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Abstract

This thesis focuses on extending the ETAS model. ETAS is a special case of the Hawkes

process - a self-exciting point process that provides the opportunity for a multilayered

intensity structure that addresses the rate of events as a function of previous events’ his-

tory. Triggering and clustering behaviours are naturally captured. The most simplistic

version of the Hawkes process takes into account a single temporal sequence. Additional

features such as marks, spatial information, other labels and multivariate scenarios can

be considered. In this thesis we contribute primarily to three main aspects of a Hawkes

process - temporal, spatial and multivariate analyses. Each of these challenges were ad-

dressed by incorporating new functionalities into the base process. Then we also solved

the emerging estimation needs.

We began by exploring a renewal immigration concept where the main (immigrant)

events follow a non-Poissonian distribution that provides an inhomogeneous temporal

ground modelling. Then we explored a non-parametric spatial kernel estimation for

the inference of the main events spatial aggregation. This Bayesian density estimation

relies on a Dirichlet process application in a multivariate Normal distribution mixture

modelling. Finally, we explored the application of self-exciting process in the context

of spatially explicit capturing data. We introduced discrete space, continuous time,

multivariate Hawkes process that is tailored towards limited number of observations

from multiple objects that share common behaviour.

The introduced models and methods suggest superior performance compared to con-

ventional techniques. They are directly applicable to fields where spatio-temporal clus-

tering is observed. Some of the examples include crime, financial indicators change,

earthquake modelling, people and animal movement.
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Impact Statement

Nowadays data analysis is an inherent part of every endeavour. Unseen patterns nat-

urally trigger phenomenon development. Every event could potentially influence the

occurrence of other events or initiate a stochastic change in the pattern that was present

prior to its occurrence. Such patterns are hard to track although extremely beneficial

for inferential purposes due to the inherent flexibility of the model construction. In

our work we focus on one of the most popular model constructions for addressing such

patterns – the Hawkes process.

Hawkes process is a method that describes natural occurring events’ behaviour. Un-

like some more advanced models, it also possess inherent statistical properties. Hawkes

process can address complex patterns that are commonly hidden for standard modelling

techniques. The specific results presented in this thesis can be used directly for mitiga-

tion of seismic hazards applicable to structural engineering and (re-)insurance purposes.

Further, our methods provide a novel estimation of short term seismic hazards which en-

hances the forecasting probability of an aftershock tremor. This way the risk of human

life loss can be mitigated further.

Bayesian Statistics on its own is a topic that is becoming very relevant to contem-

porary research. However, due to its demanding nature Hawkes processes are usually

estimated in a more conservative, frequentist manner. Providing a framework for robust

and resilient methods for Bayesian analysis improves considerably the understanding of

parameter uncertainty on multiple levels. Hence, this uncertainty can be propagated

towards the quantity of interest for the specific project. Having a clear perspective on

the possible flaws of a target estimation can considerably increase our confidence in

decision making and catastrophe prevention. Obtaining unreasonable parameter uncer-

tainties drives engineers to increase unreasonably the embedded functionality in every

component which increases unnecessary production costs.
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The Hawkes process applications in ecology context are heavily under explored.

Our work on animal movement outlines one of the many direct opportunities for major

improvement of the underlying methodology in standard ecology techniques. We believe

that the Hawkes process can be applied to vegetation spread, mutation and extinction;

land irrigation, forestoration and aridation; animal species extinction, migration and

adaptation.

We believe that this thesis will influence applications of the Hawkes process in other

fields, further improve the Bayesian analysis application to the self-exciting point process

and by this increase the awareness and attractiveness of the class of Hawkes processes

to the wider analytical community.
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Chapter 1

Introduction

This thesis explores random processes describing the collection of point occurrences

along time, space and other dimensions of interest. The observations in these sequences

could represent, for example, coal mining disasters in the UK in the 19th century, a

radioactive emission above a certain level in Europe, a financial loss or gain, customer’s

arrival and service time. In this work we explore two very different application fields

that actually have similar underlying patterns that we address using hybrid Hawkes

processes.

The first area of application that we consider is related to earthquake modelling.

We would like to estimate the number of earthquakes that would occur in the next day

or month based on the recently detected earthquakes. This is achieved by developing

models in which an earthquake occurrence increases the short term (in space, time or

both) earthquake occurrence probability. Such patterns are present in the earthquake

data where the observations are typically clustered in groups. On Figure 1.1 are dis-

played the time and density of all earthquakes with magnitude greater than 3 that were

observed in Bulgaria and Romania within 5 year (top) and 20 year (bottom) periods.

If we consider only the 5 year catalogue we could identify two large clusters of seismic

activity. However, the bottom figure clearly outlines that those peaks are negligible

compared to the activity in 2004-2009. Thus the number of earthquakes in each group

is only relative to those within close proximity (in this case time) as the number of

detections varies between periods.

The second application field that we explore is related to animal movement. Consider

a reserve in which animals (e.g. tigers) are kept to be preserved. Detecting the passage

of an animal in close proximity to a stationary camera, within a spatio-temporal interval,

21



provides sufficient information to estimate animal abundance in the whole reserve. The

exact spotting data, however, follows a similar cluster-based pattern - an animal detected

once is more likely to be detected again on the same camera or on those nearby within

some short period of time. If an animal is not active within the area in which the

cameras are placed we might only expect occasional observations, clustered within the

temporal span of each passage. For example, on Figure 1.2 are shown the detections of

two randomly picked animals from an animal spotting data in the Nagarahole reserve

(see Section 5.6.3). The animal detection information shown on the top figure has

elevated detection density during two long periods while the other one (bottom figure)

has considerably more aggregated detections within several shorter periods. An animal

detection increases the short term probability of it being spotted again although the

scale of this effect might differ between animals.

The Hawkes process first introduced by Hawkes (1971) is a widely used statisti-

cal model that addresses the concept of clustered point processes. Different exten-

sions of this model have been applied to analyse various data from a vast range of

areas such as credit risk [Errais et al., 2010], criminology [Mohler et al., 2011], fi-

nance [Chavez-Demoulin et al., 2005,Embrechts et al., 2011,Bacry et al., 2015], genome

analysis [Reynaud-Bouret et al., 2010], neuroscience [Chornoboy et al., 1988], social

interaction modelling [Crane and Sornette, 2008], terrorist activity modelling [Porter

et al., 2012] and many others. Hawkes process’s key feature is the definition of a hidden

structure that addresses events’ influence. The basic Hawkes process develops this re-

lationship solely based on the event arrival times. However, a number of extensions are

present towards multivariate analysis, marked processes and spatial analysis.

The general model describing clustering behaviour assigns all events into two possible

categories - uncaused and caused events. The caused events, are also know as cluster

centres, are a realisation of unobserved parent (ground) process. Each of them generates

an offspring process centred at each of them that allows for further excitation from

a multiple generations [Daley and Vere-Jones, 2003]. All events generated from the

offspring process are referred to as caused events as they are triggered by the occurrence

of another event in the sequence. Probably the most simplistic representation of such a

process is when both cluster centres and offspring generations are drawn from a Poisson

process. This is an example of Bartlett-Lewis [Neyman and Scott, 1952] or Neyman

Scott [Rodriguez-Iturbe et al., 1987a,Rodriguez-Iturbe et al., 1987b] process depending

on the spatial paradigm that is taken into account [Ritschel et al., 2017, Islam et al.,
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Figure 1.1: Earthquake temporal occurrence and density. Based on a catalogue that
covers Bulgaria and Romania with magnitude larger than 3 within 2014-2019 (top) and
1999-2019 (bottom), where | indicates an earthquake occurrence.

Figure 1.2: Animal spotting data for two different animals (top and bottom respectively)
from the Nagarahole reserve. Here | indicates an animal spotting across the same spatio-
temporal interval. There are 10 observations displayed on the top figure and 9 - on the
bottom one.

1990]. The case in which the uncaused events follow a Poisson process while every

event in the sequence can generate caused events that follow an uniform distribution is
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referred to as Matérn cluster process. A general description of the most widely used

cluster processes were reviewed by [González et al., 2016].

The prime focus of this thesis is to address novel extensions of the Hawkes process

based on the Epidemic Type Aftershock Sequence (ETAS) model [Ogata, 1988]. This

model is widely used in seismology [Rotondi and Varini, 2019, Ross, 2018a, Omi et al.,

2014, Omi et al., 2015, Ebrahimian et al., 2013, Schoenberg, 2013, Vargas and Gneit-

ing, 2012] to study earthquake arrival times. Most applications of the standard ETAS

model rely on point estimates for the model parameters, which ignore the inherent un-

certainty that arises as part of the model structure. Thus fitting ETAS to an earthquake

catalogues can result in misleading forecasts that under or over estimate the process’

multilayered intensity structure. In contrast, Bayesian statistics allows parameter uncer-

tainty to be explicitly incorporated. These estimates can be used for detailed forecasts

that characterise the process uncertainty in several stages such as uncaused and offspring

events productivity, spatial aggregation and boundary condition based restrictions.

Despite ETAS’ growing popularity in seismology, a Bayesian treatment of the ETAS

model has been limited by the complex nature of the resulting posterior distribution,

which makes it infeasible to apply to catalogues containing more than a few hundred

earthquakes. To combat this, we develop a new framework for estimating the ETAS

model in a fully Bayesian manner, which can be efficiently scaled up to large cata-

logues containing thousands of earthquakes. More details regarding Hawkes and ETAS

processes are presented in Chapter 2.

The basic temporal ETAS model assumes that all uncaused events follow a Pois-

son process, with aftershocks triggered via a parametric kernel function. However, the

Poissonian assumption contradicts with several aspects of seismological theory, which

suggest that the arrival time of the main earthquakes that trigger all other earthquakes

in the sequence instead follows alternative renewal distributions that address better the

inherited seismic behaviour of strain accumulation and relaxation. In Chapter 3 the

standard temporal ETAS process is extended to allow for non-Poissonian distributions

by introducing a dependence based on the underlying process’ behaviour. We introduce

two fundamental model structures that can be further extended toward an ensemble

of probability distributions. Then, we provide an illustrative application to two real

earthquake catalogues that further hone the introduced model’s benefits compared to

the standard ETAS model. The introduced methods in Chapter 3 were published in

Statistics and Computing journal [Kolev and Ross, 2019].
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A further extension of the standard temporal ETAS model is to include spatial infor-

mation and thus obtain a spatio-temporal point, rather than purely temporal, context.

So far the literature has addressed its estimation primarily in a frequentist manner. The

spatial ETAS model relies on the estimation of spatial density of the uncaused events in

the catalogue. We address this problem in Chapter 4 using a mixture model based on

a Dirichlet process with base measure the Normal-Inverse-Wishart distribution. Hence,

we provide a Bayesian non-parametric estimation algorithm as part of a larger Bayesian

framework for the parameter estimation of the model’s parameters. Neither the num-

ber of the components nor their explicit centres are restricted in our framework which

provides data-driven estimation with unregulated spatial clustering behaviour of the

uncaused events. This approach direct extends the previously introduced spatial ETAS

models [Ogata, 1998, Ogata and Zhuang, 2006, Schoenberg, 2013]. We also provide a

kernel density estimate alternative of the model, as well as techniques for out of sample

performance testing and forecasting quantification. A critical study on simulated data

and real earthquake catalogues is reported.

In Chapter 5 we explore the possibility of an ETAS process application towards

a discrete space, continuous time multivariate data. We address multiple subjects of

interest that are observed at specific locations. Their spotting time is recorded. An

example of such data structure is the spatially-explicit capture re-capture where animal

movement is captured by traps (cameras) at specific locations over a period of time to

quantify population dynamics. Each unique data object (animal) is considered to follow

a separate Hawkes process, hence the inherent multivariate structure of the proposed

model. However, a basic multivariate ETAS process is unlikely to be able to address

such a pattern due to the limited number of observations for each animal. Hence, we

propose a hybrid model that has some subject-specific components, while others are

pulled across the entire population. We reported the performance of our method across

two catalogues.
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Chapter 2

Methods and Techniques

This Chapter reviews ETAS models, starting with some general theory of point processes

and considering the specification and theoretical properties of the models, as well as

issues related to inference and simulation.

2.1 Temporal Point process

Point processes are stochastic processes that can be used to represent patterns of points

within a space of interest. Examples of such patterns include temporal occurrences such

as arrival times of people, locations of plants within a specific area, and times and spatial

locations of earthquakes. The first example is a temporal point process, the second is

in space and the final one is in both space and time. This initial review focuses on the

simplest of these cases: the temporal point process.

An accessible introduction on point processes is provided by [Cox and Isham, 1980],

while a more advanced treatments can be found in [Daley and Vere-Jones, 2003, Daley

and Vere-Jones, 2007].

2.1.1 Counting process

A point process is also referred to as a counting process as it counts the number of events

that occur in an interval of interest. Consider a sequence of ordered data 0 < t1 < ... <

ti < ti+1 for i ∈ Z. The point process that models these data are associated with a

random variable N(a, b) that captures the number of observations within an interval

(a, b) as follows:

27



N(0, t) =
∑
i

1ti∈(0,t), (2.1)

where 1 is an indicator function which takes value 1 if its corresponding statement is

true and 0 otherwise. An alternative notation is used with respect to sets, where N(A)

records the number of observations within a set A as follows:

N(A) =
∑
i

1ti∈A.

We are going to use both of these interchangeably depending on the context with default

values assumed to follow Equation 2.1 unless specified otherwise.

2.1.2 Intensity function

One of the most fundamental properties of a point process is its first-order intensity

function, informally representing the rate of event occurrence. Formally, it can be

represented with respect to the event detection probability in an infinitesimal interval:

λ∗(t) = lim
ε→0+

E[N(t, t+ ε)]

ε
, (2.2)

where E[·] denotes the expectation function.

Some point processes are memoryless and the occurrence of an event is unrelated to

the occurrence of others. An example of such a process is provided in Section 2.1.4. In

practice, however, there are many situations in which events are associated with each

other. The occurrence of one or more events can increase directly the subsequent event

rate. For example, in a population events might correspond to the birth times of new

individuals who themselves can subsequently have offspring of their own. Alternatively,

the event rate over time might fluctuate depending on some underlying process. This

thesis focuses on associations of the first type. There are various ways of characterising

such associations, but in the current context a particularly useful one is the conditional

intensity function.

The conditional intensity function represents a modification of the intensity func-

tion (as of Equation 2.2) to account for the influence of the events that occur prior to

the current time. It is defined with respect to the expected number of events in an

infinitesimal interval, given the Ht - the point-process’ history up to t:
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λ(t|Ht) = lim
ε→0+

E[N(t, t+ ε)|Ht]

ε
, (2.3)

where E[·] denotes the expectation function.

An important class of point processes is specified explicitly via the conditional inten-

sity function: these are Hawkes process. They address the inherent pattern of ’birth’ of

events. A special case of a Hawkes process is an ETAS model that is predominantly used

in this thesis, which is illustrated in greater detail in Section 2.2. Hawkes process’ con-

ditional intensity λ(t) depends on all data observations up to t, denoted with Ht. In a

slight abuse of notation, throughout this thesis the dependence on Ht will be suppressed

and we write λ(t) ≡ λ(t|Ht) for the conditional intensity function. In this data-driven

scheme, the occurrence of each event leads to an increase in the rate of occurrence of

subsequent events, with the effect usually dying out gradually over time. The overall

intensity function of a Hawkes process at any time point is a superposition of a baseline

intensity together with the conditional intensities arising from all previously-occurring

events.

The majority of the work in the thesis will focus on models that are specified in terms

of the conditional intensity function. In general, it is necessary to impose restrictions on

the form of this conditional intensity in order for the resulting process to be well-defined

and to ensure that properties such as stationarity hold: these will be discussed in the

context of the specific models introduced later.

Subsequently in this thesis, extensive use will be made of renewal processes in which

the inter-arrival times between successful events are not identically distributed. A de-

tailed introduction to renewal processes is provided by Cox (1962). Suppose the waiting

intervals between successive events (W ) follow a continuous distribution f(·) with a

respective cumulative distribution function F (·), then Equation 2.3 with respect to a

renewal process is equivalent to:

λ(t) = lim
ε→0+

E[N(t, t+ ε)|Ht]

ε
(2.4)

= lim
ε→0+

P [N(t, t+ ε) > 0|Ht]

ε
(2.5)

= lim
ε→0+

P [t < W < t+ ε|W > t]

ε
(2.6)

= lim
ε→0+

P [t < W < t+ ε]

ε

1

P [W > t]
=

f(t)

1− F (t)
. (2.7)
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2.1.3 Stationary process

An important class of point processes are those that are stationary in a sense that their

stochastic structure is unchanged over time. The formal definition of a stationary point

process given in Definition 3.2.I. by Daley and Vere-Jones (2003b) states that a point

process is stationary if for every s = 1, 2... and all subsets A1, ..., As on the real line, the

joint distribution of

{N(A1 + t), ..., N(Ar + t)}

does not depend on t ∈ (−∞,∞). An immediate consequence is the distribution of the

number of events in an interval depends on the length of the interval, not on its location.

2.1.4 Poisson process

Let us describe the relationship in Equation 2.4 with respect to a simple point process -

the Poisson process. This process is defined based on the following four properties [Ross,

2014]:

(i) N(0) = 0.

(ii) P (N(t, t+ δ) = 1) = λδ + o(δ). We write x = o(δ) if limδ→0 x/δ = 0.

(iii) N(A) and N(B) are independent for disjoint sets A and B.

(iv) P (N(t, t+ δ) > 1) = o(δ).

The probability distributions of the number of events in any interval of length t

are the same. The Poisson process is a memoryless process. This implies that the

dependence in Equation 2.1 can be simplified to P [N(a, a+ t) = k] = P [N(0, t) = k] =

P [N(t) = k] for k ∈ {N, 0}. Let pn(t) be the probability of observing n events in a

temporal interval with length t. The distribution of pn(t) is Poisson with mean λt:

pn(t) = P [N(t) = n] =
(λt)ne−λt

n!
.

Let T1, T2, . . . be the times of successive events in a Poisson process of rate λ, starting at

time zero. Respectively Wn = Tn − Tn−1 is the waiting time between event occurrence,

with T0 = 0. The cumulative distribution function of Wn is

F (t) = P [Wn ≤ t] = P [T1 ≤ t] = 1− p0(t) = 1− e−λt,
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with a corresponding density function of

f(t) =
dF (t)

dt
=

d

dt

[
1− e−λt

]
= λe−λt ∼ Exp(λ),

which represents the density function of an exponential distribution with rate λ. Hence,

the waiting times between event occurrences of a Poisson process follow an Exponential

distribution. Based on Equation 2.4 the intensity of a Poisson process is

λ(t) =
f(t)

1− F (t)
=
λe−λt

e−λt
= λ,

which recovers the intensity that the process originates from. An illustrative example

of a simulated Poisson process is shown on Figure 2.1. These data consist of 1000

observations (events) from a Poisson process with intensity λ = 1. As expected, the

events’ density is relatively constant.

Figure 2.1: Example of a Poisson process based on 1000 sampled events with λ = 1,
where | indicates an event.

A useful Poisson process property is that event arrival times in an interval with

length t follow an uniform distribution given N(t) = n. A derivation of this result is as

follows:

For k ≥ 1, the joint density of the first k event times can be written as

f (k) (t1, . . . , tk) = f1 (t1) f2 (t2|T1 = t1) . . . fk (tk|T1 = t1, . . . , Tk−1 = tk−1) , (2.8)

based on the generalised multiplication law, where 0 < t1 < . . . < tk. Now T1 ∼ Exp(λ)

so that f1(t1) = λ exp(−λx) for t1 > 0. Also, for i > 1, Ti − Ti−1 ∼ Exp(λ) so that

fi(ti|T1 = t1, . . . , Ti−1 = ti−1) = fi(ti|Ti−1 = ti−1) = λ exp [−λ (ti − ti−1)]
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for ti > ti−1. It follows that the joint density as of Equation 2.8 is

f (k) (t1, . . . , tk) = λk exp [−λt1]
k∏
i=2

exp [−λ (ti − ti−1)]

= λk exp [−λtk] . (2.9)

Consider the joint density of the event times T1, . . . , Tn conditional on N(t) = n,

where N(t) is again the number of events in the interval (0, t). This conditional joint

density has support on the region 0 < t1 . . . < tn < t, and can be defined as

lim
δt1→0,...,δtn→0

P [T1 ∈ (t1, t1 + δt1) , . . . , Tn ∈ (tn, tn + δtn) |N(t) = n]

δt1 . . . δtn
. (2.10)

Noting that N(t) = n if and only if Tn < t < Tn+1 and that the first of these

inequalities is automatically satisfied by the support of the conditional joint density, the

numerator here is:

P [T1 ∈ (t1, t1 + δt1) , . . . , Tn ∈ (tn, tn + δtn) , N(t) = n]

P [N(t) = n]

=
P [T1 ∈ (t1, t1 + δt1) , . . . , Tn ∈ (tn, tn + δtn) , Tn+1 > t]

P [N(t) = n]

=

∫∞
tn+1=t f

(n+1) (t1, . . . , tk) dtn+1δt1 . . . δtn + o(δt1 . . . δtn)

P [N(t) = n]

=

∫∞
tn+1=t λ

n+1 exp [−λtn+1] dtn+1δt1 . . . δtn + o(δt1 . . . δtn)

(λt)n exp[−λt]/n!

=
λn exp [−λt] δt1 . . . δtn + o(δt1 . . . δtn)

(λt)n exp[−λt]/n!
,

the penultimate step following from Equation 2.9 and the fact that N(t) ∼ Poi(λt).

Simplifying and substituting into Equation 2.10, the required conditional joint density

is:

lim
δt1→0,...,δtk→0

n!/tn [δt1 . . . δtn + o(δt1 . . . δtn)]

δt1 . . . δtn
=
n!

tn
(0 < t1 < . . . < tn < t) .

This expression corresponds to the joint density of the order statistics from n indepen-

dent U(0, t) random variables.

The simplicity of a Poisson process is beneficial for obtaining computationally un-

demanding results which makes it a natural starting point for the development of more

complex processes such as the ETAS model.
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The Poisson process is an example of a renewal process in which the inter-event

times are exponential. In Section 3.3 we extend this to consider alternative waiting-

time distributions that allow us to construct more flexible models which improve the

standard ETAS model.

2.1.5 Non-temporal extensions

So far we discussed point processes solely in terms of occurrence times of events. There

are many ways in which this basic structure can be extended. For example, each event

may be associated with a ”mark” or label that carries additional information about the

event and which may or may not influence the subsequent evolution of the process. In

a financial context marks can correspond to financial loss or gain, while in seismology

we usually refer to the earthquakes’ magnitude. The introduced models in Chapters 3

and 4 explore a marked point process.

A further extension is to consider counting processes not only on temporal intervals,

but also on a spatial region or a mixture on a space-time continuum. We do not use

spatial-only point processes within this thesis. Chapter 3 explores a temporal point

process, while Chapters 4 and 5 use spatio-temporal constructions.

A point process can be considered to count points in multiple sequences that share

common features or influence each other. This corresponds to a multivariate point pro-

cess. A special case of this construction is used in Chapter 5 based on shared parameters

across dimensions with no dependence among them. This simplified version of a multi-

variate ETAS model is beneficial for data with limited information across some of the

dimensions.

2.2 Epidemic Type Aftershock Sequence (ETAS)

The Epidemic Type Aftershock Sequence (ETAS) model is commonly used for studying

and forecasting the occurrence times of earthquakes in a geographical region of interest

[Ogata, 1988, Marzocchi and Lombardi, 2009, Omi et al., 2014, Omi et al., 2015]. It

aims to represent the mechanism of seismic activity in which the occurrence of large

earthquakes in particular is associated with an increased rate of subsequent events, or

aftershocks. In this construction, event occurrences are assumed to follow a self-exciting

marked point process governed by a conditional intensity function λ(t|Ht) which defines

the probability of an event occurring at each infinitesimal time interval around point t
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based on the catalogue Ht = {(t1,m1), (t2,m2), . . . : ti < t}, where ti andmi respectively

denote the time and magnitude of the ith previous event. The ETAS model and a general

Hawkes process share the same conditional intensity construction:

λ(t|Ht) = µ(t) +
∑
ti<t

ν(t− ti,mi), (2.11)

where µ(·) and ν(·) on their own are intensity functions. µ(t) is the intensity of the

uncaused (immigrant) events and ν(t− ti,mi) represents an increase in intensity caused

by event i i.e. the intensity of the caused (children) events. The background intensity

µ(·) can be allowed to vary in time and space, although it is usually taken to be constant

i.e. µ(·) ≡ µ. As already introduced in Section 2.1.4 a constant intensity function

corresponds to a Poisson process, hence the standard ETAS process assumes that the

inter-arrival times of all uncaused events follow an Exponential distribution. µ(·) is

typically referred to as ground intensity as this is the minimum intensity that the model

has. This model formulation has the effect that each event occurrence increases the

subsequent event rate: the processes are sometimes called ‘self-exciting’ processes for

this reason. The base structure of an ETAS model relies on main temporal offspring

intensity proportional to the Omori law [Guglielmi, 2017]:

ν(t− ti,mi) ∝
k

(t− ti + c)p
,

where c and p are parameters controlling the temporal decay rate, while k controls the

average productivity (i.e. the expected number of children of each event). A detailed

treatment of the development of the Omori law is provided by [Utsu et al., 1995].

A complete conditional intensity function depends on both arrival times and marks.

The latter are assumed to be realised independently for each event and commonly follow

a scaled Gutenberg-Richter law [Gutenberg and Richter, 1944,Fox et al., 2016]:

mi −M0 ∼ Exp(β),

where M0 is the minimum magnitude that is taken into account. Typically, small events

are excluded from studies of earthquake catalogues. This may be due to concerns that

some such events may be missing from the catalogue because they were not detected us-

ing the technology available at the time; alternatively, in some applications small events

are of limited interest because they are not a major source of risk. It is common, there-
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Figure 2.2: Example of a Branching structure

fore, to restrict attention to events with magnitudes above a user-specified threshold,

denoted M0 in this thesis [Gutenberg and Richter, 1944,Ogata, 1988].

2.2.1 Branching structure

In the ETAS model formulation, every event in a catalogue can generate offspring events

that produce further aftershocks (also known as ‘offspring’ or ‘children’), and so on. A

visual example of a possible branching structure is shown on Figure 2.2. Here events

t1, t6 and t10 are the uncased events (immigrants) which initiated the other events.

They were generated from a homogeneous Poisson process with rate µ. Then, each of

the events in the sequence produces offspring events according to an inhomogeneous

Poisson process with rate ν(·) that can further cause offsprings of their own and so

on. As of Figure 2.2 events t2, t3 and t5 are children of t1, while t4 is a child of t3.

Similarly t7 and t9 are off-springs of t6, while t11 is caused by t8, which is a child of t7.

There are no detected children events for t10 in the temporal interval that we currently

observe, although offsprings from all events can occur outside of the observed period

of interest. Further, we can define a ’dynasty’ to consist of all events associated with

an uncaused event. Then, the introduced branching structure consists of 3 dynasties -

{t1, t2, t3, t4, t5}, {t6, t7, t8, t9, t11} and {t10}.

A procedure to sample a branching structure is derived with respect to all intro-

duced models in this thesis as outlined in Sections 3.5.2, 4.6.1 and 5.5.1. Based on the

branching structure we can develop inference regarding the number of caused events

every event in the sequence is likely to generate. This way, the branching structure

offers an opportunity to obtain a computationally tractable way of model estimation

and uncertainty propagation.
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Figure 2.3: Example of an ETAS model conditional intensity function. The red lines
indicate event occurrence times.

2.2.2 Intensity structure

Based on the conditional intensity function as of Equation 2.11, we can illustrate the

process’ self exciting nature as shown on Figure 2.3. The minimum intensity level is

µ(t) = µ which is fixed over time. Then, each event leads to an instantaneous increase

in the subsequent intensity, gradually decaying over time and eventually becoming zero

according to the form of the ν(·) function. Each of these additive intensities will decay

over time and eventually become zero. Hence, the process is self-excited when an event

occurs and will gradually return to its base, ground intensity µ if no further events occur

for a long enough period of time.

Obtaining a finite catalogue depends on the form of ν(·). It is sufficient to obtain an

offspring decay for which every new event would be associated with less than 1 additional

event on average. This corresponds to the following expression:

∫ ∞
0

ν(z)dz < 1.

Under a stationarity assumption the ETAS model overall intensity is:

λ̃ =
µ

1−
∫∞

0 ν(z)dz
.
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The corresponding expected number of events associated with each uncaused event Nµ

is:

E[Nµ] =
1

1−
∫∞

0 ν(z)dz
. (2.12)

These results were established more rigorously in the literature [Cox and Isham,

1980,Hawkes and Oakes, 1974]. Hawkes and Oakes (1974) further derive the interval of

the expected duration of a dynasty as:(
A

∫∞
0 ν(z)dz

exp
[
− 2

∫∞
0 ν(z)dz

] , A ∫∞
0 ν(z)dz

1−
∫∞

0 ν(z)dz

)
, (2.13)

where A =
∫∞

0 zν(z)dz/
∫∞

0 ν(z)dz.

Let us consider a very simplistic unmarked ETAS example, where the intensity of

the process is :

λ(t) = µ+
∑
ti<t

(p− 1)cp−1 K

(t− ti + c)p
p > 1, c > 0, (2.14)

where ν(t) = (p− 1)cp−1 K
(t−ti+c)p for p > 1, c > 0 is the modified Omori law [Vere-Jones

and Davies, 1966, Ross, 2018b]. This intensity corresponds to cumulative intensity of

the offspring process of a single event of:

∫ ∞
0

ν(z)dz = K. (2.15)

Further, ∫ ∞
0

zν(z)dz =
Kc

p− 2
p > 2. (2.16)

Combining the results in Equations 2.12-2.16, we obtain the expected dynasty size

for the discussed ETAS model to be:

E(Nµ) =
1

1−K
K > 1,

with corresponding expected dynasty duration interval of:(
cK exp(−2K)

p− 2
,

Kc

(p− 2)(1−K)

)
p > 2,K > 1, c > 0. (2.17)

The discussed key properties highlight some restrictions on the parameter values

(K < 1 for finite catalogue and p > 2 for finite expectation) that are needed to ensure
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that the process behaviour is ’realistic’ when considered as a model with respect to real

data. However, p is typically unrestricted in the literature and commonly obtains values

close to 1. Further, the finite expectation is not guaranteed in a seismic context because

an event can potentially cause another one forever. The restriction of K < 1 is essential

to obtain a ’finite’ catalogue i.e. a catalogue in which the number of earthquakes above

certain magnitude is countable in a closed interval. More specific details on this topic

related to marked, spatio-temporal ETAS model are introduced in Section 4.7.

2.2.3 ETAS structural extensions

The basic ETAS model is applicable in situations where it is of interest to model a

sequence of earthquake occurrence times and magnitudes. In other situations, however,

it may be of interest to study the events’ spatial locations as well: in this case it is

necessary to extend the basic model to incorporate spatial locations as well as occurrence

times. Furthermore, we might consider multiple sites of interests that share similar but

not necessarily identical behaviour or multiple temporal point processes e.g. representing

occurrences at a discrete set of locations, or events experienced by different individuals in

a population. Such linked patterns can be modelled based on a multivariate point process

with either directly shared parameter values or to introduce an interaction between

parameter values across different dimensions. In this thesis are explored both of these

extensions: spatio-temporal ETAS and multivariate ETAS.

Spatio-temporal ETAS

In its essence the spatio-temporal ETAS, also referred to as spatial ETAS, model consists

of additional intensity functions that incorporate the location information in each of the

model components. In a space-time setting the intensity is a function of the spatial

co-ordinates x and y as well as the event arrival time t:

λ(t, x, y|Ht) = µ(t, x, y) +
∑
ti<t

ν(t− ti, x− xi, y − yi,mi). (2.18)

where the component functionalities of Equation 2.18 are the same as the ones from

Equation 2.11, namely µ(·) is the intensity of the uncaused (immigrant) events and

ν(·) represents an increase in intensity caused by event i. For this construction, the

catalogue information to consider is Ht = {(t1, x1, y1,m1), (t2, x1, y1,m2), . . . : ti < t},

where ti, (xi, yi) and mi respectively denote the time, location and magnitude of the ith
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earthquake. Then the cumulative intensity of the model will depend on space and time

instead of just time. A detailed review of the sptio-temporal ETAS model is present in

Section 4.2.

Multivariate ETAS model

The process above is a spatio-temporal marked model. An alternative way to extend the

basic spatio-temporal ETAS is to introduce a multivariate setting. Chapter 5 introduces

a multivariate construction of the unmarked, spatio-temporal ETAS model. Consider

a collection of m separate temporal point processes that are linked in some way: each

of the m processes will be referred to subsequently as a ”dimension” of the combined

process as of Equation 2.1. Then for each dimension j in {1, ...,m}

N (j)(0, t) =
∑
i

1
t
(j)
i <t

, (2.19)

where t(j) corresponds to an event arrival time in the jth dimension and N (j)(·) indicates

the counting process of the jth dimension. Then the multivariate counting construc-

tion is an aggregation of the individual dimensions i.e. N(·) = {N (1)(·), ..., N (m)(·)}.

Similarly, the history to be considered is an ordered aggregation of the individual di-

mensions’ history Ht = ∪mj=1H
(j)
t , where the data in the jth dimension is H

(j)
t =

{(t(j)1 , x
(j)
1 , y

(j)
1 ), (t

(j)
2 , x

(j)
2 , y

(j)
2 ), . . . : t

(j)
i < t}, where t

(j)
i and (x

(j)
i , y

(j)
i ) respectively de-

note the time and location of the ith observation across the jth dimension. The intensity

measure of the process λ(t, x, y) is also multivariate with m dimensions.

λ(t, x, y) = (λ(1)(t, x, y), ..., λ(m)(t, x, y))′

where each of the individual dimensions’ intensity functions are of the form

λ(i)(t, x, y) = lim
ε→0

E[N (i)(t, t+ ε)|H (i)
t ]

ε
.

2.3 Simulation and restrictions

In this Section we discuss several basic methods for sampling from a general Hawkes

process. They can be applied in a wider ETAS context with minor modifications. Simu-

lating from a specific process is essential for sanity checks of code performance, estima-

tion methods’ performance and predictions. In a Hawkes process setup, simulated data
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can further exhibits information that is typically unknown such as the full branching

structure of the process and the true underlying intensity function.

2.3.1 Simulation techniques

A number of techniques can be used to simulate a realisation from a general Hawkes

process. The two most recognised methods for model simulation are simulation by

inversion and simulation by thinning [Rasmussen, 2011,Rasmussen, 2018]. Let us define

a temporal region of interest [0, T ] in which we would like to obtain a Hawkes process

realisation.

Simulation by inversion

1. Set t = 0, t0 = 0 and n = 0 (note that t0 is a starting point rather than an actual

event).

2. Repeat while t < T i.e. current time is before the maximum time of the sequence:

(a) Generate s ∼ Exp(1).

(b) Calculate t, where t = Λ−1(s), where t = Λ−1(·) is the inverse of the cumu-

lative intensity function, λ(·) i.e. Λ(t) =
∫ t

0 λ(s|Hs)ds

(c) if t < T − tn, set tn+1 = tn + t and n = n+ 1 .

3. The sequence
{
t1, ..., tn

}
is generated by a Hawkes process and is in the interval

from 0 to T .

However, the evaluation of Λ−1(t) is not trivial for the general Hawkes process. Thus,

alternatives such as Ogata’s modified thinning algorithm are preferred.

Simulation by thinning

1. Set t = 0 and n = 0.

2. Repeat until t < T i.e. current observation is smaller than the maximum value we

want to take into account.

(a) Compute the value of m(t) and l(t) such that m(t) ≥ sup
s∈[t,t+l(t)]

λ(s|Hs).

(b) Generate i.i.d. variables such that s ∼ Exp[m(t)] and U ∼ U(0, 1).
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(c) If s > l(t), then t = t + l(t), else if t + s > T or U > λ(t + s)/m(t), then

t = t+ s, else n = n+ 1, tn = t+ s, t = t+ s.

3. The sequence
{
t1, ..., tn

}
is generated by a Hawkes process and is in the interval

from 0 to T .

In terms of a typical Hawkes process, the m(t) is simply the intensity function and

l(t) =∞.

Although the Ogata thinning algorithm provides a viable simulation option, it tends

to be relatively slow compared to a simulation technique that explores the process in-

herent branching structure. Further, the thinning algorithm does not provide direct

information of the processes’ underlying branching structure, which is required for the

inference methods developed later in the thesis. Throughout all code implementations

in this thesis the Ogata thinning algorithm was used solely for comparison purposes

with the method introduced below, which we used for the simulation of all stress tests

that were carried out.

Simulation by clustering

An alternative method for obtaining a realisation from ETAS is to simulate events based

on their underlying branching structure (as of Figure 2.2). We do that by initiating all

immigrant events and then allowing each of them to excite further events which on their

own can produce more events and so on. Such simulation provides intuition into the

underlying model since the true branching structure is known [Dassios et al., 2013,Harte

et al., 2010].

1. Sample the number of uncaused events, m, in the temporal detection region [0, T ]

from a Poisson distribution with mean
∫ T

0 µ(t)dt. Then assign uniformly the

events’ attributes within their detection range.

2. Create offspring generation G0 that contains all uncaused events (generation 0).

3. Repeat while the ith (i ∈ {0, 1, ...}) generation is non-empty (i.e. |Gi| > 0):

(a) For all elements in Gi = {t1, ..., t|Gi|}:

i. Sample the number of offsprings for each event in Gi from a Poisson

distribution with mean
∫ T−tj

0 ν(z)dz.
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ii. Sample temporal lags from ν(·) on temporal interval (0, T − tj ].

iii. Record this realisation in G
(j)
i .

(b) Create generation Gi+1 = ∪|Gi|j=1G
(j)
i .

(c) Order chronologically Gi+1.

4. Create the full catalogue by merging all generations G = ∪iGi.

5. Order chronologically G and record the full branching structure that created this

realisation.

More details related to the specific simulation techniques are present in Section 4.4

that directly address the large simulation study that we conduct with respect to the

spatio-temporal ETAS process (Section 4.9). We also outline a simulation mechanism

for the multivariate ETAS process in Section 5.3.

2.3.2 Simulation considerations

The properties of a general ETAS model that were discussed in Section 2.2.2 place re-

strictions on parameter values for which the overall intensity of the process is finite.

Furthermore, there are parameter values for which the process does not have any ap-

preciable clustering structure, for example when the expected dynasty (as of Equation

2.12) size is close to zero.

A set of parameter estimates, θ̄, can provide an optimum with respect to an objective

function of interest with offspring productivity that does not guarantee a finite catalogue.

Such parameter sets cannot be used for the development of a predictive study.

None of the three simulation algorithms introduced in this section allow for descen-

dants of immigrants that occur prior to time 0. This provides leaner catalogues until

the mean offspring causality is reached. In estimation context this phenomenon will

cause difficulties with respect to the proportion of uncaused events in the first part of

the catalogue. For studies that span a small temporal interval is beneficial to sample a

larger set and discard a catalogue length larger than the expected dynasty duration.

2.4 Inference

In this subsection we will address the basic estimation techniques of a Hawkes process.

Then we will discuss methods for comparison and diagnostics across a set of proposed

models.
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2.4.1 Likelihood

A natural way to demonstrate the form of a point process’ log-likelihood is to consider

dividing the observation interval into a large number of small intervals, each of length

δt. Consider aggregating the data by counting the numbers of events in each of these

small intervals. Then, if δt is small and conditional on the history up to kδt, the number

of events in the interval
(
kδt, (k + 1)δt

)
, for k = {0, 1, ...}, has approximately a Poisson

distribution with mean λ(t|Hkδt)δt, where Hkδt denotes the processes history up to

kδt. However, this Poisson distribution approximates the conditional distribution of the

number of events given the numbers of events in all previous intervals, together with

other elements of the history Hkδt.

The joint probability mass function of the aggregated observational counts can be

approximated by the product of the individual probabilities over all the intervals (by the

generalised multiplication law). As δt tends to zero, the approximation gets more and

more accurate; moreover, the number of events in each interval will eventually become

0 (with probability exp[−λ(t|Hkδt)δt] or 1 (with probability λ exp[−λ(t|Hkδt)δt]δt)).

The logarithm of the joint distribution is thus approximated by:

∑
k:N(kδt,(k+1)δt)=0

−λ(t|Hkδt)δt+
∑

k:N(kδt,(k+1)δt)>0

log λ(t|Hkδt)− λ(t|Hkδt)δt + log δt =

∑
k

−λ(t|Hkδt)δt+
∑

k:N(kδt,(k+1)δt)>0

log λ(t|Hkδt) + log δt.

The final term of the second sum (log δt) does not depend on the model param-

eters, we can consider the remaining expression as defining an approximation to the

log-likelihood function which becomes more accurate as δt goes to 0. In the limit, the

first sum becomes an integral and the second becomes a sum over the actual event times.

The conditional Poisson marginal inter-event time density is the probability of ob-

serving an event at time ti and not observing any other events between the last detected

event ti−1 and ti:

f(ti|Hti) = λ(ti) exp

(
−
∫ ti

ti−1

λ(u)du

)
for i ∈ {1, . . . , n},
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where t0 = 0. Combining that with the density of not detecting an event after the last

detected event, tn, until the end of the catalogue T we obtain:

f(T |HT ) = exp

(
−
∫ T

tn

λ(u)du

)
,

which leads to the following overall form of the likelihood:

L(θ; HT ) = f(T |HT )
n∏
i=1

f(ti|Hti)

= exp

(
−
∫ T

0
λ(u)du

)
n∏
i=1

λ(ti),

(2.20)

with corresponding log-likelihood of:

log
(
L(θ; HT )

)
= `(θ; HT ) = −

∫ T

0
λ(u)du+

n∑
i=1

λ(ti). (2.21)

A more formal definition of a point process’ (log-)likelihood is provided by Daley

and Vere-Jones [Daley and Vere-Jones, 2003] with a detailed treatment in the work of

Rasmussen [Rasmussen, 2018].

The likelihood is a function of the parameters, θ, for the data of interest, in our

case HT . This leads to the general likelihood notation of L(θ; HT ). According to the

likelihood principle for a given sample of data, HT , the inference for the parameter set θ

across any two probability models P (HT |θ) is the same if their likelihood functions are

the same [Gelman et al., 2014]. The model function P (HT |θ), commonly referred to as

a sampling (or data) distribution in a Bayesian context, equates to the (log-)likelihood

function if considered as a function of θ for fixed data HT .

2.4.2 Parameter uncertainty

Parameter uncertainty can be propagated either in frequentist (classic) or Bayesian

manner. The former one considers the information carried out by each parameter. Based

on the law of large numbers, the parameters’ distribution is approximated to Gaussian

with mean the maximum likelihood estimate and standard deviation proportional to the

information that it carries. The procedure for this is the following:

1. Evaluate the Hessian matrix.
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Let us define a function f : Rn → R for which all second partial derivatives exist

and are continuous over the support of the function. Then the Hessian matrix H

of the function f(θ) is:

H(θ) =



∂2f(θ)

∂x2
1

∂2f(θ)

∂x1 ∂x2
· · · ∂2f(θ)

∂x1 ∂xn

∂2f(θ)

∂x2 ∂x1

∂2f(θ)

∂x2
2

· · · ∂2f(θ)

∂x2 ∂xn

...
...

. . .
...

∂2f(θ)

∂xn ∂x1

∂2f(θ)

∂xn ∂x2
· · · ∂2f(θ)

∂x2
n


,

where θ = {x1, ..., xn}.

2. Calculate the Fisher Information matrix. Let us consider the function f(θ) that

was introduced in the previous step to be the log-likelihood function of a valid

probability density function g(X|θ), where θ = {x1, ..., xn} is its parameter set.

The Fisher information measures the amount of information that a random vari-

able X carries about each of the parameters in θ and it has the following form

I(θ̂) = −H(θ̂),

where θ̂ indicates the maximum likelihood estimate of θ.

3. Approximate distribution of θ̂ is

θ̂ ∝ N
(
θ̂, I(θ̂)−1

)
,

with each of the parameters in θ̂ having estimated standard errors equal to the

inverse of the square root of the corresponding diagonal element from the full

information matrix.

There are situations in which the maximum likelihood provides reasonable results

and others in which it does not. The classic approach is viable if, for example, we

consider the point process as of Equation 2.14 with respect to model parameters for

which the expected dynasty duration (Equation 2.17) is relatively short and all dynas-

ties are non-overlapping. However, such patterns are not commonly observed. Without

considering the finite dynasty expectation constraint, the performance of frequentist
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maximum likelihood estimation for the general ETAS model based on directly max-

imising the likelihood function discovered that the resulting parameter estimates often

differed substantially from their true values [Schoenberg, 2013]. The prime cause is the

likelihood function’s multi-modality which is primarily driven by the overlapping dynas-

ties. Further, the components of the parameter vector can be moderately correlated.

This issue primarily occurs for parameters c and p of the modified Omori law. The cor-

relation that they experience makes parameter-wise optimisation problematic. Further,

the starting values of a maximum likelihood optimisation can dictate the convergence

results [Harte et al., 2010].

Although the overall uncertainty of the model parameters can be obtained in a

classical manner, it cannot be fully implemented in the context of ETAS model usage

for risk calculations. In order this to be achieved, we have to propagate the parameter

uncertainty through the subsequent risk analysis which is very difficult. If risk could be

represented as a simple function of the ETAS model parameters, we could in principle

use standard results for transformation of variables to get approximate uncertainties on

the risk: however, in general this is not the case. Rather, risk calculations require a

combination of hazard (represented by the ETAS model) with exposure, vulnerability

and loss models [Kron, 2002]. Such relationships are complex with the easiest way to

get at the risk will often be to simulate multiple catalogues and to run each of these

through the subsequent risk calculations [Shapira, 1983, Crowley et al., 2013]. In this

case, the parameter uncertainties must be incorporated into the simulations somehow

which is not trivial in a classical framework, essentially because we have to sample from

the predictive distribution of the point process and such predictive distributions are

hard to calculate in all but the simplest statistical models [Cox and Hinkley, 1974].

The Bayesian approach via Markov chain Monte-Carlo (MCMC) offers an alternative

solution in which we can generate samples from the posterior predictive distribution of

the process easily given a sample from the posterior of the parameters.

2.4.3 Bayesian paradigm

Bayesian statistics represents an alternative statistical framework for reasoning about

uncertainty, which is becoming increasingly popular both in seismology and in ETAS

contexts [Faenza et al., 2010, Holschneider et al., 2012, Shcherbakov, 2014, Ross, 2018a,

Kolev and Ross, 2019,Rotondi and Varini, 2019]. In the Bayesian paradigm, we do not
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work with only a single estimate of θ (with its corresponding symmetric uncertainties)

but instead consider the whole posterior distribution P (θ|Ht) which represents our un-

certainty about θ based on both the observed data and any prior knowledge we have

based on previously conducted studies. This uncertainty can then be incorporated into

forecasts in a straightforward manner [Glickman and Van Dyk, 2007]. Despite its ad-

vantages, the Bayesian framework is difficult to apply since the posterior distribution

in the ETAS model is highly complex. As such, many studies which attempt Bayesian

earthquake forecasting have had to resort to using frequentist-style point estimates for θ,

which mitigates the benefits of the Bayesian framework [Ebrahimian et al., 2013,Ogata,

2011]. An attempt at providing a fully Bayesian treatment of the ETAS model is the

unpublished thesis [Vargas and Gneiting, 2012] which proposed using a computational

simulation based on the framework from [Rasmussen, 2013] for parameter estimation.

However, their approach is not scalable to catalogues containing more than a few hun-

dred earthquakes, which limits its applicability.

The main aim of Bayesian analysis is to fully explore the parameters’ distribution.

A prior distribution π(θ) is set based on our prior knowledge of the parameters’ distri-

bution. Then, using the Bayes theorem, the posterior distribution of the parameter θ

can be represented as follows:

P (θ|HT ) =
P (HT |θ)π(θ)∫

Θ P (HT |θ)π(θ)dθ
, (2.22)

where P (HT |θ) is the sampling (or data) distribution with respect to the observed data

HT up to time T given a set of model parameters θ. As outlined in Section 2.4.1, the

sampling distribution equates to the likelihood function when regarded as a function of

θ, for fixed data HT . The association of a model parameter set θ, given an observed

data HT is represented by the posterior distribution P (θ|HT ).

The multi-dimensional integral in Equation 2.22 is extremely hard to handle in its

general form with respect to even a very simple example of a self-exciting point process

[Rasmussen, 2013,Veen and Schoenberg, 2008,Ross, 2018a]. For this reason, we can use

the well-known Metropolis-Hastings (MH) algorithm for sampling the Markov Chain of

interest [Chib and Greenberg, 1995,Hamra et al., 2013,Rotondi and Varini, 2007,Rotondi

and Varini, 2019]. According to this method, we firstly initialise the parameter set with

some reasonable values θ(0). At step i we would like to propose a new sampled value of

θ(i) based on θ(i−1). For example we might consider a random walk transformation such
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as θ(i) = θ(i−1) +ε where ε ∼ N(0, σ2). The acceptance probability of the proposed value

θ(i) is P (θ(i)|HT )/P (θ(i−1)|HT ). If the value is rejected, we fail to obtain a new sample

at this step and assign the (i− 1)st sample to the ith (i.e. θ(i) = θ(i−1)) and repeat

the procedure for the next step until we obtain the required number of MCMC steps.

After sufficient number of parameter updates we will obtain samples from P (θ|HT ) that

represent an equilibrium (stationary) distribution which addresses the true shape of the

parameters’ distribution.

The obtained parameter chains can be further subject to burn-in in which we erase

the initial samples for each of them. This is done to consider only parameter sam-

ples that are obtained after convergence to the respective parameters’ true posterior

distributions. Further, every sample depends on the previous one which naturally in-

duces autocorrelation which can be reduced by thinning the obtained chains. This is

done by removing all obtained parameter samples except every nth one. Both of these

methods are commonly used for obtaining good samples from the respective posterior

distributions.

A maximum a posterior probability (MAP) estimate is a point estimate of model

parameters obtained as the mode of its posterior distribution after thinning and burn-in.

MAP technique is commonly used for obtaining point estimates similar to those from a

classical maximum likelihood procedure.

It may initially seem feasible to use direct Metropolis-Hastings to sample from the

posterior distribution (Equation 2.22). A general MCMC algorithm, as the one intro-

duced in this Section, will involve iterative parameter proposal with acceptance depen-

dent on the change of the full likelihood (Equation 2.21). Proposing updates for all

parameters simultaneously requires a single calculation of the likelihood. However, this

is likely to cause a lack of parameter acceptance because each of the parameters can

cause major shifts in the likelihood value. An alternative approach will be to propose

and accept parameters independently, which is computationally slow because the full

likelihood function has to be evaluated for every proposed parameter.

Further, the direct Bayesian approach suffers from serious convergence problems that

arise even in the most simplistic parametric case of ETAS model. A general exception

can be obtained for non-overlapping dynasty (Section 2.2.2). Such restrictions are typ-

ically too restrictive and do not address fully the underlying ETAS behaviour. The

efficiency of MCMC algorithms for ETAS type models can be drastically improved by

including the branching structure as a latent variable. For all these reasons, we instead
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propose a reparametrisation of the model based on the process’ underlying branching

structure (see Section 2.2.1) that aims to break the parameter correlation and lead to

a usable Metropolis-Hastings algorithm for posterior sampling. A direct comparison

between the standard MCMC and its latent variable alternative indicates faster compu-

tation time and greater effective sample size [Ross, 2018a]. Conditional on the branching

structure, the parameter updates are independent of each other. Then, the updates for

each of them are dependent on separate likelihood functions that are computationally

inexpensive. This greatly improves the convergence and computational time. More de-

tails on the ETAS model latent variable MCMC approach are present in Sections 3.5,

4.6 and 5.5.

2.4.4 Model comparison methods

In this section are discussed multiple methods for model comparison. Some of them are

applicable to any model, while others are only feasible in a parametric context.

Log-likelihood

Models of interest might be compared directly based on the maximum (log-)likelihood

value that they can achieve with respect to data of interest. Although a comparison

between the ratio of two likelihoods can be interpreted directly with the likelihood ratio

test [Gourieroux et al., 1982], this method neglects completely the concept of overfitting.

A model with more model parameters is usually better simply because it can adjust

better to the data. Thus, alternatives for model comparison based on penalisation of

the number of included parameters are introduced.

Akaike Information Criterion (AIC)

Probably the most widely used method for model comparison that penalises for the

number of used parameters is the Akaike Information Criterion (AIC) [Akaike, 1973]. It

was introduced as a method for allocation of the best fit across an ensemble of proposed

models by measuring the distance between the unknown true likelihood function and

the fitted one. It asymptotically corrects the bias that occurs when using the in-sample

likelihood to estimate the out-of-sample likelihood. For every set of model parameters

θ the model’s AIC value is the following:

AIC(θ) = −2`(θ; HT ) + 2d,
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where d is the number of free model parameters i.e. d = |θ| and `(θ; HT ) is the log-

likelihood value. The best model across a set of proposed models is associated with the

lowest value of AIC coefficient. However, AIC does not explicitly address the posterior

distribution association with the data. This can be done based on Bayes factor, or its

approximation the Bayesian Information Criteria (BIC). Further, a hierarchical model

selection generalisation of the AIC can be addressed based on the Deviance Information

Criteria (DIC).

Bayes factor

Another method for model comparison based on Bayesian parameter estimation is the

Bayes factor approach. It examines which model is more feasible for the specific data

based on the underlying posterior probability. For every two models M = {M1,M2} we

have to firstly find their posterior probabilities given the data P (M |HT ) which is the

following:

P (M |HT ) =
P (HT |M)P (M)

P (HT )
∝ P (HT |M)P (M),

where the term P (Ht|M) is model distribution under model M . Then, the Bayes factor

for M1 versus M2 is the following:

BF =
P (HT |M1)

P (HT |M2)
.

The above expression is the likelihood-ratio test statistics, which represents the difference

between the log-likelihoods of two models. The result can be interpreted in terms of the

log value of BF , where if 0 < log(BF ) < 1 indicates a minor difference between the two

models, 1 < log(BF ) < 3 - an evident positive difference, 3 < log(BF ) < 5 - a strong

difference and 5 < log(BF ) - a very strong difference [Kass and Raftery, 1995]. From a

Bayesian perspective, the marginal likelihood is expressed in terms of Bayesian evidence

for a model M :

P (Ht|M) =

∫
ΘM

P (Ht|θM ,M)P (θM |M)dθM , (2.23)

where with θM is notated the parameter set of model M , with corresponding support

ΘM . The above expression provides a better model comparison as it fully explores

the parameters’ support compared with the standard likelihood ratio test, in which we

compare the ratio between the likelihood of two models rather than the one between

their posteriors. The integral in Equation 2.23 provides a challenging numerical problem.
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Obtaining a large sample of the model parameters’ set θM indicates that its posterior

distribution is approximately Gaussian around the MAP estimates (θ̂M ) of a model M .

Then:

P (θM |HT ,M) ≈ (2π)
−d
2 |A|

1
2 exp

[
− 1

2
(θM − θ̂M )′A(θM − θ̂M )

]
,

where d is the number of model’s parameters i.e. d = |θM | and A is a d×d Hessian matrix

of P (θM |HT ,M) evaluated at the MAP estimates i.e. Aij = − ∂2

∂θ
(i)
M ∂θ

(j)
M

P (θM |HT ,M)|θ̂M .

Combining this with the fact that:

P (HT |M) =
P (θM ,HT |M)

P (θM |HT ,M)
,

we can evaluate the log(P (θM |HT ,M)) at θ̂M as follows:

log(P (HT |M)) ≈ log(P (θ̂M |M)) + log(P (HT |θ̂M ,M)) +
d

2
log(2π)− 1

2
log(|A|). (2.24)

An approximation of the result in Equation 2.24 can be obtained for large sample (n→

∞) since for a fixed matrix A0 the Hessian matrix A grows as nA0 [Ghahramani, 2005].

Thus, the term log(|A|) can be expressed as follows:

log(|A|)→ log(|nA0|) = log(nd|A0|) = d log(n) + log(|A0|).

Applying this results in Equation 2.24 and further retain only parameters that grow in

n, we obtain:

log(P (HT |M)) ≈ log(P (HT |θ̂M ,M))− d

2
log(n),

which returns the Bayesian Information Criterion (BIC). Hence, for a large sample size

the Bayes factor converge to the Bayesian Information Criterion (BIC).

Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) is a popular penalised likelihood technique

which incorporates a penalty based on the number of parameters to reduce the risk of

overfitting [Schwarz et al., 1978]. Given a model with parameter vector θ, the models

BIC is defined as:

BIC(θ) = −`(θ; HT ) +
d

2
log(n),
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where d is the number of free model parameters i.e. d = |θ|, `(θ; HT ) is the log-likelihood

value evaluated at the Maximum Likelihood estimates (MLE) θ̂ and n is the number of

observations. BIC provides stronger penalty than AIC for n > 7 with respect to models

with more parameters. The best model with respect to this criterion is associated with

the lowest value of BIC coefficient.

Deviance Information Criterion (DIC)

The DIC is a fully Bayesian alternative to the AIC. It replaces the maximum likelihood

parameter estimates of θ with their posterior mean θ̄. The correction associated with

the number of model parameters is replaced with a measure of parameter adequacy

based on the goodness of sample of θ in terms of log-likelihood [Gelman et al., 2014].

DIC informally addressed the extend to which parameters are approximated well based

on the obtained MCMC samples. For every set of model parameters θ the model’s DIC

value is:

DIC(θ) = −2`(θ̄; HT ) + 2pDIC ,

where `(θ; HT ) is the log-likelihood function and pDIC is the effective number of pa-

rameters, which evaluates the number of independent samples the MCMC draws are

equivalent to. It is defined as:

pDIC = 2`(θ̄; HT )− 2E[`(θ; HT )] ∼= 2`(θ̄; HT )− 2
1

S

S∑
s=1

`(θs; HT ),

where θs indicates the sth parameters’ sample in the considered MCMC chain. Al-

ternatively, we can compute the effective sample size as the variance of the obtained

log-likelihood values for all sampled parameters as follows:

pDICalt = 2V ar[`(θ; HT )].

This method is not as numerically stable as the other one but it is easier to compute as

it does not require the allocation of θ̄ as well as the calculation of the likelihood function

for this set of parameters. It further guarantees to provide positive values. There are

many different alternatives of DIC that address specific data and model prerequisites

[Spiegelhalter et al., 2014].
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2.4.5 Diagnostic measures for model checking

In the previous section we discussed methods that allocate the best model across a range

of proposed models. However, in order a model to be considered as adequate we want

to formally examine its appropriateness. We do that with respect to the introduced in

this Section measures that we use for model checking.

Time re-scaling residuals

The time re-scaling concept aims to re-scale the observations from a point process based

on its conditional intensity function, to produce residuals which follow a homogeneous

Poisson process [Brown et al., 2002, Lallouache and Challet, 2016]. This way we can

evaluate whether a model produces undesired patterns that indicate major flows with its

performance. For a given temporal point process sequence 0 = t0 ≤ t1 <, ..., < tn ≤ T

with corresponding conditional intensity λ(t|Ht) > 0 for t ∈ (0, T ], the residuals are

defined for each k ∈ {1, ..., n} as:

Λ(tk) =

∫ tk

0
λ(u|θ,Hu)du.

Assuming that the cumulative intensity is finite, i.e. λ(·) < ∞, then all Λ(·)s are

a realisation from a Poisson process with rate 1. The inter arrival times δk = Λ(tk) −

Λ(tk−1) (assuming that t0 = 0) are hence independent Exponentially distributed with

mean and standard deviation of 1. As such, testing these residuals to check they follow

an Exponential distribution is equivalent to testing whether the conditional intensity

function describes the data well.

Proof. A sufficient proof to the above statement that time re-scaling residuals follow a

homogeneous Poisson process is to show that δi, i ∈ {1, ..., n} are independently and

identically distributed, following an Exponential distribution with a unit rate. We set

an additional time-residual that captures the time elapsed between the last event tn

and the stopping time T as δT =
∫ T
tn
λ(u|θ,Hu)du. The joint probability of all δks is

the probability of obtaining the specific time residuals, combined with having a time

residual for the n+ 1st event greater than T − tn

f(δ1, δ2, ..., δn, δn+1 > T − tn) = f(δ1, ..., δn)P (δn+1 > δT ). (2.25)

53



However, the probability of having δn+1 > δT is equivalent to tn+1 > T or in no

events to be detected in the interval (tn, T ] as previously outlined in Section 2.4.1. Then

P (δn+1 > δT ) = P (tn+1 > T ) = exp

(
−
∫ T

tn

λ(u|θ,Hu)du

)
= exp(−δT ). (2.26)

We further perform a multivariate change of variables from δ· to t·

f(δ1, ..., δn) = |J |f(t1, ..., tn, N(0, tn) = n),

where f(t1, ..., tn, N(0, tn) = n) is the joint density of interest, J is a Jacobian matrix

between ti and δi for i ∈ {1, ..., n}. δk is a one-to-one function of tk, hence J is a lower

triangular matrix with determinant |J | = |
∏n
i=1 Jii| where Jii = ∂ti

∂δi
= λ(ti|θ,Hti)

−1.

Then

f(δ1, ..., δn) =

n∏
i=1

λ(ti|θ,Hti)
−1

n∏
i=1

λ(ti|θ,Hti)

exp

(
−
∫ ti

ti−1

λ(u|θ,Hu)du

)
=

n∏
i=1

exp(−δi).

Substituting this result with Equation 2.26 into Equation 2.25 we obtain:

f(δ1, ..., δn, δn+1 > T − tn) =P (tn+1 > T )f(δ1, ..., δn)

= exp(−δT )
n∏
i=1

exp(−δi).
(2.27)

The provided joint density of the time-residuals δi, i ∈ {1, ..., n} is recognised as

the density function of an Exponential distribution with unit rate which establishes the

result.

The time re-scaling test can be carried out using a goodness-of-fit that examines how

close the obtained sequence of time residuals follows the unit Poisson process. This can

be achieved using any of the following tests: Kolmogorov-Smornov test, Cramér-Von

Mises (CVM), Anderson-Darling, Ljung-Box or Engle Russell Excess Dispersion.

An alternative informal method for examining the goodness of fit is to define residuals

related to the expected number of events at specific time versus the actual number of

events that occur [Andersen et al., 2012]. We aim to assign residuals value to every

model, based on the average number of observations up to point t based on their intensity
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functions as follows:

I(t|θ) = N(0, t)−
∫ t

0
λ(s|θ,Hs)ds.

By definition, the intensity λ(t) = limδt→0
1
δtP ([N(0, t+δt)−N(0, t)] = 1) where N(0, t)

is random variable that captures the population at time t as introduced in Equation 2.1.

Thus, E[I(t|θ)] = 0. The obtained value of I(t), which is also known as a raw residuals

process, reaches zero for the best model and it can also be informally used for direct

comparison between two models at specific times of interest, where the superior model is

given by the smaller absolute value of the raw residual process (|I(t)|) [Baddeley et al.,

2005].

Kolmogorov-Smirnov test

Kolmogorov-Smirnov (KS) test [Chakravarti and Laha, 1967] was introduced to check

whether a set of observations follows a specific distribution of interest. For an ordered

data X = (x1, ..., xn) we are interested in examining whether the sample cumulative

distribution function (CDF) F (·) is close to a specific CDF F0(·). The corresponding

test statistic is the following:

KS = max
1≤i≤n

(
F0(xi)−

i− 1

n
,
i

n
− F0(xi)

)
.

It is applicable to continuous distributions only, such as the exponential distribution

which is of interest in our case. The KS test is more sensitive in the centre of the

distribution compared to its tails.

Anderson-Darling test

The Anderson-Darling (AD) [Anderson and Darling, 1954] is an extension of the CVM

with a varying weighting function w(·). The chosen functional form is

w(x) =
[
F0(x)(1− F0(x))

]−1
,

where F0(·) is a specific CDF that we would like to compare with the sample one F (·)

based on the expression in Equation 2.28. This way the AD test is penalising more with

respect to the tails’ fit.
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Cramér-Von Mises test

The Cramér-Von Mises (CVM) test [Stephens, 1970] compares a set of observations to

a hypothesised distribution function by computing the average distance between the

empirical and hypothesised distributions. For ordered data X = (x1, ..., xn) we are

interested in examining whether the sample cumulative distribution function (CDF)

F (·) is close to a specific CDF F0(·). The CVM test statistics is:

CVM = n

∫ ∞
−∞

(
F (x)− F0(x)

)2
w(x)dF0(x), (2.28)

where w(x) is a weight function which is assumed to be equal to 1 in the standard CVM

test. It can be considered that CVM provides a test which is in between the KS and

the AD tests [Laio, 2004].

Ljung-Box test

The Ljung-Box (LB) test was introduced by [Box and Pierce, 1970], with a more detailed

treatment in [Ljung and Box, 1978], to test whether time series residuals satisfy the white

noise assumption. In practise it is commonly used to examining the adequacy of a null

hypothesis of independence in a given time series [Mahdi and McLeod, 2019]. This is

done by examining m autocorrelations of the residuals. The test statistic is:

Q = n(n+ 2)

m∑
k=1

ρ̂k
2

n− k
,

where n is the length of the data, ρ̂k is the estimated autocorrelation at the lag of interest

k with respect to the number of lags (m) that are taken into account. The choice of

appropriate number of lags m is critical for obtaining adequate test results [Hyndman,

2014]. Given that the data are expected to be non-seasonal and always have more than

200 observations, we always use 10 lags i.e. m = 10.

Engle Russell Excess Dispersion test

Excessive dispersion of the exponentially distributed residuals can be examined using

the Engle Russell Excess Dispersion (ER) test [Lallouache and Challet, 2016,Engle and

Russell, 1998]. It takes into account only the sample variance σ̂2 and has the following
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test statistics:

ER =
√
n
σ̂2 − 1√

8
.

Under the null hypothesis of lack of excess dispersion, σ̂ is distributed approximately in

large samples as a standard Normal random variable.
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Chapter 3

Inference for ETAS Models With

Non-Poissonian Mainshock

Arrival Times

The Hawkes process is a widely used statistical model for point processes which produce

clustered event times. A specific version known as the ETAS model is used in seismol-

ogy to forecast earthquake arrival times under the assumption that main shocks are

triggered by a ground level Poisson process, with aftershocks triggered via a paramet-

ric kernel function. However, this Poissonian assumption contradicts several aspects of

seismological theory which suggest that the arrival time of mainshocks instead follows

alternative renewal distributions such as the Gamma or Brownian Passage Time (BPT).

We hence show how the standard ETAS/Hawkes process can be extended to allow for

non-Poissonian distributions by introducing a dependence based on the underlying pro-

cess’ behaviour. Direct maximum likelihood estimation of the resulting models is not

computationally feasible in the general case, so we also present a novel Bayesian MCMC

algorithm for efficient estimation using a latent variable representation.

3.1 Background

The Epidemic Type Aftershock Sequence (ETAS) model is commonly used for studying

and forecasting the occurrence of earthquakes in a geographical region of interest [Ogata,

1988]. Since the ETAS model assumes that the uncaused earthquakes follow a Poisson

process with constant intensity µ0 (Equations 2.11 and 3.1), this implies that they occur
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completely at random, i.e. that an uncaused event is equally likely to occur at each point

in time, and that the time between each pair of uncaused events (known as the ‘inter-

arrival times’) follows a time-independent Exp(µ0) distribution. However, this conflicts

with findings elsewhere in the seismology literature, where there is substantial doubt over

whether the occurrence times of mainshock earthquakes is really Poissonian [Tahernia

et al., 2014, Ordaz and Arroyo, 2016, Marzocchi and Taroni, 2014]. Although ETAS

uncaused events are not strictly equivalent to mainshocks [Rotondi and Varini, 2006,

Rotondi and Varini, 2019] as defined elsewhere in the seismology literature (since there

is no requirement that an ETAS main (uncaused) event should have larger magnitude

than its offspring [Ogata, 1988,Ogata, 1998]), this still seems to cast some doubt on the

Poissonian assumption.

The concept of Stress Release (SR) suggests that the mainshock arrival times instead

follow a renewal process that has a time-dependent hazard function, with inter-event

times following a distribution such as the Weibull, Gamma, or Brownian Passage Times

(BPT). Stress release models (SRMs) were a representation of Reid’s elastic rebound

theory [Reid, 1910] and were fully described by [Isham and Westcott, 1979] as a self

correcting point process which is updated after every event occurrence. They were in-

troduced to seismology by [Vere-Jones, 1978] who developed them to address Reid’s

theory that earthquakes occur due to a release of energy which was previously accumu-

lated strain energy along faults. SRMs were used in many locations to implement the

elastic rebound theory due to their solid physical background. As outlined in [Varini and

Rotondi, 2015] some of the examples of such implementations are present for the follow-

ing countries: China [Yang et al., 2000, Liu et al., 1998, Xiaogu and Vere-Jones, 1994],

Greece [Rotondi and Varini, 2006], Iran [Xiaogu and Vere-Jones, 1994], Italy [Rotondi

and Varini, 2007, Varini and Rotondi, 2015, Rotondi and Varini, 2019], Japan [Imoto,

2001,Lu et al., 1999,Xiaogu and Vere-Jones, 1994], New Zealand [Yang et al., 2000] and

Taiwan [Zhu and Shi, 2002].

SRMs are primarily applied to a sequence of earthquakes with large magnitudes,

rather than to the full seismic sequences that are commonly used to fit ETAS models.

In this project we will develop a new class of ETAS models which we call SR-ETAS

(Stress Release ETAS) that improve on standard ETAS models by incorporating time-

dependent, SRM based, inter-arrival distributions. We explore two different formulations

of SR-ETAS, which differ based on how they handle the interevent time that is taken into

account when calculating the main event intensity. The first formulation is simpler to
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estimate. It addresses the Reid’s elasticity rebound theory directly for all events in the

catalogue. The second one is harder to estimate due to its dependence on the branching

structure. It assumes that Reid’s theory is applicable only for the main events, making

direct maximum likelihood estimation impossible.

A model which is closely related to our SR-ETAS was proposed by [Wheatley et al.,

2016], who considered a Hawkes process with a renewal immigration process, which

they call Renewal Hawkes (RHawkes). The authors proposed an Expectation Maximi-

sation (EM) algorithm for parameter estimation. However, as pointed out by Wheat-

ley [Wheatley, 2017,Wheatley, 2016] their approach crucially exploited the Markovian

properties used by the Exponential offspring density g(·) that they considered, which

leads to instability when this is replaced by a heavy-tailed alternative such as the Omori

law used in the ETAS model [Oakes, 1975, Filimonov and Sornette, 2015]. To mitigate

this, they suggest that such heavy-tailed densities should be approximated by a sum of

weighted exponential kernels [Hardiman et al., 2013]. Further, simulation studies found

that their EM algorithm performs poorly even for the more simplistic Renewal Immi-

gration Hawkes process in the case where the dynasties are heavily overlapping (Section

2.2.2), which is inevitable in the case of seismic sequences. To correct this, [Chen and

Stindl, 2018] provided a direct maximum likelihood optimisation, as well as some con-

ceptional corrections to the method proposed by [Wheatley et al., 2016]. However,

both methods fail to address two fundamental issues. The first one is the potential

multimodality of the ETAS model likelihood. As discussed in [Rasmussen, 2013, Veen

and Schoenberg, 2008, Ross, 2018a], such numerical instabilities can be tackled using

an MCMC sampler. The second, and probably more important problem, is the lack of

discussion regarding the numerical stability of the uncaused events intensity (Equations

2.4 and 3.3 ) as a function of the proposed SR density. This ratio is used if the intensity

cannot be factorised into a single equation i.e. it has to be evaluated as a ratio between

the probability density and complementary cumulative distribution functions (CCDF).

The problem occurs since the denominator of Equation 3.3 (the SR distribution CCDF)

is approaching zero for large time lag.

Since the existing Expectation Maximisation (EM) and Direct Maximum Likelihood

Estimation algorithms lead to either poor or limited estimation of the SR-ETAS model,

we instead propose a novel Bayesian inference algorithm which uses latent variables to

allow for computationally efficient inference using a Gibbs sampler, which is an extension

of that proposed for the standard Hawkes process by [Ross, 2018a].
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The remainder of this Chapter proceeds as follows. In Section 3.2 we review the

standard ETAS model in more detail. The SR-ETAS models are fully introduced in

Section 3.3, and we discuss different choices for the uncaused events’ process in Section

3.4. The parameter estimation technique are present in Section 3.5. In Section 3.6 we

apply SR-ETAS models and compare their performance to standard ETAS using real

earthquake data from the New Madrid and the North California seismic sequences. We

evaluate the models’ performance based on the previously introduced in Sections 2.4.4

and 2.4.5 Goodness-of-Fit tests. We conclude with a short summary of our findings in

Section 3.7.

3.2 Standard ETAS model

The standard ETAS model was introduced by Ogata [Ogata, 1988], and assumes earth-

quakes follow a marked point process with conditional intensity function:

λ(t|Ht) = µ0 +
∑
ti<t

g(t− ti)κ(mi), (3.1)

where ti and mi denote the occurrence time and magnitude of earthquake i. All mag-

nitudes are assumed to independently follow the Gutenberg-Richter law, which corre-

sponds to a shifted Exp(β) distribution with lower boundM0. The µ0 parameter specifies

the intensity of the homogenous point process governing the uncaused events, while g(·)

is a kernel function specifying how the effect of each earthquake on the intensity decays

over time. It is usually taken to be the Omori law [Guglielmi, 2017]:

g(z) =
k

(z + c)p
,

where c and p are parameters controlling the decay rate, while k controls the average

productivity.

The magnitude kernel κ(mi) determines how the magnitude of each earthquake af-

fects the intensity and is usually defined as:

κ(mi) = eα(mi−M0),

where α provides similar functionality to those of k, and M0 is the catalogue’s magnitude

of completeness i.e. the minimum magnitude above which is considered that no events
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are missing due to physical limitations in the earthquake detection system. The unknown

parameter set of the standard ETAS model is hence: θ = {µ0, α, c, p, k}. All parameters

have positive support, while p should be greater than 1.

Note that the form of the conditional intensity function in Equation 3.1 is equivalent

to a branching process, as discussed in Section 2.2. Suppose that at some time point

t there have been nt previous earthquakes. Then, the process intensity at t can be

viewed as a linear superposition of the uncaused process with intensity µ0 and the nt

processes associated with each previous event, each contributing an intensity of g(t− ti).

It can hence be seen this formulation is equivalent to assuming that the uncaused events

follow a homogenous Poisson process with intensity µ0, and hence have Exponentially

distributed inter-event times.

The standard ETAS model can be generalised to include a space component which

is discussed in Sections 2.2.3 and 4.2. For simplicity and ease of both simulation and

computation, in this Chapter we only consider the original temporal ETAS model rather

than its spatio-temporal extension, although our model could be extended to the spatial

version without difficulty assuming the provided spatial kernels are independent from

those introduced in this Chapter.

3.3 SR-ETAS models

A largely discussed concept in the seismology literature is the “crustal strain budget”

that could be addressed by a Stress Release (SR) model that provides a possible descrip-

tion of the seismic elasticity as introduced by Reid in his elasticity rebound theory [Reid,

1910]. In it, earthquake inter-arrival times are described as a ratio of tectonic strain

accumulation and strain release, without any statistical association of factors such as

duration, time, space, and size of the seismicity. We use a Stress Release distribution

for modelling immigration mainshock events rather than the typically used Exponen-

tial distribution implied by the homogenous Poisson process assumption of the standard

ETAS model. SR-ETAS models provide an alternative for modelling the structure of the

uncaused events arrival process. Specifically, we will assume that the intensity is time-

varying and hence specify a time-dependent µ(t), leading to the following specification

of the conditional intensity:

λ(t|Ht) = µ(t) + Φ(t|Ht)) = µ(t) +
∑
ti<t

g(t− ti)κ(mi). (3.2)
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Although time-varying specifications of µ(t) have been considered before in the lit-

erature [Imoto, 2001,Johnson et al., 2005,Varini and Rotondi, 2015], they typically try

to capture structural changes in the long-term earthquake rate, for example modelling

µ(t) as a step function. Instead, following stress-release concepts, we assume that the

probability of a mainshock earthquake occurring at time t depends on the time at which

the last mainshock was detected. To make this clearer, we introduce the following no-

tation. For each earthquake i, let Bi denote the index of its parent earthquake in the

branching structure, with Bi = 0 if it has no parent (i.e. if earthquake i is uncaused).

We hence have the branching vector B = (B1, . . . , Bn) [Ross, 2018a]. For example, in

Figure 2.2, B = (0, 1, 1, 3, 1, 0, 6, 7, 6, 0, 8).

Using this notation, at each time t we write the occurrence time of the last previous

uncaused event prior to ti is tI[i] where I[i] = maxj{j|tj < ti and Bj = 0}. Similarly,

the amount of time which has elapsed since the previous uncaused event – known as the

waiting time – is given by:

wti = ti − tI[i] .

Based on the usual point process theory, as previously introduced in Section 2.1.2,

µ(t) can then be defined as the hazard function:

µ(t) = µ(t|wt) =
fw(wt)

1− Fw(wt)
, (3.3)

where Fw(wt) is the waiting time distribution and fw(wt) is its corresponding density.

The above expression can be simplified for some distribution choices although for more

complex ones such as the BPT it has to be numerically evaluated since no explicit

form is present. As the CDF goes closer to 1, the expression becomes unstable due

to numerical underflow caused by the numerator being effectively 0, which cannot be

avoided by transforming into the space of logarithms. Since the proposed EM and MLE

algorithms depend on estimating this quantity for every time lag, they will not work

for general seismological-based Stress Release distributions [Wheatley et al., 2016,Chen

and Stindl, 2018]. However we will show that our Bayesian updates do not need a

full exploration of all possible inheritance structures, thus the waiting times that are

taken into account are much smaller. As such, there is no numerical instability for any

reasonable parametrisation of the uncaused events’ distribution and we can evaluate

numerically the above function as part of our MCMC sampler.
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Under the definition provided by Equation 3.3, the probability of an uncaused event

occurrence depends on the time which has elapsed since the previous uncaused event, in

a manner which is consistent with SR theory since it can be interpreted with respect to

Reid rebound theory where the ground state level is reached only for uncaused events

and all other events are causing smaller impact on the strain accumulation/reduction.

Since the branching structure is used to determine the time of the last uncaused event,

we will refer to this model as the B-SR-ETAS model (Branched SR-ETAS).

When working with real earthquake catalogues we do not know which events in the

sequence are mainshocks since we do not have access to the true branching structure.

Indeed, the branching structure is usually estimated as a byproduct of the standard

algorithms used to estimate the ETAS model [Ross, 2018a, Rasmussen, 2013, Veen and

Schoenberg, 2008]. However we cannot use this idea directly since we are caught in a

vicious circle: our parameter estimation requires access to the branching structure to

define the mainshock earthquakes, but we cannot get the branching structure without

first estimating the model parameters! One approach is to marginalise the branching

structures out of the joint distribution by summing over all 2n−1 unique branching

structures, for a catalogue with length n. However this is computationally intractable

for even a moderate value of n. As such, we will instead introduce a Monte Carlo

approach for performing this inference in a computationally tractable way.

Since defining waiting times based on the previous uncaused event hence leads to

computationally difficult parameter inference, we could instead define the waiting time

wt based on the occurrence time of the last earthquake prior to t, regardless of whether

it was an uncaused or an offspring. At time t, the time of the last event is given by tE

where E = max{i|ti < t}. The waiting time in this case is hence:

wt = t− tE ,

with µ(t) defined according to Equation 3.3 as before. Under an SR interpretation, this

implies that the strain accumulated with respect to the uncaused events causation can

be assumed to reduce to a ground level - the minimum strain that can be observed in the

system after every earthquake in the sequence, which corresponds to Reid’s elasticity

rebound theory in which an event occurs when a specific intensity threshold is reached

[Reid, 1910, Matthews et al., 2002]. We denote this model by F-SR-ETAS (Full SR-

ETAS).
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Figure 3.1: The ground (uncaused ) intensity with respect to simulated data for which
the uncaused events are illustrated with | and the caused ones with |, for each of the three
models: − µ0 standard ETAS; - - µ(t− tIt) B-SR-ETAS and − µ(t− tE) F-SR-ETAS.

The difference between ETAS, B-SR-ETAS and F-SR-ETAS models can be outlined

clearly with respect to the shape of equivalent uncaused events intensity functions for

each of them µ0, µ(t − tIt) and µ(t − tE) respectively. On Figure 3.1 are shown the

three intensity curves. Although the area under each of the curves is the same, the

very spiky peaks for SR-ETAS based models are very evident. Further, the difference

between F-SR-ETAS and B-SR-ETAS can be clearly outlined when a group of caused

events is present. Such can be seen for t ∈ (17, 19) ∪ (35, 40) ∪ (52, 58). Combining

the SR-ETAS uncaused events spiky intensity structure with the inherently spiky ETAS

intensity structure (see Figure 2.3) creates a very flexible model that can address data

with varying behaviour.

The previously introduced in Section 3.2 concept of parameter set θ can be adapted

for both SR-ETAS models as θ = {θSR, α, c, p, k}, where θSR is taking the parameters

of the waiting time distribution Fw(·). For ease of notation from here onward in this

Chapter we will notate the ground intensity at time t with µ(t) instead of a µ(t|wt)

where wt is the waiting time taken into interest with respect to event with time t.

3.4 Waiting Time Distributions

Regardless of which of the two approaches (B-SR-ETAS or F-SR-ETAS) we take when

defining the waiting times wt, we must specify a probability model Fw which governs
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their distribution. In standard ETAS, the Poisson assumption results in a memoryless

Exponential distribution. In contrast, the SR approach implies other forms of distri-

butions with non-constant hazard rate. There is some controversy in the seismological

literature over the appropriate waiting time distribution for modelling the time between

mainshocks. As such, we will consider two different distribution which have been found

to have strong empirical support: the Brownian Passage Time, and the Gamma.

3.4.1 Brownian Passage Times (BPT) immigration

The Brownian Passage Times concept was introduced to describe the inter-arrival times

of earthquake events by [Ellsworth et al., 1999] and [Matthews et al., 2002]. It is a

probabilistic physically based approach for addressing event recurrence based on long-

term, load-state process assuming behaviour similar to those of the Brownian relaxation

oscillator (BRO). In it, earthquakes are assumed to be an energy release of a tectonic sys-

tem that accumulates strain. This approximates the event inter-arrival time probability

density function as:

f(wt;λ, ν) =

[
λ

2πν2w3
t

] 1
2

e
− (wt−λ)2

2λν2wt .

The cumulative distribution function of the BPT has a closed form which is the

following:

F (wt) = P (T ≤ wt) =

∫ wt

0
f(u)du

= Φ[u1(wt)] + e
2
α̃2 Φ[−u2(wt)],

where

Φ(wt) =
1√
2π

∫ wt

−∞
e−

u2

2 du, (3.4)

for

u1(wt) = ν−1[w
1/2
t λ−1/2 − w−1/2

t λ1/2],

u2(wt) = ν−1[w
1/2
t λ−1/2 + w

−1/2
t λ1/2].

The main attributes of BPT compared to other SR distributional alternatives are

the following:

1. The mean waiting time, λ, of the events of interest provides a threshold until which

the probability of event occurrence is continuously increasing. After reaching the

mean waiting time, the conditional probability of occurrence is time independent
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and relies only on the aperiodicity parameter, ν, which is associated with the

scaling of the Brownian motion on which the process relies on.

2. Earthquake occurrence corresponds to immediate stress release to ground base

level. Thus, the probability of immediate events recurrence is zero.

From here after the BPT based SR-ETAS models will be referred to as F-B-ETAS for

the Full Stress Release Brownian Passage Time Epidemic After Shock Sequence model

and B-B-ETAS for the branched one.

3.4.2 Gamma process immigration

The Gamma distribution is an exponential family distribution with two parameters,

namely shape parameter a > 0 and scale parameter s > 0. It has been found by [Kagan

and Knopoff, 1984, Chen et al., 2013, Wang et al., 2012] to provide a good model for

main shock inter-arrival times. The Gamma distribution probability density function is:

f(wt) =
1

saΓ(a)
wa−1
t e−wt/s,

where Γ(a) =
∫∞

0 ua−1e−udu is the Gamma function. The corresponding cumulative

distribution function is:

F (wt) =
1

saΓ(a)

∫ wt

0
ua−1e−u/sdu.

From here after the Gamma based SR-ETAS models will be referred to as F-G-ETAS

for the Full SR Gamma ETAS model and B-G-ETAS for the branched one.

3.5 Estimation

We now consider parameter estimation for the SR-ETAS models. This includes esti-

mating the ETAS model parameters θΦ = (α, c, p, k), as well as θSR, the parameters

of the waiting time distribution Fw. Let θ = (θSR, θΦ) denote the full set of unknown

parameters. We perform Bayesian inference for the model parameters by developing a

latent variable MCMC scheme that allows sampling from the full posterior.
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3.5.1 Likelihood Function

The likelihood function of an ETAS process within period [0, T ] is the probability of

the process’s associated detection history, HT , combined with the probability of not

detecting any other events within the period of interest (see Section 2.4.1 for more

details):

L(θ; HT ) =

n∏
i=1

λ(ti|HT )e−
∫ T
0 λ(z|HT )dz, (3.5)

with corresponding log-likelihood:

`(θ; HT , Z) =

n∑
i=1

log(λ(ti|HT )) −
∫ tn

0
µ(s)ds −

n−1∑
i=1

κ(mi)

∫ tn−ti

0
g(s)ds. (3.6)

Plugging in the specific choices for the offspringing functions κ(·) and g(·), as intro-

duced in Section 3.2, in the ETAS model gives:

`(θ; HT , Z) =

n∑
i=1

log

[
µ(t) +

i−1∑
j=1

keα(mj−M0)

(ti − tj + c)p

]

−
∫ tn

0
µ(s)ds−

n∑
i=1

keα(mi−M0)

(
1− cp−1

(tn − ti + c)p−1

)
, (3.7)

where θ is the set of all parameters in the model and Z1:n ∈ {0, 1}n is a vector

with length n indicating whether each event is main/uncaused (1) or not (0). As of

the branching structure introduced in Figure 2.2, the causality information is Z =

{1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0}.

Note that µ(·) depends on the branching vector Z for B-SR-ETAS since the intensity

of the background process depends on the time at which the last uncaused event oc-

curred. However since the true branching structure is not known in practice, it must be

marginalised out by summing over all 2n−1 possible values. Therefore, the log-likelihood

function of the B-SR-ETAS model is:

`(θ; HT ) =
2n−1∑
j=1

`(θ; HT , Z = zj)P (Z = zj |θ).

In practice, this summation is likely to be intractable for even moderate n. As such, we

will instead use a latent variable formulation where the unknown branching vector Z is

treated as a parameter to be learned. In order to evaluate this quantity we can either

69



use a single ”best” quantity or to provide a Monte Carlo approximation of it based on

sampling multiple branching structures based on the true/optimised parameters θ.

While the proposed by [Wheatley et al., 2016] log-likelihood function is conceptually

the same as the one shown above, [Chen and Stindl, 2018] Section 3, Remark 1, claims

that the log-likelihood form is wrong with respect to the examined by them RHawkes

process. In its essence, Rhawkes process is an unmarked branched-SR-ETAS model.

The full algorithm that is proposed for the calculation of the (log-)likelihood of RHawkes

by [Chen and Stindl, 2018] is the following.

Direct log-likelihood calculation for RHawkes

The overall scope of the defined by [Wheatley et al., 2016, Chen and Stindl, 2018]

RHawkes process is very similar to B-SR-ETAS and relies on the following intensity

function:

λRh(t) = µ(t− tI[t]) +
∑
ti<t

ηr(t− ti),

where
∫∞

0 r(u)du = 1, I[i] = maxj{j|tj < ti and Bj = 0} and B = {B1, ..., Bn} is a

branching realisation as described in Section 3.3.

The proposed form for the likelihood is the following:

L(θ; HT ) =


exp(−U(T )), n = 0

µ(t1 − t0) exp(−U(t1)×−U(T − t1)− ηR(T − t1)), n = 1

µ(t1 − t0) exp(−U(t1)×
∏n
i=2

∑i−1
j=1 pijdij ×

∑n
j=1 sn+1pn+1,j , n ≥ 2

(3.8)

where

dij = (µ(ti − tj) +
∑
t<ti

ηr(ti − t))× exp(−U(ti − tj) + U(ti−1 − tj)−

η
∑
t<ti

R(ti − t) + η
∑
t<ti−1

R(ti−1 − t))
(3.9)

and

sn+1,j = exp
{
−
[
U(T − tj)−U(tn − tj)

]
−

η
[∑
t<T

R(T − t)−
∑
t<tn

R(tn − t)
]}
.

(3.10)
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The pij , i = {2, ..., n + 1}, j = {1, ..., i − 1} are obtained by initiating p21 = 1 and

updated recursively as follows

pij =


∑
t<ti−1

ηr(ti−1−t))
µ(ti−1−tj)+

∑
t<ti−1

ηr(ti−1−t)) ×
di−1,jpi−1,j∑i−2
j=1 pi−1,jdi−1,j

, j = 1, ..., i− 2

1−
∑j−2

k=1 pik j = i− 1

(3.11)

for i = 3, ..., n+ 1;

U(t) =

∫ t

0
µ(s)ds and R(t) =

∫ t

0
r(s)ds.

The evaluation of dij is only feasible based on Stress Release/ Renewal density that

has explicit intensity function. Otherwise, the quantity in Equation 3.3 will be numeri-

cally unstable as previously discussed. Thus, the method is not directly applicable to a

general family of renewal process distributions (e.g. B-B-ETAS).

Limitations of the Direct log-likelihood approach

The direct log-likelihood calculation introduced above requires the calculation of prob-

abilities associated with all possible inheritance structures. The ground intensity as of

Equation 3.3 has to be evaluated for all possible temporal lags when in the calcula-

tion of Equations 6-8, Section 3 of [Chen and Stindl, 2018]. As discussed before, such

expression cannot be evaluated for immigrant distributions that do not have explicit

intensity function (Equation 3.3). However, from a Bayesian prospective the branching

structure is a feature that we learn. Rather than being an unknown quantity, it is a data

characteristics that we evaluate based on our inheritance believes. Thus, the provided

log-likelihood function in Equation 3.6 is feasible for the scope of a Bayesian algorithm.

3.5.2 Bayesian analysis

We will use Markov chain Monte-Carlo techniques to obtain samples from the posterior

distribution of the ETAS parameters θ. As shown by [Ross, 2018b], the efficiency of

MCMC algorithms for ETAS type models can be drastically improved by including the

branching structure as a latent variable. What is more, the full conditional MCMC

MH techniques are only applicable for the ETAS and F-SR-ETAS, while the B-SR-

ETAS is only feasible to be implemented based on the latent variable approach since

the branching structure is needed to obtain the last immigrant event time used in the
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evaluation of µ(·). To introduce this latent variable approach, we first make some small

reparameterizations of the introduced in Section 3.2 (SR-)ETAS intensity function:

Φ(t|Ht)) =
∑
ti<t

g(t− ti)κ(mi)

=
∑
ti<t

k

(t− ti + c)p
eα(mi−M0)

=
∑
ti<t

(p− 1)cp−1

(t− ti + c)p
Keα(mi−M0)

=
∑
ti<t

h(t− ti)ι(mi),

where ι(mi) = Keα(mi−M0), K = k
(p−1)cp−1 , and h(z) = (p − 1)cp−1 1

(z+c)p is a repa-

rameterisation of g(·) that now integrates to 1 [Vere-Jones and Davies, 1966]. The

log-likelihood function as of Equation 3.7 is then:

`(θ; HT , Z) =

n∑
i=1

log

[
µ(t) +

i−1∑
j=1

K(p− 1)cp−1eα(mj−M0)

(ti − tj + c)p

]
−

∫ tn

0
µ(s)ds−

n∑
i=1

Keα(mi−M0)

(
1− cp−1

(tn − ti + c)p−1

)
. (3.12)

Performing MCMC directly is difficult due to the correlation between some of the

model parameters. We employ the introduced in Section 2.4.3 latent variable MCMC

sampler. For its application, we have to sample branching structures from their full

posterior distribution.

Branching procedure

Let B denote the branching structure vector where Bi = j indicates that the ith event in

the sequence is a descendant of the jth event (j < i). Immigrant events are notated as

uncaused i.e. caused by an event with index 0. If we refer again to the branching struc-

ture, that was introduced on Figure 2.2, we can visually assign corresponding values

for our branching inheritance measure Bi as follows B = {0, 1, 1, 3, 1, 0, 6, 7, 6, 0, 8}. The

immigrant events are coming from a in-homogeneous Poisson process with intensity func-

tion µ(·) while the offspring events of the jth event are generated from in-homogeneous

Poisson process with intensity h(ti−tj)ι(mj). Assuming that each event in the sequence

is generated by a single process, we can assign probabilities distribution to each event
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with respect to its branching pedigree and therefore sample a branching structure from

its conditional posterior as follows:

1. Initiate the branching by setting B1 = 0 as we assume that always the first term

is immigrant.

2. Sample each Bi in turn from P (Bi|HT , θ, B1:(i−1)).

3. Return the sequence of generated Bis.

The form of P (Bi|HT , θ, B1:(i−1)) in the general SR-ETAS model is substantially

more complex than for the standard ETAS, since using a general renewal process for the

mainshocks introduces substantial dependence in the process. It was previously shown

in [Ross, 2018a] that for a standard ETAS model, the conditional posterior for each Bi

is independent of all other Bj for i 6= j and can be written as:

• P (Bi = 0|HT , θ, B1:(i−1)) =
µ(ti−tI[i] )

µ(ti−tI[i] )+Φ(ti|Hti ))

• P (Bi = j|HT , θ, B1:(i−1)) =
h(ti−tj)ι(mj)

µ(ti−tI[i] )+Φ(ti|Hti ))
for j in 1 to i− 1

where I[i] takes the last immigrant event index before the ith event to obtain branching

for B-SR-ETAS, and I[i] = i− 1 for F-SR-ETAS and ETAS models.

However for our more general SR-ETAS models with renewal process immigration,

this independence no longer holds. In order to illustrate the problem, we have to re-

derive the above expression first. To evaluate the branching probabilities we have to

address the conditional probability of the branching (B) given the data Y , model pa-

rameters θ = {θSR, θΦ} and potentially the previous obtained branching structure(s).

The general likelihood function as introduced in Equation 3.5 can be re-arranged to

include the information carried by the uncaused and offspring processes as follows:

L(θ; HT , B) = e−
∫ T
0 µ(z|HT ,B)dz

∏
i:Bi=0

µ(ti|HT , B)×

n∏
j=1

[
e−

∫ T−tj
0 Φ(z|HT )dz

n∏
i:Bi=j

Φ(ti − tj |HT , B)

]
. (3.13)

For ETAS and Full-ETAS models, the branching structure (B) is not needed for

the evaluation of Equation 3.3, thus the term
∫ T

0 µ(z|HT )dz is independent of B. The

conditional distribution of the branching structure under a flat prior assumption is:

73



P (B|HT , θSR, θΦ) ∝
∏

i:Bi=0

µ(ti)
n∏
j=1

n∏
i:Bi=j

Φ(ti − tj),

which lead us, as required, to the following branching updates:

• P (Bi = 0|HT , θ, B1:(i−1)) =
µ(ti−tI[i] )

µ(ti−tI[i] )+Φ(ti|Hti ))

• P (Bi = j|HT , θ, B1:(i−1)) =
h(ti−tj)ι(mj)

µ(ti−tI[i] )+Φ(ti|Hti ))
for j in 1 to i− 1

where I[i] = maxj{j|tj < ti and Bj = 0}.

In the case of Branched-ETAS or Rhawkes, as defined by [Wheatley et al., 2016,Chen

and Stindl, 2018],
∫ T

0 µ(z|HT , B) requires a branching realisation B for the calculation

of the ground intensity as of Equation 3.3. Let us define z0, z1, ..., zm + 1 to be, z0 = 0,

z1, ..., zm - all m immigrant events’ times that were estimated to occur in the catalogue

and zm+1 = T . Thus, we can re-write the full data likelihood components that depend

on µ(·) as follows:

e−
∫ T
0 µ(z|HT ,B)dz

∏
i:Bi=0

µ(ti|HT , B) =

e
−

∫ z1
0 µ(z)dz−

∫ z2
z1

µ(z)dz−...−
∫ zm+1
zm

µ(z)dz
m∏
i=1

µ(zi − zi−1) ∝

e
−

∫ zi
zi−1

µ(z)dz−
∫ zi+1
zi

µ(z)dz
µ(zi − zi−1)µ(zi+1 − zi). (3.14)

Based on the above approximation, the full conditional posterior distribution of the

branching structure is:

P (Bi|Y, θ,B) ∝
[
e
−

∫ ti
tI[i]

µ(z)dz−
∫ tI∗[i]
ti

µ(z)dz
µ(ti − tI[i])µ(tI∗

[i]
− ti)

]
1Bi=0

×

[
e
−

∫ tI∗[i]
tI[i]

µ(z)dz
µ(tI∗

[i]
− tI[i])

]
1Bi 6=0

×
n∏
j=1

Φ(ti − tj)1Bi=j , (3.15)

where I∗[i] = minj{j|tj > ti and Bj = 0} and 1x is 1 if x is True and 0 otherwise.

Thus, the required branching probability updates are:

• P (Bi = 0|HT , θ, B) ∝ µ(ti − tI[i])× e
−

∫ ti
tI[i]

µ(z)dz−
∫ tI∗[i]
ti

µ(t|Bi=0)dt
µ(tI∗

[i]
− ti)

• P (Bi = j|HT , θ, B) ∝ Φ(ti|Hti))× e
−

∫ tI∗[i]
tI[i]

µ(t|Bi 6=0)dt
µ(tI∗

[i]
− tI[i]) for j in 1 to i− 1

74



The expressions above can be further simplified to those stated in Equations 3.16 and

3.17 since e
−

∫ ti
tI[i]

µ(z)dz
has the same value regardless of the state of the branching

assignment of ti.

• P (Bi = 0|HT , θ, B) ∝ µ(ti−tI[i])×e
−

∫ tI∗[i]
ti

µ(t|Bi=0)dtµ(tI∗
[i]
−ti) (3.16)

• P (Bi = j|HT , θ, B) ∝ Φ(ti|Hti))×e
−

∫ tI∗[i]
ti

µ(t|Bi 6=0)dtµ(tI∗
[i]
−tI[i]) (3.17)

for j in 1 to i− 1

where at each time ti we write the occurrence time of the first uncaused event after ti

as tI∗
[i]

where I∗[i] = minj{j|tj > ti and Bj = 0}.

Log-likelihood latent variable transformations

The (log-)likelihood function of the process can be rewritten conditional on the branching

structure. From Equation 3.1 the process intensity at time t is a sum of the contribution

of µ(t) from the background process, and a contribution of h(t − ti) for each of the

previous event ti. Let us define S0 to be the set of all uncaused events (conditional on

the branching structure), and Si to be the set of all events triggered by each event ti. We

write |Si| to denote the number of events in each set. For a given branching structure

B, the likelihood function can then be rewritten as:

L(θ; HT , B) = e
−

∑
ti∈S0

∫ ti−ti−1
0 µ(u)du

∏
s∈S0

µ(s)×

n∏
j=1

(
e−ι(mj)

∫ tn−ti−1
0 h(u)duι(mj)

|Sj |
∏
ti∈Sj

h(ti − tj)

)
. (3.18)

In this notation B is a full branching structure realisation, and the integrals are

summed over all immigrant events except the first one since there is no waiting time

for the first event. The permutation over µ(s) is a permutation of the spot values of

µ(·) at the triggering times of all immigrant events in the catalogue and θSR represents

the parameter set of the chosen SR distribution. Note that µ(t) in this case is actually

µ(t|wt) = fw(wt)
1−Fw(wt)

, where wt is the waiting time from the last immigration for the

B-SR-ETAS model and the waiting time between every event for the F-SR-ETAS. The

fw(·) and Fw(·) are the corresponding PDF and CDF of the candidate immigration

distribution (SR). Additional approximation can be obtained based on the so-called

”infinite time assumption”. It is considered to hold true for large catalogue end time
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(tn → ∞) and it states that the integral over the Modified Omori law (h(·)) for the

range of values in the catalogue converges to 1:

lim
tn→∞

∫ tn−ti−1

0
h(u)du = 1. (3.19)

Based on the branching structure, the likelihood function (and hence the posterior, given

independent priors) in Equation 3.18 is separable into three functions that can update

separately the following parameters’ sets θSR, {K,α} and {c, p}. They have the following

posterior probabilities that will be used for the Metropolis-Hastings accept-reject ratios:

log(P (θSR|HT , θ, B)) ∝ log(π(θSR)) +
∑
ti∈S0

(
log(µ(ti)) −

∫ ti−ti−1

0
µ(u)du

)
(3.20)

log(P (K,α|HT , θ, B)) ∝

log(π(K,α))−
n∑
j=1

(
ι(mj)

(
1− cp−1

(tn − tj + c)p−1

)
− |Sj | log(ι(mj))

)
(3.21)

log(P (c, p|HT , θ, B)) ∝

log(π(c, p))−
n∑
j=1

(
ι(mj)

(
1− cp−1

(tn − tj + c)p−1

)
−
∑
ti∈Sj

log(h(ti − tj))

)
(3.22)

Note that based on the infinite time assumption, as defined in Equation 3.19, the term

cp−1

(tn−tj+c)p−1 is effectively zero and as such the above expressions can be simplified so that

every posterior probability to be independent from the other parameters’ behaviour.

Based on the infinite time assumption are achieved three independently updated chains

that have interaction only when a new full branching structure is sampled. The con-

ducted analysis was carried out without the infinite time assumption for all datasets

because it appeared that there are large discrepancies for the North California cata-

logue that we use in Section 3.6.2 to illustrate and compare the introduced models’

behaviour.
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Choice of Prior and Proposal distributions

The (SR-ETAS) parameter estimates in this Chapter were obtained by running a latent

variable MCMC for each of the 5 proposed models - ETAS, B-B-ETAS, F-B-ETAS, B-

G-ETAS and F-G-ETAS. We use non-informative priors for all (SR-) ETAS parameters.

For the standard ETAS model there exists a conjugate Gamma prior for the fixed ground

intensity µ [Ross, 2018a]. However, we decided to use the same prior distribution for

all models to obtain results that only differentiate based on the underlying models’

structure. We used a flat Uniform prior for θSR, α, log(c), log(p) and log(K) with

bounds α ∈ [0, 10], c ∈ [0, 10], p ∈ [1, 30],K ∈ [0,∞], although more informative priors

could be used if desired. These bounds present unrestricted estimation in terms of

maximised likelihood and posterior values. Further, for a infinite time catalogue, the

overall productivity of the offspring decay, i.e. the mean number of off springs by

every event is approximated by K and α thus we might want to restrict their values to

provide average offspring productivity smaller than 1. However, this is beyond the scope

of this Chapter because developing such framework might further induce dependencies

between model parameters and could affect negatively MCMC mixing. The support of

all parameters is greatly influenced by the potential multimodality and were taken to

be identical to those used in the bayesianETAS R package [Ross, 2018a].

We use as a proposal distribution a Normal with standard deviation of 0.1 for all

parameters that require Metropolis-Hastings updates. The New Madrid catalogue pa-

rameters’ sequences are with overall length of 15000 after burn-in of 5, 100 and 100 for

the θSR, {K,α} and {c, p} respectively. The branching structure was sampled from its

conditional posterior at every iteration. The North California catalogue is much larger,

thus we updated the branching structure less frequently at every 20 iterations of the

Gibbs sampler, overall 12000 parameter sets were obtained after burn in of 4, 100, 20

for the θSR, {K,α} and {c, p} respectively.

3.6 Applications

In this section we discuss and compare the model fit across ETAS-based models on two

seismic catalogue of interest. The first one is the New Madrid catalogue which is much

smaller than a conventional earthquake catalogue but of great interest for underwriting

community. This causes a lot of difficulties in estimation context due to the lack of
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consistent presence of large earthquakes. The second dataset, the North California, is

more dense and should behave similarly to a typical single fault catalogue.

3.6.1 New Madrid seismic sequence

We first compare the performance of the ETAS and SR-ETAS models on the catalogue

of New Madrid earthquakes obtained from The University of Memphis website http://

www.memphis.edu/ceri/seismic/catalog.php. This catalogue starts on 29/06/1974

and ends on 23/02/2017. Only earthquakes of magnitude greater than 3 are considered

since smaller ones are typically considered harmless. The resulting catalogue contains

308 events. We fit the ETAS model and BPT and Gamma based SR-ETAS models to

this catalogue.

Figure 3.2 shows how the sequence of log-likelihoods for each model evolves over each

iteration of the Gibbs sampler (after convergence). It is clearly observable that there is

a difference between the overall fitting capabilities among the 5 models. What is more,

the overall mixing for branched SR models is greater and relatively more symmetric.

Figure 3.4. plots the posterior distribution of the model parameters for the B-B-ETAS,

which is the most difficult model to estimate due to the need to estimate the unknown

branching structure. The posterior distributions for the parameters in the other models

are similar. As expected, the obtained parameters’ distributions are smooth, symmetric

and not very different from a bell-shaped based form.

Figure 3.2: Log-likelihood of the MCMC sequences based on the used full branch-
ing structures for the New Madrid catalogue with respect to ETAS/F-G-ETAS/B-G-
ETAS/F-B-ETAS/B-B-ETAS

The Goodness-of-fit and model comparison results are shown in Table 3.1. Among

all ETAS–based models it appears that SR-ETAS models are superior to the standard

ETAS model according to both BIC and DIC. BPT based models are better compared

to their corresponding Gamma alternatives and B-SR-ETAS models are superior to the
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Figure 3.3: Time re-scaling diagnostic plots for the New Madrid catalogue.

F-SR-ETAS. The best model within all examined models is evidently the B-B-ETAS.

However, the time-residual analysis at every 10% of the data suggest that some of the

SR-ETAS might not be superior to standard ETAS model. The standard ETAS provides

best fit for T = {20%, 30%, 90%} of the overall temporal catalogue length while F-G-

ETAS is superior for T = {100%}, B-G-ETAS for T = {10%, 40%, 50%, 60%, 70%, 80%}.

B-G-ETAS and B-B-ETAS are never better than all the rest. Hence, we expect that

informally B-G-ETAS provides the best fit with respect to the raw time re-scaling.

However, Figure 3.3 presents the informal diagnostic plots of the time residuals. On

the left are the raw time residuals for all 5 models versus a diagonal line. Ideally these

should overlap. The overall pattern is very similar for all models. They all experience

a bias towards the middle of the catalogue which might indicate a potential minor

nonstationarity in the data [Kumazawa and Ogata, 2013]. The right part of Figure

3.3 shows a Q-Q plot for the residuals of all 5 models versus Exp(1) distribution. All 5

models behave similarly, with minor spread from the expected results for large quantiles.

The formal time re-scaling diagnostic tests conclude that the KS, CVM, AD and

ER tests were passed by all 5 models at the 5% significance level. The LB test is

passed only by F-B-ETAS at 5% significance level, while all other models pass it at 1%

significance level. Thus, there might be minor dependence in the residuals which we

believe is negligible.
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ETAS F-G-ETAS B-G-ETAS F-B-ETAS B-B-ETAS

Log-likelihood -260.75 -256.44 −250.13∗ -251.28 −245.01∗

Parameter count 5 6 6 6 6
BIC 275.05 273.23 −267.32∗ 268.47 −262.20∗

DIC 519.82 515.47 484.28∗ 507.60 483.80∗

I(t1:〈 n
10
〉|θ) 7.20 6.42 4.76∗ 6.30 8.90∗

I(t1:〈 2n
10
〉|θ) -1.02 -2.41 −5.14∗ -1.93 −1.25∗

I(t1:〈 3n
10
〉|θ) -0.88 -3.79 −7.09∗ -2.64 −3.75∗

I(t1:〈 4n
10
〉|θ) 6.42 3.22 −0.86∗ 3.76 1.32∗

I(t1:〈 5n
10
〉|θ) 23.64 22.59 16.98∗ 19.36 19.56∗

I(t1:〈 6n
10
〉|θ) 20.82 18.95 12.19∗ 16.27 14.78∗

I(t1:〈 7n
10
〉|θ) 24.03 21.65 14.42∗ 19.37 15.69∗

I(t1:〈 8n
10
〉|θ) 13.14 9.90 1.27∗ 7.90 2.31∗

I(t1:〈 9n
10
〉|θ) -3.89 -6.23 −15.24∗ -8.31 −16.36∗

I(t1:n|θ) 1.20 -1.03 −10.31∗ -2.64 −15.04∗

Table 3.1: Goodness-of-fit Summary - New Madrid; ETAS, BPT and Gamma based
SR-ETAS. Lower values of the BIC/DIC indicate superior fit. 〈x〉 corresponds to the
nearest integer larger than x.

* - The value is approximate

Figure 3.4: B-B-ETAS MCMC parameters’ density for the New Madrid catalogue.

3.6.2 North California seismic sequence

The previous analysis was repeated using the North California seismic sequence. The

catalogue of earthquake events can be obtained from http://www.ncedc.org/ncedc/
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catalog-search.html. We took into account all detected events from 01/01/1987 until

31/12/2015, with magnitude of completeness of 3.5. This created a catalogue consisting

of 3442 events.

ETAS F-G-ETAS B-G-ETAS F-B-ETAS B-B-ETAS

Log-likelihood -109.32 -103.68 −90.61∗ -110.58 −64.83∗

Parameter count 5 6 6 6 6
BIC 129.68 128.11 115.04∗ 135.01 89.26∗

DICalt 1108.51 799.57 725.33∗ 553.48 338.07∗

I(t1:〈 n
10
〉|θ) -87.61 -70.80 −70.89∗ -75.71 −56.14∗

I(t1:〈 2n
10
〉|θ) -140.34 -84.17 −84.36∗ -87.85 −64.46∗

I(t1:〈 3n
10
〉|θ) -232.66 -116.09 −119.27∗ -112.73 −97.89∗

I(t1:〈 4n
10
〉|θ) -344.43 -189.92 −195.67∗ -177.58 −170.48∗

I(t1:〈 5n
10
〉|θ) -346.34 -169.76 −176.48∗ -151.79 −145.02∗

I(t1:〈 6n
10
〉|θ) -371.49 -176.82 −184.65∗ -156.14 −145.84∗

I(t1:〈 7n
10
〉|θ) -373.28 -166.22 −172.70∗ -152.49 −136.76∗

I(t1:〈 8n
10
〉|θ) -299.36 -57.28 −61.52∗ -53.69 −30.97∗

I(t1:〈 9n
10
〉|θ) -297.49 -14.87 −20.23∗ -11.35 15.01∗

I(t1:n|θ) -301.14 8.73 2.71∗ 12.90 42.58∗

Table 3.2: Goodness-of-fit Summary - North California; ETAS, BPT and Gamma based
SR-ETAS. Lower values of the BIC/DIC indicate superior fit. 〈x〉 corresponds to the
nearest integer larger than x.

* - The value is approximate

The full sequences of the log-likelihood calculated using the Gibbs sampler are shown

on Figure 3.5. As before, all the SR-ETAS models appear to give substantial improve-

ments over the basic ETAS model. Again we decided to report the posterior density only

for B-B-ETAS which are shown on Figure 3.7. The heavy tails that appeared for the

New Madrid catalogue are not present. Overall the shapes of all 6 parameters appear

to be roughly symmetric. The Goodness-of-fit results of the un-simplified (finite time)

runs are shown on Table 3.2.

According to the BIC, the F-B-ETAS is the worst model while all other SR models

are slightly better than the standard ETAS. Due to the larger number of observations in

this catalogue, we decided to apply the DICalt that depends on the previously defined

in Section 2.4.4 pDICalt. According to it, the branched SR models are providing a

considerable performance improvement compared to the full models while the standard

ETAS performs the worst. For this catalogue BPT based models are no longer superior

to their corresponding Gamma alternatives. Interestingly, F-B-ETAS is currently the

worst model. This is probably attributed to the fact that Gamma-SR-ETAS models
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are guaranteed to be at least as good as the ETAS model since they can reduce to it,

since the Exponential interarrival time distribution used in the standard ETAS is nested

inside the Gamma distribution. It is clear that B-B-ETAS has a great advantage among

all other models.

Figure 3.6 presents the time residuals informal diagnostic plots. On the left are shown

the residuals and on the right is shown the Q-Q plot for all 5 models. The residuals plot

indicates that all SR-ETAS models behave very similarly, while standard ETAS indicates

a flow from the desired pattern. Similarly to the results for the New Madrid catalogue,

all models experience a bias towards the middle of the catalogue which might indicate a

potential minor nonstationarity in the data [Kumazawa and Ogata, 2013]. The Q-Q plot

again shows that SR-ETAS models provide a better realisation to Exp(1) distribution

with minor overestimation for large quantiles, while standard ETAS underestimates it

for a large proportion of the support.

The time-residual analysis at every 10% of the data suggest that the B-B-ETAS is

dominating across all other models. It is superior to the rest for T = {10%, 20%, 30%,

40%, 50%, 60%, 70%, 80%, }, while F-B-ETAS and B-G-ETAS models are the best only

at T = 90% and T = 100% respectively. The ETAS and F-G-ETAS are never superior

across the range.

However, the formal time re-scaling diagnostic tests are not very conclusive. The

KS test was failed by the standard ETAS model, passed at 1% significance level by

F-B-ETAS and excelled at 5% significance level by the remaining 3 models. The CVM

and AD tests were passed by all models except standard ETAS at the 5% significance

level. All five models failed the LB test. We believe this was caused by the large sample

size since overall there are no indications for dependence in the residuals. The ER test

was passed by all non-Gamma based models at the 5% significance level indicating that

Gamma distribution might induce an excessive dispersion in the residuals. All things

considered, we conclude that ETAS model is not providing adequate fit to the North

California catalogue, Gamma-SR-ETAS models are superior to it but some researchers

might disregard them due to the present excessive dispersion in the residuals. The B-

SR-ETAS is providing the most stable results, with Branched BPT ETAS being the

superior model that should be chosen for this dataset.
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Figure 3.5: Log-likelihood of the MCMC sequences based on the used full branching
structures for the North California catalogue with respect to ETAS/F-G-ETAS/B-G-
ETAS/F-B-ETAS/B-B-ETAS
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Figure 3.6: Time re-scaling diagnostic plots for the North California catalogue.

3.7 Conclusion

The ETAS model is one of the most widely used tools for modelling seismic activity in

terms of both capturing specific features of interest and forecasting future events. Its es-

timation can be considered challenging due to identifiability issues. In this Chapter, we

introduced the concept of temporally variable ground intensity based on Stress Release

modelling. In it we specified two families of SR-ETAS model that depend on either the

occurrence time of the previous event in the sequence (Full-SR-ETAS), or the elapsed

time from the last uncaused (main) event (Branched-SR-ETAS). Our experimental re-

sults suggest that these models capture observed features of real earthquake catalogues

that the standard ETAS model does not.
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Figure 3.7: B-B-ETAS MCMC parameters’ density for the North California catalogue.

Currently we examined a single fault, non-spatial occurrence that is typically used by

general seismologist for the analysis of a seismic fault activity. All concepts are directly

applicable to the spatial extension of ETAS that is introduced in Chapter 4. There are

many alternatives of the spatial component(s) of the standard ETAS that provide a great

differentiation amongst them which makes direct comparison of the introduced family

of model impractical. Overall, the non-spatial alternative introduced in this Chapter

will provide excellent results as long as there are no strong non-linear or non-uniform

patterns in the spatial distribution of the earthquakes along the fault of interest.

All methods are introduced for a general distribution, as such the SR-ETAS family

can grow very quickly to accommodate the modelling needs of any sort of data. Di-

rect application to stock daily changes, insurance claims, fraud and terrorist threats is

feasible.
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Chapter 4

Semi-parametric Bayesian

Forecasting of Spatial Earthquake

Occurrences

In this Chapter we extend the temporal ETAS model for the incorporation of a spatial

component. The spatial ETAS model relies on the estimation of spatial density of the

main (uncaused) events in the catalogue. Typically the spatial background density is

estimated based on a number of restrictive assumptions that either ignore the difference

between caused and uncaused events or classifies them based on a holistic approach.

Our work proposes a method for modelling the true uncaused events’ spatial density

as a non-parametric kernel which is based either on a Kernel density estimator or on a

Dirichlet process with base measure the Normal Inverse Wishart distribution. This way

we provide a flexible spatial measure that can be interpreted from a Bayesian perspective

without inducing holistic bias.

4.1 Background

Considerable efforts are put into modelling efficiently natural hazards due to the in-

creased occurrence of hazardous events that cause immense human and material losses.

In this Chapter we will focus our study on earthquakes which are one of the most

analysed natural catastrophe phenomena. Modelling earthquakes as a spatio-temporal

stochastic point process is the key component of the quantification of seismic risk haz-

ard [Brillinger, 1993,Ogata, 2011].
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In Chapter 3 we applied and extended the latent variable MCMC algorithm that in-

corporates the information carried out by the processes’ underlying branching structure

to the context of SR-ETAS. In this Chapter we extend the latent variable MCMC algo-

rithm for an application to spatial ETAS model. We will further propose new alternatives

to the spatio-temporal ETAS model that incorporate non-parametric components.

The Dirichlet Process (DP) provides a framework for obtaining a discrete sample

from a continuous distribution. It is discretising a distribution into fragments with

variable bandwidth which on its own can be used as a non-parametric mixture model

that we use as a component in our Spatial ETAS formulation. This way is obtained a

very flexible, data driven, non-parametric model that provide estimation more roboust

to overfitting compared to standard non-parametric methods.

We begin with a brief introduction of the spatio-temporal ETAS point process (Sec-

tion 4.2). Then in Section 4.3 we review the introduction of three different uncaused

events, non-parametric special density measures - Uniform, Kernel density estimation

and Dirichlet process. After explicitly specifying the models that we will use, we address

the so important concept of catalogue simulation and out-of-sample periods generation

that are commonly used for prediction (Section 4.4). A justification for the usage of the

latent variable MCMC within the context of Space-time ETAS is provided in Section

4.5, followed by a very detailed treatment of the exact method that we propose (Section

4.6). Further, we provide implementation consideration of the Latent variable method

in Section 4.7. Then we present the relevant model diagnostic choices in Section 4.8. We

study the application of Spatial ETAS Latent variable MCMC methods on simulated

data (Section 4.9), as well as real earthquake data in Section 4.10, followed by Section

4.11 - a conclusion summarising all our findings.

4.2 Spatial ETAS model

In this Chapter is considered the improved extension of the space-time ETAS model

as defined in [Ogata and Zhuang, 2006]. In this ETAS alternative, the probability of

an earthquake occurring at time t depends on the previous seismicity Ht, which is a

collection of occurrences times ti < t, marks mi and locations (xi, yi). The earthquake’s

depth is usually ignored and instead only events within certain depth range are taken

into account. Thus for a sequence of space-time observations in a region of interest Σ
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the required information up to time t is the following:

Ht = {(ti,mi, xi, yi); ti < t}.

In addition to that, a 2 × 2 matrix Si can be defined that provides the opportunity

for anisotropic clusters by scaling the distance measure between observations. Although

this is a parameter that has to be estimated from the raw data, it is a feature that

is considered fixed prior to the estimation of all other parameters [Ogata and Zhuang,

2006]. As such it can be considered a data feature. The majority of the literature

either ignores this term or challenges its effectiveness [Ogata and Zhuang, 2006,Ogata,

1998,Schoenberg, 2013,Lippiello et al., 2014,Fox et al., 2016].

One of the main issues related to the estimation of the space-time ETAS model is

the opportunity to trigger an event within the area of interest, which was caused by

an earthquake not present in Σ. Furthermore, the reverse process can occur when an

event within the area of interest triggers earthquakes which are not part of Σ. In this

Chapter, we address these problems in both simulation and estimation contexts.

The space component of the ETAS model should allow recovery of the basic ETAS

model (e.g. Equation 2.11) after integrating over the spatial region of interest i.e.

∫ ∞
−∞

∫ ∞
−∞

λ(t,m, x, y)dxdy = λ(t,m).

4.2.1 Specific functional form

Let us consider the following general form of the spatio-temporal ETAS intensity func-

tion, λ(t,m, x, y):

λ(t,m, x, y) = µ(t, x, y) +
∑
ti<t

r(t− ti)× s(mi −M0, x− xi, y − yi,Si),

where r(·) is the Omori law:

r(z) =
K

(z + c)p
,

for which c and p are parameters controlling the decay rate, while K regulates the

average productivity (i.e. the expected number of children of each event). Different

forms of this function have been used for more than 100 years for various seismological

studies across the world [Utsu et al., 1995,Guglielmi, 2017].
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The ground intensity is given by the term µ(t, x, y) from which are triggered all

immigrant events. It can either depend on time, space or both. Let us define µ(t, x, y) =

µ(t)φ(x, y). There are many ways to shape the immigrant events spatial dependence,

φ(x, y). The specific ones that are used in this Chapter are discussed in Section 4.3. All

of them integrate to 1 over infinite spatial region. The temporal dependence of µ(t) is

usually ignored [Ogata, 1988,Ogata, 1998,Ogata, 2004,Ogata and Zhuang, 2006,Ogata,

2011, Schoenberg, 2013, Holschneider et al., 2012, Fox et al., 2016], thus for simplicity

we take µ(t, x, y) = µ0φ(x, y). Additional information on the representation of µ(t) as a

time-varying function is discussed in Chapter 3 and by [Chen and Stindl, 2018,Wheatley

et al., 2016].

The aftershock events are triggered as an inhomogeneous Poisson process, with re-

spective spatial intensity rate s(mi−M0, x−xi, y−yi,Si) and temporal rate controlled

by the Omori law.

The most widely considered general functional form of the spatial intensity [Ogata

and Zhuang, 2006,Ogata, 1998,Schoenberg, 2013,Lippiello et al., 2014] is the following:

s(mi −M0, x− xi, y − yi,Si) =
eα(mi−M0)[

(x− xi, y − yi)Si(x− xi, y − yi)t + d
]q , (4.1)

where α provides a similar functionality to those of K, and M0 is the magnitude of

completeness of the catalogue, which is determined empirically and corresponds to the

minimum magnitude above which all earthquakes are successfully detected [Gutenberg

and Richter, 1944, Wiemer and Wyss, 2000]. The magnitudes are then assumed to

follow the usual Gutenberg-Richter law mi −M0 ∼ Exp(β) [Gutenberg and Richter,

1944, Fox et al., 2016]. The Si is a positive definite matrix indicating the offspring

inheritance. In Ogata’s work [Ogata and Zhuang, 2006, Ogata, 2011] is suggested that

the Sj matrix can be shared across all events that are in the same dynasty (see Section

2.2.1). Estimating this matrix requires the true underlying branching process without

considering any model parameters. This implies that the branching structure should be

obtained based on a holistic method that does not directly address the Hawkes process

paradigm of self-excitation. Ogata further suggests to use the earthquakes with high

magnitudes as immigrant shocks and then calculate Sj for all events in the dynasty of

the jth event, rather than for all events in the catalogue. Thus, the estimate of Sj is
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typically approximated as:

Sj =

 σx
2 ρσyσx

ρσyσx σy
2

 ,
where ρ is the correlation between all events’ x and y coordinates in the dynasty of the

jth event, with their corresponding standard deviations σ. in x and y.

Evidently, large earthquakes provide greater aftershock intensity but they are not

necessarily immigrant events in a Hawkes process context. Assigning events as immi-

grant solely based on their features restricts the model branching structure, initiates

bias and contradicts with direct parameters’ interpretation. Further, the branching

conditioning cannot be fully applied since there will already be a partial, holistic based

branching structure which does not depend on the naturally occurring clustering process

of a Hawkes process [Hawkes and Oakes, 1974]. This phenomenon directly contradicts

the ETAS process’ fundamental concepts of clustering and branching structures, hence

it makes latent variable Bayesian analysis [Ross, 2018a] impossible.

For all these reasons, we will focus primarily on the following simplified alternative

of the space-time ETAS model:

λ(t,m, x, y) = µ0φ(x, y)+
∑
ti<t

K

(t− ti + c)p
eα(mi−M0)

{
(x−xi)2 +(y−yi)2 +d

}−q
, (4.2)

with a parameter vector θ = (µ0, α, c, p,K, d, q) and a background kernel φ(x, y).

We prefer to work with this version of spatial ETAS, as it incorporates a sound

interpretation of the ETAS model’s underlying assumptions related to event causality

without negatively influencing the model’s flexibility. The spatial ETAS model is re-

duced to the standard ETAS model if the x, y locations are set to 0, as well as q = 2

and d = 1/π with respect to an infinite spatial domain (commonly referred to as infinite

space assumption).

4.2.2 (Log-)Likelihood

The likelihood function of a space-time point process with intensity λ(·) for data Ht =

{(ti,mi, xi, yi); ti < t} is given by the following expression [Daley and Vere-Jones, 2003]:

L(θ; HT ) =

n∏
i=1

λ(ti,mi, xi, yi|HT , θ)e
−

∫ ∫ ∫
λ(z,mi,xi,yi|HT ,θ)dzdxdy, (4.3)
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with respective log-likelihood form of

`(θ; HT ) =
n∑
i=1

log(λ(ti,mi, xi, yi|HT , θ))

−
∫ ∞
−∞

∫ ∞
−∞

∫ T

0
λ(z,m, x, y|HT , θ)dzdxdy. (4.4)

The evaluation of the triple integral term is slow and numerically unstable. Thus

a number of approximations are provided in the literature [Harte, 2012, Ogata, 1998,

Schoenberg, 2013,Lippiello et al., 2014]. This calculation will be considerably neater if

the spatial and temporal kernels are valid density functions. This can be achieved if

the parameter K is represented as a product of normalisation parameters K = K̄KtKr

where:

Kt

∫ ∞
0

(z + c)−pdz = 1

for

Kt = (p− 1)cp−1

and

Kr

∫ ∞
−∞

∫ ∞
−∞

(x2 + y2 + d)−qdxdy = 1

for

Kr =
q − 1

πd1−q .

The above expressions assume infinite temporal and spatial domains (infinite time

and space assumptions). Thus we can re-assign a new parametrisation to the temporal

kernel r(·), commonly referred to as modified Omorri law [Vere-Jones and Davies, 1966]

g(z) =
Kt

(z + c)p
.

Furthermore, the marked spatial kernel s(·) is split into a separate spatial kernel

h(x, y) =
Kr

(x2 + y2 + d)q

and an event marks kernel

ι(m) = K̄eα(m−M0).
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This way we arrange the kernels’ functionality to r(·)s(·) = g(·)h(·)ι(·) to address better

the underlying clustering functionality of the spatial ETAS model. The newly defined

parameters K̄,Kr,Kt ∈ θ since they represent a simple transformation of the standard

parameter set. Hence, from here onward θ = {µ0, α, c, p, K̄, d, q} which is also sufficient

information for the evaluation of Kr,Kt and K.

Based on the assumed shapes of g(·) and h(·) we establish that

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

g(z)× h(x, y)× ι(m)dzdxdy ≈ K̄eα(m−M0) (4.5)

under the infinite time and space assumptions. The approximation relies on the assump-

tion that the space-time domain of interest is sufficiently large, which is not always true.

In Chapter 3 we observed that infinite time assumption provides a poor performance

regarding the North California seismic sequence, thus we prefer not to use it whenever

possible. However, the infinite space assumption reduces considerably the computa-

tional cost. We did not experience any computational issues with it and we rely on its

validity from here onward.

The log-likelihood of the Spatial ETAS model based on the finite time and infinite

space assumptions can be approximated by the following expression:

`(θ; HT ) =
n∑
i=1

log(λ(ti,mi, xi, yi|HT , θ))

− µ0T + K̄
n∑
i=1

eα(mi−M0)

(
1− cp−1

(T − ti + c)p−1

)
, (4.6)

with a parameter vector θ = (µ0, α, c, p, K̄, d, q) along with the specification of the

background kernel φ(x, y).

4.3 Non-parametric Estimation of Background Intensity

In this Chapter we will consider a variety of methods for estimating the spatial back-

ground rate µ(x, y) in the ETAS model. Using the parametrisation above, we can write:

µ(x, y) = µ0φ(x, y),

where µ0 is a scaling constant and φ(x, y) is a probability density that integrates to 1.

We will consider three different Bayesian models for the background rate. In all three,
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the constant µ0 will be estimated separately, with the models varying in terms of how

they treat φ(x, y):

1. φ(x, y) ∝ 1, in which case the background intensity is constant over space. This

is highly unrealistic due to the known fact that seismic activity is highly spatially

depend, and we use this model only as a baseline. We refer to this model as

Uniform ETAS.

2. A non-parametric model where φ(x, y) is learned using Kernel Density Estimation

(KDE). Different versions of this method are fairly common in the seismology liter-

ature, albeit in a non-Bayesian context [Zhuang et al., 2002,Marsan and Lengline,

2008,Sornette and Utkin, 2009,Marsan and Lengliné, 2010,Fox et al., 2016]. How-

ever as we will show, the usual procedure suffers from a serious limitation where

all the earthquakes in the catalogue are used in the estimation. This approach

is technically incorrect, since φ(x, y) is specifically a model for the background

events, rather than the triggered events. As such, KDE will result in a highly

biased estimate of φ(x, y) since it treats background and immigrant events indis-

tinguishably.

3. A non-parametric model where φ(x, y) is learned in a fully Bayesian manner, based

on a Dirichlet Process, in a way which distinguishes between background and

triggered events. This is substantially more complex than the KDE approach since

it require declustering the earthquakes into background and immigrant events,

with only the background events used to estimate φ(x, y). This corrects the bias

in the KDE approach.

The first model using the uniform density is self-explanatory. We will now discuss

the other two in more detail.

4.3.1 KDE ETAS

The second method described above uses kernel density estimation to learn φ(x, y), which

is a classical method for non-parametric estimation of an unknown density function.

Suppose we observe n observations (ti,mi, xi, yi) from the point process. Let zi = (xi, yi)

be the spatial coordinates of the ith earthquake. Then a KDE estimate of φ(·) can be

given by:

φ̂(z) =
1

n

n∑
i=1

KH(z− zi)
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with

KH(x) = |H|−1/2K(H−1/2x),

where H is d×d, symmetric and positive-definite which is also referred to as bandwidth

matrix and K(·) is a symmetric kernel function. Without loss of generality we can

choose it to be:

K(x) = (2π)−1 exp(−1

2
x′x).

We refer to this model as KDE ETAS. Although Kernel Density Estimation is a

powerful and flexible non-parametric method and it has two main drawbacks [Marsan

and Lengline, 2008,Sornette and Utkin, 2009]. First, it can be difficult to choose H in a

manner which produces an accepted level of smoothing across the whole spatial domain

rather than under/over fitting in particular regions. Second, the resulting KDE estimate

of φ(·) is based on smoothing over all n earthquakes in the historical catalogue. However

this is not the correct behaviour in the context of an ETAS model, since the φ(·) function

only specifies the occurrence of background, rather than triggered events. As such, we

would expect the KDE estimate to be biased, and assign too much probability mass

to spatial regions where large magnitude earthquakes have occurred, since their large

number of triggered aftershocks will be incorporated into the estimate of φ(·).

4.3.2 DP ETAS

The Dirichlet process (DP) was introduced by [Ferguson, 1973, Antoniak, 1974] as a

probability distribution over probability distributions, and is commonly used as a prior

in Bayesian non-parametric modelling. If a probability distribution G has a DP prior

then we write:

G ∼ DP (χ,G0),

where G0 is the base distribution which defines the expected value of the DP and χ > 0

is a measure of the variance. The DP is a conjugate prior in the following sense: suppose

that ϕ1, . . . , ϕn ∼ G where G ∼ DP (χ,G0). Then the posterior distribution of G is:

G|ϕ1, · · ·, ϕn ∼ DP

(
χ+ n,

χG0 +
∑n

i=1 δϕi
χ+ n

)
,

where δ· is a Dirac delta function [Dirac, 1947].

93



A constructive definition of the DP was given by [Sethuraman, 1994], who showed

that samples from a DP can be written in stick breaking form:

G =
∞∑
i=1

πiδψi , ψk ∼ G0,

where {βi}∞i=1 ∼ Beta(1, χ) πk = βk
∏k−1
i=1 (1 − βi), and δψk is the Dirac delta function

[Dirac, 1947]. This provides a practical method for drawing a sample from a DP, by

approximating the stick breaking as a finite sum:

G =

N∑
i=1

πiδψi , ψk ∼ G0.

Combining this with the conjugacy result above, we can hence sample G from its pos-

terior distribution given some observed data as:

G|ϕ1, · · ·, ϕn =
N∑
i=1

πiδψi , ψk ∼
χG0 +

∑n
i=1 δϕi

χ+ n
,

where {βi}Ni=1 ∼ Beta(1, χ+ n) and πk = βk
∏k−1
i=1 (1− βi).

An alternative representation of the DP is based on the Chinese restaurant process

[Neal, 2000], which shows that the marginal prior distribution of the samples ϕ1, . . . , ϕn

(with G integrated out) can be written as:

ϕi|ϕ1, ..., ϕi−1 ∼
1

i− 1 + χ

i−1∑
j=1

δϕi +
χ

i− 1 + χ
G0,

where ϕi ∼ G0.

The Dirichlet Process as a Spatial ETAS Prior In this Chapter, we propose

to use the Dirichlet Process (DP) as a non-parametric prior for the background ETAS

intensity φ(x, y). From the above results, we can see that samples from a DP follow

a discrete distribution. In order to adapt the DP to continuous data, it is common to

instead use it as a prior distribution for a mixture model. This leads to the following

model:

φ(x, y) =

∫
k(x, y|ϕ)dG(ϕ)

G ∼ DP (χ,G0),
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where k(·) is a mixture kernel. This formulation corresponds to an infinite dimensional

mixture model where the DP is used as a prior on the mixing distribution parameter.

Since φ(x, y) is a two-dimensional spatial distribution, we will model it as a mixture

of bivariate Gaussians, where ϕ = (µ, S) is the mean vector and precision matrix. For

conjugacy, we choose G0 to be the Normal Inverse-Wishart distribution. This leads to

the following model:

xi, yi|ci ∼ N(µi, (Si)
−1)

µi, Si ∼ G

G ∼ DP
(
χ,NW (ξ, ρ, β, βV )

)
,

where ξ, ρ, β and V are the parameters of the Normal Inverse-Wishart distribution where

the mean µk follow a imp

From here after, this ETAS alternative will be referred to as DP ETAS model.

4.4 Catalogue Simulation

In this section we discuss how to approach the problem of simulating a catalogue based

on a specific parameter set θ and a spatial immigration distribution φ(x, y). We also

address the concept of extending a given catalogue, assuming that θ and φ(x, y) are

known. This methodology is essential to obtain predictions based on any given dataset.

Later in Section 4.9 we develop a study based on simulated data. Based on the obtained

MCMC chains we can then generate catalogues based on each of them to propagate key

hazard metrics of interest by extending the catalogues that were used for estimation.

4.4.1 Simulation

We base our simulation method on the spatial ETAS process’ underlying inheritance

structure (illustrated on Figure 2.2) as previously outlined in Section 2.3 . Firstly, all

immigrant events are initiated. Then every event in the sequence is allowed to generate

events from multiple generations based on its offspring intensity g(·)× h(·)× ι(·). The

obtained catalogue not only represents the fundamental ETAS clustering process but

also recovers the usually unknown true branching structure.

1. Input

(a) The parameter set θ.
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(b) Immigrant events’ density φ(x, y).

(c) Spatial detection region for immigrant events Σ.

(d) Temporal detection interval τ = [0, T ].

2. Simulate values from the target distributions of interest. Using rejection sampling,

we create sufficiently large samples from the following distributions:

(a) Kt(z + c)−p - temporal lags with respect to any target point in time. A

reasonable approach is to use as a proposal distribution Exponential with

expected value that matches the expected causality time for an event in the

catalogue. However, this is only applicable for parameters that guarantee

finite expectation.

(b) Kr(x
2 +y2 +d)−q - spatial lags with respect to a given point in space. Rather

than restricting all offspring events to be only in the spatial region Σ, we allow

them to generate events outside of the area as long as the obtained time-lags

come from the required target distribution. The proposal distribution was

set to Pareto with parameters (2, 2) to address the heavy tailed behaviour of

the spatial kernel.

In the simulation process we propose independently values for the spatial lags

in both x and y directions. For every sampled pair (xi, yi) we can sample

uniformly r points of the circumference of a circle with centre (0, 0) and radius√
x2
i + y2

i . Thus, for every successfully sampled realisation from our target

distribution we can generate additional r samples from it. In order for this

method to work, the overall number of true samples generated from the initial

rejection sampling should be a lot larger than r. If the opposite occurs i.e.

r is relatively large while the overall number of samples is just a few times

larger than r, then the density will be concentrated over the circumference

of multiple circles with common centre (0, 0). We set r = 4.

(c) The productivity of every event (Section 2.3.2) associated with its magnitude

mi follows ι(mi) = K̄eα(mi−M0), where the marks are greater than a certain

threshold M0. However, the marks in an ETAS context are assumed to be a

realisation from the Gutenberg-Richter law [Gutenberg and Richter, 1944,Fox

et al., 2016]. This implies that for a productivity parameter β we obtain the

required marks (m·) as a realisation from mi −M0 ∼ Exp(β).
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Figure 4.1: Comparison between magnitudes density obtained from simulation from
Gutenberg-Richter law and true model parameters

In a simulation context, [Fox et al., 2016] generates the raw magnitudes

(mi −M0) from Gutenberg-Richter law with b−value of 1 [Gutenberg and

Richter, 1944], which is equivalent to Exponential distribution P (m−M0|β) =

βe−β(m−M0) for β = ln(10). If instead the magnitudes were simulated from

ι(·) with parameter set {α = 1.407, K̄ = 0.322,M0 = 0} using rejection sam-

pling, the overall productivity is increased from 0.8 to 1.5. The difference

in the raw magnitudes’ density for 6 × 106 samples from each of the two

methods are shown on Figure 4.1. Evidently, the two densities are different.

To be more precise, not using the Gutenberg-Richter law makes this specific

parameter estimation useless due to a infinite expected catalogue length.

3. Creating a set of uncaused events

(a) Sample immigrant event time lags with a cumulative sum not exceeding the

maximum of the temporal detection interval τ . In this Chapter , we focus on

the case in which all immigrant events are a realisation of a Poisson process

with constant rate µ0. Hence, the inter-arrival times of all immigrant events

are a realisation from exponential distribution with mean µ0. The maximum

time in the realisation should not exceed T , the maximum of the detection

interval τ .

(b) Allocate at random a magnitude for each of the simulated temporal realisa-

tions based on the already sampled magnitudes.
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(c) Sample the required number of target locations from φ(x, y) that lie in the

target area of interest Σ.

This sample is the so-called 0th ’inheritance’ level i.e. all events in it are uncaused.

Each of them can initiate events that can further create descendants on their own.

We describe this phenomenon with respect to the specific inheritance level which

corresponds to the number of predecessors the event has. For example, on Figure

2.2 events t1, t6 and t10 are the 0th inheritance level; events t2, t3, t5, t7 and t9 are

the 1st inheritance level; events t4 and t8 are the 2nd inheritance level; while t11 is

the only event in inheritance level 3.

4. Generating inheritance structure of multiple generations.

The following iterative procedure is repeated until there exists a non-empty pop-

ulation at the ith level for i ∈ {0;N}.

(a) While Ni, the length of the ith sub-population, is positive

(b) Evaluate the offspring intensity for each event {tj ,mj , xj , yj} for j = 1, .., Ni :

λ̄j =

∫ ∞
0

∫ ∞
0

∫ T−tj

0
g(z)× h(x, y)× ι(m)dzdxdy.

(c) Generate the number of offsprings for each of the events in the ith sub-

population as a realisation from %j ∼ Poi(λ̄j) for j = 1, .., Ni.

(d) Create the sub-population of level i+ 1st by assigning to each of the events of

sub-population i, number of offsprings equal to %j . Hence, we have to sample∑Ni
j=1 %j magnitudes and lags in space and time. Then we assign them to

the corresponding parent events to obtain the exact events from generation

i+ 1st.

(e) The i+1st sub-population is only restricted in terms of the temporal detection

range τ - we record events with arrival time not greater than T and allow the

offsprings’ spatial locations to be outside of the immigrant detection range

Σ.

4.4.2 Extending a catalogue

We note that since our models are fully specified, we can use them to create forecasts

about future earthquakes, e.g. the probability of an earthquake with magnitude greater
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than M0 occurring during some future time period Hnew (e.g. the next year). This can

be done by simulation, based on the samples drawn from the posterior using MCMC to

produce simulated point process trajectories over the time period of interest, and then

extracting the quantities to be forecasted as summary statistics. This is essentially a

Monte Carlo approximation to the forecasting distribution:

P (Hnew|Ht) =

∫
P (Hnew|θ)P (θ|Ht)dθ ≈

1

M

M∑
i=1

P (Hnew|θ(i))

for θ(i) ∼ P (θ|Ht).

While on real catalogues we split the data in train and test sets, on simulated data

we can sample multiple point process trajectories based on the true parameter set. All

obtained catalogue extensions can be used to compare out-of-sample model performance.

We can obtain such sample based on a branching-based sampling mechanism.

Creating an extension can be done by making minor amendments to the simulation

algorithm that was introduced in Section 4.4.1. The temporal detection range has to

change from τ = [0, T ] to τ̄ = (T, T + M ], where M is the temporal extension length.

The only major difference with respect to the simulation is in step 3. It is associated with

the fact that the events that were already observed (τ) can excite event occurrence in

the current detection interval (τ̄). We obtain a realisation for these events by executing

once steps 4 (b)-(e) where the offspring detection range is only in the interval τ̄ for all

events in τ . We execute steps 4 (b)-(e) only once because further triggered events will be

generated later. We merge the obtained one level offspringing events with the sampled

uncaused events for the extension interval τ̄ and assign them to generation 0 within the

extension interval. Then step 4 from the simulation algorithm is performed.

4.5 Posterior Simulation

As previously discussed, although the direct Metropolis-Hastings applications for ob-

taining draws from the parameters’ posterior distribution is tempting at first, it is ex-

tremely ineffective to be applied in real-world examples. Recall from Equation 4.6, that
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the log-likelihood of the ETAS model is:

`(θ; HT ) ≈ −µ0T + K̄
n∑
i=1

eα(mi−M0)

(
1− cp−1

(T − ti + c)p−1

)

+
n∑
j=1

log
(
µ(xj , yj) +

∑
ti<tj

ι(mi −M0)× r(tj − ti)× s(xj − xi, yj − yi)
)
.

(4.7)

The first problem is that evaluating the likelihood function requires a double summa-

tion and this evaluation must take place each time a new parameter value is proposed.

This makes direct MCMC computationally very demanding, and cannot feasibly be run

on a catalogue containing more than a few hundred earthquakes. The second problem is

that [Schoenberg, 2013] studied the performance of frequentist maximum likelihood esti-

mation for the ETAS model based on directly maximising the above likelihood function

when µ(x, y) = µ0 was a constant value found that the resulting parameter estimates of-

ten differed substantially from their true values. This is because the likelihood function

is very complex and the components of the parameter vector are highly correlated. Since

MCMC methods can also suffer from serious convergence issues when the parameters

are correlated, it is reasonable to believe that this direct MCMC procedure will suffer

from the same problem. Since this problem is already present in the simple parametric

case with constant µ0, it will be even worse in the more complex non-parametric setting.

We instead propose a reparametrisation of the model based on latent variables that

aims to break the parameter correlation and lead to an efficient Metropolis-Hastings

algorithm for posterior sampling. This is an extension of the method proposed by [Ross,

2018a] for the temporal Hawkes process.

4.6 Latent Variable Formulation

We now develop an alternative sampling posterior scheme based on introducing latent

variables. These have the effect of breaking the dependence between the parameters

in the likelihood function. We will show that conditional on the latent variables, the

parameter sets {µ0, φ(x, y)}, {K̄, α, p, c}, and {d, q} are all conditionally independent of

each other, which improves considerably the convergence of MCMC sampling.

As discussed in Section 2.2 the ETAS model can be reinterpreted as a branching

process in the following sense. Suppose that the ith earthquake occurs at time ti, so

that i − 1 earthquakes have occurred previously. Equation 4.2 can be interpreted as
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showing that the ETAS intensity function at time ti is a sum of i different Poisson

processes. The first is a homogenous Poisson process with intensity µ(x, y), while the

other i − 1 each correspond to one of the previous earthquakes. Specifically, for each

1 ≤ j ≤ i−1, the earthquake at time tj triggers an inhomogeneous Poisson process with

intensity:

λp(t, x, y) = Keα(mj−M0)(t− tj + c)−p
{

(x− xj)2 + (y − yj)2 + d
}−q

. (4.8)

Based on standard results about the superposition of Poisson processes [Daley and

Vere-Jones, 2003] we can interpret event ti as having been generated by a single one of

these i processes. We hence introduce the latent branching variables B = {B1, . . . , Bn}

where Bi ∈ {0, 1, . . . , i− 1} indexes the process which generated ti:

Bi ∼

 0 if ti was produced by the background process

j if ti was triggered by the previous earthquake at time tj

Conditional on knowing B, we can partition the earthquakes into n+1 sets S0, . . . , Sn

where:

Sj = {ti;Bi = j}, 0 ≤ j < n,

so that S0 is the set of immigrant events which were not triggered by previous earth-

quakes, and Sj is the set of direct aftershocks triggered by the earthquake at time tj .

It is clear that these sets are mutually exclusive and that their union contains all the

earthquakes in the catalogue. Additionally, we can see that the earthquakes in set S0 are

generated by an inhomogenous Poisson process with intensity µ(x, y), while the events

in each set Sj for j > 0 are generated by a single inhomogenous Poisson process with

intensity given by Equation 4.8. The ETAS likelihood function from Equation 4.6 can

hence be rewritten (conditional on knowing the latent branching variables) as:

L(θ; HT , B) =e−µ0T
∏
ti∈S0

µ(xi, yi)

n∏
j=1

(
e
−K̄eα(mj−M0)

(
1− cp−1

(tn−ti+c)p−1

)
{K̄eα(mj−M0)}|Sj |

)
n∏
j=1

∏
ti∈Sj

(
KtKr

(ti − tj + c)p
((xi − xj)2 + (yi − yj)2 + d)−q

)
,

(4.9)
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where as before µ(x, y) = µ0φ(x, y) where µ0 is a constant and φ(x, y) has a KDE or DP

mixture prior. From this factorisation, we can see that µ0 and φ(x, y) are independent

of the other model parameters in the likelihood, and hence will be independent in the

posterior assuming prior independence. This latent variable formulation hence breaks

the dependency which would have made the KDE or DP part of the model difficult to

learn, and further weakens the dependence between {c, p}, {α, K̄} and {d, q} which will

allow for more efficient MCMC sampling.

We hence propose a Gibbs sampler which samples the parameters in the following

conditionally independent blocks:

• P (B|µ0, φ(x, y), K̄, α, c, p, d, q,Ht)

• P (φ(x, y)|B,Ht)

• P (µ0|B,φ(x, y),Ht)

• P (K̄, α|B, c, p,Ht)

• P (c, p|B, K̄, α,Ht)

• P (d, q|B,Ht)

Given a set of model parameters θ(k) at iteration k of the Gibbs sampler, we now

explain how to sample the next value θ(k+1) from the above full conditional distributions.

4.6.1 Sampling B

As shown by [Zhuang et al., 2002], in the context of stochastic declustering, each indi-

vidual branching variable B
(k+1)
i can be sampled exactly from its conditional posterior.

Note that each Bi can take values only in the discrete set {0, 1, . . . , j − 1}, i.e. each

earthquake can only be triggered by either a previous earthquake, or the background

process. Assuming a uniform prior on each Bi, the probability of it being caused by any

of the i processes is simply the proportion of the overall intensity that can be attributed

to that process, i.e.:

P (B
(k+1)
i = j|Ht, θ

(k)) =


µ0φ(xi, yi)

λ(ti,mi, xi, yi|Hti , θ
(k))

for j = 0

g(ti − tj)h(xi − xj , yi − yj)ι(mi)

λ(ti,mi, xi, yi|Hti , θ
(k))

for j 6= 0

(4.10)
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Each Bi can hence be drawn independently with weights given by Equation 4.10. A

proof of this is shown in Section 3.5.2.

4.6.2 Update φ(x, y)

This step is required only for DP ETAS since φ(·) is constant in the KDE version of the

model. Recall from Section 4.3.2 that

φ(x, y) =

∫
N(x, y|ϕ)dϕ

ϕ ∼ G

G ∼ DP (χ,G0),

where φ(x, y) is the generating function for the |S0| immigrant earthquakes that are

assigned to the background process based on the current branching structure.

In order to simulate a value of φ(·) from its conditional posterior, we first simulate

values of ϕi, i ∈ {1, 2, . . . , |S0|} from their posterior distributions given the earthquakes

which are assigned to the background process, using the usual Chinese Restaurant pro-

cess sampler. Given these values, we then have from Section 4.3.2 that:

G|ϕ1, . . . , ϕ|S0| ∼ DP

(
χ+ n,

χG0 +
∑n

i=1 δϕi
χ+ n

)
.

We can hence sample a value of G from its posterior using truncated stick breaking,

i.e:

G =

N∑
i=1

πiδψi .

This hence fully defines a realisation of φ(x, y) from its posterior. Note that the reason

why we need to simulate a realisation of φ(x, y) (and hence G) rather than working

only with the ϕi samples is that we need to have a realisation of φ(x, y) to evaluate the

branching posterior in Equation 4.10.

As part of this step, we can also perform an update of the hyperparameters of G0

and of χ, if we wish to work with the full hierarchical version of the DP. This can be done

by assigning them a sensible prior distribution, such as χ ∼ Gamma(1, 1). The updates

in this case are standard in the DP literature and are described in detail in [Görür and

Rasmussen, 2010].
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4.6.3 Update the value of µ0

Using Equation 4.9 we can observe that µ0 only depends on the number of events in the

background process S0, hence:

P (µ0|Ht, θ, B) ∝π(µ0)e−µ0T
∏
ti∈S0

µ(xi, yi) =

π(µ0)e−µ0Tµ
|S0|
0

∏
ti∈S0

φ(xi, yi) ∝ π(µ0)e−µ0Tµ
|S0|
0 .

This is equivalent to estimating the intensity µ0 of a homogeneous Poisson process

on [0, T ], with event times S0. In this case, the Gamma distribution is the conjugate

prior: πµ0 = Ga(αµ0 , βµ0). The posterior distribution is then p(µ0|Ht, θ, B) = Ga(αµ0 +

|S0|, βµ0 + T ) which can be sampled from directly [Ross, 2018a].

Update the values of K̄ and α

Similar to the process for sampling µ0, we can sample new values of K̄ and α from

p(K̄, α|Ht, θ, B). Based on Equation 4.9, we conclude that:

P (α, K̄|Ht, θ, B) ∝π(K̄, α)

n∏
j=1

(
e
−K̄eα(mj−M0)

(
1− cp−1

(tn−ti+c)p−1

)
{K̄eα(mj−M0)}|Sj |

)
.

Although there is no conjugate prior in this case, it is straightforward to use (e.g.)

random walk MCMC to draw a sample from this posterior as described in the beginning

of this Section.

4.6.4 Update the values of c and p

Again, based on Equation 4.9, we can see that the posterior distribution of c and p is

given by:

P (c, p|Ht, θ, B) ∝π(c, p)

n∏
j=1

(
e
−K̄eα(mj−M0)

(
1− cp−1

(tn−ti+c)p−1

) ∏
ti∈Sj

Kt

(ti − tj + c)p

)
.

The parameter sampling can be done using (e.g.) standard random walk MCMC

sampler.
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4.6.5 Update the values of d and q

As a last step of our MCMC sampler we update the offspring kernel space parameters d

and q. The expression below is a simplified approximation that depends on an infinite

space approximation which was discussed in Section 4.2.2

P (d, q|Ht, θ, B) ∝ π(d, q)
n∏
j=1

( ∏
ti∈Sj

Kr

(
(xi − xj)2 + (yi − yj)2 + d

)−q)
.

4.7 Prior Choice, and Implementation Details

The most common problem with the estimation and simulation of an ETAS model is

that certain parameter values can result in infinitely many earthquakes being generated

from the process with non-zero probability. As discussed in 2.2.2, with a more detailed

treatment in [Helmstetter and Sornette, 2002], that to guarantee a finite catalogue, the

average number of aftershocks produced by each earthquake in the catalogue must be

less than 1. The intuition for this result is that if the average number of aftershocks is

greater than 1, then the cluster process representation of the process may never converge.

The offspring intensity is only dependent on the magnitudes and two model param-

eters {α, K̄} based on the infinite space and time assumption. Then, we can evaluate

the productivity (Section 2.3.2) of each event as follows:

∫ Mmax

M0

K̄eα(m−Mo)P (m−M0)dm =

∫ Mmax

M0

βK̄e(α−β)(m−Mo)dm =


[
βK̄e(α−β)(m−Mo)

α−β

]Mmax

m=M0

α 6= β[
αK̄(m−M0)

]Mmax

m=M0

α = β

(4.11)

The simulation of marks is assumed to be independent from the ETAS parametrisa-

tion, hence the case in which α = β is applicable only in an estimation context, where

β is the parameter in the Gutenberg-Richter distribution P (m−M0|β) (Section 4.4.1).

Choosing the magnitudes’ upper bound to go to infinity corresponds to the following

reduced form of the productivity dependence:

K̄β

β − α
.
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Then a finite catalogue will be guaranteed, based on the infinite time-space assumption,

if the following two statements hold true

β < α

and
K̄β

β − α
< 1.

However, restriction the constrains based on infinite time, space and mark can be

overly restrictive depending on the specific parameter scenario with the prime influence

associated with the later one. For known magnitudes, we can use a deterministic ap-

proach for the offspring productivity evaluation based on the mean value of the offspring

productivity:

K̄

Nm

Nm∑
i=1

eα(mi−M0)(1− cp−1(c+ T )1−p), (4.12)

where Nm is the number of magnitudes that we take into account. For simulation

purposes we can evaluate the above expression directly from the generated values in

step 2 of the simulation algorithm introduced in Section 4.4.1. In an estimation context

the catalogue’s magnitudes shall be used. We base finite catalogue restrictions based on

Equation 4.12

As such, we will choose our prior distributions so that positive mass is only assigned

to regions where the above parameter relations are satisfied. We choose to use relatively

uninformative Uniform priors: α ∈ (0, 10), c ∈ (0, 10), p ∈ (1, 30), K̄ ∈ (0, 30), d ∈

(0,∞) and q ∈ (1,∞) , with the regions not satisfying the above relations assigned zero

mass. Note that the priors for c and p are slightly informative which is required since

these parameters are only weakly identifiable [Holschneider et al., 2012]

Finally in the above discussion of the MCMC sampler, we mentioned that random

walk Metropolis-Hastings was used to update some blocks of parameters. For these, we

used a Normal proposal distribution with standard deviation of 0.1 and mean the most

recently obtained parameter value.

4.8 Model comparison

We have proposed three different versions of the Bayesian ETAS model, which respec-

tively use the Uniform distribution, KDE and a DP mixture model to represent φ(x, y).

106



Across all discussed methods for model performance and evaluation in Section 2.4.4 we

can only effectively apply in- and out-of-sample log-likelihood and DIC. In this section

we address these techniques in the context of Spatio-temporal ETAS model.

4.8.1 Deviance Information Criterion (DIC)

Recall that for a given a set of model parameters θ the model’s DIC value is:

DIC(θ) = −2`(θ̄; Ht) + 2pDIC ,

where `(θ; HT ) is the log-likelihood function and pDIC is the effective sample size, which

evaluates the number of independent samples the MCMC draws are equivalent to. It is

defined as:

pDIC = 2`(θ̄; Ht)− 2E(`(θ; HT ) ∼= 2`(θ̄; Ht)− 2
1

S

S∑
s=1

`(θs; Ht),

where θs indicates the sth parameters’ sample in the considered MCMC chain. Al-

ternatively, we can compute the effective sample size as the variance of the obtained

log-likelihood values for all sampled parameters as follows:

pDICalt = 2V ar[`(θ; HT )].

This method is not as numerically stable as the other one but it is easier to compute be-

cause it does not require the allocation of θ̄, which is a computationally very demanding

task with respect to the φ(x, y) of DP ETAS model, hence we will use this alternative

(pDICalt) of the DIC metric through this Chapter.

4.8.2 Out-of-sample log-likelihood

A common way to evaluate the performance of earthquake models is to consider the

out-of-sample predictive distributions, i.e. how well we can predict the occurrence time

and locations of earthquakes in the time window [T,U ] given that we have fitted a

model to the time window [0, T ]. Several versions of this approach have been used in

the literature, with a summary given in [Bray and Schoenberg, 2013]

Since all of our models are fully Bayesian with completely specified probability dis-

tributions, we will compare based on the out-of-sample posterior predictive likelihood
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(i.e. the likelihood of the future observations averaged over the samples which have been

drawn from the posterior).

4.9 Simulation Study

In this section we will use synthetic (simulated) data to evaluate and compare the perfor-

mance of the three Bayesian ETAS models for φ(x, y) using 1) the Uniform distribution,

2) KDE, and 3) a Dirichlet process mixture. The next section will similarly compare

them using real earthquake catalogues.

4.9.1 Initial Comparison

We simulate three catalogues, each with a different choice for the density φ(x, y). The

first density that we consider follows a standard bivariate normal distribution i.e.

φ1(x, y) ∼ N

(0

0

 ,
1 0

0 1

). (4.13)

The second one is a mixture of two Normal distributions. The first of them has a

mean of (−1,−1) and the second one (1, 1). They share a common covariance matrix

that comprises zero covariance and 0.4 standard deviation in each dimension i.e.

φ2(x, y) ∼ N

(−1

−1

 ,
0.4 0

0 0.4

)+N

(1

1

 ,
0.4 0

0 0.4

). (4.14)

The third density aims to simulate a seismic fault - all events are uniformly distributed

on a line with known boundary conditions. This requires the specification of a fixed

spatial region Σ. We sample uniformly a realisation of the x range of Σ. Then we

transform it into a point on a line defined by an intercept a and a slope b and further

scale it by an error component ε ∼ N(0, σ2
ε ) i.e.

φ3(x, y) = φx(x)φy(y), (4.15)

for φx(x) ∼ Unif(Σx), where Σx is the range in x dimension and φy(y) ∼ a + bx + ε.

We chose a = 1, b = 2, σε = 0.5 and Σx = (−2, 2).

For the remainder of the ETAS parameters, we choose parameters based on the

Tohoku District, Japan catalogue from 1926 − 1995 over 36o, 42o N and 141o, 145o,
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E, which were estimated using maximum likelihood by [Ogata, 1998]. These are:

(K̄, α, p, c, d, q) = (0.322, 1.407, 1.121, 0.0353, 0.0159, 1.531) with ground intensity con-

stant µ0 = 0.854× 10−4 and margin of completion M0 = 5.

The same parametrisation is used in [Fox et al., 2016] subject to the following amend-

ments - M0 = 0, Σ = [0, 4]× [0, 6], and µ0φ(xi, yi) = 0.001 + 0.004×1(x;y){([0, 2]; [3, 6])

∪ ([2, 4]; [0, 3])} where 1(·){·} is an indicator function. These simulations spread over

temporal interval [0, 25000].

For our simulation, we choose to set µ0 = 0.325 to provide denser catalogues within

a shorter period of time. The overall event rate has increased by 0.35 × 104 which

allows us to run simulations for a shorter period of time compared to the previously

introduced examples. However, this is not going to affect negatively the performance of

the remaining parameters.

All simulated catalogues in this section have magnitudes following the Gutenberg-

Richter law [Gutenberg and Richter, 1944] with b-value of 1 i.e. mi −M0 ∼ Exp
[
β =

ln(10)
]
. Hence, all marks m are greater than the specific margin of completeness used for

the simulation, M0. Within the simulation study, we set temporal window in t ∈ (0, 300)

with extension interval τ ∈ [300, 350) and magnitude of completeness of M0 = 2.

4.9.2 Model Fitting and Results

For each of the three datasets, we used MCMC to draw 12, 000 samples from the posterior

(after thinning). The branching structure was sampled from its conditional posterior

only at every 50 iterations of the latent variable MCMC algorithm, since this is an

O(n2) operation and slower than the other updates. For the DP ETAS model, we also

resample the immigrant events density function φ(x, y) when a new branching structure

is sampled.

For the KDE ETAS model, the estimate of the immigrant spatial density φ(x, y) is

based on the whole catalogue of observations (and is hence biased), and so is estimated

prior to running the MCMC and set to a fixed value, as in [Zhuang et al., 2002,Marsan

and Lengline, 2008, Sornette and Utkin, 2009, Marsan and Lengliné, 2010, Fox et al.,

2016].

In the simulation example we developed an out-of sample comparison with respect

to 30 out-of-sample periods for each dataset. In order to evaluate the estimate per-

formance we used every 50th parameter set across the 10, 000 sets that were obtained

as part of the MCMC procedure. This way were obtained 200 estimates of the out-of-
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sample log-likelihood for each of the 20 catalogue out-of-sample periods. Hence, we can

examine the out-of-sample log-likelihood with respect to either each extension for the

mean performance across selected MCMC samples or the opposite - evaluate the mean

performance across all out-of-sample periods for each of the MCMC samples. An overall

measure is either the mean out-of-sample log-likelihood or the maximum one across all

MCMC sets and all catalogue out-of-sample periods.

φ· DICU DICK DICD l̄oU l̄oK l̄oD
φ1 5985.64 2495.93 4347.91 -1150.57 -1079.11 -1084.31
φ2 5984.60 2372.27 4583.25 -913.29 -862.19 -832.30
φ3 5918.93 1780.47 3670.92 -830.16 -777.72 -778.89

Table 4.1: Comparison between the performance of Unif (U), KDE (K) and DP (D)
ETAS models across three uncaused events’ spatial distributions (φ·) with respect to
the Tohoku District [Ogata, 1998] MLE estimated based simulated catalogues.

The obtained results for φ1(·) and φ3(·) show that KDE ETAS model outperformed

DP ETAS model, and that both outperformed the Fixed ETAS model (Table 4.1).

However, the results obtained based on φ2(·) show that DP is better than KDE with

respect to all diagnostic tests. On Figure 4.2 are shown the spatial distribution of the

obtained data based on φ2(·), as well as the sequence of log-likelihoods for each model

evolving over each iteration of the Gibbs sampler (after convergence). It is clearly

observable that there is a difference between the overall fitting capabilities between the

3 spatial ETAS models. The out-of-sample diagnostics are shown on Figure A.1.

Since these results are mixed and show that both DP and KDE are capable of out-

performing each other depending on the model parameters, we will now develop a larger

simulation study to gain insight into the factors which determine when each is most

suitable.

4.9.3 Large Scale Simulation Study

In order to examine further the behaviour of the spatial ETAS models, we created a

number of simulated data sets by varying the model parameters. We set µ0 = 0.325,

c = 0.0353 and p = 1.121 to be constant. Then we consider: α ∈ {1.0, 1.3, 1.6, 1.9},

K̄ ∈ {0.1, 0.3, 0.5}, d ∈ {0.01, 0.255, 0.5} and d ∈ {1.10, 1.55, 2}. We exclude the combi-

nations of parameters which result in an expected productivity greater than 1 since these

can potentially generate infinite catalogues as discussed in Section 4.7. This resulted in

63 different parameter sets.
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Figure 4.2: Descriptive plots of φ2(·) with parameter set (µ0, α, K̄, c, p, d, q) = (0.325,
1.407, 0.0353, 1.121, 0.322, 0.0159, 1.531). Left: Data spatial distribution. In Red are
all immigrant event while all others are displayed in Black. There are 89 immigrant
events and 200 offsprings which corresponds to a ratio of 0.308. Right: The obtained
log-likelihood with respect to the three different version of ETAS for 10,000 MCMC
simulations.

On Tables A.1, A.2 and A.3 are shown the obtained results with respect to the 63

simulations for each of the three uncaused events’ spatial densities as of Equations 4.13,

4.14 and 4.15 respectively. The first column consists of the specific values for parameters

α, K̄, d and q. The next one is the total number of events n obtained by this simulation.

pµ is the proportion of uncaused events, followed by the overall Area that the catalogue

spans. All goodness-of-fit diagnostics are provided with respect to the Uniform, KDE

and DP ETAS models as introduced in Section 4.3, which correspond to subscripts U , K

and D respectively. l̂· provides the highest log-likelihood value across the MCMC. The

DIC value for the corresponding model is shown under DIC· as introduced in Section

4.8.1. The log-likelihood summary across all extensions (out-of-sample) and all sampled

parameters is shown as l̂o· (the maximum value) and l̄o· (the mean value).

Direct comparison between all results shown on Tables A.1, A.2 and A.3 is a challenge

since every goodness-of-fit metric can be considered on its own as sufficient for the

allocation of the best model. However, the Fixed model is never superior across the

other two. We examined the performance of KDE vs DP spatial ETAS models with

respect to whether they excel in a single metric or across all provided metrics. The
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summary of this comparison is provided on Table 4.2. This table presents the number

of datasets that allocate either KDE or DP as the best model based on either maximum

log-likelihood l̂ or DIC or out-of-sample maximum likelihood l̂o or out-of-sample mean

log-likelihood l̄o or with respect to all previous metrics (referred to as best). We further

provided the aggregated counts across all 189 simulations. It can be seen that both the

DP and KDE versions of the model can outperform each other for different values of

the model parameters. This shows that they are both likely to have value for estimating

real-world catalogues.

It is interesting to understand the factors which makes DP superior to KDE for

particular data-sets, since this will give us a general rule for deciding which one is

most appropriate to use. We propose the following hypothesis, which seems intuitively

reasonable: since KDE forms its estimate of φ(x, y) by using all the earthquakes in the

catalogue rather than only the immigrant events, we would expect it to perform well

either when most earthquakes are immigrants, or when the true distribution φ(x, y)

of mainshocks is not too dissimilar to the overall distribution of earthquakes in the

catalogue.

We would expect the DP approach to perform better when K is large (since this

results in a higher proportion of aftershocks relative to immigrants), and also when the

parameters d and q are large since this results in the distribution of triggered events

being spread out over a wider areas, which increases the spatial discrepancy between

the mainshock distribution and the overall catalogue distribution.

subset model max(l̂·) min(DIC) max(l̂o· ) max(l̄o· ) best

φ1(·) KDE 49 54 49 52 47
DP 14 9 14 11 8

φ2(·) KDE 26 33 25 27 23
DP 37 30 38 36 29

φ3(·) KDE 32 35 26 27 24
DP 31 28 37 36 28

All
KDE 107 122 100 106 94
DP 82 67 89 83 65

Table 4.2: Number of datasets that allocate either KDE or DP as the best model based
on either maximum log-likelihood l̂ or DIC or out-of-sample maximum likelihood l̂o or
out-of-sample mean log-likelihood l̄o or with respect to all previous metrics (best).

To test this hypothesis, we will try to create a single measure which represents the

discrepancy between φ(x, y) and the overall catalogue distribution. This relationship is
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Figure 4.3: Standardised differences of performance metrics of DP ETAS related to KDE
ETAS with respect to the logarithmic transformation of every catalogue overall Area
across the three uncaused events’ spatial densities φ·(·) (Section 4.9.1). n stands for the
difference between in-sample log-likelihood values for DP ETAS minus KDE ETAS; l

stands for the difference between DIC values for KDE ETAS minus DP ETAS; s stands
for the difference between out-of-sample log-likelihood values for DP ETAS minus KDE
ETAS. For ease of display all values are re-scaled to follow a zero mean, unit variance
Normal distribution. The three solid lines on each sub-plot represent the fitted lines of
the pattern with respect to the three discussed difference (in their respective colours).
The horizontal dashed line indicate the threshold for which DP ETAS will be considered
to outperform KDE ETAS.

primarily influenced by the overall area that the catalogue spans. Since all immigrant

events are restricted to lie within the same area (Σ), the overall area of the catalogue

is driven primarily by the values of d and q and K̄, which affects how the triggered

events spread out relative to the immigrants. As such, we compute the resulting areas

for each of the 63 catalogues which were simulated by varying the parameter values.

In Figure 4.3, we plot how the area of the catalogue relates to the degree to which

DP performed KDE. Specifically, we plot the difference in the DIC and out-of-sample

log-likelihood values between DP and KDE, as a function of catalogue area. It can be

seen that there is a clear relationship between the performance measures and the overall

area of a catalogue - a larger area is associated with a better performance of DP ETAS.

The correlation between these measures and the proportion of immigrant events (pµ0)

is -0.27 and -0.26 for the DIC and ML differences respectively. This largely confirms

our previous hypothesis; in general, the DP model outperforms KDE when there are a

large number of aftershocks that are spread out over a wide area, while KDE performs

best when the number of aftershocks is smaller.
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4.10 Real earthquake sequences

In this Section we explore the performance of the spatio-temporal ETAS model across

real earthquake catalogues. As expected, the Uniform ETAS model performed poorly

compared to the other two models. For clarity we are not going to discuss further this

model and we will focus on the results from the other two. The summary of all diagnostic

measures across all analysed datasets are shown on Table 4.3.

4.10.1 Italian catalogue

Italy has suffered recently from a rather misfortunate phenomenon. On the 24th of Au-

gust 2016 was registered an earthquake of 6M, followed by more than 2500 aftershocks

that caused the death of nearly 300 people [Luzi et al., 2017]. Non-self exciting point

processes cannot address a short term prediction of such a sort since its intensity can-

not increase rapidly enough. Further, a self-exciting point process without a spatial

component cannot address such patterns as well due to the large seismic activity across

multiple rupture areas of the Apennines peninsula. For all these reasons, we decided to

apply the novel models introduced in the Chapter to the Italian seismic sequence.

We obtained the required data from the Italian National Institute of Geophysics and

Volcanology (Instituto Nazionale Di Geofisica e Vulcanalogia http://www.ingv.it).

The data were gathered from 01/04/1999 to 01/04/2019 that spans Italy within 35o,

49o N and 5o, 20o E with minimum magnitude of M0 = 3. Then we split the data into a

train set from 01/04/1999 to 01/04/2014 (4669 events) and a test set from 01/04/2014

to 01/04/2019 (2171 events).

The goodness-of-fit results are shown on Table 4.3. From a standard Bayesian per-

spective DP ETAS outperforms KDE ETAS because the only truly Bayesian measure

across all model diagnostics is DIC in which DP ETAS has shown superior results. How-

ever, KDE ETAS outperforms DP ETAS in all other metrics both in- and out-of-sample.

Therefore we conclude that KDE ETAS provides a better fit for the Italian catalogue.

The main reason for this result is based on the way the catalogue was accumulated -

it consists of events that were primarily detected on shore. Given the density of the

catalogue, spatial distribution of the events and possible omission of caused events fur-

ther away from the triggering origin, it is evident that KDE will outperform DP in this

scenario.
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4.10.2 Friuli, Italy

This is an area in Italy that is primarily known for the 6.5 M earthquake that occurred

on 06/05/1976, followed by multiple aftershocks with considerably large magnitude. In

the past 40 years, there were no detected earthquakes exceeding 5 M. This catalogue

is very challenging because the available data prior to the 1976 Friuli Earthquake are

limited.

We based our study on the earthquake occurrence from 01/01/1975 to 01/01/2019

that covers the area within 46o36′, 46o N and 12o18′, 13o30′ E with minimum magnitude

of M0 = 3. For inferential purposes we split the data into a train set 01/01/1975 −

01/01/2004 with 310 events and a test set 01/01/2004− 01/01/2019 that comprises of

20 events. The data were obtained from the United States Geological Survey (USGS)

catalogue (http://earthquake.usgs.gov/).

As before, the goodness-of-fit results are shown on Table 4.3. KDE ETAS outper-

forms DP ETAS in terms of DIC value but suffers in the out-of-sample study. This

indicates that KDE is overfitting the uncaused events spatial density. However, the

train test is rather small and for that reason it is beneficial to examine the performance

on catalogues with denser test sets.

4.10.3 Vrancea, Romania

Vrancea is an area in Romania that has a strategic importance on South-Eastern Europe.

On 4/3/1977 was detected the 7.2 M Vrancea earthquake that caused large destruction

and human loss in both Bulgaria and Romania. Examining this region is of critical

interest because there were no large earthquakes in the area occurring for a prolonged

period of time. There are a number of very ambitious projects which were developed

or started development during the 20th century in both Bulgaria and Romania. Some

of them were proven to be poorly executed, causing major disasters in the recent years.

Probably the most debatable projects are related to the nuclear power plants in these

countries. At the moment, there are two nuclear power stations operating, one in each

country - Kozloduy in Bulgaria and Cernavoda in Romania. An additional power plant

is under development in Bulgaria near the town of Belene. A possible malfunction

caused in any of them can be devastating not only for Bulgaria and Romania, but also

for the entire Black Sea basin. There are a number of sites that can provide a smaller,

yet considerably negative impact on the two countries’ development if the appropriate
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earthquake hazard measure is not taken into account. Some of them include water dams

and reservoirs, artificial rivers and channel barriers, and gas lines.

This study analyses the earthquake information 01/01/1974−01/01/2019 that covers

46o, 45o18′ N and 27o, 26o E with a minimum magnitude of M0 = 2.5. The data

were split into a train set 01/01/1975 − 01/01/2014 with 529 events and a test set

01/01/2014 − 01/01/2019 that comprises 46 events. The data were obtained from the

United States Geological Survey (USGS) catalogue (http://earthquake.usgs.gov/).

The goodness-of-fit information is illustrated on Table 4.3. Similarly to the previous

section, KDE ETAS outperforms DP ETAS in sample and provides a poor out-of-sample

performance. This indicates that KDE is overfitting the uncaused events spatial density.

We conclude that DP ETAS is more useful for this specific dataset.

4.10.4 Zakynthos and Kefalonia, Greece

Zakynthos and Kefalonia are subject to prolonged seismic activity. The area of in-

terest spans 38o33.54′, 47o14.34′ N and 21o36.96′, 19o39.96′ E. The most important

event in the region is the 6.8 M Ionian earthquake that occurred on 12/08/1953. In-

cluding data from this period is very challenging due to the advancements of detection

methodology since then. For this reason we focused our study on a more recent time

frame (1/1/1069− 1/1/2019) and further increased the detection threshold (M0 = 4.5)

to ensure consistency throughout the catalogue. The data were split into a train set

01/01/1969− 01/01/2018 with 343 events and a test set 01/01/2018− 01/01/2019 that

comprises 109 events. The data were obtained from the United States Geological Survey

(USGS) catalogue (http://earthquake.usgs.gov/). KDE again outperformed DP in

sample due to overfitting the data since DP ETAS performs better out-of-sample (see.

Table 4.3).

4.10.5 Kyushu, Japan

The last catalogue that we analyse in this Chapter is based on the seismicity in the area

around the Kyushu island in Japan. This seismic sequence is of prime importance due

to the escalation of seismic activity in early 2019. We worked on the temporal interval

1/1/1069−1/1/2019 within 36o36.9′, 29o59.58′ N and 134o9.9′, 127o44.94′ E region, with

detection threshold M0 = 4.5. The obtained from the United States Geological Survey

(USGS) catalogue (http://earthquake.usgs.gov/) consists of 761 events that we split
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into a train set 01/01/1969 − 01/01/2016 (594 events) and a test set 01/01/2016 −

01/01/2019 (167 events). Goodness-of-fit results are illustrated on Table 4.3. They

clearly indicate that KDE again outperformed DP in sample while DP ETAS clearly fits

the the date better given its supremacy in the out-of-sample characteristics.

Data DICK DICD l̄oK l̄oD
Italy - 6318.75 -7403.23 11580.85 11552.51

Friuli 946.66 995.58 -36.36 -29.11

Vrancea 2710.23 2731.23 -43.88 -37.86

Zakynthos 846.51 903.64 -36.66 -31.00

Kyushu 1811.71 2278.01 -29.95 -13.72

Table 4.3: KDE and DP based spatial ETAS model comparison across real catalogues.
Lower values of the DIC and larger (less negative) values of the out-of-sample likelihood
indicate superior performance. The large value of the likelihood for the catalogue that
represents whole of Italy is due to the very large number of events compared to the other
catalogues.

4.11 Conclusions

In this Chapter, we explored the most commonly used version of the spatio-temporal

ETAS model. We further extended its uncaused events’ density distribution modelling

using a Dirichlet process non-parametric model and further compared it to an Uniform

distribution and Kernel density estimation. The introduced posterior sampling scheme

can easily be deployed on realistic seismic catalogues due to its scalability.

Our experimental results suggest that the KDE provides better results, while DP

excels in the case of large-scale offspring kernel causality. The Uniform ETAS usually

exhibits poor performance across all analysed scenarios which further strengthens the

usefulness of the introduced DP and KDE based spatial ETAS models. KDE ETAS

is typically better than DP ETAS models based on standard in-sample goodness-of-fit

tests. A general exception of this pattern is where a large proportion of caused events

are present in a catalogue. Further, the caused events should express a large-lag spatial

offspringing behaviour. DP ETAS usually excels in the out-of-sample tests. Both KDE

and DP based ETAS models provide an exceptional performance and they both should

be considered in the applications of the spatio-temporal ETAS model on real catalogues.
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Chapter 5

Spatially Explicit Capture

Recapture as a Self-Exciting

Point Process

In this Chapter we extended the most recent developments of the spatial-ETAS model

to address the concept of animal movement as a point process. Spatially explicit capture

recapture (SECR) methods are widely used to estimate animal density from trap surveys

models. Nowadays traps are usually substituted with cameras that can provide detailed

temporal occurrence information.

Here we extend continuous time SECR models to address dependence between detec-

tions of every animal across all cameras, and estimate model parameters that are shared

between all animals which allows information to be pooled across individuals. This is

achieved by a hybrid Self-exciting point process. We allow the intensity of the point

process for an animal at each camera to depend on the times and locations of previous

detections as well as on the distances from the animal’s activity centre to each camera

trap. The data for each animal can be sparse which we overcome by hierarchical pooling

of offspring model parameters across all animals in the region, since all individuals from

a certain species share similar behavioural patterns.

All introduced methods are applied to two datasets. The first examines leopards in

Royal Manas National Park, Bhutan. The second one consists of tigers in Nagarahole

reserve, India. Our study suggests that the introduced self-excitation component adds

value to the model specification compared to simpler, non-self-excitation point processes.
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5.1 Background

Camera traps record the exact time of each detection, but this information is typically

discarded and the data reduced to numbers of detections within a time interval of a day,

a week, or longer, for SECR analysis. There are a few exceptions. [Borchers et al., 2014]

developed a maximum likelihood SECR estimator that uses exact detection times, and

used it to estimate jaguar abundance. [Dorazio and Karanth, 2017] developed a Bayesian

SECR estimator that does the same, although in their analysis of a camera trap survey

of tigers in the Nagarahole Reserve in India, they reduced time to a factor with two

levels: “day” and “night”. Both these methods assume that the hazard of detecting

an animal by any camera at any time does not depend on where or when the animal

was previously detected. This is not a realistic assumption. Animals take time to move

from one camera to another and will tend to be detected at traps closer to the trap of

their last detection before being detected at those farther away. [Borchers et al., 2014]

showed that under this unrealistic assumption, data on exact times of detection does not

improve density estimation, although it does contain information on how animal activity

varies over time. In this Chapter we develop a method that overcomes this assumption,

by using ETAS to model the spatio-temporal dependence in detections that arises as

animals move through the study area.

SECR models for camera trap surveys model animal activity centres as arising from a

spatial point process [Johnson et al., 2010,Buckland et al., 2016,Borchers and Marques,

2017]. Continuous time SECR models like those of [Borchers et al., 2014, Dorazio and

Karanth, 2017] model the detection process at each camera as independent temporal

point processes that are time-invariant but depend on the distance of each camera from

an animal’s activity centre. The much more common discrete-time SECR models [Yip,

1991,Barbour et al., 2013] aggregate over time within subjectively chosen time intervals

and model the counts of detections at each camera in each interval as independent

realisations of counting processes with expected values that depend on the distance of

each camera from an animal’s activity centre.

We use the self-exciting nature of ETAS model to address the elevated probability

of detecting an animal in the vicinity of a camera that has just detected it, for some

period after the initial detection. However the data for each animal can be sparse (few

detections of each animal). Camera trap surveys would not normally generate enough

data to estimate separate processes for each animal. We deal with this by pooling the
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ETAS model offspring parameters across all animals in the survey region, assuming

that the movement of all animals in the region is governed by the same process. This

kind of assumption is common with SECR models, which typically assume that all

animals share the same parameters either with respect to a counting process (discrete-

time SECR) or temporal point process (continuous-time SECR), conditional on their

activity centre locations. There are SECR models that allow animal-level random effects

in the detection process but we do not consider such models here.

The remainder of this Chapter proceeds as follows. In Section 5.2 we describe the

SECR ETAS model with its properties. Then we address the simulation mechanism

of this process in Section 5.3 followed by introduction of a non-self-excitation model

alternative (Section 5.4). In Section 5.5, we introduce the methods for model estimation

based on the Bayesian paradigm. In Section 5.6, we apply all introduced concepts to

two datasets to show the strengths and weaknesses of the SECR ETAS model. Finally,

in Section 5.7 we summarise all our findings.

5.2 The structure of SECR ETAS model

Most, if not all, SECR models have a hierarchical structure in which some elements are

shared between animals while others are individual-specific. The data consist of arrival

times for all animals, camera indexes and locations at which they were spotted as well as

an actual animal identifier. We denote by ζ the total number of cameras in the detection

region, with ci = {xci , yci} the co-ordinates of the ith camera location so that the set

of all camera locations is {c1, . . . , cζ} = ζ. The data associated with the animals that

were observed consists of detection times {t·}, locations {x·, y·} of the camera on which

they were captured and the exact animal index {a·} that illustrates from which animal

this realisation is considered to be obtained. Hence, the overall data available for the

model calibration is Ht = {(t1, x1, y1, a1), (t2, x2, y2, a2), . . . : ti < t} ∪ ζ, where ti is

the occurrence time at location {xi, yi} of an animal with index ai. All of the observed

animals are, of course, a realisation across the camera space ζ. This restricts our study

only to locations covered by cameras since it would not be possible to observe animals

at any locations not covered by them. Although cameras are typically positioned in a

manner aiming to detect the majority of the animals in the area of interest, it is likely

that some animals will be undetected due to various reasons [Borchers and Marques,

2017,Goldberg et al., 2015b,Dorazio and Karanth, 2017].
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5.2.1 Single animal representation

The data from each animal are considered to be a realisation from a spatio-temporal

ETAS model. The basic construction of the causality function follows closely the widely

used characteristics of ETAS models commonly applied in seismology, while the un-

caused events dependence is tailored to the needs of SECR. This way animal occurrences

are initiated based on their home-range centres while further actions are primarily driven

by species dependent characteristics that are modelled by the offspringing behaviour.

SECR ETAS shared components with standard ETAS model

The general structure of the point process that models every animal behaviour has the

following intensity function:

λ(t, x, y|Ht) = µ(x, y) +
∑
ti<t

g(t− ti)× s(x− xi, y − yi). (5.1)

We set the function g(·) to be the modified Omori law:

g(∆t) =
K(p− 1)

(∆t+ c)pc(1−p) , (5.2)

where ∆t > 0 is the corresponding time-lag between two events. The modified Omori law

(Equation 5.2) is commonly used for modelling aftershocks of earthquakes [Omori, 1894],

however it could be applied in any context. A further study into different functional

forms of g(·) could improve considerably the SECR ETAS model performance. However,

this is beyond the scope of our work.

The spatial offsprings distribution is modelled as being proportional to zero mean

multivariate normal distribution:

s(xj − xi, yj − yi) ∝ N

(0

0

 ,
d 0

0 d

) = st(xj − xi, yj − yi|xj , yj), (5.3)

for i < j, where xj and yj correspond to the location of the event from which we evaluate

the spatial offspring causality function s(·). However, the causality behaviour is shared

only across camera observation centres which implies a discrete support of the spatial

lags between the location of the parent ({xj , yj} in Equation 5.3) and all candidate

transfer locations (e.g. {xci , yci} for camera ci) represented by the set of all camera
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locations ζ. Then the spatial kernel for the observation with index j with respect to

previous detection with index i is:

s(xj − xi, yj − yi) =
st(xj − xi, yj − yi|xj , yj)

sc(xj , yj)
,

where sc(x, y) =
∑ζ

i=1 st(x − xci , y − yci |x, y). Thus s(·) is a valid discrete probability

function.

The evaluation of both g(·) and s(·) is only feasible for sequences that consist of more

than one event (detection). However, some of the animals that are observed are detected

only once. This provides no data for which to estimate their offspring parameters. To

overcome this problem we assume that all animals have similar offspring dependence.

Hence, the offspring parameters (K, c, p, d) will be common for all animals that are

present in the study region.

Uncaused events spatial dependence

The immigrant events’ conditional intensity µ(·) comprises a constant, temporal arrival

rate µ0 and a spatial function φ(x, y) based on the following relationship:

µ(xi, yi|h) = µ0 × φ(xi, yi). (5.4)

The immigrant spatial distribution φ(x, y) for every unique animal can be interpreted

as a discrete uniform distribution across all placed cameras ζ. This will suggest that

a single animal can appear on any camera regardless of its home-range. However, the

uniformity assumption is rather unrealistic as it suggest that an animal’s home range

centre is irrelevant for animal movement [Borchers and Marques, 2017, Dorazio and

Karanth, 2017]. On the contrary, assigning a multivariate normal density provides

a rather strict alternative in which the animal is unlikely to be seen on any camera

outside of its home-range which is also not ideal. Since an animal is predominantly in

its home-range and occasionally visiting a new territory, it is reasonable to consider a

mixture model between these two components. This way we will assign large density

to the area closest to every animal’s home-range but also guarantee a fair chance of

visiting a new territory. The rate between the two components is controlled by scaling

parameter γ ∈ [0, 1]. Then, the uncaused events’ probability mass function conditioned
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on the animal of interest home-range centre h is proportional to:

φ(xi, yi|h) =
[
(1− γ)

1

ζ
+ γf({xi, yi}|h,Σ)

]
, (5.5)

where ζ is the number of the cameras that were placed in the experiment regardless

of whether an animal was detected on them or not. f(·) is the density of a bivariate

Normal distribution, Σ is the common full covariance matrix for all animals and h is

the current animal’s home-range centre that is fixed across all observations from this

animal. If the overall number of observations is too small we can restrict further the

shape of the common covariance matrix Σ by setting all non-diagonal elements to zero.

We placed a discrete point mass on every camera that depends on a continuous

random variable. This suggests that the cumulative intensity of the uncaused events for

every animal is aggregation of the intensity across every placed camera:

φc(h) =

ζ∑
i=1

φ(xi, yi|h).

Likelihood contribution from a single animal

The likelihood of the process for a single animal observation sequence follows the general

point process paradigms (see Section 2.4.1). The probability of observing the data

H
(j)
T = {(t1, x1, y1, j), (t2, x2, y2, j), . . . : ti < T} ∪ ζ associated with a single animal j

across all placed cameras ζ in a temporal interval [0, T ], given the model parameters is:

L(θj ; H
(j)
T ) =

nj∏
i=1

λ(ti, xi, yi|H (j)
T , θj)e

−
∫ ∑ζ

i=1 λ(z,xi,yi|H
(j)
T ,θj)dz (5.6)

with respective log-likelihood function `(θj ; H
(j)
T ) = log(L(θj ; H

(j)
T )) of

`(θj ; H
(j)
T ) =

nj∑
i=1

log(λ(ti, xi, yi|H (j)
T , θj))− µ0Tφc(h)

−K
∑
ti<t

(
1− cp−1

(T − ti + c)p−1

)
, (5.7)

where nj is the total number of observations of the jth animal and θj is the full parameter

set of the model with respect to the jth animal i.e. θj = {µ0, γ,hj ,Σ, c, p,K, d}.
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Animal detection probability

Evaluating the probability to detect (or undetected) an animal within the study area is

essential for inferential purposes as it could be used for estimation of the full population.

Animal detection depends on the duration of the temporal interval in which the data

are collected, the number and density of the placed cameras in the area and, most

importantly, animal’s home-range centre position with respect to all traps.

Any conducted experiment cannot guarantee to observe all animals within a detec-

tion area of interest. Therefore, there exists a non-zero probability of not detecting an

animal. Let us define a dichotomous random variable S ∈ {0, 1} where state 0 indicates

that an animal is undetected and state 1 if it is detected. The probability of an animal

not being spotted is equivalent to the probability of not obtaining any events from the

point process defined in Section 5.2.1. Since the animal is not spotted, the intensity as

of Equation 5.1 reduces to µ(x, y) because the self-exciting term of the intensity function

disappears due to the lack of observations to initiate the excitation component.

The probability of not detecting an animal is e−Λ(h) where Λ(h) is the cumulative

intensity of the process with home-range centre h over the spatial region with area A

and temporal interval [0, T ]:

Λ(h) =

∫ T

0

ζ∑
i=1

µ(xi, yi|h)dt = Tµ0

ζ∑
i=1

φ(xi, yi|h) = µ0Tφc(h).

The above expression holds true since φc(h) =
∑ζ

i=1 φ(xi, yi|h) and µ0 is a constant over

time. Then, the probability of an animal to be detected given its home-range centre h

is equivalent to:

P (S = 1|h) = 1− exp
(
− T

ζ∑
i=1

µ(xi, yi|h)
)

= 1− exp(−µ0Tφc(h)).

The equation above represents the probability of an any outcome from which is sub-

tracted the probability of obtaining no events from a Poisson distribution with rate

Λ(h).

Although every animal has a home-range centre h associated with it, we can gather

information for the home-ranges only for the animals that we observe. In order to quan-

tify the unconditional probability of an animal to be spotted we have to integrate out

the distribution of the home-range centres, P (h). Then the unconditional probability
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to observe an animal is:

P (S = 1) =

∫
A
P (h)P (S = 1|h)dh.

In this study we assign P (h) to be a uniform distribution over the area of interest A i.e.

P (h) = 1/A. Then the probability of detecting an animal is:

P (S = 1) = 1− 1

A

∫
A

exp(−µ0Tφc(h))dh. (5.8)

The uniformity of home-range centres is a simplifying assumption that eases fur-

ther derivations. Without loss of generality we could assign another distribution given

sufficient ecological reasoning.

5.2.2 Multiple animals

Let us consider the likelihood function of all observed animals. Based on the assumption

that all animal occurrences are independent, the likelihood function is the product of

the likelihood functions for every observed animal as introduced in Equation 5.6. For

a point process that consists of m unique animals, where nj is the total number of

observations of the jth animal, the likelihood function is:

Lo(θ; HT ) =
m∏
j=1

L(θj ; H
(j)
T )

=

m∏
j=1

nj∏
i=1

λj(ti, xi, yi|H (j)
T , θj)e

−
∫ T
0

∑ζ
s=1 λj(z,xi,yi|H

(j)
T ,θj)dz,

(5.9)

where HT is the full data across all animals and all placed traps, θ is the full parameter

set of the model for all animals i.e. θ = ∪mj=1θj = {µ0, γ, h,Σ, c, p, k, d} and h is the

collection of the home-range centre for all animals h = {h1, ...,hm}. This corresponds

to a log-likelihood form of:

`o(θ; HT ) =
m∑
j=1

( nj∑
i=1

log(λj(ti, xi, yi|Ht, θj)−
∫ T

0

ζ∑
s=1

λj(z, xs, ys|Ht, θj)dz

)
. (5.10)

The inner sum goes through the indexes of each of the observed animal sequences.

Hence
∑m

i=1 ni = n where n is the total number of observations in the full dataset.
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However, the number of detected animals m is a subset of the full animal population M

in the area of interest.

Unobserved animals

The log-likelihood as of Equation 5.10 takes into account only the information that we

observed. The fact that an animal is not captured on camera is information which

should contribute to the likelihood of the data given the model parameters. Then,

the log-likelihood of the undetected animals is the probability of detecting m out of

M animals and to further not detected M −m of them with unit detection probability

following Equation 5.8. This returns the following undetected events likelihood function:

Lu(θ; HT ) =

(
M

m

)(
1

A

∫
A

exp(−µ0Tφc(h))dh)

)(M−m)

, (5.11)

with corresponding log-likelihood representation of

`u(θ; HT ) = (M −m)log

(
1

A

∫
A

exp(−µ0Tφc(h))dh)

)
+ log

(
M

m

)
.

A typical capture recapture study is primarily interested in evaluating the overall

population size M . The main link between this quantity and the observed data are the

estimation of the proportion of unseen animals [Goldberg et al., 2015b].

Overall likelihood of the process

The full log-likelihood that combines both the observed and unobserved information is

the summation of the two separate log-likelihoods `(θ; HT ) = `o(θ; HT ) + `u(θ; HT ) as

follows:

`(θ; HT ) =

m∑
j=1

( nj∑
i=1

log(λj(ti, xi, yi|H (j)
T , θj))−

∫ ζ∑
s=1

λj(z, xs, ys|H (j)
T , θj)dz

)

+ (M −m)log

(
1

A

∫
A

exp(−µ0Tφc(h))dh)

)
+ log

(
M

m

)
,

(5.12)

where M is the parameter with greatest importance for a SECR study. Its point estimate

can be obtained as a proportion of observed animals and detection probability as defined

in Equation 5.8. In Section 5.5 we introduce a novel MCMC algorithm that will provide
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a more robust estimation technique which further propagates the inherent parameter

uncertainty.

5.3 Simulation

In this Section we provide a brief description of the methods that could be employed for

creating a sample from SECR ETAS.

We begin by specifying the overall number of animals M in the area of interest A

with respect to all placed cameras ζ. Events’ locations are observable only at specific

camera instances. All animal sequences should be in a temporal interval τ ∈ [0, T ].

Every animal is a realisation from its own ETAS model.

We firstly sample a home range centre h from P (h). We continue with sampling

uncaused events and their corresponding offsprings from multiple generations. If we fail

to initiate the sequence, then the animal is considered undetected.

5.3.1 Uncaused events

Based on the already sampled animal home-range centre h we can evaluate the cumu-

lative intensity across space and time as:

∫ ζ∑
i=1

µ0φ(xi, yih)dt = µ0Tφc(h).

The number of immigrant events follows a Poisson distribution with a rate µ0Tφc(h).

The corresponding arrival times are uniformly sampled in the temporal region (0, T ).

Given the discrete spatial nature of the process, we can sample the camera labels directly

from their probability distribution. For every camera location we can evaluate the

probability of occurrence based on φ(·) as of Equation 5.5 and then sample the required

number of camera indexes.

5.3.2 Offspring events

Each event in the sequence can generate offspring events from multiple generations.

The productivity of the jth event of the sequence is spatio-temporally invariant since

the modified Omori law integrates to K for infinite time and the spatial density adds
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up to 1 by construction:
ζ∑
i=1

s(xi − xj , yi − xj) = 1

and ∫ ∞
0

g(z)dz = K.

Again as described in Section 2.2.2, we restrict the average productivity to be smaller

than 1 event i.e. K < 1. We then sample the proposed lags in space and time. However,

the support of the spatial measure s(·) as of Equation 5.3 is discrete. Further, we allow

for multiple instances from one camera which can cause difficulties in the evaluation

scheme due to occurrence of multiple zero lag spatial realisations.

After obtaining the offspring set of the uncaused population of events, we repeat

the procedure for every subsequent generation of observations while the offspring set is

non-empty.

5.4 Spatial Poisson Mixture process

The effectiveness of the proposed self-exciting construction can be evaluated by compar-

ing it to a nested model without self-excitation. This interesting simplification of the

SECR ETAS model arises by considering all events as uncaused. Then this alternative

model intensity coincides with the uncaused events’ intensity as of Equation 5.4:

λmpj (ti, xi, yi) = µ0 × φ(xi, yi), (5.13)

where φ(·) is the same function as the one introduced for the full model as of Equation

5.5. This Poisson mixture model can be obtained from the SECR ETAS model by

removing the offspring kernel, which is achieved by setting either K = 0 or p = 1 as of

Equations 5.1 and 5.2. This model resembles more closely the standard SECR model

specified in the literature [Dorazio and Karanth, 2017,Borchers and Marques, 2017].

The detection probability again remains unchanged from the one introduced in Equa-

tion 5.8 since the components related to it are the same. The log-likelihood function
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with respect to all observed animals across all placed cameras of this process is:

`mp(θ; HT ) =
m∑
j=1

( nj∑
i=1

log(λmpj (ti, xi, yi|H (j)
T , θj))−

∫ ζ∑
s=1

λmpj (z, xs, ys|H (j)
T , θj)dz

)

+ (M −m)log

(
1

A

∫
A

exp(−µ0Tφc(h))dh)

)
+ log

(
M

m

)
.

(5.14)

5.5 Bayesian methods for SECR

In this Section we introduce the specific latent variable methods employed for the es-

timation of SECR-ETAS model. The main difference between this algorithm and all

previously introduced is its multi-dimensional structure. We merge individual branch-

ings to facilitate the MCMC sampler needs. All introduced concepts rely on the strong

assumption of independence of animals’ behaviour.

5.5.1 Sampling a branching structure

The first step of the latent variable MCMC sampler is to sample a branching structure

based on the previous iteration parameter set θ and space density φ(·). Similarly to

methods for obtaining a branching structure in the previous two Chapters (see Sec-

tions 3.5.2 and 4.6.1), a method for sampling a realisation of the underlying branching

structure of the SECR ETAS can be recovered with respect to a given parameter set θ.

Let us consider a new version of the vector B(k) = {B(k)
1 , ..., B

(k)
nk } where B

(k)
i ∈

{0, 1, ..., nk−1} which now collects information regarding the parenthood of each event

for the kth animal. If B
(k)
i = 0, the ith event is uncaused (it is immigrant), otherwise

B
(k)
i = j and we say that ith event is caused by jth event (or that jth event is a parent

of the ith). The conditional posterior for each B
(k)
i is independent of all other B

(·)
· and

can be written as:

P (B
(k)
i = j|H (k)

T , θ) =


µ(ti, xi, yi)

λ(ti, xi, yi|H (k)
ti

, θ)
for j = 0

g(ti − tj)s(xi − xj , yi − yj)
λ(ti, xi, yi|H (k)

ti
, θ)

for j 6= 0

This way we can obtain a branching structure for a single animal. However, since

the full dataset HT is a collection of events for which we have to update the parameters

of interest, we have to develop a branching method for the full dataset. Since we already

130



assumed that all animals have similar behaviour and cannot influence the occurrence

from one another, we can directly merge all of the individual branching structures into

one B = {B(1), ..., B(m)}. The pooled animal branching structure B asserts that only

realisations from the same animal can excite one another. For a given dataset HT and

parameter set θ, we can sample a branching structure B based on which to evaluate the

number of children of every event of the full catalogue across every animal. Thus, let

us define the following variable that collects all children of an event associated with the

jth animal observation in the full catalogue HT :

Sj = {ti|Bi = j}.

The above expression is very useful as it collects information that can be used for

estimating the SECR ETAS likelihood as of Equation 5.12, based on a specific branching

structure. In order to improve notation, let us define the operation |Sj | that returns

the number of events in Sj . This construction allows the recovery of the causality with

respect to every unique animal. For example, the set of uncaused events for the kth

animal is:

S
(k)
0 = {ti|B(k)

i = 0},

where S0 = {S(1)
0 , ..., S

(m)
0 }. Based on the branching representation of the process we

can modify the likelihood of a SECR ETAS model as of Equation 5.12 and further

incorporate the point process representation of the undetected animals likelihood as of

Equation 5.11 with respect to a given branching structure B. Using the likelihood as a

sampling distribution we obtain the following full model posterior function:

P (HT |θ,B) ∝π(θ)

(
M

m

)
e−T (M−m)µ0

µ
|S0|
0

m∏
j=1

P (hj)e−µ0Tφc(hj)
∏
ti∈S0

φ(ti, xi, yi)

n∏
j=1

(
e
−K
(

1− cp−1

(tn−ti+c)p−1

)
K |Sj |

)
n∏
j=1

∏
ti∈Sj

s(xi, yi).

(5.15)
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5.5.2 Parameter updates

In this Section we illustrate the exact mechanism employed for updating all model

parameters based on the already sampled full branching structure. We begin by sampling

a branching for all observations for each animal. Then we update each of the model

parameters in groups that is governed by their exact usage based on the full branching

structure B. We iterate this procedure until we obtain the required number of parameter

samples. More details related to the latent variable formulation are present in Sections

2.4.3, 3.5 and 4.6. Further implementation details, with respect to the Applications that

we discuss in this Chapter, are present in Section 5.6.1.

Update the value of M

Among all model parameters only the overall number of animals M is independent from

the full branching structure B. Its posterior distribution, under uniform prior, is

P (M |HT , θ, B) ∝ π(M)

(
M

m

)(
1

A

∫
A

exp(−µ0Tφc(h))dh)

)(M−m)

=

(
M

m

)(
1− P (S = 1)

)(M−m)
.

(5.16)

This expression suggests a Gibbs update for the parameter M is equivalent to sam-

pling the number of failures required to obtain m successes with success probability of

P (S = 1). This is a Negative Binomial distribution, where

P (M −m|HT , θ, B) ∝ NB
(
m,P (S = 1)

)
.

However, large standard deviation of the samples in M can cause a disruption of the

MCMC sampler on real catalogues. For example, large values for M directly reduce the

values of µ0 which can very quickly reach floating-point imprecision. For this reason,

we employ a more conservative Metropolis-Hastings sampler based on Equation 5.16.

Update the value of µ0

We aim to update the immigrant events’ intensity parameter µ0 based on the obtained

branching structure. Using Equation 5.15 we can observe that µ0 only enters the pos-
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terior in conjunction with the background process S0, hence:

P (µ0|HT , θ, B) ∝ π(µ0)µ
|S0|
0 e−µ0T

[
(M−m)µ0+

∑m
j=1 φc(hj)

]
.

This conditional distribution is the same that would be obtained based on intensity

function µ of a homogenous Poisson process on [0, T ], with event times S0. In this case,

the Gamma distribution is the conjugate prior: πµ0 = Ga(αµ0 , βµ0). The full conditional

distribution is then P (µ0|HT , θ, B) = Ga(αµ0 +|S0|, βµ0 +T
[
(M−m)µ0+

∑m
j=1 φc(hj)

]
)

which can be sampled from directly based on a Gibbs sampler.

Update the values of γ

There is no conjugate prior and posterior combination for the update of γ. Hence,

we will use Metropolis-Hastings updates. Of course, these updates also depend on the

current values and all means h· and of the covariance matrix Σ. The full conditional

distribution is:

P (γ|HT , θ, B) ∝ π(γ)e−µ0T
∑m
j=1 φc(hj)

m∏
j=1

∏
ti∈S

(j)
0

φ(xi, yi|hj, θ).

Sampling γ is done based on a Metropolis-Hastings MCMC sampler.

Update the value of Σ.

The covariance matrix of data with zero mean has a conjugate update. However, in our

model Σ is part of a discretised mixture model described by Equation 5.5. Thus, the

full conditional of this covariance matrix is:

P (Σ|HT , θ, B) ∝ π(Σ)e−µ0T
∑m
j=1 φc(hj)

m∏
j=1

∏
ti∈S

(j)
0

φ(xi, yi|hj, θ),

which directly resembles the full conditional for γ. However, the proposal for Σ can

be obtained based on the approximately conjugate update with respect to γ = 1 since

the uncaused spatial density φ(x, y) is reduced to bivariate normal distribution with

mean h and covariance Σ. The corresponding prior is the Inverse-Wishart distribu-

tion (IW (ν,Ψ)) with full conditional distribution being the following Inverse-Wishart
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distribution:

IW
(
n+ ν,Ψ +

∑
i∈S0

((xi, yi)− µ)( (xi, yi)− µ)T
)
. (5.17)

The data used for this estimation is obtained by subtracting the current estimate

of the home-range centre for each animal h to obtain data with zero expectation. This

suggests that the mean parameter µ in the full conditional distribution above, will be also

zero. The value of Ψ is set to be the covariance matrix of the zero mean transformation

of the data that comprises the spatial realisation of all animals.

Update the value of h· for all animals.

Similar to the previous case, there is no conjugate prior distribution for the home-range

centres {hj : j ∈ 1, ...,m} updates. The full conditional distribution is:

P (h·|HT , θ, B) ∝ π(h·)e
−µ0Tφc(h·)

∏
ti∈S

(·)
0

φ(xi, yi|h·, θ).

However, similarly to the previous case, there is an approximate conjugate update

for γ = 1. We use this approximation as a proposal distribution as part of a Metropolis-

Hastings sampler. For a known covariance matrix Σ, we set the prior distribution of the

jth animal with a home-range centre hj to

hj ∼ N(µj ,Σ0) where µj =

[
x̄

ȳ

]
and Σ0 =

[
1 0

0 1

]
εj ,

where x̄ and ȳ correspond to the mean value of the spatial occurrences for this animal in

x and y direction and εj is the step of the updates. Then the approximate full conditional

distribution that we will use as a proposal in our Metropolis-Hastings updates is:

N
( (

Σ−1
0 + njΣ

−1
)−1 (

Σ−1
0 µj + njΣ

−1x̄
)
,
(
Σ−1

0 + njΣ
−1
)−1 (

Σ−1
0 + njΣ

−1
)−1

)
,

(5.18)

where nj is the number of observations in the catalogue associated with the jth animal.

Σ0 is set to be the covariance matrix of the zero mean transformation of the data that

comprises the spatial realisation of all animals.
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Update the values of d.

The offspring kernel space parameter d is shared across both x and y dimension. Then

the data from each dimension is following a univariate normal distribution with zero

mean and variance d. This allows us to gather the lags in space into one vector. Let us

define ∆x = {xj − xi} : i ∈ {1, ..., n}, j ∈ I(Si), where I(S·) returns the indexes of all

elements in S·; the same patterns with respect to the y dimension is notated analogically

as ∆y. Then ∆Y = ∆x ∪∆y is a column vector collecting all spatial lags. We set the

prior distribution to be Inverse-Gamma(αd, βd) which has a posterior Inverse-Gamma

distribution. The lags in space have by definition zero mean. Hence, the full conditional

of d is the following:

P (d|HT , θ, B) ∝ InvGamma

(
αd +

|∆Y |
2

, βd +
(∆Y )′(∆Y )

2

)
,

where |∆Y | returns the number of elements in ∆Y .

Proof. If the prior is set to d ∼ InvGamma(αd, βd), then P (d|αd, βd) =
β
αd
d

Γ(α)d
−α−1 exp(−βdd ).

The likelihood of ∆Y ∼ N(0, d) is:

P (∆Y |d) = (d2π)−
|∆Y |

2 exp
(
− 1

2d
(∆Y )′(∆Y )

)
.

Then the full conditional distribution is:

P (d|HT , θ, B) ∝
βαdd
Γ(α)

d−α−1 exp
(−βd

d

)
(d2π)−

|∆Y |
2 exp

(
− 1

2d
(∆Y )′(∆Y )

)
∝d−(α+

|∆Y |
2

)−1 exp
(
− βd −

1

2d
(∆Y )′(∆Y )

)
∝InvGamma

(
αd +

|∆Y |
2

, βd +
(∆Y )′(∆Y )

2

)
,

as required.

Update the values of c, p and K

For newly proposed values of c, p and K we evaluate their suitability with respect to

the full conditional distribution P (c, p,K|HT , θ, B). Again, based on Equation 5.15, we
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can see that this full conditional distribution is given by:

P (c, p,K|HT , θ, B) ∝ π(c, p,K)

n∏
j=1

(
e
−K
(

1− cp−1

(tn−ti+c)p−1

) ∏
ti∈Sj

K

(ti − tj + c)p

)
.

Similarly, the parameter updates can be done using the basic random walk MCMC

sampler (more advanced sampling techniques for univariate distributions could also be

used to speed up computation). Additional restrictions could be implemented to guar-

antee that the obtained parameters are representing a finite catalogue by restricting

K < 1 (see Section 2.2.2).

5.6 Applications

Fitting an univariate self-exciting model typically requires to have at least a few hundred

events - there should be a sufficient number of uncaused events for the identification

of µ0 and each of them should on average produce some events that would further

descend more events from multiple generations. In the context of the SECR ETAS

model, the total number of observations across all animals should be also large enough

to provide sufficient data for the estimation of the total animal population. However,

all of these requirements are rather unrealistic given the available data granularity. We

used two different datasets to illustrate the behaviour of SECR ETAS and compare it

with the alternative model (Section 5.4). Neither of the two datasets provides occurrence

patterns similar to the required one. However, SECR ETAS still delivers the best results

according to the relevant goodness-of-fit measures that were previously introduced in

Section 2.4.4. We strongly believe that placing more cameras in the detection region,

combined with more detailed spatio-temporal data recording will greatly improve the

model supremacy towards more conventional techniques.

5.6.1 MCMC tuning

The prior distribution choice can influence greatly the obtained MCMC samples. We

combine our prior knowledge of the ETAS model behaviour with the context of the data

to develop realistic MCMC framework [Ross, 2018a,Kolev and Ross, 2019,Dorazio and

Karanth, 2017].

The MCMC sequences are with overall length of 10000 after 2000 samples burn-in

and thinning of 20 units for each of the parameter sets {M}, {γ}, {Σ}, {h·} and {c, p,K},
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while µ0 and d rely on conjugate updates. The branching structure was sampled from

its conditional posterior at every 40 iterations of the MCMC algorithm. The MCMC

algorithms for the Poisson mixture model that was introduced in Section 5.4 uses the

same techniques as the one of the SECR ETAS model. However, in it all animals are

considered uncaused and the missing parameters are fixed to the previously discussed

values that remove the needed components from the SECR model.

We used a Uniform prior within reasonable bounds for M ∈ [m,∞), c ∈ (0, 10),

p ∈ (1, 30), K ∈ (0, 1) and γ ∈ [0, 1], although more informative priors could be used if

desired. We used as a proposal distribution for the Metropolis-Hastings updates a Nor-

mal distribution with standard deviation of 0.1 for {c, p,K} and a Normal distribution

with reduced standar deviation to 0.02 for γ. The latter was required due to the large

influence of this parameter across the model fit. In its essence it controls the model fit

between using zero parameters and 3 + 2 × m parameters, where m is the number of

detected animals. As such, a very small deviation can cause an enormous change in the

value of the posterior distribution. The proposal for M , Σ and h· rely on the previously

outline approximate results.

Tuning the prior distribution for µ0 is essential to obtain reliable estimates of the

underlying branching structure. The introduced relationship in Section 5.5.2 can be

heavily influenced by either a single animal with large number of observations or multiple

animals which appeared only for a short period of time across the temporal detection

interval. For this reason, we could restrict the prior distribution in a relatively narrow

neighbourhood. We chose to set αµ0 = 0.1 and βµ0 = 2 across all models and all

datasets that we address in this Section. The prior parameters for d are set to αd = 2

and βd = 0.5.

5.6.2 Leopard data

We begin our study with the well-known Common Leopard (Panthera pardus) Dryad

data [Goldberg et al., 2015a, Goldberg et al., 2015b]. This specie is present from sub-

Saharan Africa to the Russian Far East. It also populates the islands of Sri Lanka and

Java [Bailey, 1993, Uphyrkina et al., 2001]. The common Leopard is exposed to many

treads similarly to other large carnivores. Many leopards were killed in Bhutan by

human-wildlife conflicts [Wang and Macdonald, 2006, Sangay and Vernes, 2008]. How-

ever, the knowledge of leopard populations is limited despite the numerous encounters
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with humans [Wang and Macdonald, 2009]. For all these reasons, the evaluation of the

overall leopard population in Bhutan is needed.

The data were gathered during winter 2010–2011 (17-November-2010 to 15-February-

2011) in Royal Manas National Park, Bhutan (26o47′31.27”N, 90o57′37.61”E) and it

contains 82 instances across 22 animals. 10 of the animals were captured only once, 2 of

them - twice, 3 of them - three times, 2 of them four times. The remaining five animals

have 5, 7, 8, 15 and 16 observations. Exact time at which the animal had passed through

the camera region is unknown since only the date of the capture is recorded. This limits

considerably the study since multiple detections of an animal in a single day could be

counted as a single occurrence [Foster and Harmsen, 2012].

The original study of these data [Goldberg et al., 2015b] made conclusions with

respect to the overall population within the whole park despite the limited number of

cameras and small study region. The park overall area is 1057km2 which increases

to 1551km2 by allowing a 10km buffer. The study region area is 162km2 and it was

estimated that a density of 10.0 animals/100km2 (95% credibility interval: 6.25–15.93)

despite the detection of 13.58 animals/100km2 in the study region during the observation

period.

The data temporal interval has an overall length of 91 days. The large number

of animals that were captured only once combined with large discrepancy between the

number of captures of the remaining animals and inaccurate temporal information affect

negatively the performance of the SECR ETAS model. In our study we transformed

the camera locations to be distributed with zero mean and unit variance in each dimen-

sion. The overall spatial distribution of the camera locations after the transformation

is illustrated on Figure 5.1. The study placed 29 camera, 25 from which captured an-

imals. The MCMC parameter density for the number of uncaused events, population

size and detection probability is shown on Figure 5.2. All other parameter densities are

shown on Figure 5.3. We obtained 55 immigrant events on average. This is a very small

number given that we observe data across 22 animals as the first observation from every

animals is considered an uncaused event. The SECR ETAS model estimated that we

most likely detect 34.5% of all animals, while the Poisson mixture model proposed a

detection probability of 55.9%. The population size MAP estimate was estimate to be

47 animals, with 95% credible interval of (35, 77), and 37 animals, with 95% credible

interval of (29, 53), with respect to the SECR ETAS and Poisson mixture respectively.
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Figure 5.1: Leopard dataset camera distribution. Unused cameras are those that did
not detect an animal during the study.

The differences between the two models is even more evident with respect to the

formal model diagnostics that are presented on Table 5.2. SECR ETAS provides superior

fit according to all them.

SECR ETAS Poisson Mixture

Log-likelihood -448.08 -489.66
Number of parameters 54 50
AIC 1004.17 1079.33
BIC 567.06 599.83
DIC 951.81 993.12

Table 5.1: Goodness-of-fit Summary for the leopard Dataset. Lower values of the AIC,
BIC and DIC indicate superior fit.

5.6.3 Tiger data

These data were based on the tiger (Panthera tigris) population within The Nagarahole

tiger Reserve of Karnataka, India (12o01′53.7”N, 76o07′08.6”E). The total area of the

reserve is 860km2 which increases to 1130km2 under a 10km wide buffer zone inclusion.
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Figure 5.2: MCMC parameters density for the number of uncaused (immigrant) events,
population size (M) and detection probability for the leopard dataset with respect to
the introduced models

The main application for these data so far was the illustration of the continuous time

SECR models [Dorazio and Karanth, 2017]. In their work was estimated expected tiger

density of 11.3 animals/100km2 with 95% credible interval of (9.1, 13.9). The survey

period was 45 days in winter 2014-2015 (26-November-14 to 13-January-15) and recorded

continuously animal movement. However, the data that we used approximates time to

the nearest minute. Individual animals were identified based on their unique stripe

patterns [Karanth, 1995]. The data comprises 355 observations across 127 cameras

with respect to 86 unique animals. However, the experiment has placed 162 cameras

in the area of interest. This clearly indicates that neither the cameras are covering

the entire area nor the tigers are uniformly exploring the target area of interest. The

camera locations were re-scaled to have zero mean and unit standard deviation in each

dimension. The obtained realisation is shown on Figure 5.4 where with black circles

are indicated the 127 cameras on which the animals were not captured while with red

squares are illustrated those that captured animals.

Similar to the previous dataset, the number of animals that were detected only once

comprises the large proportion of the data - 32 out of 86 animals. The number of animals

observed twice is 13; three times - 11; four times - 7; five and seven times - 4; eight,

nine, ten, twelve, thirteen and twenty times - 2; fifteen and twenty-three times - 1. This

catalogue should provide a better differentiation between the SECR ETAS model and

its alternatives due to the opportunity for development of branching structures for each

animal.
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Figure 5.3: MCMC parameters density for the leopard dataset with respect to the
introduced models. Parameters µ0 and γ are shared across the two discussed models
while c, p,K and d. The difference between µ0 is primarily influenced by the value of
K.
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Figure 5.4: Tiger dataset camera distribution. Unused cameras are those that did not
detect an animal during the study.

We converted the arrival times to hours which led us to obtain realisations with

upper bound of 1130.67. The Poisson mixture and SECR ETAS were fit to data based

on 10000 MCMC updates starting with the ML estimates. The MCMC parameter

density for the number of uncaused events, population size and detection probability

is shown on Figure 5.5. All other parameter densities are shown on Figure 5.6. The

behaviour of the latent variable MCMC method can be analysed with respect to the

number of uncaused events proposed by the branching simulation method through the

MCMC updates. The mean number of uncaused events is 168. The SECR ETAS model

suggests that we most likely detect 24.5% of all animals while the Poisson mixture model

approximates it to 43.4%. The total population MAP estimated is approximated to 342

animals, with 95% credible interval of (260, 471), and 199 animals, with 95% credible

interval of (168,235), with respect to the two models.

In order to comprehend the differentiation between the two models we have to in-

vestigate the formal model fit diagnostics that are presented on Table 5.2. SECR ETAS

provides superior fit according to all diagnostic tests despite the inclusion of only 4 addi-
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Figure 5.5: MCMC parameters density for the number of uncaused (immigrant) events,
population size (M) and detection probability for the tiger dataset with respect to the
introduced models

tional parameters. For the Poisson mixture we further evaluate γ, the three parameters

of the common, full covariance matrix Σ and the two parameters of the home-range cen-

tre h· for every unique animal. SECR ETAS further introduces 4 parameters - c, p,K

and d. Although the self-excitation component contributes with only a smaller number

of additional parameters to estimate, the data fit has considerably improved not only

the likelihood function but also the other metrics.

SECR ETAS Poisson Mixture

Log-likelihood -2952.25 -3003.93
Number of parameters 182 178
AIC 6268.49 6367.69
BIC 3486.61 3528.42
DIC 5960.55 6063.46

Table 5.2: Goodness-of-fit Summary for the tiger dataset. Lower values of the AIC, BIC
and DIC indicate superior fit.

5.7 Conclusion

In this Chapter, we introduced a novel multivariate ETAS model with discrete spatial

support that addresses animal movement. We further specified an alternative model

that simplify it to more conventional inhomogeneous Poisson processes. All goodness-

of-fit metrics indicate that SECR ETAS addresses both analysed datasets better than
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the alternative model. This further suggests that self-excitation phenomenon adds value

in modelling animal movement.

Currently, we examined a uniform prior distribution for the home-range centres.

A more involved approach will increase the insight with respect to the proportion of

animals that were detected. The introduced model is directly applicable in continuous

space set up in which we can track continuously animal movement across the region of

interest. This way, we could evaluate the specific trip characteristics such as frequency

and length of trips; habitat shape and spread; animal to animal influence. Such pattern

can be obtained if we are solely interested in whether an animal will appear in specific

areas that are fully covered by cameras. This will further change the actual spatial

observation of the animals to their exact location instead of being approximated to the

camera location. Additional alternatives of the offspring kernels can be analysed to fit

the data better.
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Chapter 6

Conclusion

This thesis studied in depth a specific class of point processes that provides a tractable

methodology for linking inter event influence. Our work began with critical analysis

of the literature associated with point processes; temporal/spatial analysis; estimation

and optimisation methods. Then we allocated specific research questions. Our prime

focus was on the ETAS model - a special form of the general Hawkes process that is pre-

dominantly used in seismology. Its inherent estimation difficulties placed an important

emphasis in our work on point processes mechanisms, estimation algorithms and infer-

ential results interpretation. However, all these issues left researching the ETAS model

in greater depth rather undesired by the general research community which provides

vast opportunities for fruitful research.

The novelty in our work consists of new structural forms of the general models,

innovative estimation algorithms and some new areas for their application. The work

in Chapter 3 was the most natural extension of the standard ETAS model, given the

earthquake arrival time Poisson assumption challenge in literature in the last 20 years.

Interestingly, the work on this project began prior to the discovery of the simplified

alternative of B-SR-ETAS, namely RHawkes [Wheatley et al., 2016]. However, their

work and the one of [Chen and Stindl, 2018] directly illustrated the crucial need of a

latent variable-based Bayesian inference. The F-SR-ETAS model outlined an additional

class of models that is still not illustrated in any other publicly available research article.

In that Chapter we used two simplistic distributions to illustrate the benefits of SR-

ETAS models over the standard ETAS. An interesting extension would be to substitute

the functional form of the density component fw(wt) as of Equation 3.3 that fits the
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waiting time distribution, with a non-parametric kernel. This can be achieved (e.g.) by

incorporating an univariate Dirichlet process over fw(wt).

After completing the first project we switched our focus to the most challenging

component of this thesis - proposing an interesting (and useful) spatial ETAS model

that can be scaled by the latent variable approach. Prior to the development of Chapter

4 the Branching-based MCMC algorithm was solely defined for the temporal ETAS

model [Ross, 2018a] and it was unclear what would be its direct application with respect

to spatial kernels. The natural choice that we had was to define either Dirichlet or

Gaussian process based density as part of our model. We decided to work with the

first one to enhance the overall computation time of our algorithms. Gaussian process

extension is an interesting comparison, however its application will not be feasible in a

large earthquake sequence. We discovered that DP is not as good as we expected. In

many cases KDE provided a superior performance. However, we also showed that in an

out-of-sample study on real catalogues DP is the better choice. A natural extension of

this project is to develop a library similar to the bayesianETAS R package [Ross, 2018a].

Further, this project can be combined with the previously defined SR-ETAS models for

the development of even more powerful family of models for quantification of marked,

spatio-temporal patterns.

The final project in this thesis outlines a novel application of the Hawkes process

in an ecological context (Chapter 5). The rational behind is naively intuitive - if an

animal is present in a specific time and space, then it is more likely to be spotted in the

area nearby unless it decides to go ’home’. In this setup ’home’ illustrates the uncaused

events in the sequence while all other observations are caused by the previously detected

animal location. We were challenged to incorporate the full Spatially explicit capture

recapture framework within a multivariate ETAS models. We showed that SECR-ETAS

model is indeed addressing better the paradigm of animal movement, compared with

its non self-excited alternative. An open question is whether such a pattern is present

across species. Further, a study with more granular data should outline the benefits of

SECR-ETAS.
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Figure A.1: Out-of-sample mean log-likelihood values for φ2(x, y) for Uniform (Black),
KDE (Red) and DP (Blue) based spatial ETAS model. The thick line indicates the
mean value, while the dashed lines - the 95% confidence interval for the log-likelihood.
Top: Log-likelihood averaged across all 30 out-of-sample periods for every 50th MCMC
sample. Bottom: Log-likelihood averaged across all 200 selected MCMC realisation
across the 30 obtained out-of-sample periods.
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