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Abstract. Metric learning learns a distance metric from data and has
significantly improved the classification accuracy of distance-based clas-
sifiers such as k-nearest neighbors. However, metric learning has rarely
been applied to categorical data, which are prevalent in health and social
sciences, but inherently di�cult to classify due to high feature ambi-
guity and small sample size. More specifically, ambiguity arises as the
boundaries between ordinal or nominal levels are not always sharply
defined. In this paper, we mitigate the impact of feature ambiguity by
considering the worst-case perturbation of each instance and propose
to learn the Mahalanobis distance through adversarial training. The
geometric interpretation shows that our method dynamically divides
the instance space into three regions and exploits the information on
the “adversarially vulnerable” region. This information, which has not
been considered in previous methods, makes our method more suitable
than them for small-sized data. Moreover, we establish the generalization
bound for a general form of adversarial training. It suggests that the
sample complexity rate remains at the same order as that of standard
training only if the Mahalanobis distance is regularized with the elemen-
twise 1-norm. Experiments on ordinal and mixed ordinal-and-nominal
datasets demonstrate the e↵ectiveness of the proposed method when
encountering the problems of high feature ambiguity and small sample
size.

Keywords: Metric learning · Categorical data · Adversarial training.

1 Introduction

The k-nearest neighbors (kNN) algorithm is a classical and widely used clas-
sification method by virtue of the nonparametric nature, interpretability, and
flexibility in defining the distance between instances [6]. As a discriminative dis-
tance function can boost kNN’s performance, the idea of learning a task-specific
metric from the data was pioneered in [33], which formulates the task of learning
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a generalized Mahalanobis distance as a convex optimization problem. Thereafter,
many global [31], local [30], kernelized [25] and deep [16] metric learning methods
have been proposed to further improve the discriminability. While these methods
are e↵ective, they have rarely been applied to data with ordinal and nominal
features.

Ordinal and nominal variables (i.e. features) are subsumed under the data
type of categorical variables that have measurement scales consisting of a set of
categories [1]. Categorical variables with ordered scales are called ordinal variables
and the ones with unordered scales are called nominal variables. For example,
when collecting a film survey, the audience review (poor, fair, good, excellent) is
an ordinal variable; the genre of favorite films (action, comedy, drama, horror) is
a nominal variable. Both types of variables occur frequently in social and health
sciences and also arise in education and marketing.

Classifying ordinal and nominal variables faces at least the following three
challenges. First, a simple way of representing these variables is to encode them
as integers and then treat them as real-valued continuous variables. However,
for an ordinal variable, the di↵erence between two integers does not necessarily
reflect the distance between the two ordinal levels, and for a nominal variable, the
di↵erence between two integers is meaningless for two nominal levels. Another
way of representing ordinal and nominal variables is to encode each categorical
variable into a set of binary variables, such as through dummy coding. This
conversion avoids the above problems, and allows for the modeling of interactions
between di↵erent levels of the variable. However, it inevitably increases the feature
dimension, and the e↵ect is dramatic when each variable has a large number of
levels. The second challenge is the ambiguity in ordinal variables. For example,
in the example of audience review, the boundaries between levels such as ‘good’
and ‘excellent’ are not sharply defined, thereby causing ambiguity. This issue
is less common in nominal variables, but it still appears when some categories
have overlapping characteristics. Third, for economic and ethical reasons, the
categorical data collected in social and health sciences often have a small sample
size. This places a restriction on model complexity since a complex model may
overfit and generalize poorly to unseen data.

This paper focuses on adapting metric learning methods for ordinal and
nominal features that could work on both types of encoded data, i.e. as integer
variables and as dummy variables, and address the feature ambiguity and small-
sized problems. Firstly, to mitigate the impact of feature ambiguity, we propose
to consider the worst-case perturbation of each instance within a deliberately
designed constraint set and learn the distance metric via adversarial training.
The constraint set takes into account the discrete nature of nominal variables
and the ordering nature of ordinal variables. Secondly, we provide a geometric
interpretation of the proposed formulation, which suggests that our method
dynamically divides the instance space into three regions, namely support region,
adversarially vulnerable region, and adversarially robust region. Compared with
classical metric learning methods which only uses information on the support
region, our method additionally uses information on instances from the adversar-
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ially vulnerable region, thereby coping better with the small sample size problem.
Thirdly, we prove the generalization bound for a general form of adversarial
training. It guarantees that, when regularizing the Mahalanobis distance with
the elementwise 1-norm, the sample complexity rate of the proposed method
remains at the same order as that of classical methods. Finally, the method is
tested on datasets with all ordinal variables and with a mixture of ordinal and
nominal variables. It surpasses state-of-the-art methods in cases of high feature
ambiguity and small sample size.

2 Related Work

This section briefly reviews distance metrics for categorical data and metric
learning methods that consider feature uncertainty.

Distance metrics for categorical data Various distance or similarity measures are
proposed for categorical data, mostly for nominal data, in an unsupervised setting.
The most common measure is overlap, which defines the similarity between two
instances x1,x2 on the ith feature to be 1 if their values are equal and 0 otherwise.
Summing up the similarities over all features defines the distance between x1 and
x2. Based on overlap, many probabilistic or frequency-based measures have been
proposed to assign di↵erent weights on matches or mismatches, as well as taking
into account the occurrence of other feature values [2]. Another class of measures
are based on entropy, where the distance contribution of each categorical level
depends on the amount of information it holds. Entropy-based measures have
been extended in [36] to quantify the order relation of ordinal variables.

In a supervised setting, non-learning approaches use the label information
to determine the discriminative power of each feature and adjust the feature
weights in distance calculation accordingly [9]. Learning approaches learn the
distance between each pair of categorical levels or a mapping function from each
level to a real value by minimizing the classification error [8, 32]. More recently,
large margin-based metric learning methods have been adapted for ordinal and
nominal variables [23, 37]. Building on the assumption that an ordinal variable
represents a continuous latent variable that falls into an interval of values, [23]
jointly learns the Mahalanobis distance, thresholds of intervals, and parameters
of the latent variable distribution. As the number of thresholds is determined by
the number of variables and levels within them, the method may involve a large
number of parameters and su↵er from overfitting. [37] represents the categorical
data by computing the interaction between levels, between variables, and between
variables and classes, followed by learning the Mahalanobis distance in a kernel
space. However, it ignores the natural ordering of ordinal variables.

Metric learning with uncertainty In most metric learning methods, a Mahalanobis
distance is optimized such that similar instances become closer with respect to
the new metric and dissimilar instances become farther away. As the optimization
process is guided by the side information, its e↵ectiveness degrades in the presence



4 X. Yang et al.

of label noise, outlier samples, and feature uncertainty. Compared with outliers (or
influential points in the statistics literature) which account for a small proportion
of instances but severely influence the model, feature uncertainty, possibly ensued
from ambiguity in the definition of set boundaries, measurement and quantization
errors, and data processing of repeated measurements, normally appears as
small perturbations but potentially pollutes a large number of instances [26].
Many robust metric learning methods have been proposed to tackle the above
problems [29, 27, 28], and here, we only discuss those on feature uncertainty.

One way to handle feature uncertainty is to build an explicit model of
perturbation [34, 22]. [34] assumes a perturbation distribution of each instance,
replaces the Mahalanobis distance by its expected value, and iteratively learns the
distribution and distance metric by minimizing the number of violations of triplet
constraints. The method essentially adjusts the constraint on distance margin for
each triplet according to its reliableness. Another approach is to learn a distance
metric that is less sensitive to feature uncertainty via adversarial training [7,
12]. The method involves two stages. The confusion stage generates adversarial
pairs that incur large losses, and the discrimination stage optimizes the distance
metric based on these augmented pairs. Originating from robust optimization [17,
24], adversarial training has received considerable attention in recent years as
an e↵ective approach to achieving robustness to adversarial examples [20]. In
addition, adversarial training is shown to improve the classification accuracy when
there is only a limited number of instances available to train the model [3]. While
our method shares a similar principle, it di↵ers from existing adversarial metric
learning methods in two respects. Firstly, we take the subsequent classification
mechanism into consideration when searching for the worst-case perturbation.
Derived from triplet constraints, the perturbation is capable of altering the
decision of NN classifier. Secondly and more importantly, the loss function in our
proposal is designed specifically for ordinal and nominal features with an explicit
consideration of their discrete and ordering nature.

3 Methodology

In this section, we propose to model feature ambiguity as a perturbation to
the instance and learn the Mahalanobis distance via adversarial training. After
introducing notations, we will present the method and its optimization algorithm,
followed by a geometric interpretation and a generalization analysis.

3.1 Preliminaries

Let zn = {zi = (xi, yi), i = 1, . . . , n} denote the training set, where xi 2 X is
the ith training instance associated with label yi 2 Y = {1, . . . , C}; zi 2 Z is
independently and identically distributed according to an unknown distribution
D. Suppose each instance includes p features, pord of which are ordinal variables
and p

nom = p� p
ord are nominal variables. Ordinal variables can be encoded as

consecutive integers or as a set of binary values. In the integer case, a variable with
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pr levels takes values from {1, 2, . . . , pr}, and the mapping should follow the order
relation. In other words, for ordinal levels O1 � O2 � · · · � Opr with an order
relation �, there is a mapping function O such that O(Oq) = q, q = 1, . . . , pr. In
the binary-valued case, ordinal variables are encoded via the OrderedPartitions

method [15, 23]. For example, an ordinal variable with 3 levels will be encoded as
[1,0,0], [1,1,0] and [1,1,1]. Nominal variables are encoded via the 1-of-K encoding
scheme. For example, a nominal variable with 3 levels will be encoded as [1,0,0],
[0,1,0] and [0,0,1]. Let P denote the feature dimension after encoding, which

equals p
ord +

Ppnom

r=1 pr if ordinal variables are encoded as integers and equalsPp
r=1 pr if they are encoded as a set of binary values.
In this paper, we focus on learning the Mahalanobis distance from triplet-

based side information. For any two instances xi,xj 2 RP , the generalized
(squared) Mahalanobis distance is defined as

d
2
M (xi,xj) = (xi � xj)

TM(xi � xj)

where M 2 SP+ is a P ⇥ P real-valued positive semidefinite (PSD) matrix.
A classical triplet-based metric learning method is the large margin nearest
neighbors (LMNN) algorithm [31]. It pulls k nearest same-class instances closer
and pushes away di↵erently labeled instances by a fixed margin through optimizing
the following objective function:

min
M2SP+

(1�µ)
X

(xi,xj)2S

d2M (xi,xj)+µ
X

(xi,xj ,xl)2R

⇥
1 + d2M (xi,xj)� d2M (xi,xl)

⇤
+
, (1)

where [a]+ = max(a, 0) for a 2 R; µ is the trade-o↵ parameter; and

S =
�
(xi,xj) : xj 2 {kNNs with the same class label of xi}

 
,

R =
�
(xi,xj ,xl) : (xi,xj) 2 S, yi 6= yl

 
.

(2)

xj is termed the target neighbor of xi and xl is termed the impostor.

3.2 Metric Learning with Adversarial Training (MLadv)

The objective function of LMNN (Eq. 1) can be interpreted as minimizing
a linear combination between the empirical risk

1
n

Pn
i=1 `(x, y;M) and the

regularizer on M ; the hinge loss ` of [1 + d
2
M (xi,xj)� d

2
M (xi,xl)]+ separates

target neighbors and impostors by a unit margin, and the regularizer is chosen
as

P
(xi,xj)2S d

2
M (xi,xj). To address the issue of feature ambiguity faced by

ordinal and nominal variables, we propose to model the unknown ambiguity as
a perturbation of xi. Instead of the hinge loss, we consider the worst-case loss
within a certain perturbation range and minimize the adversarial empirical risk :

min
M

1
n

nX

i=1

max
�2�

`(x+ �, y;M). (3)

� denotes the perturbation and its form is specified by set �. The optimal solution
to the inner maximization problem is termed the worst-case perturbation and
denoted by �?.
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To fit ordinal and nominal variables, we need to incorporate their properties
when defining the perturbation set �. A typical choice of � is the set of `p-
bounded perturbation, i.e. k�kp  ", with p = 1, 2,1. However, a non-integer
real-valued " is not suitable for ordinal and nominal variables as it ignores the
discrete nature of nominal variables and the ordering nature of ordinal variables.
Therefore, we restrict � via the following two conditions: i) k�k1 = 1; and ii)
k�k1  ", " 2 N. Since the loss function is linear in � as shown in Eq. 1 of
Appendix A, the first condition guarantees that the perturbed instance remains
as an integer or a binary value. More crucially, the magnitude of one aligns with
the source of feature ambiguity, which arises from non-rigorously defined set
boundaries. In the example of film survey, the perturbation from ‘good’ to ‘fair’
matches the real-world decision-making process whereas replacing ‘good’ by ‘bad’
dramatically changes the original information. The second condition controls the
level of perturbation. Integrating these two conditions, the perturbation � can
change at most " features of each instance.

To train the Mahalanobis distance, we form triplet constraints from both
original and perturbed instances [14], and apply di↵erent loss functions to these
triplets. For the original triplets, we adopt the loss function of LMNN and change
the unit distance margin to an adjustable quantity ⌧ . As we shall discuss in
Sec. 3.4, ⌧ determines how the instance space is divided into the support region
and the adversarially vulnerable region. If the distance margin is satisfied by the
triplet (xi,xj ,xl), we will proceed to add perturbation to the instance xi. For the
perturbed triplets, we adopt the perceptron loss [18]. Although the perceptron
loss is rarely used in metric learning due to the lack of distance margin, it is
sensible in our setting since the perturbation itself can serve as a margin in the
instance space.

Integrating the above design of perturbation set and loss functions, we propose
the following objective function for metric learning through adversarial training
(MLadv):

min
M2Sd+

�kMk1+
µ
|R|

X

(xi,xj ,xl)2R

h
⌧ + d2M (xi,xj)� d2M (xi,xl)

i

+

+
1� µ
|R|

X

(xi,xj ,xl)2R

1[d2M (xi,xl) > d2M (xi,xj) + ⌧ ]

·
h

max
�i:k�ik1=1,k�ik1"

{d2M (xi + �i,xj)� d2M (xi + �i,xl)}
i

+
,

(4)

where |R| denote the numbers of triplets in the set R; 1[·] is the indicator function
which equals 1 if the condition is satisfied and 0 otherwise. The elementwise 1-norm
(hereinafter abbreviated to L1-norm), i.e. kMk1 = kvec(M)k1 =

PP
m,n=1 Mmn,

is used to regularize the complexity of the distance matrix. As proved in Sec. 3.5,
this choice of regularizer is essential to guarantee that the number of samples
required for the adversarially trained metric to generalize has the same order
as that for the standard metric. � > 0 is a trade-o↵ parameter between the
regularization term and the loss function, and µ 2 [0, 1] balances between the
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influence from original instances and perturbed instances. The triplet set R is
constructed in the same way as LMNN, i.e. according to Eq. 2.

3.3 Optimization Algorithm

According to the Danskin’s theorem [21], the gradient of the maximum of a
di↵erentiable function is given by the gradient of the function evaluated at the
maximum point, i.e.

rM max
�2�

`(x+ �,y;M) = rM `(x+ �?,y;M),

where �? = argmax�2� `(x+ �,y;M); r denotes the gradient. Therefore, we
solve the optimization problem (Eq. 4) by first deriving a closed-form solution to
the inner maximization problem and then updating M via the proximal gradient
descent algorithm.

The solution to the worst-case perturbation �?i can be obtained as follows: let
�?i = argmax�i:k�ik1=1,k�ik1"{d

2
M (xi + �i,xj)� d

2
M (xi + �i,xl)}, then

�?
i,[k] =

8
<

:
sign(Mk·(xl � xj)) if k 2 argmax"

a=1,··· ,P
|Ma·(xl � xj)|

0 otherwise
, (5)

where �?i,[k] denotes the kth element of the vector �?i ; Mk· denotes the kth row

of M ; argmax" denotes the set of largest " elements of a vector; sign(v) applies
the sign function to each element of the vector v and |v| calculates elementwise
absolute values. Detailed derivation is given in Appendix A.

Since the L1-norm regularization introduces a non-smooth function, the
proximal gradient descent algorithm is adopted to optimize M in three steps. In
the gradient descent step, M is updated as

M t+ 1
3 = M t � ⌘trM |Mt

rM =
µ
|R|

X

R

↵ijl(Xij �Xil) +
1� µ
|R|

X

R

(1� ↵ijl)↵
?
ijl(X

?
ij �X?

il)
(6)

where
P

R is an abbreviation for
P

(xi,xj ,xl)2R; ↵ijl = 1[⌧ + d
2
M (xi,xj) �

d
2
M (xi,xl)], ↵?

ijl = 1[d2M (x?
i ,xj) � d

2
M (x?

i ,xl)]; x?
i = xi + �?i ; Xij = (xi �

xj)(xi � xj)T ,X?
ij = (x?

i � xj)(x?
i � xj)T , and Xil,X?

il are defined similarly.
The learning rate ⌘t decays during training according to the exponential function
exp(�0.99(1 + 0.01t)). Next, we compute the proximal mapping for the L1-norm
regularization, which is equivalent to applying the soft-thresholding operator to
M t+ 1

3 :
M

t+ 2
3

mn = sign(M
t+ 1

3
mn )[|M t+ 1

3
mn |� �⌘t]+. (7)

Finally, M is projected onto the cone of PSD matrices via eigendecomposition:

M t+ 2
3 = V ⇤V T

M t+1 = V max(⇤, 0)V T .
(8)
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The optimization algorithm for the proposed method is summarized in Algorithm 1
of Appendix C.1.

We now analyze the computational complexity of the proposed method. MLadv
has the same computational complexity as LMNN in calculating the distance of
each triplet, performing gradient descent, and projecting onto the PSD cone; their
total complexity equals O(P 3 + nP

2 + |R| ·P ), where P is the feature dimension
after variable encoding, n is the number of training instances, and |R| is the
number of triplet constraints. The extra cost results from the sorting operation
used to find the worst-case perturbation and the soft-thresholding operation used
to perform the L1-norm regularization. The time complexity of the sorting step
is O(P 2 logP ) and that of the soft-thresholding step is O(P 2). Overall, the time
complexity of MLadv per iteration is O(P 3 + P

2 logP + nP
2 + |R| · P ).

3.4 Geometric Interpretation

We now provide a geometric interpretation for better understanding the e↵ect of
perturbation.

To start with, we rewrite the gradient of Eq. 6 by plugging in the worst-case
perturbation derived in Eq. 5:

µ
|R|

X

R

1[d2M (xi,xl)  ⌧ + d2M (xi,xj)](Xij �Xil) (9)

+
1� µ
|R|

X

R

1[d2M (xi,xj) + ⌧ < d2M (xi,xl)  d2M (xi,xj) + 2kMxljk1,["]](X?
ij �X?

il),

where kMxljk1,["] =
P

max" |M (xl�xj)| is the sum of " largest absolute values
in the vector [M1·(xl � xj), · · · ,MP ·(xl � xj)].

Eq. 9 shows that, while LMNN and its variants learn the metric only on triplets
where the impostor lies insu�ciently far away from the instance, i.e. the di↵erence
in squared distances (DD) d2M (xi,xl)� d

2
M (xi,xj) is less than or equal to the

required margin ⌧ , the proposed method not only uses these information but
also selectively exploits triplets that satisfy the margin constraint. In particular,
the new selection criterion considers the correlation between the distance metric
and (xl � xj): if the correlation is high, i.e. the value of kMxljk1,["] is large, it
is more likely this triplet will incur a loss and hence contribute to the gradient.

Fig. 1 illustrates the above discussion with two figures. In both figures, we show
all instances in the linearly mapped feature space induced by the Mahalanobis
distance, and consider di↵erent positions of xi with respect to fixed target
neighbor xj and impostor xl. The left figure illustrates which triplets are used
in LMNN and MLadv for calculating the gradient; for simplicity, the learned M
is a scaled Euclidean distance. For xi1 , both methods use the triplet (xi1 ,xj ,xl)
since DD is less than ⌧ . For xi2 and xi3 , the methods di↵er. (xi2 ,xj ,xl) and
(xi3 ,xj ,xl) satisfy the margin constraint and hence are not used in LMNN.
However, they are used in our MLadv as xi2 and xi3 may be misclassified in
the presence of perturbation; the perturbation sets with " = 1 and " = 2 are
indicated by the blue line and blue square, respectively. When " = 1, xi2 may be
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Fig. 1: Illustration of MLadv. Instances are shown in the linearly mapped feature
space induced by an isotropic M (left) and an anisotropic M (right). Left:
LMNN learns M based on instances from the support region where the di↵erence
in squared distances (DD) d2M (xi,xl)�d

2
M (xi,xj) is not greater than ⌧ . MLadv

learns on additional instances from the adversarially vulnerable region where
the instance may be misclassified after adding the worst-case perturbation. The
regions are divided by two hyperplanes that are parallel to the decision boundary
with DD of ⌧ and 2kMxljk1,["], respectively. Right: Instances lying above the
gray dash-dotted line select xj1 as NN and should be separated farther away
from the decision boundary due to the high correlation between M and xl �xj1 .

misclassified as the worst-case perturbation �?i2 can drag the instance across the
decision boundary; when " = 2, both xi2 and xi3 may be misclassified. For xi4 ,
both methods ignore the triplet (xi4 ,xj ,xl) since xi4 remains far away from the
decision boundary even after adding �?i4 .

The right figure presents the general case with an anisotropic M and multiple
target neighbors, and illustrates the interaction between DD, xl � xj , and M .
Even though the DDs of (xi1 ,xj1 ,xl) and (xi2 ,xj2 ,xl) are the same, xi1 is not
robust against the worst-case perturbation whereas xi2 is. The reason is that M
expands the horizontal distance, as indicated by the arrows at the bottom-left
corner, and has a higher correlation with xl � xj1 compared to xl � xj2 . This
suggests that, for an instance to be invariant to the worst-case perturbation, the
requirement of DD is determined locally with respect to xl �xj and dynamically
with respect to M .

In summary, as points with the same DD form a separating hyperplane that
is orthogonal to the line joining xj and xl, the proposed method essentially
divides the instance space into three regions according to the hyperplanes with
DD of ⌧ and 2kMxljk1,["]. It then makes use of instances from the support
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region and adversarially vulnerable region for learning the metric. The additional
information from the latter region is particularly important for datasets with a
small sample size.

3.5 Theoretical Analysis

In this section, we provide the generalization bound for metric learning trained in
the adversarial setting. In essence, with the same form of loss function, adversarial
training incurs a larger loss than standard training due to the addition of
perturbation. Therefore, it is expected that the sample complexity would be
higher in order to achieve the same generalization performance.

We start by defining some notations. The adversarial loss is defined as

˜̀
M (zi, zj , zl) = 1[yi = yj 6= yl][⌧ + max

�i:k�ik1"
{d2M (xi + �i,xj)� d2M (xi + �i,xl)}]+.

(10)

The generalization bound studies the gap between the adversarial population
risk R̃(M) = E(zi,zj ,zl)⇠D[˜̀M (zi, zj , zl)] and the adversarial empirical risk

R̃n(M ) = 1
n(n�1)(n�2)

P
i 6=j 6=l

˜̀
M (zi, zj , zl). LetMz denote the optimal solution

to the learning problem:

min
M2S+P

R̃n(M) + �kMk1. (11)

The generalization bound of Mz is given by the following theorem.

Theorem 1. Let Mz be the solution to the problem (11). Then, for any 0 <

� < 1, with probability 1� � we have that

R̃(Mz)� R̃n(Mz) 
32⌧(x2

max + "xmax)
p
e logP

�
p
n

+ ⌧
h
1 +

x2
max + 2"xmax

�

ir2 ln(1/�)
n

+
4⌧p
n
,

(12)

where xmax = supx,x02X kx� x0
k1.

Theorem 1 is established based on the Rademacher complexity [5, 35] and U-
statistics [19]; proof is given in Appendix B.

We make three remarks here. First, by definition, the perturbation size is
relatively small compared to xmax, and therefore, "xmax < x

2
max. This suggests

that adversarial training does not largely increase the sample complexity. Second,
as shown in the proof, if M is regularized via the Frobenius norm, the sample
complexity required by adversarial training will be higher than the standard
training at a rate of O(

p
P ). To avoid the sublinear dependence of sample

complexity on feature dimension, we use the L1-norm as the regularizer. Third,
Theorem 1 provides a general guarantee on the generalization performance of
triplet-based metric learning trained in the adversarial setting. The adversarial
loss defined in Eq. 10 with " = 1 unifies the two loss functions defined in our
learning objective (Eq. 4). In other words, the generalization gap of our learned
metric is bounded as given in Theorem 1.
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4 Experiments

In this section, we first conduct experiments on a discretized dataset to evaluate
the proposed method when facing the problems of small sample size and feature
ambiguity. Then, we compare it with state-of-the-art methods on datasets with
all ordinal variables and mixed ordinal-and-nominal variables.

4.1 Parameter Settings

The proposed method includes four hyperparameters, namely weight of original
instances µ, regularization parameter �, distance margin ⌧ , and perturbation
size ". Their values are identified via the random search strategy [4]. We sample
100 sets of values and select the one that gives the highest accuracy on the
validation set. The range of each hyperparameter is as follows: µ 2 [0, 1], � 2

{10�5
, 10�4

, 10�3
, 10�2

}, ⌧ 2 [0,max kxljk1], " 2 {0, 1, . . . , pord + 2pnom}. The
upper bound of ⌧ is inspired by Eq. 9 with M initialized as the Euclidean distance.
The upper bound of " is chosen based on the fact that perturbing one ordinal
level to its adjacent level or a nominal level to another level causes at most
p
ord + 2pnom changes in encoded features. In addition, the initial learning rate

is tuned for each dataset before optimizing the hyperparameters. We search its
value from {10�2

, 10�1
, . . . , 102} while holding µ, ⌧ = 1 (i.e. replicating LMNN).

The MATLAB code for our method is available at http://github.com/xyang6/
MLadv.

Triplet constraints are constructed from 3 target neighbors and 10 nearest
impostors calculated under the Euclidean distance. 3NN is used as the classifier.

4.2 Experiments with Discretized Features

The goal of this experiment is to understand the potential of the proposed method
for data with a small training set and ambiguous features. Our experiment is based
on the UCI dataset Magic, which has 10 real-valued features, 19020 instances,
and 2 classes. All features are first discretized into ordinal features with five
equal-frequency levels, and then encoded as integers (denoted as ‘int’) or as a
set of binary values (denoted as ‘bin’). We compare LMNN and the proposed
method on both types of data.

Learning from Small Training Sets In this study, we build the training set
by randomly selecting 5, 20, . . . , 95 instances from each class; the validation and
test sets each include 9000 instances. The experiment is implemented 20 times
and the mean accuracy is shown in Fig. 2a; quantitative results, including the
standard deviation, are provided in Appendix C.3.

First, our MLadv outperforms LMNN over the whole range of training sample
size, no matter what the encoding scheme is. Second, we see a clear advantage
of MLadv over LMNN when the training set is small. Third, we notice that our
MLadv performs better with binary encoding than integer encoding, when the
sample size is larger than 20.
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(a) e↵ect of training sample size (b) e↵ect of feature ambiguity

Fig. 2: Evaluation of LMNN and MLadv on the discretized dataset Magic. Ordinal
variables are encoded as integers (‘int’) or a set of binary values (‘bin’).

Learning under Feature Ambiguity We move on to evaluate the method
when encountering feature ambiguity. The experimental setting is same as before;
the training sample size is selected as 80. To simulate ambiguity, for each feature,
we select 10%, 20%, . . . , 50% instances whose ground-truth real values are closest
to the discretization threshold, and change their ordinal level to the adjacent
level.

Fig. 2b shows the classification accuracy in this study. MLadv improves
LMNN consistently over a wide range of ambiguity levels, and the performance
gain becomes slightly larger as the ambiguity level increases.

Visualization of Training Process Our geometric interpretation suggests
that MLadv considers additional triplets from the adversarially vulnerable region,
which would be particularly valuable in the small-sized problem. In Fig. 3, we
present the training process of MLadv at di↵erent iterations. The multidimen-
sional scaling (MDS) is used to embed the learned distance between 20 instances
into two dimensions [10]. Sizes of green circles and yellow circles are proportional
to the number of triplets that do not satisfy the distance margin (i.e. second term
of Eq. 4) and the number of triplets that incur a loss after adding the worst-case
perturbation (i.e. third term of Eq. 4), respectively.

At the beginning of training, as instances of the same class are not well
separated from instances of the di↵erent class, almost all triplets violate the
distance margin constraints. Therefore, the metric is learned mostly from the
original instances (as indicated by most points being in green circles). After
10 iterations, the majority of instances are closer to target neighbors than to
impostors, but they are not robust to the worst-case perturbation (as indicated by
a large number of yellow circles). Our method will continue using their information
for metric learning. After 200 iterations, sizes of yellow circles become smaller,
indicating that the learned metric becomes more robust. At the end of training,
while some instances still violate the margin constraint, a large number of
instances are surrounded by instances of the same class and locate far away from
instances of the di↵erent class.
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Fig. 3: Demonstration of the training process of MLadv on Magic with binary
encoding. Figures show the 2D embedding of the learned distance via MDS. Sizes
of green circles and yellow circles are proportional to the number of triplets
violating the distance margin constraint and incurring a loss after adding the
worst-case perturbation, respectively. As the training progresses, the metric
becomes more robust against the perturbations and the di↵erence between the
intra-class distance and the inter-class distance becomes more remarkable.

4.3 Experiments on Real Datasets

The goal of this experiment is to compare the proposed method with robust
metric learning methods and ordinal metric learning methods under the conditions
when the training sample size is small or the feature ambiguity is present. As
ambiguities in categorical levels occur more frequently in ordinal variables than in
nominal variables, our experiments only study datasets with all ordinal variables
or with a mixture of ordinal and nominal variables.

Datasets and Experimental Settings We use 6 datasets from UCI machine
learning repository [11] and WEKA workbench [13]. Information on feature
type, feature dimension, sample size and class information is listed in Table 1.
Here, we explain the last column of ambiguity, which is assigned based on our
understanding of the data. The degree of ambiguity is inherent in the data
and may be inferred from the data source. Lecturer and Social Worker collect
subjective ratings and assessments respectively, and hence may include a high
level of ambiguity. Hayer-Roth and Lymphography are social data and medical
data respectively; ambiguity is also likely to exist in these data. Car and Nursery
are derived from a hierarchical decision model; their ambiguity levels are expected
to be relatively low as there is an underlying rule behind these data.

Each dataset is randomly split into the training, validation, and test sets. To
simulate a small-sample environment, we set their proportions as 20%,40%,40%
for all datasets except for the large dataset Nursery. For Nursery, 100 samples
are selected as the training set, and the remaining samples are equally split into
the validation and test sets. We repeat the random split 20 times, and report the
mean value and standard deviation of classification accuracy.

We compare the proposed method with LMNN and three closely related
methods. DRIFT [34] and AML [6] are robust metric learning methods that
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Table 1: Characteristics of the datasets
Dataset Abb. Feature Type #Instances pord pnom #Classes Ambiguity

Car CA ordinal 1728 6 0 4 low

Nursery NU ordinal+nominal 12960 6 2 4 low

Hayes-Roth HR ordinal+nominal 132 2 2 3 medium

Lymphography LY ordinal+nominal 148 3 15 4 medium

Lecturer LE ordinal 1000 4 0 5 high

Social Worker SW ordinal 1000 10 0 4 high

Table 2: Classification accuracy (mean value±standard deviation) of 3NN with
di↵erent metric learning methods. The best methods are shown in bold and the
second best ones are underlined. The mean accuracy averaged over all datasets
is shown at the last row.

LMNN-int LMNN-bin DRIFT AML Ord-LMNN MLadv-int MLadv-bin

low level of ambiguity

CA 89.94±1.31 92.24±0.89 90.24±1.17 88.84±1.13 93.94±1.43 90.13±1.32 92.90±1.13

NU 85.73±1.68 86.11±1.78 86.01±2.02 79.83±3.11 87.54±1.45 86.65±2.12 86.67±1.48

medium level of ambiguity

HR 71.83±10.72 76.42±6.80 71.34±10.37 65.98±7.85 75.12±9.55 74.51±10.06 78.58±5.94

LY 78.51±7.15 79.91±6.65 83.16±6.40 68.25±17.57 74.56±9.17 82.37±3.58 83.33±4.85

high level of ambiguity

LE 55.08±2.55 54.83±2.53 55.64±3.00 55.61±2.28 53.03±3.27 55.90±2.70 55.61±3.00

SW 50.00±2.61 50.58±2.30 50.73±2.93 50.50±2.07 48.68±2.82 51.10±2.15 51.91±3.09

Avg 71.85 73.35 72.85 68.17 72.14 73.44 74.84

are designed to handle feature uncertainty for real-valued data. Ord-LMNN [23]
adapts LMNN to ordinal variables by assuming a latent variable for each ordinal
variable, with the uniform prior tested in our experiment. Training procedures of
these methods are specified in Appendix C.2.

Results and Discussions Table 2 reports the classification accuracy of 3NN
with the Mahalanobis distance learned from di↵erent methods. First, we see that
the proposed method outperforms the baseline method LMNN, regardless of the
encoding scheme. Second, we compare MLadv with the existing ordinal metric
learning method Ord-LMNN. Ord-LMNN considers the order relation of ordinal
variables and is e↵ective on datasets Balance Scale and Car. However, as the
method estimates the distributional parameters for each feature, its e↵ectiveness
highly depends on the data quality. When the ambiguity level is high, the accuracy
of Ord-LMNN becomes even worse than the baseline whereas our method remains
competitive. Third, the robust metric learning method DRIFT achieves a high
accuracy when the feature ambiguity is high. However, as the method ignores
the properties of ordinal and nominal variables, its performance is inferior to our
method. Overall, our method achieves the best or second-best performance on
each dataset and has the highest mean accuracy.

We make a final remark on the encoding scheme and practicability of the
proposed method. On most datasets, MLadv-bin is superior to MLadv-int. We
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hypothesize that, as binary encoding gives a higher feature dimension, the expres-
sive power of the metric increases and hence may improve the discriminability.
While the two encoding schemes are evaluated separately in our experiment, they
could be determined at the step of choosing the initial learning rate in practical
applications. In other words, there is no need to tune hyperparameters twice.
Except for Lymphography, this early decision can always find the optimal method
between MLadv-int and MLadv-bin.

5 Conclusions and Future Work

In this paper, we propose that adversarial training with a deliberately designed
perturbation set can enhance triplet-based metric learning methods in mitigating
the problems of high feature ambiguity and small sample size faced by ordinal
and mixed ordinal-and-nominal data. Experiments on real datasets verify the
e�cacy of our method. We also discuss the e↵ect of adversarial training from both
geometrical and theoretical perspectives. In the future, we intend to generalize
the method to a mix of categorical and continuous features. Moreover, metric
learning comprises a loss function and a regularizer, and this paper tailors the
loss function to incorporate the properties of categorical features. Our future
work will consider designing regularizers that are specific to categorical features.
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Abstract. Appendix A derives the solution to the worst-case perturba-
tion. Appendix B proves the generalization bound. Appendix C includes
the optimization algorithm of the proposed MLadv, experimental set-
tings of MLadv and comparative methods, and quantitative results of
experiments with discretized features.

A Solution to the Worst-Case Perturbation �?
i

Let �?i = argmax�i:k�ik1=1,k�ik1"{d
2
M (xi+�i,xj)�d2M (xi+�i,xl)}, the closed-

form solution to �?i is derived by simplifying the objective function as follows:

argmax�i
{d2M (xi + �i,xj)� d2M (xi + �i,xl)}

, argmax�i
{d2M (xi,xj)� d2M (xi,xl) + 2�Ti M(xl � xj)}

, argmax�i
�Ti M(xl � xj)

(1)

Under the constraint k�ik1 = 1, we have �?i = sign(M(xl � xj)). With the
additional constraint k�ik1  ", " 2 N, we have

�?i,[k] =

8
<

:
sign(Mk·(xl � xj)) if k 2 argmax"

a=1,··· ,P
|Ma·(xl � xj)|

0 otherwise
, (2)

where �?i,[k] denotes the kth element of the vector �?i ; Mk· denotes the kth row
of M ; argmax" denotes the largest " elements of a vector.

B Proof of Generalization Bound

The generalization bound is proved following the works of [2, 8, 5]. With the
same form of loss function, adversarial training incurs a larger loss than standard

? Equal contribution
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training due to the addition of perturbation. Therefore, we need to show that the
adversarial loss and the Rademacher complexity of the adversarial loss function
class are both bounded.

For completeness, we list all notations used in the proof as follows.
Inner product, vector norm, and matrix norm: hX,Y i = trace(XTY ) denotes
the Frobenius inner product of matrices X and Y . kvk1 and kvk2 denote the
L1-norm and L2-norm of a vector v, respectively; kMk1 =

P
mn Mmn and

kMkF denote the (elementwise) L1-norm and the Frobenius norm of a matrix
M , respectively. Given any matrix norm k · k, its dual norm is defined as
kMk⇤ = sup{hM ,Xi : kXk  1}.
Adversarial loss of triplet-based metric learning problems with `1-bounded
perturbations:

˜̀
M (zi, zj , zl) = 1[yi = yj 6= yl][⌧+ max

�i:k�ik1"
{d2M (xi+�i,xj)�d2M (xi+�i,xl)}]+ (3)

Adversarial population risk :

R̃(M) = E(zi,zj ,zl)⇠D[˜̀M (zi, zj , zl)]

Adversarial empirical risk :

R̃n(M) =
1

n(n� 1)(n� 2)

X

i 6=j 6=l

˜̀
M (zi, zj , zl)

Rademacher complexity [7]: For any function class F , given a sample set zn of
size n, the empirical Rademacher complexity of F with respect to zn is defined
as:

R̂n(F) =
1

n
E�

h
sup
f2F

nX

i=1

�if(zi)
i
,

where �1, . . . ,�n are Rademacher variables, independently and identically dis-
tributed (i.i.d.) according to P(�i = 1) = P(�i = �1) = 1

2 . The Rademacher
complexity is the expectation of the empirical Rademacher complexity over all
samples of size n drawn according to D: Rn(F) = Ezn⇠D[R̂n(F)].

We propose to learn the distance metric by optimizing the following objective
function:

min
M2S+P

R̃n(M) + �kMk1. (4)

The optimal solution to Eq. 4 is denoted as Mz. Since R̃n(Mz) + �kMzk1 

R̃n(0)+�k0k1  ⌧ , where 0 denotes the zero matrix, we can restrict the parameter
space of M as:

H = {M : M 2 S+P , kMk1 
⌧

�
}.

The following lemma shows that the adversarial loss is bounded.
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Lemma 1. The adversarial loss of Eq. 3 is upper bounded:

sup
zi,zj ,zl2Z

sup
M2H

˜̀
M (zi, zj , zl)  ⌧

h
1 +

2"xmax

�
+

x2
max

�

i
, (5)

where xmax = supx,x02X
kx� x0

k1.

Proof.

˜̀
M (zi, zj , zl)

[⌧ + max
�i:k�ik1"

{d2M (xi + �i,xj)� d2M (xi + �i,xl)}]+

=[⌧ + d2M (xi + "sign(M(xl � xj)),xj)� d2M (xi + "sign(M(xl � xj)),xl)]+

=[⌧ + d2M (xi,xj)� d2M (xi,xl) + 2" sign(M(xl � xj))
TM(xl � xj)]+

⌧ + hM ,Xiji+ 2"hM , (xl � xj)sign(M(xl � xj))
T i

(a)

 ⌧ + kMk1kXijk1 + 2"kMk1k(xl � xj)sign(M(xl � xj))
T k1

) sup
zi,zj ,zl2Z

sup
M2H

˜̀
M (zi, zj , zl)

(b)

 ⌧ +
⌧
�
x2
max + 2"

⌧
�
xmax

(6)

Remark: Step (a) of the above proof makes use of the dual norm of kMk1,
and step (b) bounds k(xl � xj)sign(M(xl � xj))T k1 by xmax. If we regularize
M via the Frobenius norm, the dual norm will be the Frobenius norm, and
k(xl � xj)sign(M(xl � xj))T kF 

p
P supx,x02X

kxl � xjk2. This sublinear
dependence of the loss function on the feature dimension is unavoidable, even
after normalizing all instances to have a unit length with respect to the L2-norm.

The following lemma shows that the Rademacher complexity of the adversarial
loss function class is bounded.

Lemma 2. Let Rn = 1
nEzn,�[supM2H

Pn
i=1 �i

˜̀
M (zi, z0

i, z
00

i )], where z0

i, z
00

i are
independent of zi. Then,

Rn 
8⌧(x2

max + "xmax)
p
e logP

�
p
n

+
⌧
p
n
. (7)

Proof. The proof builds on the contraction lemma of the Rademacher complex-
ity [4] and the Khinchin–Kahane inequality (Lemma 9 of [2]).

Ezn,� sup
M2H

nX

i=1

�i
˜̀
M (zi, z

0

i, z
00

i )

=Ezn,� sup
M2H

nX

i=1

�i1[y = y0 6= y00][⌧ + d2M (xi + �?
i ,x

0

i)� d2M (xi + �?
i ,x

00

i )]+

Ezn,� sup
M2H

���
nX

i=1

�i

�
[⌧ + d2M (xi + �?

i ,x
0

i)� d2M (xi + �?
i ,x

00

i )]+ � ⌧
����+ E�

���
nX

i=1

�i⌧
���

(a)

2Ezn,� sup
M2H

���
nX

i=1

�i

⇥
d2M (xi + �?

i ,x
0

i)� d2M (xi + �?
i ,x

00

i )
⇤���+ E�

���
nX

i=1

�i⌧
���
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4Ezn,� sup
M2H

���
nX

i=1

�id
2
M (xi,x

0

i)
���

+ 4"Ezn,� sup
M2H

���
nX

i=1

�isign(M(x00

i � x0

i))
TM(x00

i � x0

i)
���+ E�

���
nX

i=1

�i⌧
���

4⌧
�
Ezn,�

���
nX

i=1

�i(xi � x0

i)(xi � x0

i)
T
���
1

+
4⌧"
�

Ezn,�

���
nX

i=1

�i(x
00

i � x0

i)sign(M(x00

i � x0

i))
T
���
1

+ ⌧E�

���
nX

i=1

�i

��� (8)

Step (a) is obtained by applying the Talagrand’s contraction lemma.

Each term in the last line of inequality (8) can be bounded by applying
the Khinchin–Kahane inequality. Here, we show the bound of the second term;
bounds of the first and third terms are derived in [2] and results are listed below
for completeness.

Ezn,�

���
nX

i=1

�i(x
00

i � x0

i)sign(M(x00

i � x0

i))
T
���
1

Ezn,�

���
nX

i=1

�i(x
00

i � x0

i)sign(M(x00

i � x0

i))
T
���
q

for any 1 < q < 1

=Ezn,�

h PX

k1,k2=1

��
nX

i=1

�i(x
00

i,[k1] � x0

i,[k1])sign(Mk2·(x
00

i � x0

i))
��q
i 1

q

Ezn

h PX

k1,k2=1

E�

��
nX

i=1

�i(x
00

i,[k1] � x0

i,[k1])sign(Mk2·(x
00

i � x0

i))
��q
i 1

q

(b)

Ezn

h PX

k1,k2=1

(q � 1)
q
2

⇣
E�

��
nX

i=1

�i(x
00

i,[k1] � x0

i,[k1])sign(Mk2·(x
00

i � x0

i))
��2
⌘ q

2
i 1

q

=Ezn

h PX

k1,k2=1

(q � 1)
q
2

⇣ nX

i=1

�
x00

i,[k1] � x0

i,[k1]

�2�
sign(Mk2·(x

00

i � x0

i))
�2⌘ q

2
i 1

q

q
1
2Ezn

h PX

k1,k2=1

⇣ nX

i=1

sup
x,x02X

kx� x0k21
⌘ q

2
i 1

q

=q
1
2P

2
q sup

x,x02X

kx� x0k1
p
n

(c)
=2 sup

x,x02X

kx� x0k1
p

en logP

Ezn,�

���
nX

i=1

�i(xi � x0

i)(xi � x0

i)
T
���
1

 2 sup
x,x02X

kx� x0k21
p

en logP

E�

���
nX

i=1

�i

��� 
p
n (9)
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In step (b), we apply the Khinchin–Kahane inequality with 2 < q < 1. In step
(c), we set q = 4 logP . Putting results of (9) into the inequality (8) gives the
bound of (7).

We now prove the generalization bound of Mz.

Theorem 3. Let Mz be the solution to the problem (4). Then, for any 0 < � < 1,
with probability 1� � we have that

R̃(Mz)� R̃n(Mz) 
32⌧(x2

max + "xmax)
p
e logP

�
p
n

+ ⌧
h
1 +

x2
max + 2"xmax

�

ir2 ln(1/�)

n
+

4⌧
p
n
,

(10)

where xmax = supx,x02X
kx� x0

k1.

Proof.
Step 1: We bound the di↵erence between R̃(Mz)� R̃n(Mz) and Ezn supM2H

[R̃(M)� R̃n(M)] via the McDiarmid’s inequality [6].
First, we observe that R̃(Mz) � R̃n(Mz)  supM2H

[R̃(M) � R̃n(M)].
Next, we apply the McDiarmid’s inequality to bound the di↵erence between
supM2H

[R̃(M )�R̃n(M )] and Ezn supM2H
[R̃(M )�R̃n(M )], where Ezn denotes

the expectation with respect to the training sample set zn. An essential condition
of the McDiarmid’s inequality is that the function supM2H

[R̃(M) � R̃n(M)]
has bounded di↵erences, which is shown as follows. Let zn = (z1, . . . , zk�1,
zk, zk+1, . . . , zn) and zn0 = (z1, . . . , zk�1, z0

k, zk+1, . . . , zn) be two training sam-
ple sets that di↵er in one sample. Combining the result of Lemma 1, we have the
following inequality:

��� sup
M2H

[R̃(M ; zn)� R̃n(M ; zn)]� sup
M2H

[R̃(M ; zn0)� R̃n(M ; zn0
)]
���


��� sup
M2H

R̃n(M ; zn)� sup
M2H

R̃n(M ; zn0)
���

=
1

n(n� 1)(n� 2)
sup

M2H

X

k 6=j 6=l

|˜̀M (zk, zj , zl)� ˜̀
M (z0

k, zj , zl)|

 1
n(n� 1)(n� 2)

sup
M2H

X

k 6=j 6=l

(|˜̀M (zk, zj , zl)|+ |˜̀M (z0

k, zj , zl)|)

 2
n

sup
M2H

˜̀
M (zk, zj , zl)

2⌧
n

h
1 +

2"xmax

�
+

x2
max

�

i
.

(11)

Applying the McDiarmid’s inequality to the term supM2H
[R̃(M) � R̃n(M)],

with probability 1� � there holds

sup
M2H

[R̃(M)� R̃n(M)]

Ezn sup
M2H

[R̃(M)� R̃n(M)] + ⌧
h
1 +

2"xmax

�
+

x2
max

�

ir2 ln(1/�)
n

.
(12)
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Step 2: We bound the expectation term Ezn supM2H
[R̃(M)� R̃n(M)] by

reducing the analysis of non-i.i.d. triplets to i.i.d. random variables via the U-
statistic [3] and symmetrizing with the introduction of Rademacher variables [1].

First, based on Lemma 4 of [5], we can derive the following inequality:

Ezn sup
M2H

[R̃(M)� R̃n(M)]

=Ezn sup
M2H

h
R̃(M)� 1

n(n� 1)(n� 2)

X

i 6=j 6=l

˜̀
M (zi, zj , zl)

i

Ezn sup
M2H

h
R̃(M)� 1

bn
3 c

b
n
3 cX

i=1

˜̀
M (zi, zb

n
3 c+i, zb

n
3 c+i)

i
,

(13)

where b·c denotes the floor function. For simplicity, define R̄n(M) = 1
b
n
3 c

Pb
n
3 c

i=1

˜̀
M (zi, zbn

3 c+i, zbn
3 c+i).

Next, we symmetrize by replacing R̃(M) with Ez̄n [R̄n(M)]. Let z̄n =
(z̄1, . . . , z̄n) denote another training set, where z̄i’s are independent of each
other and independent of zi’s. Then,

Ezn sup
M2H

[R̃(M)� R̄n(M)] =Ezn sup
M2H

⇥
Ez̄n [R̄n(M ; z̄n)]� R̄n(M ; zn)

⇤

Ezn,z̄n sup
M2H

[R̄n(M ; z̄n)� R̄n(M ; zn)].
(14)

Finally, we symmetrize again by introducing the Rademacher variables.

Ezn,z̄n sup
M2H

[R̄n(M ; z̄n)� R̄n(M ; zn)]

=Ezn,z̄n
1

bn
3 c

sup
M2H

b
n
3 cX

i=1

[˜̀M (z̄i, z̄b
n
3 c+i, z̄b

n
3 c+i)� ˜̀

M (zi, zb
n
3 c+i, zb

n
3 c+i)]

=Ezn,z̄n,�
1

bn
3 c

sup
M2H

b
n
3 cX

i=1

�i[˜̀M (z̄i, z̄b
n
3 c+i, z̄b

n
3 c+i)� ˜̀

M (zi, zb
n
3 c+i, zb

n
3 c+i)]

Ezn,z̄n,�
1

bn
3 c

sup
M2H

b
n
3 cX

i=1

�i
˜̀
M (z̄i, z̄b

n
3 c+i, z̄b

n
3 c+i)

� Ezn,z̄n,�
1

bn
3 c

sup
M2H

b
n
3 cX

i=1

�i
˜̀
M (zi, zb

n
3 c+i, zb

n
3 c+i)

=2Ezn,�
1

bn
3 c

sup
M2H

b
n
3 cX

i=1

�i
˜̀
M (zi, zb

n
3 c+i, zb

n
3 c+i)

(15)

Step 3: Substituting the result of Lemma 2 into the inequality (15) and
combining with inequalities (12),(13),(14) prove the theorem.
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C Implementation and Additional Experimental Results
of MLadv and Comparative Methods

C.1 Optimization Algorithm of MLadv

The optimization algorithm of the proposed MLadv is listed in Algorithm 1. All
numbered equations refer to the equations in the main text of the paper.

Algorithm 1: Metric learning with Adversarial Training
Input: triplet set R, parameters �, µ, ⌧, ", maximum number of iterations T
Output: MT

Initialization: M0 = I;
for t = 1 to T do

Compute worst-case perturbation �?
i according to Eq. 5;

Perform gradient descent on M according to Eq. 6;
Perform proximal mapping on M according to Eq. 7;
Project M onto the PSD cone according to Eq. 8;

C.2 Experimental Settings of MLadv and Comparative Methods

MLadv M is initialized as the identity matrix. The learning rate ⌘ is initialized to
0.1 and decays during training according to the exponential function exp(�0.99(1+
0.01t)). The training stops if the relative change in the objective function is
smaller than the threshold of 1e-7 or reaches the maximum number of iterations
of 5000. As shown in Fig. 1, MLadv converges before reaching the maximum
iteration number.

Fig. 1: Convergence curves of datasets HR and LY.
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Comparative Methods The comparative methods are implemented by using the
o�cial codes provided by the authors. Trade-o↵ parameters are selected based on
the validation performance. For LMNN, we choose µ from {0.1, 0.2, . . . , 0.9}; for
DRIFT and AML, we search the grid suggested by the authors; for Ord-LMNN,
we search � from {0.4, 1, . . . , 4} and ⌧ from {0.5, 1, . . . , 3.5}. All other parameters
are set as default.

C.3 Quantitative Results of Experiments with Discretized Features

Tables 1 and 2 are supplements to Fig. 2 of the main text of the paper, which
list the mean value and standard deviation of classification accuracy on the
discretized dataset Magic.

Table 1: E↵ect of training sample size on the classification accuracy (mean
value±standard deviation) of LMNN and MLadv.

sample size LMNN-int MLadv-int LMNN-bin MLadv-bin
5 60.97±9.91 68.96±5.32 59.56±6.52 65.29±5.08
20 72.67±4.11 74.30±3.08 71.12±4.28 75.32±3.03
35 72.14±2.26 72.98±2.18 71.93±2.07 75.62±2.51
50 73.88±1.80 74.77±2.16 73.28±2.07 76.42±1.86
65 73.83±2.21 74.72±1.91 73.75±1.94 76.54±1.62
80 74.37±1.72 75.17±1.50 74.50±1.87 76.53±1.76
95 74.52±1.27 75.20±1.22 74.97±1.40 77.05±1.64

Table 2: E↵ect of ambiguity level on the classification accuracy (mean
value±standard deviation) of LMNN and MLadv.

level of ambiguity LMNN-int MLadv-int LMNN-bin MLadv-bin
0% 74.37±1.72 75.20±1.22 74.50±1.87 77.05±1.64
10% 73.22±1.59 74.36±1.34 73.96±1.58 76.16±1.35
20% 73.19±1.65 74.08±1.78 73.69±2.10 76.00±1.40
30% 71.81±2.07 73.09±1.85 72.56±2.37 75.51±1.70
40% 70.21±2.63 71.69±2.34 71.36±2.63 74.29±2.54
50% 69.33±3.06 71.20±2.53 69.77±2.84 73.20±2.53
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3. Clémençon, S., Lugosi, G., Vayatis, N., et al.: Ranking and empirical minimization
of U-statistics. The Annals of Statistics 36(2), 844–874 (2008)

4. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: isoperimetry and processes.
Springer Science & Business Media (2013)

5. Luo, L., Xu, J., Deng, C., Huang, H.: Robust metric learning on grassmann manifolds
with generalization guarantees. In: AAAI. vol. 33, pp. 4480–4487 (2019)

6. McDiarmid, C.: On the method of bounded di↵erences. Surveys in combinatorics
141(1), 148–188 (1989)

7. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of machine learning. MIT
press (2018)

8. Yin, D., Kannan, R., Bartlett, P.: Rademacher complexity for adversarially robust
generalization. In: ICML. pp. 7085–7094 (2019)


