 Linear and non-linear propagation effects

From (2.13) we can identify three propagation effects in the optical fibre channel:
attenuation, chromatic dispersion and non-linearity. A common way to study these
effects is by setting the other terms to zero and solving the residual equation ana-
lytically. Here we will look at the effect of chromatic dispersion and non-linearity
more closely.

Chromatic dispersion Setting α = 0, γ = 0 in (2.13), the residual equation writes

∂A
∂z
= − j

β2
2
∂2 A
∂t2 . (2.14)

Let Ã(z,ω) be the Fourier transform of time domain signal A(z, t) given by

Ã(z,ω) ,
∞∫

−∞
A(z, t)e− jωt dt . (2.15)



2.2. Physics of optical fibre channel 42

The residual equation in frequency domain reads

∂ Ã
∂z
= j

β2ω
2

2
Ã, (2.16)

whose solution is

Ã(z,ω) = Ã(0,ω)exp
(
j
β2ω

2

2
z
)
. (2.17)

The chromatic dispersion alone is just an all-pass filter effect.

Non-linearity Setting α = 0, β2 = 0, the residual equation reads

∂A(z, t)
∂z

= jγ |A(z, t)|2 A(z, t). (2.18)

It is customary to treat the equation in the frequency domain. The residual equation
in the frequency domain reads

∂ Ã(z,ω)
∂z

= jγ Ã(z,ω)~ Ã∗(z,−ω)~ Ã(z,ω), (2.19)

(suppress z) = jγ

∞∫
−∞

Ã(s)Ã∗(s−ω)ds ~ Ã(ω),

= jγ

∞∫
−∞

∞∫
−∞

Ã(ω− p)Ã(s)Ã∗(s− p)dsdp,

(ω1 = ω− p ,ω2 = s) = jγ

∞∫
−∞

∞∫
−∞

Ã(ω1)Ã(ω2)Ã∗(ω1+ω2−ω)dω12,

, N(Ã)(z,ω),

where ~ denotes the convolution operation and ∗ represents complex conjugation.
It can be seen from the above equation that the non-linear term in NLSE causes
complex interactions between different frequency components of the signal. To
have a detailed insight of the non-linear interaction, one can rewrite the residual
equation in the discrete Fourier domain for T-periodic signals. Slightly different
from the Fourier transform, the Fourier series of a T-periodic signal is defined as

Ãk ,
1
T

T/2∫
T/2

A(t)e− j 2πkt
T dt . (2.20)

In the discrete Fourier domain, the residual equation (2.18) becomes [55,
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Eq. (4.3.2)] [56, Eq. (19)]

∂ Ãk

∂z
=

∑
`

∑
m

Ã` Ãm Ã∗`+m−k

=

( ∑
(`=k) or (m=k)

+
∑

(`,k) and (m,k)

)
Ã` Ãm Ã∗`+m−k

=

(∑
`=k

+
∑
m=k

−
∑

(`=k) and (m=k)
+

∑
(`,k) and (m,k)

)
Ã` Ãm Ã∗`+m−k

= 2 jγ Ãk

∑
m

| Ãm |2− jγ | Ãk |2 Ãk + jγNk(Ã)(z)

= 2 jγ Ãk

∑
m,k

| Ãm |2

︸              ︷︷              ︸
XPM

+ jγ | Ãk |2 Ãk︸      ︷︷      ︸
SPM

+ jγNk(Ã)(z)︸        ︷︷        ︸
FWM

, (2.21)

where k is the discrete frequency index with a frequency interval ω0 = 1/T . Ãk

is the kth coefficient of the Fourier series of the periodic time domain signal, and
Nk(Ã)(z) is given below

Nk(Ã)(z) ,
∑

`mn∈nrk

Ã`(z)Ãm(z)Ã∗n(z),

nrk ,
{(`,m,n)|`+m = n+ k, ` , k,m , k

}
. (2.22)

As underlined in (2.21), the non-linear interactions are categorised into three types,
i.e., self-phase modulation (SPM), cross-phase modulation (XPM) and four-wave
mixing (FWM). Based on the frequency components that each type of non-linear
interaction involves, the naming is quite self-evident. Also note that all types of
non-linear interactions only induce phase-shift on the signal.

Perturbation solution We have separately inspected the effects of chromatic dis-
persion and non-linearity, the combined effect will only be more complicated. For
an arbitrary initial condition, NLSE does not necessarily have a closed-form solu-
tion. Therefore, one usually looks at its perturbation solution in frequency domain
to the first-order. The NLSE in frequency domain reads

∂ Ã(z,ω)
∂z

= −α(ω)
2

Ã(z,ω)− j
β2ω

2

2
Ã(z,ω)+ jγN(Ã)(z,ω). (2.23)
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According to Duhamel’s formula [57], (2.23) can be written as an integral

Ã(z,ω) = e(−
α
2 + j β2ω

2
2 )z Ã(0,ω)+ jγ

z∫
0

e(z−z′)(−α2 + j β2ω
2

2 )N(Ã)(z′,ω)dz′. (2.24)

Ignoring the second term, we have the zero-order perturbation solution of (2.24)

Ã(0)(z,ω) = e(−
α
2 + j β2ω

2
2 )z Ã(0,ω). (2.25)

Substitute the zero-order solution (2.25) into the non-linear term in (2.24)

Ã(1)(z,ω) =e(−
α
2 + j β2ω

2
2 )z Ã(0)(0,ω)+ jγ

z∫
0

e(z−z′)(−α2 + j β2ω
2

2 )N(Ã(0))(z′,ω)dz′

=e(−
α
2 + j β2ω

2
2 )z Ã(0)(0,ω)+ jγ

z∫
0

e(z−z′)(−α2 + j β2ω
2

2 )
∞∫

−∞

∞∫
−∞

∞∫
−∞

e(−
α
2 + j

β2ω
2
1

2 )z′ Ã(0,ω1)e(−
α
2 + j

β2ω
2
2

2 )z′ Ã(0,ω2)(
e(−

α
2 + j

β2ω
2
3

2 )z′ Ã(0,ω3)
)∗
δ(ω1+ω2−ω3−ω)dz′dω123. (2.26)

Substitute the following equations

Ω123ω =
β2
2
(ω2

1 +ω
2
2 −ω2

3 −ω2) (2.27)

δ123ω = δ(ω1+ω2−ω3−ω) (2.28)

into (2.26), it becomes

Ã(1)(z,ω) =e(−
α
2 + j β2ω

2
2 )z

{
Ã(0)(0,ω)+ jγ

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ã(0,ω1)Ã(0,ω2)Ã∗(0,ω3)

δ123ω

( z∫
0

e−αz′+ j z′Ω123ωdz′
)
dω123

}
. (2.29)

Simplifying by substituting the following

H(Ω123ω, z) = e−zα+ j zΩ123ω −1
−α+ jΩ123ω

(2.30)
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into (2.29), we finally have the first-order perturbation solution of the NLSE

Ã(1)(z,ω) =e(−
α
2 + j β2ω

2
2 )z

{
Ã(0)(0,ω)+

jγ

∞∫
−∞

∞∫
−∞

∞∫
−∞

H(Ω123ω, z)Ã(0,ω1)Ã(0,ω2)Ã∗(0,ω3)δ123ωdω123

}
. (2.31)

In the conventional optical communication systems, signals are transmitted in
the relatively low-power and hence linear regime. The signal represented by the
second term in (2.31) is often treated as unwanted additive GN whose power can
be easily estimated using the above equation. Based on the perturbation approach
and the Gaussian signal assumption, the well-known GN model for optical fibre
communication was developed [58] and is widely-used for fast estimation of quality
of transmission.

2.2.3 The evolution of power spectral density

In the previous section, we have seen the effects of the optical fibre channel on the
input signal either in time or frequency domain. Due to the non-linear nature of
the channel, it is also important to see the channel effects on the PSD (defined in
Appx. B) as new frequency components are generated during propagation. This
seemingly trivial effect has a huge impact on the information-theoretic analysis of
the optical fibre channel. In a linear channel, where the spectrum does not change,
for a band-limited digital signal with a duration D and bandwidth W , we consider
the signal of having 2DW discrete DoFs. All the information must be encoded on
these fixed number of DoFs, and the channel capacity analysis is also based on
them too. However, if the spectrum changes significantly during propagation, it is
not possible to digitise the signal properly. The signal varies in dimensions and no
analysis is valid at that point.

There are two methods available to estimate the signal spectrum at any point
of the transmission link: 1) solve the NLSE with the perturbation approach and
calculate the signal spectrum with Gaussian assumption on the input signal. This is
the basis of the GN model [58], 2) convert the NLSE into kinetic equation and solve
it to the first-order in non-linearity with quasi-Gaussian (at most 4-point cumulants
are significant [56, Eq. (10)]) assumption on the input signal. This is the basis of
the Kolmogorov-Zakharov (KZ) model [56].

Gaussian Noise Power Spectral Density

Recall the first-order perturbation solution of NLSE in the frequency domain
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derived in the previous subsection

Ã(1)(z,ω) =e(−
α
2 + j β2ω

2
2 )z

{
Ã(0)(0,ω)+

jγ

∞∫
−∞

∞∫
−∞

∞∫
−∞

H(Ω123ω, z)Ã(0,ω1)Ã(0,ω2)Ã∗(0,ω3)δ123ωdω123

}
. (2.32)

We denote the PSD as S(z,ω) and calculate it (see Appx. C) according to its defini-
tion with the Gaussian assumption on the input signal Ã(0)(0,ω)

S(z,ω)GN =E

[
Ã(1)(z,ω)Ã(1)∗(z,ω)

]

=e−αzS(0)(0,ω)+

2e−αzγ2
∫
|H(Ω123ω, z)|2S(0,ω1)S(0,ω2)S(0,ω3)δ123ωdω123. (2.33)

If EDFAs are present in the link that consists of N spans with span length Lsp, the
GN PSD changes to [56, Eq. (58)]

S(z,ω)GN = S(0)(0,ω)+2γ2
∫
|H̃(Ω123ω, z)|2S(0,ω1)S(0,ω2)S(0,ω3)δ123ωdω123

(2.34)

H̃(Ω123ω, z) = H(Ω123ω, Lsp) sin(zΩ123ω/2)
sin

(
LspΩ123ω/2

) e− jΩ123ω(z−Lsp). (2.35)

Kolmogorov-Zakharov Power Spectral Density
The Kolmogorov-Zakharov model of optical fibre was developed in the frame-

work of weak wave turbulence (WWT). To roughly define the weak non-linear
regime, it was proposed [56,59] to use the ratio of non-linear and linear parts of the
NLSE Hamiltonian (preserved quantity)

H(z) , j

∞∫
−∞

(
|∂t A(t, z)|2− γ

2
|A(t, z)|4

)
dt. (2.36)

The ratio of non-linear and linear parts, denoted as κ, can be then written as

κ =

∫ ∞
−∞

γ
2 |A(t, z)|4dt∫ ∞

−∞ |∂t A(t, z)|2dt
. (2.37)

When κ < 0.1, the system is in the pseudo linear regime. κ > 0.1 indicates the
non-linear regime. It is assumed in the application of WWT that κ << 1 [60].
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We rewrite the important steps in the derivation of the kinetic equation of
NLSE in its discrete version [56]

dSk(z)
dz

= E

[
Ã∗k(z)

d Ãk(z)
dz

+ c.c.
]
, c.c. for complex conjugate (2.38)

= E

[
Ã∗k(z)

(
− α(z,ω)

2
Ãk(z)− j

β2ω
2

2
Ãk(z)+ jγN(Ã)k(z)

)
+ c.c.

]
,

and after many steps described in [56, Eq. (40)]

= 2γ
∑

`mn∈nrk

Re
(
e j zΩ̃`mnk S`mnk(0)

)
+

4γ2
∑

`mn∈nrk

∫ z

0
cos

(
Ω̃`mnk(z− z′))T`mnk(z′)dz′, (2.39)

where

Ω̃`mnk = jα−Ω`mnk, (2.40)

Ω`mnk =
β2ω

2
0

2
(`2+m2−n2− k2) (2.41)

T`mnk(z) = S`(z)Sm(z)Sn(z)+ S`(z)Sm(z)Sk(z)
− S`(z)Sn(z)Sk(z)− Sm(z)Sn(z)Sk(z). (2.42)

(2.39) is the kinetic equation for Sk(z). It is again a cubic non-linear equation similar
to the NLSE. Now the rapidly varying time-domain signals are averaged out and
the PSD evolves very slowly along distance. Hence, the perturbation approach will
work better in this regime than in the coherent signal regime as in the GN model.
Solving (2.39) to its first-order in perturbation, we obtain [56, Eq. (56)]

SK Z
k (z) = e−αzSk(0)+2γ2

∑
`,k
m,k

|H`mnk(z)|2T`mnk(0)δ`mnk, (2.43)

H`mnk(z) = −1+ e−zα+ j zΩ`mnk

−α+ jΩ`mnk
. (2.44)

Similarly, EDFAs can also be included in the KZ PSD, it changes to [56, Eq. (62)]

SK Z
k (z) = Sk(0)+2γ2

∑
`,k
m,k

|H̃`mnk(z)|2T`mnk(0)δ`mnk, (2.45)

H̃`mnk(z) = H`mnk(Lsp) sin(zΩ`mnk/2)
sin

(
LspΩ`mnk/2

) e− jΩ`mnk (z−Lsp). (2.46)



2.2. Physics of optical fibre channel 48

Comparison between the estimated output PSDs from the GN and KZ models
and the actual output PSD from simulations is plotted in Fig. 2.6. Wave propaga-
tions were simulated in the NLSE (4.4) for illustrative purpose only. The input PSD
is obtained by averaging spectra of 4000 randomly generated signals, denoted as S0.
The random signals are 32 GBaud root-raised-cosine (RRC)-pulses with a roll-off
factor of 0.5. Their average power is 12 dBm. Each of the signals is sent through a
1600 km EDFA-amplified optical fibre link with 80 km span length. The received
output spectra are averaged to obtain the output PSD, denoted as SSIM.The input
PSD in Fig. 2.6 has an average κ of 0.49, indicating that the signals are in the non-
linear regime. Fig. 2.6 shows that the GN model significantly (with 1.3 times power
as the input PSD) overestimate the PSD at the output, while the PSD from the KZ
model is reasonably close to the simulated PSD. Although in WWT the assumption
is κ << 1, input PSDs with intermediate κ values do not break down the KZ model.
Similar phenomenon was also observed in [60, Fig. 3].
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Figure 2.6: PSDs from simulations scaled by the maximum of the GN PSD at 12 dBm.

With the above basic understanding of the KZ model, Chap. 3 will describe
the extension of KZ model to estimate the spectral evolution in optical fibre over a
broader range of system parameters.

2.2.4 Polarisation effects
In a standard single-mode fibre (e.g. SMF-28), signals can be present at two orthog-
onal polarisations. They excite the fundamental HE11 mode of the fibre and their
transverse spatial distribution does not change during propagation [55, Eq. (3.11)].
However, the two signals often experience different group velocities and change
their state-of-polarisation (SoP) in a random fashion because the refractive index in
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the fibre core is often cylindrically asymmetric (called birefringence) due to imper-
fection in core shape and external stress. This is commonly referred to as the PMD.
In addition, the signals on the orthogonal polarisations also interfere with each other
in a non-linear way. These related polarisation effects and their impact will be un-
der investigation later in Sec. 5.5.2 and Chap. 6 when dual-polarisation signals are
transmitted. The mathematical foundation is laid out here first. The coupled vector
signal propagation in optical fibre is governed by the CNLSE [6, Eq. (1)]

∂A
∂z
=(−α

2
− β1

∂

∂t
− j

β2
2
∂2

∂t2 +
β3
6
∂3

∂t3 )A+ (2.47)

jγ
[
|A|2I− 1

3
(AHσ3Aσ3)

]
A

=(D̂+ N̂)A

where A = [Ax(z, t) Ay(z, t)]T contains signals in the x- and y-polarisations as a
function of distance z and time t. In this equation, we consider only the first-order
PMD and ignore the difference in attenuation and second- and third-order dispersion
at arbitrary polarisation. Hence, α, β2 and β3 are scalars, β1 is a matrix related to
PMD and will be explained later. D̂ and N̂ are just a shorthand to the linear and
non-linear operators, respectively. H represents the Hermitian transpose. The Pauli
spin matrix [61, Eq. 2.6] σ3 is given by

σ3 =

[
0 − j
j 0

]
. (2.48)

Due to its distributed and stochastic nature, the PMD is modelled by dividing
the fibre into Nsec sections. One normally considers first-order PMD in each section,
with arbitrary rotation in the principal state of polarisation (PSoP) between adjacent
sections as illustrated in Fig. 2.7. The PSoPs is a pair of orthogonal polarisation
states that, in the absence of dispersion and non-linearity, induce only first-order
PMD of a pulse, preserving it from any high-order PMD [61]. The PMD in each
section is written as [6, Eq. (4)]

β1(z) = β(k)1 = R(k)( ζk

2
σ1)R(k)H, for zk−1 ≤ z ≤ zk, σ1 =

[
1 0
0 −1

]
(2.49)

R(k) , R(θk, φk) =
[
cosθk cosφk − j sinθk sinφk −sinθk cosφk + j cosθk sinφk

sinθk cosφk + j cosθk sinφk cosθk cosφk + j sinθk sinφk

]

(2.50)
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where R is a unitary matrix that belongs to the special unitary group of degree

two [62, Eq. (3.38)], denoted by SU(2), with the general form

[
α −β∗
β α∗

]
. The

first column of R(k) is a PSoP in section k represented by a unit vector on the
Poincaré sphere with azimuth and ellipticity angles 2θl and 2φk , the second column
can be obtained from the general structure of SU(2). ζk is the differential group
delay (DGD) per unit length in the unit of ps/m in section k and assumed to be
constant within the section. The accumulated DGD per section is denoted by τk in
the unit of ps and has a Maxwellian distribution [63].

...

PSoP: (θ1, φ1) (θ2, φ2) (θNsec, φNsec)...

DGD: τ1 τ2 τNsec...

Sec. 1 Sec. 2 Sec. Nsec...

A(0, t) A(z, t)
R1→2 R(Nsec−1)→Nsec

Figure 2.7: PMD, adapted from [6].

To further the analysis, we need to first define three types of length: the non-
linear length, the beat length and the correlation length. To start with, the non-linear
length is defined as LNL = 1/(γP0)where P0 is the initial signal power. For example,
if γ = 2 (W·km)−1 and P0 is in the range of 2 ∼ 4 mW, the non-linear length LNL is
around 100 km. Then the beat length is defined as LB = λ/|neffx−neffy | where neffx

and neffy are the effective refractive indices in orthogonal polarisations, respectively.
For a linear polarised light travelling through a birefringent fire, its SoP changes in
a periodic manner from linear to elliptical and back to linear over the beat length.
Typically, |neffx − neffy | ∼ 10−7, LB ∼ 10 m for λ ∼ 1µm. Finally, we define the
correlation length `c as the length scale at which the fibre birefringence changes its
magnitude and orientation (with typical values in the range of 10 - 100 m). The
correlation length is often used as PMD section length in simulation.

To characterize the PMD effect of a fibre link, optical fibre manufacturers often
measure the total DGD τtot at the end of the optical fibre. The τtot is related to the
DGD at each section through [64, Eq. (C5)]

E[τ2
tot] = E[τ2

1 ]+ ...E[τ2
k ]...+E[τ2

Nsec
], (2.51)

where τtot and τk are all assumed to be Maxwellian distributed. For a Maxwellian
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distribution, its mean µ and variance σ2 can be connected by σ2 = µ2(3π−8)/8 [65,
p. 149], i.e., E[τ2

k ] = 3π/8 ·E[τk]2. On a fibre product information sheet, the total
DGD is specified by the PMD parameter Dp in the unit of ps/km1/2 through the
relation [55, Eq. (3.4.4)]

E[τ2
tot] = D2

p(exp(−z/`c)+ z/`c −1). (2.52)

For z � `c, E[τ2
tot] = D2

pz. Under the assumption that τk has the same distribution,
i.e., E[τ2

tot] = NsecE[τ2
k ], we obtain [64, Eq. (C7) is incorrect]

E[τk] =
√

8E[τ2
tot]/(3πNsec) =

√
8/(3π)

√
`cDp. (2.53)

The typical value of Dp ranges from 0.01 to 10 ps/km1/2.

In fibre links where the non-linear length LNL is much larger than the beat
length LB, the non-linear operator in (2.47) can be averaged on the Poincaré sphere
and changes to the Manakov-PMD equation [66]

∂A
∂z
= (−α

2
− β1

∂

∂t
− j

β2
2
∂2

∂t2 +
β3
6
∂3

∂t3 )A+ j
8
9
γ |A|2A, (2.54)

The main difference between CNLSE and Manakov-PMD is that the non-linear
term in Manakov-PMD equation is independent of the launch polarisation.

2.2.5 Split-step Fourier method for numerical simulations

Depending on the purpose of the research, the numerical simulations involved could
be any of the above three equations: NLSE, CNLSE or Manakov-PMD equation.
They can be all solved by the SSFM [67, Chap. 2.4]. The SSFM is used throughout
the thesis in simulations of optical fibre channel and, thus, will be introduced in
details in this section. The essence of SSFM is to break the optical fibre channel into
very short pieces so that in each of the section NLSE can be solved by calculating
the linear and non-linear parts sequentially. In this section, the SSFM for the most
complicated channel model CNLSE with PMD will be described so that for any
other case one can simply remove irrelevant effects. Typically, the CNLSE is solved
in circular polarisations because the non-linear operator N̂c in (2.47) is diagonal in
this basis [6]. The input field becomes

Ac =

[
A+
A−

]
= RH

c A = 1√
2

[
1 − j
1 j

]
A. (2.55)
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The linear operator per section becomes

D̂(k)c = RH
c R(k)

[(
− α

2
− j

β2
2
∂2

∂t2 +
β3
6
∂3

∂t3

)
I− ζk

2
∂

∂t
σ1

]
R(k)HRc, for zk−1 ≤ z ≤ zk .

(2.56)
The non-linear operator per section reduces to

N̂c(z) = jγRH
c

[
AH

c RH
c RcAcI− 1

3
(AH

c RH
c σ3RcAc)σ3

]
Rc

= j
2γ
3

[
|A+(z)|2+2|A−(z)|2 0

0 2|A+(z)|2+ |A−(z)|2

]
. (2.57)

In each section, we have the exact solution of (2.47) [67, Eq. (2.4.6)]

Ac(zk+1, t) =exp
{
∆z

(
D̂(k)c + N̂c(zk)

)}
Ac(zk, t)

≈exp
{
∆zD̂(k)c

}
exp

{
∆zN̂c(zk)

}
Ac(zk, t). (2.58)

The approximation is based on the Campbell Baker Hausdorff formula [68, Chap. 1]
for non-commuting operators. It is accurate to the second order in the step size
∆z. Upon implementation, the linear operator is often performed in the frequency
domain

Ãc(zk+1,ω) ≈ F{exp
{
∆zD̂(k)c

}
}Ãcn(zk,ω)

= exp
{
∆zF{D̂(k)c }

}
Ãcn(zk,ω), (2.59)

where Ãcn(zk,ω) is the signal in frequency domain after the non-linear step and F
stands for the Fourier transform, and [6, Eq. (9)]

exp
{
∆zF{D̂(k)c }

}
=exp

{
(−α

2
+ j

β2
2
ω2+

β3
6
ω3)∆z

}
×[

cos (ωζk4 )+ j sin2φk sin (ωζk4 ) j cos2φk e− j2θk sin (ωζk4 )
j cos2φk e j2θk sin (ωζk4 ) cos (ωζk4 )− j sin2φk sin (ωζk4 )

]
.

(2.60)

In practice, the rotation matrices could be implemented more easily in time domain.
For each section, to simulate the PMD effect, we randomly generate the angles
φ and θ from [0, π] uniformly, and the DGD per section τk from a Maxwellian
distribution with mean

√
8/(3π)Dp

√
`c, then for each sample τk in section k we
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have ζk = τk/`c. Schematically, the SSFM is illustrated in Fig. 2.8

A(0, t) 1√
2

[
1 − j
1 j

]
e∆z(D̂(1)c +N̂(1)c ) ... e∆z(D̂(Nsec)

c +N̂(Nsec)
c ) 1√

2

[
1 1
j − j

]

Figure 2.8: Split-step Fourier method for the coupled non-linear Schrödinger equation.

To improve the accuracy of the approximation in (2.58), we can use the fol-
lowing procedure [67, Eq. (2.4.9)]

Ac(zk+1, t) ≈ exp
{
∆z
2

D̂(k)c

}
exp

{
∆z
2
[N̂c(zk)+ N̂c(zk+1)]

}
exp

{
∆z
2

D̂(k)c

}
Ac(zk, t).

(2.61)
It includes the non-linear effect in the middle of the segment and employs the trape-
zoidal rule to approximate the integrated non-linear effect, resulting in an accuracy
to the third order of the step size ∆z. All simulations throughout the thesis use
(2.61) for SSFM.

The correct choice of step size is of vital importance and ensures that the sim-
ulation does not generate numerical artifacts. Simulations of optical fibre links
without PMD in this thesis follow the logarithmic step-size distribution proposed
in [69]. The number of steps per fibre span is calculated via

Nsec =
3
4

L2
eγ

2P2
tot10R/10 (2.62)

where Ptot is the total signal power, Le = (1−e−2αLsp)/2α is the effective span length,
and R is the spurious tone suppression ratio that normally takes the value 10. The
logarithmic step sizes per span are then generated via

∆zn = − 1
2α

ln
[

1−n(1− e−2αLsp)/Nsec

1−(n−1)(1− e−2αLsp)/Nsec

]
, n = 1,2, ...,Nsec. (2.63)

Simulations with PMD adopt a fixed step size, i.e., the correlation length `c.

2.3 Digital coherent receiver
The details of digital coherent receiver are relevant here because they are used in
all simulations and experiment throughout the thesis. Since its resurrection in the
2000s [70, 71], the digital coherent receiver has been dominant in the optical com-
munication system in long-haul, sub-sea and even metro networks. The relative
high cost of a coherent receiver is the only reason that it has not replaced direct
detection in shorter ranges, such as data centre network and passive optical net-
works. For comparison, the schematics of a direct detector and a coherent receiver
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are shown in Fig. 2.9. A direct detector has only one optical band-pass filter, one
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Figure 2.9: The schematics of (a) direct and (b) coherent receiver, adapted from [7].

photo-diode, an ADC and an optional DSP unit. In contrast, a polarisation-diversity
digital coherent receiver is roughly four times more complicated than a direct de-
tector. The optical front-end includes two PBSs, one local oscillator (normally an
ECSL), and two 90° hybrids. Every two outputs of a 90° hybrid will be received
by two photo-diodes and combined into the in-phase or quadrature component of
the distorted signal in each polarisation in the base-band. The analogue signals are
then amplified by trans-impedance amplifiers, and subsequently digitized by ADC
for the later DSP unit. A digital coherent receiver linearly maps the incoming opti-
cal signals into four electrical signals in the base-band. The four signals represent
the in-phase and quadrature signals in both orthogonal polarisations, respectively.
In the following subsections, the working principle of a 90° hybrid and the typical
sequence of DSP chain in a coherent receiver are described.

2.3.1 90°-hybrid
A 90°-hybrid functions to mix the incoming signal with the LO as well as the 90°-
shifted LO. As shown in Fig. 2.10, a 90°-hybrid has four 3 dB couplers and one
90° phase shift. The two 3 dB couplers right after the input ports Es and E`o function
as beam splitters, providing two copies of the input signal in half of its power. The
rest two 3 dB couplers mix the two inputs and produce the sum and difference of



2.3. Digital coherent receiver 55

them. The transfer function of a 90°-hybrid is



E1(t)
E2(t)
E3(t)
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]
=



1√
2
(Es(t)−E`o(t))

1√
2
(Es(t)+E`o(t))

1√
2
(Es(t)− jE`o(t))

1√
2
(Es(t)+ jE`o(t))


, (2.64)

where Es(t) and E`o(t) are the received optical signal and the optical field of the
local oscillator.

90°-hybrid

π
2

E`o

Es E1

E2

E3

E4

Figure 2.10: The schematic of a 90°-hybrid.

2.3.2 Balanced photo-diodes
The balanced photo-diodes are used in the coherent receiver to remove the direct
current component and maximise the mixing between the received signal and the
LO. One pair of balanced photo-diodes is responsible to output either the in-phase
or quadrature signal on one polarisation. For example, in the homodyne detection
scheme, the outputs of the upper pair of 90°-hybrid are

[
E1(t)
E2(t)

]
=

[ 1√
2
(Es(t)−E`o(t))

1√
2
(Es(t)+E`o(t))

]
. (2.65)

Absorbing these input lights, the photo-diodes generate the following photo-
currents

I1(t) = R
2
[Ps(t)+P`o+2

√
Ps(t)P`o cos{φsig(t)−φ`o(t)}], (2.66)

I2(t) = R
2
[Ps(t)+P`o−2

√
Ps(t)P`o cos{φsig(t)−φ`o(t)}], (2.67)

where Ps(t) and P`o(t) are the signal and LO powers, respectively, φsig(t) and φ`o(t)
are the phase of the received and LO signals. Furthermore, R is the responsivity of
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the photo-diode given by
R =

qη
}ωs

, (2.68)

where q is the electron charge, η the quantum efficiency of the photodiode, } the
reduced Planck’s constant and ωs the central angular frequency. Combining I1(t)
and I2(t), we obtain the output of the balanced photodiodes

I(t) = I1(t)− I2(t)
= 2R

√
Ps(t)P`o(t)cos{φsig(t)−φ`o(t)}. (2.69)

2.3.3 Receiver impairments
Digital coherent receiver introduces distortions into the received digital signal that
are similar to the transmitter impairments discussed in Sec. 2.1.3. These distortions
can be partially compensated by the receiver DSP as well. The following discussion
on the receiver distortion will form the basis of part of the DSP chain in Fig. 6.12.

Transmitter-alike impairments Similar to transmitter, the receiver also has laser
noise, ADC quantization noise, I/Q imbalance and delay skew from the imper-
fection in the optical 90°-hybrid, balanced photodiodes, or transimpedance ampli-
fiers (TIAs). These effects can be compensated altogether at the receiver DSP unit.

Clock mismatch The clock mismatch is due to the two asynchronous clocks at
transmitter and receiver sides. The clocks run at the same frequency but may sam-
ple at different time. The sampling mismatch introduces a non-trivial additional
distortion that needs to be accounted for.

2.3.4 Typical sequence of DSP
The DSP unit in a coherent receiver is the most crucial and powerful part of the
receiver. As stated in Sec. 1.1.3, the resurrection of the digital coherent receiver has
not only improved the data rate on current optical fibre links, but also changed the
link design, moving all the impairment compensation (e.g., the dispersion-managed
link) into the DSP unit. In a dispersion-unmanaged link, the received signal is con-
taminated by the aforementioned transceiver and channel impairments. A typical
sequence of DSP operations is depicted in Fig. 2.11.

IQ imbalances compensation The phase and gain mismatch between I- and Q-
ports from the transceiver, as well as the timing mismatch caused by the difference
in the physical path length of the circuitry, are compensated in this stage. The
most well-known compensation technique, also the one used later in Sec. 6.7, is
the Gram-Schmidt orthogonalization procedure (GSOP) [72, Sec. II]. Denote the
received I/Q signals as rI(t) and rQ(t), and the compensated I/Q signals as I(t) and
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I/Q imbalance compensation

static equalisation

adaptive equalisation

timing recovery

frequency estimation

carrier phase estimation

symbol detection
si

gn
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w

Figure 2.11: The typical DSP sequence, adapted from [8].

Q(t), we have the relation

I(t) = rI(t)√
PI
, Q(t) = rQ(t)− ρrI(t)/PI√

PQ
, (2.70)

where PI = E[r2
I (t)], PQ = E[r2

Q(t)], ρ = E[rI(t) · rQ(t)], and E[·] denotes expectation
over time.

Static equalisation The static equaliser is responsible for the compensation of CD
and fibre non-linearity in the optical fibre channel. Static filters are normally time-
invariant and have a large number of filter taps.

For the CD compensation, the most commonly-used CD equaliser is the
frequency-domain equaliser (FDE), which is simply (2.17). The complexity of such
a FDE is O(log N) [7, Sec. IV.A], where N is the number of taps. In contrast, the
complexity of a CD time-domain equaliser (TDE) is O(N).

For the non-linearity compensation, one of the most investigated algorithms
is the DBP. It transmits the received digital signal back through a virtual fibre to
reverse all the deterministic effects during propagation. Ignoring the PMD effect,
we can obtain the virtual propagation by reversing (2.54)

∂A
∂z
= (α

2
+ j

β2
2
∂2

∂t2 −
β3
6
∂3

∂t3 )A− j
8
9
γ |A|2A. (2.71)

To investigate its maximum potential gain in transmission systems, DBP is often
performed in simulation using the SSFM with fine step size. In a fully-loaded WDM
system, a single-channel DBP has the potential gain in peak-SNR of 0.5 dB, while
the joint three- or five-channel DBP has roughly 1 and 1.2 dB, respectively [73].
However, when it comes to its implementation in ASICs, the high complexity of
SSFM-DBP has to be reduced with various methods [74, 75], often compromising
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its effectiveness.

Apart from the DBP algorithm of high complexity, several other approaches are
proposed to tackle the fibre non-linearity, such as the Volterra equaliser [76], NFT-
based transmission scheme [77–79], machine learning methods [80], maximum a
posteriori (MAP) [81] etc..

Adaptive equalisation Adaptive equalisers target the stochastic and time-varying
impairments caused by the transceiver and fibre birefringence. They often take
the form of a two by two multiple-input multiple-output (MIMO) finite impulse
response (FIR) filter as shown in Fig. 2.12. We consider first input sequence of

hxx

hxy

hyx

hyy

+

+

xi

yi

x0

y0

Figure 2.12: 2×2 MIMO structured adaptive FIR filter.

one-sample-per-symbol. Let the column vectors hxx , hxy, hyx and hyy of length N
denote the N tap weights of the FIR filter. xi and yi are sliding blocks of N input
samples fed into the filter in the form of a row vector

xi(n) = [xi(n) xi(n−1) ... xi(n−N)],
yi(n) = [yi(n) yi(n−1) ... yi(n−N)].

We denote [hH
xx hH

xy] as hH
x , [hH

yx hH
yy] as hH

y , and [xi(n) yi(n)]T as ui, the output of
the adaptive filter is then

x0(n) = hH
x ui(n),

y0(n) = hH
y ui(n). (2.72)

There are in general three types of algorithms to calculate the tap weights of an
adaptive filter, i.e., the constant-modulus algorithm (and its variations), the decision-
directed least-mean-square algorithm, and the recursive least-squares (RLS) algo-
rithm. They all have a cost/error function and use stochastic gradient descent to
update the tap weights until they converge. The principle of the RLS algorithm is
described here because it is used later in Sec. 6.7.1 due to its faster convergence [82].
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The cost function of a standard RLS algorithm is

Jx/y(n) =
n∑

i−1
λn−i |εx/y(i)|2

=

n∑
i−1

λn−i
��R2− |hH

x (n)ui(i)|2
��2, (2.73)

where λ < 1 is the forgetting factor, usually set to 0.999, and R2 is the square radius
of the transmitted symbols xsym, calculated by R2 = E[|xsym |4]/E[|xsym |2]. Because
the cost function is not quadratic in array weight vector hx/y, an intermediate data
vector zx/y has to be introduced [83]. The detailed updating process is written out
in Alg. 1 at the end of the chapter.

Timing recovery The timing error, or clock mismatch, results from the asyn-
chronous clocks at the transmitter and receiver. The most widely-used method is
the Gardner’s method [84]. One damaging drawback of the Gardner’s algorithm is
that it fails for the Nyquist pulse shaped signal, which is commonly used in the high
spectral efficiency communication systems. A modification was, therefore, pro-
posed [85]. Let xi = [xi(−1) xi(0) ... xi(N − 1)] be the tow-fold oversampled com-
plex input signal of length N, the Gardner’s algorithm estimates the timing phase
error using

τerr = Re

{ N/2−1∑
n=0
[xi(2n−1)− xi(2n+1)]x∗i (2n)

}
. (2.74)

The modified Gardner’s estimator reads

τerr = Re

{ N/2−1∑
n=0
[Pi(2n−1)−Pi(2n+1)]Pi(2n)

}
, where Pi(n) = |xi(n)|2. (2.75)

In addition, a fourth-power frequency-domain algorithm was proposed in [86]

τerr =

N ′/2∑
k=−N ′/2

Im

{( N ′∑
`=0

X̃i(`)X̃∗i (`+k +NDFT−N′)
)
×

( N ′∑
`=0

X̃∗i (`+NDFT−N′)X̃∗i (`+ k)
)∗}

, (2.76)

where X̃i(k) is the kth element of the NDFT-period discrete Fourier transform (DFT)
of xi. N′ < N is a power-of-two integer that can be used to adjust the complex-
ity of the algorithm. The 4th power frequency domain method shows the best
performance over others and is insensitive to the roll-off factor of the RRC pulse
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shape [86].

Frequency offset estimation An intradyne coherent system means that the local
oscillators at transceiver are not frequency and phase locked. The resulted frequency
offset of the received signal is tracked in the DSP unit. To formulate the problem
mathematically, the received symbol y(k) at time instance k can be written as

y(k) = x(k)exp
(
j[θ(k)+ k2π∆ f Tsym]

)
+n(k), (2.77)

where x(k) is the transmitted symbol at time instance k, θk and n(k) are the phase
and additive noise, and Tsym is the symbol duration. The frequency offset ∆ f is
to be estimated. There are in general two classes of frequency offset compensa-
tion (FOC) algorithms, i.e., blind estimation methods that explore certain properties
of the transmitted signal, or the training-aided estimations that are based on the pe-
riodically inserted training symbols. A frequency domain blind estimation method
is described here because it is later used in Sec. 6.7.1.

The useful signal property we can explore for FOC purpose is that any quadra-
ture amplitude modulation (QAM) constellation satisfies the moment conditions
E[x2(n)] = E[x3(n)] = 0,E[x4(n)] , 0 because of its π/2-rotationally invariant sym-
metry property [87]. Therefore, the spectrum of x4 exhibits a spike at the frequency
4∆ f . The frequency offset can be written as

∆ f =
1
4

argmax
f

����DFT{x4}
����
2
, − Rs

2
< f <

Rs

2
, (2.78)

where Rs stands for the sampling rate.

Carrier phase estimation As explained earlier in Sec. 2.1.3, the carrier phase
noise is a result of the constant fluctuation of the central frequency of the laser.
To model the problem, it is often assumed that the central frequency of the laser
does not change but the phase of the laser fluctuates. The task of tracking the
carrier phase on the received signal can be formulated as estimating the θ(k) in
y(k) = x(k)exp( jθ(k))+n(k). The notation is the same as in (2.77).

Here, we described a simple pilot-aided maximum likelihood carrier phase
estimation method [88] that is also used in Sec. 6.7.1. Multiple pilot sym-
bols are inserted periodically in the signal in a frequency slightly larger than
the line-width of the laser. Since the carrier phase noise is a slowly-varying
process, it can be assumed to be constant within one block of pilots and pay-
loads. Let p = [p(1) p(2) ... p(L)] be the transmitted training symbol vector and
v = [v(1) v(2) ... v(L)] be the corresponding received symbol vector. The carrier
phase noise within the current block can be estimated by the maximum likelihood
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estimator
θ(k) = arg(vHp). (2.79)

The detailed derivation of the maximum likelihood estimator can be found as early
as in 1986 [89]. The maximum likelihood estimator is proven to work better with
BPSK signals than any other high-order QAM signals. An improvement has been
proposed in [90] with the cost of higher complexity.

2.4 Information-theoretical tools
So far, we have reviewed the physics of many components in an optical communi-
cation system, the impairments they have on the signal, and methods to compensate
them. To evaluate the overall system performance in terms of achievable infor-
mation rate (AIR), the framework for information-theoretic analysis needs to be
introduced and they are heavily used in the system analysis in Chap. 5 and 6.

The information in a digital communication system experiences a change of in-
formation carriers, i.e., from bits to symbols, symbols to waveform, and backwards
to bits. AIR for a symbol-wise decoder is commonly referred to as the mutual in-
formation (MI), while the generalised mutual information (GMI) refers to the AIR
for a bit-wise decoder. These transition of information carriers and the difference
between MI and GMI are demonstrated in Fig. 2.13.

Ch.Tx.
Rx.

(+ DSP)
2D

Mapper
2D

Demap.
FEC
Enco.

FEC
Deco.

x` s(t) r(t) y`c1,`

c2m,`

...

ĉ1,`

ĉ2m,`

...

info
bits

info
bits

Opt. Ch. model fY|X(y|x)

MI

Memoryless Ch. model fY|X(y|x)

Memoryless MI

post-FEC BER

Figure 2.13: Optical fibre system block diagram for information-theoretic analysis [9].

The notations (adopted from [9]) used in the figure are explained as follows.
As a general rule, random variables are denoted by capital letters such as X , random
vectors by boldface letters such as X, random vectors of length k by boldface letters
with superscript such as Xk , and random matrices by underline boldface letters such
as X. Their realizations are respectively denoted by x, x, xk and x. A conditional
probability density function (PDF) (defined in Appx. A) is written in the form of
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fY|X(y|x). Let c be the realization of the encoded bits for L sequential symbols

c =


c1,1 c1,2 ... c1,L
...

...
. . .

...

c2m,1 c2m,2 ... c2m,L


.

In an optical fibre communication system, each of the codeword c` = [c1,` c2,` ... c2m,`]T
corresponds to two complex symbols on the two polarisations of light denoted by
x` = [x1,` x2,`]T with ` = 1,2, ..., L. The symbols x1,` and x2,` are drawn uniformly
from a discrete constellation X with cardinality M = 2m = |X|. Common choices
of constellation include 16QAM. The symbols of an entire block are denoted as
x = [x1 x2 ... xL]. The same notation rule applies for the output symbol y` ∈ C2,
which is then de-mapped into ĉ` = [ĉ1,` ĉ2,` ... ĉ2m,`]T .

Modern communication systems usually use orthonormal bases {g(t −nT)}n∈N, for
instance, the set of sinc functions (the Nyquist pulse shape), to generate band-
limited continuous waveform signal s(t) = [s1(t) s2(t)] from the input symbols x.
As an example, s1(t) of duration D can be generated by sinc functions with band-
width W

s1(t) =
L−1∑
`=0

x1,` sinc(2Wt − `), (2.80)

where L = 2DW . At the same time, x1,` can be recovered from s1(t) via the inner
product (also known as the matched filter)

x1,` =

∞∫
−∞

s1(t) sinc(2Wt − `)dt, (2.81)

or sampling with a Dirac function at the rate of 2W.

At the receiver, the continuous waveform signal r(t) is discretized into inter-
mediate samples u` in the form of

u` =
[
u1,γo(`−1)+1 . . . u1,γo`

u2,γo(`−1)+1 . . . u2,γo`

]
, (2.82)

where γo is the oversampling rate. The discretisation process is done either via
sampling with a Dirac function at the rate of 2γoW, or equivalently the inner product

u1,k =

∫
r1(t) sinc(2γoWt − k)dt, k = 1,2, ..., γoL. (2.83)
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Then u` enters the DSP unit to calculate the final symbol value y`. The need of over-
sampling is due to the signal spectral broadening induced either by phase noise [91]
or the fibre non-linearity [92]. The spectral broadening is one of the fundamental
problems in the information theory of optical fibre channel as during transmission,
the original information is spread over more dimensions than the initial signal di-
mension of 2DW.

In the context of optical fibre communications, systems often operate at a sig-
nal power where the spectral broadening is not significant. Since the power-rate
curve (e.g., Fig. 1.7) often shows a peak around certain signal power, the engineer-
ing community is not much interested in how the channel behaves in the highly non-
linear regime. However, the exact capacity of optical fibre channel over any range
of input powers remains an actively pursued problem for information theorists. In
this thesis, the spectral broadening effect is also largely ignored for simulations and
experiment except for the work described in Chap. 3, which aims to characterise the
effect over a large range of powers precisely and efficiently.

For all the optical fibre systems studied in simulations or experiments here,
we are interested in the MI and the capacity of the channel fY|X(y|x). The random
matrices Y and X can be also written in vector form as Y2L = [YL

1 YL
2 ] and X2L =

[XL
1 XL

2 ]. Doing so has no impact on the calculation of MI. Note that, as shown
in Fig. 2.13, the channel model includes also the DSP unit. Therefore, the MI
depends on the chosen DSP algorithm, and maximising the MI of a such channel
model over various input distributions cannot produce the capacity of the optical
fibre channel, but only a lower bound. In general, the optical fibre channel has multi-
dimensional input and output, with inter-symbol interference among the consecutive
time-domain symbols caused by channel memory. This makes it extremely difficult
to rigorously derive its channel capacity. The concept of MI and its relation with
channel capacity are explained in the following section.

2.4.1 Mutual information and channel capacity

Mutual information was developed by Claude Shannon in his seminal work [38] on
the capacity of communication channels. The most-studied channel is the discrete
memoryless channel. This is a channel for which the input and output are each
sequences of letters from finite alphabets and for which the output letter at a given
time depends statistically only on the corresponding input letter [93, Sec. 4.1]. For
the single-dimensional discrete time memoryless channel, MI is defined as

I = I(X;Y ) , EX,Y

[
log2

fY,X(y, x)
fY (y) fX(x)

]
, (2.84)
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where EX,Y represents expectation over both X and Y . For the memoryless chan-
nel denoted by fY |X(y |x) with the input variable of distribution fX(x), the largest
data transmission rate achieved by various channel codes is I(X;Y ). The channel
capacity of such a channel is then defined as

C , sup
fX (x)

I(X;Y ), (2.85)

where sup means the supremum of I(X;Y ) over all the possible distributions of the
input variable X .

MI can also be defined via entropy. Let h(X) denote the entropy of the continu-
ous random variable X with probability density function fX(x), then h(X) is defined
as

h(X) , −EX

[
log2 fX(x)

]
. (2.86)

Similarly, the conditional entropy h(Y |X) is defined as

h(Y |X) , −EY,X

[
log2 fY |X(y |x)

]
. (2.87)

Finally, MI can be written in terms of entropy as

I(X,Y ) = h(X)− h(X |Y ) = h(Y )− h(Y |X). (2.88)

Note that for discrete random variables with probability mass functions, entropy
is commonly denoted by capital letter H and calculated using the same definition,
only replacing the integral with a finite sum. As a historical remark, Shannon de-
fined the entropy of a continuous distribution simply by replacing the sum in the
entropy of a discrete distribution with an integral [38, Part III, Sec. 20]. The con-
tinuous entropy is often criticised for the lack of transformation invariance [94] and
its contradiction with variance when measuring uncertainty [95, Example 1]. The
lack of transformation invariance causes direct contradiction with the fact the deter-
ministic processing cannot increase Shannon entropy, i.e., h( f (X)) ≤ h(X) where
f (·) is a deterministic and invertible function. Therefore, it was proposed in [94] to
use the Kullback-Leibler divergence [95, Eq. (2.3)] to measure the relative entropy
of a continuous distribution with respect to a well-understood distribution such as
the uniform distribution. Unfortunately, I only discovered the disadvantage of the
Shannon’s continuous entropy by the time of writing the thesis. Since we are only
interested in the relative relations between the continuous entropy of different dis-
tributions, the Shannon definition for entropy will continue to be used.
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In the case of a channel with memory [93, Chap. 4], one has to consider mul-
tiple consecutive symbols at the input and output, the channel capacity is defined
as

Cmem , lim
k→∞

sup
fXk (xk )

1
k

I(Xk ;Yk), (2.89)

where Xk = [X1 X2 ... Xk]. The complexity of estimating the mutual information
of multi-dimensional input and output is so high such that in reality one rarely con-
siders detection scheme of sequence longer than 3. If the signal detection scheme
for a channel with memory is based on the block-wise memoryless assumption, the
following relation holds

1
k

I(Xk ;Yk) ≤ Cmem. (2.90)

2.4.2 Numerical estimation of mutual information and capacity
The numerical estimation of MI falls broadly into three situations, 1) the exact chan-
nel model fYk |Xk (yk |xk) is known, 2) the channel model fYk |Xk (yk |xk) needs to be
estimated via a histogram with data gathered through exhaustive system simula-
tions, 3) the channel model fYk |Xk (yk |xk) is approximated with a known distribution,
e.g., the Gaussian distribution. When estimating the MI and capacity of optical fibre
channel fY|X(y|x) later in Sec. 5.4 and 6.4, we also needed to make two assumptions
to simplify the procedure, which is otherwise often not feasible. Firstly, the sym-
bols on two polarisations of light are assumed independent after DSP. Secondly,
the sub-channels on each polarisation are assumed memoryless after DSP. We use
the second method in Sec. 5.4 and the third method in Sec. 6.4. In both cases, the
optical fibre channel is treated as a single-dimensional discrete memoryless channel
denoted as fY |X(Y |X).

Consider the continuous input random variable X of certain distribution fX(x).
At each discrete time instance k, the random variable generates a random sample
xk ∈ C, forming a symbol stream x= [x1 x2 ... xL]. The power of the input symbol is
defined as P =E[|X |2]= ‖x‖22/L = (x2

1+ x2
2+ ...+ x2

L)/L. The corresponding discrete
memoryless channel outputs symbols are y = [y1 y2 ... yL].
MI estimation with a histogram To estimate fY |X(y |x) for a channel with continu-
ous input and output space, ideally one has to send every point on the complex plane
through the channel for a large number of times to gather statistics via histogram.
However, as there are infinite number of points on the complex plain, we can only
choose finite discrete points for X under the the power constraint E[|X |2] ≤ P. On
the receiving side, building a histogram will also require the discretization of Y into
fine intervals so that the frequencies of Y falling into each interval can be counted.

For this purpose, a popular choice of the input constellationX = [xc1 xc2 ... xcM]
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is the uniform ring constellation [5] as shown in Fig. 2.14(a). The constellation point
xci can be easily represented by its radius and phase xci = re jφ. The rationale behind
is that a bi-dimensional Gaussian constellation achieves the capacity of a complex-
input complex-output AWGN channel and a discrete multi-ring constellation is its
easiest approximation. Since the optimal input distribution for the channel under
estimation is unknown, it is sensible to start with a input distribution that works
well for the AWGN channel.
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Figure 2.14: (a) A uniformly distributed multi-ring constellation and (b) One example of
the received constellation with the transmitted phase removed.

To further simplify the procedure, one can assume that the channel model is
rotational-invariant, i.e., fY |X(y |x)= fY |X(ye jφ |xe jφ), φ ∈ R. Under this assumption,
we can just gather statistics of the transmitted constellation points on one specific
phase. In practice, we send every points in the constellation but remove the trans-
mitted phase upon receiving the symbol so that the received noisy symbols cluster
around the constellation points on the positive real axis as shown in Fig. 2.14(b).
The deviation from the positive real axis in this example is caused by the XPM in
(2.21). Due to the rotational invariance of the channel, it is convenient to work in the
polar coordinate. The channel model can be rewritten as fRYΦY |RXΦX

(ry, φy |rx, φx),
where RX and ΦX are the radius and phase of X such that X = RX e jΦX and the
same for RY and ΦY . To simplify the notation without loss of generality, let us ig-
nore the deviation from the positive real axis for a moment and denote the obtained
histogram as gRYΦY |RX

(ry, φy |rx), then fRYΦY |RXΦX
(ry, φy |rx, φx) can be obtained via

fRYΦY |RXΦX
(ry, φy |rx, φx) = gRYΦY |RX

(ry, φy −φx |rx). (2.91)
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The MI can be calculated via

I(X;Y ) = I(RY,ΦY ; RX,ΦX)

= ERY,ΦY,RX,ΦX

[
log2

fRYΦY |RX,ΦX
(ry, φy |rx, φx)∑

RX,ΦX
fRYΦY |RXΦX

(ry, φy |r′x, φ′x) fRXΦX (r′x, φ′x)

]
.

(2.92)

With the estimated PDF fRYΦY |RXΦX
(ry, φy |rx, φx), the channel capacity can also be

estimated by optimising MI over different input distributions. The classical algo-
rithm for the optimisation is the Arimoto-Blahut algorithm [96,97]. To simplify the
notation, we write out the algorithm using the fY |X(y |x) and fX(x) in Alg. 2 at the
end of the chapter without giving any proof.

MI estimation with a known distribution Although the above histogram-based
method is theoretically sound, it is quite computationally expensive and errors are
often introduced via the discretisation of Y . In most of the applications, the detection
scheme is based on the assumption that the conditional channel PDF is a Gaussian
distribution. Therefore, it is sensible to calculate the MI with the same assumption.
The input distribution will be the same as the one used in the corresponding system,
e.g., often the uniform distribution or the Maxwell-Boltzmann distribution from
probabilistic constellation shaping. To mathematically formulate the problem, we
denote the conditional Gaussian distribution as GY |X(y |x) ∼ N(x,σ2I2), where I2 is
the 2× 2 identity matrix and σ2 is the noise variance per real dimension. The MI
can be written as

I(X;Y ) =
∑
X,Y

fX(x)GY |X(y |x) log2
GY |X(y |x)∑

X GY |X(y |x′) fX(x′) . (2.93)

2.4.3 Entropy estimators

In addition to the MI, two other important quantities for information-theoretic anal-
ysis are the entropy and the conditional entropy defined in (2.86) and (2.87). Similar
to the estimation of MI, one can either estimate entropy via simulated data or by as-
suming that the distribution of data is close to a well-known one. We introduce here
a distribution-agnostic entropy estimator, called kpN estimator, developed in [11].
The entropy estimator will be used to calculated the conditional entropy as a mea-
sure of correlation among sub-carriers in Sec. 6.5. To understand the kpN estimator,
we should first go through the principle of the classical entropy estimator.

The classical entropy estimator was first formulated in 1976 [98]. We adopt
here a more modern formulation described in [11]. Recall the continuous entropy
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h(X) of a d-dimensional random variable X ∈ Rd defined as

h(X) = −EX

[
log2 fX(X)

]
(2.94)

Let xi, i = 1,2, ...,N be the N samples of the random variable X , a simple Monte
Carlo estimate of the entropy is

ĥ(X) = − 1
N

N∑
i=1

log fX(xi). (2.95)

Since the fX(xi) is unknown, the idea is to estimate it through k nearest neighbors
(KNN) of xi. Consider a d-dimensional ball region of radius ε , denoted as B(ε,xi)=
{x : ‖x−xi‖ ≤ ε}, around a sample point xi ∈ Rd . The probability fk(ε)dε is the
probability that exactly one point is in

{B(ε +dε,xi)−B(ε,xi)
}
, exactly k−1 points

are in B(ε,xi), and exactly N − k −1 points are outside B(ε + dε,xi)

fk(ε)dε =
(
N −1

1

)
dFi(ε)

dε
dε

︸                ︷︷                ︸
probability of exactly one point

in
{B(ε + dε,xi)−B(ε,xi)

}
.

×
(
N −2
k −1

)
Fi(ε)k−1(1−Fi(ε))N−2−(k−1)

︸                                         ︷︷                                         ︸
probability of exactly k −1 points in B(ε,xi).

, (2.96)

where Fi(ε) is the probability mass in B(ε,xi) as

Fi(ε) =
∫
B(ε,xi)

fX(x)dx. (2.97)

One can compute the expectation value of log Fi(ε) [11, Eq. (5)]

E[log Fi(ε)] =
∫ +∞

0
fk(ε)dε log Fi(ε)

=

(
N −1

1

) (
N −2
k −1

) ∫ 1

0
Fi(ε)k−1(1−Fi(ε))N−k−1 log Fi(ε)dFi(ε)

= ψ(k)−ψ(N) (2.98)

where ψ(x) is the digamma function that satisfies ψ(x+1) = ψ(x)+1/x and ψ(1) =
−0.5772156... [99, Eq. (4)]. The expectation is taken over the positions of all other
N −1 points, with xi fixed [99, Eq. (17)].

If the probability mass Fi(xi) in B(ε,xi) is approximated by a uniform distribu-
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tion scaled by an arbitrary real factor ηi

Fi(xi) ≈ ηi fX(xi), (2.99)

we obtain the classical entropy estimator by substituting (2.99) into (2.95)

ĥ(X) = − 1
N

N∑
i=1

log fX(xi) (2.100)

= − 1
N

N∑
i=1

log Fi(xi)+ 1
N

N∑
i=1

logηi (2.101)

= −E[log Fi(ε)]+ 1
N

N∑
i=1

logηi (2.102)

= ψ(N)−ψ(k)+ 1
N

N∑
i=1

logηi . (2.103)

The kpN algorithm has the same principle as the above classical entropy esti-
mator, however, makes a different approximation at the step of (2.99). The proba-
bility mass Fi(xi) in B(ε,xi) can be approximated by a Gaussian distribution with
the mean and variance calculated by the samples in B(ε,xi). Formally,

Fi(xi) ≈ fX(xi)
g(xi) Gi, (2.104)

where

g(xi) = exp
(
−1

2
(xi − µ)TS−1(xi − µ)

)
(2.105)

Gi =

∫
B(ε,xi)

g(xi)dx (2.106)

µ =
1
k

∑
x∈B(ε,xi)

x (2.107)

S = 1
k

∑
x∈B(ε,xi)

(x− µ)(x− µ)T . (2.108)

The one last piece of the kpN algorithm is the evaluation of the multi-dimensional
Gaussian integral in (2.106). The seemingly trivial integral is the most difficult part
of the kpN algorithm and it itself deserves another 27-page explanation [100]. The
method to calculate the integral is called the expectation propagation multivariate
Gaussian probability (EPMGP). For the details of the EPMGP, we refer interested
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readers to [100] and its Matlab library online. The kpN algorithm is summarized in
Al. 3 at the end of the chapter.

2.4.4 Interference channels

While the MI is instrumental for the development of point-to-point communica-
tion links, the multi-user information theory is more suitable for the analysis of the
WDM-based optically routed network. In particular, the interference channel (IC)
model, where multiple users share the same transmission medium and impose in-
terference on each other, fits well to the non-linear effect we observe in the opti-
cal fibre channel. Through the study of simpler interference channels, we wish to
learn strategies to combat the non-linear inter-channel interference in the optical fi-
bre channel and also understand whether a monotonically increasing capacity in an
ORN is possible at all. We start by reviewing the principle of a 2×2 IC [101, Chap.
21] depicted in Fig. 2.15.

fY1Y2 |X1X2(·)
Enco. 1

Enco. 2

Deco. 1

Deco. 2

Sc. 1

Sc. 2

Sk. 1

Sk. 2

Xn
1

Xn
2

Yn
1

Yn
2

W1

W2

Ŵ1

Ŵ1

Figure 2.15: A two-transmitter IC. Sc. stands for source, Enco. for encoder, Deco. for
decoder and Sk. for sink.

There are two statistically independent sources that produce symbols W1 and
W2 with nR1 and nR2 bit, respectively. Encoder 1 maps w1 to a sequence xn

1 ∈ Xn
1 ,

encoder 2 maps w2 to a sequence xn
2 ∈ Xn

2 . The channel fY1Y2 |X1X2(·) generates se-
quence yn

1, y
n
2 ∈ Yn

1 ,Yn
2 . Decoders estimate ŵ1 and ŵ2 using yn

1, y
n
2 . We are in-

terested in the rate pairs (R1,R2) for which one can make the error probability
Pe = Pr

[(Ŵ1,Ŵ2) , (W1,W2)
]

arbitrarily small. All achievable rate pairs (R1,R2)
form the IC capacity region CIC. The capacity region of a general IC is unknown.
The channel model can be easily extended to K-users. To have a more concrete un-
derstanding of ICs, we introduce two classes of ICs, i.e., the AWGN IC and a type
of deterministic ICs. The reasons of choosing these two types of ICs are twofold:
1) AWGN-IC is the simplest 2×2 IC we can analyse and simulate easily, 2) deter-
ministic ICs capture the deterministic aspect of non-linear distortion in the optical
fibre channel in an abstract way.

AWGN-IC
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We write the real-valued channel model of an AWGN-IC in standard form as

Y1 = X1+
√

a12X2+N1,

Y2 =
√

a21X1+ X2+N2, (2.109)

where (N1,N2) ∼ N(0,
(
1 ρ

ρ 1

)
), ρ ∈ [−1,1] denotes the correlation coefficient be-

tween N1 and N1, and E[|Xk |2] ≤ Pk, k = 1,2.

There are three communication strategies for the AWGN-IC: a) treat inter-
ference as noise, b) use time-division multiplexing (TDM) or frequency-division
multiplexing (FDM), c) decode the interference. We plot in Fig. 2.16 the capacity
regions of the aforementioned strategies as shown in [101, Sec. 21.6.3]. Sato’s outer
bound on AWGN-IC [102] is also plotted for comparison. From Fig. 2.16 it can be
observed that 1) Sato’s capacity outer bound [102] on AWGN-IC is always smaller
than the capacity region of two independent AWGN channels, with the difference
increasing with the interference coefficients, 2) at different strength of interference
(indicated by coefficients a12 and a21), different strategy should be adopted. For
example, while treating interference as noise is the best strategy among the three
for a12 = a21 = 0.1, it is the worst for a12 = a21 = 1.1. In addition, the exact capacity
region of an AWGN-IC is only known for strong interference where a12 > 1 and
a21 > 1, where the optimal strategy is to decode the interference.

Deterministic ICs

At next, several deterministic ICs will be reviewed. We start from the general
form of deterministic ICs, and tweak the channel model to make it closer to the
WDM multi-user optical fibre network.

The deterministic IC in its most general form reads

Y1 = f1(X1,X2),
Y2 = f2(X1,X2), (2.110)

where f1(·) and f2(·) are two functions mapping X1,X2 to Y1 and Y2, and X1,X2

are subject to power constraint E[|Xk |2] ≤ Pk, k = 1,2. An interesting sub-class of
deterministic ICs with known capacity region [103, Eq. (1)-(4)] is

Y1 = f1(X1+g2(X2)),
Y2 = f2(X2+g1(X1)), (2.111)

where f1(·) and f2(·) are invertible functions. Due to the invertibility, (2.111) are



2.4. Information-theoretical tools 72

0 0.4 0.8 1.2 1.6
0

0.4

0.8

1.2

1.6

R2 (bit/symbol)

R 1
(b

it/
sy

m
bo

l)

a12 = a12 = 0.1

0 0.4 0.8 1.2 1.6
0

0.4

0.8

1.2

1.6

R2 (bit/symbol)

R 1
(b

it/
sy

m
bo

l)

a12 = a12 = 0.3

0 0.4 0.8 1.2 1.6
0

0.4

0.8

1.2

1.6

R2 (bit/symbol)

R 1
(b

it/
sy

m
bo

l)

a12 = a12 = 0.5

0 0.4 0.8 1.2 1.6
0

0.4

0.8

1.2

1.6

R2 (bit/symbol)

R 1
(b

it/
sy

m
bo

l)

a12 = a12 = 1.1

(a) (b) (c) (d)

Figure 2.16: Rate regions for P1 = P2 = 6 and increasing a12 = a21. The legends are for (a)
treating interference as noise; (b) using TDM/FDM; (c) decoding interference;
(d) Sato’s outer bound.

said to be equivalent to

Y1 = X1+g2(X2),
Y2 = X2+g1(X1). (2.112)

The proved capacity region is expressed in terms of entropies, which makes it dif-
ficult to plot and provides little insight. We omit the result and the proof here and
refer interested readers to [103].
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Adding noise into (2.111), we have another slightly generalised IC

Y1 = f1(X1,g2(X2,N1)),
Y2 = f2(X2,g1(X1,N2)), (2.113)

where f1(X1, ·) and f2(X2, ·) are invertible functions, and (N1,N2) ∼ N(0,
(
1 ρ

ρ 1

)
)

are independent of X1,X2. Observe (2.113) closely, you can see that f1(·) could
represent the mapping between the input and output of an optical fibre channel
and g2(·) could correspond to the interference generating mechanism from adjacent
channels/users with one noise source taken into account. In real channel, the two
functions should work iteratively on their respective inputs, in a similar way as how
the SSFM works in Sec. 2.2.5. We can only approximate the optical channel model
with f1(·) and f2(·).

The above idea was further developed for K-user WDM optical fibre channel
in the weak non-linear regime [104]. The Volterra series transfer function of single-
mode fibres [105] is used to derive the corresponding f1(·) and f2(·) in the channel
model (2.113). The obtained channel model for K users reads [104, Eq. (8)]

Yi = Xi +

K∑
k=1

K∑
`=1

K∑
m=1

ξ
(i)
k,`,mXk X∗` Xm+Ni, k = 1,2, ...,K, (2.114)

where Xi and Yi are the complex-valued random variables at input and output of the
optical fibre channel for ith user, Ni is the additive circularly symmetric complex
Gaussian random variable with zero mean and variance σ2, and ξ(i)k,`,m is the inter-
ference coefficient that can be calculated from the Volterra series transfer function.
Since we do not use ξ(i)k,`,m to calculate any result here, we refer readers to [105,
Appx. II] for the detailed derivation.

The conclusions from that work are twofold: 1) in the multi-user scenario,
if the signal of all users are detected cooperatively for interference cancellatioin,
the AWGN channel capacity is achievable in optical fibre channel, 2) if users detect
their signal independently, the interference from other users cannot be cancelled and
causes the channel capacity of the individual user to saturate at high signal powers.
Admittedly, the model has its own limitations, for example, it only holds in the weak
non-linear regime and it only includes one noise source. However, when we enter
the highly non-linear regime, even if the inter-user interference is strong enough
(such as a12 > 1 in (2.109)) to be beneficial to individual users, we would not be
able to decode them because they originate from a complicated mixing process.
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Once we establish that the WDM-based optical fibre network is a multi-user
interference channel, we see that individual user detection can by no means achieve
AWGN capacity. However, in a real optical fibre network, since we do not have all
channels available at one location, a joint detection scheme is not possible. As a
logical alternative, we should seek other strategies that are useful for general ICs,
such as signal-space orthogonalization and interference alignment [106].

Non-linear frequency-division multiplexing (NFDM) is a way of signal-space
orthogonalization. Despite that the theory of NFDM is based on the lossless NLSE,
NFDM is a logical step for combating the non-linearity in optical fibre and will be
closely examined in Chap. 4, 5 and 6.

2.4.5 Models and capacity of fibre channels

The capacity of the fibre channel is a haunting problem in optical communications.
The complications of the problem include: a) the NLSE does not have an explicit
closed-form solution, b) varying signal dimensions due to the existence of spectral
broadening after propagation [107], which makes multi-sample detection reason-
able and attractive [108], c) the optical fibre channel is in general a channel with
memory [109], hence the MI between input and output has to be optimized across
multiple dimensions, d) channels with in-line additive noises are in general not well
studied in information theory.

Several simplified models for optical fibre channels have been proposed to
facilitate the derivation of the channel capacity: the split-step Fourier model [110,
111] for the point-to-point optical fibre channel, the perturbative model [29, 104]
for the optical fibre interference channel, and the phase noise model [91, 112] for
both. They are summarised below.

The phase noise model uses uncorrelated (white) phase noise to model the XPM in
the optical fibre interference channel or the SPM in the point-to-point optical fibre
channel. The continuous-time channel model with input X(t) and output Y (t) can
be written as

Y (t) = X(t)e jΘ(t)+N(t) (2.115)

where N(t) is a complex-valued AWGN process with variance 2σ2
n , and Θ(t) is

the wrapped Gaussian process [112, Appx. A] with zero mean and variance σ2

that models the phase noise process. The autocorrelation function RΘ(τ) of the
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multiplicative noise e jΘ(t) is [91, Eq. (2)]

RΘ(τ) = E[e jΘ(t)e− jΘ(t)] =



1, τ = 0

e−σ
2
, τ , 0

(2.116)

= e−σ
2
+ lim

B→∞
(1− e−σ

2) · sinc(Bτ). (2.117)

The Wiener-Khinchin theorem states that, if x(t) is a wide-sense stationary
process such that its autocorrelation function can be defined as rxx(τ)= E[x(t)x∗(t−
τ)], then its power spectral density function SX( f ) is the Fourier transform of its
autocorrelation function rxx(τ). Therefore, the PSD SY ( f ) of the received signal
Y (t) is

SY ( f ) = F {RY (τ)} = SX( f ) ⊗ SΘ+ SW ( f )

= e−σ
2
SX( f )+ lim

B→∞
SX( f ) ⊗ (1− e−σ

2) rect( f /B)
B

+ SW ( f ), (2.118)

where F {·} denotes the Fourier transform and ⊗ is the convolution operator. (2.118)
shows that the PSD of SX( f ) experiences a spectral loss of 1 − e−σ

2
, e−σ

2
< 1.

The lost power spreads to an infinite bandwidth as suggested by the convolution
operation, which agrees with the spectral broadening observed in the optical fibre
[113]. Consequently, the phase noise channel is considered to be equivalent to a
discrete-time AWGN channel with energy loss

Y = µΘX +W, (2.119)

so the effect of the spectral loss is included as SNR loss with the coefficient µΘ =
e−σ

2
. In the limit of µΘ→ 0, no reliable communication is possible. If we make

σ2 = cP2
s , where Ps denotes the average signal power, the phase noise channel

behaves in a similar way that the point-to-point optical fibre channel does [112,
Fig. 8], but it fails to capture other effects in the optical fibre interference channel
such as XPM.

The perturbative model is based on some form of approximated solutions of
NLSE. For instance, the well-known GN model is built on the first-order pertur-
bation solution of NLSE [29]. The root mean squared error (RMSE) between first-
order perturbation solution and true solution can be measured to indicate at which
power the perturbation theory fails. The interference from other channels is implic-
itly treated as an AWGN whose variance is proportional to the total received signal
power P3(z). The received SNR can be predicted by
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SNR =
P(0)

σ2
N +σ

2
NLI

, (2.120)

where the σN and σNLI are the vriances of ASE noise and the non-linear inter-
ference, respectively. When a non-linear compensation scheme is applied at the
receiver, σ2

NLI will be reduced accordingly. As a further development, an enhanced
Gaussian noise (EGN) model was also proposed to correct the overestimation of
non-linear interference along the link due to the non-Gaussianity of the input sig-
nals [30, and references therein]. Overall, the GN and EGN models have been vali-
dated to be able to make accurate predictions, in a very efficient way, of system per-
formance (SNR or maximum reach) for dispersion-unmanaged coherent systems.

Another example of a perturbation model would be the application of Volterra
series solution of NLSE [104] as explained in (2.114).

The split-step Fourier model proves that the capacity of AWGN channel also
serves as an upper bound for a cascade of non-linear and noisy channels, which
corresponds to an optical fibre link with distributed Raman amplification [110].
The authors of [110] made use of the fact that non-linear step in the NLSE does
not change the differential entropy of a signal. This result settled down the debate
on whether non-linearity can bring the information rate in the optical fibre channel
beyond the AWGN capacity.

The above-mentioned models and capacity bounds are listed in the order of
their closeness to the realistic fibre channel and are plotted for a specific link in
Fig. 2.17. The phase noise channel is far from emulating the optical fibre channels,
but in the case of the point-to-point link, it successfully captures the SPM effects
and achieves a good agreement with simulation results regarding the achievable
rates. The split-step Fourier model includes all the major impairments in the fibre,
i.e., dispersion, non-linearity, and in-line noise. The model has the advantage of
being the first entirely non-linear model. However, the obtained upper bound on the
capacity is monotonically increasing against launch power and deviates gradually
from most existing lower-bounds that saturate at the optimal launch power, leaving
a large unknown territory between the upper and lower bound as marked in gray
colour in Fig. 2.17. The perturbation models have been validated to be very accurate
in predicting system performance, but it restricted itself to the existing transmission
scheme.

For further development of models or capacity bounds, situations are slightly
different for the optical fibre interference and point-to-point channels. In the case
of the fibre interference channel, it has almost become a consensus that the AIR
of each user has a maximum regardless of the transmission scheme. In case of



2.4. Information-theoretical tools 77

5 10 15 20 25 30 35
0

1.5

3

4.5

6

7.5

9

10.5

SNR [dB]

A
IR

[b
it/

sy
m

bo
l]

Split-step Fourier upper bound
Single-channel DBP
Phase-noise model
GN model

Figure 2.17: The AIR of the above models in a 4000 km optical fibre link.

the fibre point-to-point channel, it becomes very tough to rigorously prove tight
upper- and lower-bound within 1 bit/s on the channel capacity without damaging
the sufficient representation of the realistic channel. The cost of “mathematical
correctness” needs to be balanced against the significance of results.
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Algorithm 1: Standard RLS algorithm.
Data: ui: signals on both polarisations
Result: hx, hy: filter weights
Initialization;
hx/y all zeros except a central spike, Px/y = δI2N , where δ is a small
positive number, I2N the identity matrix of size 2N.

while ε > 0.001 do
Gain vector computation

zx(n) = ui(n)uH
i (n)hx,

zy(n) = ui(n)uH
i (n)hy,

kx =
Pxzx(n)

λ+ zH
x (n)Pxzx(n)

,

ky =
Pyzy(n)

λ+ zH
y (n)Pyzy(n)

.

Error estimation

εx(n) = R2−hH
x zx(n),

εy(n) = R2−hH
y zy(n).

Tap-weights updates

hx← hx +kxε
∗
x (n)

hy← hy +kyε
∗
y (n)

Correlation matrix updates

Px← (Px −kxzH
x Px)/λ

Py← (Py −kyzH
y Py)/λ
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Algorithm 2: The Arimoto-Blahut algorithm
Initialization:

f (0)X (x) → uniform distribution

f (0)X |Y (x |y) =
fY |X(y |x) f (0)X (x)∑

X fY |X(y |x′) f (0)X (x′)
ε = a reasonable small number

while



 f (k)X (x)− f (k−1)

X (x)



 > ε do

f (k)X (x) =
exp

(∑
Y fY |X(y |x) log2

(
f (k−1)
X |Y (x |y)

) )
∑

X exp
(∑

Y fY |X(y |x′) log2
(
f (k−1)
X |Y (x′|y)

) )

f (k)X |Y (x |y) =
fY |X(y |x) f (k)X (x)∑

X fY |X(y |x′) f (k)X (x′)

end
Return:

C =
∑
X,Y

f (k)X (x) fY |X(y |x) log2

f (k)X |Y (x |y)
f (k)X (x)
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Algorithm 3: The kpN algorithm.
Data:

• xi ∈ Rd, i = 1, ...,N: the samples

• k: the number of nearest neighbors for calculating B(ε,xi)

• p: the number of nearest neighbors for calculating the local Gaussian
approximation (p > k)

Result: Ĥ(x): the kpN entropy estimate
initialization;
i = 1;
while i < N do
{xi}p← set of p-nearest neighbors of xi;
i← i+1

Ĥ(x) = ψ(N)−ψ(k);
i = 1;
while i<N do

εi← distance to the k-th nearest neightbor of xi;
B(ε,xi) ← xi ± εiE, E being the canonical basis;
µi← mean of {xi}p;
Si←covariance of {xi}p;
Gi← Gaussian integral through EMPGP of µi and Si;
g(xi) ← equation (2.106);
Ĥ(x) ← Ĥ(x)+N−1[log(Gi)− log(g(xi))];



3
Spectral broadening of Gaussian
processes in optical fibre channel

3.1 Related work
The information-theoretic capacity of the optical fibre channel has been an unsolved
problem in the optical communication society for a long time. An upper bound on
the capacity of point-to-point optical fibre channel was proved to be the same as
the capacity of the AWGN channel [110]. Significant efforts have been made to
search for a non-saturating lower bound [37, 114–116]. However, as one can see
from Fig. 2.17, the upper and lower bounds on the capacity are loose at the high
power range. Among the many problems encountered in the quest for the unknown
territory, a subtle one is how to define the transmission bandwidth and in particular,
the spectral broadening along propagation at all range of powers.

In this chapter, the problem of upper bound on the optical fibre channel capac-
ity is approached by studying and characterising the spectral evolution of a Gaus-
sian process in optical fibre in a semi-analytical way. The KZ model, explained
in Sec. 2.2.3, is used to calculate the PSD at the end of a link. The KZ model
originates from the theory of WWT [59, pp. 63-82]. The WWT framework is of
particular interest for Raman fibre laser modelling [117, 118] because such lasers
often operate at high signal power that induces strong non-linear wave interactions.

81
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Two published works [56, 119] both provide detailed derivation and explanation
for the application of WWT in NLSE, with the former in the context of fibre laser
(single-span fibre) and the latter focusing on the long-haul optical fibre communi-
cation (multi-span fibre). As shown in Fig. 2.6, the KZ model can estimate the PSD
at moderate signal power and link distance much better than the GN model does.
However, as with any perturbation-based solution, the model breaks down as the
strength of accumulated non-linear effect increases through either increase of sig-
nal power or link distance. Fig. 3.1 shows the breakdown of the KZ model at the
signal power that is twice of the one in Fig. 2.6. The irregular oscillation around the
one sample frequency, in this case ±16 GHz, is the typical sign of the breakdown.
It is also worth noticing that the KZ model breaks down at much lower power if the
RRC-pulses have smaller roll-off factor.
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Figure 3.1: PSDs from simulations scaled by the maximum of the GN PSD with same link
parameters and doubled signal power of Fig. 2.6.

There are, in general, two ways to increase the range of validity of a pertur-
bative model, i.e., increase the order of the perturbation solution or solve the per-
turbative model iteratively for several times. We found that the latter approach is
simpler and more effective. Therefore, at high power regime, the PSD at receiver is
calculated by iteratively solving KZ model at a shorter distance.

We will use the in-band energy ratio ρ and 99%-energy bandwidth expan-
sion factor η to characterise the spectral broadening. We show numerically that
the in-band energy ratio is related to signal power P, link distance L, and ini-
tial signal bandwidth W . Furthermore, the in-band energy ratio can be approx-
imately described by a monotonically decreasing function ρ ≈ fρ( P

√
L

W1.33 ), where
fρ(x) = 1/(1+ log(1+ ξx)) and ξ is a fitting parameter. The result implies that: (i)
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Given a fixed processing bandwidth, increasing signal power of a Gaussian process
causes more severe spectral broadening, limiting the achievable SE, (ii) if the sig-
nal power and bandwidth scale up at the same time and the signal power increases
at a faster rate than the bandwidth does, the spectral broadening can be negligible.
Hence, an ever-increasing SE might become possible.

3.2 The optical fibre model
The optical fibre channel of concern is a multi-span point-to-point dispersion un-
managed fibre link with equally-spaced EDFAs, with signal only present in one
polarisation. The single-span wave propagation is described by the NLSE (2.13).
For convenience we rewrite it here

∂A
∂z
= − j

β2
2
∂2 A
∂t2 −

α

2
A+ jγ |A|2 A, (3.1)

where A(t, z) is the complex envelope of the signal as a function of time t and
distance z along the optical fibre, β2, γ, and α are the dispersion, non-linear, and loss
coefficients of the optical fibre; see Tab. 3.1. Lumped amplification is performed
at the end of each span with the power gain g = exp

(
αLsp

)
, where Lsp is the span

length and Nsp is the number of spans. In order to see the spectral evolution clearly,
we have turned off the ASE noise introduced by EDFAs.

Table 3.1: Parameters of the optical fibre communication system.

ν 193.44 THz centre carrier frequency
α 0.046 km−1 fibre loss
γ 1.27 (W.km)−1 non-linearity coefficient
β2 −21.5×10−27 s2/m dispersion coefficient
W 32/64/128 GHz optical bandwidth
Ro 4 oversampling rate
r 0.01 RRC roll-off factor

Lsp 80 km span length
Nsp 20/40/80 number of spans
L LspNsp total length

It is assumed the input signal A(t,0), 0 < t < T0, is a band-limited complex
Gaussian (cyclo) stationary process, defined by its Fourier series

A(t,0) =
∞∑

k=−∞
Ãk exp

(
j2π

k
T0

t
)
, 0 < t < T0. (3.2)

The Fourier coefficients Ãk are independent symmetrically-complex Gaussian ran-
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dom variables with zero mean and the variance Sk . For a band-limited signal of
bandwidth W , we have Sk = 0 for |k | > bWT0c. The PSD of A(t) is

Sq( f ) = Skδ( f − k
T0
). (3.3)

Note that any desired PSD can be obtained through a suitable linear filter. Such
an input signal satisfies the necessary conditions of the KZ model [56] that (i) Ãk

are uncorrelated and, (ii) A(t, z) has quasi-Gaussian distribution for all z (under
sufficiently weak non-linearity framework). We further assume that the Fourier
coefficients stay uncorrelated during the transmission. This assumption should be
justifiable by the fact that the FWM in (2.21) is among many frequency components,
and according to central limit theorem, its effect is close to a normal distribution.

Although the Gaussian process is a restrictive assumption, it has some practical
relevance. For example, in current coherent optical fibre systems, signals generated
by probabilistic amplitude shaping are very close to Gaussian process. Such signals
are of great interest for the data rate flexibility, high SE as well as increasing the
transmission distance. Moreover, under sufficiently weak non-linearity [29, 120],
the distribution of transmitted symbols converges anyhow to a quasi-Gaussian dis-
tribution after a long enough (non-linear length) propagation distance.

We wish to estimate the PSD of NLSE using the KZ model, and adopted the
iterative method to enlarge the range of validity of the KZ model.

3.3 The iterative Kolmogorov-Zakharov model
The iterative KZ model is formulated in this section. Let ∆z denote an integer multi-
ple of span length Lsp. We define Sk[i] as the PSD of A(t, z = i∆z) after propagation
of i∆z/Lsp spans. At the transmitter, Sk[0] = Sk(0). The output PSD Sk(L) can be
iteratively approximated as

Sk[0] KZ−−→
∆z

Sk[1] · · · · · ·Sk[N −1] KZ−−→
∆z

Sk[N] (3.4)

Sk[i+1] ≈ Sk[i]+2γ2
∑

(l,m,n)∈V(k)
|H̃`mnk(∆z)|2T`mnk[i]δ`mnk . (3.5)

(3.5) is the first order perturbation approximation of the non-linear kinetic equation
described earlier in (2.45). The accuracy of approximation depends on how small
∆z is chosen and also on the signal power. For relatively small powers, one sin-
gle iteration (∆z = LspNsp) is quite accurate. For a higher range of powers, more
iterations are required with smaller ∆z as illustrated in Fig. 3.2. The number of iter-
ations, which varies with signal power and bandwidth, were empirically obtained in
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Fig. 3.2. “Empirically” means that for a certain input PSD, one applies KZ model
with no or a few iterations first. If the irregular oscillation at one sample frequency
is observed in the output PSD, one simply increases the number of iterations until a
smooth output PSD is obtained. Note that ∆z = Lsp is the smallest ∆z.

3.4 Characterisation of spectral broadening
Two figures of merit were chosen to characterise the spectral broadening: (i) ρ: the
in-band energy ratio, the fraction of the energy preserved in the initial bandwidth
W . (ii) η: the bandwidth expansion factor. The bandwidth is defined as the smallest
frequency band holding more than 99% of energy. The precise definition of signal
bandwidth has never been without controversy [121]. The 99%-energy bandwidth
criteria is adopted from [107].

We first compare the analytic estimation of (3.4) with split-step Fourier sim-
ulations. The simulation parameters are outlined in Tab. 3.1. The ASE noise was
switched off in the simulation. Fig. 3.2 and 3.3 show the variation of ρ and η in
terms of input launch power for different input signal bandwidth W and for dif-
ferent number of spans. We observe that the analytic predictions (dashed lines)
are quite consistent with the simulation results (dots). For not very large values of
launch power (ρ > 0.9), ρ can be empirically approximated by,

ρ(W, L,P) ≈ 1

1+ ln
(
1+ ζ P2L

W2.65

) , (3.6)

where L = LspNsp is the total distance, ζ is a constant, depending on the link param-
eters and the span length, P is the launch power in linear-scale (not in dBm). We
observe in Fig. 3.2 and 3.3 that the above approximation fits closely to the simula-
tion for P < 10 dBm. For larger values of P, we observe that the scaling behaviour
of ρ(W, L,P) and η(W, L,P) tends to become a function of P

√
L

W2 . It means that

ρ ≈ fρ(P
√

L
W2 ) =

1

1+ ln
(
1+ ζ P2L

W4

) , η ≈ fη(P
√

L
W2 ). (3.7)

Fig. 3.4 also shows two examples of spectral broadening, calculated by KZ-model,
of 32 GHz signals after 1600 km propagation.
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Figure 3.2: Characterisation of spectral broadening in a 20-span transmission link with dif-
ferent initial bandwidths of 32/64/128 GHz. The number of iterations holds for
32 GHz bandwidth. Simulations are with 16-QAM 0.01-RRC-pulse signals.
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Figure 3.3: Characterisation of spectral broadening of signals with 32 GHz initial band-
width at different transmission distances (20/40/80 spans).

−50 0 50
0

2

4

6

8

f [GHz]

S(
f,

z)
×1

0−
5

z = 0 km z = 1600 km

−50 0 50
0

5

10

15

20

f [GHz]

S(
f,

z)
×1

0−
5

z = 0 km z = 1600 km

(a) (b)

Figure 3.4: Spectra of a 32 GHz signal at (a) 12 and (b) 16 dBm. Solid, dashed and densely
dotted lines are input, output, and KZ model signal spectra, respectively.
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3.5 Discussion on the spectral efficiency
It is shown recently [110] that the SE of the channel model (3.1), with ideal dis-
tributed amplification, is upper-bounded by the AWGN capacity

SE ≤ log
(
1+

P
NaseWmax

)
(3.8)

where Nase is the noise PSD and Wmax is the maximum signal bandwidth. A re-
cent result [107] shows that, for dispersion-less fibre, fixed initial bandwidth and
large power, the bandwidth scales at least as a constant times

√P. For the optical
fibre channel with dispersion, we show a similar scaling law in (3.7) for Gaussian
process.

Let us assume that, for EDFA-amplified links, the upper-bound (3.8) is still
valid, and we can look at how SEs behave for different types of receivers. Re-
ceivers with different limitations on its bandwidth are considered here. For receivers
with fixed-bandwidth (W) and variable-bandwidth ( fη(P

√
L

W2 )W), the SE should be
bounded by

SE ≤ max
{

log©­«
1+

1

fη(P
√

L
W2 )

P
NaseW

ª®¬
, log

(
1+ fρ(P

√
L

W2 )
P

NaseW

) }
. (3.9)

It can be seen from Fig. 3.2 that 1/ fη(P
√

L
W2 ) is smaller than fρ(P

√
L

W2 ) over the sim-
ulated power range. Furthermore, for a given signal power P0 and bandwidth W0,
if the signal power P0 is multiplied by a factor θ while the signal bandwidth W0

is multiplied by a factor
√
θ, the ratio P

W2 =
θP0
(√θW0)2

=
P0
W2

0
remains unchanged. The

overall change to the term fρ(P
√

L
W2 ) PNaseW inside the upper bound on SE is then

√
θ.

This indicates that if P and W scale up at the same time and P increases at a faster
rate than W does, the spectral broadening effect stays the same while SE increases
boundlessly. It is worth noting that to increase the SE in this way is very slow and
costly. For example, for a given P0 and W0, if one wishes to have a four time in-
crease on the term fρ(P

√
L

W2 ) PNaseW without changing the spectral broadening effect,
the signal power needs to be increased by 16 times and bandwidth by 4 times.

For receivers with intermediate bandwidth, i.e., W < WRx < fη(P
√

L
W2 )W , it is

beneficial to be able to receive the spread-out signal power and at the same time not
take in too much out-of-band noise. It is expected and observed that receiving extra
spectrum leads to an increased SE [113] up to a point where too much noise starts
to level off the benefit. However, we have not managed to bound the trade-off.

Note that our scaling laws are obtained for the Gaussian process and based on
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the result from iterative KZ-model without any ASE noise. Therefore, the scaling
law can be different for an arbitrary input process or for the highly non-linear regime
in which the KZ model is not valid any more.

3.6 Summary
In this chapter, the spectral evolution of Gaussian process with iterative KZ model
solution for a large range of input powers has been analysed. The spectral boraden-
ing phenomenon is one of the many obstables we face in our quest into the gray
area in Fig. 2.17.

From the analysis presented in this chapter, one can reach the conclusions that
1) for a fixed Rx bandwidth, the SE of Gaussian process is limited by the effect
of spectral broadening, 2) an ever-increasing SE might be possible if the signal
bandwidth and power are increased at the same time and the signal power increases
at a faster rate than bandwidth does.

The following chapters focus on a non-linear transmission scheme that has the
potential to achieve a monotonically-increasing SE in ORN.



4
Nonlinear Fourier Transform

In the previous chapter, research results have shown that Gaussian process suffers
from significant spectral broadening in the non-linear regime, and thus, is not prac-
tical to achieve a monotonically increasing SE. In addition, spectral broadening is
not the only non-linear effect that limits the network throughput. It is also believed
that the linear signal multiplexing scheme (WDM) in ORN is not compatible with
the non-linear nature of optical fibre channel [79].

WDM is one of the key technologies that enable high capacity optical fibre
networks, which allocates different frequency bands to different users and makes
efficient use of the available fibre bandwidth. However, driven by the increased
traffic demand, WDM systems are now approaching their theoretical limits set by
fibre non-linearity as shown in Fig. 1.7. The non-linear interactions among WDM
channels pose a limitation to the AIR in WDM optical networks [28].

WDM systems modulate information in the Fourier basis corresponding to dif-
ferent frequencies or wavelengths. The basis elements could be modulated indepen-
dently at the transmitter, but they couple together in the non-linear fibre channel.
Consequently, the optical fibre channel should be viewed as a multi-user interfer-
ence channel (IC). IC was briefly introduced in Sec. 2.4.4. Several distinct strategies
exist for communication over an IC: (i) treating interference as noise, (ii) orthog-
onalisation and (iii) interference alignment. An extensive body of work exists pre-
senting the AIRs of WDM optical networks, which are sometimes referred to as the

90
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“non-linear Shannon limit” [5,28,122–124]. However, these rates are lower bounds
on the capacity of the user-of-interest (UOI), implicitly using strategy (i). Other
strategies for WDM channels, such as (ii) and (iii), exist as well, which predict
different AIRs.

Non-linear frequency-division multiplexing (NFDM), a recently proposed [77]
signal multiplexing scheme based on the non-linear Fourier transform (NFT), is a
promising approach to overcome the “capacity crunch” problem in WDM optical
systems [79], and could potentially achieve a monotonically increasing SE in ORN.
It is often argued that the idea of NFDM should be traced back to the concept of
eigenvalue communication [125] back in 1993. NFT, also known as the inverse
scattering transform (IST) [126], is an established mathematical tool to solve the
initial boundary problem of NLSE. A key property of NFT is that in the non-linear
Fourier domain, the non-linear optical fibre channel is linearised. In the non-linear
Fourier domain, one can potentially assign non-linear frequency bands to different
users, hence the name NFDM, so that users can share the transmission medium
without interference.

While WDM treats interference as noise, NFDM is an approach to channel or-
thogonalisation. NFDM is our candidate transmission scheme to potentially achieve
monotonically increasing AIR in an ORN.

In a NFDM system, information is encoded on non-linear frequencies, which
is defined by the NFT of a time-domain signal. The non-linear frequencies consist
of real-valued frequencies and complex frequencies (called eigenvalues). They have
the advantage of being independent components in the NLSE for single polarisation
(SP) or Manakov equation for dual polarisation (DP). Interference-free or weak-
interference transmission seems possible in a network environment as conjectured
in [77]. NFDM suffers significantly less from inter-channel interference (ICI) than
the conventional linear multiplexing schemes as shown in [115, 127] utilising the
so-called continuous spectrum that contains real-valued frequencies.

The research described in the remaining chapters (Chap. 4, 5 and 6) will be
focused on the investigation of NFT-based transmission schemes. This chapter is
dedicated to the principle of NFT with minimum mathematics, the numerical meth-
ods to calculate NFT and INFT, and the transceiver schemes based on NFT-INFT
pairs.

4.1 Review of single-polarisation NFT
The development of NFT is attributed to the extraordinary work of mathematicians
in 1960s-70s who found the exact solution of certain non-linear evolution equa-
tions. Different from linear equations, whose solutions are often superposition of
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special solutions (or eigenfunctions), e.g., exponential functions, non-linear evolu-
tion equations, in general, do not have solutions that can be formulated out of regular
solutions. In 1960s Kruskal and Zabusky [128] first discovered the soliton solution
for the Korteweg-de Vries (KdV) equation and explained its existence and the un-
derlying principle. Their result paved the way for Lax’s general theory [129] that
the wave evolution in the integrable1 non-linear equation can be associated with lin-
ear operators so that the eigenvalues of the linear operator are invariant functionals
(also called integrals) of the non-linear equation. For optical fibre communications,
we can use the framework of NFT in the integrable (lossless) NLSE

∂A
∂z
= − j

β2
2
∂2 A
∂t2 + jγ |A|2 A. (4.1)

The integrable model deviates from our channel model (2.13) by one attenuation
term. This deviation will be addressed later in Sec. 4.5. In the soliton theory, it is
customary to normalise (4.1) by the following change of variables

q =
A
An
, ` =

z
Ln
, τ =

t
Tn
, (4.2)

An =
√

2/(γL), Ln = sgn(β2)L, Tn =
√
|β2 |L/2, (4.3)

where β2, γ, and L are defined in Tab. 3.1. The normalised integrable NLSE reads

j
∂q(τ, `)
∂`

=
∂2q(τ, `)
∂τ2 −2sgn(β2)|q(τ, `)|2q(τ, `), (4.4)

where the function sgn(·) denotes the sign function. Alternatively, one can use
another set of normalisation factors [67, Eq. (5.2.1)]

q =
N A
P0

, ` =
z

LD
, τ =

t
T0
, N2 =

γP0T2
0

|β2 | , (4.5)

where P0 is the peak power, T0 is the width of the incident pulse, LD = T2
0 /|β2 | is

the dispersion length. The normalised NLSE becomes

j
∂q(τ, `)
∂`

− sgn(β2)12
∂2q(τ, `)
∂τ2 + |q(τ, `)|2q(τ, `) = 0. (4.6)

1The concept of ’integrability’ is difficult to define within the current mathematical scope [130,
Intro.]. We can, however, use the three identifier of integrable systems proposed by Nigel Hitchin
[131]: the existence of many conserved quantities, the presence of algebraic geometry, and the ability
to give explicit solutions.
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We choose the first set of normalisation factors because they depend only on the
link parameters, not on the characterisation of the incident pulse.

According to Lax’s theory, for integrable evolution equations such as the
NLSE, one can find a unique operator L(q(`, τ)) whose spectrum does not change
along `. The spectrum of an operator is similar to the spectrum of a matrix (the set of
discrete eigenvalues), apart from the fact that an operator is an infinite-dimensional
matrix and its spectrum has both discrete and continuous eigenvalues. The unique
operator L for the NLSE is

L(`, τ) = j

(
∂
∂τ −q(`, τ)

sgn(β2)q∗(`, τ) − ∂
∂τ

)
. (4.7)

We wish to calculate the invariant eigenvalues of the operator L. The eigenvalues
of the operator L are defined via the eigenvalue equation

Lv = λv (4.8)

where v is the eigenvector. We expand the (4.8) and reorganise it




j ∂
∂τ v1− jq · v2 = λv1

j sgn(β2)q∗v2− j ∂
∂τ v2 = λv2

→


∂
∂τ v1 = − jλv1+ qv2
∂
∂τ v2 = sgn(β2)q∗v1+ jλv2

. (4.9)

Writing the above equation in the matrix form, we obtain

∂v(`,λ, τ)
∂τ

= Pv =
(
− jλ q

sgn(β2)q∗ jλ

)
v, λ ∈ C. (4.10)

(4.10) is the well-known Zakharov-Shabat (ZS) system [132, Eq. (8)]. The operator
P, together with another operator M , will form another complete representation of
the NLSE through the following relation

Pz −Mt +PM −MP = 0, (4.11)

M = ©­«
2 jλ2+ j sgn(β2)|q |2 −2λq− j ∂q

∂t

sgn(β2)
(
−2λq∗+ j ∂q∗

∂t

)
−2 jλ2− j sgn(β2)|q |2

ª®®¬
. (4.12)

One can easily verify that (4.11) reduces to the NLSE by substitution.

To proceed, we also need to make some assumptions on the signal q(τ, `): 1)
q(τ) ∈ L1(R), i.e., ‖q(τ)‖1 < ∞, 2) q(τ) → 0 as |t | → ∞. Through the study of the
ZS system, we can find the spectrum of the operator L and the spectral amplitude
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(or non-linear coefficient) defined on every spectral point. From the assumptions on
the signal q(τ), we can obtain the boundary condition for the ZS system

v(τ,λ) =
(
1
0

)
e− jλτ, τ→−∞. (4.13)

The non-linear coefficients {a(λ), b(λ)}, λ ∈ C can be found by solving the ZS
system to τ→ +∞ with the boundary condition (4.13) at τ→−∞

a(λ) = e+ jλτv1(τ,λ), τ→ +∞, λ ∈ C, (4.14)

b(λ) = e− jλτv2(τ,λ), τ→ +∞, λ ∈ C. (4.15)

In general, the operator L has both discrete and continuous spectrum denoted as
λm ∈ C+ and λ ∈ R, respectively. The discrete eigenvalues of the operator L can be
found via

Ω = {λm |a(λm) = 0, λm ∈ C+}. (4.16)

We can now define NFT as a mapping from a time-domain signal q(τ) to its non-
linear spectrum and spectral amplitudes

NFT(q(τ)) =



Ω = {λm |a(λm) = 0, λm ∈ C+},{
b(λm),a′(λm)

}
, λm ∈ Ω,{

b(λ),a(λ)}, λ ∈ R,
(4.17)

where a′(λ) = ∂a(λ)
∂λ . (4.17) can also be reduced to just ratios of the a- and b-

coefficients [77,126,133]. They are referred to as the continuous and discrete spec-
tral amplitudes, respectively

NFT(q(τ))



Ω = {λm |a(λm) = 0, λm ∈ C+},
b(λm)
a′(λm), λm ∈ Ω, discrete spectral amplitude qd(λm),
b(λ)
a(λ), λ ∈ R, continuous spectral amplitude qc(λ).

(4.18)

Note that (4.17) and (4.18) are completely equivalent representations of the NFT.
The most important property of the NFT is that if the evolution of q(τ, `) is governed
by the NLSE, the non-linear spectrum and coefficients evolve in a simple linear
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manner




λm(`) = λm(0),
b(`,λm) = b(0, λm)e4 jλ2

m`, λm ∈ Ω,
a′(`,λm) = a′(0, λm), λm ∈ Ω,
b(`,λ) = b(0, λ)e4 jλ2`, λ ∈ R,
a(`,λ) = a(0, λ), λ ∈ R.

(4.19)

Another more interesting representation of NFT is solely based on b(λ). It
exploits the uni-modularity condition [134, Eq. (A.3)] and the fact that a(λ) is an
analytic function [135, Lemma 2.1]. For an analytic function, its real and imaginary
parts are Hilbert transforms of one another

a(λ) =
��a(λ)��exp

(
jH (

log
��a(λ)��) ) . (4.20)

Moreover, the uni-modularity condition states

��a(λ)��2− sgn(β2)
��b(λ)��2 = 1, for λ ∈ R. (4.21)

Based on (4.20) and (4.21), for the special case of our interest, i.e., no discrete
spectrum, a(λ) can be expressed in terms of b(λ)

a(λ) =
√

1+ sgn(β2)
��b(λ)��2 exp

(
jH

(
log

√
1+ sgn(β2)

��b(λ)��2)), λ ∈ R. (4.22)

Note that the above expression is not always true but holds for finite-extent signals
where b(λ) is also an analytic function in C+. In this thesis, only finite-extent signals
are considered. Similarly, a(λ) can also be expressed in terms of qc(λ)

a(λ) = 1/
√

1− sgn(β2)
��qc(λ)

��2 exp
(
jH

(
− log

√
1− sgn(β2)

��qc(λ)
��2)), λ ∈ R.

(4.23)
The general expression that includes the discrete spectrum can be found in [126,
Eq. (1.6.19)] [136, Eq. (6.23)]. It is, however, outside the scope of the thesis. It
is also worth noting that if the complex-valued signal q(t) fulfills the condition∫ ∞
−∞ |q(t)|dt < π/2, then the NFT of q(t) has no discrete eigenvalues [137, Eq. (4.9)].

We now turn to the definition of NFT in dual-polarisation case.
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4.2 Review of dual-polarisation NFT

The DP signal evolution in the optical fibre channel is governed by the Manakov
equation as explained in (2.54). The DP-NFT is developed from the integrable
Manakov equation [134] written below

∂A
∂z
= − j

β2
2
∂2A
∂t2 + j

8
9
γ |A|2A. (4.24)

It is also convenient to normalise (4.24) with the factors

An =

√
2
/(

8
9
γL

)
, Ln = sgn(β2)L, Tn =

√
(|β2 |L)/2. (4.25)

With the normalised variables q(`, τ) =A(z, t)/An, ` = z/Ln and τ = t/Tn, (4.24) can
be reduced to

j
∂q(`, τ)
∂`

=
∂2q(`, τ)
∂τ2 −2sgn(β2)‖q(`, τ)‖2q(`, τ) (4.26)

where q(`, τ) = [q1(`, τ) q2(`, τ)]. The ZS system for DP signals is

∂v(τ,λ)
∂τ

=
©­­«
− jλ q1 q2

sgn(β2)q∗1 jλ 0
sgn(β2)q∗2 0 jλ

ª®®¬
©­­«
v1

v2

v3

ª®®¬
, λ ∈ C, (4.27)

with the boundary condition

v(τ,λ) =
©­­«
1
0
0

ª®®¬
e− jλτ, τ→−∞. (4.28)

We can then define the DP non-linear coefficients a(λ), b1(λ) and b2(λ) as

a(λ) = e+ jλτv1(τ,λ), τ→ +∞, (4.29)

b1(λ) = e− jλτv2(τ,λ), τ→ +∞, (4.30)

b2(λ) = e− jλτv3(τ,λ), τ→ +∞. (4.31)
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The evolution of the non-linear spectrum and coefficients follows




λm(`) = λm(0),
b1(`,λm) = b1(0, λm)e4 jλ2

m`, λm ∈ Ω,
b2(`,λm) = b2(0, λm)e4 jλ2

m`, λm ∈ Ω,
a′(`,λm) = a′(0, λm), λm ∈ Ω,
b1(`,λ) = b1(0, λ)e4 jλ2`, λ ∈ R,
b2(`,λ) = b2(0, λ)e4 jλ2`, λ ∈ R,
a(`,λ) = a(0, λ), λ ∈ R.

(4.32)

The uni-modularity for DP signals is

��a(λ)��2− sgn(β2)


b(λ)

2

= 1, for λ ∈ R (4.33)

where b(λ) = [b1(λ) b2(λ)]. In the absence of the discrete spectrum, a(λ) can be
similarly expressed in terms of b(λ) or qc(λ) by simply replacing

��b(λ)�� with


b(λ)



in (4.22) and
��qc(λ)

�� with


qc(λ)



 in (4.23)

a(λ) =
√

1+ sgn(β2)


b(λ)

2 exp

(
jH

(
log

√
1+ sgn(β2)



b(λ)

2
))
, λ ∈ R, (4.34)

a(λ) = 1/
√

1− sgn(β2)


qc(λ)



2 exp
(
jH

(
− log

√
1− sgn(β2)



qc(λ)


2

))
, λ ∈ R.

(4.35)

It is also worth mentioning the Parseval identity in the non-linear frequency
domain when there is no discrete spectrum [126, Eq. (1.7.8)]

∫ 

q(τ)

2dτ =
1
π

∫
log

(
1− sgn(β2)



qc(λ)


2

)
dλ

= −1
π

∫
log

(
1+ sgn(β2)



b(λ)

2
)
dλ. (4.36)

We can use the Parseval identity to verify our NFT and INFT algorithm, and check
whether any discrete eigenvalue emerges during noisy wave propagation.

So far, we have clarified the relation between various non-linear coefficients
a(λ), b(λ) and qc(λ). One remaining puzzle is to numerically solve the ZS system
that relates the non-linear coefficients to the time-domain signal. In the next section,
we describe the numerical procedure of solving ZS system that are used in later
simulations and experiments.
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4.3 Numerical methods for the ZS system

In this section, we shall look closely at the ZS system in SP case and describe the
procedure of numerically solving it in the forward (NFT) and backward (INFT)
directions. The NFT-INFT in DP case will be a straightforward extension of the
SP-NFT-INFT and, thus will simply be listed afterwards. Suppressing the distance
dependence, we write down again the ZS system in SP case

∂v(λ, τ)
∂τ

=

(
− jλ q(τ)

sgn(β2)q∗(τ) jλ

)
v, λ ∈ C. (4.37)

NFT is a procedure that calculates the solution of v at τ→ +∞ in the ZS system
from the signal q(τ) and a boundary condition of v at τ→ −∞. In principle, any
numerical method for differential equations should be able to perform NFT, at var-
ious degree of accuracy. In contrast, INFT calculates the solution of v at τ→−∞
from the boundary condition at τ→ +∞. At the same time, q(τ) is extracted at each
discrete time step from v(τ). Note that in practice, τ→ ±∞ means some large τ
where the signal q(τ) decays to zeros. In this thesis, we only used the continuous
spectrum of NFT for information transmission, the numerical method introduced
here will only involve the mapping from continuous spectrum to the time domain
signal.

The NFT algorithm
Let us construct the signal q(τ) as the following

q(τ) =



q(τ), T0 ≤ τ < T1,

0, elsewhere.
(4.38)

We discretise the signal q(τ) into N samples by the time step ∆T = (T1 −T0)/N .
The discretised signal q[k] = q(T0 + k∆T), k = 0,1,2, ...,N − 1. Similarly, tk =

T0+ k∆T, k = 0,1,2, ...,N −1. Using the Ablowitz-Ladik scheme [78, Eq. (17)], the
ZS system can be discretised to

v[k +1, λ] = ck P̂[k]v[k, λ] = ck

(
s1/2 Q[k]

sgn(β2)Q∗[k] s−1/2

)
v[k, λ], (4.39)

v[0, λ] =
(
1
0

)
sT0/(2∆T), 0 ≤ k ≤ N −1, (4.40)

where Q[k] = q[k]∆T , s = e−2 jλ∆T and ck = 1/
√
| det P̂[k]|. Introducing a change of
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variables

v̂[k, λ] =
(
s−

k
2−

T0
2∆T 0

0 s−
k
2−

T0
2∆T +

1
2

)
v[k, λ], (4.41)

we obtain a corresponding ZS system

v̂[k +1, λ] = ck

(
1 Q[k]s−1

sgn(β2)Q∗[k] s−1

)
v̂[k, λ], (4.42)

v̂[0, λ] =
(
1
0

)
, 0 ≤ k ≤ N −1. (4.43)

Looking closely at (4.42), we observe that if v[k, λ] can be expressed as a polyno-
mial series of s, e.g.,

v̂1[λ] =
m=∞∑
m=0

ṽ1ms−m, v̂2[λ] =
m=∞∑
m=0

ṽ2ms−m, (4.44)

the updating step will become a shift of the coefficients ṽ1m, ṽ2m due to the multi-
plication of s−1. It turns out that the polynomial coefficients ṽ1m, ṽ2m are similar to
the discrete Fourier coefficient of v̂[k, λ] [138, Eq. (28)]

ṽ1m =
1

Λ1−Λ0

∫ Λ1

Λ0

v̂1[λ]s−mdλ =
1

Λ1−Λ0

∫ Λ1

Λ0

v̂1[λ]e− j2m∆Tλdλ, (4.45)

ṽ2m =
1

Λ1−Λ0

∫ Λ1

Λ0

v̂2[λ]s−mdλ =
1

Λ1−Λ0

∫ Λ1

Λ0

v̂2[λ]e− j2m∆Tλdλ. (4.46)

To calculate ṽ1m and ṽ2m, we first discretise λ on the interval [Λ0, Λ1] with
Λ1 = −Λ0 = π/(2∆T) so that λ[`] = Λ0 + `∆Λ, ` = 0,1,2, ..,M − 1. Let ṽ1 denote
[ṽ1,0, ṽ11, ..., ṽ1(M−1)] and v̂1 denote

[
v̂1[·,0], v̂1[·,1], ..., v̂1[·,M − 1]] . (4.45) can be

implemented as

ṽ1 =
1
M

e◦DFT
(
v̂1

)
, (4.47)

where ◦ is the element-wise product and

e =
[
1, e− j2π Λ0

Λ1−Λ0 , ..., e− j2π Λ0
Λ1−Λ0

(M−1)]
, (4.48)

=
[(−1)0, (−1)1, ..., (−1)M−1] . (4.49)
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Consequently, the iteration (4.42) in the transformed domain is written as

(
ṽ1m[k +1]
ṽ2m[k +1]

)
= ck

(
1 Q[k]T1

m

sgn(β2)Q∗[k] T1
m

) (
ṽ1m[k]
ṽ2m[k]

)
, (4.50)

where Tn
m is the n-step shift operator acting on the index m, i.e., Tn

m f [k,m]= f [k,m−
n], where

f [k,m] =



0, m < 0 and m > M −1,

f [k,m], others.
(4.51)

After N iterations, we can calculate the non-linear coefficients according to (4.14)
at finite time T1

a(λ) = s−
N
2 −

T0
2∆T v1[N, λ] = v̂1[N, λ], (4.52)

b(λ) = s
N
2 +

T0
2∆T v2[N, λ] = sN+ T0

∆T − 1
2 v̂2. (4.53)

The INFT algorithm
In the absence of the discrete spectrum, the INFT maps the continuous spectrum
and its non-linear coefficients to a time-domain signal. Formally, INFT : qc(λ), λ ∈
R 7→ q(τ) or INFT : b(λ), λ ∈ R 7→ q(τ). The INFT algorithm requires we solve the
ZS system backwards from +∞ to −∞ and at each iteration step, we extract Q[k]
from the eigenvectors [ṽ1 ṽ2]T .

Given the non-linear spectrum and coefficients qc(λ), λ ∈ R or b(λ), λ ∈ R,
we can obtain the discretised eigenvectors [ṽ1 ṽ2]T via (4.23) or (4.22), (4.52) and
(4.47). The backward iteration can be derived from (4.50)

(
ṽ1m[k]
ṽ2m[k]

)
= ck

(
1 −Q[k]

−sgn(β2)Q∗[k]T−1
m T−1

m

) (
ṽ1m[k +1]
ṽ2m[k +1]

)
. (4.54)

At each iteration, we can recover the signal Q[k] according to [138, Eq. (34)]

Q∗[k] = sgn(β2)ṽ20[k +1]. (4.55)
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The above relation can be seen by induction from (4.42)

(
v̂1[0, λ]
v̂2[0, λ]

)
=

(
1
0

)
,

(
v̂1[1, λ]
v̂2[1, λ]

)
= c0

(
1

sgn(β2)Q∗0

)
,

(
v̂1[2, λ]
v̂2[2, λ]

)
= c0c1

(
1+ sgn(β2)Q∗0Q1s−1

sgn(β2)Q∗1+ sgn(β2)Q∗0s−1

)
,

(
v̂1[3, λ]
v̂2[3, λ]

)
= c0c1c2

(
1+ sgn(β2)(Q∗0Q1+Q∗1Q2)s−1+ sgn(β2)Q∗0Q2s−2

sgn(β2)Q∗2+
(
Q∗0Q1Q∗2+ sgn(β2)Q∗1

)
s−1+ sgn(β2)Q∗0s−2

)
,

(4.56)
...

where Qk is the short note for Q[k]. Recall that ṽ1m is just the coefficient of the s−m

term in the polynomial expression of v̂1, we can obtain (4.55).

DP-(I)NFT
The numerical methods for DP-(I)NFT are straightforward extensions of the SP
ones. To guarantee reproducibility, we write down the corresponding ZS system

v̂[k +1, λ] = ck
©­­«

1 Q1[k]s−1 Q2[k]s−1

sgn(β2)Q∗1[k] s−1 0
sgn(β2)Q∗2[k] 0 s−1

ª®®¬
v̂[k, λ], (4.57)

v̂[0, λ] =
©­­«
1
0
0

ª®®¬
, 0 ≤ k ≤ N −1. (4.58)

If one follows the same steps of the SP-(I)NFT algorithm, it should be easy enough
to implement the DP-(I)NFT algorithm.

4.4 Numerical examples of INFT-NFT algorithms
In this section, some toy examples are demonstrated in the single polarisation case
to provide a preliminary validation of the aforementioned algorithms with a focus
on the continuous spectrum. Let q(τ, `) be the fundamental soliton as introduced
in [67, Eq. 5.2.15]

q(τ, `) = Asech(Aτ)exp
(
j A2`/2

)
. (4.59)

In the case of sgn(β2) = −1, the continuous spectrum of the fundamental soliton cal-
culated by the NFT algorithm should be negligible, while in the case of sgn(β2) = 1
and finite-extent signals, the consecutive operation of NFT and INFT algorithm
should be able to recover the time-domain pulse with reasonable accuracy, i.e.,
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INFT{NFT{q(τ)}}≈ q(τ). These are shown to be true in Fig. 4.1 with A = 2 and
` = 0. The energy of the fundamental soliton with A = 2 is

∫ ∞
−∞ |q(τ)|2dτ = 4. The

energy of the corresponding continuous spectrum calculated by the NFT algorithm
in the case of sgn(β2) = −1 (Fig. 4.1(b)) is 1/π

∫ ∞
−∞ log

(
1+ |qc(λ)|2

)
dλ ≈ 2× 10−5,

which is fairly close to zero when compared with the total pulse energy, and can
be regarded as being purely from numerical errors. In the case of sgn(β2) = 1, the
discrepancy of the original and recovered fundamental solitons shown in Fig. 4.1(c)
is

∫ ∞
−∞ |q(τ)−qr(τ)|2dτ/

∫ ∞
−∞ |q(τ)|2dτ ≈ 4×10−7 where qr(τ) denotes the recovered

pulse. The energy of the corresponding continuous spectrum (Fig. 4.1(d)) calcu-
lated by the NFT algorithm in the case of sgn(β2) = 1 is 4.01.
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Figure 4.1: (a) The fundamental soliton q(τ) = 2sech(2τ). (b) The continuous spectrum
of the fundamental soliton calculated by the NFT algorithm in the case of
sgn(β2) = −1. (c) The recovered (dotted) and original (solid) fundamental soli-
ton in the case of sgn(β2) = 1. (d) The continuous spectrum of the fundamental
soliton calculated by the NFT algorithm in the case of sgn(β2) = 1.
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4.5 Approximating the integrable model

One major criticism about the NFT-based system is that it is based on the integrable
(lossless) NLSE in (4.1), while most of the optical fibre links are lossy and amplified
by EDFAs. This deviation will introduce a systematic error into any NFT-based
system operating in EDFA-amplified links. In this section, the integrable path-
average (PA) model with a modified non-linear coefficient γa is introduced. The
field solution of such a model approximates the field solution in lossy fibre links
that has an actual non-linear coefficient γ. The technique is commonly used in the
soliton communication systems in optical fibre [139].

Consider an optical fibre link with periodic lumped amplification. SP signal
propagation in one span is described by the NLSE in (2.13)

∂A
∂z
= − j

β2
2
∂2 A
∂t2 −

α

2
A+ jγ |A|2 A. (4.60)

Introducing a change of variable

Q(t, z) = e
α
2 z A(t, z), (4.61)

(4.60) is transformed to

∂Q
∂z
= − j

β2
2
∂2Q
∂t2 + jγe−αz |Q |2Q, (4.62)

By approximating γe−αz with its average γa in the interval 0 < z < Lsp, we obtain
the integrable PA model

∂Apa

∂z
= − j

β2
2
∂2 Apa

∂t2 + jγa |Apa |2 Apa, (4.63)

where
γa =

γ

αLpa
(1− e−αLsp). (4.64)

If Apa(t, z = 0) = A(t, z = 0), then Apa(t, z) approximates A(t, z) with small error after
each EDFA. The normalisation factors will be changed to

An =
√

2/(γaL), Ln = sgn(β2)L, Tn =
√
(|β2 |L)/2. (4.65)

The same principle also applies to the Manakov equation in (2.54), we state its PA
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version without derivations

∂Apa

∂z
= − j

β2
2
∂2Apa

∂t2 + j
8
9
γa |Apa |2Apa. (4.66)

The normalisation factors become

An =

√
2
/(

8
9
γaL

)
, Ln = sgn(β2)L, Tn =

√
(|β2 |L)/2. (4.67)

4.6 Summary
In this chapter, NFT and INFT in both SP and DP cases for integrable evolution
systems have been introduced. The numerical methods to calculate all of them were
also introduced in detail. Furthermore, to adapt the NFT framework to the non-
integrable realistic optical fibre system, the path-average model that approximates
the integrable evolution model was also considered.

In Chapter 5 and 6, these numerical methods will be used to simulate NFT-
based transmission schemes.



5
Per-sample capacity estimation of a

NFDM optical network

In the previous chapter, the building blocks of an NFT-based transmission system,
i.e., NFT-INFT pairs and PA model, were introduced in detail. With all these tools,
we are now in the position to review NFDM-related work and simulate an NFDM-
based optical fibre network.

5.1 Related work
The non-linear Fourier spectrum consists of a continuous component and a dis-
crete component. Information transmission using the continuous spectrum is stud-
ied in [79,140–146], while discrete spectrum modulation is studied in [79,147–149].
Recent experimental demonstrations of data transmission based on the NFT include
joint discrete and continuous spectrum modulation [143]. A record data rate of
32 Gbit/s was demonstrated in [150] using the continuous spectrum of NFT and
the 32-QAM modulation format. A peak-SNR gain of 1.3 dB was achieved over a
comparable orthogonal frequency-division multiplexing (OFDM) system; for more
comparison, see also [151–157].

The aforementioned work have mostly applied the NFT to point-to-point links,
often as a non-linear compensation scheme. However, the main potential of NFDM
can only be realised in network environments. Here, users’ signals would be mul-

105



5.1. Related work 106

tiplexed in the non-linear Fourier spectrum in disjoint intervals and, in the absence
of noise, propagate independently in the network. Crucially, the signals of the UOI
will not be distorted by the co-propagating signals. As a result, the deterministic
inter-symbol and inter-user interference are simultaneously zero for all users of a
network.

Our research in NFDM initially demonstrated proof-of-concepts, showing how
this scheme works in point-to-point channels. However, to date, the AIRs of the
NFDM signals were at best the same as the AIRs of the WDM signals in these
initial demonstrations [79]. Advances in numerical methods have made it possible
to multiplex signals in the non-linear Fourier domain and explore the NFT at high
powers. The AIRs of NFDM and WDM were compared for the first time recently
in [115] for fibre in the defocusing regime (sgn(β2) = 1). It was shown that NFDM
achieves data rates higher than WDM rates, subject to the same power and band-
width constraints, in illustrative simulations of 5 users and 1 symbol per channel
use.

The goal of this chapter is twofold. First, we summarise the AIRs of NFDM,
compared to WDM, for a given input power and bandwidth in an ideal integrable
model in the focusing regime (sgn(β2) = −1). For this model, it is shown that the
NFDM AIR is greater than the WDM AIR in a representative system with five users
and one symbol per channel use. The first part is a summary of the recent conference
work on NFDM [40]. Second, we study the impact of the following perturbations
on NFDM: fibre loss, periodic amplification, third-order dispersion and polarisation
effects. One of the main limitations of NFDM is that it is based on ideal integrable
models of the optical fibre, for example, with ideal distributed Raman amplifica-
tion. Therefore, it is important to see how NFDM performs in realistic systems
with non-idealities and perturbations. It is shown that using a path-averaged loss
model, the impact of the attenuation (with periodic EDFA amplification) on NFDM
is noticeable. It is also shown that the WDM AIR with joint dual-polarisation back-
propagation and perturbations compensation is higher than the NFDM AIR with
two independent single-polarisation demodulations and without perturbations com-
pensation, in a representative system with five users and one symbol per channel
use. We also study the dependency of the AIRs with the number of symbols. As the
number of symbols is increased, the AIRs of both WDM and NFDM are decreased.
The results in this chapter clarify to what extent NFDM applies to realistic systems.

The chapter is organised as follows. In Sec. 5.2, we review the optical fibre
channel model and the network environment. Sec. 5.3 briefly summarise the NFDM
theory. The achievable rates of NFDM and WDM are computed and compared in
Sec. 5.4, in a multi-user system with five users and one symbol per channel use.
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In Sec. 5.5, NFDM is studied for non-integrable models with non-idealities and
perturbations. After comments on the complexity of the NFT in Sec. 5.6, the chapter
is concluded in Sec. 5.7.

5.2 Optical fibre networks
Signal propagation in single-mode single-polarisation optical fibre with ideal dis-
tributed Raman amplification can be modelled by the stochastic NLSE. For conve-
nience, the equation in the normalized form is rewritten here

j
∂q
∂z
=
∂2q
∂t2 −2sgn(β2)|q |2q+n(t, z), (5.1)

where q(t, z) is the complex envelope of the signal as a function of time t and dis-
tance z along the fibre, n(t, z) is white GN with PSD σ2

0 . The signal and noise are
band-limited to the same bandwidth B for all 0 ≤ z ≤ 1. The reader is referred to
Sec. 4.1 for further details about the model, such as the normalization procedure.

The research described in this chapter considers a network environment. This
is an optical network with the following set of assumptions: (a) there are multiple
transceiver pairs, (b) there are add-drop multiplexers (ADMs) in the network; the
locations and the number of ADMs are unknown, (c) each transceiver pair does not
have information of the incoming and outgoing signals in the path that connects
them. In a network environment, the signal of the UOI co-propagates with the
signals of the other transceiver pairs in the network and, in the case of WDM, is
subject to inter-user interference [79, Sec. II. B.3.]. A typical network environment
is depicted in Fig. 1.7(a). In simulations, the network environment is emulated by
multi-channel point-to-point transmissions with the Rx only having access to the
signal in the channel of interest.

5.3 Review of NFDM
We briefly review basic NFDM theory from [40]. The theory in this section ap-
plies to both focusing (sgn(β2) = −1) and defocusing (sgn(β2) = 1) regimes. The
simulations in the subsequent sections are presented only for the focusing regime.

Let qc(λ, z) : R×R+ 7→ D be the non-linear Fourier transform of q(t, z) as a
function of the non-linear frequency λ and distance z, where, in the focusing regime,
D is the complex plane C and, in the defocusing regime, is the unit disk T = {qc ∈
C : |qc | < 1}.

In the defocusing regime |qc(λ, z)| < 1. We thus introduce the following trans-
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formation to map functions with co-domain D to functions with co-domain C:

U(λ, z) = (− sgn(β2) log
(
1− sgn(β2)|qc(λ, z)|2

) ) 1
2 e j∠qc(λ,z), (5.2)

where ∠qc is the phase of qc. This eliminates the unit peak power constraint in the
defocusing regime. We use the transform (5.2) in both focusing and defocusing
regimes. In the defocusing regime, the transform is necessary so that the signal
space is a vector space. In the focusing regime it is not necessary, but it makes
signal energies in the time and non-linear Fourier domain the same, which is useful.

We define a generalized time τ that is related via the Fourier transform to the
non-linear frequency λ/2π. Let u(τ, z) ↔U(λ, z) be a Fourier transform pair, i.e.,

u(τ, z) =
√

2F −1{U(λ, z)}. (5.3)

The factor
√

2 is introduced so that the energy (computed using (4.36)) of u(τ, z),
U(λ, z), qc(λ, z) and q(t, z) are the same; see also [138, Eq. 28].

5.3.1 NFDM transmitter
Consider a multi-user system with Nu users, each having Ns symbols, with total
linear bandwidth B and total average power P. Modulation in NFDM begins by
forming

u(τ,0) =
√

2

Nu
2 −1∑

k=− Nu
2

Ns
2 −1∑

`=− Ns
2

sk
` φ(τ− `T0)e j2πkW0τ, (5.4)

where φ(τ) is chosen to be a RRC function in this work with unit energy, bandwidth
W0 and the roll-off factor r , T0 = 1/W0, {sk

`
}` are the symbols of user k at time

instance ` chosen from a multi-ring constellation Ξ; see Fig. 2.14.
Next, U(λ,0) is computed according to (5.3) and subsequently qc(λ,0) is ob-

tained as
qc(λ,0) =

(
sgn(β2)− sgn(β2)e−sgn(β2)|U(λ,0)|2 ) 1

2 e j∠U(λ,0).

Finally, we have the signal for transmission

q(t,0) = INFT{qc(λ,0)}.

5.3.2 Reducing the peak-to-average-power-ratio (PAPR)
The NFT signals often have high peak-to-average-power-ratio (PAPR) in the time
domain, requiring a large number of samples to accurately represent. We use a
simple pre-equalisation to reduce the PAPR through expanding the signal over a
wider support.
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The idea is similar to the split DBP in [158]. Recall that the NFT spectrum
evolves according to the all-pass-like filter (5.5). We multiply the NFT spectrum by
e4 jλ2l at the transmitter for a suitable l, to broaden the signal in the time domain. A
similar idea is proposed by Tavakkolnia et al. [10]. The two approaches are related
and are compared schematically in Fig. 5.1. In the simulations presented in this
work, we used our proposed PAPR reduction approach shown in Fig. 5.1, with very
small l.

z = −L/2 z = 0 z = L/2 z = L

pre-com

fibre with DPC

fibre without DPC

z = 0 z = l1 z = L z = L+ l1

pre-com

fibre without DPC

fibre with DPC

Figure 5.1: Pre-equalisation methods used (left) in [10] and (right) in Sec. 5.4.

5.3.3 Channel filter

An important property of the NFT, crucial to the communication problem, is that,
in the absence of noise, qc(λ, z) propagates in distance according to an all-pass-like
filter

qc(λ, z) = e4 j sgn(β2)λ2zqc(λ,0). (5.5)

It can be seen that signal propagation in the non-linear Fourier domain is gov-
erned by simple phase shift. Importantly, the propagation of different non-linear
frequency components is independent of one another, which is the reason that mul-
tiplexing in the non-linear Fourier domain is of interest. The input-output relation
(5.5) is similar to the linear dispersion relation in the frequency domain for the
NLSE without the non-linear term.

5.3.4 NFDM receiver

At the receiver, forward NFT is applied to obtain qc(λ, L) = NFT{q(t, L)}. Then
the channel filter (5.5) is applied to calculated the transmitted non-linear spectrum.
Subsequently, U(λ, L) and u(τ, L) can be computed using (5.2) and (5.3). The re-
ceived symbols are then obtained by matched filtering

ŝk
` =

∫ −∞

∞
u(τ, L)φ∗(τ− `T0)e− j2πkW0τdτ.
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Table 5.1: Fibre and system parameters

nsp 1.1 spontaneous emission factor
h 6.626×10−34J · s Planck’s constant
ν 193.44 THz center carrier frequency
α 0.046 km−1 fibre loss
γ 1.27 (W.km)−1 non-linearity parameter
β2 −21.5×10−27 s2/m dispersion coefficient
L 2000 km transmission distance
W 100 GHz total linear bandwidth
Ro 3 oversampling rate
Wu 20 GHz per-user linear bandwidth
Nu 5 number of users
N 214 number of samples per frame
r 0.25 roll-off factor of the raised-cosine

5.4 Comparison of the achievable rates of WDM and
NFDM

In this section, we compare the achievable rates of NFDM and WDM under the
same bandwidth and power constraints in the focusing regime of optical fibre chan-
nel with ideal distributed Raman amplifier. The material in this section is a summary
of the conference work [40].

5.4.1 AIRs of WDM and NFDM
First, a simple noiseless multi-user simulation for one signal without noise is pre-
sented to show the origin of the NFDM gain. We consider a 5-user NFDM and
5-user WDM system with the same overall linear bandwidth of 100 GHz and to-
tal signal power P = E/T , where E and T are the energy and time duration of the
(entire) multiplexed signal q(t,0). Time duration and bandwidth are defined as in-
tervals that contain 99% of the signal energy. RRC pulses with roll off factors of
25% and standard single-mode fibre with ideal distributed Raman amplification are
considered. In each channel use, only one symbol per user was transmitted. The
fibre parameters in simulation are shown in Tab. 5.1. With this set of parameters,
the average symbol duration is around 6.8 ns. The data rate in bit/s can be obtained
by simply deviding the AIRs in bit/symbol with the average symbol duration.

Fig. 5.2(a) shows a WDM signal at the transmitter (Tx) and Rx with total power
of 8 dBm (at Tx) in the absence of noise. The WDM receiver first filters the UOI
and then applies DBP to reverse the intra-channel interactions. The relative er-
ror in the frequency domain is defined as e = ‖q̃( f , z)) − q̃( f ,0)‖/‖q̃( f ,0)‖, where
q̃( f , t) = F (q(t, z)) after equalisation. The mismatch error for the UOI in WDM is
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95%. The resulting mismatch comes from the non-linear interactions that cannot
be compensated for in network environments using linear multiplexing. In contrast,
NFDM users do not interfere with one another as shown in Fig. 5.2(b). The NFDM
signals can be recovered almost perfectly with a relative error e = 10−3−10−9. The
Fourier spectra of signals in both systems are shown in Fig. 5.2(c). It can be seen
that the amount of the spectral broadening in WDM and NFDM is similar.

−50 0 50
0

0.5

1

1.5

2

f [GHz]

|F
(q
(t,

z))
|

at 0 km at 1600 km

−20 0 200.0

1.0

2.0

λ

|U
(λ,

z)|

at 0 km at 1600 km

(a) (b)

−50 0 50
0.0

1.0

2.0

3.0

f [GHz]

|F
(q
(t,

z))
|

at 0 km at 1600 km

−20 0 200

0.5

1

λ

|U
(λ,

z)|

at 0 km at 1600 km

(c) (d)

Figure 5.2: For the integrable model: (a) interference in WDM; (b) lack of interference
in NFDM; (c) Fourier spectra at distances with maximum input-output band-
widths. For the lossy model with periodic amplification: (d) interference in
NFDM. Noise is set to zero in these figures.

We now turn to the main simulations that estimate AIRs of UOI in both WDM
and NFDM. The average mutual information between the input output matrix of
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symbols (using WDM or NFDM) is

1
Ns

I({s0
` }; {ŝ0

` }) (5.6)

where {s0
`
} and {ŝ0

`
} are the transmitted and received symbols at all time indices for

user 0. For channels with memory, i.e., s` is not statistically independent of s`−k

where k = 1,2,3..., the evaluation of (5.6) is not computationally feasible. We chose
to evaluate another quantity

I(s0
0; ŝ0

0) (5.7)

that to large extent closely follows the quantity 1
Ns

I({s0
`
}; {ŝ0

`
}). The term I(s0

0; ŝ0
0)

is the per-sample AIR that could be interpreted as the MI of an optical fibre channel
that is only affected by additive noise and inter-channel interference. The following
simulations aim to gather statistics to estimate I(s0

0; ŝ0
0).

In simulation, transmitted symbols sk
`

are chosen from the points on the
positive real axis of a uniformly-spaced multi-ring constellation Ξ, introduced in
Fig. 2.14, in the U domain (leading to a geometrically-spaced constellation in the
qc domain). The constellation Ξ consists of at most 64 rings and 128 phase points
on each ring (13 bit per symbol). The reduction of signal space from an entire ring
constellation to one of its radii is a common technique to reduce the simulation time
by utilising the rotational invariance (Sec. 2.4.2) of both the channel and Ξ.

Noise is introduced in a distributed manner along the fibre. The noise band-
width is set to be the maximum of the input-output signal bandwidth corresponding
to the highest energy signal. The PSD σ2

0 of the noise arising from distributed Ra-
man amplification is the constant nsphpνα for all z and in-band frequencies, with
parameters in Tab. 5.1.

The number of samples per channel use in time, linear and non-linear spectrum
is 214. The conditional probability density function (PDF) p(ŝ0

0 |s0
0) of the central

channel s0
0 7→ ŝ0

0 is estimated using histogram (Sec. 2.4.2) based on 4500 noise
realisations. The mutual information is then maximized using the Arimoto-Blahut
algorithm (Al. 2).

The AIRs are plotted in Fig. 5.3 for the focusing regime. It can be seen that the
AIR of WDM reaches its maximum of 10 bit/symbol at a power of -4.5 dBm. In
contrast, the AIR of NFDM reaches a higher maximum of around 11.5 bit/symbol at
1 dBm. The saturation of the NFDM AIR is attributed to neglecting the stochastic
memory and the numerical error in the NFT algorithm at high powers, and the
potentially non-optimal constellation; see Sec. 5.4.2 for the explanation.

The received constellations of WDM and NFDM are compared in Fig. 5.4.
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Figure 5.3: WDM and NFDM AIRs in the integrable model and focusing regime.

On one hand, it can be seen that the WDM constellation suffers from significant
phase distortion. There is also a phase rotation, due to cross-phase modulation,
whose average is approximately γLP [5, Sec. X.C]. On the other hand, the NFDM
received constellation is similar to that in an AWGN channel [159]: the noise vari-
ances (i.e., noise ‘clouds’) are small and approximately equal. The NFDM scheme
is theoretically limited only by signal-noise interactions.
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Figure 5.4: Constellation in (left) WDM and (right) NFDM in the focusing regime.

The AIRs of NFDM and WDM in the defocusing regime [138, Fig. 6] are
qualitatively similar to the AIRs in the focusing regime.

We close this subsection by emphasizing that, the result that the NFDM-AIR
is more than WDM-AIR in Fig. 5.3 is obtained for one symbol per channel use,
namely Ns = 1, and for an integrable model with single polarisation. The AIRs
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change with Ns, as shown later in Sec. 5.5.3 for NFDM and WDM with Ns = 15. As
a result, the above conclusion remains to be verified for parameters not considered
here, particularly when Ns > 15. More NFDM system simulations with Ns > 15 will
be described in Chap. 6.

5.4.2 Stochastic memory

In the aforementioned simulations, only one symbol was transmitted in each chan-
nel use in each user. On the Rx side, symbol energy could be dispersed into the
adjacent symbols, leading to a loss of information rate. Therefore, we consider the
single-input multi-output channel s0

0 7→ {ŝ0
`
}`, where {ŝ0

`
}` denotes output symbols

for the UOI after equalisation. Using the chain rule for mutual information, we find

I
(
s0
0; {ŝ0

` }`
)
= I

(
s0
0; ŝ0

0
)
+ I

(
s0
0; {ŝ0

` }`,0
��ŝ0

0
)

︸              ︷︷              ︸
stochastic memory

. (5.8)

The stochastic memory refers to a component of the memory (signal-noise interac-
tions) that is a function of noise; namely, it vanishes when noise is set to zero. This is
the second term in (5.8) and is determined by signal-noise interactions. The stochas-
tic memory is signal-dependent, growing with the input power, and not equalised by
digital signal processing at the receiver in this thesis. A recnetly proposed neural-
network-based technique [160] has shown some promising results in combating the
stochastic memory in the integrable optical fibre channel. It would be interesting to
see the technique tested in more realistic settings.

The stochastic memory causes the symbol energy to flow from s0
0 to ŝ0

`
, ` , 0.

As |s0
0 | is increased, the stochastic memory grows because the energy in {ŝ0

`
}`,0 is

increased, leading to a smaller | ŝ0
0 |; see the outer ring in Fig. 5.4 (right) and Fig. 5.5

(right). This amounts to a reduced SNR at the receiver for the channel s0
0 7→ ŝ0

0.
Since only the first term in (5.8) is used for computing the AIR in this work, a
loss of SNR translates to a loss of AIR. Therefore, the stochastic memory, if not
accounted for, incurs a penalty on the NFDM AIR at high powers.

The stochastic memory was examined in detail in a simulation with 5 users
and (total linear) bandwidth of roughly 100 GHz. We compare the extent of the
stochastic memory in the fibre channel in the focusing regime with that in an AWGN
channel whose total noise power equals the total noise power in the fibre channel. It
is shown in Fig. 5.5 that the received symbols | ŝ0

0 | in NFDM cluster in a cloud with
a mean smaller than the transmit symbol |s0

0 |. This effect is the SNR (or energy)
loss due to the signal-noise interaction. The signal-noise interaction in the focusing
regime appears to be stronger than that in the defocusing regime.



5.5. Impact of perturbations and non-idealities 115

1.47 1.5 1.53

−5

0

5

·10−2

Re(ŝ0
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Figure 5.5: Transmitted and received (grey and black markers) symbols in (left) AWGN
and (right) NFDM, showing the SNR loss due to the stochastic memory.

The stochastic memory can be addressed by considering the single-input
multiple-output channel s0

0 7→ {ŝ0
`
}`, instead of the single-input single-output chan-

nel s0
0 7→ ŝ0

0. Such a stochastic mapping is recently modelled in [161] for ideal
distributed amplification and high SNR regime. Developing a maximum likelihood
sequence detection based on this model at the Rx can potentially stop, or at least
delay, the rolling off of the AIR of the NFDM in Fig. 5.3 at the maximum power
P = 2.7 dBm.

Note that the AIRs of different DoFs are not the same. Different users suffer
from the stochastic memory to different extent. For example, the central user in
WDM suffers more from non-linear impairments.

5.5 Impact of perturbations and non-idealities
Research on NFDM has so far presented proof-of-concepts, demonstrating NFDM
in ideal or simplified models. There remain many non-idealities and practical con-
straints, some of which are studied in this section. Specifically, we study the impacts
of the loss, periodic amplification, third-order dispersion, and polarisation-mode
dispersion (PMD).

5.5.1 Loss with periodic amplification
In the framework of NFT, it is often assumed that the fibre loss can be perfectly
compensated using distributed Raman amplification. However, many optical sys-
tems are based on lumped amplification using EDFAs. For EDFA-amplified chan-
nels, signal propagation is governed by the NLSE explained in (4.60). Lumped
amplification is performed at the end of each span of length Lsp = L/Nsp, where Nsp
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is the number of spans. After this, ASE noise is added to the signal, which is usually
modelled as a white complex circular symmetric Gaussian stochastic process, with
the well-known PSD for EDFA; see [162, Sec. 3.1.3].

To put it in the framework of NFT, we use the PA model described in (4.63).
The equation is rewritten here for convenience

∂Apa

∂z
= − j

β2
2
∂2 Apa

∂t2 + jγa |Apa |2 Apa, (5.9)

γa =
γ

αLsp
(1− e−αLsp). (5.10)

Using parameters in Tab. 5.1 and 5.2, we have γa = 0.3364 W−1 ·km−1. Clearly,
(5.9) can be normalized according to the change of variable with the scale factor
An =

√
2/(γaL) = 37.16× 10−4 W. The NFT-signals are generated using the PA-

model and transmitted in the EDFA-amplified link.

Table 5.2: Parameters of the periodic amplification model

Lsp 80 km span length
Nsp 20 number of spans
NF 4.5 dB noise figure of EDFAs
L 1600 km total length

The error between the exact model and the path-averaged model grows linearly
with distance and power [163]. It is not clear how an NFDM system designed
using the averaged model works in realistic EDFA-based systems represented by the
original model. For example, although there is no interference in the ideal model in
Fig. 5.2 (b), loss introduces interference as illustrated in Fig. 5.2 (d). To examine the
AIRs, an optical link including loss and periodic amplification was simulated using
the parameters found in Tab. 5.2 and the same method described in Sec. 5.4.1. The
WDM and NFDM received constellations with 4000 noise realisations are displayed
in Fig. 5.6. It is observed that NFDM is subject to a more phase distortion compared
with NFDM in the ideal integrable model (compare Fig. 5.6(a) with Fig. 5.4 (b)).
Nevertheless, the sizes of the noise clouds in NFDM are still smaller than those in
WDM. This improvement then translates to a higher AIR for NFDM.

The AIRs of NFDM and WDM in the focusing regime with loss and periodic
amplification are calculated with Arimoto-Blahut algorithm (Al. 2) and shown in
Fig. 5.7. Although the AIR of NFDM also rolls off at high powers (potentially be-
cause the path-averaged model breaks down at high power), it reaches a higher max-
imum than the maximum WDM AIR. We conclude that NFDM offers a marginal
peak-AIR gain of 0.41 bit/symbol, shown in Fig. 5.7, compared with WDM when
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considering an optical link with loss and lumped amplification.
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Figure 5.6: Received constellations of (left) NFDM and (right) WDM systems in the fo-
cusing regime for the non-integrable model.
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Figure 5.7: AIRs of WDM and NFDM in non-integrable models. The curves denoted by
LOSS correspond to the lossy model with periodic amplification (no PMD).
The points denoted by ALL include all perturbations (loss, PMD and third-
order dispersion).

5.5.2 Polarisation effects and higher-order dispersion
Two signals modulated in two polarisations of light may travel at different speeds
along the fibre because of the randomly varying fibre birefringence. This leads to
a different arrival time of the signals on two polarisations that is known as PMD;
see also Sec. 2.2.4. There is also third-order dispersion, which can cause temporal
broadening if the signal bandwidth is large. The impacts of the PMD and higher-
order dispersion on WDM have been well studied and understood. It is shown
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Table 5.3: polarisation and dispersion parameters

β3 0.06 ps3 ·m−1 third-order dispersion coefficient
Dp 0.1 ps/

√
km PMD parameter

`c 1 km section length `c

in [164] that the performance improvement in applying DBP to WDM saturates due
to PMD as the number of back-propagating channels is increased. On the other
hand, the impact of these effects on NFDM has not been investigated to date.

The propagation of two signals on two polarisations of light can be simulated
by the CNLSE as explained in (2.47). We write it here for convenience

∂A
∂z
=(−α

2
− β1

∂

∂t
− j

β2
2
∂2

∂t2 +
β3
6
∂3

∂t3 )A+ (5.11)

jγ
[
|A|2I− 1

3
(AHσ3Aσ3)

]
A

=(D̂+ N̂)A.

The average amount of pulse broadening due to DGD is approximately Dp
√

L,
where L is the (total) fibre length and Dp is the PMD parameter [67, 165]. NFDM
simulations were carried out in such a channel with parameters in Tab. 5.3 using the
same method described in Sec. 5.4.1. Note that at this stage, the NFT-signals on two
polarisations are generated individually using SP-INFT, instead of DP-INFT. This
choice can be justified by the reduced-complexity and undegraded performance of
such a scheme explained in [166]. Nevertheless, optical fibre communication sys-
tems based on DP-NFT will be investigated in Chap. 6.

We assume that the receiver has the channel state information. Under this
assumption, all random rotations and random DGDs during propagation are com-
pensated at the receiver in both schemes. In commercial systems, this assumption is
fulfilled by the polarisation demultiplexing algorithm such as the constant-modulus
algorithm (CMA).

In WDM, the UOI is filtered in the frequency domain in both A1 and A2

and the resulting vector is back-propagated according to (2.54). This includes
the inter-polarisation non-linearity mitigation (jointly across x and y) and the
third-order dispersion compensation. In NFDM, the UOI is also filtered in the
non-linear frequency domain and applies SP-NFT to the signal on each polarisa-
tion. Note that while the effects of β2 and γ are equalised in the non-linear Fourier
domain via the channel filter (5.5), the third-order dispersion and non-linear inter-
actions between the two polarisations act as distortions in NFDM. Fig. 5.8 shows
the received constellations for WDM and NFDM with two polarisations. The cor-
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responding AIRs are shown in Fig. 5.7. There is a performance degradation in both
multiplexing schemes compared to the single polarisation case. The AIR of the
WDM and NFDM are nearly equal when all perturbations are included.
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Figure 5.8: Received constellations of (left) NFDM and (right) WDM in the focusing
regime with PMD and third-order dispersion, in dual polarisation transmission.

We conclude that the AIR of DP transmission of two SP-INFT-signals and SP-
NFT detection subject to third-order dispersion and loss is worse the WDM AIR
with joint DP-DBP, in a system with Nu = 5 and Ns = 1. However, it has been
shown recently that if joint (de)-modulation is performed across two polarisations
in NFDM using the NFT of the two-dimensional signals, the NFDM outperforms
WDM in terms of Q-factor [133]. This technique will be explored in the next chap-
ter.

The algorithm used in this work is a simple discrete layer-peeling method de-
scribed in Sec. 4.3. More accurate algorithms exist that allow operation at higher
powers and reduce the contribution of the numerical error to the AIR, which is de-
sirable at high powers. These better algorithms, such as that in [167], likely improve
NFDM and its AIR presented in this work.

5.5.3 Spectral efficiency
In the simulations thus far, we considered one symbol per user and calculated the
data rates in bit/symbol. In this section, we estimate the SE in bit/s/Hz by transmit-
ting multiple symbols per channel use.

Numerical computation of the SE is difficult because the number of symbols
Ns should be sufficiently large so that the ratio rg between the guard-time and the
information block is small. With small rg, the SE of WDM can be equivalently
computed by considering only the main lobe of the pulse shape (e.g., a RRC func-
tion) as the symbol duration. However, with Ns = 1, we have effectively very large
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rg, it is not possible to only consider the main lobe of pulses in both WDM and
NFDM because there is no clear definition of the main lobe of such signals. In-
stead, we measure the time duration that contains 99% energy of the pulses. This
would result in a loss in SE. As Ns increases, the loss in SE is expected to dimin-
ish, providing that NFT with large Ns does not introduce too much numerical error.
Note that we do not consider signals generated by periodic NFT [157] here.

The data rates shown in Fig. 5.7 were obtained for the same time duration and
bandwidth in WDM and NFDM. As a result, the gain in SE in bit/s/Hz (ratio of
the SE of the NFDM and WDM) should be the same as the gain in AIR in bit/DoF.
Nevertheless, its is still instructive to see the absolute numbers for the approximate
SE as well. To do so we consider a system with Nu = 5 users, Ns = 15 and pa-
rameters in Tab. 5.2. The pre-compensation technique in [10] is used in NFDM to
reduce the guard time. Its effect on the waveform is shown in Fig. 5.9. The split-
DBP was applied in WDM simulations so that the signals in the two systems have
approximately the same temporal broadening.
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Figure 5.9: NFDM signals (left) with and (right) without pre-compensation.

In the multiple-symbol transmission, symbols at different time instances are
treated as independent and identically distributed random variables for simplicity.
Fig. 5.10 shows the received symbols in the NFDM and WDM system. It can be
seen that the size of clouds is bigger for Ns = 15 compared to Ns = 1. This effect
is attributed to the growth of the signal-noise interaction with the number of DoFs.
The AIRs can be again estimated from the statistics of many noise realisations. The
SEs are computed as the ratio between AIRs and the time-bandwidth product. The
SEs of the NFDM and WDM system are shown in Fig. 5.11. The WDM SE is a
little greater than NFDM SE. We attribute this to the fact that the NFT algorithm,
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as well as potentially the path-averaged loss model, become less accurate as Ns is
increased. This conjecture will be observed in numerical simulations as shown in
Sec. 6.6.
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Figure 5.10: Received symbols in NFDM and WDM with Ns = 15 at different powers.

For clarity, we also compare time duration T , bandwidth W and guard-time Tg
requirement of NFDM and WDM in Fig. 5.12. It can be seen that, for a fixed T , W
and P at the input, T and W at the output, and thus Tg, are approximately the same
in both schemes. The maximum input output time duration and bandwidth is about
the same for all values of powers, around 11 ns and 96 GHz.

A SE of 2 bit/s/Hz was reported in [168], however the distance and bandwidth
there are half of the values in this work. Doubling the distance will double the
guard-time, and also introduce more noise. Although theoretically linear and non-
linear multiplexing should require approximately the same guard-time, in practice
rg is lower for WDM because transmission is possible for larger Ns. This is, how-
ever, due to the lower complexity advantage of WDM, and not a fundamental perfor-
mance difference. The SE may be maximised by generating compact signals using
the periodic INFT [157] or the standard INFT with a modified modulation [169].
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Figure 5.12: Comparison of the time duration at the (left) input and (right) output. Here
Nu = 5 and Ns = 15. The time duration at input is Tin ≈ 2.1 ns, while Tout ≈
22.3 ns, which can be reduced to 11 ns as shown in Fig. 5.9. The temporal
expansion ratio for Ns = 15 is 10.

5.6 Comments on complexity
The computational complexity of the NFT with continuous spectrum in terms of
the number of samples N in time is O[N log2 N] [170]. Lima et al. investigated
the required number of samples in the non-linear frequency per processing frame
(resolution spectrum) in terms of the average power in the defocusing regime [167].
The processing frame is defined as the pulse duration at the Rx, which is typically
longer than pulse duration at the Tx. It is argued that a prohibitively fine spectral



5.6. Comments on complexity 123

resolution is needed at high powers for NFDM to be viable in practice. The algo-
rithm used in [167] is the discrete layer-peeling (DLP) method used in this work, but
together with applying the Gelfand-Levitan-Marchenko (GLM) integral equations
in each small step in time. It is known that such refinements of the DLP reduce the
numerical error, albeit with increased complexity.

To reduce complexity, it is desirable to minimize pulse broadening and the
inter-frame guard times. We apply the pre-equalisation proposed by Tavakkolnia
et al. (with l1 = L/2). This causes the signal to contract in the time domain as it
evolves in 0 ≤ z ≤ L/2, and subsequently broaden as it evolves in L/2 ≤ z ≤ L.
Consequently, the signal durations at the Tx and Rx are similar.

Tab. 5.4 compares the number of samples N in the non-linear frequency do-
main and Ns in NFDM and WDM for one user with an oversampling rate of 3; see
(5.4). The NFT and INFT are implemented by the basic forward and inverse DLP
algorithms in the focusing regime, whose details can be found in [171]. The com-
plexity of the DBP algorithm using the SSFM is evidently O[MN log N], where M
is the number of segments in distance. In our simulation M = 1600, corresponding
to a step size of 1 km, which is 20-30 times smaller than what is usually used. The
complexity of the two algorithms was compared in terms of the total number of
floating-point operations (FLOPs), which may depend on details of the implemen-
tations. The error Es is the symbol error defined as ‖{sk

`
} − {ŝk

`
}‖/‖{sk

`
}‖, where

{sk
`
} and {ŝk

`
} are defined in Sec. 5.3.

The NFT algorithms typically work up to a certain power before numerical
error becomes significant. Tab. 5.5 shows the maximum power that can be reached
using the basic forward and inverse DLP with pre-equalisation.

It can be concluded that the complexity of the NFT with the DLP algorithm
is substantially higher than the complexity of the fast Fourier transform (FFT), and
rapidly grows with Ns. This seems to be consistent with the findings of [167] too.
The main difference is that in [167], the complexity and the maximum power of
INFT algorithms are studied in normal dispersion fibre where the reflection coeffi-
cient is pushed exponentially close to unity with the growth of signal powers.

Note that NFDM currently requires successive NFT and INFT operations at
ADMs digitally in the electrical domain (thus requiring optical-to-electrical conver-
sion). In WDM, these operations can be done easily using optical signal processing
(without expensive optical-to-electrical conversion). As a result, NFDM is currently
impractical. Implementing NFDM using optical signal processing is an interesting
and important research direction.



5.7. Summary 124

Table 5.4: Complexity of NFDM and WDM

P[dBm] Ns N Es FLOP
NFDM 0.33 27 217 1.13% 2.23×1011

WDM 0.33 27 28 0.24% 6.93×106

NFDM -0.9 26 214 1.16% 3.49×109

WDM -0.5 26 27 0.24% 3.46×106

Table 5.5: Maximum power reached by the basic DLP

P[dBm] Ns N Es

0.33 27 217 1.13%
-0.9 26 214 1%

5.7 Summary
In this chapter, the AIRs of the WDM and NFDM were compared. It is shown
that: (i) the NFDM AIR is greater than the WDM AIR in an ideal integrable model
with five users and one symbol per user; (ii) the AIR of the independent SP-NFDM
transmission and detection (not using joint NFT) subject to third-order dispersion
and per-span loss is worse the WDM AIR with joint DP back-propagation, in a
system with five users and one symbol per user.

Simulations of five users and multiple symbols per channel use were also car-
ried out. The NFDM AIR in bit/s has not surpassed the WDM AIR. This is at-
tributed to the inefficient information modulation method used in the research de-
scribed in this chapter. In the next chapter, research will be focused on investigating
efficient modulation method to increase the AIR in NFT-based transmission sys-
tems in bit/s.



6
Dual-polarisation NFDM transmission

with b-modulation

In the previous chapter, it has been shown that in an illustrative simulation of opti-
cal fibre networks with 5 users and 1 symbol per user in each channel use, NFDM
system has achieved a higher AIR than WDM system over the simulated power
range. However, when the number of symbols Ns per channel use was increased
in simulations, the estimated SE has not been encouraging. This has led to a re-
consideration of the NFT-signal generation process. Therefore, the research in this
chapter investigated an alternative approach to modulate information on the non-
linear coefficients. The new transmission scheme, with careful optimisation of rele-
vant parameters, has achieved record-high data rates of NFT-based systems in both
simulation and experiment.

6.1 Related work
In the last few years, there has been very active research on the NFDM transmission
systems. For the simplicity, the concept of NFDM has been firstly considered for
single polarisation transmissions [140]. Many research groups have put a lot of ef-
forts in demonstrating NFDM transmission systems in experiments [150,172,173].
Many encouraging results have been reported, showing that data rates beyond
100 Gbit/s per channel can be achieved. To date, the highest data rate so far of

125
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a single polarisation NFDM transmission is 150 Gbit/s gross data rate (SE of 2.3
bit/s/Hz) over 976 km [174], which was achieved by modulating simultaneously
222 non-linear spectral components (or non-linear modes). Further increasing the
data rate requires increasing the number of modulated non-linear modes, which
has been shown to be challenging due to the non-linear cross-talks among non-
linear modes in the presence of ASE noise, fibre loss and implementation imperfec-
tions [127]. For a thorough and up-to-date review, the readers are referred to [154].
More recently, it was proposed to modulate information on b-coefficients, instead
of qc-coefficients as in Chap. 5, in order to generate time-limited SP-NFDM sig-
nals [169]. Subsequently, the experiment reported in [175, 176] showed improved
SNR of b-modulation in an SP-NFDM system. The improvement was partially
attributed to the compactness of time-domain signals generated by b-modulation,
which results in less tail-truncation. Another effective way to increase the data rate
of NFDM transmission is to extend the concept of NFDM to DP transmission. In
recent year, some proof of concept DP-NFDM transmission systems, both in sim-
ulation [133, 177] and experiments [172] have been reported. They all modulated
qc-coefficients. However, high data rate DP-NFDM transmission have not been re-
ported. Some recent results are summarised in Fig. 6.1 in terms of gross data rate.
We also categorise some recent implementations of NFDM systems in Tab. 6.1 in
terms of the type of modulation, SP or DP, and simulation or experiment.
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Figure 6.1: Gross data rate of recently implemented NFDM systems of different transmis-
sion distances in experiments and simulations.

Contributions of the research described in this chapter are threefold, i) b-
modulation was modified for DP by a transformation built upon an existing one
for SP in [115], and the scheme was compared with qc-modulation in DP-NFDM



6.1. Related work 127

Table 6.1: Categorisation of recent results of NFDM systems.

Continuous Discrete
Both

qc b qd bk

Simulation
SP [177] [147] [144]
DP [133] [178] [179] [155]

Experiment
SP [146, 173, 174] [175] [148, 152] [180]
DP [172] [176] [181] [182]

systems, showing 1 dB Q-factor improvement. This can be observed similarly
in [175, 176] for SP. To have a deeper insight about the underlying reason, we
also studied the correlations of information sub-carriers in qc-modulation and in
b-modulation via the relevant information theoretic metrics of joint and individual
entropies. A clear link has been observed between the Q-factor improvement and
the weaker correlation of sub-carriers. ii) the b-modulated DP-NFDM system was
systematically optimised for high data rate. As a result, a record net data rate of
400 Gbit/s with a SE of 7.2 bit/s/Hz was achieved in simulation over 12 spans of 80
km SSMF with EDFAs. iii) an b-modulated DP-NFDM system was demonstrated
in experiment over an optical fibre link with same parameters, achieving a data rate
of 220 Gbit/s with a SE of 4 bit/s/Hz.

The chapter is organised as follows: Sec. 6.2 describes the optical fibre chan-
nel in DP. Sec. 6.3 introduces the qc- and b-modulated DP-NFDM systems. The
optimisation of b-modulated system is carried out in Sec. 6.4. Sec. 6.5 analyses
the correlation of sub-carriers in both qc- and b-modulation. Some remarks on the
drawbacks of the proposed system and their quantification are given in Sec. 6.6.
The rest of the chapter discusses the b-modulated DP-NFDM experiment and its
relevant DSP.

Notations
The continuous DP-signals are denoted as A(t, z)= [A1(t, z) A2(t, z)]. The Euclidean
norm is represented by ‖·‖. A discrete complex random vector of length N and its
elements are both written in upper case letters, without and with subscripts, respec-
tively, e.g., X = [X1 X2 ... XN ]T . A realisation of the complex random vector is
denoted in lower case letter such as x = [x1 x2 ... xN ]T . In the case of two discrete
random vectors, double subscripts p and k are used, where p ∈ {1,2} is the vector
index and k is the element index, e.g., Xpk denotes the k-th element of the p-th
vector. Also note that, a continuous signal is always written with its dependency of
other variable, e.g., a(λ), whereas its discrete counterpart is often written in upper
case with subscripts, e.g., Ak . At last, NFT and INFT operations are denoted as
NFT(·) and INFT(·). H(·) denotes the Hilbert transform.
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6.2 The optical fibre channel model
The optical fibre channel model of concern is a multi-span point-to-point dual-
polarisation dispersion unmanaged fibre link, which can be described by the Man-
akov equation (2.54) described earlier. For convenience, we rewrite it here

∂A
∂z
+
α

2
A+ jβ2

2
∂2A
∂t2 − j

8
9
γA ‖A‖2 = 0 (6.1)

where A(t, z)= [A1(t, z) A2(t, z)] is the complex envelope of the DP-signal as a func-
tion of time t and distance z along the fibre. Tab. 6.2 lists all parameters used in this
work.

Table 6.2: Fibre and system simulation parameters

ν 193.44 THz centre carrier frequency
α 0.2 dB km−1 fibre loss
γ 1.3 (W ·km)−1 non-linearity parameter
β2 −21.5×10−27 s2/m group velocity dispersion
W 56 GHz linear bandwidth
Ro 8 oversampling rate
Lsp 80 km span length
Nsp 12 number of spans
NF 5 dB EDFA noise figure

6.3 qc- and b-modulated DP-NFDM systems
The independent evolution of b(λ) for each non-linear frequency λ motivates to
modulate the data independently over separate sub-carriers in the non-linear spec-
trum as it is done by the OFDM schemes in the classical linear channels. Therefore,
we generate an NFDM symbol in the non-linear spectrum in a similar manner of
an OFDM symbol in the (linear) Fourier spectrum. Here, we borrow the notations
from [183] to explain the generation of NFDM symbols, either in b-domain or in
qc-domain.

Consider the input and output of the inverse discrete Fourier transform (IDFT).
The input of IDFT is a complex vector x = [x1 x2 ... xN ]T of length N . Each ele-
ment xk represents the data on the corresponding sub-carrier, chosen from a given
constellation, e.g., 32-QAM in this work. The output of IDFT is a complex vector
y, representing the discrete time-domain samples. The IDFT is defined by

ym =
1
N

N−1∑
k=0

xk exp
(

j2πkm
N

)
, for 0 ≤ m ≤ N −1. (6.2)
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Correspondingly, the DFT is

xk =

N−1∑
m=0

ym exp
(− j2πkm

N

)
, for 0 ≤ k ≤ N −1. (6.3)

Upon implementation, a suitable circular shift of vectors is assumed to ensure that
the zero-frequency component of y is always at the centre of spectrum. We also
define f (x,M) as a function that adds M zeros to a vector x of length N in the
following way

f (x,M) = [0 ... 0︸︷︷︸
M/2

x1 ... xN 0 ... 0︸︷︷︸
M/2

], (6.4)

which is used later to describe the action of up-sampling and adding guard interval.

The chromatic dispersion causes temporal broadening. Thus, some guard inter-
val (GI) between NFDM symbols are necessary to avoid inter-symbol interference.
The required interval TG can be estimated by [174]

TG ≈ πW β2LspNsp = 3.75 ns, (6.5)

which depends mainly on signal bandwidth W and transmission distance LspNsp that
were both kept constant in this work (given in Tab. 6.2). Let NC denote the number
of sub-carriers in each polarisation. The pulse duration is T0 = NC/W . The total
pulse duration is T0+TG, which reduces the SE. We define η = (T0+TG)/T0, showing
the SE loss due to the GI. Note that the GI insertion is done in the generalised time
domain before the DP-INFT, as shown in Fig. 6.2(e).

Let xp = [xp1 xp2 ... xpNC ]T denote the data modulated on NC sub-carriers for
each polarisation p ∈ {1,2}. Before computing the discrete samples of the continu-
ous spectrum, we describe the action of adding GI and up-sampling

dp = IDFT{ f (xp,NC(Ro−1))}, (up-sampling) (6.6)

up =




DFT{ f (dp,NC Ro(η−1))}, η ≥ 2,

DFT{ f (dp,NC Ro)},1 < η < 2,
(adding GI) (6.7)

where Ro is the oversampling rate as in Tab. 6.2 and NC Ro(η − 1) is rounded
up to its nearest even number. Next, the discrete samples of the continuous
spectrum, in either b(λ) or qc(λ), are computed from the resulted vectors up =

[up1 up2 ... upN ]T, p ∈ {1,2} as follows: for qc-modulation schemes, the samples
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of qc(λ) = [qc1(λ) qc2(λ)] are obtained from [u1 u2] via the transformation

qc,pk =
√

e|upk |2 −1 · e j arg{upk }, p ∈ {1,2}. (6.8)

The above transformation, denoted here by Γc, is already explored for DP-NFDM
systems in [133]. For b-modulation schemes, the samples of b(λ) = [b1(λ) b2(λ)]
are obtained from [u1 u2] via a new transform

∆k =

√
1− exp

(
−|u1k |2− |u2k |2

)
/
√(
|u1k |2+ |u2k |2

)
, (6.9)

b1k = ∆k ·u1k, (6.10)

b2k = ∆k ·u2k, (6.11)

ak =
√

1− |b1k |2− |b2k |2e jH
(

1
2 log(1−|b1k |2−|b2k |2)

)
. (6.12)

The above transform, denoted here by Γb, is the natural extension of the one in-
troduced in [115] for SP-NFDM systems in the defocusing regime. Before taking
INFT, the technique of PDC is applied on the resulted continuous spectrum, either
b(λ) or qc(λ), to minimise the required GI [10]. Finally, the time-domain NFDM
signal of duration T0 +TG is generated by applying DP-INFT algorithm. At the
receiver, the DP-NFT and back-rotation equalisation are performed. Fig. 6.2 illus-
trates the transceiver digital signal processing structure and a realisation of signals
at different stages of INFT-signal generation are illustrated. Note that, for η < 2,
each signal generated by INFT has a duration of 2T0. Before transmission, the sig-
nal will be truncated symmetrically on both sides to a signal of duration T0+TG for
transmission and also recovered to the duration 2T0 by adding zeros before NFT
processing. This is due to the heuristic reason that higher spectral resolution is
needed for NFT as NC increases.

For any λ ∈ R, the constraint |b1(λ)|2 + |b2(λ)|2 < 1 specifies a 4-dimensional
unit sphere. The transform Γb facilitates the signal modulation on b-domain as
it maps the entire R4 into this unit ball. Therefore, it allows using any arbitrary
constellation format, e.g. QAM or equi-distance ring constellations without any
concern on violating the constraint on b-coefficients. However, the transform Γb has
a drawback. As shown in [169], modulating b-coefficients allows full control on the
duration of NFDM signals in time-domain. Applying non-linear transforms like Γb

causes losing this property to some extent. Nevertheless, this may not be practically
a big issue. Although the generated NFDM signal may have some undesired tails,
the tails are partially covered by the necessary long GI (specially after PDC) when
the fibre length is long enough. Note that the longer GI is, the more ASE noise
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Figure 6.2: A realisation of signal at different stages of INFT-signal generation without
pre-dispersion compensation. (a) OFDM spectrum as u1, (b) b1 spectrum when
applying the transformation Γb on u, (c) IDFT of b1 with tails due to the trans-
formation Γb, (d) time-domain signal generated by INFT wihtout PDC. (e)
Transceiver digital signal processing chains.
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Figure 6.3: Simulation diagram of (a) b- or (b) qc-modulated DP-NFDM systems. qb(t)
and qc(t) are the time-domain signals of each system.

is taken into the NFT process, causing Q-factor degradation. The optimal GI that
balances the extra ASE noise and the truncation of decaying tails is close to the
estimated TG in (6.5).

Directly modulating b-coefficients of SP-NFDM was investigated in [175,
176]. In [175], the clipping technique was applied to satisfy the constraint on b(λ).
Clipping, an non-invertible operation commonly used for the PAPR reduction in
OFDM systems [183, Sec. V-A], inevitably introduces distortion in b(τ) and can-
not lift the constraint completely. In [176], another alternative was proposed to
guarantee the constraint on b-coefficients by optimising the carrier waveform and
applying constellation shaping. The technique was applied for 9 sub-carriers. It is
of practical interest how the design complexity and the achievable SE scale for large
number of sub-carriers. Moreover, the above techniques were presented in single
polarisation. It is of interest how the joint constraint on b1(λ) and b2(λ) in DP,
which limits independent modulation of b1(λ) and b2(λ), may affect the application
of both techniques.

We demonstrate now the advantage of b-modulation over qc-modulation in a
relatively ideal case having a large guard interval η = 4 (NC = 70). The transmission
of corresponding NFDM symbols were compared in two different simulated trans-
mission scenarios: 1) the transmission over 12 spans of 80 km SSMF with EDFA
amplification as illustrated in Fig. 6.3. It was simulated by the SSFM [184] using
the parameters in Tab. 6.2. 2) the AWGN channel without fibre transmission (back-
to-back). The total additive noise powers were the same in both scenarios. Fig. 6.4
shows the clear advantage of b-modulation over qc-modulation in both scenarios.
Extra Q-factor degradation in the fibre transmission is attributed to the approxima-
tion error of the path-averaged model. The power P reported in this chapter is
always the signal power per polarisation.
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Figure 6.4: Q-factor vs. signal launch power in qc- and b-modulated DP-NFDM systems
with a large guard interval η = 4 in both AWGN case and fibre transmission.
The total additive noise powers are the same.

6.4 Optimisation of b-modulated DP-NFDM trans-
mission

Once the advantage of b-modulation is established, we optimise the b-modulated
DP-NFDM system in terms of net data rate for the transmission scenario over 12×
80 km SSMF with EDFAs, visualised in Fig. 6.3. The optimisation parameters are
the ratio η and launch power per polarisation P. The number of sub-carriers NC and
η are connected by

η = (T0+TG)/T0 = 1+WTG/NC,

where TG = 3.75 ns and W is fixed. For instance, it results in NC = 210 for η = 2.
For each pair of (η,P), the transmission of the corresponding NFDM symbols was
simulated according to the parameters in Tab. 6.2. For each NFDM symbol, the sub-
carriers were detected individually and the performance was averaged over a large
number of randomly generated NFDM symbols. To compute the SE, we estimate
the MI (of individual sub-carrier detection) by assuming the channel conditional
distribution as a Gaussian distribution [185, Sec. VI] [9]; see details in Sec. 2.4.2.
This assumption underestimates the correct MI and serves as an achievable infor-
mation rate. The SE is then computed by

SE =
MI ·NC

(T0+TG)W =MI/η (bit/s/Hz/Pol.).



6.4. Optimisation of b-modulated DP-NFDM transmission 134

We expect that decreasing η will increase SE as well as the signal-noise interaction
for a given launch power P. For different values of η, the transmission performance
metric Q-factor is plotted in Fig. 6.6(a) and SE in Fig. 6.6(b). They show respec-
tively that Q-factor decreases monotonically as η decreases, while SE reaches its
maximum at η = 1.2. Two received constellations at the power of the maximum
Q-factor and SE are also plotted in Fig. 6.6(c) and 6.6(d). For η = 1.2 (NC = 1050),
and at power P = −8 dBm per polarisation, we achieved a SE of 3.6 bit/s/Hz/pol,
resulting 400 Gbit/s net data rate, while the gross data rate is 560 Gbit/s. For the
sake of comparison, we repeat the simulation for qc-modulated DP-NFDM systems
and plotted the SE curves in Fig. 6.5.
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Figure 6.5: The impact of decreasing η on SE in qc-modulated DP-NFDM system for dif-
ferent launch powers. NC = 210/(η−1).
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6.5 Co-variance matrix of qc- and b-modulated sig-
nals

In this section, we give some insights about why the b-modulation scheme outper-
forms the qc-modulation scheme. Let us first justify verbally. As mentioned in
Sec. 6.2, there is a one-to-one correspondence between b(λ) and qc(λ) providing
that b(λ) or qc(λ) ∀λ ∈ R and all discrete eigenvalues {λm} are known. Therefore,
b(λ) ∀λ ∈ R carries the same amount of information as qc(λ) if the correlation be-
tween spectral coefficients, in either b(λ) or qc(λ) ∀λ ∈ R, can be fully exploited
and no discrete eigenvalue emerges1. The correlation could come from signal-noise
interaction, inaccuracy of the INFT-NFT algorithms, and deviations from the ideal
integrable channel model. However, our two DP-NFDM schemes have different
performance for the following reasons:

(i) The sub-carriers are detected individually, where the correlation between sub-
carriers is neglected. Strong correlations between sub-carriers cause then a
large performance degradation.

(ii) The two DP-NFDM schemes use the same modulation technique, i.e. OFDM
with 32-QAM modulated sub-carriers. Depending on the distribution of noisy
received data, this particular modulation format can be more resilient against
noise for one scheme than the other.

We focus here on the first item, the correlation between sub-carriers. We show
that the sub-carriers of b-modulated DP-NFDM system have much less correlation
than the ones of qc-modulated DP-NFDM system. To quantify all correlation coeffi-
cients with a single meaningful scalar, we use the differential entropy. We compare
two quantities: the joint entropy which takes the correlations into account and the
individual entropy which neglects the correlations. The gap between these quan-
tities reflects how much the sub-carriers are correlated and how much the net data
rate will be decreased (to some extent) by neglecting the correlations.

For both DP-NFDM systems, we numerically compute the differential en-
tropies. Let X = [X1 X2 ... X2NC ] denote the randomly chosen 32-QAM data mod-
ulated on 2NC sub-carriers (DP). Let Y = [Y1 Y2 ... Y2NC ] denote the received noisy
data of sub-carriers after the NFT processing. The joint entropy is defined as

h(Y|X) = 1
4NC
Ex (h(Y|X = x))

1The discrete eigenvalues may emerge because of non-ideal amplification or mixing with ASE
noise. However, we did not observe any significant sign of their presence in our simulations.
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where h(Y|X = x) is the entropy of received data given x, a realisation of inputs X.
Ex denotes taking expectation over all realisations of x. The individual entropy is
defined as

hΣ(Y|X) = 1
4NC
Ex

(2NC∑
i=1

h(Yi |X = x)
)

where h(Yi |X = x) is the entropy of the individual received sub-carrier Yi given the
realisation x. To compute the above quantities, we need the conditional probability
density f (Y|X). It is, however, unknown yet for NFDM systems and difficult to
estimate due to its large dimension 4NC . We approximate f (Y|X) by a complex
multivariate Gaussian distribution. We justify our choice later in Remark 1. Define
W = [Re(Y), Im(Y)], then the corresponding probability density f (W|X) is approx-
imated by a real-valued multivariate Gaussian distribution with covairance matrix
K. The element of K is defined as

ki j = E[(Wi −E[Wi])(W j −E[W j])].

In this case, the conditional entropies can be approximated as

h(Y|X = x) ≈ 1
8NC

log (det (2πeK)), (6.13)

hΣ(Y|X = x) ≈ 1
8NC

log

(2NC∏
i=1

2πekii

)
. (6.14)

We estimated K for each realisation x from the simulated data. We simulated the
fibre transmission scenario visualised in Fig. 6.3 for both DP-NFDM systems. We
set η = 2, resulting in NC = 210 sub-carriers. For each DP-NFDM system, we ran-
domly generated 20 input realisations x. For each realisation, the transmission of its
corresponding DP-NFDM symbol was simulated 214 times with different random
noise realisations. The simulation is repeated for different launch powers P. Ac-
cordingly, the above entropies are computed from the resulted in K for each input
realisation x. The entropies of each realisation x for both DP-NFDM systems at
launch power P = −3.75 dBm were calculated and shown in Fig. 6.7(a). It can be
observed that the curves have small variations for different realisations x. We finally
estimated h(Y|X) and hΣ(Y|X) by the empirical average of 20 input realisations.

The conditional entropies in terms of launch power for both DP-NFDM sys-
tems were calculated and the results are shown in Fig. 6.7(b). It can be observed
that the gap h(Y|X) − hΣ(Y|X) is smaller for the b-modulated scheme than the one



6.5. Co-variance matrix of qc- and b-modulated signals 138

for the qc-modulated scheme. It implies that the penalty of individual detection is
smaller for the b-modulated scheme. For both schemes, the increase of the gap in
terms of launch power implies that the sub-carriers becomes more correlated for
larger P. Moreover, h(Y|X) of the b-modulated scheme is not only smaller but also
has a slower growth in terms of P. It indicates that in comparison of both systems,
the co-variance matrix K of the b-modulated scheme has, on average, smaller di-
agonal elements which grow also slower in P. In plain language, the “effective
noise” contaminating b-modulated scheme has smaller power and its power grows
also slower with increasing P than the one of qc-modulation. Let us emphasise that
the constellation of both DP-NFDM systems are the same in u(λ) domain (shown
in Fig. 6.3) for a fair comparison in Fig. 6.7(b).
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Figure 6.7: Conditional differential entropy of received symbols in both qc and b-
modulated DP-NFDM systems with the assumption of Gaussian distribution,
for different transmitted symbols (a) and powers (b).
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Remark 1. To verify the validity of entropy approximations, we further applied the
entropy estimator in [11], explained in detail in Sec. 2.4.3, which can rather pre-
cisely estimate the differential entropy of a low-dimensional random variable from
its random samples. To have robust estimations, we estimated the differential en-
tropies of only 10 adjacent sub-carriers (20 real-valued dimensions). For different
input realisation x, we observed that the estimations are fairly close to the corre-
sponding entropies of the Gaussian approximation, as shown in Fig. 6.8.

Remark 2. Comparing both DP-NFDM systems in terms of correlation and con-
ditional entropy is more qualitative than quantitative. The joint MI between trans-
mitted and received data on all sub-carriers is the suitable metric to “quantify” the
performance difference of both NFDM schemes (with joint detection). The MIs
using individual detection are already compared in Sec. 6.4. However, the joint MI
requires f (Y|X) as well as the probability density f (Y). It is more challenging to
estimate f (Y) especially when the input X is drawn from a discrete constellation,
e.g., 32-QAM in our case for the following two reasons: The probability density
f (Y) is a multi-dimensional multi-center distribution, with correlation between di-
mensions. Moreover, the co-variance matrix K of f (Y|X) depends on X. Hence,
the entropy H(Y) and consequently, the estimation of MI (jointly between all sub-
carriers) much more challenging.

5 10 15 20 25 30 35 40
0

2

4

6
·10−2

index of realisations

E
rr

or
ε

hb-G hqc-G
hb-DA hqc-DA

Figure 6.8: The relative error between distribution-agnostic entropy estimator [11] and
the Gaussian entropy for 10 adjacent sub-carriers. G stands for Gaussian en-
tropy, DA for distribution-agnostic entropy estimation. For both methods, the
result of one-dimensional entropy h(Yi |x) is very close. ε =
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)/∑10

i=1 h(Yi |x).
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6.6 Some drawbacks of the current system
Based on the above simulation results, we identified two main sources of error in
our current system: ‘transceiver distortion’ in noiseless back-to-back scenario and
channel mismatch owing to its non-integrability.

6.6.1 Transceiver distortion in noiseless back-to-back scenario
The transceiver distortion includes the distortion from the entire digital signal pro-
cessing sequence shown in Fig. 6.2(e), such as the inaccuracy of the INFT-NFT
algorithm, the application of Γb and the truncation of time-domain signal. Their
overall effect can be quantified in an noiseless back-to-back simulation of the b-
modulated DP-NFDM system. Fig. 6.9 shows the Q-factor in terms of average en-
ergy per NFDM symbol for different η. The average energy of one NFDM symbol
can be calculated by P(T0 +TG) = PηNC/W . It shows clearly that the transceiver
distortion is energy-dependent.
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Figure 6.9: ‘Transceiver distortion’ in the b-modulated DP-NFDM system in the noiseless
back-to-back scenario. The average energy of NFDM symbol is calculated by
P(T0+TG) = PηNC/W .

6.6.2 Channel mismatch due to non-integrability
NFT is only exact for integrable channels. To successfully apply NFT to the non-
integrable channel (6.1), an approximation step has to be taken. To quantify the
approximation distortion, one should simulate noiseless systems in Fig. 6.3 with a
transceiver DSP that does not cause any distortion. This is unfeasible with our cur-
rent transceiver DSP because of the transceiver distortion mentioned in the previous
subsection. To adopt a different approach, we first clarify the concepts of different
DBP schemes, as DBP is the main tool in this channel mismatch quantification.
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We recall the Manakov equation (6.1). The ideal DBP refers to the process of
solving the Manakov equation to recover A(0, t) (input) from the boundary condition
A(z, t) (output), using SSFM with fine step size (0.1 km). The EDFAs are replaced
with attenuators of the opposite gain. In a single-channel scenario, the ideal DBP
should fully cancel the deterministic distortion.

We recall also the integrable path-averaged Manakov equation. The path-
averaged DBP refers to the process of solving the path-averaged Manakov equation
to recover A(0, t) from the boundary condition A(z, t), using SSFM with fine step
size (0.1 km). Since the signal propagation happens in the Manakov equation with
attenuation and EDFAs, applying path-averaged DBP inevitably causes distortion
on the recovered signal A(0, t) even in the single-channel scenario.

In single-channel scenario, if viewed as a compensation scheme, the combina-
tion of NFT, back-rotation in non-linear frequency domain, and INFT is somewhat
equivalent to the path-averaged DBP. Therefore, we propose to use the residual dis-
tortion in a noiseless non-integrable system that is compensated by path-averaged
DBP to estimate the distortion caused by channel mismatch. Fig. 6.10(a)(b) de-
scribe two noiseless systems with ideal and path-averaged DBP compensation, us-
ing the parameters in Tab. 6.2. These systems employ DP 32-QAM Nyquist signal
with 56 GHz bandwidth. In general, any signal whose transceiver DSP causes no
distortion suits the purpose. The residual distortion of the system (a) in Fig. 6.10 is
considered equivalent to the distortion caused by channel mismatch in systems of
Fig. 6.3. Fig. 6.10(c) shows that in the power range of our interest ( ≤ −0 dBm),
the distortion caused by channel mismatch (lower curve in Fig. 6.10(c)) is negligi-
ble. We also extend this analogy to a multi-channel scenario. Systems described in
Fig. 6.10 are simulated with various number of channels. The residual distortions
of the channel-of-interest (COI) are measured in terms of SNR. The residual distor-
tion can be then considered as a rough estimate of the ICI in NFDM networks. The
results are shown in Fig. 6.10(d). The estimated ICI in NFDM is weaker than ICI
in WDM with SC-DBP when Nch is larger than 15.
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Figure 6.10: (a) (b) Simulation diagram of non-integrable models. PA-DBP stands for path-
averaged DBP, IDBP for ideal DBP, COI for channel-of-interest. (c) residual
distortion of IDBP (shortened in the legend to I, preceded by total bandwidth
and followed by number of channels) and PA-DBP (shortened in the legend
to PA) systems.
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6.7 b-modulated DP-NFDM experiment
In the previous sections, the b-modulated DP-NFDM transmission system was sim-
ulated, and carefully optimised for high data rate. It was showed that the SE of
b-modulated system achieved 1.2 bit/s/Hz higher SE than qc-modulated system. In
the remaining sections of the chapter, we implemented in experiment the DP-NFDM
transmission system simulated in [186]. By developing efficient DSP, we could suc-
cessfully modulate 196 non-linear sub-carriers in each polarisation, achieving a net
data rate of 220 Gbit/s over 976 km of EDFA-based fibre link. To the best of our
knowledge, this is the highest data rate of any NFDM systems in experiment up to
date as shown in Fig. 6.1.

In the experiment, we transmit DP-NFDM signals of roughly 55 GHz (NC/T0)
linear bandwidth. Transmitted symbols are randomly drawn from a 32-QAM con-
stellation. The guard interval TG between DP-NFDM symbols is estimated by
TG ≈ πW β2LspNsp = 3.57 ns. We set the burst duration T0 = TG for simplicity (in-
stead of T0 = 5TG for maximum data rate as in Sec. 6.4). It results in Nc = 196
sub-carriers in the non-linear frequency domain. The system loses half of the SE
due to the GI. The loss can be reduced by increasing T0. We show one of the signal
realisations in Fig. 6.11.
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Figure 6.11: A realisation of INFT symbols (a) without PDC (b) with PDC.

6.7.1 Experimental setup and DSP
For the transmission experiment, at transmitter, we used four DAC and a PDM-
IQM to generate the waveform. The output signal was subsequently amplified by
an EDFA. Signals were then coupled in and out of the recirculating loop by a 50:50
coupler and travel three loops in our experiment. Each loop has three spans of
SMF-28 (Corning) and three EDFAs, making the total distance of the experiment
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Figure 6.12: Transceiver DSP chain.

975.6 km. We chose the same distance as in [174] to allow a direct comparison.
As receiver, preceded by another EDFA, an oscilloscope (DSOZ334A) with four
channels was used. The sampled data taken by the oscilloscope were saved and
processed offline. Two external cavity lasers were used as the optical carrier at the
transmitter and as the local oscillator at the receiver. The wavelength-seletive switch
(WSS) functioned as a optical band-pass filter to remove the out-of-band amplified
spontaneous emission noise. Some important experimental parameters are listed in
Tab. 6.3. The experimental setup is plotted in Fig. 6.14. In the following, we first
go through the DSP blocks in grey box in Fig. 6.12.

Table 6.3: System parameters

fibre type Corning SMF-28
DSP oversampling rate (Tx/Rx) 8

EDFA noise figure 5.5 dB
cavity laser line-width 100 kHz

DAC Effective number of bits 4.5 ∼ 5
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QPSK preamble
For synchronisation and polarisation-demultiplexing (POL-DEMUX) purposes,
single-carrier quadrature phase-shift keying (QPSK) signals (55 Gbaud RRC pulses
with roll-off factor of 0.5) are prepended to the DP-NFDM signals. The QPSK
signals occupy 4.3% of the transmission period. The choice of the preamble sig-
nal was motivated by the existence of versatile adaptive filters for polarisation-
demultiplexing (POL-DEMUX) and detection of QPSK signals. The resulted signal
in one duty cycle is illustrated in Fig. 6.13. The NFDM training sequence is to re-
move any scaling or phase rotation in the non-linear frequency domain.

QPSK
4.3%

NFDM
TS

4.08%
......

t

NFDM
Symbols
91.62%

Figure 6.13: Signal structure in one duty cycle. TS stands for training symbols.

Frequency Offset Compensation
The frequency offset compensation was done with the help of the residual carrier.
Details were described by (2.78) in Sec. 2.3.4.

Synchronisation
The QPSK preambles were used for synchronisation. The CD compensation (see
Sec. 2.3.4) is first applied to the whole signal. By calculating the cross-correlation
between the amplitude of the known QPSK ‘pilot’ and the amplitude of the CD-
compensated signal, the beginning of the DP-NFDM signal can be easily located.

POL-DEMUX
The RLS multi-sample per symbol CMA [7, Sec. V-3)] was performed on the CD-
compensated QPSK ‘pilot’ to estimate the 2×2 MIMO filter that tracks the arbitrary
polarisation rotation and compensates the residual inter-symbol interference (ISI);
see also Sec. 2.3.4 and Alg. 1. The obtained filter is then applied on the non-
compensated DP-NFDM signals. Without phase noise compensation, a ring con-
stellation is expected from the RLS-CMA.

Phase Noise Compensation
The phase noise is assumed to be perfectly tracked, and constant within one DP-
NFDM symbol. The assumption is realised by comparing the phase of the theoret-
ical waveform (from the noiseless simulation) with the received one, then average
within one symbol period. It is equivalent to compensate in the non-linear frequency
domain as e jφq(t) ↔ e− jφ{qc1(λ),qc2(λ)}.
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6.7.2 Experimental results
To verify our transceiver DSP chain, we first carried out a back-to-back experiment.
The waveforms generated by INFT for each launch power are different. In our
back-to-back experiment, however, the transmitted signal power was fixed (set by
the EDFA following IQM). We changed only the waveform, designed for a given
launch power. To collect statistics, we collect at every designed launch power 5
traces of 512 NFDM symbols, each having 196 sub-carriers. The SNRs of the re-
ceived signal can be calculated from the error vector magnitude (EVM). Fig. 6.15(a)
shows the calculated SNR and their average in terms of the designed launch power
at the receiver in the back-to-back scenario. It can be seen that, when we use the
waveforms designed for launch powers larger than −3 dBm, the measured SNR
starts to decrease. This is attributed to the reduced accuracy of INFT-NFT algo-
rithm at high power, and DAC quantisation noise.

We perform the transmission experiment over 12 spans of 81.3 km SSMF.
Waveforms were launched at their designed launch powers, and the polarisation
state is also randomly changed at the transmitter. Fig. 6.15(b) shows the calcu-
lated SNRs and their average in terms of the launch power. To compute the SE,
we estimate the MI (of individual sub-carrier detection) by assuming the channel
conditional distribution as a Gaussian distribution [9]. The net data rate and SE are
calculated from

Net rate =
MI ·Nc ·2
(T0+TG) ns

(Gb/s), SE =
Net rate
55 GHz

(bit/s/Hz). (6.15)

This net data rate can be achieved by a soft-decision capacity-approaching binary
code such as spatially coupled LDPC codes [187]. At the launch power of −1.3
dBm, the system reached its maximum net rate of 220 Gbit/s and SE of 4 bit/s/Hz.
The corresponding constellation is also plotted in Fig. 6.15(b).

6.8 Summary
The research presented in this chapter extended b-modulated SP-NFDM scheme
to DP system. Extensive simulations of the b-modulated DP-NFDM were carried
out, and the results confirmed the viability and benefits of the b-modulation in the
DP-NFDM system.

The qc- and b-modulated DP-NFDM systems were compared in terms of Q-
factor, correlation of sub-carriers, joint and individual entropy. The b-modulated
DP-NFDM system shows 1 dB Q-factor improvement over qc-modulated DP-
NFDM system due to a weaker correlation of sub-carriers and less effective noise.
Finally, the b-modulated system was optimised for higher data rate, achieving a
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Figure 6.15: Measured SNRs and their average (a) in terms of the designed launch power
in the back-to-back scenario, (b) in terms of the launch power over 12 spans of
81.3 km SMF. Below the curve is one received constellation at signal power
of -1.3 dBm, Q factor = 3.7 dB, SE ≈ 2 bit/s/Hz/pol.

record net data rate of 400 Gbit/s (SE of 7.2 bit/s/Hz) over 12× 80 km of SSMF,
amplified by EDFA.

The system design developed in the aforementioned simulations was also ver-
ified in experiment. Extra DSP blocks were added to handle frequency offset com-
pensation, synchronisation, POL-DEMUX and phase noise compensation through
a QPSK ‘pilot’ preamble. The transmission experiment demonstrated a 220 Gbit/s
b-modulated DP-NFDM system, achieving a SE of 4 bit/s/Hz. The data rate can
potentially be improved by increasing the number of sub-carrier in each DP-NFDM
symbol.



7
Thesis summary and future work

As mentioned at the beginning of the thesis, the main goal of the research de-
scribed here was to improve SE of optical fibre channel with non-linear transmission
schemes. And in particular, two questions are of interest, 1) whether it is possible
to achieve a monotonic increasing SE in the ORN, in contrast to the saturating be-
haviour shown in Fig. 1.7, and 2) if such a transmission scheme exists, whether it is
viable in practice.

The research results in the thesis presented negative evidence to these two ques-
tions, but cannot provide an absolute answer as such answers can only be given by
mathematical proofs.

The study of spectral broadening in Chapter 3 showed that, for a Gaussian pro-
cess and specific types of receivers, the upper bound on the SE of the optical fibre
channel increases monotonically with signal launch power only if the signal power
and receiver bandwidth increase at the same time, and the signal power grows at
a slightly faster rate than the signal bandwidth does. Note that the spectral broad-
ening effect is significant only in the highly non-linear regime, i.e., at powers of
roughly 6 dB higher than the optimal launch power and beyond in a multi-channel
transmission link. Although no practical system operates at such high powers, the
study remains valuable for information-theoretic analysis of the optical fibre chan-
nel capacity over all range of powers.

In Chapter 4, 5 and 6, the focus of research shifts to the study of NFT-based
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transmission schemes as they can, in theory, achieve a monotonic increasing AIR
in ORN. Initially, we demonstrated that in the simplest scenario, i.e., lossless fibre
and one symbol per channel use, NFDM outperformed WDM and showed a non-
saturating AIR over the simulated power range. Although these simulation settings
are unrealistic, they single out the important channel effects such as inter-channel
interference and channel mismatch due to non-integrability. The results can be
interpreted that if distortion-free INFT-NFT algorithms were available, an optical
network operating on NFDM would be able to outperform current WDM systems in
terms of data rate. In the subsequent simulations with multiple symbols per channel
use, the NFDM system did not show any benefit over conventional WDM system.
This was attributed to the inefficient modulation method used to generate the NFT-
signal.

To tackle the inefficient modulation method, we adopted the dual polarisation
(DP) NFT-INFT and the so-called b-modulation, and successfully increased the
AIR and SE of an NFT-based transmission system over 12 spans of 80 km optical
fibre link amplified by EDFAs to 400 Gbit/s and 7.2 bit/s/Hz in simulations and 220
Gbit/s and 4 bit/s/Hz in experiments. To put the results into perspective, one should
look at Fig. 1.7 and Fig. 6.1, and see that although the data rate of the proposed
NFT-based system is the highest among all existing NFT-based systems, it is still
below the AIR of conventional WDM system with single-channel DBP.

The AIR of current NFT-based transmission schemes is limited mainly for two
reasons. Firstly, the transceiver distortion introduced by the inaccuracy of INFT-
NFT algorithms is much larger than conventional DSP chains at high signal pow-
ers, despite that the INFT-NFT algorithm already operates at a significant higher
oversampling rate than conventional DSPs. This is similar to one of the difficul-
ties faced in multi-mode fibre communication systems where high-complexity DSP
schemes are needed. Secondly, based on my estimation, the distortion introduced
by channel-mismatch is also severe. Currently, there is no DSP technique that can
cancel the channel mismatch and the problem appears to be only solvable through
installation of new optical fibre infrastructure. Similar requirement is encountered
in any spatial-division multiplexing scheme.

Admittedly, NFT-based transmission schemes are still facing great challenges
in many aspects, and the possibility of their implementation in commercial sys-
tems is very much debatable. However, NFT-based transmission is also a relatively
young research topic and requires more research until it is fully understood.

For further investigations into the NFT-based transmission schemes, the fol-
lowing directions have been identified:

Impact of distributed Raman amplifier on NFT-based transmission schemes
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It has been shown in Sec. 6.6.2 that the distortion introduced by channel mismatch
due to non-integrability in NFDM is larger than the WDM inter-channel interfer-
ence in an EDFA-amplified optical fibre link when the number of channels is lower
than 15. Therefore, alternative amplification methods that are closer to the ideal
lossless optical fibre and yet still practically deployable should be considered in the
future research, such as the distributed Raman amplification.

The path-average (PA) model for optical fibre links with distributed Raman
amplifiers was examined in [156]. With this PA model and the b-modulated DP-
NFT scheme proposed in this thesis, it would be interesting to see, in simulation and
experiment, whether higher data rate could be achieved. In addition, one can use the
method developed in Sec. 6.6.2 to estimate the distortion from channel mismatch in
large-scale NFDM networks.

Develop of INFT-NFT algorithms of high accuracy
The most critical building block of a NFT-based transmission system is the INFT-
NFT algorithm. As shown in Fig. 6.9, the INFT-NFT algorithm used in this thesis
introduced significant distortion at high signal powers in spite of the high over-
sampling rate. It is desirable to have an INFT-NFT algorithm that can operate at
moderate oversampling rate and still provide acceptable accuracy at high signal
powers. There has been progress in the development for accurate and fast NFT
algorithms with high-order integrator [188], but none for the INFT. Developing a
low-complex and accurate INFT-NFT algorithm would be the most important step
for the advancement of NFT-based transmission systems.

Drawing on the history of Fourier transform, we see that it is actually the dis-
crete Fourier transform of a discrete signal that are used in all signal analysis, not the
discretised calculation of the original Fourier transform in the form of an integral.
The assumption that the signal is periodic and the Nyquist sampling theorem guar-
antee that the original continuous signal is fully equivalent to the discrete version.
Perhaps a non-linear Nyquist sampling theorem is needed for further development
of efficient INFT-NFT algorithms. In retrospect, INFT-NFT successfully transfers
the non-linearity in the optical fibre channel to the transceiver, albeit not making the
treatment of non-linearity any easier. Instead of developing a non-linear channel
model for linearly-generated signals, one can focus on the non-linear signal gener-
ation process. To this end, the related questions could be: What are the properties
of the non-linear-band limited signal in time domain? How to sufficiently represent
such a signal with discrete samples? Is the non-linear spectrum of an AWGN still
an AWGN?

Optical add-drop multiplexer in the non-linear frequency domain
One important optical component of a WDM optically routed network is the
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optical add-drop multiplexing (OADM). The device adds or drops channels in cer-
tain wavelength without optoelectronic conversion. Similarly, to build a NFDM
network in scale, one would naturally need an OADM that adds and drops chan-
nels in certain non-linear frequency band without optoelectronic conversion. How-
ever, [189] is probably the only work that addresses the optical signal processing
in the non-linear frequency domain. Although the proof-of-concept system is en-
couraging, it only operates on the discrete spectrum. It is still far away from an
functional non-linear OADM.

The development of a non-linear OADM would be an incredibly innovative
and difficult task. It would also enable us to potentially move the digital NFT signal
processing completely to the optical domain. Therefore, research in this direction
should be highly encouraged.



A
Probability distribution of a random

variable

In this chapter, we explain the definition of the probability distribution of a random
variable in both discrete and continuous cases and some related concepts. The main
reference used here is the book [190]. For a rigorous description of probability
theory, one should start with measure theory [191]. But it does not bring any benefit
to the development of ideas in the thesis.

A.1 Probability distribution of a discrete random
variable

A random variable Y is said to be discrete if it can assume only a finite or countably
infinite number of distinct values. The probability that Y takes on the value y, often
denoted as P(Y = y), is defined as the sum of the probabilities of all sample points
that are assigned the value y.

The probability distribution for a discrete random variable Y can be represented
by a formula, a table, or a graph that provides p(y) = P(Y = y) for all y.

For any discrete probability distribution, the following must be true:

• 0 ≤ p(y) ≤ 1 for all y.
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•
∑

y p(y) = 1, where the summation is over all values of y with non-zero prob-
ability.

Then, the expected value of such a discrete random variable Y , often denoted
as E[Y ], is defined to be

E[Y ] =
∑
y

yp(y). (A.1)

A.2 Probability distribution of a continuous random
variable

Before we can state a formal definition of a continuous random variable, we must
define the the cumulative distribution function of any random variable.

Let Y denote any random variable. The cumulative distribution function of
Y , denoted by F(y), is such that F(y) = P(Y ≤ y) for −∞ < y < ∞. If F(y) is a
cumulative distribution function, then the following must be true:

• F(−∞) = limy→−∞F(y) = 0.

• F(∞) = limy→∞F(y) = 1.

• F(y) is a non-decreasing function of y.

We can now formally define a continuous random variable. A random variable
Y with the cumulative distribution function F(y) is said to be continuous if F(y)
is continuous, for −∞ < y < ∞. For a continuous random variable, the probability
density function is defined as

f (y) = dF(y)
dy

= F′(y), (A.2)

wherever the derivative exists. For such a density function of a continuous random
variable, the following are true:

• 0 ≤ f (y) for all y, −∞ < y <∞.

•
∫ ∞
−∞ f (y)dy = 1.

The expected value of a continuous random variable can be defined as

E[Y ] =
∞∫

−∞
y f (y)dy, (A.3)

provided that the integral exists.



B
Power spectral density

Let y(t) be a complex-valued zero-mean stochastic process. The autocorrelation
function of y(t) is defined as

R(t1, t2) = E
[
y(t1)y∗(t2)

]
. (B.1)

If a stochastic process y(t) is strongly stationary, then

R(t) = E[y(t0)y∗(t0− t)], (B.2)

for any reference point t0.

The first definition of power spectral density (PSD) S(ω) can be stated as the
Fourier transform of the autocorrelation function [192]

S(ω) =
∞∫

−∞
R(t)e−iωt dt. (B.3)

The second definition of PSD starts with a truncated continuous-time stochas-
tic process

yT (t) = y(t) rect(t/T) =


y(t), |t | ≤ T/2,
0, |t | > T/2.

(B.4)
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The Fourier transform is

F (yT (t)) =
∫ ∞

−∞
yT (t)e− j2π f t dt, T <∞. (B.5)

Using Parseval’s theorem and dividing both side by T ,

1
T

∫ T/2

−T/2
|yT (t)|2dt =

1
T

∫ ∞

−∞
|F (yT (t))|2df (B.6)

If we let T approach infinity, the left side becomes the average power over all time.
On the right side, the Fourier transform is not defined in that limit. But it can be
shown that even though the Fourier transform does not exist, its expected value
does. Then

E

[
1
T

∫ T/2

−T/2
y2

T (t)dt
]
= E

[
1
T

∫ ∞

−∞
|F (yT (t))|2df

]
, (B.7)

taking the limit as T approaches infinity,

lim
T→∞

1
T

∫ T/2

−T/2
E

[
y2

T (t)
]
dt = lim

T→∞
1
T

∫ ∞

−∞
E

[
|F (yT (t))|2

]
df ,

=

∫ ∞

−∞
lim

T→∞
E

[ |F (yT (t))|2
T

]
df . (B.8)

The integrand on the right side is identified as PSD

S( f ) = lim
T→∞
E

[ |F (xT (t))|2
T

]
. (B.9)

The two definitions (B.3) and (B.9) are equivalent under the mild assumption
that the autocorrelation function R(t) decays sufficiently fast, so that

lim
T→∞

1
T

∫ T/2

−T/2
|t | |R(t)| = 0. (B.10)



C
The Gaussian Noise model

Recall the first-order perturbation solution of NLSE in the frequency domain de-
rived earlier in (2.31)

Ã(1)(z,ω) =e(−
α
2 + j β2ω

2
2 )z

{
Ã(0,ω)+

jγ

∞∫
−∞

∞∫
−∞

∞∫
−∞

H(Ω123ω, z)Ã(0,ω1)Ã(0,ω2)Ã∗(0,ω3)δ123ωdω123

}
, (C.1)

where

H(Ω123ω, z) = e−zα+ j zΩ123ω −1
−α+ jΩ123ω

, (C.2)

Ω123ω =
β2
2
(ω2

1 +ω
2
2 −ω2

3 −ω2). (C.3)

We denote the PSD as S(z,ω) and calculate it according to its second definition
with the Gaussian assumption on the input signal Ã(0)(0,ω) [56, Eq. (27)]. To save
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space, we replace Ã(0)(0,ω) with Ã(ω) in the following derivation

S(z,ω)GN = E

[
Ã(1)(z,ω)Ã(1)∗(z,ω)

]

=e−αzE

[
| Ã(ω)|2

]
+

2e−αzγ

∞∫
−∞

∞∫
−∞

∞∫
−∞
R

[
jH(Ω123ω, z)E

[
Ã(ω1)Ã(ω2)Ã∗(ω3)Ã∗(ω)

]
δ123ω

]
dω123+

e−αzγ2
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞
|H(Ω123ω, z)|2×

E

[
Ã(ω1)Ã(ω2)Ã∗(ω3)Ã∗(ω′1)Ã∗(ω′2)Ã(ω′3)

]
δ123ωδ1′2′3′ωdω1231′2′3′ . (C.4)

With the Gaussian assumption on the input spectrum components, the 4-point mo-
ments break down to

E
[
Ã(ω1)Ã(ω2)Ã∗(ω3)Ã∗(ω)

]
δ123ω = E

[
| Ã(ω1)|2

]
E

[
| Ã(ω2)|2

]
(δ13δ2ω + δ1ωδ23).

(C.5)
The second term on the r.h.s of (C.4) is supported on the trivial subset (ω1 =

ω3, ω2 =ω) and (ω1 =ω, ω2 =ω3), where jH(Ω123ω, z) is purely imaginary. Hence,
it should be zero.

Furthermore, due to the Gaussian assumption, the 6-point moments break
down to

E

[
Ã(ω1)Ã(ω2)Ã∗(ω3)Ã∗(ω′1)Ã∗(ω′2)Ã(ω′3)

]
δ123ωδ1′2′3′ω

=E

[
| Ã(ω1)|2

]
E

[
| Ã(ω2)|2

]
E

[
| Ã(ω3)|2

]
(δ11′δ22′ + δ12′ + δ21′)δ33′ . (C.6)

Substituting (C.6) into (C.4), we obtain

S(z,ω)GN =e−αzS(0,ω)+

2e−αzγ2
∫
|H(Ω123ω, z)|2S(0,ω1)S(0,ω2)S(0,ω3)δ123ωdω123. (C.7)
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