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Abstract

Causal treatment effect estimation is a key problem that arises in a variety of
real-world settings, from personalized medicine to governmental policy making.
There has been a flurry of recent work in machine learning on estimating causal
effects when one has access to an instrument. However, to achieve identifiability,
they in general require one-size-fits-all assumptions such as an additive error model
for the outcome. An alternative is partial identification, which provides bounds
on the causal effect. Little exists in terms of bounding methods that can deal with
the most general case, where the treatment itself can be continuous. Moreover,
bounding methods generally do not allow for a continuum of assumptions on
the shape of the causal effect that can smoothly trade off stronger background
knowledge for more informative bounds. In this work, we provide a method for
causal effect bounding in continuous distributions, leveraging recent advances
in gradient-based methods for the optimization of computationally intractable
objective functions. We demonstrate on a set of synthetic and real-world data
that our bounds capture the causal effect when additive methods fail, providing
a useful range of answers compatible with observation as opposed to relying on
unwarranted structural assumptions.1

1 Introduction

Machine learning is becoming more and more prevalent in applications that inform actions to be
taken in the physical world. To ensure robust and reliable performance, many settings require an
understanding of the causal effects an action will have before it is taken. Often, the only available
source of training data is observational, where the actions of interest were chosen by unknown criteria.
One of the major obstacles to trustworthy causal effect estimation with observational data is the
reliance on the strong, untestable assumption of no unobserved confounding. To avoid this, only in
very specific settings (e.g., front-door adjustment, linear/additive instrumental variable regression)
it is possible to allow for unobserved confounding and still identify the causal effect (Pearl, 2009).
Outside of these settings, one can only hope to meaningfully bound the causal effect (Manski, 2007).

In many applications, we have one or few treatment variables X and one outcome variable Y . Nearly
all existing approaches to obtain meaningful bounds on the causal effect ofX on Y impose constraints
on how observed variables are related, in order to mitigate the influence of unobserved confounders.
One of the most useful structural constraints is the existence of an observable instrumental variable
(IV): a variable Z, not caused by X , whose relationship with Y is entirely mediated by X , see Pearl
(2009) for a graphical characterization. The existence of an IV can be used to derive upper (lower)
bounds on causal effects of interest by maximizing (minimizing) those effects among all IV models
compatible with the observable distribution. In this work, we develop algorithms to compute these
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bounds on causal effects over “all” IV models compatible with the data in a general continuous
setting. Crucially, the space of “all” models cannot be arbitrary, but it can be made very flexible.
Instead of forcing a user to adopt a model space with hard constraints, we will allow for choice from
a continuum of model spaces. Our approach rewards background knowledge with tighter bounds
and it is not tied to an a priori inflexible choice, such as additivity or monotonicity. It avoids the
adoption of unwarranted structural assumptions under the premise that they are needed due to the lack
of ways of expressing more refined domain knowledge. The burden of the trade-off is put explicitly
on the practitioner, as opposed to embracing possibly crude approximations due to the limitations of
identification strategies.

Eliciting constraints that characterize “the models compatible with data” under a causal directed
acyclic graph (DAG) for discrete variables is an active field of study, with contributions from the
machine learning, algebraic statistics, economics, and quantum mechanics literature. This has
provided complete characterizations of equality (Evans, 2019; Tian & Pearl, 2002) and inequality
(Wolfe et al., 2019; Navascues & Wolfe, 2019) constraints. Enumerating all inequality constraints is
in general super-exponential in the number of observed variables, even for discrete causal models.
However, this line of work typically solves a harder problem than is strictly required for bounding
causal effects: they provide symbolic constraints obtained by eliminating all hidden variables. While
the pioneering work of Balke & Pearl (1994) in the discrete setting also provides symbolic constraints
via a super-exponential algorithm, it introduces constraints that match the observed marginals of
a latent variable model against the observable distribution. Thereby it provides a connection to
non-symbolic, stochastic approaches for evaluating integrals, which we develop in this work.

Our key observation is that we can leverage recent advances in efficient gradient and Monte Carlo-
based optimization of computationally intractable objective functions to bound the causal effect
directly. This can be done even in the setting where X is continuous, where none of the literature
described above applies. We do so by (a) parameterizing the space of causal responses to treatment
X such that we can incorporate further assumptions that lead to informative bounds; (b) using a
Monte Carlo approximation to the integral over the distribution of possible responses to X , where the
distribution itself must be parameterized carefully to incorporate the structural constraints of an IV
DAG model. This allows us to optimize over the domain-dependent set of all plausible models that
are consistent with observed data to find lower/upper bounds on the target causal effect.

In Section 2, we describe the general problem of using instrumental variables when treatment X is
continuous. Section 3 develops our representation of the causal model. In Section 4 we introduce a
class of algorithms for solving the bounding problem and our suggested implementation. Section 5
provides several demonstrations of the advantages of our method.

2 Current Approaches and Their Limitations

Balke & Pearl (1994) focused on partial identification (bounding) of causal effects on binary discrete
models. Angrist et al. (1996) studied identification of effects for a particular latent subclass of
individuals also in the binary case. Meanwhile, the econometrics literature has focused on problems
where the treatment X is continuous (Newey & Powell, 2003; Blundell et al., 2007; Angrist &
Pischke, 2008; Wooldridge, 2010; Darolles et al., 2011; Horowitz, 2011; Chen & Christensen, 2018;
Lewis & Syrgkanis, 2018). This problem has recently received attention in machine learning, using
techniques from deep learning (Hartford et al., 2017; Bennett et al., 2019) and kernel machines
(Singh et al., 2019; Muandet et al., 2020). This literature assumes that the structural equation for
Y has a special form, such as having an additive error term eY , as in Y = f(X) + eY . The error
term eY is not caused by X , but need not be independent of it, introducing unobserved confounding.
This assumption is also used in related contexts, such as in sensitivity analysis for counterfactual
estimands, see Kilbertus et al. (2019) for a specific application in fairness.

Using the notation of Pearl (2009), the expected response under an intervention on X at level x
is denoted by E[Y | do(x)], which in the model above boils down to f(x). An average treatment
effect (ATE) can be defined as a contrast of this expected response under two treatment levels, e.g.,
f(x) − f(x′). In the zero-mean additive error case, E[Y | z] =

∫
f(x)p(x | z) dx. Under some

regularity conditions, no function other than f(·) satisfies that integral equation. Since E[Y | z] and
p(x | z) can be both learned from data, this allows us to learn the ATE from observational data. This
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Figure 1: (a) An example of DAG compatible with Z being an instrument for X → Y , with hidden
confounder U . (b) An equivalent representation using response function indices for deterministic
functions X = gRX

(Z) and Y = fRY
(X), with two random indexing variables RX and RY . (c) For

the purposes of modeling E[Y | do(x)], it is enough to express the model in terms of R := RY only.

is how the vast majority of recent work identifies the causal treatment effect in the IV model (Hartford
et al., 2017; Bennett et al., 2019; Singh et al., 2019; Muandet et al., 2020).

The price paid for identification is that it seriously limits the applicability of these models. Diagnostic
tests for the additivity assumption are not possible, as residuals Y −f(X) can be arbitrarily associated
with X by assumption. On the other hand, without any restrictions on the structural equations, it is
not only impossible to identify the causal effect of the IV model with a continuous treatment, but even
bounds on the ATE are vacuous (Pearl, 1995; Bonet, 2001; Gunsilius, 2018, 2020). However, with
relatively weak assumptions on the space of allowed structural equations, it is possible to achieve
meaningful bounds on the causal effect (Gunsilius, 2020). It suffices that the equations for X and Y
have a finite number of discontinuities. Gunsilius provides a theoretical framework for representation
and estimation of bounds. Algorithmically, he proposes a truncated wavelet representation for the
causal response and builds convex combinations of a sample of response functions to optimize IV
bounds. Although it is an important proof of concept for the possibility of bounds for the general IV
case with a strong theoretical motivation, we found that the method has frequent stability issues that
are not easy to diagnose. We return to this in Appendix A.

Building on top of this work and some classical ideas first outlined by Balke & Pearl (1994), we
propose an alternative formulation for finding bounds when both X and Y are continuous. Our
technique flexibly parameterizes the causal response functions, while naturally encoding the structural
IV constraints for compatibility with the observed data. We then leverage an augmented Lagrangian
method that is tailored to non-convex optimization with inequality constraints. We demonstrate that
our method matches estimation results of prior work in the additive setting, and gives meaningful
bounds on the causal effect in general, non-additive models. Thereby, we follow a line of recent
successes in various domains achieved by replacing previous intractable symbolic-combinatorial
algorithms (Balke & Pearl, 1994; Wolfe et al., 2019; Drton et al., 2009) with a continuous program.
One of our key contributions is to formulate bounds on true causal effects as well as their compatibility
requirements as a smooth, constrained objective, for which we can leverage efficient gradient-based
optimization techniques with Monte Carlo approximations.

3 Problem Setting

Following Pearl’s Structural Causal Model (SCM) framework (Pearl, 2009), we assume the existence
of structural equations and a (possibly infinite dimensional) unobserved exogenous process U ,

X = g(Z,U) and Y = f(X,U). (1)

We illustrate this situation in Figure 1(a). It assumes the usual requirements for the instrument Z to
be satisfied, namely (a) Z ⊥⊥U , (b) Z 6⊥⊥X , and (c) Z ⊥⊥Y | {X,U}.

3.1 Goal

The goal is to compute lower/upper bounds on E[Y | do(x?)] for any desired intervention level x?.
Bounds on (conditional) ATEs can be derived, see also Appendix B. Intuitively, we put bounds on
how f(X,U) depends on X by optimizing over “allowed” distributions of U . Which distributions
are “allowed” is determined by observations, i.e., we only consider settings where marginalizing U
results in p(x, y | z) for all (x, y, z) in the support of the observational distribution. In fact, as pointed
out by Palmer et al. (2011), it is enough to consider matching the marginals of the latent variable
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model to the two conditional densities p(x | z) and p(y | z)2. Informally, among all possible structural
equations {g, f} and distributions over U that reproduce the estimated densities {p̂(x | z), p̂(y | z)},
we find estimates of the minimum and maximum expected outcomes under intervention.

Response functions. The main idea of Balke & Pearl (1994) is to express structural equations in
terms of response functions: labeling (and possibly clustering) states of U according to the implied
functional relationship between the observed variable and its direct causes. These U states are mapped
to a particular level of an index variable R. For instance, if Y = f(X,U) = λ1X + λ2XU1 + U2,
a two-dimensional U space in a linear, non-additive outcome function, we have that f(x, u) =
λ1x+ λ2x for u1 = 1, u2 = 0. We can define an implicit arbitrary value r such that fr(x) = λrx,
λr = λ1 + λ2, the value “r” being an alias for (1, 0) in the space of the confounders. The advantage
of this representation is that we can think of a distribution over R as a distribution over functions ofX
alone. Otherwise we would need to deal with interactions between U and X on top of a distribution
over U , itself of unclear dimensionality. In contrast, the dimensionality of R is the one implied by the
particular function space adopted. Gunsilius (2020) provides a more thorough discussion of the role of
response functions corresponding to a possibly infinite-dimensional U . Figure 1(b) shows a graphical
representation of a system parameterized by response function indices RX and RY , with a bi-directed
edge indicating possible association between the two. In what follows, as there will be no explicit need
for RX , the causal DAG corresponding to our counterfactual model is shown in Figure 1(c)3. This
itself departs from Balke & Pearl (1994) and Gunsilius (2020), having the advantage of simplifying
the optimization and not assuming counterfactuals for X (which will not exist if Z is not a cause
of X but just confounded with it). Furthermore, focusing on {p(x | z), p(y | z)} instead of p(x, y | z)
does not require simultaneous measurements of X and Y (Palmer et al., 2011), see Appendix G for
the latter. Within this framework, we can rewrite the optimization over allowed distributions of U
into an optimization over allowed distributions of response functions for Y .

Without restrictions on the function space, non-trivial inference is impossible (Pearl, 1995; Bonet,
2001; Gunsilius, 2018). In our proposed class of solutions, we will adopt a parametric response
function space: each response type r corresponds to some parameter value θr ∈ Θ ⊂ RK for some
finite K. We write fr(x) := fθr (x). Going forward, we will simply use θ to denote a specific
response type and drop the index r. While our method works for any differentiable fθ, we will focus
on linear combinations of a set of basis functions {ψk : R→ R}k∈[K]

4 with coefficients θ ∈ Θ:

fθ(x) :=

K∑
k=1

θk ψk(x). (2)

We propose to optimize over distributions pM(θ) of the response function parameters θ in the un-
known causal modelM, subject to the observed marginal of the model,

∫
pM(x, y | z, θ)pM(θ) dθ,

matching the corresponding (estimated) marginals p(y | z) and p(x | z). Notice that θ⊥⊥Z is implied
by Z ⊥⊥U in the original formulation in terms of exogenous variables U . We assume a parametric
form for pM(θ) via parameters η ∈ Rd, denoted by pη(θ). We propose to use function families for
pη(θ) that allow for practically low-variance Monte-Carlo gradient estimation via the reparameteriza-
tion trick (Kingma & Welling, 2014) to learn η — more in Section 3.2.

Objective. An upper bound for the expected outcome under intervention can be directly written as

max
η

E[Y | do(x?)] = max
η

∫
fθ(x

?) pη(θ) dθ. (3)

A lower bound can be found analogously by the minimization problem. When optimizing eq. (3)
constrained by p(y | z) and p(x | z) in the sequel, it will be necessary to define pη(x, θ | z).5 In
particular,

∫
pη(x, θ | z) dx = pη(θ | z) = pη(θ). The last equality will be enforced in the encoding

of pη(x, θ | z), as we need Z ⊥⊥ θ even if Z 6⊥⊥ θ |X . This encoding is introduced in Section 3.2,
which will also allow us to easily match the marginal p(x | z). In Section 3.3, we construct constraints
for the optimization so that the marginal of Y given Z inM matches the model-free p(y | z).

2In Appendix G, we discuss the case where we match p(y |x, z), which can further tighten bounds with
some computational advantages and disadvantages compared to p(y | z).

3It is also possible to represent only RX and drop RY . Zhang & Bareinboim (2020) do this in a way that
provides a new view of the discrete treatment case.

4We use the notation [K] := {1, . . . ,K} for K ∈ N>0.
5We abuse notation slightly by expanding the definition of η to simultaneously signify all parameters

specifying this joint distribution, as well as individual parameters specific to certain factors of the joint.
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3.2 Matching p(x | z) and Enforcing Z ⊥⊥U

Instead of formulating the criterion of preserving the observed marginal p(x | z) as a constraint in the
optimization problem, we bake it directly into our model.6 To accomplish that, we factor pη(x, θ | z)
as p(x | z) pη(θ |x, z). The first factor is identified from the observed data and we can thus force our
model to match it. The second factor must be constructed so as to enforce marginal independence
between θ and Z (as required by Z ⊥⊥U ). We achieve that by parameterizing it by a copula density
cη(·) that takes univariate CDFs F (·), which uniquely define the distributions, as inputs,

pη(θ |x, z) := cη(F (x | z), Fη(θ1), . . . , Fη(θK))

K∏
k=1

pη(θk). (4)

Here we assume that each component θk of θ has a Gaussian marginal density with mean µk and
variance σ2

k, i.e., pη(θk) = N (θk;µk, σ
2
k). Moreover, assuming cη is a multivariate Gaussian copula

density requires a correlation matrix S ∈ R(K+1)×(K+1) for which we only keep a Cholesky factor
L without further constraints, rescaling LTL to have a diagonal of 1s. Our full set of parameters is

η := {µ1, ln(σ2
1), . . . , µK , ln(σ2

K), L} ∈ RK(K+1)/2+2K .

3.3 Matching p(y | z)

In the continuous output case, our parameterization implies the following set of integral equations

Pr(Y ≤ y |Z = z) =

∫
1(fθ(x) ≤ y) pη(x, θ | z) dx dθ, (5)

for all y ∈ Y, z ∈ Z , the respective sample spaces of Y and Z, where 1(·) is the indicator function.
These constraints immediately introduce two difficulties. First, we have an infinite number of
constraints to satisfy. Second, the right-hand side involves integrating non-continuous indicator
functions, which poses a problem for smooth gradient-based optimization with respect to η.7

To circumvent these issues, we first choose a finite grid {z(m)}Mm=1 ⊂ Z of size M ∈ N, instead of
conditioning on all values in Z . We compute z(m) from a uniform grid on the CDF FZ of Z, i.e.,
z(m) := F−1

Z (m/M+1) for m ∈ [M ]. Second, to avoid the integration of non-continuous indicator
functions, we can express the constraints of eq. (5) in terms of expectations over a dictionary of L
basis functions {φl}Ll=1. This leads to the following constraints for p(y | z):

E[φl(Y ) | z(m)] =

∫
φl(fθ(x)) pη(x, θ | z(m)) dx dθ for all l ∈ [L],m ∈ [M ]. (6)

This idea borrows from mean embeddings, where one can reconstruct p(y | z) from an infinite
dictionary sampled at infinitely many points in Z (Singh et al., 2019). In this work, we choose
an even simpler approach and only constrain moments like mean and variance φ1(Y ) := E[Y ],
φ2(Y ) := V[Y ], . . . . Crucially, we note that our approximations can only relax the constraints, i.e.,
the optima may result in looser bounds compared to the full constraint set, but not invalid bounds,
barring bad local optima as well as Monte Carlo and estimation errors.

4 Optimization Strategy

Here we state our final non-convex, yet smooth, constrained optimization problem:

objective: ox?(η) :=

∫
fθ(x

?) pη(θ) dθ

constraint LHS: LHSm,l := E[φl(Y ) | z(m)]

constraint RHS: RHSm,l(η) :=

∫
φl(fθ(x)) pη(x, θ | z(m)) dx dθ

opt. problem: min
η
/max

η
ox?(η) s.t. LHSm,l = RHSm,l(η) for all m ∈ [M ], l ∈ [L]

Here, min and max give the lower and upper bound respectively. In this section we describe how to
tackle the optimization with an augmented Lagrangian strategy (Nocedal & Wright, 2006) and how to
estimate all quantities from observed data. Algorithm 1 in Appendix D describes the full procedure.

6A full discussion on the construction and implications of such assumptions is given in Appendix B.
7We discuss discrete outcomes or discrete features, which could also lead to discontinuous fθ in Appendix C.
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4.1 Augmented Lagrangian Strategy

We can think of the left-hand side LHS as target values, estimated once up front from observed
data. The right-hand side RHS is estimated repeatedly using samples from our model pη(x, θ | z(m))
during optimization. For notational simplicity, we will often “flatten” the indices m and l into a
single index l ∈ [M · L]. Since LHS is subject to misspecification and estimation error, we introduce
positive tolerance variables b ∈ RM ·L>0 , relaxing equality constraints into inequality constraints

cl(η) := bl − |LHSl − RHSl(η)| ≥ 0, with bl := max{εabs, εrel · |LHSl|},
for fixed absolute and relative tolerances εabs, εrel > 0. The constraint cl(η) is satisfied if RHSl(η)
is either within a fraction εrel of LHSl or within εabs of LHSl in absolute difference. The absolute
tolerance is useful when LHS is close to zero. The exact constraints are recovered as εabs, εrel → 0.
Again, the introduced tolerance can only make the obtained bounds looser, not invalid.

We consider an inequality-constrained version of the augmented Lagrangian approach with Lagrange
multipliers λ ∈ RM ·L (detailed in Section 17.4 of Nocedal & Wright (2006)). Specifically, the
Lagrangian we aim to minimize with respect to η is:

L(η, λ, τ) := ±ox?(η) +
M ·L∑
l=1

{
−λlcl(η) + τcl(η)2

2 if τcl(η) ≤ λl,
−λ

2
l

2τ otherwise,
(7)

where +/− is used for the lower/upper bound and τ is a temperature parameter, which is increased
throughout the optimization procedure. Given an approximate minimum η of this subproblem, we
then update λ and τ according to λl ← max{0, λl − τcl(η)} and τ ← α · τ for all l ∈ [M ·L] and a
fixed α > 1. The overall strategy is to iterate between minimizing eq. (7) and updating λl and τ .

4.2 Empirical Estimation and Implementation Choices

For a dataset D = {(zi, xi, yi)}Ni=1 ⊂ R3, we describe our method in Algorithm 1 in Appendix D.

Pre-processing. As a first step, we whiten the data (subtract mean, divide by variance). Then, we in-
terpolate the CDF F̂Z of {zi}Ni=1 to compute the grid points z(m). Next, we assign each observation to
a grid point via bin(i) := max{arg minm∈[M ] |zi−z(m)|} for i ∈ [N ], i.e., each datapoint is assigned
to the gridpoint that is closest to its z-value (higher bin for ties). Given M,L and φl, we can estimate
LHSm,l from data via LHSm,l := E[φl(Y ) | z(m)] ≈ 1

|bin−1(m)|
∑
i∈bin−1(m) φl(yi), which remain

unchanged throughout the optimization. This allows us to fix the tolerances b = max{εabs, εrel LHS}.
Finally, we obtain a single batch of examples from X | z(m) of size B ∈ N, which we will
also reuse throughout the optimization via inverse CDF sampling x̂(m)

j = F̂−1
X | z(m)(j−1/B−1) for

j ∈ [B],m ∈ [M ]. Here, F̂X | z(m) is the CDF of {xi}i∈bin−1(m).

Monte Carlo estimation. To minimize the Lagrangian, we use stochastic gradient descent (SGD).
Therefore, we need to compute (estimates for)∇η ox?(η),∇η cl(η), where the latter boils down to
∇η RHSm,l(η). In practice, we compute Monte Carlo estimates of ox?(η) and RHSm,l(η) and use
automatic differentiation, e.g., using JAX (Bradbury et al., 2018), to get the gradients. If we had a
batch of independent samples θ(j) ∼ pη(θ) of size B, we could estimate the objective eq. (3) for a
given η via E[Y | do(x?)] ≈ 1

B

∑B
j=1 fθ(j)(x

?). Similarly, with i.i.d. samples θ(j) ∼ pη(θ | z(m)) we

can estimate RHSm,l in eq. (6) as RHSm,l(η) ≈ 1
B

∑B
j=1 φl

(
fθ(j)(x̂

(m)
j )

)
. Hence, the last missing

piece is to sample from eq. (4) in a fashion that maintains differentiability w.r.t. η. We follow the
standard procedure to sample from a Gaussian copula for the parameters θ(j), with the additional
restriction to preserve the pre-computed sample x̂. Algorithm 2 in Appendix D describes the sampling
process from pη(θ,X | z(m)) as defined in Section 3.2 in detail. The output is a (K + 1)×B-matrix,
where the first row contains B independent X-samples and the remaining K rows are the components
of θ ∈ RK . We pool samples from all z(m) to obtain samples from pη(θ). By change of variables,
the parameters η = (µ, σ2, L) enter in a differentiable fashion (c.f. reparameterization trick (Kingma
& Welling, 2014)). We initialize η randomly, described in detail in Appendix D.4.

Response functions. For the family of response functions we first consider polynomials, i.e.,
ψk(x) = xk−1 for k ∈ [K]. We will specifically focus on linear (K = 2), quadratic (K = 3), and
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cubic (K = 4) response functions. Second, we consider neural basis functions (MLP), where we fit a
multi-layer perceptron with K neurons in the last hidden layer to the observed data {(xi, yi)}i∈N
and take ψk(x) to be the activation of the k-th neuron in the last hidden layer. We describe the details
as well as an additional choice based on Gaussian process basis functions in Appendix E.

The choice of polynomials is mainly done here to illustrate a type of sensitivity analysis: we will
contrast how bounds change when moving from a linear to quadratic, then quadratic to cubic and
learned MLP representations. Recall that finite linear combinations of basis functions can arbitrarily
approximate infinite-dimensional function spaces. The practitioner should be free to choose its
complexity and pay its price by getting less informative bounds. For instance, we can add as many
knot positions for a regression splines procedure as we want to get arbitrarily close to nonparametric
function spaces. There is no concern for overfitting, given that data plays a role only via the estimation
of p(x, y | z) or of particular black-box expectations (Appendix G). We emphasize that having a
class of algorithms that allows for controlling the complexity of the function space is an asset, not
a liability. Knowledge of functional constraints is useful even in a non-causal setting (Gupta et al.,
2020). The linear basis formulation can be as flexible as needed, while allowing for shape and
smoothness assumptions that are more expressive than all-or-nothing assumptions about, say, missing
edges or additivity. In Appendix F, we discuss an alternative based on discretization of X combined
with the off-the-shelf use of Balke & Pearl (1994). We demonstrate how in several ways that is just a
less flexible family of response functions than the approach discussed here, although see Appendix B
for a discussion on making pη(θ |x, z) also more flexible than the implementation discussed here.

5 Experimental Results

We evaluate our method on a variety of synthetic and real datasets. In all experiments, we report the
results of two stage least squares (2SLS ) and kernel instrumental variable regression (KIV )
(Singh et al., 2019). Note that both methods assume additive noise and provide point estimates for
expected outcomes under a given treatment. The KIV implementation by Singh et al. (2019) comes as
an off-the-shelf method with internal heuristics for tuning hyperparameters. For our method, we show
lower ( ) and upper ( ) bounds computed individually for multiple values of x? ∈ R. The
transparency of these lines indicates the tolerances εabs, εrel, where more transparency corresponds
to larger tolerances. Missing bounds at an x? indicate that the constraints could not be satisfied in the
optimization. In the synthetic settings, we also show the true causal effect E[Y | do(X=x?)] ( ).

Finally, we highlight that there are multiple possible causal effects compatible with the data (which
our method aims to bound). To do so, we fit a latent variable model of the form shown in Figure 1(a)
to the data, with U |Z,X, Y ∼ N (µ(Z,X, Y ), σ2(Z,X, Y )) where µ, σ2 as well as E[X |Z,U ] are
parameterized by neural networks. We ensure that the form of E[Y |X,U ] matches our assumptions
on the function form of the response family (i.e., either polynomials of fixed degree in X , or neural
networks). We then optimize the evidence lower bound following standard techniques (Kingma
& Welling, 2014), see Appendix H. We fit multiple models with different random initializations
and compute the implied causal effect of X on Y for each one, shown as multiple thin gray lines
( ). We report results for additional datasets as well as how our method performs in the small data
regime in Appendix I. All experiments use a single set of hyperparameters, which we describe in
Appendix I.1.

Linear Gaussian case. First, we test our method in a synthetic linear Gaussian scenario, where
instrument, confounder, and noises Z,C, eX , eY are independent standard Gaussian variables. We
consider two settings of the form X = g(Z,C, eX) := αZ + β C + eX and Y = f(X,C, eY ) :=
X − 6C + eY , with α, β ∈ {(0.5, 3), (3, 0.5)}. The two settings of coefficients α, β describe a weak
instrument with strong confounding and a strong instrument with weak confounding respectively.
The first two rows of Figure 2 show our bounds in these settings for linear, quadratic and MLP
response functions. Because these scenarios satisfy all theoretical assumptions of 2SLS and KIV,
2SLS ( ) reliably recovers the true causal effect, which is simply E[Y | do(X = x?)] = x?. For a
weak instrument, KIV ( ) fails by reverting to its prior mean 0 everywhere, whereas it matches the
true effect in data rich regions in the second setting with weak confounding.8

We observe that the true causal effect ( ) is always within our bounds ( , ). Moreover, our
bounds also contain most of the “other possible models” that could explain the data ( ), showing

8We provide more details on this failure mode of KIV in Appendix J.

7



−3 −2 −1 0 1 2 3
X

−3

−2

−1

0

1

2

3

4

Y

possible models E[Y |do(X = x?)] 2SLS KIV lower bound upper bound data

linear response quadratic response MLP response
linear Gaussian setting with weak instrument and strong confounding (α=0.5, β=3)

−3 −2 −1 0 1 2 3
X

−3

−2

−1

0

1

2

3

4

Y

−3 −2 −1 0 1 2 3
X

−3

−2

−1

0

1

2

3

4

Y

−3 −2 −1 0 1 2 3
X

−3

−2

−1

0

1

2

3

4

Y

linear Gaussian setting with strong instrument and weak confounding (α=3, β=0.5)

−4 −3 −2 −1 0 1 2 3 4
X

−3

−2

−1

0

1

2

3

Y

−4 −3 −2 −1 0 1 2 3 4
X

−3

−2

−1

0

1

2

3

Y

−4 −3 −2 −1 0 1 2 3 4
X

−3

−2

−1

0

1

2

3

Y

non-additive, non-linear setting with weak instrument and strong confounding (α=0.5, β=3)

−3 −2 −1 0 1 2 3
X

−6

−4

−2

0

2

Y

−3 −2 −1 0 1 2 3
X

−6

−4

−2

0

2

Y

−3 −2 −1 0 1 2 3
X

−6

−4

−2

0

2

Y
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Figure 2: Results for synthetic datasets (linear Gaussian and non-linear, non-additive) for a weak and
strong instrument respectively. Columns correspond to different response function families.

that they are highly informative, without being more confident than warranted. As expected, our
bounds get looser as we increase the flexibility of the response functions (linear, quadratic, MLP
from columns 1-3). In particular, allowing for flexible MLP responses (column 3), our bounds are
rightfully loose for strong confounding. As confounding weakens and the instrument strengthens (in
the second row) the gap between our bounds gets narrower.

Non-additive, non-linear case. Our next synthetic setting is non-linear and violates the additivity
assumption. Again, the treatment is given by X = αZ + β C + eX with the same set of coefficients
α, β as for the linear setting. The outcome is non-linear and non-additive Y = 0.3X2−1.5X C+eY
with a true effect of E[Y | do(X = x?)] = 0.3 (x?)2. The bottom two rows of Figure 2 show our
results for this setting. Since additivity is violated (due to the X C-term) and the effect is non-linear,
2SLS fails. Without additivity, KIV also fails for strong confounding, but captures the true effect well
in data rich regions when the instrument is strong and confounding is weak. The strongly confounded
case (row 3) highlights the effect of the choice of response functions. Wrongly assuming linear
response functions, our bounds rule out the true effect (row 3, column 3). However, they capture
the implied causal effects from possible compatible linear models. As we allow for more flexible
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Figure 3: Results on the expenditure dataset for different response function families.

response functions capable of describing the true effect, our bounds are extremely conservative
(row 3, columns 2 & 3) as they should be, indicated by the effects from other compatible models.
In the strong instrument, weak confounding case (row 4), our bounds become narrower to the point
of essentially identifying the true effect for adequate response functions (column 2). Here, linear
response functions cannot explain the data anymore, indicated by missing bounds (row 4, column 1).

Expenditure data. We now turn to a real dataset from a 1995/96 survey on family expenditure
in the UK (Office for National Statistics, 2000). This dataset has been used by Gunsilius (2020)
and previously (Blundell et al., 2007; Imbens & Newey, 2009) for 1994/95 data. The outcome of
interest is the share of expenditure on food. The treatment is the log of the total expenditure and the
instrument is gross earnings of the head of the household. All three variables are continuous, relations
cannot be expected to be linear, and we cannot exclude unobserved confounding (Gunsilius, 2020),
making this a good test case for our method. We describe the data in more detail in Appendix I.3.
Figure 3 shows that our bounds provide useful information about both the sign and magnitude of the
causal effect and gracefully capture the increasing uncertainty as we allow for more flexible response
functions. Moreover, they include most of the possible effects from latent variable models indicating
that they are not overly restrictive. The few curves that escaped our bounds correspond to situations
where the latent variable model fit was suboptimal in terms of local likelihood and hence may be an
artifact of the latent variable model training procedure.

6 Conclusion

We have proposed a class of algorithms for computing bounds on causal effects by exploiting modern
optimization machinery. While this addresses an important source of uncertainty in causal inference —
partial identifiability as opposed to full identifiability — there is also statistical uncertainty: confidence
or credible intervals for the bounds themselves (Imbens & Manski, 2004). Clearly this is an important
matter to be addressed in future work, and the black-box approach of Silva & Evans (2016) provides
some directions for credible intervals. There are also considerations about the parameterization of
pη(θ |x, z) and how possible pre-treatment covariates can be non-trivially used in the model. We
defer these considerations to Appendix B. Alternative parameterizations of the IV model, such as
the one by Zhang & Bareinboim (2020) can lead to alternative algorithms and ways of expressing
assumptions.

One could also use the same ideas to test whether an IV model is valid, one of the original motivations
for deriving the implied constraints of latent variable causal models (e.g., Wolfe et al., 2019). In all
that followed, we assumed that the model was correct. Model falsification can still be done, which
will happen when the optimization fails to find a solution (Silva & Evans, 2016), and observed in
some of the experiments reported. Further formalizing and specializing methods for testing models
instead of deriving bounds is an interesting direction for future work.

Finally, we foresee our ideas as ways of liberating causal modeling to accommodate “softer,” more
general constraints than conditional independence statements. For instance, as described by Silva
& Evans (2016), there is no need to assume any sparsity in a causal DAG, as long as we know that
some edges are “weak” (in a technical sense) so that, e.g., edge Z → Y is allowed, but its influence
on Y is not arbitrary. How to do that in a computationally feasible way remains a challenge, but the
possibility of complementing causal inference based on sparse DAGs, such as the do-calculus of
Pearl (2009), with the sledgehammer of modern continuous optimization, is an attractive prospect.
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Broader Impact

Cause effect estimation is crucial in many areas where data-driven decisions may be desirable such
as healthcare, governance or economics. These settings commonly share the characteristic that
experimentation with randomized actions is unethical, infeasible or simply impossible. One of the
promises of causal inference is to provide useful insights into the consequences of hypothetical
actions based on observational data. However, causal inference is inherently based on assumptions,
which are often untestable. Even a slight violation of the assumptions may lead to drastically different
conclusions, potentially changing the desired course of action. Especially in high-stakes scenarios, it
is thus indispensable to thoroughly challenge these assumptions.

This work offers a technique to formalize such a challenge of standard assumptions in continuous
IV models. It can thus help inform highly-influential decisions. One important characteristic of our
method is that while it can provide informative bounds under certain assumptions on the functional
form of effects, the bounds will widen as less prior information supporting such assumptions is
available. We can view this as a way of deferring judgment until stricter assumptions have been
assessed and verified.

Since our algorithms are causal inference methods, they requires assumptions too. Therefore, our
method also requires a careful assessment of these assumptions by domain-experts and practitioners.
In addition, as we are optimizing a non-convex problem with local methods, we have no theoretical
guarantee of correctness of our bounds. Hence, if wrong assumptions for our model are accepted
prematurely, or our optimization strategy fails to find global optima, our method may wrongly inform
decisions. If these are high-stakes decisions, then wrong decisions can have significant negative
consequences (e.g., a decision not to treat a patient that should be treated). If the data that this model
is trained on is biased against certain groups (e.g., different sexes, races, genders) this model will
replicate those biases. We believe a fruitful approach towards making our model more sensitive to
uncertainties due to structurally-biased, unrepresentative data, is to learn how to derive, then inflate
(to account for bias) uncertainty estimates for our bounds.
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A Gunsilius’s Algorithm

Gunsilius (2020) provides a theoretical framework for minimal conditions for a continuous IV model
to imply non-trivial bounds (that is, bounds tighter that what can be obtained by just assuming that
the density function p(x, y | z) exists). That work also introduces two variations of an algorithm for
fitting bounds.

The basic version consists of first sampling l response functions fRx
(·) and fRy

(·) from a distribution
over functions – in the experiments described, a Gaussian process evaluated on a grid in the respective
spaces. The final distribution is reweighted combination of the pre-sampled l response functions
with weights µ playing the role of the decision variables to be optimized. Hence, by construction,
the space of distributions in the response function space is absolutely continuous with respect to
the pre-defined Gaussian process. The constraints are defined by approximating an estimate of the
bivariate CDF F (x, y | z) on a grid of values, which are approximately constrained to match the
model implied CDF in a L2 sense. Large deviance bounds are then used to show the (intuitive) result
that this approximation is a probably approximately correct formulation of the original optimization
problem.

One issue with this algorithm is that l may be required to be large as it is a non-adaptive Monte Carlo
approximation in a high dimensional space. A variant is described where, every time a solution for µ
is found, response function samples with low corresponding values of µ are replaced (again, from
the given and non-adaptive Gaussian process). Although this now has the advantage of adapting the
Monte Carlo samples to the problem, this has convergence problems that may be severe and not easy
to diagnose.

In contrast, we formulate our adaptation of η as a continuous optimization problem with an estimate
of the gradient that has empirically reasonable stability, as expected from the related work in the
machine learning literature for gradient estimation. We also parameterize the distribution so that
the only constraint that we need to enforce concerns the univariate density p(y | z) (or p(y |x, z), in
the variation discussed in Appendix G, which in principle requires no density estimation). Like the
algorithm given by Gunsilius, the space of functions is a linear combination of a fixed dictionary of
basis functions with a Gaussian distribution on the parameters, although we do not make use of the
discrete mixture reweighting on the Monte Carlo samples, which introduces instability in (Gunsilius,
2020) despite its good theoretical properties. Our formulation, like the one in (Gunsilius, 2020), can
in principle make use of more a flexible distribution such as a mixture of Gaussian copulas at the cost
of more computation, as discussed in Appendix B. An important piece of future work is to thoroughly
assess how stable a mixture of Gaussians version our algorithm is in practice.

The proposed implementation of Gunsilius’ algorithm computes FY | do(x?
0)(y

?) − FY | do(x?
1)(y

?),
i.e., the difference in effects at two different treatment levels x?0 and x?1 for individuals within a fixed
quantile y? ∈ [0, 1] of the outcome variable. For example, in the expenditure dataset (see Section I.3),
the setting x?0 = 0.75, x?1 = 0.25, y? = 0.25 would look at how much people, who spend a lot
overall (x? = 0.75) and spend comparably little on food (up to 25%), would spend on food relatively
to overall expenditure, if they spent much less overall (x?1 = 0.25). The main tuning parameter in
the proposed algorithm is the penalization parameter λ, which corresponds to the tightness of the
constraint. In the proposed implementation, this parameter is fixed throughout the optimization and
must be chosen manually. In Figure 4, we show the results of Gunsilius’s algorithm for three different
levels of y? on the expenditure dataset. Small values of λ result in uninformatively loose bounds
and do not always seem to converge (e.g., for y? = 0.75). As we increase λ, which corresponds
to stronger enforcement of the constraint, the bounds get narrower. However, even after a long
burn-in period, we still encounter substantial “instantaneous jumps” as well as longer-term drifts in
the bounds, which may change the qualitative conclusions (for example in the y? = 0.75 setting).
Note that this algorithm works on the empirical CDFs of all variables, i.e., they are all scaled to lie
within [0, 1].

Moreover, even after laboriously improving the performance of the algorithm using acceleration
via JAX (Bradbury et al., 2018) and parallelized solving of the quadratic programs with CVXPY
(Diamond & Boyd, 2016), producing an upper and lower bound for a single setting of x?0, x

?
1, y

?, λ
with Gunsilius’s algorithm took longer (about 30 minutes on a quad-core Intel Core i7) than a full
set of upper and lower bounds at 15 different x? values with our algorithm (about 20 minutes on the
same hardware).
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Figure 4: We show results of Gunsilius’s algorithm for 3 different settings of y? ∈ {0.25, 0.5, 0.75}.

B The Shape of pη(θ |x, z) and Conditional Effects

It is not difficult to show that our parameterization of pη(θ |x, z) enforces θ⊥⊥Z while allowing
for θ 6⊥⊥Z |X , as suggested by Figure 1(c). It follows directly by factoring a conditional density in
terms of a copula density c(·) and the required univariate marginals. That is, for some (V1, V2, V3)
for which we want to define a conditional pdf p(v2 | v1, v3), we have

p(v1, v2 | v3) := c(F (v1 | v3), F (v2 | v3)) p(v1 | v3)p(v2 | v3) ⇒
p(v2 | v1, v3) = c(F (v1 | v3), F (v2 | v3)) p(v2 | v3).

Since
∫
p(v1, v2 | v3) dv1 = p(v2 | v3), a necessary and sufficient condition for V2⊥⊥V3 is choosing

a model marginal such that p(v2 | v3) = p(v2). If c(F (v1 | v3), F (v2)) cannot be factored in terms of
some product h1(v1, v3)h2(v1, v2), which is typically the case, then V2 6⊥⊥V3 |V1.

The main apparent limitation of our pη(θk) (and the related copula) is its reliance on a parametric
form. There is a complex relationship between the shape of the response function space and the
distribution implied on that space by the unknown modelM. For Y = f(X,U), it is always possible
to assume without loss of generality that U is a set of variables which are marginally standard
Gaussians: just let the transformation U ′i := Φ−1(Fi(Ui))) be absorbed into f(·), where Fi(·) is
the marginal CDF of Ui and Φ(·) is the CDF of a standard Gaussian. Moreover, assuming that any
dependence among elements of U can be explained by direct causation among them or by other latent
parents, we can also assume all members of U are independent.

However, we do not want to assume a one-to-one correspondence between elements of θ and elements
of U : that is the whole point of using response functions. Even independent standard Gaussian
Us would not translate to marginally Gaussian θ. As an example, suppose Y = U2

1X + λU2. All
response functions can be written in the form fθ(x) := θ1x + θ2, where θ1 = U2

1 and θ2 = λU2.
Hence, θ1 follows a chi-squared distribution and θ2 a zero-mean, but not standard, Gaussian. If
Y = U1X

2 + λU1U2, then on top of that θ1 and θ2 are not independent.

The solution is conceptually not complicated: just let pη(·) be as flexible as desired. For instance,
let the copula be a finite or Dirichlet process mixture of Gaussian copulas, also defining flexible
models for the marginals. The IV conditional independence structure among Z,X, θ is still preserved.
The practical issue of course is the optimization. The algorithm of Gunsilius (2020) itself tries to
approach the problem by learning the reweighting of a Monte Carlo approximation to a fixed base
measure. That alone is already very computationally demanding and has convergence problems.

We set a parametric form for pη(·) for reasons beyond a compromise between flexibility and com-
putational tractability. Adopting a nonparametric model for the causal model, such as a Dirichlet
process, seems pointless because: i. we do not perform statistical inference directly in the causal
model, but only via black-box estimators of (features of) p(x, y | z), which can be nonparametric;
ii. if we were to follow the route of performing statistical inference by directly fitting the causal
model, the corresponding estimator would have a finite representation with dimensionality given
by the data. A practical resource, sample size, limits the representational size of the estimator. The
role of nonparametrics is to provide a type of adaptive regularization, and to provide theory about
limits of parametric estimators as done by Gunsilius (2020). The latter has clear value in itself but it
does not demand nonparametric models to be actually implemented, while the former is out of our
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scope: in our case, no regularization is needed for the causal model as we do not fit data based on it.
Instead, our practical resource is the computational budget: if we want to not use domain knowledge
to perform the causal analysis, we simply choose the size of η based directly on the main bottleneck,
the amount of computation available. Hence, by the time-data bounded nature of computational and
statistical inference, we lose nothing by adopting a finite representation for both η and θ.

The practitioner should be invited to sample from the implied function space to visualize whether the
distribution of sample paths has a desired level of variability. Getting the “exact” shape of the true
distribution is however nowhere as important as just having enough variability to avoid overconfident
bounds. How to achieve “enough variability” without aiming at a completely flexible distribution of
θ may be a compromise between computational costs and domain-dependent judgment. However, in
principle, the finite mixture of Gaussians approach can be done with the reparameterization trick. The
relation to Gunsilius algorithm is that our “base measure” is smoothly adaptive, leading to possibly
more stable behaviour in practice. The price to be paid is that each iteration in our method would be
substantially more expensive than the efficient mixture component weighting optimization done at
each iteration of Gunsilius’ method, if we were to optimize the mixture component parameters to
completion while fixing the samples. However, we do joint partial optimization by gradient-informed
small steps, taken at each sampling stage. This is one of the main distinctive features of our class of
algorithms compared to the resample/optimize alternating procedure of Gunsilius (2020).

To summarize, the Gaussian case, discussed in the main text, should be seen as a useful illustration,
not as a one-size-fits-all solution. Any copula for which the reparameterization trick can be used can
be automatically plugged into any instance of our class of algorithms.

Another important aspect brought by a parameterization of pη(·) is in case we have pre-treatment
covariates W to either reduce confounding, remove (direct) dependence between Z and U or Z and
Y , or just to answer questions related to conditional expected outcomes e.g. E[Y | do(x), w] and
conditional average causal effects (CATE), E[Y | do(x), w]− E[Y | do(x′), w]. Although a response
function can straightforwardly depend on a vector of treatment variables, this makes less sense if
variables W are not direct causes of Y . And even if elements of W are direct causes, we may want to
treat them analogously to U : playing a role in the response function only via the distribution of θ,
instead of being explicitly in the scope of such functions.

Modeling CATE can then be done in a completely straightforward way. Nothing in the algorithm
changes if we use a probabilistic model for p(x, y | z, w) to provide the observable counterpart of the
causal model. Each configuration w defines a separate optimization problem. The corresponding
factor p(θ |x, z, w) can be set independently for each instance of w, regardless of its dimensionality.

However, a practitioner may be interested on providing information about how p(θ |x, z, w) varies
smoothly across values of w in order to impose further constraints on the response functions across
multiple w realizations. We suggest that a way of incorporating covariates W is by a multilevel
approach: define pη(w)(θ |x, z, w), where each element of η may itself be a function of W , e.g.
µ1 = βT

1W for some parameter vector β1. Here, p(x | z, w) and p(y | z, w) (or p(y |x, z, w)) are
the marginals to be matched. We will discuss in future work ways of making pη(·) more flexible in
general, including the use of covariates.

C Discrete Outcomes and Discrete Features

If Y is discrete, fθ(x) will be discontinuous. Theoretically this will not pose a problem as long as
the number of discontinuities is finite (Gunsilius, 2020). The main practical issue is optimization, as
eq. (6) will now not lead itself to gradient-based methods. The most immediate approximation is to
use differentiable surrogates of fθ(x) that relax the constraints. In the most basic formulation, we
have the inequalities

tol− ≤ E[φl(Y ) | z(m)]−
∫
φl(fθ(x)) pη(x, θ | z(m)) dx dθ ≤ tol+,

for some tolerance factors tol+, tol−. Given upper and lower bounds φ+
l (fθ(x)), φ−l (fθ(x)) on

φl(fθ(x)), the relaxed constraints

tol− ≤ E[φl(Y ) | z(m)]−
∫
φ−l (fθ(x)) pη(x, θ | z(m)) dx dθ

E[φl(Y ) | z(m)]−
∫
φ+
l (fθ(x)) pη(x, θ | z(m)) dx dθ ≤ tol+,
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will still result in valid, but looser bounds (again, up to local optima and Monte Carlo error). If
fθ(x) is non-negative (for instance, if its codomain is {0, 1}) and φl(·) is monotonic for non-negative
inputs (such as φl(x) = x and φl(x) = x2), it is enough to plug in bounds for fθ(x) itself. We will
elaborate on that in future work. In this context, we can also formulate an alternative approach to
matching p(y | z).

Alternative Approach to Matching p(y | z). Here we describe an alternative approximation of
eq. (5) that hinges on smoothly approximating the indicator function to render the integral well
behaved. First, instead of evaluating Pr(Y < y |Z = z(m)) for all y ∈ Y , we take a similar approach
for discretizing Y | z(i) as we took for z(m). For a given z(m), instead of all half-spaces Y < y, we
only consider the sets

A(m,l) := (−∞, y(m,l)] with y(m,l) := F−1
Y | z(m)

( l − 1

L− 1

)
for l ∈ [L] with some fixed L ∈ N. This results in constraints for the L-quantiles of the conditional
distributions of Y

l − 1

L− 1
=

∫
1
(
fθ(x) ≤ y(m,l)

)
pη(x, θ | z(m)) dx dθ.

for all m ∈ [M ] and l ∈ [L]. In practice, we would evaluate the integral on the right hand side
with a Monte Carlo estimate, sampling from pη(x, θ | z(m)) and then differentiate with respect to η
for gradient-based optimization. Therefore, the non-differentiable (even non-continuous) indicator
function poses an issue for the optimization. We can circumvent this problem by approximating the
indicator with a smoothly differentiable function, for example

1(t ≤ t∗) ≈ σρ(t− t∗) for σρ(t) :=
1

1 + e−ρ t
or σρ(t) :=

1

1 + exp
(
−ρ
(
t+ 1√

ρ

))
for ρ > 0. As ρ → ∞, σρ(t) → 1(t ≤ 0) pointwise on R \ {0}, i.e., we can slowly increase ρ
throughout the optimization to gradually approximate the constraints.

Hence an alternative approach to implement the constraint for matching p(y | z) is

l − 1

L− 1
=

∫
σρ
(
fθ(x)− y(m,l)

)
pη(x, θ | z(m)) dx dθ

for all m ∈ [M ] and l ∈ [L], where we increase ρ > 0 after each optimization round.

In practice, we this approach gave less robust results than the approach described in the main text,
partly due to the additional hyperparameter schedule needed for ρ. Therefore, we only report results
for the approach using dictionary functions φl described in the main text.

D Algorithm

D.1 Additional Details of the Optimization

Smoothen LHS. Since LHSm,l are estimated via empirical averages of φl(yi) for datapoints in a
given bin i ∈ bin−1(m), “neighbouring” constraints LHSm,l and LHSm+1,l may have substantially
different values. Since our model is smooth, it can be hard to match such non-continuities with
RHSm,l(η). Intuitively, we expect such jumps to be artifacts of finite sample effects and not
important properties of the true data distribution. Hence we apply a spline regression to the values
{LHSm,l}Mm=1 for each l ∈ [L] to smoothen out larger jumps between neighbouring values. In
practice, we use a cubic univariate spline for each l with a smoothing factor of 0.2.

D.2 Augmented Lagrangian Optimization Strategy

The Augmented Lagrangian method (Hestenes, 1969) is a general method for constrained optimiza-
tion, originally proposed just for dealing with equality constraints. The benefit of this over penalty
methods is that we do not need to take the penalty parameters τ to∞ in order to solve the original
constrained optimization problem, which can cause ill-conditioning (Nocedal & Wright, 2006).
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Algorithm 1 Bounding the IV interventional effect at treatment level x?.
Require: dataset D = {(zi, xi, yi)}Ni=1; number of z grid points M ; constraint functions {φl}Ll=1;

response function family {fθ}θ∈Θ; batchsize B; initial temperature τ (0) > 0; temperature
increase factor α > 1; tolerances εabs, εrel; initial Lagrange multipliers λ; initial parameters η(0);

1: z(m) := F̂−1
Z ( m

M+1 ) for m ∈ [M ] . F̂Z : CDF of {zi}Ni=1.

2: bin(i) := max{arg minm∈[M ] |zi − z(m)|} for i ∈ [N ] . split data points into “z-bins”

3: LHSm,l := 1
|bin−1(m)|

∑
i∈bin−1(m) φl(yi) for m ∈ [M ], l ∈ [L] . pre-compute LHS

4: smoothen LHSm,l across m for each l with spline regression . see Appendix D.1
5: b := max{εabs, εrel LHS} (element-wise) . set constraint tolerances

6: x̂(m)
j := F̂−1

X | z(m)

(
j−1
B−1

)
for all j ∈ [B],m ∈ [M ] . F̂X | z(m) : CDF of {xi}i∈bin−1(m)

7: for t = 1 . . . T (or until convergence) do . optimization rounds
8: η(t) := OPTIMIZESUBPROBLEM(η(t−1), λ(t−1), τ (t−1)) . min. Lagrangian at fixed λ, τ

9: λ
(t)
l ← max

(
0, λ

(t−1)
l − τ (t−1)cl(η

(t))
)

. update Lagrangian multipliers

10: τ (t) ← α τ (t−1) . increase temperature parameter

11: return ox?(η(T ))

12: function OPTIMIZESUBPROBLEM(η, λ, τ )
13: . In here we use SGD with auto-differentiation to minimize L. Hence we only describe how

to evaluate L in a differentiable fashion:
14: ox?(η) := 1

B

∑B
j=1 fθ(j)(x

?) with θ(j) ∼ pη(θ) . c.f. Algorithm 2 for sampling

15: RHSm,l(η) := 1
B

∑B
j=1 φl

(
fθ(j)(x̂

(m)
j )

)
. c.f. Algorithm 2 for sampling

16: c(η) := b− |LHS− RHS(η)| . compute constraint terms

17: L(η) := ±ox?(η) +
∑M ·L
l=1 ξ(cl(η), λl, τ) . Lagrangian (± for lower/upper bound)

18: return arg minη L(η) . optimize with SGD

However, our problem only contains inequality constraints. Thus, we consider a refinement proposed
by Nocedal & Wright (2006) to purely handle inequality constraints using Augmented Lagrangian
methods. Specifically, we can write the inequality constrained optimization problem equivalently as
an unconstrained optimization problem with Lagrange multipliers λ:

min
η

max
λ≥0

{
ox?(η) + λ>(c(η)− b)

}
.

To see that it is equivalent, note that the max returns o(η) when η satisfies the constraints (as the
maximum is obtained at λ = 0), and∞ otherwise (as the maximum is at λ =∞). However, this is
not easy to optimize as the λ jumps from 0 to∞ when passing through the constraint boundary. To
fix this, we add a term that penalizes λ making larger changes from its previous value. Specifically,

min
η

max
λ≥0

{
o(η) + λ>(c(η)− b)− 1

2τ
‖λ− λ′‖2

}
,

where λ′ are the Lagrange multipliers from the previous iteration and τ is a penalty term that is
iteratively increased. Note that the max optimization can be solved in closed form for each Lagrange
multiplier λl

λl = max {0, λ′l + τcl(η)} ,
where cl(η) is shorthand for the l-th inequality constraint. Plugging these values into the optimization
problem, we arrive at

min
η
L(η, λ, τ) := ox?(η) +

M ·L∑
l=1

ξ(cl(η), λl, τ)
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Algorithm 2 Sampling parameter values θ from pη(θ,X | z(m)).

1: Sample each component of w ∈ RK×B i.i.d. from a standard Gaussian.
2: Prepend the vector (0, 1/B, . . . , 1) as the first row of w, resulting in w ∈ R(K+1)×N .
3: Allow for dependencies between components by multiplying with the Cholesky factor w ← Lw.
4: Normalize all values by applying the standard Gaussian CDF component wise, w ← ϕ0,1(w).

5: Fix the marginals of θ(j)
k by applying the inverse CDF of a (µk, σ

2
k)-Gaussian: θ(j) ←

ϕ−1
µk,σ2

k
(wj+1) for j ∈ [K]. Here, wj+1 denotes the j + 1-st row of w.

6: Sampling X via F̂−1
X (w1) by design simply gives the pre-computed x̂.

with

ξ(cl(η), λl, τ) :=

{
−λlcl(η) + τcl(η)2

2 if τcl(η) ≤ λl,
−λ

2
l

2τ otherwise,

where τ is increases throughout the optimization procedure. Given an approximate solution η of this
subproblem, we then update λ according to

λl ← max{0, λl − τcl(η)}
for all l ∈ [M · L] and set τ ← α τ for a fixed α > 1. For the full optimization, we attach
temporal upper indices, i.e., at time step t, we have the current approximate solution η(t), the
Lagrange multipliers λ(t)

l and the temperature parameter τ (t). See Algorithm 1 for a description
of the optimization scheme. While the number of optimization parameters grows quickly with the
dimensionality of θ, which may render the optimization challenging, in our experiments we did not
encounter any issues with up to 54 optimization parameters and 40 constraints.

D.3 Sampling from the Copula

A crucial step for our algorithms was baking the assumptions about p(X |Z) as well as Z ⊥⊥U
directly into our model from which we sample for Monte Carlo estimates. Algorithm 2 describes in
detail how we can obtain these samples from the copula defined in eq. (4) in a differentiable fashion
with respect to η.

D.4 Parameter Initialization

We initialize the optimization parameters L with ones on the diagonal, zeros in the upper triangle,
and sample the lower triangle from N (0, 0.05). The initialization for µk and ln(σ2

k) depends on the
chosen response function family. Our guiding principle is to ensure that the initial distribution covers
a large set of possible response functions, tending towards larger σk.

E Response Functions

One key advantage of our approach is that it allows us to flexibly trade off assumptions on the
response function family with more informative bounds. Due to our simple, yet expressive choice of
linear combinations of a set of basis functions, there are many natural and easy to implement options
for the response functions. In particular, we consider the following options:

1. Polynomials: ψk(x) = xk−1 for k ∈ [K]. In this work, we specifically focus on linear (K = 2),
quadratic (K = 3), and cubic (K = 4) polynomial functions.

2. Neural basis functions (MLP): We fit a multi-layer perceptron with K neurons in the last hidden
layer to the observed data {(xi, yi)}i∈N and take ψk(x) to be the activation of the k-th neuron
in the last hidden layer. Note that the network output itself is a linear combination of these last
hidden layer activations. Hence, the underlying assumption for this approach to work well is that
the true causal effects can also be approximated well by a linear combination of the learned last
hidden layer activations, i.e., the true effect is in this sense “similar” to the estimated observed
conditional p̂(y |x). In practice, we train a 2-hidden layer MLP with 64 neurons in each layer,
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rectified linear units as activation functions and an mean-squared-error loss for 100 epochs and a
batchsize of 256 using Adam with a learning rate of 0.001.

3. Gaussian process basis functions (GP): We fit a Gaussian process with a sum-kernel of a poly-
nomial kernel of degree 3, an RBF kernel, and a white noise kernel to K different sub-samples
{(xi, yi)}i∈N ′ with N ′ ≤ N . We then sample a single function from each Gaussian process as
the basis functions ψk for k ∈ [K]. We train multiple Gaussian processes on smaller subsets of
the data to ensure sufficient variance in the learned functional relation. Similarly to the neural
net basis functions, the assumption is that the causal effect can be approximated by a linear
combination of these varying samples. In our experiments, we fit the Gaussian processes with
scikit-learn’s GaussianProcessRegressor (Pedregosa et al., 2011) usingN ′ = 200 and a white
kernel variance of 0.4.

F Why Discretization is not a Good Idea

The framework of Balke & Pearl (1994) is powerful and simple, and hence it raises the prospect
that discretizing treatment X can provide a good approximation to the original problem where X is
continuous. However, there are several reasons why this is not a good idea:

• It destroys the key assumption of instrumental variable modeling. Besides the lack of confounding
between instrument Z and outcome Y , the key assumption in an IV model is the conditional
independence Y ⊥⊥Z | {X,U} (“exclusion restriction”). This assumption will in general fail to
hold if we destroy information, i.e., if we condition on X ∈ A, for some set A, instead of the
realization of X;

• It makes causal estimands ill-defined. There are several ways in which an intervention can be
ambiguous. This happens when defining the manipulation of a construct (“race”) or of summary
measurements in general (“obesity”). One particular instance of the latter is when we speak of
do(x?), meaning the setting of a discretization X? of X to a particular level x? (VanderWeele
& Hernán, 2013). If X? = x? corresponds to the event X ∈ [a, b], then this at least needs the
assumption that E[Y | do(x)] is approximately constant for x ∈ [a, b] for the intervention to be
meaningful. This is pointless if the goal is to avoid making assumptions about the shape of the
response function;

• Its cost is super-exponential. Suppose we still want to proceed with the idea of discretization, in
the sense that we are willing to assume that we are using a fine enough grid of intervals for the
treatment so that the previous two points are not particularly prominent. It may be argued that
using Balke & Pearl (1994) with this approximation is attractive on the grounds it is a convex,
deterministic approach and hence a more computationally attractive alternative to tackling the
continuous problem. In fact, the opposite may hold. Assume we discretize X and Y to |X | and
|Y| levels respectively, and Z assumes |Z| levels (perhaps also by discretization). Then the cost
of using the full information of the distribution is approximately O(|X ||Z|Y]|X |). It is true that,
just like in our approach, this can be much simplified if we rely only on a subset of constraints.
In particular, if we use only the first moments in the constraints and the expected outcome is the
objective function, we can simplify the discrete formulation by targeting our parameterization to
depend only on the expected outcomes directly. This makes the problem exponential only on |Z|,
see for instance the parameterization of Zhang & Bareinboim (2020). Being “only” exponential
may still require Monte Carlo approximations in general. But this can still be super-exponential if
|Z| grows with |X |, which will be necessary if the instrument is strong: for an extreme example,
if Z and X lie close to a line with high probability and we choose only two levels of Z against
many levels of X , then most combinations of pre-determined (z, x) pairs will lie on regions of
essentially zero density in the p(x, z) distribution;

• It is vacuous in the limit. Even if we can use an arbitrarily fine discretization and assume that the
piecewise nature of the approximation is close enough to the true response functions of Y , we
know that as |X | → ∞ the number of discontinuities in the response function also goes to infinity.
As described by Gunsilius (2018), we will not learn anything non-trivial about the causal estimand
of interest.

We reiterate the points above in more direct way: being unable to express constraints on the response
function is not an asset, it’s a liability. Discretization allows us to easily use a single family
of functional constraints: piecewise constant functions. In this framework, it is cumbersome to
represent other constraints such as smoothness constraints, and the degree of violation of the exclusion
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restriction assumption remains unknown. There is no reason to believe this discrete representation is
a good family in any computationally bounded sense, as an efficient choice of discretization points
can only be made if we know something about the function. And if we do, then it makes far more
sense to use more representationally efficient ways of partitioning the space of X , such as regression
splines with a fixed number of knots. This involves no discretization of treatment, while avoiding the
issues of violation of the exclusion restriction assumption and ambiguity of intervention.

G Modeling p(y |x, z)
Alternatively to the setup described in the main text, we can match not only the marginal p(y | z), but
the theoretically more informative p(y |x, z). This problem is actually conceptually simpler, although
it will require joint measurements over the three types of variables.

The main modification is as follows. Instead of

E[φl(Y ) |Z = z(m)] =

∫
φl(yθ(x)) pη(x, θ |Z = z(m)) dx dθ,

we build constraints based on

E[φl(Y ) |X = x(m), Z = z(m)] =

∫
φl(yθ(x

(m))) pη(θ |X = x(m), Z = z(m)) dθ,

where now we need to define a grid over the joint space of X and Z. This can be done in several
ways, including the joint product of equally-spaced quantiles of the respective marginal distributions,
perhaps discarding combinations for which p(x(m), z(m)) are below some threshold. Moreover, the
factor pη(θ |X = x(m), Z = z(m)) was explicitly parameterized in our original setup, and can be
used as is.

Notice the advantages and disadvantages of the two approaches. Modeling the full conditional
p(y |x, z) uses the full information of the problem (as it is equivalent to p(x, y | z), where p(x | z) is
tackled directly), which in principle is more informative but requires functionals of the joint p(x, y | z)
instead of the marginals p(x | z) and p(y | z). We can also see that we are trading-off adding more
constraints but removing the need to integrate X in each constraint. More interestingly, this full
conditional approach does not require any kind of density estimation: the need for p(x | z) disappears,
and all we need on the left-hand sides are estimates of expectations.

H Fitting Latent Variable Models

When fitting the latent variable models, we use multi-layer perceptrons with inputs z, x, y for the
means and variances of the latent dimensions U , where we use lower indices Ui for the different
components. For this encoder, we use 32 neurons in the hidden layer and rectified linear units as
the activation function. There are two decoders. The first one is trained to reconstruct E[X |X,U ],
i.e., receives the original Z in addition to the latent vector U as input. It is also parameterized by an
MLP with 32 neurons in the hidden layer and ReLu activations. The second decoder reconstructs
E[Y |X,U ] and is either an MLP of the same architecture (when comparing to MLP response
functions), linear in X , i.e., αX+β+

∑n_latent
i=1 (γiXUi+ δiUi) (when comparing to linear response

functions), or quadratic in X , i.e., αX2 + βX + γ +
∑n_latent
i=1 (δiX

2Ui + εiXUi + ζiUi) (when
comparing to quadratic response functions). Thereby, we ensure that the form of matches our
assumptions on the function form of the response family. We then optimize the evidence lower
bound following standard techniques of variational autoencoders (Kingma & Welling, 2014) with
L2 reconstruction loss for X and Y . We fit multiple models with different random initializations
and compute the implied causal effect of X on Y for each one, which is obtained from the decoder
E[Y |u, x] by averaging over 1000 samples of the latent variable U for a fixed grid of x-values.

I Additional Experimental Results

I.1 Hyperparameter Settings

In all experiments, we fix hyperparametersM = 20, L = 2,B = 1024 and run SGD with momentum
0.9 and learning rate 0.001 for 150 rounds of the augmented Lagrangian with 30 gradient updates
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Figure 5: Bounds for the simulated sigmoidal design. The true causal effect is given by a logistic
function, which is well recovered by our method for different response function families (cubic
polynomials, GP basis functions, and MLP basis functions).

for each subproblem optimization. We start with a temperature parameter τ = 0.1 and multiply it
by α = 1.08 in each round, capped at τmax = 10. We use 7 neurons in the last hidden layer of the
feed-forward neural net for MLP response functions in our synthetic setting and 9 for the expenditure
data. For GP basis functions (see Appendix E), we sample 7 basis functions for the sigmoidal design
dataset (see Appendix I.2). This set of hyperparameters did not require much manual tuning and
worked for all datasets and response function families, i.e., also different dimensionality of θ. For
the synthetic settings, we sample 5000 observations each. We use 3 as the latent dimension when
fitting our latent variable models. For the tolerances, we use εabs = 0.2 for the synthetic settings,
εabs = 0.1 for the sigmoidal design (see Section I.2), εabs = 0.3 for the expenditure dataset and
gradually tighten εrel from 0.3 to 0.05 in all settings (which corresponds to the increasingly opaque
lines).

I.2 Sigmoidal Design

We also evaluate our method on simulated data from a sigmoidal design introduced by Chen &
Christensen (2018), adopted by Newey & Powell (2003) and used in previous work on continuous
instrumental variable approaches under the additive assumption as a common test case (Hartford
et al., 2017; Singh et al., 2019; Muandet et al., 2020). We show the results from KIV and our bounds
for response function families consisting of cubic polynomials and neural net basis functions in
Figure 5. The observed data distribution p̂(y |x) follows the true causal effect rather closely and the
instrument is relatively strong in this setting, see Singh et al. (2019) for details. Therefore, the gap
between our bounds is relatively narrow for a broad set of different basis functions as long as they are
flexible enough to capture a sigmoidal shape.

I.3 Expenditure Data

We prepare the data from Office for National Statistics (2000) using the same steps as Gunsilius
(2020) closely following Newey & Powell (2003); Blundell et al. (2007). This is, we restrict the
sample to households with married couples who live together and in which the head of the household
is between 20 and 55 years old. We further exclude couples with more than 2 children. Finally,
we also require the head of the household not to be unemployed. Otherwise, the instrument, gross
earnings, would not be available. After these restrictions, we end up with 1650 observations in our
dataset. The dataset can be downloaded for free for academic purposes after creating an account.

I.4 Small Data Regime

Having tested our method on datasets of size 5000 (synthetic) and 1650 (expenditure data, see
Appendix I.3), we now evaluate how our method performs on even smaller datasets. To this end,
we first look at our synthetic settings using only 500 datapoints and correspondingly reducing the
number of z-bins to M = 6 in Figure 6. While the bounds are looser, our method can still provide
useful information with relatively little data.

In addition, we ran our methods on a classic instrumental variable setting from economics, namely
the dataset used by Acemoglu et al. (2001) on using settler mortality as an instrument to estimate
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Figure 6: Performance of our method on smaller datasets with only 500 observations. The left column
is the strong confounding weak instrument case (α = 0.5, β = 3) and the right column is the weak
confounding strong instrument case (α = 3, β = 0.5).
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Figure 7: Results for the small dataset from Acemoglu et al. (2001) with linear response functions
and M = 5 z-bins.

the causal effect of the health of institutions on economic performance.9 This dataset consists of
only 70 datapoints. Therefore, we set the number of z-bins to M = 5 for this dataset. Restricting
ourselves to linear response functions, our method still gives informative bounds, which include the
effect estimated by 2SLS, but does not fully include the KIV results, see Figure 7.

J KIV Heuristic for Tuning Hyperparameters

We have found KIV to fail in the strongly confounded linear Gaussian setting, even though all the
assumptions are satisfied, see Figure 2 (row 1). Closer analysis of these cases showed that the
heuristic that determines the hyperparameters does not return useful values in this setting. Instead, we
performed a grid search over the main hyperparameters λ and ξ (see Singh et al., 2019, for details)
and scored them by the out-of-sample mean-squared-error for the true causal effect (which is known
in our synthetic setting). After manual exploration of the parameter space, we found a good setting

9The dataset is freely available at https://economics.mit.edu/faculty/acemoglu/data/ajr2001.
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linear Gaussian setting with strong confounding and weak instrument (α = 0.5, β = 3)
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Figure 8: We show the results of a manual hyperparameter search for KIV in the left column, where
we score different settings in the two-dimensional hyperparameter space by the log of the out-of-
sample mean squared error, which requires knowledge of the true causal effect. The red cross denotes
the setting with the smallest out-of-sample mean squared error. In the right column, we show the KIV
regression lines using the hyperparameters found in the manual search. The first row corresponds to
the linear Gaussian setting and the second row to the non-linear, non-additive synthetic setting.

marked by the red cross in the first row on the left of Figure 8. Using these fixed hyperparameters
for KIV instead of the internal tuning stage, we get a much better approximation of the true causal
effect shown in the first row on the right of Figure 8. Towards the data starved regions at large and
small x-values, KIV again reverts back towards the prior mean of zero as expected. It is unclear at
the moment, however, how to set such hyperparameter values without access to the true causal effect.
Our point here is that in principle there is a setting with acceptable results, although even then it is
not clear how much of it is a coincidence based on looking at many possible configurations.

We performed a similar manual analysis for the non-linear, non-additive synthetic setting with strong
confounding, in which off-the-shelf KIV fails as well, see Figure 2 (row 3). Note that this setting
does not satisfy the assumptions of KIV, because of the non-additive confounding. Again, we do
manage to find hyperparameters that locally minimize the out-of-sample mean-squared-error shown
in the second row on the left of Figure 8. However, the resulting regression of the causal effect does
not properly capture the true effect as shown in the second row on the right of Figure 8.
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