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HF Wire-Mesh Dipole Antennas for Broadband
Ice-Penetrating Radar
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Abstract—A novel high frequency (HF) to very high frequency
(VHF) wire-mesh dipole antenna design for use in polar regions
is discussed and evaluated. The antenna was designed to be
lightweight, readily demountable, and acceptably robust. This
is an initial step in the development of a ground-based, phase-
sensitive, synthetic aperture imaging system for use on an au-
tonomous rover platform. The results of initial trials on the Rhône
Glacier, Switzerland in August 2019 are discussed, with particular
attention being paid to the effect on antenna performance of
high surface water content. Including the effects of surface water
resulted in good agreement between field results and modelled
performance.

Index Terms—dipole antennas, HF/VHF radar, ice-penetrating
radar

I. INTRODUCTION

Radar systems used to investigate and monitor glaciers in
polar and alpine regions have operated predominantly over the
same HF and VHF frequency bands since initial experiments
in the 1960s [1]. It is well established that the propagation
of radio waves through homogeneous, cold ice is effectively
frequency independent over these frequency bands [2]. There
has been a trend for ice-penetrating radar systems to move
towards airborne surveys which are able to produce data with
higher spatial coverage than their ground-based counterparts.
Airborne HF platforms have successfully sounded temperate
ice [3], [4], however the physically large wavelengths relative
to the size of the airborne platform mean that antennas cannot
be mounted on the airborne platform directly and are often
deployed in the form of towed monopoles. To reduce the effect
of off-nadir clutter, VHF and UHF ultra wideband (UWB)
radars have been developed which make use of antenna arrays
to improve directivity [5]. These radars have improved vertical
resolution compared to their HF counterparts at the cost of
increased Friis losses and transmitter signal powers.

The evolution of ice shelf features such as meltwater
channels [6], basal terraces [7] or basal crevasses is not well
understood but plays an important role in ice-ocean inter-
actions and ice-shelf stability. Combining a phase-sensitive
radar such as the ApRES (autonomous phase-sensitive radio
echo sounder) [8] with an autonomous rover platform has the
potential to enable large scale synthetic aperture radar (SAR)
imaging of ice shelves in order to study temporal changes
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in basal topography. While ground penetrating radar (GPR)
systems operating in the UHF bands and above are suited to
integration with autonomous rovers because of the small size
of antennas required for these radars, such systems are better
suited to near surface imaging as a result of increased Friis
and dielectric losses at microwave frequencies [2]. Because
the maximum spatial sampling interval required in order to
apply SAR processing techniques is proportional to the radar
wavelength [9], the scale of ground-based surveys possible
with VHF or UHF radars is limited to ensure that both the
spatial sampling criterion is met and the survey is completed
in a reasonable time.

The purpose of this paper is to discuss the development of
a broadband antenna suitable for use with a modified HF/VHF
version of the ApRES deployed on an autonomous rover.
The system operating bandwidth of the HF/VHF prototype
is reduced from 200-400 MHz to 20-40 MHz which results in
an increased upper-bound of the along-track sample spacing
required for SAR processing techniques to be used without
introducing aliasing. This enables the study of temporaral
changes in basal topography of ice shelves at 10 times the
rate of an equivalent platform using the VHF/UHF ApRES.
However, since the antenna size tends to increase as the radar
frequency is reduced, integration of an HF/VHF radar system
with an autonomous rover presents an engineering challenge -
particularly if the system is to be used in areas with complex
surface topography. Because existing autonomous rovers have
been developed for use across various scientific missions, GPR
systems have often been deployed as towed payloads [10], [11]
rather than directly integrated on to the rover.

The remainder of this paper is structured as follows. Section
II reviews the theoretical limits on operating bandwidth and
antenna size to provide a benchmark and initial design goal
for the HF/VHF ApRES antenna, followed by a review of
existing broadband HF/VHF antennas. Section III introduces
a wire-mesh dipole design that takes into consideration con-
straints imposed by use in glaciated environments. Section IV
discusses the characteristics of the wire-mesh dipole antenna
measured during a field campaign in August 2019 and the
changes made to the antenna model to account for deployment
on a temperate glacier.

II. BROADBAND HF/VHF ANTENNAS

The bandwidth requirements of a radar antenna are deter-
mined by the desired down-range resolution ∆R of the radar
system, given by the following

∆R =
λ0

2Bf
√
εr

(1)
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where Bf is the fractional bandwidth B/f0, B is the absolute
bandwidth, f0 is the center frequency, λ0 is the wavelength at
the center frequency in free space and εr is the relative permit-
tivity of the medium through which the signal propagates. For
the HF/VHF ApRES, ∆R = 4.19 m. In [12], Chu establishes
a limit on the fractional bandwidth for an arbitrary antenna
determined by its largest physical dimension. The limit was
later updated and modified by McLean [13] to include a
parameter for the antenna radiation efficiency µ as follows

1

Bf
≈ Q = µ

(
1

(kr)
3 +

1

kr

)
(2)

where Q is the quality factor of the antenna, k is the wavenum-
ber 2π/λ0 and r is the radius of the sphere that minimally
bounds an antenna. It can be seen from (2) as the antenna
dimension becomes smaller, the quality factor increases and
hence the bandwidth reduces. The definition of quality factor
is frequency dependent and hence the relationship between Q
and Bf fail when considering UWB (low-Q) antennas. [14]
shows that, when the fractional bandwidth used corresponds
to the geometric half-power fractional bandwidth, (2) is still
valid. The geometric fractional bandwidth for the HF/VHF
ApRES is B′f =

√
2−1. Following [14], the longest wave-

length λmax from the operating bandwidth is used in place of
λ0. Solving (2) to find r, the minimum antenna dimension for a
lossless antenna (µ = 1) with a 20 MHz to 40 MHz bandwidth
in free space is 5.72 m. Other considerations for the design
of antennas to be deployed in polar environments are that
they should be compact, lightweight and robust to facilitate
transport and continuous operation. The use of wire-mesh as
a reflecting element has been common since the development
of some of the earliest radar systems [15], [16], however more
recently there has been interest in using wire-mesh structures
as the radiating element to design lightweight [17] or optically
transparent antennas [18]. The flexibility and reduced weight
of wire-mesh makes it suitable for the construction of an
HF/VHF antenna for ice-penetrating radar.

From [14] the design goal is to maximise the intrinsic
3 dB bandwidth of the radiating element, which is to be
improved using a passive matching network. An example at
HF is the twin-terminated folded dipole antennas developed
for the SuperDARN space weather radar network which make
use of an optimised N th order LC matching network [19].
An alternative broadband antenna design commonly used in
GPR is the resistively-loaded dipole antenna [20], [21]. While
effective for pulsed radar systems because of the high peak
powers involved, the use of resistors inherently results in
reduced antenna efficiency.

III. DESIGN AND SIMULATION

The proposed design is a planar ‘fat dipole’ to be con-
structed from two sheets of centre-fed wire-mesh (Fig. 1).
Before considering the operating conditions and matching
requirements of the antenna, a comparison was made in
simulation between solid ‘fat’ dipole elements and their wire-
mesh equivalent in free space.
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Fig. 1: Schematic of the wire-mesh dipole antenna for simu-
lation in dielectric half-space model of a glacier.

TABLE I: Antenna model parameters and values.
Parameter VHF/UHF (m) HF/VHF (m) Description
Ldp 0.5 5 Dipole length
Wdp 0.09 0.9 Dipole width
Hdp 0 0.1 Height above dielectric interface
Lf 0.03 0.3 Feed length
Wm 0.006 0.006 Mesh cell size
φm 0.0006 0.0006 Mesh diameter
εr 1 [1.6, ..., 3.2] "Firn" permittivity (unitless)

A. Verification of Wire-Mesh Approach

The wire-mesh fat dipole antenna in Fig. 1 was modelled
and simulated using SIMULIA CST Microwave Studio®. For
each of the commercially availabie mesh cell sizes (Wm = 6,
13, 25 and 50 mm) with fixed wire diameter (φm = 0.6 mm),
the reflection coefficient (Γ) of the wire-mesh antenna was
compared with the simulated Γ from an equivalent planar fat-
dipole using solid radiating elements. For all Wm less than
or equal to 25 mm, the RMS error between the wire-mesh
and solid radiator reflection coefficients was less than 10%.
For these simulations the dipole height Hdp was set to zero
and εr = 1 such that the simulation space is symmetrical
and homogeneous. Parameter values used in the simulation
are given in Table I. Subsequent simulations of the wire-
mesh dipole were performed using the solid radiator equivalent
model to reduce the simulation complexity and run time. The
initial lengths of the dipole (Ldp) were chosen to be 0.5 m for
the VHF/UHF scale-model and 5 m for the HF/VHF antenna
corresponding to one half-wavelength in free-space. It follows
from (2) that the antennas will fail to meet the fractional
bandwidth criteria of

√
2−1 for use with the ApRES without

the introduction of a matching network.
Simulations were conducted to test the effect of tapering

the angle at the feedpoints of the antenna, similar to a bow-
tie design. While an increased taper (up to 70°) resulted in
a reduction of the resonant frequency of the antenna by up
to 2.1 MHz, it increased the reactive impedance and hence
reduced the 3 dB bandwidth. Therefore it was decided to
continue with the rectangular, untapered design.

B. Operating Environment

The presence of metallic and dielectric objects in the near-
field of an antenna has the potential to alter its operating be-
haviour. In a glacial environment, snow is blown or falls on the
surface of a glacier and densifies over time to become glacial
ice. "Firn" refers to the material in the intermediate stage
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Fig. 2: Variation in |Γ| for an unmatched and matched wire-
mesh dipole antenna positioned in dielectric half-space of
increasing permittivity (εr).
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Fig. 3: Far-field directivity (dBi) in E-plane (solid) and H-
plane (dashed) for the wire-mesh dipole antenna.

between fresh snow and glacial ice. The density ρ of firn varies
between 350 kg m−3 for wind-packed snow to 923 kg m−3 for
glacial ice [22]. Expected values for the relative permittivity
of firn εr increase from 1.67 to 3.16 with increasing density,
calculated using the empirical relationship between εr and ρ
from [23].

To assess the changes in antenna characteristics (such as
reflection coefficient and far-field radiation pattern), the per-
mittivity of the dielectric half-space described in Fig. 1 was
varied between 1.6 and 3.2 in intervals of 0.4. Variation in the
simulated reflection coefficient is shown in Fig. 2. Increasing
the permittivity of the dielectric half-space, equivalent to the
antenna being situated on denser firn, reduces the resonant
frequency of the antenna and increases the transmitted power.

The far-field radiation pattern was calculated using the near-
to-far-field transformation and is shown for 20 MHz, 30 MHz
and 40 MHz in Fig. 3. The radiation pattern agrees with that of
a dipole positioned on a dielectric half-space [21]. The mean
directivity across the bandwidth at nadir increases from 4.0 dBi
to 6.1 dBi as εr is increased from 1.6 to 3.2. For all simulated
values of εr, the directivity in the E-plane is dominated by
the H-plane with a peak directivity varying from 8.6 dBi to
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Fig. 4: Comparison of measured and simulated |S11| and |S21|
for the wire-mesh dipole matching network.

9.7 dBi at ±53° when εr = 1.6, decreasing to ±34° as εr is
increased to 3.2. Hence, clutter in the H-plane is more likely
to dominate the radar range profile than clutter in the E-plane.

C. Matching Network

A 5th-order LC matching network was implemented on
the antenna side of a 50Ω 1:1 balun in order to maximise
the power transmission to the wire-mesh dipole antennas.
The matching network was designed and optimised using the
simulated antenna impedance for various permittivities (or
firn densities) in the Keysight ADS Design Environment®.
A sensitivity analysis of the matched Γ identified the two
most sensitive components which were realised with variable
capacitors to allow for the matching network to be tuned when
the antenna is positioned on various types of firn or glacial
ice. Fig. 2 compares the unmatched and matched reflection
coefficient of the wire-mesh dipole antenna when positioned in
a dielectric half-space with variable permittivity. In each case
the matching network was optimised for the appropriate value
of permittivity and satisfies |S11| less than −8 dB and |S21|
greater than −2 dB over the 20 MHz to 40 MHz bandwidth.

IV. MEASUREMENTS

The HF/VHF wire-mesh dipole antennas were tested on the
Rhône Glacier, Switzerland (46°35’12”N, 8°23’16”E) during
a field campaign to trial the capabilities of the HF/VHF
ApRES in August, 2019. Each of the wire-mesh dipoles
were supported on a demountable 40 mm diameter PVC
pipe rectangular structure which allowed the antenna to be
transported and rigidly deployed in the field (Fig. 5). Each
assembled antenna had a gross weight less than 4 kg. The s-
parameters for the matching networks and antennas were mea-
sured using a calibrated vector network analyzer (DG8SAQ).
Fig. 4 compares the simulated and measured s-parameters for
the matching network referenced to the on-board test SMA,
unbalanced PCB SMAs and external BNC connectors shown
in Fig. 5 (inset). The reflection coefficients for each antenna,
shown in Fig. 6, measured on the Rhône Glacier with the
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Fig. 5: System setup with sled-mounted radar and wire-mesh
dipole antennas. Inset: housing with matching network PCB,
on-board test SMA and external BNC connectors. The radar
and secondary antenna were not nearby during Γ measure-
ments.
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Fig. 6: |Γ| of both wire-mesh dipole antennas measured on the
Rhône Glacier, compared with modelled behaviour of a wire-
mesh dipole antenna situated on waterlogged alpine glacier.

second antenna and radar equipment over 30 m away, disagree
with the modelled results in Fig. 2. Some variation between
the results for the transmit and receive antennas is attributed to
non-uniformity in the manufacturing of the matching networks
as seen in Fig. 4, however the resonances that are now apparent
at 30 MHz and 34 MHz require further analysis. Simulations
of both antennas separated at their phase centres by 9.3 m
as during radar operation showed no significant effect on the
reflection coefficient.
A. Analysis

Before the field deployment of the antennas, there was
40 mm rainfall on the glacier over the preceeding two days.
The field site for testing the antennas was relatively flat and
waterlogged. The presence of surface pools in an ablation zone
(Fig. 5), indicates that englacial water is likely to be stored
and transported along grain boundaries [24] but restricted to
the upper tens of centimeters in the glacier.

Approximating the waterlogged ice as a fractional propor-
tion v of spherical inclusions of water in glacial ice, the
Looyenga equation (3) can be used to model its permittivity
[25]. The values used for water and glacial ice are assumed
to be εw = 80 and εi = 3.18 respectively. The loss tangent
of freshwater is low therefore the dielectric can be treated
as lossless. The simulation represented in Fig. 1 is modified

to introduce a secondary dielectric layer between the air-firn
interface with thickness Hw, representing the waterlogged
glacier surface, and permittivity ε.

ε
1
3 − ε

1
3
i = v

(
ε

1
3
w − ε

1
3
i

)
(3)

A comparison of the measured antenna results is generated by
combining the measured balun s-parameters with the simulated
reflection coefficient of the saturated glacier antenna model
as shown in Fig. 6. A minimum mean squared error process
(MMSE) with Hw and v as independent variables was used to
estimate the model parameters for the transmit and receive an-
tennas, with results shown in Table II. Switching the matching
network s-parameters for the transmit and receive antennas did
not yield significant changes in MMSE, however the antennas
were not in exactly the same position for both measurements
on the glacier which suggests some disagreement in Fig. 6 can
also be attributed to a change in surface water distribution. If
multiple antenna calibration measurements were to be taken
during a radar traverse, it would be possible to approximate the
variation in surface water content with this method. Increased
surface melt has recently been reported across the Antarctic
continent [26] and Greenland [27], therefore accounting for
waterlogged and temperate conditions in the matching network
design is likely to be necessary for future polar deployments
of the HF/VHF ApRES.

B. Future Work

Further refinement to the passive matching network is re-
quired to improve the matched antenna bandwidth. A reduction
in the tranmission line length from the matching PCB to
external feed point connectors is likely to result in more
stable matching performance between antennas. A more robust
antenna frame beyond the existing PVC pipe structure should
also be considered for integration of the HF/VHF ApRES with
an autonomous rover for long endurance RES surveys.

V. CONCLUSION

A novel HF/VHF antenna design for use in ice-penetrating
radar surveys has been presented. The use of wire-mesh as
radiating elements was shown to match simulated results and
allows for the construction of a lightweight antenna suitable
for rapid field deployment. The design was verified through
simulation and experimentally on an alpine glacier in wet
summer conditions, and was used to conduct a successful radar
transect of the glacier with the HF/VHF ApRES radar. The
matching network design and a modified glacier model with
a waterlogged surface can be used to explain the reduction
in measured bandwidth. With increased surface melt seen in
both polar regions, consideration of the effects of supraglacial
water is likely to be an important factor when considering
integration of the radar platform and an autonomous rover.

TABLE II: Parameters for MMSE optimisation of |Γ| between
measured and modelled wire-mesh dipole on saturated glacier.

Antenna Hw (m) v (%) MSE
Tx 0.4 50 0.073
Rx 0.1 30 0.038
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