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Abstract

Artificial intelligence (AI) has the potential to reshape pharmaceutical formulation 

development through its ability to analyze and continuously monitor large datasets. Fused 

deposition modeling (FDM) 3-dimensional printing (3DP) has made significant 

advancements in the field of oral drug delivery with personalized drug-loaded formulations 

being designed, developed and dispensed for the needs of the patient. However, the 

optimization of the fabrication parameters is a time-consuming, empirical trial approach, 

requiring expert knowledge. Here, M3DISEEN, a web-based pharmaceutical software, was 
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developed to accelerate FDM 3D printing, which includes producing filaments by hot melt 

extrusion (HME), using AI machine learning techniques (MLTs). In total, 614 drug-loaded 

formulations were designed from a comprehensive list of 145 different pharmaceutical 

excipients, 3D printed and assessed in-house. To build the predictive tool, a dataset was 

constructed and models were trained and tested at a ratio of 75:25. Significantly, the AI 

models predicted key fabrication parameters with accuracies of 76% and 67% for the 

printability and the filament characteristics, respectively. Furthermore, the AI models 

predicted the HME and FDM processing temperatures with a mean absolute error of 8.9 ºC 

and 8.3 ºC, respectively. Strikingly, the AI models achieved high levels of accuracy by solely 

inputting the pharmaceutical excipient trade names. Therefore, AI provides an effective 

holistic modeling technology and software to streamline and advance 3DP as a significant 

technology within drug development. M3DISEEN is available at 

(http://m3diseen.com/predictions/).

Keywords: additive manufacturing, feature engineering, personalized pharmaceuticals, 

gastrointestinal drug delivery, 3D printed drug products, material extrusion, fused filament 

fabrication.

1. Introduction

Three-dimensional printing (3DP) is the state-of-the-art fabrication technology, which has 

achieved disruptive innovations across a number of fields (Sun et al., 2019). 3DP is an 

additive manufacturing technology, with the unique ability to produce personalized objects 

with complex designs at reduced costs and with high resolution. These traits are ideal for 

achieving precision solid dosage forms (Alhnan et al., 2016; Goyanes et al., 2015c; Trenfield 

et al., 2018). There are several 3DP technologies currently being investigated for 

pharmaceutical applications, including powder bed inkjet printing that was used to 

manufacture the anti-epileptic drug delivery system Spritam (Aprecia_Pharmaceuticals, 

http://m3diseen.com/predictions/
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2015). This was the first 3DP drug to reach the US market and is available in four dose 

strengths. Other 3DP technologies include fused deposition modeling (FDM) (Goyanes et al., 

2014; Isreb et al., 2019; Kempin et al., 2018), selective laser sintering (Allahham et al., 2020; 

Awad et al., 2020), semisolid extrusion (Goyanes et al., 2019; Vithani et al., 2019), direct 

powder extrusion (Ong et al., 2020) and stereolithography (Xu et al., 2020). 

FDM 3DP has been extensively explored in the pharmaceutical field (Alhijjaj et al., 

2016; Jamróz et al., 2017) because of its small and quick production runs, ability to print 

multi-material and multi-drug (Gioumouxouzis et al., 2018) delivery systems with tailored 

shapes (Goyanes et al., 2015b) and release characteristics (Genina et al., 2017; 

Gioumouxouzis et al., 2017; Goyanes et al., 2015a; Maroni et al., 2017), personalized to the 

needs of patients (Pereira et al., 2020; Zema et al., 2017; Zhang et al., 2017). Its low material 

wastage, low capital cost and compact size offers the possibility of deploying the technology 

in clinical settings, such as hospitals and community pharmacies. Although first, several 

challenges must be addressed to achieve this long-term goal of personalized 3DP drug 

delivery systems. 

The preparation of personalized drug delivery systems using FDM 3D printing is a 

two-step process (Figure 1) (Awad et al., 2018). First, the raw pharmaceutical materials (drug 

and excipients) are thoroughly mixed and poured into a hot melt extruder (HME) that applies 

both heat and shear stress to homogenize the admixture. The molten materials are then 

extruded via the nozzle of the HME to obtain a filament (Tiwari et al., 2016). Then, the 

filament, which is the feedstock for the FDM 3D printer, is fed into the printing nozzle, 

where it is heated again to a semi-molten state and is extruded to form the designed object. 

The 3D shape is pre-determined using a computer-assisted design (CAD) software. 
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Figure 1. Schematic of the HME and FDM 3D printing process. The blue text shows 
examples of variable that can influence the fabrication process and the red text relates to 
characteristics of the products at each stage 

The fabrication of a printable filament is a challenging and, so far, very empirical 

process. Many variables affect the process, including the proportion of the starting materials, 

the extrusion temperature and the printing temperature (Figure 1). The mechanical properties 

of the filament are paramount, as filaments that are notably too flexible or too brittle, or not 

within a given dimensional tolerance will not be compatible with the printer (Nasereddin et 

al., 2018). Since there are many pharmaceutical materials and brands that could potentially be 

tested, an empirical trial approach is used where different drug and pharmaceutical 

compositions are manually tested. Therefore, the formulation development stage is time-

consuming, costly and resource intensive, even for an experienced FDM scientist. There is a 

need to optimize the filament development process to improve the existing approach, and 

thus improve the efficiency of the fabrication process. 

In other fields, such as aerospace, standard fabrication techniques have benefited from 

specialized software to facilitate the development stage. However, these are rarely readily 

available and not used in formulation development in pharmaceutics (Leuenberger and 

Leuenberger, 2016). Pharmaceutical research should look to other industries for creative 

innovations as inspiration to apply such modeling tools within the pharmaceutical technology 

field (Ekins, 2016). For example, finite element analysis and computational fluid dynamics 

are professional software that are readily accessible as web services for engineers to guide 

manufacturing. In pharmaceutical sciences, the most used software is usually based on design 

of experiments (DOE), which aims to identify the key parameters that affect the process or 

the result. However, DOE is limited to datasets with low dimensions (i.e. number of 

variables), requires prior knowledge of the fabrication process, needs numerous experiments 
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to complete the model, and is unable to learn from existing experimental data (Hussain et al., 

1991; Paulo and Santos, 2017; Rantanen and Khinast, 2015; Singh et al., 2011). Additionally, 

conventional experimental design studies are usually limited to an offline mode, and are not 

suitable for dynamic studies (Acherjee et al., 2011; Dehnad, 2012). The use of specific 

experimental design tools often requires the preparation of unprintable filaments that 

experienced FDM researchers would not prepare, but the software requires such preparation 

and inputs in order to achieve appropriate levels of statistical power and sensitivity. For all 

these reasons, the use of alternative data processing approaches is required to further our 

understanding of the fabrication process for the development of new drug-loaded 

formulations (Landin and Rowe, 2013). 

Machine Learning is an Artificial Intelligence (AI)-based emerging technology that 

allows pattern recognition from complex datasets. AI is sparking global interest having 

already created and executed breakthrough developments across a number of disciplines 

(Baker, 2018; Hatamlou, 2013; Nikolaev et al., 2016; Popova et al., 2018; Xianyu et al., 

2018). In the medical field, the success of AI is well-publicized, most notably in 

outperforming clinicians in diagnostic tests (Hosny et al., 2018). In the pharmaceutical 

industry, AI is affording researchers a renewed perspective towards minimizing the time-

consuming and costly process of bringing drugs to the market (Han et al., 2019; Harrer et al., 

2019; Schneider et al., 2019) and making progress towards precision and personalized drug 

delivery systems (Xu et al., 2019). However, the current use of AI in both pharmaceutical 

sciences and 3D printing remains underdeveloped. A few studies have focused on either 

quality control (Nam et al., 2020; Shen et al., 2020), or establishing a correlation between 

structure and property (Li et al., 2019; Nasereddin et al., 2018). Integrating AI with 

formulation development requires substantial datasets for training the AI models. Given the 

large number of drug delivery systems that could be developed from the many available 



6

materials and the parameters that require prediction, AI machine learning techniques 

constitute the perfect tools for formulation development in FDM 3D printing. AI models can 

comprehend both structured and unstructured data (Balducci and Marinova, 2018). 

Furthermore, AI is capable of continuous learning (D'Souza et al., 2020), and hence will not 

require an experienced user to continually train the models. 

The aim of this study was to explore AI machine learning techniques to increase the 

efficiency of the FDM formulation development process by developing a web-based 

software. Here, several AI machine learning methods were trained, tested, compared and 

evaluated to predict key fabrication parameters. Subsequently, M3DISEEN was developed to 

allow users to design 3D printed drug-loaded formulations and predict four key process 

parameters, namely extrusion temperature, filament mechanical characteristics, printing 

temperature and printability in an off-site setting, expediting the fabrication of 3D printed 

drug-loaded products.

2. Experimental Section

2.1 Pharmaceutical materials

Drugs and excipients were purchased from different suppliers. A list of the materials used in 

this study can be found in the Table S1 (Supplementary Material). 

2.2 Preparation of drug-loaded filaments by hot melt extrusion (HME) 

Pharmaceutical materials (drug and excipients) were selected for the preparation of Printlets 

(3D printed tablets) with diverse drug release rate characteristics. For each proposed drug-

loaded formulation, a mixture of materials of 40 g was prepared with a theoretical drug 

content ranging from 4.5 to 40 % w/w. The selected materials were mixed for at least 5 

minutes using a mortar and pestle until a homogenous blend was obtained; and subsequently 
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extruded using a single-screw filament extruder (Noztek Pro hot melt extruder, Noztek, UK) 

equipped with 1.75 mm nozzle, and a screw speed 15 rpm with extrusion temperature varied 

from 50-200 °C. The extruded filaments obtained were protected from light and kept in a 

vacuum desiccator until printing. 

2.3 3D Printing of drug-loaded formulations by fused-deposition modeling (FDM)

Printlets were prepared from the drug-loaded filaments using a commercial fused-deposition 

modeling 3D printer (MakerBot Replicator 2X, MakerBot Inc, USA). AutoCAD 2014 

(Autodesk Inc., USA), which was used to design the templates of the Printlets, exported as a 

stereolithography (.stl) file into 3D printer software (MakerWare v. 3.7.0, MakerBot Inc., 

USA). The selected 3D geometry was a cylinder (10 mm diameter  3.6 mm height). The 

.stl format contains only the object surface data, and all the other parameters need to be 

defined by the MakerBot software in order to print the desired object. The printer settings 

were as follows: standard resolution without raft, extrusion temperature of 70-220 °C, 

extrusion speed 90 mm/s, travel speed 150 mm/s, number of shells 2, infill percentage 100% 

and layer height 0.10 mm. 

2.4 Data Collection 

Drug-loaded formulations were prepared using extrusion (HME) and printing (FDM) from a 

total of 145 different materials (including 7 drugs) over a period of six years. From the large 

dataset of prepared drug-loaded formulations, 614 were included in this study, which fulfilled 

the extrusion and printing conditions detailed in section 2.2 and 2.3. The composition used in 

each drug-loaded formulation was chosen with the aim of fabricating Printlets with suitable 

mechanical properties, based on the experience of expert HME and FDM operators from 

University College London – School of Pharmacy (London, UK) or the company FabRx 
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(London, UK). The collected data were arranged as shown in Table 1. For each drug-loaded 

formulation, both the operator’s ID and formulation code were recorded. The composition of 

the excipients (ratio of weight of each component to total weight) was also recorded and care 

was taken to ensure that the accumulative total ratio was summed to 1. The extrusion 

temperature, filament mechanical characteristics, printing temperature and whether the drug-

loaded formulation was printable or not were also recorded. 

Table 1. Example of the collected data matrix

Fo
rm

ul
at

io
n 

co
de

O
pe

ra
to

r I
D

M
at

er
ia

l 1

M
at

er
ia

l 2

… M
at

er
ia

l 
14

5

Ex
tru

si
on

 
te

m
pe

ra
tu

re
(°

C
)

Fi
la

m
en

t 
m

ec
ha

ni
ca

l 
ch

ar
ac

te
ris

ti
cs Pr

in
tin

g 
te

m
pe

ra
tu

re
 

(°
C

)

Pr
in

ta
bi

lit
y

ID1 User X 0.3 0.3 … 0.05 120 Flexible 180 Yes

ID2 User X 0 0.6 .. 0.05 100 Good 160 Yes

… … … … .. … .. … … …

IDn User X …

Materials and their ratio in the 
formulation Targeted variables (predicted parameter)

2.5 Predicted Target Variables

The key parameters that the study aimed to predict were the extrusion temperature, filament 

mechanical characteristics, printing temperature and printability (Table 2), referred to as 

targeted variables. The extrusion temperature and printing temperature would usually be 

classified as independent variables as the operator of the equipment can select the value of 

parameters. However, to achieve printable filaments, the optimal values were dependent on 

the selected materials and their percentage composition in the drug-loaded formulations. For 

this reason, extrusion temperature and printing temperature are considered herein dependent 

variables. Other parameters shown in Figure 1, such as HME screw speed, and FDM 

extrusion speed, travel speed, build-plate temperature, etc., were kept constant for this study.
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Table 2. Summary of the predicted targeted variables 

Targeted variables Values Analysis Type

Extrusion 

temperature

HME temperature (°C) Regression 

Filament mechanical 

characteristics

Unextrudable, Flexible, Good 

or Brittle

Multi-classification

Printing temperature Printing temperature (°C) Regression

Printability Yes or No Binary Classification

Regression analyses were performed to predict both the HME and FDM processing 

temperatures, since the targeted variables were continuous numerical values. Categorical 

analysis was used for predicting filament mechanical characteristics and printability. 

Filament mechanical behavior varied depending on the composition and was qualitatively 

classified as either ‘good’, notably ‘brittle’, notably ‘flexible’ or ‘unextrudable’. A good 

filament refers to a filament that exhibits similar mechanical behavior to commercial 

filaments. A brittle filament was defined as one that was susceptible to fracturing when it was 

bent from 180º to 90º, whereas a flexible filament was one that would easily bend when held 

only from one side due to a lack of structural integrity. Pharmaceutical materials, where a 

filament could not be obtained by HME, even when tested over a wide range of HME 

temperatures, were classed as unextrudable. Printability was qualitatively classified as either 

‘Yes’ or ‘No’ depending on whether the filament was able to be extruded through the nozzle 

of the FDM printer given the selected printing parameters. 

2.6 Feature set selection and creation

In this study, the starting input variables or features used for predictions were the proportions 

of each material in the drug-loaded formulations. Different learning results can be obtained 

by changing the set of features used in the dataset, either by choosing only some of them 

(feature selection) or creating new derived ones (feature creation). Here, five different 
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feature sets were used (Table 3). For all five sets, the number of samples remained the same 

(n=614), however the input features varied for each feature set. More information on the 

structure of each dataset can be found in Tables S2, S3, S4, S5 and S6 (Supplementary 

Material). 

Table 3. Summary of the five feature sets used

Feature Set Input Feature Input Value

Number of 

Features in 

the dataset

Material Name Product grade name Weight fraction 145
Material Type Materials grouped 

together by their chemical 
structure

Weight fraction 36

Material Role Materials grouped by their 
functional role

Weight fraction 12

Physical properties Total weighted physical 
properties

Weighted physical 
properties

3

Physical properties 
per material type

Materials grouped 
together by their chemical 
structure.

Weighted physical 
Properties

108*

*3 Physical properties  36 Material Type

The first feature configuration, named Material Name, corresponds to the inputs used 

in the original dataset, where the features were labelled by their manufacturer’s tradename 

(Table S2, Supplementary Material). The weight fraction of each material used (ratio of the 

weight of each component to the total weight) for the drug-loaded formulation were used as 

values. 

Using the individual manufacturer’s tradename is an approach where the machine 

learning technique could classify the inputs according to the specific excipients and drug 

substances. A limitation could be that the resulting model may have been unable to decipher 

or comprehend a new material, whether it was produced by the same manufacturer with a 

different tradename or from a different manufacturer; despite it being chemically similar. For 

this reason, a second feature set was created to group chemically similar excipients together. 



11

For example, Aqoat LG, MG and HG, as hypromellose acetate succinate formulations, were 

grouped into one feature labelled ‘HPMCAS’. Another example are polyethylene glycols 

with molecular weights of 2000, 4000 and 8000 that were grouped together under the label 

‘PEG’. This feature configuration was named Material Type, where the features used were 

the weight fraction of each material type within the drug-loaded formulation (ratio of the 

weight of components of same type to the total weight). The active ingredients used were 

grouped together to produce a feature input labelled ‘drug’. In this study, the materials were 

classified into 36 types (Table S3, Supplementary Material). 

A third feature set, referred to as Material Role, grouped materials by their principal 

function (Table S4, Supplementary Material). For example, Soluplus and Eudragit were 

labelled as ‘primary polymers’ if they formed the main matrix of the admixture, as 

determined by the ratio of the weight of each component to the total weight. Polyethylene 

glycol and methyl paraben, both widely used plasticizers in pharmaceutical formulations, 

were labelled as ‘plasticizers’. This feature set was less specific than the previous two, and 

thus new excipients could be classified in a straightforward manner and inputted. For 

example, a model built on this approach would only need the function of the material, 

without requiring the user to identify the exact trade name or chemical name. Again, the 

weight fractions for all material roles were used as values.

The fourth and fifth feature sets differ in that the weighted physical properties were 

used as values, rather than the ratio weight of each component to the total weight. For the 

fourth feature configuration, each material name in the drug-loaded formulation was replaced 

by three of its Physical Properties: the glass transition temperature Tg (ºC), the melting 

temperature Tm (ºC) and the molecular weight mwt (g/mol) (Table S5, Supplementary 

Material). Then, the whole drug-loaded formulation was represented as an average of each of 
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those three properties, but weighted by the proportion of the materials present in the mixture. 

For instance, the weighted average for Tg is (Equation 1):

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑇𝑔 =  
(𝑤1 ×  𝑇𝑔1) + (𝑤2 ×  𝑇𝑔2) + ...(𝑤𝑛 ×  𝑇𝑔𝑛) 

(𝑤1 + 𝑤2 + ...𝑤𝑛)
(Equation 1)

where w is the weight fraction of the sample. As a result, under this configuration, each drug-

loaded formulation is reduced to three input features: (the weighted averages for) Tg, Tm and 

mwt. The materials that did not have a Tg or a Tm, were not included in the equation. The 

physical properties for each material were obtained from either the Handbook of 

Pharmaceutical Excipient (Rowe et al., 2009), the respective manufacturer’s datasheet, or 

from the literature. The rationale for using the physical properties as inputs was that physical 

properties offer a more objective, property-led classification than using the trade names. 

For the fifth feature set, the materials’ individual physical properties were used and 

were weighted by the proportion of the materials present in the mixture. For example, if 80 % 

w/w of a material was used in a formulation, and it possessed a Tg of 100 °C, then the Tg was 

weighted as 80 °C. Then the materials were grouped by their material type, whilst 

maintaining the individual material weighted physical property. The materials were grouped 

by their type for the same reason in the second feature set, as grouping chemically similar 

materials together could facilitate the model’s ability to generalize to new data. Same as the 

second feature set, the active ingredients were grouped together in a feature input called 

‘drugs’. This led to a total of 108 features in the dataset, comprising of three physical 

properties for each of the 36 material type (Table S6, Supplementary Material). 

2.7 Analysis of the data 
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A standard PC running on (Operative system: Debian 5.4.19-1 x86_64) was used for the 

analysis of the data and the development of the web service based on the developed 

algorithms described below (Processor: Intel® Xeon® CPU E5620  (2.40GHz), RAM 

Memory: 32 GB).

2.7.1 Machine Learning Techniques (MLTs)

Six different machine learning techniques (MLTs) were used in this study to explore which 

MLTs best modelled the dataset. The tested MLTs, multivariate linear regression (MLR), k-

nearest neighbors (kNN), support vector machines (SVM), random forests (RF), (traditional) 

neural networks (NN) and deep learning (DL) (using layered neural networks), are regularly 

used in the data science field with a strong evidence-base. Each MLT has its own learning 

characteristics. MLR was used for regression and kNN was used for classification whereas 

the other MLTs were used for both classification and regression.  

The MLTs were developed using python 3.7 (Python Software Foundation). All of the 

models except for deep learning were installed using a machine learning library for the 

Python programming language (scikit-learn package, v0.21.3 (Pedregosa et al., 2011)). 

Neural networks were modelled using the multi-layer perceptron algorithm. Deep learning 

was performed using the neural-network library (Keras package, v2.3.1) and the machine 

learning platform TensorFlow (v2.0.0) as the backend (Géron, 2019). For the interested 

reader, an informal overview of MLTs can be found in reference (Domingos, 2015), 

containing the key bibliography references.

For the training of the models, the data were randomly split into training and testing 

data at a ratio of 75:25. The best hyper-parameters were determined for each model from a 

grid search during the 5-fold cross-validation stage, performed on the training set, and were 

then applied to the testing dataset (Schmidt et al., 2019; Wainberg et al., 2018). Figure S1 
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provides an illustration of the 5-fold cross-validation approach (Supplementary Material). 

Brief explanations of each MLT are described in the following sections and provided in the 

Supplementary Material Document 1.

Multi-Linear Regression (MLR)

A linear equation was developed, whereby the output variable is a linear combination and an 

approximation of all the input variables. No hyper-parameters were specified for MLR. 

 

k-Nearest Neighbors (kNN) 

The hyper-parameter k was defined based on the results of the grid search performed with k 

values ranging from 1 to 25. 

Support Vector Machines (SVM)

The defined features were not linearly separable, so a kernel function was used to map their 

values into a higher dimensional space, whereby more hyperplanes were searched. For all 

experiments, a fixed kernel called the (Gaussian) Radial Basis Function (RBF) was used. 

The RBF kernel was adjusted by the parameter gamma () and the cost C function, which 

was used to mitigate over-fitting. The grid search explored multiple combinations for the C 

and . 

Random Forests (RF)

For classification, unseen data was evaluated against all of the ensembled trees and the 

classification was determined through a majority vote by the decision trees; hence, the mode 

of the classes was used. For regression, the target value was determined by the arithmetic 
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mode for the baseline. A valuable additional outcome of RF was that it provided a rank of the 

importance of features, used here to discriminate between classes (Belgiu and Drăguţ, 2016). 

Neural Networks

Networks were organized in a layered structure with at least two layers: the first layer 

collected the values of all the input features and the last layer contained the target variables 

(Figure S2, Supplementary Material). The number of hidden layers and number of nodes 

were tuned by the grid search. 

Deep Learning

The process was divided into three distinct stages. First, the model was defined whereby the 

number of hidden layers and their respective number of nodes, activation function and 

regularized terms were selected. Second, the model was compiled where the loss function, 

optimizer and metrics were selected. Lastly, the training and evaluation parameters were 

selected, in which the number of epochs, batch size and validation split were selected. A grid 

search was performed, factoring in the number of neurons, the number of hidden layers, the 

optimization algorithm, batch size and number of epochs.  

Evaluation 

Different metrics were used for scoring the accuracy of the MLTs, as no single metric 

conveys a complete picture of a model’s performance. A brief explanation of each metric is 

provided in the Supplementary Material Document S1. 

For classification analyses six classification metrics were used; accuracy, Kappa-k, 

precision, recall, F1 and area under a curve receiver operating characteristics (AUROC). 

For the processing temperature analyses, four regression metrics were used: the root mean 
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square error (RMSE), the mean absolute error (MAE), the mean absolute percentage error 

(MAPE) and the coefficient of determination (R2). Additionally, computational metrics were 

obtained for each MLT; the computed time, the real time, the fit time and the predict time.

3. Results

3.1 Exploratory Data Analysis

An exploratory data analysis was performed prior to the processing of the dataset using 

MLTs. The analysis provided an overview of the data to be analyzed and can aid in detecting 

anomalies, which can be detrimental to some MLTs. 49 of materials were used more than six 

times (Figure 2a). While 44 materials were only used once. The materials used as plasticizers 

or lubricants were frequently used (for example magnesium stearate (501 times), mannitol 

(341 times) or triethyl citrate (219 times)). The most used drug was paracetamol (373 times). 
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Figure 2. a) Distribution of the materials according to the number of times used (percentage), 

b) Histogram depicting the distribution of the glass transition temperature (Tg), melting 

temperature (Tm) and molecular weight (mwt). c) Pie charts classifying all the drug-loaded 

formulations based on the filament mechanical characteristics (percentage). d) The 

printability of the filaments as a function of filament mechanical characteristics. e) 

Histograms illustrating both the HME extrusion and FDM printing temperatures.

The physical properties of the materials were used as inputs for two out of the five of 

the feature configurations. The glass transition temperatures of the materials ranged from -60 

to 1027 ºC, with the majority below 200 ºC (Figure 2b). For the melting temperature, the 

range was from -55 to 1855 ºC, with the majority of materials possessing values below 300 

ºC. The high Tg and Tm values are likely to be due to the inclusion of inorganic fillers in the 

drug-loaded formulations, such as titanium dioxide and calcium phosphate. The molecular 

weight of the materials ranged from 101 to 107 g/mol. Therefore, a combination of both low 

and high molecular weight materials were used. From the analysis of the materials, it was 

evident that the inputs should be normalized. Normalization is a mathematical operation 

conventionally used in the pre-processing of the data. It ensures that the inputs occupy 

equivalent scales and prevents values that are considerably numerically larger from being 

assigned greater weights. Hence, normalization ensures that the MLT techniques are 

attributing equal weights to each input variable, and thereby avoiding errors when fitting the 

models to the test dataset (Nawi et al., 2013). Exploratory data analysis of the output 

parameter showed that 11.2% of the drug-loaded formulations could not be extruded via 

HME (Figure 2c). Although all the drug-loaded formulations were prepared with the aim of 

FDM printing, some of the tested drug-loaded formulations could not be extruded across a 

range of extrusion temperatures and were therefore considered unextrudable. Nevertheless, 

88.8% were extrudable, with the majority found to produce good filaments. 
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The analysis revealed that using FDM good filaments were approximately twice as 

likely to be successfully printed than found to be unprintable, with 67.4% found to be 

printable (Figure 2d). Conversely, if a filament was either brittle or flexible, then there was 

an equal chance that it was printable. 52.4% of flexible filaments were printable, whereas 

53.6% of brittle filaments were printable. The HME temperatures selected ranged from 30 to 

190 ºC, with a mode of 100 ºC (Figure 2e). The temperatures used for FDM ranged from 80 

to 240 ºC, with a mode value of 190 ºC. Thus, the dataset consisted of a wide processing 

temperature range for both HME and FDM. As expected, the FDM printing temperatures are 

higher than the HME temperatures. This culminated as 49.2% of the drug-loaded 

formulations being successfully printed via FDM. The value increased to 55.4% when the 

drug-loaded formulations were successfully extruded by HME. 

3.2 Predictability Evaluation

3.2.1 Predicting the Filament mechanical characteristics

MLTs were able to predict the filament mechanical characteristics with high accuracy. To be 

precise, using the Material Name configuration, RF produced the highest test accuracy of 

73%. A kappa value of 0.61 was obtained, indicating a significant improvement over the 

baseline (Figure 3a). RF was also found to outperform the other MLTs when using the 

feature sets of Material Type, Physical Properties and Physical Properties per Material Type; 

with respect to test accuracy. When analyzing Material Role, SVM was found to achieve the 

highest test accuracy of 59%. When using the Physical Properties configuration, a noticeable 

shrinkage in the coverage of the radar plot was observed, compared with the other 

configurations.  
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Figure 3. Metrics results for predicting a) the filament mechanical characteristics and b) 

printability using MLTs.

3.2.2 Predicting the Printability

The main objective of this study was to determine whether MLTs could predict the 

printability of drug-loaded formulations. Using the individual Material Name as inputs, SVM 

achieved the highest overall test accuracy of 76% (Figure 3b). The precision and recall were 

80% and 73%, respectively. The kappa value was 0.52, which was within the 0.4-0.6 

category classified as significantly better than random chance. RF and DL also achieved 

kappa values within this range. For predicting the printability when the drug-loaded 

formulations were grouped by their Material Types, NN was found to achieve the highest 

overall accuracy of 72%, which was one percentage point higher than RF. Both MLTs were 

found to possess precision and recall values of 72%. Using the Physical Properties per 

Material Type as inputs resulted in an overall test accuracy of 73%, which was by RF. The 

precision and recall values were also 73%, and the kappa value was 0.45. RF achieved the 

highest overall accuracy of 70% when the weighted Physical Properties were used as inputs. 

The precision and recall values were both 70%, and the kappa value was 0.4. When the 

materials were categorized by their Material Role, all MLTs were found to underperform in 

comparison to the Material Name dataset. The highest accuracy obtained was 63% for this 

dataset, which was obtained by both SVM and RF. It was concluded that four of the five 

datasets were able to achieve high prediction scores, with significant improvement over the 

baseline. 

3.2.3 Predicting the Extrusion Temperature
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The best performing MLT for predicting the extrusion temperature was RF. RF outperformed 

the other algorithms in four out of the five feature datasets, with SVM outperforming in the 

Material Role feature configuration (Figure S4, Supplementary Material). The lowest MAE 

recorded was 10.8 C, which was the Physical Properties per Material Name dataset. This was 

a very low value given the overall range for the extrusion temperature was 160 ºC. 

Furthermore, the baseline MAE value was 25.0 C, which was over 2-fold greater than RF. In 

general, SVM, NN and DL were found to produce MAE values below 15 ºC. Multivariate 

linear regression was found to perform poorly, with MAE above the baseline value. 

RF produced the lowest error metric on the testing set and thus is the best technique 

tested here. Comparing the actual to predicted value produced an R2 value of 0.56 on the 

testing set. In comparison, the R2 value of the training set was 0.95. The discrepancy 

indicates that overfitting had occurred, whereby the technique captured specific information 

from the training data but is not able to fully transfer to this the testing set. As illustrated in 

Figure 4, the testing data had a greater range than the training dataset results. 

Figure 4. Scatter plot illustrating the training and testing set results for (a) extrusion 

temperature and (b) printing temperature results. The metrics represent the testing dataset 

results.

3.2.4 Predicting the Printing Temperature

Once the filaments were extruded, they were loaded into the FDM printer. Here, assumptions 

were made for the ideal printing temperature. If premature extrusion was observed, then the 

temperature was decreased, typically in decrements of 5 ºC, until a stable and controlled flow 

was obtained. This approach is time-consuming and requires expertise in FDM 3DP. A 

similar process was followed if the filament could not be extruded through the nozzle, where 

the temperature would be gradually increased until extrusion was observed. However, the 
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maximum temperature was limited by the FDM printer, which is typically below 300 ºC. In 

addition, the maximum temperature was also limited in cases where thermal degradation of 

the filament occurred. Hence, identifying if a drug-loaded formulation can be printed within 

these constraints will minimize both time and material waste. 

The results from the algorithms revealed that a MAE of 8.4 ºC was the best value 

obtained. This was achieved by RF using the Physical Properties per Material Type as input 

features. RF was also able to achieve an MAE of 8.9 ºC with the Material Type feature set. 

By using the arithmetic mean as a baseline, the MAE was found to be 23 ºC, which is 

approximately a 3-fold increase. Hence, a narrower prediction range was achieved by RF. 

Overall, the algorithms were able to achieve MAE values below 15 ºC, except for MLR. 

Again, MLR was unable to interpret the datasets, and performed poorly compared to the 

baseline. For the training dataset, the R2 was 0.95, which decreased to 0.83 for the testing set 

(Figure 4) pointing out overfitting. To mitigate this effect, cross validation was performed on 

both the extrusion and printing temperature analyses. The results suggest that more measures 

were needed to further minimize overfitting.  

3.3 Feature Importance

As aforementioned, RFs additionally provide a ranking function that reflects the importance 

of each feature in the obtained predictive model. In this way, RFs not only learn to make 

predictions, but also to provide some nuanced form of knowledge, highlighting the relevant 

factors involved in the prediction. This may be helpful when designing and fabricating a new 

drug-loaded formulation to identify which variable should be prioritized during formulation 

development. The results of applying RF feature importance for the Material Role feature set 

are presented in Figure 5. It was discovered that for predicting printability, filament 

mechanical characteristics and extrusion temperature, the key determinants were polymer and 

plasticizer. For predicting the FDM printing temperature, RF determined that the lubricant 
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was the key determinant, followed by plasticizer and polymer. The feature importance of 

colorants, inorganic fillers and disintegrants were comparatively minor. These materials were 

added to impart an additional functionality beyond the processing step, for example to 

enhance the aesthetic appearance. Thus, according to RF, the concentrations used for them 

had a relatively minor influence on the processing parameters.

  

Figure 5. Feature Importance plots for the different target variables determined by random 

forest for a) Extrusion temperature, b) Filament Mechanical Characteristics, c) Printing 

Temperature and d) Printability.

3.4 Results of Computational Time

The time it took to train the models and the time to predict the drug-loaded formulations was 

also measured whilst using the conventional PC computer. For these models, the training 

time, the time it took to complete the hyper-parameter tuning and train the models on the 

training set, ranged from a few seconds for kNN and SVM, to the order of days for RF and NN 

(Table S7, Supplementary Material). For all MLTs, the time taken to make a prediction for 

one drug-loaded formulation was a fraction of a second, ranging from 3 milliseconds to 129 

milliseconds. The wide range in the training time was a reflection of the different hyper-

parameters selected for tuning for each technique. 

3.5 Online Web services

The tested MLTs were integrated in a web application service that can be accessed from any 

smart device connected to internet, using this link (http://m3diseen.com/predictions/). The 

application is hosted in an Elastic Compute Cloud (EC2) instance in Amazon Web Services 

(AWS), using the open-source software Apache HTTP Server for serving a web application 

written in Python3 using the Django web framework. The scikit-learn package was used to 

http://m3diseen.com/predictions/
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integrate and make use of the machine learning models. This will allow any user to access the 

service from a laboratory, an office or a remote setting based on their requirements and 

situation. All the processing is done remotely, so the performance of the predictions does not 

depend on the user’s device. This user-friendly software, named M3DISEEN, quickly 

predicts the printability, extrusion temperature, filament mechanical characteristics and 

printing temperature of any potential drug-loaded formulation before preparation, based on 

the selected composition. 

4. Discussions

A family of AI machine learning tools were successfully built from a large dataset of drug-

loaded formulations that were prepared in-house. The results demonstrated that using the 

Material Name inputs succeeded in achieving a high predictive score, with DL, RF and SVM 

able to achieve an overall accuracy above 70%. SVM in particular outperformed all MLTs 

using this feature set, achieving an overall accuracy of 76%, and achieving AUC (Islam et al., 

2019), kappa and F1 score metrics that are good predictive values. The kappa value verified 

that, in addition to high accuracies, MLTs were a significant improvement over the baseline. 

There is no one conclusive and superior MLT, and hence several were investigated. Different 

techniques perform better depending on the size of the dimensions, samples and the linearity 

of the data (Redkar et al., 2020; Wade et al., 2017).

For most, the optimization of the printing is performed manually using the experience 

generated from previous printing of drug-loaded formulations. This approach is time 

consuming and therefore not cost effective. In addition, one batch yields 1 to 5 m of filament 

that must be destroyed if found to be unprintable. The same happens if the raw material 

mixture is unextrudable. The complexity is further compounded by the numerous excipients 

available, increasing the possible combinations and making formulation optimization a high-

dimensional problem. The results obtained from the feature importance ranking were also 
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consistent with the expectation that both the polymer carrier and plasticizer used were key 

determinants for drug-loaded formulations. 

In addition to predicting the printability of filaments, the MLTs were taken a step 

further and employed to predict the mechanical properties of filaments. This is a key 

component of the fabrication process, and prior knowledge can allow the user to take the 

necessary measures to ensure a successful print. For example, if the filament is predicted to 

be brittle by the AI tool, the user can incorporate plasticizers to obtain a less brittle filament. 

The results demonstrate that MLTs were able to attain significant AUROC and kappa values. 

From this, it can be inferred that the AI models developed can predict the mechanical 

properties of the printed objects. This is of particular interest since 3D printing can address, 

for example, brittleness by altering the design. Thus, proactive measures can be taken by the 

operator to address these mechanical properties through design changes. 

The capabilities of the MLTs were also tested to predict both the extrusion 

temperature of HME and the printing temperature using FDM. Identifying the processing 

temperature is also a time-consuming procedure, particularly if the initial temperature 

investigated is far from the ideal value. In addition to knowing whether a drug-loaded 

formulation is printable, there are instances when the user will need to know if desirable 

temperature conditions can be achieved, for example when working with thermally labile 

drugs. Thus, predicting the processing temperature can facilitate the fabrication process. The 

best prediction results were obtained with random forest, obtaining the lowest MAE of 8.8 

ºC. Previous works have been guided by the rule of thumb of using a temperature range 

between 15 to 60 ºC above the glass transition temperature when processing via HME 

(Andrews et al., 2010). Thus, the current approach was advantageous because; (i) the MLT 

was able to predict a temperature range that was narrower than the rule of thumb, with a 

mean range of ± 8.8 ºC; and (ii) this was achieved without the need for determining the Tg of 
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a new drug-loaded formulation, which would require material wastage and time. FDM is a 

relatively new fabrication technique and a rule of thumb for the printing temperature has not 

been established yet. The AI models herein have provided a narrow range, and hence there is 

no need to establish a generic rule. Future work will seek to further minimize both MAE and 

RMSE values. 

Another benefit of using machine learning was that it was directly applicable to an 

already existing formulation development dataset. Other predictive tools would require the 

addition of specific experiments to be performed to produce a model, which can be more 

expensive than a trial-and-error approach. The current work demonstrated that AI can be used 

effectively to predict the processing behavior of common pharmaceutical excipients with 

drug incorporated. 

Five different MLTs were employed herein for both classification and regression 

analyses, including the current state-of-the-art method, deep learning. The latter has been 

demonstrated to globally outperform RF and SVM (Qi et al., 2016), and hence, has gained 

recent popularity for a number of applications (Fadlullah et al., 2017).  In our experiments, 

however, both RF and SVM were found to outperform DL, albeit marginally. The possible 

explanation for this is that DL’s prowess lies in handling considerably larger datasets (from 

thousands to millions of examples), and hence, it would be expected to outperform both RF 

and SVM if the dataset was expanded from the current 614 drug-loaded formulations. kNN 

was found to yield the lowest predictability score when using the Material Names as input, 

where a decrease of 10 percentage points was observed, relative to RF, when predicting the 

printability and filament mechanical properties. However, when using the weighted physical 

properties as inputs, kNN was found to be either equal or marginally lower in predicting the 

outputs. kNN is a technique that is regarded as the easiest to operate, largely owing to the 

single hyperparameter that needs to be tuned. However, the technique is susceptible to the 
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curse of dimensionality. This means that datasets with high number of features (e.g. Material 

Name and Material Type) can cause learning problems for kNN (He et al., 2003; Stommel 

and Herzog, 2009). For regression analyses, multivariate linear regression was found to 

produce poor prediction scores, even when compared with the baseline value determined by 

the arithmetic mode. This suggests that the relationship between the input variables and the 

target variables is non-linear. In summary, different MLTs have different advantages and, 

thus, a reasonable AI prediction tool should incorporate a number of MLTs in order to attain 

the highest predictability performance. 

Suppliers often introduce new excipients into the pharmaceutical market. At the same 

time, existing grades are discontinued. Furthermore, our dataset does not include all potential 

excipients available. Thus, it is important to ensure that an implemented AI tool is amenable 

to the introduction of new materials. With this approach, the software developed offers users 

flexibility when inputting their data. 

The materials were categorized by grouping similar grades together. The results 

demonstrated that the MLTs were robust, with RF having a prediction value of 73%, when 

the materials were classed by their relative grades. Therefore, the MLTs were able to process 

datasets that converged similar material grades together, illustrating their versatility to 

recognize similar compounds. 

RF was also capable of attaining a high predictability score when the total weighted 

physical properties of the drug-loaded formulations were examined. It assigned equal feature 

importance to both molecular weight and melting points (data not included). The Physical 

Properties selected for this study were based on readily available information. There are other 

properties to consider, such as viscosity and dynamic mechanical properties, which have the 

potential to improve the current predictive scores. Adding more properties would be more 

complex but would provide a more holistic representation of the formulation development 
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data. From this study, it was determined that the MLTs can handle both large datasets and 

non-linear relationships. Using the Physical Properties allows the AI to learn from the dataset 

by using the fundamental behavior of materials, rather than learning in terms of their brand 

names. Moreover, some excipients can be incorporated for different processing functions in 

different drug products. For example, polyethylene glycol can be used as the primary 

polymer or as a plasticizer. Thus, using the Physical Properties is the preferred option as it 

removes subjectivity by not labelling the excipients by their Material Name, Material Type or 

Material Role. The Physical Properties dataset were found to produce the lowest 

predictability metrics from the datasets examined herein, however the kappa values 

confirmed that the prediction scores were an improvement over the baseline. The results 

suggest that MLTs were able to capture aspects of the underlying variation in physical 

properties between the different drug-loaded formulations.

The computational times reported herein were discovered to be ideal for providing a 

web-based service. In real terms, the AI models are able to provide predictive results for all 

of the key parameters studied in a matter of seconds. Even though the time to adjust the 

models could take some days for some MLTs, the time it takes to make a prediction for one 

drug-loaded formulation is less than a second. The training time could be also reduced using 

better computer processor or cloud computing. Future work will seek to increase the data 

size, which is known to improve some MLTs predicting performance. In addition, alternative 

ML approaches can be explored, centering on techniques that will explain their decision 

making process. Lastly, a focal aspect of the machine learning pipeline is the pre-processing 

stages and feature engineering. Hence, different pre-processing strategies will also be 

explored. The tested MLTs integrated in the web services offer to any researcher around the 

world suitable predictions for the printability, extrusion temperature, filament mechanical 

characteristics and printing temperature of any potential drug-loaded formulation by selecting 
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the materials from the database and their proportions. Since the prediction of a single drug-

loaded formulation takes less time than the connection of the computer to the webpage by the 

internet, this indicates that this approach can be suitable for rapid prediction of drug-loaded 

formulations saving valuable time and resources, even in remote locations without the need 

of big computational resources. M3DISEEN allows the user to prove the trained models 

offsite and then compare the predicted results with FDM studies in the pharmaceutical 

laboratory, expediting the 3DP process. Users of the service are afforded the efficiency of a 

high-throughput screening tool, combined with high predictability scores.

5. Conclusions

Here, a software tool named M3DISEEN was designed to accelerate the FDM formulation 

development process using AI machine learning techniques. Importantly, the AI models after 

training and testing can predict key fabrication parameters, namely the printability and 

filament characteristics, with high accuracies and HME and FDM temperatures within a 

relatively accurate narrow range. Our approach demonstrates that inputting in the 

composition of the drug-loaded formulation achieved high printing accuracies, and thus 

obviating the need for in-depth knowledge of the properties of pharmaceutical materials. 

M3DISEEN can be used as a tool to guide formulation development researchers, advancing 

the 3DP fabrication process. 
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